1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return pte_marker_uffd_wp(vmf->orig_pte);
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
130 EXPORT_SYMBOL(high_memory);
133 * Randomize the address space (stacks, mmaps, brk, etc.).
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
157 static int __init disable_randmaps(char *s)
159 randomize_va_space = 0;
162 __setup("norandmaps", disable_randmaps);
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
167 unsigned long highest_memmap_pfn __read_mostly;
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 static int __init init_zero_pfn(void)
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 early_initcall(init_zero_pfn);
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 trace_rss_stat(mm, member);
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 pgtable_t token = pmd_pgtable(*pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
206 pmd = pmd_offset(pud, addr);
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
222 if (end - 1 > ceiling - 1)
225 pmd = pmd_offset(pud, start);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
240 pud = pud_offset(p4d, addr);
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
256 if (end - 1 > ceiling - 1)
259 pud = pud_offset(p4d, start);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
274 p4d = p4d_offset(pgd, addr);
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
286 ceiling &= PGDIR_MASK;
290 if (end - 1 > ceiling - 1)
293 p4d = p4d_offset(pgd, start);
295 p4d_free_tlb(tlb, p4d, start);
299 * This function frees user-level page tables of a process.
301 void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
309 * The next few lines have given us lots of grief...
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
345 if (end - 1 > ceiling - 1)
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
368 unsigned long addr = vma->vm_start;
369 struct vm_area_struct *next;
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
375 next = mas_find(mas, ceiling - 1);
378 * Hide vma from rmap and truncate_pagecache before freeing
382 vma_start_write(vma);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
386 if (is_vm_hugetlb_page(vma)) {
387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388 floor, next ? next->vm_start : ceiling);
391 * Optimization: gather nearby vmas into one call down
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394 && !is_vm_hugetlb_page(next)) {
396 next = mas_find(mas, ceiling - 1);
398 vma_start_write(vma);
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
402 free_pgd_range(tlb, addr, vma->vm_end,
403 floor, next ? next->vm_start : ceiling);
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
411 spinlock_t *ptl = pmd_lock(mm, pmd);
413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429 pmd_populate(mm, pmd, *pte);
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 pgtable_t new = pte_alloc_one(mm);
441 pmd_install(mm, pmd, &new);
447 int __pte_alloc_kernel(pmd_t *pmd)
449 pte_t *new = pte_alloc_one_kernel(&init_mm);
453 spin_lock(&init_mm.page_table_lock);
454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
455 smp_wmb(); /* See comment in pmd_install() */
456 pmd_populate_kernel(&init_mm, pmd, new);
459 spin_unlock(&init_mm.page_table_lock);
461 pte_free_kernel(&init_mm, new);
465 static inline void init_rss_vec(int *rss)
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 if (current->mm == mm)
476 for (i = 0; i < NR_MM_COUNTERS; i++)
478 add_mm_counter(mm, i, rss[i]);
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
486 * The calling function must still handle the error.
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
518 resume = jiffies + 60 * HZ;
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 dump_page(page, "bad pte");
528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534 mapping ? mapping->a_ops->read_folio : NULL);
536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562 * And for normal mappings this is false.
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 unsigned long pfn = pte_pfn(pte);
586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587 if (likely(!pte_special(pte)))
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 if (is_zero_pfn(pfn))
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 print_bad_pte(vma, addr, pte, NULL);
610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 if (pfn == vma->vm_pgoff + off)
622 if (!is_cow_mapping(vma->vm_flags))
627 if (is_zero_pfn(pfn))
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
637 * NOTE! We still have PageReserved() pages in the page tables.
638 * eg. VDSO mappings can cause them to exist.
641 return pfn_to_page(pfn);
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 struct page *page = vm_normal_page(vma, addr, pte);
650 return page_folio(page);
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 unsigned long pfn = pmd_pfn(pmd);
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
675 if (!is_cow_mapping(vma->vm_flags))
682 if (is_huge_zero_pmd(pmd))
684 if (unlikely(pfn > highest_memmap_pfn))
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
692 return pfn_to_page(pfn);
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
704 orig_pte = ptep_get(ptep);
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(orig_pte))
707 pte = pte_mksoft_dirty(pte);
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
730 set_pte_at(vma->vm_mm, address, ptep, pte);
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
736 update_mmu_cache(vma, address, ptep);
740 * Tries to restore an exclusive pte if the page lock can be acquired without
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748 struct page *page = pfn_swap_entry_to_page(entry);
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
770 unsigned long vm_flags = dst_vma->vm_flags;
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
786 spin_unlock(&mmlist_lock);
788 /* Mark the swap entry as shared. */
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
791 set_pte_at(src_mm, addr, src_pte, pte);
794 } else if (is_migration_entry(entry)) {
795 page = pfn_swap_entry_to_page(entry);
797 rss[mm_counter(page)]++;
799 if (!is_readable_migration_entry(entry) &&
800 is_cow_mapping(vm_flags)) {
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
806 entry = make_readable_migration_entry(
808 pte = swp_entry_to_pte(entry);
809 if (pte_swp_soft_dirty(orig_pte))
810 pte = pte_swp_mksoft_dirty(pte);
811 if (pte_swp_uffd_wp(orig_pte))
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
815 } else if (is_device_private_entry(entry)) {
816 page = pfn_swap_entry_to_page(entry);
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
828 rss[mm_counter(page)]++;
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
839 if (is_writable_device_private_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 entry = make_readable_device_private_entry(
843 pte = swp_entry_to_pte(entry);
844 if (pte_swp_uffd_wp(orig_pte))
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
848 } else if (is_device_exclusive_entry(entry)) {
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 } else if (is_pte_marker_entry(entry)) {
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
869 set_pte_at(dst_mm, addr, dst_pte, pte);
874 * Copy a present and normal page.
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 struct folio **prealloc, struct page *page)
890 struct folio *new_folio;
893 new_folio = *prealloc;
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
908 /* All done, just insert the new page copy in the child */
909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 /* Uffd-wp needs to be delivered to dest pte as well */
913 pte = pte_mkuffd_wp(pte);
914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 struct folio **prealloc)
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
929 pte_t pte = ptep_get(src_pte);
933 page = vm_normal_page(src_vma, addr, pte);
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 /* Page may be pinned, we have to copy. */
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
953 page_dup_file_rmap(page, false);
954 rss[mm_counter_file(page)]++;
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 ptep_set_wrprotect(src_mm, addr, src_pte);
963 pte = pte_wrprotect(pte);
965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968 * If it's a shared mapping, mark it clean in
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
975 if (!userfaultfd_wp(dst_vma))
976 pte = pte_clear_uffd_wp(pte);
978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
985 struct folio *new_folio;
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
1007 pte_t *orig_src_pte, *orig_dst_pte;
1008 pte_t *src_pte, *dst_pte;
1010 spinlock_t *src_ptl, *dst_ptl;
1011 int progress, ret = 0;
1012 int rss[NR_MM_COUNTERS];
1013 swp_entry_t entry = (swp_entry_t){0};
1014 struct folio *prealloc = NULL;
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1049 if (progress >= 32) {
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1060 if (unlikely(!pte_present(ptent))) {
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1066 entry = pte_to_swp_entry(ptep_get(src_pte));
1068 } else if (ret == -EBUSY) {
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1079 WARN_ON_ONCE(ret != -ENOENT);
1081 /* copy_present_pte() will clear `*prealloc' if consumed */
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1088 if (unlikely(ret == -EAGAIN))
1090 if (unlikely(prealloc)) {
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1097 folio_put(prealloc);
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103 arch_leave_lazy_mmu_mode();
1104 pte_unmap_unlock(orig_src_pte, src_ptl);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 } else if (ret == -EBUSY) {
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1126 /* We've captured and resolved the error. Reset, try again. */
1132 if (unlikely(prealloc))
1133 folio_put(prealloc);
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 src_pmd = pmd_offset(src_pud, addr);
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1165 if (pmd_none_or_clear_bad(src_pmd))
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 src_pud = pud_offset(src_p4d, addr);
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1202 if (pud_none_or_clear_bad(src_pud))
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 src_p4d = p4d_offset(src_pgd, addr);
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1249 if (userfaultfd_wp(dst_vma))
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 if (src_vma->anon_vma)
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1270 pgd_t *src_pgd, *dst_pgd;
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 struct mmu_notifier_range range;
1280 if (!vma_needs_copy(dst_vma, src_vma))
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1291 ret = track_pfn_copy(src_vma);
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1302 is_cow = is_cow_mapping(src_vma->vm_flags);
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 0, src_mm, addr, end);
1307 mmu_notifier_invalidate_range_start(&range);
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1315 vma_assert_write_locked(src_vma);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1328 untrack_pfn_clear(dst_vma);
1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 mmu_notifier_invalidate_range_end(&range);
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1344 /* By default, zap all pages */
1348 /* Or, we zap COWed pages only if the caller wants to */
1349 return details->even_cows;
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
1359 /* E.g. the caller passes NULL for the case of a zero page */
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1388 if (zap_drop_file_uffd_wp(details))
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pmd_t *pmd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1399 struct mm_struct *mm = tlb->mm;
1400 int force_flush = 0;
1401 int rss[NR_MM_COUNTERS];
1407 tlb_change_page_size(tlb, PAGE_SIZE);
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1413 flush_tlb_batched_pending(mm);
1414 arch_enter_lazy_mmu_mode();
1416 pte_t ptent = ptep_get(pte);
1419 if (pte_none(ptent))
1425 if (pte_present(ptent)) {
1426 unsigned int delay_rmap;
1428 page = vm_normal_page(vma, addr, ptent);
1429 if (unlikely(!should_zap_page(details, page)))
1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
1433 arch_check_zapped_pte(vma, ptent);
1434 tlb_remove_tlb_entry(tlb, pte, addr);
1435 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1437 if (unlikely(!page)) {
1438 ksm_might_unmap_zero_page(mm, ptent);
1443 if (!PageAnon(page)) {
1444 if (pte_dirty(ptent)) {
1445 set_page_dirty(page);
1446 if (tlb_delay_rmap(tlb)) {
1451 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1452 mark_page_accessed(page);
1454 rss[mm_counter(page)]--;
1456 page_remove_rmap(page, vma, false);
1457 if (unlikely(page_mapcount(page) < 0))
1458 print_bad_pte(vma, addr, ptent, page);
1460 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1468 entry = pte_to_swp_entry(ptent);
1469 if (is_device_private_entry(entry) ||
1470 is_device_exclusive_entry(entry)) {
1471 page = pfn_swap_entry_to_page(entry);
1472 if (unlikely(!should_zap_page(details, page)))
1475 * Both device private/exclusive mappings should only
1476 * work with anonymous page so far, so we don't need to
1477 * consider uffd-wp bit when zap. For more information,
1478 * see zap_install_uffd_wp_if_needed().
1480 WARN_ON_ONCE(!vma_is_anonymous(vma));
1481 rss[mm_counter(page)]--;
1482 if (is_device_private_entry(entry))
1483 page_remove_rmap(page, vma, false);
1485 } else if (!non_swap_entry(entry)) {
1486 /* Genuine swap entry, hence a private anon page */
1487 if (!should_zap_cows(details))
1490 if (unlikely(!free_swap_and_cache(entry)))
1491 print_bad_pte(vma, addr, ptent, NULL);
1492 } else if (is_migration_entry(entry)) {
1493 page = pfn_swap_entry_to_page(entry);
1494 if (!should_zap_page(details, page))
1496 rss[mm_counter(page)]--;
1497 } else if (pte_marker_entry_uffd_wp(entry)) {
1499 * For anon: always drop the marker; for file: only
1500 * drop the marker if explicitly requested.
1502 if (!vma_is_anonymous(vma) &&
1503 !zap_drop_file_uffd_wp(details))
1505 } else if (is_hwpoison_entry(entry) ||
1506 is_poisoned_swp_entry(entry)) {
1507 if (!should_zap_cows(details))
1510 /* We should have covered all the swap entry types */
1513 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1514 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1515 } while (pte++, addr += PAGE_SIZE, addr != end);
1517 add_mm_rss_vec(mm, rss);
1518 arch_leave_lazy_mmu_mode();
1520 /* Do the actual TLB flush before dropping ptl */
1522 tlb_flush_mmu_tlbonly(tlb);
1523 tlb_flush_rmaps(tlb, vma);
1525 pte_unmap_unlock(start_pte, ptl);
1528 * If we forced a TLB flush (either due to running out of
1529 * batch buffers or because we needed to flush dirty TLB
1530 * entries before releasing the ptl), free the batched
1531 * memory too. Come back again if we didn't do everything.
1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1540 struct vm_area_struct *vma, pud_t *pud,
1541 unsigned long addr, unsigned long end,
1542 struct zap_details *details)
1547 pmd = pmd_offset(pud, addr);
1549 next = pmd_addr_end(addr, end);
1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1551 if (next - addr != HPAGE_PMD_SIZE)
1552 __split_huge_pmd(vma, pmd, addr, false, NULL);
1553 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1558 } else if (details && details->single_folio &&
1559 folio_test_pmd_mappable(details->single_folio) &&
1560 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1561 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1563 * Take and drop THP pmd lock so that we cannot return
1564 * prematurely, while zap_huge_pmd() has cleared *pmd,
1565 * but not yet decremented compound_mapcount().
1569 if (pmd_none(*pmd)) {
1573 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 } while (pmd++, cond_resched(), addr != end);
1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1582 struct vm_area_struct *vma, p4d_t *p4d,
1583 unsigned long addr, unsigned long end,
1584 struct zap_details *details)
1589 pud = pud_offset(p4d, addr);
1591 next = pud_addr_end(addr, end);
1592 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1593 if (next - addr != HPAGE_PUD_SIZE) {
1594 mmap_assert_locked(tlb->mm);
1595 split_huge_pud(vma, pud, addr);
1596 } else if (zap_huge_pud(tlb, vma, pud, addr))
1600 if (pud_none_or_clear_bad(pud))
1602 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 } while (pud++, addr = next, addr != end);
1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1611 struct vm_area_struct *vma, pgd_t *pgd,
1612 unsigned long addr, unsigned long end,
1613 struct zap_details *details)
1618 p4d = p4d_offset(pgd, addr);
1620 next = p4d_addr_end(addr, end);
1621 if (p4d_none_or_clear_bad(p4d))
1623 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1624 } while (p4d++, addr = next, addr != end);
1629 void unmap_page_range(struct mmu_gather *tlb,
1630 struct vm_area_struct *vma,
1631 unsigned long addr, unsigned long end,
1632 struct zap_details *details)
1637 BUG_ON(addr >= end);
1638 tlb_start_vma(tlb, vma);
1639 pgd = pgd_offset(vma->vm_mm, addr);
1641 next = pgd_addr_end(addr, end);
1642 if (pgd_none_or_clear_bad(pgd))
1644 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1645 } while (pgd++, addr = next, addr != end);
1646 tlb_end_vma(tlb, vma);
1650 static void unmap_single_vma(struct mmu_gather *tlb,
1651 struct vm_area_struct *vma, unsigned long start_addr,
1652 unsigned long end_addr,
1653 struct zap_details *details, bool mm_wr_locked)
1655 unsigned long start = max(vma->vm_start, start_addr);
1658 if (start >= vma->vm_end)
1660 end = min(vma->vm_end, end_addr);
1661 if (end <= vma->vm_start)
1665 uprobe_munmap(vma, start, end);
1667 if (unlikely(vma->vm_flags & VM_PFNMAP))
1668 untrack_pfn(vma, 0, 0, mm_wr_locked);
1671 if (unlikely(is_vm_hugetlb_page(vma))) {
1673 * It is undesirable to test vma->vm_file as it
1674 * should be non-null for valid hugetlb area.
