Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[platform/kernel/linux-exynos.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <linux/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void * high_memory;
99
100 EXPORT_SYMBOL(high_memory);
101
102 /*
103  * Randomize the address space (stacks, mmaps, brk, etc.).
104  *
105  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106  *   as ancient (libc5 based) binaries can segfault. )
107  */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110                                         1;
111 #else
112                                         2;
113 #endif
114
115 static int __init disable_randmaps(char *s)
116 {
117         randomize_va_space = 0;
118         return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124
125 EXPORT_SYMBOL(zero_pfn);
126
127 /*
128  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129  */
130 static int __init init_zero_pfn(void)
131 {
132         zero_pfn = page_to_pfn(ZERO_PAGE(0));
133         return 0;
134 }
135 core_initcall(init_zero_pfn);
136
137
138 #if defined(SPLIT_RSS_COUNTING)
139
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142         int i;
143
144         for (i = 0; i < NR_MM_COUNTERS; i++) {
145                 if (current->rss_stat.count[i]) {
146                         add_mm_counter(mm, i, current->rss_stat.count[i]);
147                         current->rss_stat.count[i] = 0;
148                 }
149         }
150         current->rss_stat.events = 0;
151 }
152
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155         struct task_struct *task = current;
156
157         if (likely(task->mm == mm))
158                 task->rss_stat.count[member] += val;
159         else
160                 add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH  (64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169         if (unlikely(task != current))
170                 return;
171         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172                 sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182
183 #endif /* SPLIT_RSS_COUNTING */
184
185 #ifdef HAVE_GENERIC_MMU_GATHER
186
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189         struct mmu_gather_batch *batch;
190
191         batch = tlb->active;
192         if (batch->next) {
193                 tlb->active = batch->next;
194                 return true;
195         }
196
197         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198                 return false;
199
200         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201         if (!batch)
202                 return false;
203
204         tlb->batch_count++;
205         batch->next = NULL;
206         batch->nr   = 0;
207         batch->max  = MAX_GATHER_BATCH;
208
209         tlb->active->next = batch;
210         tlb->active = batch;
211
212         return true;
213 }
214
215 /* tlb_gather_mmu
216  *      Called to initialize an (on-stack) mmu_gather structure for page-table
217  *      tear-down from @mm. The @fullmm argument is used when @mm is without
218  *      users and we're going to destroy the full address space (exit/execve).
219  */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  *returns true if the caller should flush.
297  */
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
299 {
300         struct mmu_gather_batch *batch;
301
302         VM_BUG_ON(!tlb->end);
303         VM_WARN_ON(tlb->page_size != page_size);
304
305         batch = tlb->active;
306         /*
307          * Add the page and check if we are full. If so
308          * force a flush.
309          */
310         batch->pages[batch->nr++] = page;
311         if (batch->nr == batch->max) {
312                 if (!tlb_next_batch(tlb))
313                         return true;
314                 batch = tlb->active;
315         }
316         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
317
318         return false;
319 }
320
321 #endif /* HAVE_GENERIC_MMU_GATHER */
322
323 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
324
325 /*
326  * See the comment near struct mmu_table_batch.
327  */
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331         /* Simply deliver the interrupt */
332 }
333
334 static void tlb_remove_table_one(void *table)
335 {
336         /*
337          * This isn't an RCU grace period and hence the page-tables cannot be
338          * assumed to be actually RCU-freed.
339          *
340          * It is however sufficient for software page-table walkers that rely on
341          * IRQ disabling. See the comment near struct mmu_table_batch.
342          */
343         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
344         __tlb_remove_table(table);
345 }
346
347 static void tlb_remove_table_rcu(struct rcu_head *head)
348 {
349         struct mmu_table_batch *batch;
350         int i;
351
352         batch = container_of(head, struct mmu_table_batch, rcu);
353
354         for (i = 0; i < batch->nr; i++)
355                 __tlb_remove_table(batch->tables[i]);
356
357         free_page((unsigned long)batch);
358 }
359
360 void tlb_table_flush(struct mmu_gather *tlb)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         if (*batch) {
365                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
366                 *batch = NULL;
367         }
368 }
369
370 void tlb_remove_table(struct mmu_gather *tlb, void *table)
371 {
372         struct mmu_table_batch **batch = &tlb->batch;
373
374         /*
375          * When there's less then two users of this mm there cannot be a
376          * concurrent page-table walk.