1675 * However, vm_file will be NULL in the error
1676 * cleanup path of mmap_region. When
1677 * hugetlbfs ->mmap method fails,
1678 * mmap_region() nullifies vma->vm_file
1679 * before calling this function to clean up.
1680 * Since no pte has actually been setup, it is
1681 * safe to do nothing in this case.
1684 zap_flags_t zap_flags = details ?
1685 details->zap_flags : 0;
1686 __unmap_hugepage_range_final(tlb, vma, start, end,
1690 unmap_page_range(tlb, vma, start, end, details);
1695 * unmap_vmas - unmap a range of memory covered by a list of vma's
1696 * @tlb: address of the caller's struct mmu_gather
1697 * @mas: the maple state
1698 * @vma: the starting vma
1699 * @start_addr: virtual address at which to start unmapping
1700 * @end_addr: virtual address at which to end unmapping
1701 * @tree_end: The maximum index to check
1702 * @mm_wr_locked: lock flag
1704 * Unmap all pages in the vma list.
1706 * Only addresses between `start' and `end' will be unmapped.
1708 * The VMA list must be sorted in ascending virtual address order.
1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1711 * range after unmap_vmas() returns. So the only responsibility here is to
1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1713 * drops the lock and schedules.
1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1716 struct vm_area_struct *vma, unsigned long start_addr,
1717 unsigned long end_addr, unsigned long tree_end,
1720 struct mmu_notifier_range range;
1721 struct zap_details details = {
1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1723 /* Careful - we need to zap private pages too! */
1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1728 start_addr, end_addr);
1729 mmu_notifier_invalidate_range_start(&range);
1731 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1733 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1734 mmu_notifier_invalidate_range_end(&range);
1738 * zap_page_range_single - remove user pages in a given range
1739 * @vma: vm_area_struct holding the applicable pages
1740 * @address: starting address of pages to zap
1741 * @size: number of bytes to zap
1742 * @details: details of shared cache invalidation
1744 * The range must fit into one VMA.
1746 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1747 unsigned long size, struct zap_details *details)
1749 const unsigned long end = address + size;
1750 struct mmu_notifier_range range;
1751 struct mmu_gather tlb;
1754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1756 if (is_vm_hugetlb_page(vma))
1757 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1759 tlb_gather_mmu(&tlb, vma->vm_mm);
1760 update_hiwater_rss(vma->vm_mm);
1761 mmu_notifier_invalidate_range_start(&range);
1763 * unmap 'address-end' not 'range.start-range.end' as range
1764 * could have been expanded for hugetlb pmd sharing.
1766 unmap_single_vma(&tlb, vma, address, end, details, false);
1767 mmu_notifier_invalidate_range_end(&range);
1768 tlb_finish_mmu(&tlb);
1772 * zap_vma_ptes - remove ptes mapping the vma
1773 * @vma: vm_area_struct holding ptes to be zapped
1774 * @address: starting address of pages to zap
1775 * @size: number of bytes to zap
1777 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1779 * The entire address range must be fully contained within the vma.
1782 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1785 if (!range_in_vma(vma, address, address + size) ||
1786 !(vma->vm_flags & VM_PFNMAP))
1789 zap_page_range_single(vma, address, size, NULL);
1791 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1793 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1800 pgd = pgd_offset(mm, addr);
1801 p4d = p4d_alloc(mm, pgd, addr);
1804 pud = pud_alloc(mm, p4d, addr);
1807 pmd = pmd_alloc(mm, pud, addr);
1811 VM_BUG_ON(pmd_trans_huge(*pmd));
1815 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1818 pmd_t *pmd = walk_to_pmd(mm, addr);
1822 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1825 static int validate_page_before_insert(struct page *page)
1827 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1829 flush_dcache_page(page);
1833 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1834 unsigned long addr, struct page *page, pgprot_t prot)
1836 if (!pte_none(ptep_get(pte)))
1838 /* Ok, finally just insert the thing.. */
1840 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1841 page_add_file_rmap(page, vma, false);
1842 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1847 * This is the old fallback for page remapping.
1849 * For historical reasons, it only allows reserved pages. Only
1850 * old drivers should use this, and they needed to mark their
1851 * pages reserved for the old functions anyway.
1853 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1854 struct page *page, pgprot_t prot)
1860 retval = validate_page_before_insert(page);
1864 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1867 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868 pte_unmap_unlock(pte, ptl);
1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1874 unsigned long addr, struct page *page, pgprot_t prot)
1878 if (!page_count(page))
1880 err = validate_page_before_insert(page);
1883 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886 /* insert_pages() amortizes the cost of spinlock operations
1887 * when inserting pages in a loop.
1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 struct page **pages, unsigned long *num, pgprot_t prot)
1893 pte_t *start_pte, *pte;
1894 spinlock_t *pte_lock;
1895 struct mm_struct *const mm = vma->vm_mm;
1896 unsigned long curr_page_idx = 0;
1897 unsigned long remaining_pages_total = *num;
1898 unsigned long pages_to_write_in_pmd;
1902 pmd = walk_to_pmd(mm, addr);
1906 pages_to_write_in_pmd = min_t(unsigned long,
1907 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1909 /* Allocate the PTE if necessary; takes PMD lock once only. */
1911 if (pte_alloc(mm, pmd))
1914 while (pages_to_write_in_pmd) {
1916 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1918 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1923 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1924 int err = insert_page_in_batch_locked(vma, pte,
1925 addr, pages[curr_page_idx], prot);
1926 if (unlikely(err)) {
1927 pte_unmap_unlock(start_pte, pte_lock);
1929 remaining_pages_total -= pte_idx;
1935 pte_unmap_unlock(start_pte, pte_lock);
1936 pages_to_write_in_pmd -= batch_size;
1937 remaining_pages_total -= batch_size;
1939 if (remaining_pages_total)
1943 *num = remaining_pages_total;
1948 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1949 * @vma: user vma to map to
1950 * @addr: target start user address of these pages
1951 * @pages: source kernel pages
1952 * @num: in: number of pages to map. out: number of pages that were *not*
1953 * mapped. (0 means all pages were successfully mapped).
1955 * Preferred over vm_insert_page() when inserting multiple pages.
1957 * In case of error, we may have mapped a subset of the provided
1958 * pages. It is the caller's responsibility to account for this case.
1960 * The same restrictions apply as in vm_insert_page().
1962 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1963 struct page **pages, unsigned long *num)
1965 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1967 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1969 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1970 BUG_ON(mmap_read_trylock(vma->vm_mm));
1971 BUG_ON(vma->vm_flags & VM_PFNMAP);
1972 vm_flags_set(vma, VM_MIXEDMAP);
1974 /* Defer page refcount checking till we're about to map that page. */
1975 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1977 EXPORT_SYMBOL(vm_insert_pages);
1980 * vm_insert_page - insert single page into user vma
1981 * @vma: user vma to map to
1982 * @addr: target user address of this page
1983 * @page: source kernel page
1985 * This allows drivers to insert individual pages they've allocated
1988 * The page has to be a nice clean _individual_ kernel allocation.
1989 * If you allocate a compound page, you need to have marked it as
1990 * such (__GFP_COMP), or manually just split the page up yourself
1991 * (see split_page()).
1993 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1994 * took an arbitrary page protection parameter. This doesn't allow
1995 * that. Your vma protection will have to be set up correctly, which
1996 * means that if you want a shared writable mapping, you'd better
1997 * ask for a shared writable mapping!
1999 * The page does not need to be reserved.
2001 * Usually this function is called from f_op->mmap() handler
2002 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2003 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2004 * function from other places, for example from page-fault handler.
2006 * Return: %0 on success, negative error code otherwise.
2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2011 if (addr < vma->vm_start || addr >= vma->vm_end)
2013 if (!page_count(page))
2015 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2016 BUG_ON(mmap_read_trylock(vma->vm_mm));
2017 BUG_ON(vma->vm_flags & VM_PFNMAP);
2018 vm_flags_set(vma, VM_MIXEDMAP);
2020 return insert_page(vma, addr, page, vma->vm_page_prot);
2022 EXPORT_SYMBOL(vm_insert_page);
2025 * __vm_map_pages - maps range of kernel pages into user vma
2026 * @vma: user vma to map to
2027 * @pages: pointer to array of source kernel pages
2028 * @num: number of pages in page array
2029 * @offset: user's requested vm_pgoff
2031 * This allows drivers to map range of kernel pages into a user vma.
2033 * Return: 0 on success and error code otherwise.
2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2036 unsigned long num, unsigned long offset)
2038 unsigned long count = vma_pages(vma);
2039 unsigned long uaddr = vma->vm_start;
2042 /* Fail if the user requested offset is beyond the end of the object */
2046 /* Fail if the user requested size exceeds available object size */
2047 if (count > num - offset)
2050 for (i = 0; i < count; i++) {
2051 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2061 * vm_map_pages - maps range of kernel pages starts with non zero offset
2062 * @vma: user vma to map to
2063 * @pages: pointer to array of source kernel pages
2064 * @num: number of pages in page array
2066 * Maps an object consisting of @num pages, catering for the user's
2067 * requested vm_pgoff
2069 * If we fail to insert any page into the vma, the function will return
2070 * immediately leaving any previously inserted pages present. Callers
2071 * from the mmap handler may immediately return the error as their caller
2072 * will destroy the vma, removing any successfully inserted pages. Other
2073 * callers should make their own arrangements for calling unmap_region().
2075 * Context: Process context. Called by mmap handlers.
2076 * Return: 0 on success and error code otherwise.
2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2081 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2083 EXPORT_SYMBOL(vm_map_pages);
2086 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2087 * @vma: user vma to map to
2088 * @pages: pointer to array of source kernel pages
2089 * @num: number of pages in page array
2091 * Similar to vm_map_pages(), except that it explicitly sets the offset
2092 * to 0. This function is intended for the drivers that did not consider
2095 * Context: Process context. Called by mmap handlers.
2096 * Return: 0 on success and error code otherwise.
2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2101 return __vm_map_pages(vma, pages, num, 0);
2103 EXPORT_SYMBOL(vm_map_pages_zero);
2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2106 pfn_t pfn, pgprot_t prot, bool mkwrite)
2108 struct mm_struct *mm = vma->vm_mm;
2112 pte = get_locked_pte(mm, addr, &ptl);
2114 return VM_FAULT_OOM;
2115 entry = ptep_get(pte);
2116 if (!pte_none(entry)) {
2119 * For read faults on private mappings the PFN passed
2120 * in may not match the PFN we have mapped if the
2121 * mapped PFN is a writeable COW page. In the mkwrite
2122 * case we are creating a writable PTE for a shared
2123 * mapping and we expect the PFNs to match. If they
2124 * don't match, we are likely racing with block
2125 * allocation and mapping invalidation so just skip the
2128 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2129 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2132 entry = pte_mkyoung(entry);
2133 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2135 update_mmu_cache(vma, addr, pte);
2140 /* Ok, finally just insert the thing.. */
2141 if (pfn_t_devmap(pfn))
2142 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2144 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2147 entry = pte_mkyoung(entry);
2148 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2151 set_pte_at(mm, addr, pte, entry);
2152 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2155 pte_unmap_unlock(pte, ptl);
2156 return VM_FAULT_NOPAGE;
2160 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2161 * @vma: user vma to map to
2162 * @addr: target user address of this page
2163 * @pfn: source kernel pfn
2164 * @pgprot: pgprot flags for the inserted page
2166 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2167 * to override pgprot on a per-page basis.
2169 * This only makes sense for IO mappings, and it makes no sense for
2170 * COW mappings. In general, using multiple vmas is preferable;
2171 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2174 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2175 * caching- and encryption bits different than those of @vma->vm_page_prot,
2176 * because the caching- or encryption mode may not be known at mmap() time.
2178 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2179 * to set caching and encryption bits for those vmas (except for COW pages).
2180 * This is ensured by core vm only modifying these page table entries using
2181 * functions that don't touch caching- or encryption bits, using pte_modify()
2182 * if needed. (See for example mprotect()).
2184 * Also when new page-table entries are created, this is only done using the
2185 * fault() callback, and never using the value of vma->vm_page_prot,
2186 * except for page-table entries that point to anonymous pages as the result
2189 * Context: Process context. May allocate using %GFP_KERNEL.
2190 * Return: vm_fault_t value.
2192 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2193 unsigned long pfn, pgprot_t pgprot)
2196 * Technically, architectures with pte_special can avoid all these
2197 * restrictions (same for remap_pfn_range). However we would like
2198 * consistency in testing and feature parity among all, so we should
2199 * try to keep these invariants in place for everybody.
2201 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2202 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2203 (VM_PFNMAP|VM_MIXEDMAP));
2204 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2205 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2207 if (addr < vma->vm_start || addr >= vma->vm_end)
2208 return VM_FAULT_SIGBUS;
2210 if (!pfn_modify_allowed(pfn, pgprot))
2211 return VM_FAULT_SIGBUS;
2213 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2215 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2218 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2221 * vmf_insert_pfn - insert single pfn into user vma
2222 * @vma: user vma to map to
2223 * @addr: target user address of this page
2224 * @pfn: source kernel pfn
2226 * Similar to vm_insert_page, this allows drivers to insert individual pages
2227 * they've allocated into a user vma. Same comments apply.
2229 * This function should only be called from a vm_ops->fault handler, and
2230 * in that case the handler should return the result of this function.
2232 * vma cannot be a COW mapping.
2234 * As this is called only for pages that do not currently exist, we
2235 * do not need to flush old virtual caches or the TLB.
2237 * Context: Process context. May allocate using %GFP_KERNEL.
2238 * Return: vm_fault_t value.
2240 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2243 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2245 EXPORT_SYMBOL(vmf_insert_pfn);
2247 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2249 /* these checks mirror the abort conditions in vm_normal_page */
2250 if (vma->vm_flags & VM_MIXEDMAP)
2252 if (pfn_t_devmap(pfn))
2254 if (pfn_t_special(pfn))
2256 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2261 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2262 unsigned long addr, pfn_t pfn, bool mkwrite)
2264 pgprot_t pgprot = vma->vm_page_prot;
2267 BUG_ON(!vm_mixed_ok(vma, pfn));
2269 if (addr < vma->vm_start || addr >= vma->vm_end)
2270 return VM_FAULT_SIGBUS;
2272 track_pfn_insert(vma, &pgprot, pfn);
2274 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2275 return VM_FAULT_SIGBUS;
2278 * If we don't have pte special, then we have to use the pfn_valid()
2279 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2280 * refcount the page if pfn_valid is true (hence insert_page rather
2281 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2282 * without pte special, it would there be refcounted as a normal page.
2284 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2285 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2289 * At this point we are committed to insert_page()
2290 * regardless of whether the caller specified flags that
2291 * result in pfn_t_has_page() == false.
2293 page = pfn_to_page(pfn_t_to_pfn(pfn));
2294 err = insert_page(vma, addr, page, pgprot);
2296 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2300 return VM_FAULT_OOM;
2301 if (err < 0 && err != -EBUSY)
2302 return VM_FAULT_SIGBUS;
2304 return VM_FAULT_NOPAGE;
2307 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2310 return __vm_insert_mixed(vma, addr, pfn, false);
2312 EXPORT_SYMBOL(vmf_insert_mixed);
2315 * If the insertion of PTE failed because someone else already added a
2316 * different entry in the mean time, we treat that as success as we assume
2317 * the same entry was actually inserted.
2319 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2320 unsigned long addr, pfn_t pfn)
2322 return __vm_insert_mixed(vma, addr, pfn, true);
2324 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2327 * maps a range of physical memory into the requested pages. the old
2328 * mappings are removed. any references to nonexistent pages results
2329 * in null mappings (currently treated as "copy-on-access")
2331 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2332 unsigned long addr, unsigned long end,
2333 unsigned long pfn, pgprot_t prot)
2335 pte_t *pte, *mapped_pte;
2339 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2342 arch_enter_lazy_mmu_mode();
2344 BUG_ON(!pte_none(ptep_get(pte)));
2345 if (!pfn_modify_allowed(pfn, prot)) {
2349 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2351 } while (pte++, addr += PAGE_SIZE, addr != end);
2352 arch_leave_lazy_mmu_mode();
2353 pte_unmap_unlock(mapped_pte, ptl);
2357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2358 unsigned long addr, unsigned long end,
2359 unsigned long pfn, pgprot_t prot)
2365 pfn -= addr >> PAGE_SHIFT;
2366 pmd = pmd_alloc(mm, pud, addr);
2369 VM_BUG_ON(pmd_trans_huge(*pmd));
2371 next = pmd_addr_end(addr, end);
2372 err = remap_pte_range(mm, pmd, addr, next,
2373 pfn + (addr >> PAGE_SHIFT), prot);
2376 } while (pmd++, addr = next, addr != end);
2380 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2381 unsigned long addr, unsigned long end,
2382 unsigned long pfn, pgprot_t prot)
2388 pfn -= addr >> PAGE_SHIFT;
2389 pud = pud_alloc(mm, p4d, addr);
2393 next = pud_addr_end(addr, end);
2394 err = remap_pmd_range(mm, pud, addr, next,
2395 pfn + (addr >> PAGE_SHIFT), prot);
2398 } while (pud++, addr = next, addr != end);
2402 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2403 unsigned long addr, unsigned long end,
2404 unsigned long pfn, pgprot_t prot)
2410 pfn -= addr >> PAGE_SHIFT;
2411 p4d = p4d_alloc(mm, pgd, addr);
2415 next = p4d_addr_end(addr, end);
2416 err = remap_pud_range(mm, p4d, addr, next,
2417 pfn + (addr >> PAGE_SHIFT), prot);
2420 } while (p4d++, addr = next, addr != end);
2425 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2426 * must have pre-validated the caching bits of the pgprot_t.
2428 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2429 unsigned long pfn, unsigned long size, pgprot_t prot)
2433 unsigned long end = addr + PAGE_ALIGN(size);
2434 struct mm_struct *mm = vma->vm_mm;
2437 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2441 * Physically remapped pages are special. Tell the
2442 * rest of the world about it:
2443 * VM_IO tells people not to look at these pages
2444 * (accesses can have side effects).
2445 * VM_PFNMAP tells the core MM that the base pages are just
2446 * raw PFN mappings, and do not have a "struct page" associated
2449 * Disable vma merging and expanding with mremap().
2451 * Omit vma from core dump, even when VM_IO turned off.
2453 * There's a horrible special case to handle copy-on-write
2454 * behaviour that some programs depend on. We mark the "original"
2455 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2456 * See vm_normal_page() for details.
2458 if (is_cow_mapping(vma->vm_flags)) {
2459 if (addr != vma->vm_start || end != vma->vm_end)
2461 vma->vm_pgoff = pfn;
2464 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2466 BUG_ON(addr >= end);
2467 pfn -= addr >> PAGE_SHIFT;
2468 pgd = pgd_offset(mm, addr);
2469 flush_cache_range(vma, addr, end);
2471 next = pgd_addr_end(addr, end);
2472 err = remap_p4d_range(mm, pgd, addr, next,
2473 pfn + (addr >> PAGE_SHIFT), prot);
2476 } while (pgd++, addr = next, addr != end);
2482 * remap_pfn_range - remap kernel memory to userspace
2483 * @vma: user vma to map to
2484 * @addr: target page aligned user address to start at
2485 * @pfn: page frame number of kernel physical memory address
2486 * @size: size of mapping area
2487 * @prot: page protection flags for this mapping
2489 * Note: this is only safe if the mm semaphore is held when called.
2491 * Return: %0 on success, negative error code otherwise.
2493 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2494 unsigned long pfn, unsigned long size, pgprot_t prot)
2498 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2502 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2504 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2507 EXPORT_SYMBOL(remap_pfn_range);
2510 * vm_iomap_memory - remap memory to userspace
2511 * @vma: user vma to map to
2512 * @start: start of the physical memory to be mapped
2513 * @len: size of area
2515 * This is a simplified io_remap_pfn_range() for common driver use. The
2516 * driver just needs to give us the physical memory range to be mapped,
2517 * we'll figure out the rest from the vma information.
2519 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2520 * whatever write-combining details or similar.
2522 * Return: %0 on success, negative error code otherwise.
2524 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2526 unsigned long vm_len, pfn, pages;
2528 /* Check that the physical memory area passed in looks valid */
2529 if (start + len < start)
2532 * You *really* shouldn't map things that aren't page-aligned,
2533 * but we've historically allowed it because IO memory might
2534 * just have smaller alignment.
2536 len += start & ~PAGE_MASK;
2537 pfn = start >> PAGE_SHIFT;
2538 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2539 if (pfn + pages < pfn)
2542 /* We start the mapping 'vm_pgoff' pages into the area */
2543 if (vma->vm_pgoff > pages)
2545 pfn += vma->vm_pgoff;
2546 pages -= vma->vm_pgoff;
2548 /* Can we fit all of the mapping? */
2549 vm_len = vma->vm_end - vma->vm_start;
2550 if (vm_len >> PAGE_SHIFT > pages)
2553 /* Ok, let it rip */
2554 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2556 EXPORT_SYMBOL(vm_iomap_memory);
2558 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2559 unsigned long addr, unsigned long end,
2560 pte_fn_t fn, void *data, bool create,
2561 pgtbl_mod_mask *mask)
2563 pte_t *pte, *mapped_pte;
2568 mapped_pte = pte = (mm == &init_mm) ?
2569 pte_alloc_kernel_track(pmd, addr, mask) :
2570 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2574 mapped_pte = pte = (mm == &init_mm) ?
2575 pte_offset_kernel(pmd, addr) :
2576 pte_offset_map_lock(mm, pmd, addr, &ptl);
2581 arch_enter_lazy_mmu_mode();
2585 if (create || !pte_none(ptep_get(pte))) {
2586 err = fn(pte++, addr, data);
2590 } while (addr += PAGE_SIZE, addr != end);
2592 *mask |= PGTBL_PTE_MODIFIED;
2594 arch_leave_lazy_mmu_mode();
2597 pte_unmap_unlock(mapped_pte, ptl);
2601 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2602 unsigned long addr, unsigned long end,
2603 pte_fn_t fn, void *data, bool create,
2604 pgtbl_mod_mask *mask)
2610 BUG_ON(pud_huge(*pud));
2613 pmd = pmd_alloc_track(mm, pud, addr, mask);
2617 pmd = pmd_offset(pud, addr);
2620 next = pmd_addr_end(addr, end);
2621 if (pmd_none(*pmd) && !create)
2623 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2625 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2630 err = apply_to_pte_range(mm, pmd, addr, next,
2631 fn, data, create, mask);
2634 } while (pmd++, addr = next, addr != end);
2639 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2640 unsigned long addr, unsigned long end,
2641 pte_fn_t fn, void *data, bool create,
2642 pgtbl_mod_mask *mask)
2649 pud = pud_alloc_track(mm, p4d, addr, mask);
2653 pud = pud_offset(p4d, addr);
2656 next = pud_addr_end(addr, end);
2657 if (pud_none(*pud) && !create)
2659 if (WARN_ON_ONCE(pud_leaf(*pud)))
2661 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2666 err = apply_to_pmd_range(mm, pud, addr, next,
2667 fn, data, create, mask);
2670 } while (pud++, addr = next, addr != end);
2675 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2676 unsigned long addr, unsigned long end,
2677 pte_fn_t fn, void *data, bool create,
2678 pgtbl_mod_mask *mask)
2685 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2689 p4d = p4d_offset(pgd, addr);
2692 next = p4d_addr_end(addr, end);
2693 if (p4d_none(*p4d) && !create)
2695 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2697 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2702 err = apply_to_pud_range(mm, p4d, addr, next,
2703 fn, data, create, mask);
2706 } while (p4d++, addr = next, addr != end);
2711 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2712 unsigned long size, pte_fn_t fn,
2713 void *data, bool create)
2716 unsigned long start = addr, next;
2717 unsigned long end = addr + size;
2718 pgtbl_mod_mask mask = 0;
2721 if (WARN_ON(addr >= end))
2724 pgd = pgd_offset(mm, addr);
2726 next = pgd_addr_end(addr, end);
2727 if (pgd_none(*pgd) && !create)
2729 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2731 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2736 err = apply_to_p4d_range(mm, pgd, addr, next,
2737 fn, data, create, &mask);
2740 } while (pgd++, addr = next, addr != end);
2742 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2743 arch_sync_kernel_mappings(start, start + size);
2749 * Scan a region of virtual memory, filling in page tables as necessary
2750 * and calling a provided function on each leaf page table.
2752 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2753 unsigned long size, pte_fn_t fn, void *data)
2755 return __apply_to_page_range(mm, addr, size, fn, data, true);
2757 EXPORT_SYMBOL_GPL(apply_to_page_range);
2760 * Scan a region of virtual memory, calling a provided function on
2761 * each leaf page table where it exists.
2763 * Unlike apply_to_page_range, this does _not_ fill in page tables
2764 * where they are absent.
2766 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2767 unsigned long size, pte_fn_t fn, void *data)
2769 return __apply_to_page_range(mm, addr, size, fn, data, false);
2771 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2774 * handle_pte_fault chooses page fault handler according to an entry which was
2775 * read non-atomically. Before making any commitment, on those architectures
2776 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2777 * parts, do_swap_page must check under lock before unmapping the pte and
2778 * proceeding (but do_wp_page is only called after already making such a check;
2779 * and do_anonymous_page can safely check later on).
2781 static inline int pte_unmap_same(struct vm_fault *vmf)
2784 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2785 if (sizeof(pte_t) > sizeof(unsigned long)) {
2786 spin_lock(vmf->ptl);
2787 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2788 spin_unlock(vmf->ptl);
2791 pte_unmap(vmf->pte);
2798 * 0: copied succeeded
2799 * -EHWPOISON: copy failed due to hwpoison in source page
2800 * -EAGAIN: copied failed (some other reason)
2802 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2803 struct vm_fault *vmf)
2808 struct vm_area_struct *vma = vmf->vma;
2809 struct mm_struct *mm = vma->vm_mm;
2810 unsigned long addr = vmf->address;
2813 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814 memory_failure_queue(page_to_pfn(src), 0);
2821 * If the source page was a PFN mapping, we don't have
2822 * a "struct page" for it. We do a best-effort copy by
2823 * just copying from the original user address. If that
2824 * fails, we just zero-fill it. Live with it.
2826 kaddr = kmap_atomic(dst);
2827 uaddr = (void __user *)(addr & PAGE_MASK);
2830 * On architectures with software "accessed" bits, we would
2831 * take a double page fault, so mark it accessed here.
2834 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2837 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2838 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2840 * Other thread has already handled the fault
2841 * and update local tlb only
2844 update_mmu_tlb(vma, addr, vmf->pte);
2849 entry = pte_mkyoung(vmf->orig_pte);
2850 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2851 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2855 * This really shouldn't fail, because the page is there
2856 * in the page tables. But it might just be unreadable,
2857 * in which case we just give up and fill the result with
2860 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2864 /* Re-validate under PTL if the page is still mapped */
2865 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2867 /* The PTE changed under us, update local tlb */
2869 update_mmu_tlb(vma, addr, vmf->pte);
2875 * The same page can be mapped back since last copy attempt.
2876 * Try to copy again under PTL.
2878 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2880 * Give a warn in case there can be some obscure
2893 pte_unmap_unlock(vmf->pte, vmf->ptl);
2894 kunmap_atomic(kaddr);
2895 flush_dcache_page(dst);
2900 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2902 struct file *vm_file = vma->vm_file;
2905 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2908 * Special mappings (e.g. VDSO) do not have any file so fake
2909 * a default GFP_KERNEL for them.
2915 * Notify the address space that the page is about to become writable so that
2916 * it can prohibit this or wait for the page to get into an appropriate state.
2918 * We do this without the lock held, so that it can sleep if it needs to.