377          */
378         if (atomic_read(&tlb->mm->mm_users) < 2) {
379                 __tlb_remove_table(table);
380                 return;
381         }
382
383         if (*batch == NULL) {
384                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
385                 if (*batch == NULL) {
386                         tlb_remove_table_one(table);
387                         return;
388                 }
389                 (*batch)->nr = 0;
390         }
391         (*batch)->tables[(*batch)->nr++] = table;
392         if ((*batch)->nr == MAX_TABLE_BATCH)
393                 tlb_table_flush(tlb);
394 }
395
396 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
397
398 /*
399  * Note: this doesn't free the actual pages themselves. That
400  * has been handled earlier when unmapping all the memory regions.
401  */
402 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
403                            unsigned long addr)
404 {
405         pgtable_t token = pmd_pgtable(*pmd);
406         pmd_clear(pmd);
407         pte_free_tlb(tlb, token, addr);
408         atomic_long_dec(&tlb->mm->nr_ptes);
409 }
410
411 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
412                                 unsigned long addr, unsigned long end,
413                                 unsigned long floor, unsigned long ceiling)
414 {
415         pmd_t *pmd;
416         unsigned long next;
417         unsigned long start;
418
419         start = addr;
420         pmd = pmd_offset(pud, addr);
421         do {
422                 next = pmd_addr_end(addr, end);
423                 if (pmd_none_or_clear_bad(pmd))
424                         continue;
425                 free_pte_range(tlb, pmd, addr);
426         } while (pmd++, addr = next, addr != end);
427
428         start &= PUD_MASK;
429         if (start < floor)
430                 return;
431         if (ceiling) {
432                 ceiling &= PUD_MASK;
433                 if (!ceiling)
434                         return;
435         }
436         if (end - 1 > ceiling - 1)
437                 return;
438
439         pmd = pmd_offset(pud, start);
440         pud_clear(pud);
441         pmd_free_tlb(tlb, pmd, start);
442         mm_dec_nr_pmds(tlb->mm);
443 }
444
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446                                 unsigned long addr, unsigned long end,
447                                 unsigned long floor, unsigned long ceiling)
448 {
449         pud_t *pud;
450         unsigned long next;
451         unsigned long start;
452
453         start = addr;
454         pud = pud_offset(pgd, addr);
455         do {
456                 next = pud_addr_end(addr, end);
457                 if (pud_none_or_clear_bad(pud))
458                         continue;
459                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460         } while (pud++, addr = next, addr != end);
461
462         start &= PGDIR_MASK;
463         if (start < floor)
464                 return;
465         if (ceiling) {
466                 ceiling &= PGDIR_MASK;
467                 if (!ceiling)
468                         return;
469         }
470         if (end - 1 > ceiling - 1)
471                 return;
472
473         pud = pud_offset(pgd, start);
474         pgd_clear(pgd);
475         pud_free_tlb(tlb, pud, start);
476 }
477
478 /*
479  * This function frees user-level page tables of a process.
480  */
481 void free_pgd_range(struct mmu_gather *tlb,
482                         unsigned long addr, unsigned long end,
483                         unsigned long floor, unsigned long ceiling)
484 {
485         pgd_t *pgd;
486         unsigned long next;
487
488         /*
489          * The next few lines have given us lots of grief...
490          *
491          * Why are we testing PMD* at this top level?  Because often
492          * there will be no work to do at all, and we'd prefer not to
493          * go all the way down to the bottom just to discover that.
494          *
495          * Why all these "- 1"s?  Because 0 represents both the bottom
496          * of the address space and the top of it (using -1 for the
497          * top wouldn't help much: the masks would do the wrong thing).
498          * The rule is that addr 0 and floor 0 refer to the bottom of
499          * the address space, but end 0 and ceiling 0 refer to the top
500          * Comparisons need to use "end - 1" and "ceiling - 1" (though
501          * that end 0 case should be mythical).
502          *
503          * Wherever addr is brought up or ceiling brought down, we must
504          * be careful to reject "the opposite 0" before it confuses the
505          * subsequent tests.  But what about where end is brought down
506          * by PMD_SIZE below? no, end can't go down to 0 there.
507          *
508          * Whereas we round start (addr) and ceiling down, by different
509          * masks at different levels, in order to test whether a table
510          * now has no other vmas using it, so can be freed, we don't
511          * bother to round floor or end up - the tests don't need that.