2920 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2923 unsigned int old_flags = vmf->flags;
2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2927 if (vmf->vma->vm_file &&
2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929 return VM_FAULT_SIGBUS;
2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2932 /* Restore original flags so that caller is not surprised */
2933 vmf->flags = old_flags;
2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2938 if (!folio->mapping) {
2939 folio_unlock(folio);
2940 return 0; /* retry */
2942 ret |= VM_FAULT_LOCKED;
2944 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2949 * Handle dirtying of a page in shared file mapping on a write fault.
2951 * The function expects the page to be locked and unlocks it.
2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2955 struct vm_area_struct *vma = vmf->vma;
2956 struct address_space *mapping;
2957 struct folio *folio = page_folio(vmf->page);
2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2961 dirtied = folio_mark_dirty(folio);
2962 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2964 * Take a local copy of the address_space - folio.mapping may be zeroed
2965 * by truncate after folio_unlock(). The address_space itself remains
2966 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2967 * release semantics to prevent the compiler from undoing this copying.
2969 mapping = folio_raw_mapping(folio);
2970 folio_unlock(folio);
2973 file_update_time(vma->vm_file);
2976 * Throttle page dirtying rate down to writeback speed.
2978 * mapping may be NULL here because some device drivers do not
2979 * set page.mapping but still dirty their pages
2981 * Drop the mmap_lock before waiting on IO, if we can. The file
2982 * is pinning the mapping, as per above.
2984 if ((dirtied || page_mkwrite) && mapping) {
2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2988 balance_dirty_pages_ratelimited(mapping);
2991 return VM_FAULT_COMPLETED;
2999 * Handle write page faults for pages that can be reused in the current vma
3001 * This can happen either due to the mapping being with the VM_SHARED flag,
3002 * or due to us being the last reference standing to the page. In either
3003 * case, all we need to do here is to mark the page as writable and update
3004 * any related book-keeping.
3006 static inline void wp_page_reuse(struct vm_fault *vmf)
3007 __releases(vmf->ptl)
3009 struct vm_area_struct *vma = vmf->vma;
3010 struct page *page = vmf->page;
3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3017 * Clear the pages cpupid information as the existing
3018 * information potentially belongs to a now completely
3019 * unrelated process.
3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025 entry = pte_mkyoung(vmf->orig_pte);
3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 count_vm_event(PGREUSE);
3034 * Handle the case of a page which we actually need to copy to a new page,
3035 * either due to COW or unsharing.
3037 * Called with mmap_lock locked and the old page referenced, but
3038 * without the ptl held.
3040 * High level logic flow:
3042 * - Allocate a page, copy the content of the old page to the new one.
3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044 * - Take the PTL. If the pte changed, bail out and release the allocated page
3045 * - If the pte is still the way we remember it, update the page table and all
3046 * relevant references. This includes dropping the reference the page-table
3047 * held to the old page, as well as updating the rmap.
3048 * - In any case, unlock the PTL and drop the reference we took to the old page.
3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3053 struct vm_area_struct *vma = vmf->vma;
3054 struct mm_struct *mm = vma->vm_mm;
3055 struct folio *old_folio = NULL;
3056 struct folio *new_folio = NULL;
3058 int page_copied = 0;
3059 struct mmu_notifier_range range;
3062 delayacct_wpcopy_start();
3065 old_folio = page_folio(vmf->page);
3066 if (unlikely(anon_vma_prepare(vma)))
3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075 vmf->address, false);
3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3082 * COW failed, if the fault was solved by other,
3083 * it's fine. If not, userspace would re-fault on
3084 * the same address and we will handle the fault
3085 * from the second attempt.
3086 * The -EHWPOISON case will not be retried.
3088 folio_put(new_folio);
3090 folio_put(old_folio);
3092 delayacct_wpcopy_end();
3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3095 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3100 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3102 __folio_mark_uptodate(new_folio);
3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3105 vmf->address & PAGE_MASK,
3106 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107 mmu_notifier_invalidate_range_start(&range);
3110 * Re-check the pte - we dropped the lock
3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3113 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3115 if (!folio_test_anon(old_folio)) {
3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3117 inc_mm_counter(mm, MM_ANONPAGES);
3120 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3121 inc_mm_counter(mm, MM_ANONPAGES);
3123 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3124 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3125 entry = pte_sw_mkyoung(entry);
3126 if (unlikely(unshare)) {
3127 if (pte_soft_dirty(vmf->orig_pte))
3128 entry = pte_mksoft_dirty(entry);
3129 if (pte_uffd_wp(vmf->orig_pte))
3130 entry = pte_mkuffd_wp(entry);
3132 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3136 * Clear the pte entry and flush it first, before updating the
3137 * pte with the new entry, to keep TLBs on different CPUs in
3138 * sync. This code used to set the new PTE then flush TLBs, but
3139 * that left a window where the new PTE could be loaded into
3140 * some TLBs while the old PTE remains in others.
3142 ptep_clear_flush(vma, vmf->address, vmf->pte);
3143 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3144 folio_add_lru_vma(new_folio, vma);
3146 * We call the notify macro here because, when using secondary
3147 * mmu page tables (such as kvm shadow page tables), we want the
3148 * new page to be mapped directly into the secondary page table.
3150 BUG_ON(unshare && pte_write(entry));
3151 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3152 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3155 * Only after switching the pte to the new page may
3156 * we remove the mapcount here. Otherwise another
3157 * process may come and find the rmap count decremented
3158 * before the pte is switched to the new page, and
3159 * "reuse" the old page writing into it while our pte
3160 * here still points into it and can be read by other
3163 * The critical issue is to order this
3164 * page_remove_rmap with the ptp_clear_flush above.
3165 * Those stores are ordered by (if nothing else,)
3166 * the barrier present in the atomic_add_negative
3167 * in page_remove_rmap.
3169 * Then the TLB flush in ptep_clear_flush ensures that
3170 * no process can access the old page before the
3171 * decremented mapcount is visible. And the old page
3172 * cannot be reused until after the decremented
3173 * mapcount is visible. So transitively, TLBs to
3174 * old page will be flushed before it can be reused.
3176 page_remove_rmap(vmf->page, vma, false);
3179 /* Free the old page.. */
3180 new_folio = old_folio;
3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
3183 } else if (vmf->pte) {
3184 update_mmu_tlb(vma, vmf->address, vmf->pte);
3185 pte_unmap_unlock(vmf->pte, vmf->ptl);
3188 mmu_notifier_invalidate_range_end(&range);
3191 folio_put(new_folio);
3194 free_swap_cache(&old_folio->page);
3195 folio_put(old_folio);
3198 delayacct_wpcopy_end();
3201 folio_put(new_folio);
3204 folio_put(old_folio);
3206 delayacct_wpcopy_end();
3207 return VM_FAULT_OOM;
3211 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3212 * writeable once the page is prepared
3214 * @vmf: structure describing the fault
3216 * This function handles all that is needed to finish a write page fault in a
3217 * shared mapping due to PTE being read-only once the mapped page is prepared.
3218 * It handles locking of PTE and modifying it.
3220 * The function expects the page to be locked or other protection against
3221 * concurrent faults / writeback (such as DAX radix tree locks).
3223 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3224 * we acquired PTE lock.
3226 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3228 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3229 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3232 return VM_FAULT_NOPAGE;
3234 * We might have raced with another page fault while we released the
3235 * pte_offset_map_lock.
3237 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3239 pte_unmap_unlock(vmf->pte, vmf->ptl);
3240 return VM_FAULT_NOPAGE;
3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3252 struct vm_area_struct *vma = vmf->vma;
3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3257 pte_unmap_unlock(vmf->pte, vmf->ptl);
3258 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3259 vma_end_read(vmf->vma);
3260 return VM_FAULT_RETRY;
3263 vmf->flags |= FAULT_FLAG_MKWRITE;
3264 ret = vma->vm_ops->pfn_mkwrite(vmf);
3265 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3267 return finish_mkwrite_fault(vmf);
3273 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3274 __releases(vmf->ptl)
3276 struct vm_area_struct *vma = vmf->vma;
3281 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3284 pte_unmap_unlock(vmf->pte, vmf->ptl);
3285 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3287 vma_end_read(vmf->vma);
3288 return VM_FAULT_RETRY;
3291 tmp = do_page_mkwrite(vmf, folio);
3292 if (unlikely(!tmp || (tmp &
3293 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297 tmp = finish_mkwrite_fault(vmf);
3298 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299 folio_unlock(folio);
3307 ret |= fault_dirty_shared_page(vmf);
3314 * This routine handles present pages, when
3315 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3316 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3317 * (FAULT_FLAG_UNSHARE)
3319 * It is done by copying the page to a new address and decrementing the
3320 * shared-page counter for the old page.
3322 * Note that this routine assumes that the protection checks have been
3323 * done by the caller (the low-level page fault routine in most cases).
3324 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3325 * done any necessary COW.
3327 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3328 * though the page will change only once the write actually happens. This
3329 * avoids a few races, and potentially makes it more efficient.
3331 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3332 * but allow concurrent faults), with pte both mapped and locked.
3333 * We return with mmap_lock still held, but pte unmapped and unlocked.
3335 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3336 __releases(vmf->ptl)
3338 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3339 struct vm_area_struct *vma = vmf->vma;
3340 struct folio *folio = NULL;
3342 if (likely(!unshare)) {
3343 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3344 pte_unmap_unlock(vmf->pte, vmf->ptl);
3345 return handle_userfault(vmf, VM_UFFD_WP);
3349 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3350 * is flushed in this case before copying.
3352 if (unlikely(userfaultfd_wp(vmf->vma) &&
3353 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3354 flush_tlb_page(vmf->vma, vmf->address);
3357 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3360 folio = page_folio(vmf->page);
3363 * Shared mapping: we are guaranteed to have VM_WRITE and
3364 * FAULT_FLAG_WRITE set at this point.
3366 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3371 * We should not cow pages in a shared writeable mapping.
3372 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3375 return wp_pfn_shared(vmf);
3376 return wp_page_shared(vmf, folio);
3380 * Private mapping: create an exclusive anonymous page copy if reuse
3381 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3383 if (folio && folio_test_anon(folio)) {
3385 * If the page is exclusive to this process we must reuse the
3386 * page without further checks.
3388 if (PageAnonExclusive(vmf->page))
3392 * We have to verify under folio lock: these early checks are
3393 * just an optimization to avoid locking the folio and freeing
3394 * the swapcache if there is little hope that we can reuse.
3396 * KSM doesn't necessarily raise the folio refcount.
3398 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3400 if (!folio_test_lru(folio))
3402 * We cannot easily detect+handle references from
3403 * remote LRU caches or references to LRU folios.
3406 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3408 if (!folio_trylock(folio))
3410 if (folio_test_swapcache(folio))
3411 folio_free_swap(folio);
3412 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3413 folio_unlock(folio);
3417 * Ok, we've got the only folio reference from our mapping
3418 * and the folio is locked, it's dark out, and we're wearing
3419 * sunglasses. Hit it.
3421 page_move_anon_rmap(vmf->page, vma);
3422 folio_unlock(folio);
3424 if (unlikely(unshare)) {
3425 pte_unmap_unlock(vmf->pte, vmf->ptl);
3432 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3433 pte_unmap_unlock(vmf->pte, vmf->ptl);
3434 vma_end_read(vmf->vma);
3435 return VM_FAULT_RETRY;
3439 * Ok, we need to copy. Oh, well..
3444 pte_unmap_unlock(vmf->pte, vmf->ptl);
3446 if (folio && folio_test_ksm(folio))
3447 count_vm_event(COW_KSM);
3449 return wp_page_copy(vmf);
3452 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3453 unsigned long start_addr, unsigned long end_addr,
3454 struct zap_details *details)
3456 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3459 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3460 pgoff_t first_index,
3462 struct zap_details *details)
3464 struct vm_area_struct *vma;
3465 pgoff_t vba, vea, zba, zea;
3467 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3468 vba = vma->vm_pgoff;
3469 vea = vba + vma_pages(vma) - 1;
3470 zba = max(first_index, vba);
3471 zea = min(last_index, vea);
3473 unmap_mapping_range_vma(vma,
3474 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3475 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3481 * unmap_mapping_folio() - Unmap single folio from processes.
3482 * @folio: The locked folio to be unmapped.
3484 * Unmap this folio from any userspace process which still has it mmaped.
3485 * Typically, for efficiency, the range of nearby pages has already been
3486 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3487 * truncation or invalidation holds the lock on a folio, it may find that
3488 * the page has been remapped again: and then uses unmap_mapping_folio()
3489 * to unmap it finally.
3491 void unmap_mapping_folio(struct folio *folio)
3493 struct address_space *mapping = folio->mapping;
3494 struct zap_details details = { };
3495 pgoff_t first_index;
3498 VM_BUG_ON(!folio_test_locked(folio));
3500 first_index = folio->index;
3501 last_index = folio_next_index(folio) - 1;
3503 details.even_cows = false;
3504 details.single_folio = folio;
3505 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3507 i_mmap_lock_read(mapping);
3508 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3509 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3510 last_index, &details);
3511 i_mmap_unlock_read(mapping);
3515 * unmap_mapping_pages() - Unmap pages from processes.
3516 * @mapping: The address space containing pages to be unmapped.
3517 * @start: Index of first page to be unmapped.
3518 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3519 * @even_cows: Whether to unmap even private COWed pages.
3521 * Unmap the pages in this address space from any userspace process which
3522 * has them mmaped. Generally, you want to remove COWed pages as well when
3523 * a file is being truncated, but not when invalidating pages from the page
3526 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3527 pgoff_t nr, bool even_cows)
3529 struct zap_details details = { };
3530 pgoff_t first_index = start;
3531 pgoff_t last_index = start + nr - 1;
3533 details.even_cows = even_cows;
3534 if (last_index < first_index)
3535 last_index = ULONG_MAX;
3537 i_mmap_lock_read(mapping);
3538 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3539 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540 last_index, &details);
3541 i_mmap_unlock_read(mapping);
3543 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3546 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3547 * address_space corresponding to the specified byte range in the underlying
3550 * @mapping: the address space containing mmaps to be unmapped.
3551 * @holebegin: byte in first page to unmap, relative to the start of
3552 * the underlying file. This will be rounded down to a PAGE_SIZE
3553 * boundary. Note that this is different from truncate_pagecache(), which
3554 * must keep the partial page. In contrast, we must get rid of
3556 * @holelen: size of prospective hole in bytes. This will be rounded
3557 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3559 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3560 * but 0 when invalidating pagecache, don't throw away private data.
3562 void unmap_mapping_range(struct address_space *mapping,
3563 loff_t const holebegin, loff_t const holelen, int even_cows)
3565 pgoff_t hba = holebegin >> PAGE_SHIFT;
3566 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3568 /* Check for overflow. */
3569 if (sizeof(holelen) > sizeof(hlen)) {
3571 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3572 if (holeend & ~(long long)ULONG_MAX)
3573 hlen = ULONG_MAX - hba + 1;
3576 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3578 EXPORT_SYMBOL(unmap_mapping_range);
3581 * Restore a potential device exclusive pte to a working pte entry
3583 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3585 struct folio *folio = page_folio(vmf->page);
3586 struct vm_area_struct *vma = vmf->vma;
3587 struct mmu_notifier_range range;
3591 * We need a reference to lock the folio because we don't hold
3592 * the PTL so a racing thread can remove the device-exclusive
3593 * entry and unmap it. If the folio is free the entry must
3594 * have been removed already. If it happens to have already
3595 * been re-allocated after being freed all we do is lock and
3598 if (!folio_try_get(folio))
3601 ret = folio_lock_or_retry(folio, vmf);
3606 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3607 vma->vm_mm, vmf->address & PAGE_MASK,
3608 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3609 mmu_notifier_invalidate_range_start(&range);
3611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3613 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3614 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3617 pte_unmap_unlock(vmf->pte, vmf->ptl);
3618 folio_unlock(folio);
3621 mmu_notifier_invalidate_range_end(&range);
3625 static inline bool should_try_to_free_swap(struct folio *folio,
3626 struct vm_area_struct *vma,
3627 unsigned int fault_flags)
3629 if (!folio_test_swapcache(folio))
3631 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3632 folio_test_mlocked(folio))
3635 * If we want to map a page that's in the swapcache writable, we
3636 * have to detect via the refcount if we're really the exclusive
3637 * user. Try freeing the swapcache to get rid of the swapcache
3638 * reference only in case it's likely that we'll be the exlusive user.
3640 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3641 folio_ref_count(folio) == 2;
3644 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3646 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3647 vmf->address, &vmf->ptl);
3651 * Be careful so that we will only recover a special uffd-wp pte into a
3652 * none pte. Otherwise it means the pte could have changed, so retry.
3654 * This should also cover the case where e.g. the pte changed
3655 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3656 * So is_pte_marker() check is not enough to safely drop the pte.
3658 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3659 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3660 pte_unmap_unlock(vmf->pte, vmf->ptl);
3664 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3666 if (vma_is_anonymous(vmf->vma))
3667 return do_anonymous_page(vmf);
3669 return do_fault(vmf);
3673 * This is actually a page-missing access, but with uffd-wp special pte
3674 * installed. It means this pte was wr-protected before being unmapped.
3676 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3679 * Just in case there're leftover special ptes even after the region
3680 * got unregistered - we can simply clear them.
3682 if (unlikely(!userfaultfd_wp(vmf->vma)))
3683 return pte_marker_clear(vmf);
3685 return do_pte_missing(vmf);
3688 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3690 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3691 unsigned long marker = pte_marker_get(entry);
3694 * PTE markers should never be empty. If anything weird happened,
3695 * the best thing to do is to kill the process along with its mm.
3697 if (WARN_ON_ONCE(!marker))
3698 return VM_FAULT_SIGBUS;
3700 /* Higher priority than uffd-wp when data corrupted */
3701 if (marker & PTE_MARKER_POISONED)
3702 return VM_FAULT_HWPOISON;
3704 if (pte_marker_entry_uffd_wp(entry))
3705 return pte_marker_handle_uffd_wp(vmf);
3707 /* This is an unknown pte marker */
3708 return VM_FAULT_SIGBUS;
3712 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3713 * but allow concurrent faults), and pte mapped but not yet locked.
3714 * We return with pte unmapped and unlocked.
3716 * We return with the mmap_lock locked or unlocked in the same cases
3717 * as does filemap_fault().
3719 vm_fault_t do_swap_page(struct vm_fault *vmf)
3721 struct vm_area_struct *vma = vmf->vma;
3722 struct folio *swapcache, *folio = NULL;
3724 struct swap_info_struct *si = NULL;
3725 rmap_t rmap_flags = RMAP_NONE;
3726 bool exclusive = false;
3730 void *shadow = NULL;
3732 if (!pte_unmap_same(vmf))
3735 entry = pte_to_swp_entry(vmf->orig_pte);
3736 if (unlikely(non_swap_entry(entry))) {
3737 if (is_migration_entry(entry)) {
3738 migration_entry_wait(vma->vm_mm, vmf->pmd,
3740 } else if (is_device_exclusive_entry(entry)) {
3741 vmf->page = pfn_swap_entry_to_page(entry);
3742 ret = remove_device_exclusive_entry(vmf);
3743 } else if (is_device_private_entry(entry)) {
3744 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3746 * migrate_to_ram is not yet ready to operate
3750 ret = VM_FAULT_RETRY;
3754 vmf->page = pfn_swap_entry_to_page(entry);
3755 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3756 vmf->address, &vmf->ptl);
3757 if (unlikely(!vmf->pte ||
3758 !pte_same(ptep_get(vmf->pte),
3763 * Get a page reference while we know the page can't be
3766 get_page(vmf->page);
3767 pte_unmap_unlock(vmf->pte, vmf->ptl);
3768 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3769 put_page(vmf->page);
3770 } else if (is_hwpoison_entry(entry)) {
3771 ret = VM_FAULT_HWPOISON;
3772 } else if (is_pte_marker_entry(entry)) {
3773 ret = handle_pte_marker(vmf);
3775 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3776 ret = VM_FAULT_SIGBUS;
3781 /* Prevent swapoff from happening to us. */
3782 si = get_swap_device(entry);
3786 folio = swap_cache_get_folio(entry, vma, vmf->address);
3788 page = folio_file_page(folio, swp_offset(entry));
3792 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3793 __swap_count(entry) == 1) {
3794 /* skip swapcache */
3795 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3796 vma, vmf->address, false);
3797 page = &folio->page;
3799 __folio_set_locked(folio);
3800 __folio_set_swapbacked(folio);
3802 if (mem_cgroup_swapin_charge_folio(folio,
3803 vma->vm_mm, GFP_KERNEL,
3808 mem_cgroup_swapin_uncharge_swap(entry);
3810 shadow = get_shadow_from_swap_cache(entry);
3812 workingset_refault(folio, shadow);
3814 folio_add_lru(folio);
3816 /* To provide entry to swap_readpage() */
3817 folio->swap = entry;
3818 swap_readpage(page, true, NULL);
3819 folio->private = NULL;
3822 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3825 folio = page_folio(page);
3831 * Back out if somebody else faulted in this pte
3832 * while we released the pte lock.
3834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3835 vmf->address, &vmf->ptl);
3836 if (likely(vmf->pte &&
3837 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3842 /* Had to read the page from swap area: Major fault */
3843 ret = VM_FAULT_MAJOR;
3844 count_vm_event(PGMAJFAULT);
3845 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3846 } else if (PageHWPoison(page)) {
3848 * hwpoisoned dirty swapcache pages are kept for killing
3849 * owner processes (which may be unknown at hwpoison time)
3851 ret = VM_FAULT_HWPOISON;
3855 ret |= folio_lock_or_retry(folio, vmf);
3856 if (ret & VM_FAULT_RETRY)
3861 * Make sure folio_free_swap() or swapoff did not release the
3862 * swapcache from under us. The page pin, and pte_same test
3863 * below, are not enough to exclude that. Even if it is still
3864 * swapcache, we need to check that the page's swap has not
3867 if (unlikely(!folio_test_swapcache(folio) ||
3868 page_swap_entry(page).val != entry.val))
3872 * KSM sometimes has to copy on read faults, for example, if
3873 * page->index of !PageKSM() pages would be nonlinear inside the
3874 * anon VMA -- PageKSM() is lost on actual swapout.
3876 page = ksm_might_need_to_copy(page, vma, vmf->address);
3877 if (unlikely(!page)) {
3880 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3881 ret = VM_FAULT_HWPOISON;
3884 folio = page_folio(page);
3887 * If we want to map a page that's in the swapcache writable, we
3888 * have to detect via the refcount if we're really the exclusive
3889 * owner. Try removing the extra reference from the local LRU
3890 * caches if required.
3892 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3893 !folio_test_ksm(folio) && !folio_test_lru(folio))
3897 folio_throttle_swaprate(folio, GFP_KERNEL);
3900 * Back out if somebody else already faulted in this pte.
3902 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3904 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3907 if (unlikely(!folio_test_uptodate(folio))) {
3908 ret = VM_FAULT_SIGBUS;
3913 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3914 * must never point at an anonymous page in the swapcache that is
3915 * PG_anon_exclusive. Sanity check that this holds and especially, that
3916 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3917 * check after taking the PT lock and making sure that nobody
3918 * concurrently faulted in this page and set PG_anon_exclusive.
3920 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3921 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3924 * Check under PT lock (to protect against concurrent fork() sharing
3925 * the swap entry concurrently) for certainly exclusive pages.
3927 if (!folio_test_ksm(folio)) {
3928 exclusive = pte_swp_exclusive(vmf->orig_pte);
3929 if (folio != swapcache) {
3931 * We have a fresh page that is not exposed to the
3932 * swapcache -> certainly exclusive.
3935 } else if (exclusive && folio_test_writeback(folio) &&
3936 data_race(si->flags & SWP_STABLE_WRITES)) {
3938 * This is tricky: not all swap backends support
3939 * concurrent page modifications while under writeback.
3941 * So if we stumble over such a page in the swapcache
3942 * we must not set the page exclusive, otherwise we can
3943 * map it writable without further checks and modify it
3944 * while still under writeback.
3946 * For these problematic swap backends, simply drop the
3947 * exclusive marker: this is perfectly fine as we start
3948 * writeback only if we fully unmapped the page and
3949 * there are no unexpected references on the page after
3950 * unmapping succeeded. After fully unmapped, no
3951 * further GUP references (FOLL_GET and FOLL_PIN) can
3952 * appear, so dropping the exclusive marker and mapping
3953 * it only R/O is fine.
3960 * Some architectures may have to restore extra metadata to the page
3961 * when reading from swap. This metadata may be indexed by swap entry
3962 * so this must be called before swap_free().
3964 arch_swap_restore(entry, folio);
3967 * Remove the swap entry and conditionally try to free up the swapcache.
3968 * We're already holding a reference on the page but haven't mapped it
3972 if (should_try_to_free_swap(folio, vma, vmf->flags))
3973 folio_free_swap(folio);
3975 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3976 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3977 pte = mk_pte(page, vma->vm_page_prot);
3980 * Same logic as in do_wp_page(); however, optimize for pages that are
3981 * certainly not shared either because we just allocated them without
3982 * exposing them to the swapcache or because the swap entry indicates
3985 if (!folio_test_ksm(folio) &&
3986 (exclusive || folio_ref_count(folio) == 1)) {
3987 if (vmf->flags & FAULT_FLAG_WRITE) {
3988 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3989 vmf->flags &= ~FAULT_FLAG_WRITE;
3991 rmap_flags |= RMAP_EXCLUSIVE;
3993 flush_icache_page(vma, page);
3994 if (pte_swp_soft_dirty(vmf->orig_pte))
3995 pte = pte_mksoft_dirty(pte);
3996 if (pte_swp_uffd_wp(vmf->orig_pte))
3997 pte = pte_mkuffd_wp(pte);
3998 vmf->orig_pte = pte;
4000 /* ksm created a completely new copy */
4001 if (unlikely(folio != swapcache && swapcache)) {
4002 page_add_new_anon_rmap(page, vma, vmf->address);
4003 folio_add_lru_vma(folio, vma);
4005 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4008 VM_BUG_ON(!folio_test_anon(folio) ||
4009 (pte_write(pte) && !PageAnonExclusive(page)));
4010 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4011 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4013 folio_unlock(folio);
4014 if (folio != swapcache && swapcache) {
4016 * Hold the lock to avoid the swap entry to be reused
4017 * until we take the PT lock for the pte_same() check
4018 * (to avoid false positives from pte_same). For
4019 * further safety release the lock after the swap_free
4020 * so that the swap count won't change under a
4021 * parallel locked swapcache.
4023 folio_unlock(swapcache);
4024 folio_put(swapcache);
4027 if (vmf->flags & FAULT_FLAG_WRITE) {
4028 ret |= do_wp_page(vmf);
4029 if (ret & VM_FAULT_ERROR)
4030 ret &= VM_FAULT_ERROR;
4034 /* No need to invalidate - it was non-present before */
4035 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4038 pte_unmap_unlock(vmf->pte, vmf->ptl);
4041 put_swap_device(si);
4045 pte_unmap_unlock(vmf->pte, vmf->ptl);
4047 folio_unlock(folio);
4050 if (folio != swapcache && swapcache) {
4051 folio_unlock(swapcache);
4052 folio_put(swapcache);
4055 put_swap_device(si);
4060 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4061 * but allow concurrent faults), and pte mapped but not yet locked.
4062 * We return with mmap_lock still held, but pte unmapped and unlocked.
4064 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4066 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4067 struct vm_area_struct *vma = vmf->vma;
4068 struct folio *folio;
4072 /* File mapping without ->vm_ops ? */
4073 if (vma->vm_flags & VM_SHARED)
4074 return VM_FAULT_SIGBUS;
4077 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4078 * be distinguished from a transient failure of pte_offset_map().
4080 if (pte_alloc(vma->vm_mm, vmf->pmd))
4081 return VM_FAULT_OOM;
4083 /* Use the zero-page for reads */
4084 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4085 !mm_forbids_zeropage(vma->vm_mm)) {
4086 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4087 vma->vm_page_prot));
4088 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4089 vmf->address, &vmf->ptl);
4092 if (vmf_pte_changed(vmf)) {
4093 update_mmu_tlb(vma, vmf->address, vmf->pte);
4096 ret = check_stable_address_space(vma->vm_mm);
4099 /* Deliver the page fault to userland, check inside PT lock */
4100 if (userfaultfd_missing(vma)) {
4101 pte_unmap_unlock(vmf->pte, vmf->ptl);
4102 return handle_userfault(vmf, VM_UFFD_MISSING);
4107 /* Allocate our own private page. */
4108 if (unlikely(anon_vma_prepare(vma)))
4110 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4114 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4116 folio_throttle_swaprate(folio, GFP_KERNEL);
4119 * The memory barrier inside __folio_mark_uptodate makes sure that
4120 * preceding stores to the page contents become visible before
4121 * the set_pte_at() write.