512          */
513
514         addr &= PMD_MASK;
515         if (addr < floor) {
516                 addr += PMD_SIZE;
517                 if (!addr)
518                         return;
519         }
520         if (ceiling) {
521                 ceiling &= PMD_MASK;
522                 if (!ceiling)
523                         return;
524         }
525         if (end - 1 > ceiling - 1)
526                 end -= PMD_SIZE;
527         if (addr > end - 1)
528                 return;
529         /*
530          * We add page table cache pages with PAGE_SIZE,
531          * (see pte_free_tlb()), flush the tlb if we need
532          */
533         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
534         pgd = pgd_offset(tlb->mm, addr);
535         do {
536                 next = pgd_addr_end(addr, end);
537                 if (pgd_none_or_clear_bad(pgd))
538                         continue;
539                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540         } while (pgd++, addr = next, addr != end);
541 }
542
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544                 unsigned long floor, unsigned long ceiling)
545 {
546         while (vma) {
547                 struct vm_area_struct *next = vma->vm_next;
548                 unsigned long addr = vma->vm_start;
549
550                 /*
551                  * Hide vma from rmap and truncate_pagecache before freeing
552                  * pgtables
553                  */
554                 unlink_anon_vmas(vma);
555                 unlink_file_vma(vma);
556
557                 if (is_vm_hugetlb_page(vma)) {
558                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 } else {
561                         /*
562                          * Optimization: gather nearby vmas into one call down
563                          */
564                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565                                && !is_vm_hugetlb_page(next)) {
566                                 vma = next;
567                                 next = vma->vm_next;
568                                 unlink_anon_vmas(vma);
569                                 unlink_file_vma(vma);
570                         }
571                         free_pgd_range(tlb, addr, vma->vm_end,
572                                 floor, next? next->vm_start: ceiling);
573                 }
574                 vma = next;
575         }
576 }
577
578 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
579 {
580         spinlock_t *ptl;
581         pgtable_t new = pte_alloc_one(mm, address);
582         if (!new)
583                 return -ENOMEM;
584
585         /*
586          * Ensure all pte setup (eg. pte page lock and page clearing) are
587          * visible before the pte is made visible to other CPUs by being
588          * put into page tables.
589          *
590          * The other side of the story is the pointer chasing in the page
591          * table walking code (when walking the page table without locking;
592          * ie. most of the time). Fortunately, these data accesses consist
593          * of a chain of data-dependent loads, meaning most CPUs (alpha
594          * being the notable exception) will already guarantee loads are
595          * seen in-order. See the alpha page table accessors for the
596          * smp_read_barrier_depends() barriers in page table walking code.
597          */
598         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
600         ptl = pmd_lock(mm, pmd);
601         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
602                 atomic_long_inc(&mm->nr_ptes);
603                 pmd_populate(mm, pmd, new);
604                 new = NULL;
605         }
606         spin_unlock(ptl);
607         if (new)
608                 pte_free(mm, new);
609         return 0;
610 }
611
612 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
613 {
614         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
615         if (!new)
616                 return -ENOMEM;
617
618         smp_wmb(); /* See comment in __pte_alloc */
619
620         spin_lock(&init_mm.page_table_lock);
621         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
622                 pmd_populate_kernel(&init_mm, pmd, new);
623                 new = NULL;
624         }
625         spin_unlock(&init_mm.page_table_lock);
626         if (new)
627                 pte_free_kernel(&init_mm, new);
628         return 0;
629 }
630
631 static inline void init_rss_vec(int *rss)
632 {
633         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638         int i;
639
640         if (current->mm == mm)
641                 sync_mm_rss(mm);
642         for (i = 0; i < NR_MM_COUNTERS; i++)
643                 if (rss[i])
644                         add_mm_counter(mm, i, rss[i]);
645 }
646
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655                           pte_t pte, struct page *page)
656 {
657         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658         pud_t *pud = pud_offset(pgd, addr);
659         pmd_t *pmd = pmd_offset(pud, addr);
660         struct address_space *mapping;
661         pgoff_t index;
662         static unsigned long resume;
663         static unsigned long nr_shown;
664         static unsigned long nr_unshown;
665
666         /*
667          * Allow a burst of 60 reports, then keep quiet for that minute;
668          * or allow a steady drip of one report per second.