4123 __folio_mark_uptodate(folio);
4125 entry = mk_pte(&folio->page, vma->vm_page_prot);
4126 entry = pte_sw_mkyoung(entry);
4127 if (vma->vm_flags & VM_WRITE)
4128 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4130 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4134 if (vmf_pte_changed(vmf)) {
4135 update_mmu_tlb(vma, vmf->address, vmf->pte);
4139 ret = check_stable_address_space(vma->vm_mm);
4143 /* Deliver the page fault to userland, check inside PT lock */
4144 if (userfaultfd_missing(vma)) {
4145 pte_unmap_unlock(vmf->pte, vmf->ptl);
4147 return handle_userfault(vmf, VM_UFFD_MISSING);
4150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4151 folio_add_new_anon_rmap(folio, vma, vmf->address);
4152 folio_add_lru_vma(folio, vma);
4155 entry = pte_mkuffd_wp(entry);
4156 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4158 /* No need to invalidate - it was non-present before */
4159 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4162 pte_unmap_unlock(vmf->pte, vmf->ptl);
4170 return VM_FAULT_OOM;
4174 * The mmap_lock must have been held on entry, and may have been
4175 * released depending on flags and vma->vm_ops->fault() return value.
4176 * See filemap_fault() and __lock_page_retry().
4178 static vm_fault_t __do_fault(struct vm_fault *vmf)
4180 struct vm_area_struct *vma = vmf->vma;
4184 * Preallocate pte before we take page_lock because this might lead to
4185 * deadlocks for memcg reclaim which waits for pages under writeback:
4187 * SetPageWriteback(A)
4193 * wait_on_page_writeback(A)
4194 * SetPageWriteback(B)
4196 * # flush A, B to clear the writeback
4198 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4199 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4200 if (!vmf->prealloc_pte)
4201 return VM_FAULT_OOM;
4204 ret = vma->vm_ops->fault(vmf);
4205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4206 VM_FAULT_DONE_COW)))
4209 if (unlikely(PageHWPoison(vmf->page))) {
4210 struct page *page = vmf->page;
4211 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4212 if (ret & VM_FAULT_LOCKED) {
4213 if (page_mapped(page))
4214 unmap_mapping_pages(page_mapping(page),
4215 page->index, 1, false);
4216 /* Retry if a clean page was removed from the cache. */
4217 if (invalidate_inode_page(page))
4218 poisonret = VM_FAULT_NOPAGE;
4226 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4227 lock_page(vmf->page);
4229 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4235 static void deposit_prealloc_pte(struct vm_fault *vmf)
4237 struct vm_area_struct *vma = vmf->vma;
4239 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4241 * We are going to consume the prealloc table,
4242 * count that as nr_ptes.
4244 mm_inc_nr_ptes(vma->vm_mm);
4245 vmf->prealloc_pte = NULL;
4248 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4250 struct vm_area_struct *vma = vmf->vma;
4251 bool write = vmf->flags & FAULT_FLAG_WRITE;
4252 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4254 vm_fault_t ret = VM_FAULT_FALLBACK;
4256 if (!transhuge_vma_suitable(vma, haddr))
4259 page = compound_head(page);
4260 if (compound_order(page) != HPAGE_PMD_ORDER)
4264 * Just backoff if any subpage of a THP is corrupted otherwise
4265 * the corrupted page may mapped by PMD silently to escape the
4266 * check. This kind of THP just can be PTE mapped. Access to
4267 * the corrupted subpage should trigger SIGBUS as expected.
4269 if (unlikely(PageHasHWPoisoned(page)))
4273 * Archs like ppc64 need additional space to store information
4274 * related to pte entry. Use the preallocated table for that.
4276 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4277 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4278 if (!vmf->prealloc_pte)
4279 return VM_FAULT_OOM;
4282 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4283 if (unlikely(!pmd_none(*vmf->pmd)))
4286 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4288 entry = mk_huge_pmd(page, vma->vm_page_prot);
4290 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4292 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4293 page_add_file_rmap(page, vma, true);
4296 * deposit and withdraw with pmd lock held
4298 if (arch_needs_pgtable_deposit())
4299 deposit_prealloc_pte(vmf);
4301 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4303 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4305 /* fault is handled */
4307 count_vm_event(THP_FILE_MAPPED);
4309 spin_unlock(vmf->ptl);
4313 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4315 return VM_FAULT_FALLBACK;
4320 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4321 * @vmf: Fault decription.
4322 * @folio: The folio that contains @page.
4323 * @page: The first page to create a PTE for.
4324 * @nr: The number of PTEs to create.
4325 * @addr: The first address to create a PTE for.
4327 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4328 struct page *page, unsigned int nr, unsigned long addr)
4330 struct vm_area_struct *vma = vmf->vma;
4331 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4332 bool write = vmf->flags & FAULT_FLAG_WRITE;
4333 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4336 flush_icache_pages(vma, page, nr);
4337 entry = mk_pte(page, vma->vm_page_prot);
4339 if (prefault && arch_wants_old_prefaulted_pte())
4340 entry = pte_mkold(entry);
4342 entry = pte_sw_mkyoung(entry);
4345 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4346 if (unlikely(uffd_wp))
4347 entry = pte_mkuffd_wp(entry);
4348 /* copy-on-write page */
4349 if (write && !(vma->vm_flags & VM_SHARED)) {
4350 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4351 VM_BUG_ON_FOLIO(nr != 1, folio);
4352 folio_add_new_anon_rmap(folio, vma, addr);
4353 folio_add_lru_vma(folio, vma);
4355 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4356 folio_add_file_rmap_range(folio, page, nr, vma, false);
4358 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4360 /* no need to invalidate: a not-present page won't be cached */
4361 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4364 static bool vmf_pte_changed(struct vm_fault *vmf)
4366 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4367 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4369 return !pte_none(ptep_get(vmf->pte));
4373 * finish_fault - finish page fault once we have prepared the page to fault
4375 * @vmf: structure describing the fault
4377 * This function handles all that is needed to finish a page fault once the
4378 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4379 * given page, adds reverse page mapping, handles memcg charges and LRU
4382 * The function expects the page to be locked and on success it consumes a
4383 * reference of a page being mapped (for the PTE which maps it).
4385 * Return: %0 on success, %VM_FAULT_ code in case of error.
4387 vm_fault_t finish_fault(struct vm_fault *vmf)
4389 struct vm_area_struct *vma = vmf->vma;
4393 /* Did we COW the page? */
4394 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4395 page = vmf->cow_page;
4400 * check even for read faults because we might have lost our CoWed
4403 if (!(vma->vm_flags & VM_SHARED)) {
4404 ret = check_stable_address_space(vma->vm_mm);
4409 if (pmd_none(*vmf->pmd)) {
4410 if (PageTransCompound(page)) {
4411 ret = do_set_pmd(vmf, page);
4412 if (ret != VM_FAULT_FALLBACK)
4416 if (vmf->prealloc_pte)
4417 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4418 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4419 return VM_FAULT_OOM;
4422 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4423 vmf->address, &vmf->ptl);
4425 return VM_FAULT_NOPAGE;
4427 /* Re-check under ptl */
4428 if (likely(!vmf_pte_changed(vmf))) {
4429 struct folio *folio = page_folio(page);
4431 set_pte_range(vmf, folio, page, 1, vmf->address);
4434 update_mmu_tlb(vma, vmf->address, vmf->pte);
4435 ret = VM_FAULT_NOPAGE;
4438 pte_unmap_unlock(vmf->pte, vmf->ptl);
4442 static unsigned long fault_around_pages __read_mostly =
4443 65536 >> PAGE_SHIFT;
4445 #ifdef CONFIG_DEBUG_FS
4446 static int fault_around_bytes_get(void *data, u64 *val)
4448 *val = fault_around_pages << PAGE_SHIFT;
4453 * fault_around_bytes must be rounded down to the nearest page order as it's
4454 * what do_fault_around() expects to see.
4456 static int fault_around_bytes_set(void *data, u64 val)
4458 if (val / PAGE_SIZE > PTRS_PER_PTE)
4462 * The minimum value is 1 page, however this results in no fault-around
4463 * at all. See should_fault_around().
4465 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4469 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4470 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4472 static int __init fault_around_debugfs(void)
4474 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4475 &fault_around_bytes_fops);
4478 late_initcall(fault_around_debugfs);
4482 * do_fault_around() tries to map few pages around the fault address. The hope
4483 * is that the pages will be needed soon and this will lower the number of
4486 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4487 * not ready to be mapped: not up-to-date, locked, etc.
4489 * This function doesn't cross VMA or page table boundaries, in order to call
4490 * map_pages() and acquire a PTE lock only once.
4492 * fault_around_pages defines how many pages we'll try to map.
4493 * do_fault_around() expects it to be set to a power of two less than or equal
4496 * The virtual address of the area that we map is naturally aligned to
4497 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4498 * (and therefore to page order). This way it's easier to guarantee
4499 * that we don't cross page table boundaries.
4501 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4503 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4504 pgoff_t pte_off = pte_index(vmf->address);
4505 /* The page offset of vmf->address within the VMA. */
4506 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4507 pgoff_t from_pte, to_pte;
4510 /* The PTE offset of the start address, clamped to the VMA. */
4511 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4512 pte_off - min(pte_off, vma_off));
4514 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4515 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4516 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4518 if (pmd_none(*vmf->pmd)) {
4519 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4520 if (!vmf->prealloc_pte)
4521 return VM_FAULT_OOM;
4525 ret = vmf->vma->vm_ops->map_pages(vmf,
4526 vmf->pgoff + from_pte - pte_off,
4527 vmf->pgoff + to_pte - pte_off);
4533 /* Return true if we should do read fault-around, false otherwise */
4534 static inline bool should_fault_around(struct vm_fault *vmf)
4536 /* No ->map_pages? No way to fault around... */
4537 if (!vmf->vma->vm_ops->map_pages)
4540 if (uffd_disable_fault_around(vmf->vma))
4543 /* A single page implies no faulting 'around' at all. */
4544 return fault_around_pages > 1;
4547 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4550 struct folio *folio;
4553 * Let's call ->map_pages() first and use ->fault() as fallback
4554 * if page by the offset is not ready to be mapped (cold cache or
4557 if (should_fault_around(vmf)) {
4558 ret = do_fault_around(vmf);
4563 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4564 vma_end_read(vmf->vma);
4565 return VM_FAULT_RETRY;
4568 ret = __do_fault(vmf);
4569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4572 ret |= finish_fault(vmf);
4573 folio = page_folio(vmf->page);
4574 folio_unlock(folio);
4575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4580 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4582 struct vm_area_struct *vma = vmf->vma;
4585 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4587 return VM_FAULT_RETRY;
4590 if (unlikely(anon_vma_prepare(vma)))
4591 return VM_FAULT_OOM;
4593 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4595 return VM_FAULT_OOM;
4597 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4599 put_page(vmf->cow_page);
4600 return VM_FAULT_OOM;
4602 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4604 ret = __do_fault(vmf);
4605 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4607 if (ret & VM_FAULT_DONE_COW)
4610 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4611 __SetPageUptodate(vmf->cow_page);
4613 ret |= finish_fault(vmf);
4614 unlock_page(vmf->page);
4615 put_page(vmf->page);
4616 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4620 put_page(vmf->cow_page);
4624 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4626 struct vm_area_struct *vma = vmf->vma;
4627 vm_fault_t ret, tmp;
4628 struct folio *folio;
4630 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4632 return VM_FAULT_RETRY;
4635 ret = __do_fault(vmf);
4636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4639 folio = page_folio(vmf->page);
4642 * Check if the backing address space wants to know that the page is
4643 * about to become writable
4645 if (vma->vm_ops->page_mkwrite) {
4646 folio_unlock(folio);
4647 tmp = do_page_mkwrite(vmf, folio);
4648 if (unlikely(!tmp ||
4649 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4655 ret |= finish_fault(vmf);
4656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4658 folio_unlock(folio);
4663 ret |= fault_dirty_shared_page(vmf);
4668 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4669 * but allow concurrent faults).
4670 * The mmap_lock may have been released depending on flags and our
4671 * return value. See filemap_fault() and __folio_lock_or_retry().
4672 * If mmap_lock is released, vma may become invalid (for example
4673 * by other thread calling munmap()).
4675 static vm_fault_t do_fault(struct vm_fault *vmf)
4677 struct vm_area_struct *vma = vmf->vma;
4678 struct mm_struct *vm_mm = vma->vm_mm;
4682 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4684 if (!vma->vm_ops->fault) {
4685 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4686 vmf->address, &vmf->ptl);
4687 if (unlikely(!vmf->pte))
4688 ret = VM_FAULT_SIGBUS;
4691 * Make sure this is not a temporary clearing of pte
4692 * by holding ptl and checking again. A R/M/W update
4693 * of pte involves: take ptl, clearing the pte so that
4694 * we don't have concurrent modification by hardware
4695 * followed by an update.
4697 if (unlikely(pte_none(ptep_get(vmf->pte))))
4698 ret = VM_FAULT_SIGBUS;
4700 ret = VM_FAULT_NOPAGE;
4702 pte_unmap_unlock(vmf->pte, vmf->ptl);
4704 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4705 ret = do_read_fault(vmf);
4706 else if (!(vma->vm_flags & VM_SHARED))
4707 ret = do_cow_fault(vmf);
4709 ret = do_shared_fault(vmf);
4711 /* preallocated pagetable is unused: free it */
4712 if (vmf->prealloc_pte) {
4713 pte_free(vm_mm, vmf->prealloc_pte);
4714 vmf->prealloc_pte = NULL;
4719 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4720 unsigned long addr, int page_nid, int *flags)
4724 /* Record the current PID acceesing VMA */
4725 vma_set_access_pid_bit(vma);
4727 count_vm_numa_event(NUMA_HINT_FAULTS);
4728 if (page_nid == numa_node_id()) {
4729 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4730 *flags |= TNF_FAULT_LOCAL;
4733 return mpol_misplaced(page, vma, addr);
4736 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4738 struct vm_area_struct *vma = vmf->vma;
4739 struct page *page = NULL;
4740 int page_nid = NUMA_NO_NODE;
4741 bool writable = false;
4748 * The "pte" at this point cannot be used safely without
4749 * validation through pte_unmap_same(). It's of NUMA type but
4750 * the pfn may be screwed if the read is non atomic.
4752 spin_lock(vmf->ptl);
4753 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4754 pte_unmap_unlock(vmf->pte, vmf->ptl);
4758 /* Get the normal PTE */
4759 old_pte = ptep_get(vmf->pte);
4760 pte = pte_modify(old_pte, vma->vm_page_prot);
4763 * Detect now whether the PTE could be writable; this information
4764 * is only valid while holding the PT lock.
4766 writable = pte_write(pte);
4767 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4768 can_change_pte_writable(vma, vmf->address, pte))
4771 page = vm_normal_page(vma, vmf->address, pte);
4772 if (!page || is_zone_device_page(page))
4775 /* TODO: handle PTE-mapped THP */
4776 if (PageCompound(page))
4780 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4781 * much anyway since they can be in shared cache state. This misses
4782 * the case where a mapping is writable but the process never writes
4783 * to it but pte_write gets cleared during protection updates and
4784 * pte_dirty has unpredictable behaviour between PTE scan updates,
4785 * background writeback, dirty balancing and application behaviour.
4788 flags |= TNF_NO_GROUP;
4791 * Flag if the page is shared between multiple address spaces. This
4792 * is later used when determining whether to group tasks together
4794 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4795 flags |= TNF_SHARED;
4797 page_nid = page_to_nid(page);
4799 * For memory tiering mode, cpupid of slow memory page is used
4800 * to record page access time. So use default value.
4802 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4803 !node_is_toptier(page_nid))
4804 last_cpupid = (-1 & LAST_CPUPID_MASK);
4806 last_cpupid = page_cpupid_last(page);
4807 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4809 if (target_nid == NUMA_NO_NODE) {
4813 pte_unmap_unlock(vmf->pte, vmf->ptl);
4816 /* Migrate to the requested node */
4817 if (migrate_misplaced_page(page, vma, target_nid)) {
4818 page_nid = target_nid;
4819 flags |= TNF_MIGRATED;
4821 flags |= TNF_MIGRATE_FAIL;
4822 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4823 vmf->address, &vmf->ptl);
4824 if (unlikely(!vmf->pte))
4826 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4827 pte_unmap_unlock(vmf->pte, vmf->ptl);
4834 if (page_nid != NUMA_NO_NODE)
4835 task_numa_fault(last_cpupid, page_nid, 1, flags);
4839 * Make it present again, depending on how arch implements
4840 * non-accessible ptes, some can allow access by kernel mode.
4842 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4843 pte = pte_modify(old_pte, vma->vm_page_prot);
4844 pte = pte_mkyoung(pte);
4846 pte = pte_mkwrite(pte, vma);
4847 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4848 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4849 pte_unmap_unlock(vmf->pte, vmf->ptl);
4853 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4855 struct vm_area_struct *vma = vmf->vma;
4856 if (vma_is_anonymous(vma))
4857 return do_huge_pmd_anonymous_page(vmf);
4858 if (vma->vm_ops->huge_fault)
4859 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4860 return VM_FAULT_FALLBACK;
4863 /* `inline' is required to avoid gcc 4.1.2 build error */
4864 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4866 struct vm_area_struct *vma = vmf->vma;
4867 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4870 if (vma_is_anonymous(vma)) {
4871 if (likely(!unshare) &&
4872 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4873 return handle_userfault(vmf, VM_UFFD_WP);
4874 return do_huge_pmd_wp_page(vmf);
4877 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4878 if (vma->vm_ops->huge_fault) {
4879 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4880 if (!(ret & VM_FAULT_FALLBACK))
4885 /* COW or write-notify handled on pte level: split pmd. */
4886 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4888 return VM_FAULT_FALLBACK;
4891 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4893 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4894 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4895 struct vm_area_struct *vma = vmf->vma;
4896 /* No support for anonymous transparent PUD pages yet */
4897 if (vma_is_anonymous(vma))
4898 return VM_FAULT_FALLBACK;
4899 if (vma->vm_ops->huge_fault)
4900 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4902 return VM_FAULT_FALLBACK;
4905 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4907 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4908 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4909 struct vm_area_struct *vma = vmf->vma;
4912 /* No support for anonymous transparent PUD pages yet */
4913 if (vma_is_anonymous(vma))
4915 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4916 if (vma->vm_ops->huge_fault) {
4917 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4918 if (!(ret & VM_FAULT_FALLBACK))
4923 /* COW or write-notify not handled on PUD level: split pud.*/
4924 __split_huge_pud(vma, vmf->pud, vmf->address);
4925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4926 return VM_FAULT_FALLBACK;
4930 * These routines also need to handle stuff like marking pages dirty
4931 * and/or accessed for architectures that don't do it in hardware (most
4932 * RISC architectures). The early dirtying is also good on the i386.
4934 * There is also a hook called "update_mmu_cache()" that architectures
4935 * with external mmu caches can use to update those (ie the Sparc or
4936 * PowerPC hashed page tables that act as extended TLBs).
4938 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4939 * concurrent faults).
4941 * The mmap_lock may have been released depending on flags and our return value.
4942 * See filemap_fault() and __folio_lock_or_retry().
4944 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4948 if (unlikely(pmd_none(*vmf->pmd))) {
4950 * Leave __pte_alloc() until later: because vm_ops->fault may
4951 * want to allocate huge page, and if we expose page table
4952 * for an instant, it will be difficult to retract from
4953 * concurrent faults and from rmap lookups.
4956 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4959 * A regular pmd is established and it can't morph into a huge
4960 * pmd by anon khugepaged, since that takes mmap_lock in write
4961 * mode; but shmem or file collapse to THP could still morph
4962 * it into a huge pmd: just retry later if so.
4964 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4965 vmf->address, &vmf->ptl);
4966 if (unlikely(!vmf->pte))
4968 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4969 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4971 if (pte_none(vmf->orig_pte)) {
4972 pte_unmap(vmf->pte);
4978 return do_pte_missing(vmf);
4980 if (!pte_present(vmf->orig_pte))
4981 return do_swap_page(vmf);
4983 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4984 return do_numa_page(vmf);
4986 spin_lock(vmf->ptl);
4987 entry = vmf->orig_pte;
4988 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4989 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4992 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4993 if (!pte_write(entry))
4994 return do_wp_page(vmf);
4995 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4996 entry = pte_mkdirty(entry);
4998 entry = pte_mkyoung(entry);
4999 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5000 vmf->flags & FAULT_FLAG_WRITE)) {
5001 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5004 /* Skip spurious TLB flush for retried page fault */
5005 if (vmf->flags & FAULT_FLAG_TRIED)
5008 * This is needed only for protection faults but the arch code
5009 * is not yet telling us if this is a protection fault or not.
5010 * This still avoids useless tlb flushes for .text page faults
5013 if (vmf->flags & FAULT_FLAG_WRITE)
5014 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5018 pte_unmap_unlock(vmf->pte, vmf->ptl);
5023 * On entry, we hold either the VMA lock or the mmap_lock
5024 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5025 * the result, the mmap_lock is not held on exit. See filemap_fault()
5026 * and __folio_lock_or_retry().
5028 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5029 unsigned long address, unsigned int flags)
5031 struct vm_fault vmf = {
5033 .address = address & PAGE_MASK,
5034 .real_address = address,
5036 .pgoff = linear_page_index(vma, address),
5037 .gfp_mask = __get_fault_gfp_mask(vma),
5039 struct mm_struct *mm = vma->vm_mm;
5040 unsigned long vm_flags = vma->vm_flags;
5045 pgd = pgd_offset(mm, address);
5046 p4d = p4d_alloc(mm, pgd, address);
5048 return VM_FAULT_OOM;
5050 vmf.pud = pud_alloc(mm, p4d, address);
5052 return VM_FAULT_OOM;
5054 if (pud_none(*vmf.pud) &&
5055 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5056 ret = create_huge_pud(&vmf);
5057 if (!(ret & VM_FAULT_FALLBACK))
5060 pud_t orig_pud = *vmf.pud;
5063 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5066 * TODO once we support anonymous PUDs: NUMA case and
5067 * FAULT_FLAG_UNSHARE handling.
5069 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5070 ret = wp_huge_pud(&vmf, orig_pud);
5071 if (!(ret & VM_FAULT_FALLBACK))
5074 huge_pud_set_accessed(&vmf, orig_pud);
5080 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5082 return VM_FAULT_OOM;
5084 /* Huge pud page fault raced with pmd_alloc? */
5085 if (pud_trans_unstable(vmf.pud))
5088 if (pmd_none(*vmf.pmd) &&
5089 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5090 ret = create_huge_pmd(&vmf);
5091 if (!(ret & VM_FAULT_FALLBACK))
5094 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5096 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5097 VM_BUG_ON(thp_migration_supported() &&
5098 !is_pmd_migration_entry(vmf.orig_pmd));
5099 if (is_pmd_migration_entry(vmf.orig_pmd))
5100 pmd_migration_entry_wait(mm, vmf.pmd);
5103 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5104 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5105 return do_huge_pmd_numa_page(&vmf);
5107 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5108 !pmd_write(vmf.orig_pmd)) {
5109 ret = wp_huge_pmd(&vmf);
5110 if (!(ret & VM_FAULT_FALLBACK))
5113 huge_pmd_set_accessed(&vmf);
5119 return handle_pte_fault(&vmf);
5123 * mm_account_fault - Do page fault accounting
5124 * @mm: mm from which memcg should be extracted. It can be NULL.
5125 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5126 * of perf event counters, but we'll still do the per-task accounting to
5127 * the task who triggered this page fault.
5128 * @address: the faulted address.
5129 * @flags: the fault flags.
5130 * @ret: the fault retcode.
5132 * This will take care of most of the page fault accounting. Meanwhile, it
5133 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5134 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5135 * still be in per-arch page fault handlers at the entry of page fault.
5137 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5138 unsigned long address, unsigned int flags,
5143 /* Incomplete faults will be accounted upon completion. */
5144 if (ret & VM_FAULT_RETRY)
5148 * To preserve the behavior of older kernels, PGFAULT counters record
5149 * both successful and failed faults, as opposed to perf counters,
5150 * which ignore failed cases.
5152 count_vm_event(PGFAULT);
5153 count_memcg_event_mm(mm, PGFAULT);
5156 * Do not account for unsuccessful faults (e.g. when the address wasn't
5157 * valid). That includes arch_vma_access_permitted() failing before
5158 * reaching here. So this is not a "this many hardware page faults"
5159 * counter. We should use the hw profiling for that.
5161 if (ret & VM_FAULT_ERROR)
5165 * We define the fault as a major fault when the final successful fault
5166 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5167 * handle it immediately previously).
5169 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5177 * If the fault is done for GUP, regs will be NULL. We only do the
5178 * accounting for the per thread fault counters who triggered the
5179 * fault, and we skip the perf event updates.
5185 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5187 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5190 #ifdef CONFIG_LRU_GEN
5191 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5193 /* the LRU algorithm only applies to accesses with recency */
5194 current->in_lru_fault = vma_has_recency(vma);
5197 static void lru_gen_exit_fault(void)
5199 current->in_lru_fault = false;
5202 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5206 static void lru_gen_exit_fault(void)
5209 #endif /* CONFIG_LRU_GEN */
5211 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5212 unsigned int *flags)
5214 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5215 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5216 return VM_FAULT_SIGSEGV;
5218 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5219 * just treat it like an ordinary read-fault otherwise.
5221 if (!is_cow_mapping(vma->vm_flags))
5222 *flags &= ~FAULT_FLAG_UNSHARE;
5223 } else if (*flags & FAULT_FLAG_WRITE) {
5224 /* Write faults on read-only mappings are impossible ... */
5225 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5226 return VM_FAULT_SIGSEGV;
5227 /* ... and FOLL_FORCE only applies to COW mappings. */
5228 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5229 !is_cow_mapping(vma->vm_flags)))
5230 return VM_FAULT_SIGSEGV;
5232 #ifdef CONFIG_PER_VMA_LOCK
5234 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5235 * the assumption that lock is dropped on VM_FAULT_RETRY.
5237 if (WARN_ON_ONCE((*flags &
5238 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5239 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5240 return VM_FAULT_SIGSEGV;
5247 * By the time we get here, we already hold the mm semaphore
5249 * The mmap_lock may have been released depending on flags and our
5250 * return value. See filemap_fault() and __folio_lock_or_retry().
5252 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5253 unsigned int flags, struct pt_regs *regs)
5255 /* If the fault handler drops the mmap_lock, vma may be freed */
5256 struct mm_struct *mm = vma->vm_mm;
5259 __set_current_state(TASK_RUNNING);
5261 ret = sanitize_fault_flags(vma, &flags);
5265 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5266 flags & FAULT_FLAG_INSTRUCTION,
5267 flags & FAULT_FLAG_REMOTE)) {
5268 ret = VM_FAULT_SIGSEGV;
5273 * Enable the memcg OOM handling for faults triggered in user
5274 * space. Kernel faults are handled more gracefully.
5276 if (flags & FAULT_FLAG_USER)
5277 mem_cgroup_enter_user_fault();
5279 lru_gen_enter_fault(vma);
5281 if (unlikely(is_vm_hugetlb_page(vma)))
5282 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5284 ret = __handle_mm_fault(vma, address, flags);
5286 lru_gen_exit_fault();
5288 if (flags & FAULT_FLAG_USER) {
5289 mem_cgroup_exit_user_fault();
5291 * The task may have entered a memcg OOM situation but
5292 * if the allocation error was handled gracefully (no
5293 * VM_FAULT_OOM), there is no need to kill anything.
5294 * Just clean up the OOM state peacefully.
5296 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5297 mem_cgroup_oom_synchronize(false);
5300 mm_account_fault(mm, regs, address, flags, ret);
5304 EXPORT_SYMBOL_GPL(handle_mm_fault);
5306 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5307 #include <linux/extable.h>
5309 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5311 if (likely(mmap_read_trylock(mm)))
5314 if (regs && !user_mode(regs)) {
5315 unsigned long ip = instruction_pointer(regs);
5316 if (!search_exception_tables(ip))
5320 return !mmap_read_lock_killable(mm);
5323 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5326 * We don't have this operation yet.
5328 * It should be easy enough to do: it's basically a
5329 * atomic_long_try_cmpxchg_acquire()
5330 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5331 * it also needs the proper lockdep magic etc.
5336 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5338 mmap_read_unlock(mm);
5339 if (regs && !user_mode(regs)) {
5340 unsigned long ip = instruction_pointer(regs);
5341 if (!search_exception_tables(ip))
5344 return !mmap_write_lock_killable(mm);
5348 * Helper for page fault handling.
5350 * This is kind of equivalend to "mmap_read_lock()" followed
5351 * by "find_extend_vma()", except it's a lot more careful about
5352 * the locking (and will drop the lock on failure).
5354 * For example, if we have a kernel bug that causes a page
5355 * fault, we don't want to just use mmap_read_lock() to get
5356 * the mm lock, because that would deadlock if the bug were
5357 * to happen while we're holding the mm lock for writing.
5359 * So this checks the exception tables on kernel faults in
5360 * order to only do this all for instructions that are actually
5361 * expected to fault.
5363 * We can also actually take the mm lock for writing if we
5364 * need to extend the vma, which helps the VM layer a lot.
5366 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5367 unsigned long addr, struct pt_regs *regs)
5369 struct vm_area_struct *vma;
5371 if (!get_mmap_lock_carefully(mm, regs))
5374 vma = find_vma(mm, addr);
5375 if (likely(vma && (vma->vm_start <= addr)))
5379 * Well, dang. We might still be successful, but only
5380 * if we can extend a vma to do so.
5382 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5383 mmap_read_unlock(mm);
5388 * We can try to upgrade the mmap lock atomically,
5389 * in which case we can continue to use the vma
5390 * we already looked up.
5392 * Otherwise we'll have to drop the mmap lock and
5393 * re-take it, and also look up the vma again,
5396 if (!mmap_upgrade_trylock(mm)) {
5397 if (!upgrade_mmap_lock_carefully(mm, regs))
5400 vma = find_vma(mm, addr);
5403 if (vma->vm_start <= addr)
5405 if (!(vma->vm_flags & VM_GROWSDOWN))
5409 if (expand_stack_locked(vma, addr))
5413 mmap_write_downgrade(mm);
5417 mmap_write_unlock(mm);
5422 #ifdef CONFIG_PER_VMA_LOCK
5424 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5425 * stable and not isolated. If the VMA is not found or is being modified the
5426 * function returns NULL.
5428 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5429 unsigned long address)
5431 MA_STATE(mas, &mm->mm_mt, address, address);
5432 struct vm_area_struct *vma;
5436 vma = mas_walk(&mas);
5440 if (!vma_start_read(vma))
5444 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5445 * This check must happen after vma_start_read(); otherwise, a
5446 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5447 * from its anon_vma.
5449 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5450 goto inval_end_read;
5452 /* Check since vm_start/vm_end might change before we lock the VMA */
5453 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5454 goto inval_end_read;
5456 /* Check if the VMA got isolated after we found it */
5457 if (vma->detached) {
5459 count_vm_vma_lock_event(VMA_LOCK_MISS);
5460 /* The area was replaced with another one */
5471 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5474 #endif /* CONFIG_PER_VMA_LOCK */
5476 #ifndef __PAGETABLE_P4D_FOLDED
5478 * Allocate p4d page table.
5479 * We've already handled the fast-path in-line.
5481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5483 p4d_t *new = p4d_alloc_one(mm, address);
5487 spin_lock(&mm->page_table_lock);
5488 if (pgd_present(*pgd)) { /* Another has populated it */
5491 smp_wmb(); /* See comment in pmd_install() */
5492 pgd_populate(mm, pgd, new);
5494 spin_unlock(&mm->page_table_lock);
5497 #endif /* __PAGETABLE_P4D_FOLDED */
5499 #ifndef __PAGETABLE_PUD_FOLDED
5501 * Allocate page upper directory.
5502 * We've already handled the fast-path in-line.
5504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5506 pud_t *new = pud_alloc_one(mm, address);
5510 spin_lock(&mm->page_table_lock);
5511 if (!p4d_present(*p4d)) {
5513 smp_wmb(); /* See comment in pmd_install() */
5514 p4d_populate(mm, p4d, new);
5515 } else /* Another has populated it */
5517 spin_unlock(&mm->page_table_lock);
5520 #endif /* __PAGETABLE_PUD_FOLDED */
5522 #ifndef __PAGETABLE_PMD_FOLDED
5524 * Allocate page middle directory.
5525 * We've already handled the fast-path in-line.
5527 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5530 pmd_t *new = pmd_alloc_one(mm, address);
5534 ptl = pud_lock(mm, pud);
5535 if (!pud_present(*pud)) {
5537 smp_wmb(); /* See comment in pmd_install() */
5538 pud_populate(mm, pud, new);
5539 } else { /* Another has populated it */
5545 #endif /* __PAGETABLE_PMD_FOLDED */
5548 * follow_pte - look up PTE at a user virtual address
5549 * @mm: the mm_struct of the target address space
5550 * @address: user virtual address
5551 * @ptepp: location to store found PTE
5552 * @ptlp: location to store the lock for the PTE
5554 * On a successful return, the pointer to the PTE is stored in @ptepp;
5555 * the corresponding lock is taken and its location is stored in @ptlp.
5556 * The contents of the PTE are only stable until @ptlp is released;
5557 * any further use, if any, must be protected against invalidation
5558 * with MMU notifiers.
5560 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5561 * should be taken for read.
5563 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5564 * it is not a good general-purpose API.
5566 * Return: zero on success, -ve otherwise.
5568 int follow_pte(struct mm_struct *mm, unsigned long address,
5569 pte_t **ptepp, spinlock_t **ptlp)
5577 pgd = pgd_offset(mm, address);
5578 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5581 p4d = p4d_offset(pgd, address);
5582 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5585 pud = pud_offset(p4d, address);
5586 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5589 pmd = pmd_offset(pud, address);
5590 VM_BUG_ON(pmd_trans_huge(*pmd));
5592 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5595 if (!pte_present(ptep_get(ptep)))
5600 pte_unmap_unlock(ptep, *ptlp);
5604 EXPORT_SYMBOL_GPL(follow_pte);
5607 * follow_pfn - look up PFN at a user virtual address
5608 * @vma: memory mapping
5609 * @address: user virtual address
5610 * @pfn: location to store found PFN
5612 * Only IO mappings and raw PFN mappings are allowed.
5614 * This function does not allow the caller to read the permissions
5615 * of the PTE. Do not use it.
5617 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5619 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5626 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5629 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5632 *pfn = pte_pfn(ptep_get(ptep));
5633 pte_unmap_unlock(ptep, ptl);
5636 EXPORT_SYMBOL(follow_pfn);
5638 #ifdef CONFIG_HAVE_IOREMAP_PROT
5639 int follow_phys(struct vm_area_struct *vma,
5640 unsigned long address, unsigned int flags,
5641 unsigned long *prot, resource_size_t *phys)
5647 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5650 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5652 pte = ptep_get(ptep);
5654 if ((flags & FOLL_WRITE) && !pte_write(pte))
5657 *prot = pgprot_val(pte_pgprot(pte));
5658 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5662 pte_unmap_unlock(ptep, ptl);
5668 * generic_access_phys - generic implementation for iomem mmap access
5669 * @vma: the vma to access
5670 * @addr: userspace address, not relative offset within @vma
5671 * @buf: buffer to read/write
5672 * @len: length of transfer
5673 * @write: set to FOLL_WRITE when writing, otherwise reading
5675 * This is a generic implementation for &vm_operations_struct.access for an
5676 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5679 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5680 void *buf, int len, int write)
5682 resource_size_t phys_addr;
5683 unsigned long prot = 0;
5684 void __iomem *maddr;
5687 int offset = offset_in_page(addr);
5690 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5694 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5696 pte = ptep_get(ptep);
5697 pte_unmap_unlock(ptep, ptl);
5699 prot = pgprot_val(pte_pgprot(pte));
5700 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5702 if ((write & FOLL_WRITE) && !pte_write(pte))
5705 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5709 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5712 if (!pte_same(pte, ptep_get(ptep))) {
5713 pte_unmap_unlock(ptep, ptl);
5720 memcpy_toio(maddr + offset, buf, len);
5722 memcpy_fromio(buf, maddr + offset, len);
5724 pte_unmap_unlock(ptep, ptl);
5730 EXPORT_SYMBOL_GPL(generic_access_phys);
5734 * Access another process' address space as given in mm.
5736 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5737 int len, unsigned int gup_flags)
5739 void *old_buf = buf;
5740 int write = gup_flags & FOLL_WRITE;
5742 if (mmap_read_lock_killable(mm))
5745 /* Untag the address before looking up the VMA */
5746 addr = untagged_addr_remote(mm, addr);
5748 /* Avoid triggering the temporary warning in __get_user_pages */
5749 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5752 /* ignore errors, just check how much was successfully transferred */
5756 struct vm_area_struct *vma = NULL;
5757 struct page *page = get_user_page_vma_remote(mm, addr,
5760 if (IS_ERR_OR_NULL(page)) {
5761 /* We might need to expand the stack to access it */
5762 vma = vma_lookup(mm, addr);
5764 vma = expand_stack(mm, addr);
5766 /* mmap_lock was dropped on failure */
5768 return buf - old_buf;
5770 /* Try again if stack expansion worked */
5776 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5777 * we can access using slightly different code.
5780 #ifdef CONFIG_HAVE_IOREMAP_PROT
5781 if (vma->vm_ops && vma->vm_ops->access)
5782 bytes = vma->vm_ops->access(vma, addr, buf,
5789 offset = addr & (PAGE_SIZE-1);
5790 if (bytes > PAGE_SIZE-offset)
5791 bytes = PAGE_SIZE-offset;
5795 copy_to_user_page(vma, page, addr,
5796 maddr + offset, buf, bytes);
5797 set_page_dirty_lock(page);
5799 copy_from_user_page(vma, page, addr,
5800 buf, maddr + offset, bytes);
5809 mmap_read_unlock(mm);
5811 return buf - old_buf;
5815 * access_remote_vm - access another process' address space
5816 * @mm: the mm_struct of the target address space
5817 * @addr: start address to access
5818 * @buf: source or destination buffer
5819 * @len: number of bytes to transfer
5820 * @gup_flags: flags modifying lookup behaviour
5822 * The caller must hold a reference on @mm.
5824 * Return: number of bytes copied from source to destination.
5826 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5827 void *buf, int len, unsigned int gup_flags)
5829 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5833 * Access another process' address space.
5834 * Source/target buffer must be kernel space,
5835 * Do not walk the page table directly, use get_user_pages
5837 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5838 void *buf, int len, unsigned int gup_flags)
5840 struct mm_struct *mm;
5843 mm = get_task_mm(tsk);
5847 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5853 EXPORT_SYMBOL_GPL(access_process_vm);
5856 * Print the name of a VMA.
5858 void print_vma_addr(char *prefix, unsigned long ip)
5860 struct mm_struct *mm = current->mm;
5861 struct vm_area_struct *vma;
5864 * we might be running from an atomic context so we cannot sleep
5866 if (!mmap_read_trylock(mm))
5869 vma = find_vma(mm, ip);
5870 if (vma && vma->vm_file) {
5871 struct file *f = vma->vm_file;
5872 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5876 p = file_path(f, buf, PAGE_SIZE);
5879 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5881 vma->vm_end - vma->vm_start);
5882 free_page((unsigned long)buf);
5885 mmap_read_unlock(mm);
5888 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5889 void __might_fault(const char *file, int line)
5891 if (pagefault_disabled())
5893 __might_sleep(file, line);
5894 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5896 might_lock_read(¤t->mm->mmap_lock);
5899 EXPORT_SYMBOL(__might_fault);
5902 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5904 * Process all subpages of the specified huge page with the specified
5905 * operation. The target subpage will be processed last to keep its
5908 static inline int process_huge_page(
5909 unsigned long addr_hint, unsigned int pages_per_huge_page,
5910 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5913 int i, n, base, l, ret;
5914 unsigned long addr = addr_hint &
5915 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5917 /* Process target subpage last to keep its cache lines hot */
5919 n = (addr_hint - addr) / PAGE_SIZE;
5920 if (2 * n <= pages_per_huge_page) {
5921 /* If target subpage in first half of huge page */
5924 /* Process subpages at the end of huge page */
5925 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5927 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5932 /* If target subpage in second half of huge page */
5933 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5934 l = pages_per_huge_page - n;
5935 /* Process subpages at the begin of huge page */
5936 for (i = 0; i < base; i++) {
5938 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5944 * Process remaining subpages in left-right-left-right pattern
5945 * towards the target subpage
5947 for (i = 0; i < l; i++) {
5948 int left_idx = base + i;
5949 int right_idx = base + 2 * l - 1 - i;
5952 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5956 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5963 static void clear_gigantic_page(struct page *page,
5965 unsigned int pages_per_huge_page)
5971 for (i = 0; i < pages_per_huge_page; i++) {
5972 p = nth_page(page, i);
5974 clear_user_highpage(p, addr + i * PAGE_SIZE);
5978 static int clear_subpage(unsigned long addr, int idx, void *arg)
5980 struct page *page = arg;
5982 clear_user_highpage(page + idx, addr);
5986 void clear_huge_page(struct page *page,
5987 unsigned long addr_hint, unsigned int pages_per_huge_page)
5989 unsigned long addr = addr_hint &
5990 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5992 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5993 clear_gigantic_page(page, addr, pages_per_huge_page);
5997 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6000 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6002 struct vm_area_struct *vma,
6003 unsigned int pages_per_huge_page)
6006 struct page *dst_page;
6007 struct page *src_page;
6009 for (i = 0; i < pages_per_huge_page; i++) {
6010 dst_page = folio_page(dst, i);
6011 src_page = folio_page(src, i);
6014 if (copy_mc_user_highpage(dst_page, src_page,
6015 addr + i*PAGE_SIZE, vma)) {
6016 memory_failure_queue(page_to_pfn(src_page), 0);
6023 struct copy_subpage_arg {
6026 struct vm_area_struct *vma;
6029 static int copy_subpage(unsigned long addr, int idx, void *arg)
6031 struct copy_subpage_arg *copy_arg = arg;
6033 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6034 addr, copy_arg->vma)) {
6035 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6041 int copy_user_large_folio(struct folio *dst, struct folio *src,
6042 unsigned long addr_hint, struct vm_area_struct *vma)
6044 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6045 unsigned long addr = addr_hint &
6046 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6047 struct copy_subpage_arg arg = {
6053 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6054 return copy_user_gigantic_page(dst, src, addr, vma,
6055 pages_per_huge_page);
6057 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6060 long copy_folio_from_user(struct folio *dst_folio,
6061 const void __user *usr_src,
6062 bool allow_pagefault)
6065 unsigned long i, rc = 0;
6066 unsigned int nr_pages = folio_nr_pages(dst_folio);
6067 unsigned long ret_val = nr_pages * PAGE_SIZE;
6068 struct page *subpage;
6070 for (i = 0; i < nr_pages; i++) {
6071 subpage = folio_page(dst_folio, i);
6072 kaddr = kmap_local_page(subpage);
6073 if (!allow_pagefault)
6074 pagefault_disable();
6075 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6076 if (!allow_pagefault)
6078 kunmap_local(kaddr);
6080 ret_val -= (PAGE_SIZE - rc);
6084 flush_dcache_page(subpage);
6090 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6092 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6094 static struct kmem_cache *page_ptl_cachep;
6096 void __init ptlock_cache_init(void)
6098 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6102 bool ptlock_alloc(struct ptdesc *ptdesc)
6106 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6113 void ptlock_free(struct ptdesc *ptdesc)
6115 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);