669          */
670         if (nr_shown == 60) {
671                 if (time_before(jiffies, resume)) {
672                         nr_unshown++;
673                         return;
674                 }
675                 if (nr_unshown) {
676                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
677                                  nr_unshown);
678                         nr_unshown = 0;
679                 }
680                 nr_shown = 0;
681         }
682         if (nr_shown++ == 0)
683                 resume = jiffies + 60 * HZ;
684
685         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
686         index = linear_page_index(vma, addr);
687
688         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
689                  current->comm,
690                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
691         if (page)
692                 dump_page(page, "bad pte");
693         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
694                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
695         /*
696          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
697          */
698         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
699                  vma->vm_file,
700                  vma->vm_ops ? vma->vm_ops->fault : NULL,
701                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
702                  mapping ? mapping->a_ops->readpage : NULL);
703         dump_stack();
704         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
705 }
706
707 /*
708  * vm_normal_page -- This function gets the "struct page" associated with a pte.
709  *
710  * "Special" mappings do not wish to be associated with a "struct page" (either
711  * it doesn't exist, or it exists but they don't want to touch it). In this
712  * case, NULL is returned here. "Normal" mappings do have a struct page.
713  *
714  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
715  * pte bit, in which case this function is trivial. Secondly, an architecture
716  * may not have a spare pte bit, which requires a more complicated scheme,
717  * described below.
718  *
719  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
720  * special mapping (even if there are underlying and valid "struct pages").
721  * COWed pages of a VM_PFNMAP are always normal.
722  *
723  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
724  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
725  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
726  * mapping will always honor the rule
727  *
728  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729  *
730  * And for normal mappings this is false.
731  *
732  * This restricts such mappings to be a linear translation from virtual address
733  * to pfn. To get around this restriction, we allow arbitrary mappings so long
734  * as the vma is not a COW mapping; in that case, we know that all ptes are
735  * special (because none can have been COWed).
736  *
737  *
738  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
739  *
740  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
741  * page" backing, however the difference is that _all_ pages with a struct
742  * page (that is, those where pfn_valid is true) are refcounted and considered
743  * normal pages by the VM. The disadvantage is that pages are refcounted
744  * (which can be slower and simply not an option for some PFNMAP users). The
745  * advantage is that we don't have to follow the strict linearity rule of
746  * PFNMAP mappings in order to support COWable mappings.
747  *
748  */
749 #ifdef __HAVE_ARCH_PTE_SPECIAL
750 # define HAVE_PTE_SPECIAL 1
751 #else
752 # define HAVE_PTE_SPECIAL 0
753 #endif
754 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755                                 pte_t pte)
756 {
757         unsigned long pfn = pte_pfn(pte);
758
759         if (HAVE_PTE_SPECIAL) {
760                 if (likely(!pte_special(pte)))
761                         goto check_pfn;
762                 if (vma->vm_ops && vma->vm_ops->find_special_page)
763                         return vma->vm_ops->find_special_page(vma, addr);
764                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
765                         return NULL;
766                 if (!is_zero_pfn(pfn))
767                         print_bad_pte(vma, addr, pte, NULL);
768                 return NULL;
769         }
770
771         /* !HAVE_PTE_SPECIAL case follows: */
772
773         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
774                 if (vma->vm_flags & VM_MIXEDMAP) {
775                         if (!pfn_valid(pfn))
776                                 return NULL;
777                         goto out;
778                 } else {
779                         unsigned long off;
780                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
781                         if (pfn == vma->vm_pgoff + off)
782                                 return NULL;
783                         if (!is_cow_mapping(vma->vm_flags))
784                                 return NULL;
785                 }
786         }
787
788         if (is_zero_pfn(pfn))
789                 return NULL;
790 check_pfn:
791         if (unlikely(pfn > highest_memmap_pfn)) {
792                 print_bad_pte(vma, addr, pte, NULL);
793                 return NULL;
794         }
795
796         /*
797          * NOTE! We still have PageReserved() pages in the page tables.
798          * eg. VDSO mappings can cause them to exist.
799          */
800 out:
801         return pfn_to_page(pfn);
802 }
803
804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
805 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
806                                 pmd_t pmd)
807 {
808         unsigned long pfn = pmd_pfn(pmd);
809
810         /*
811          * There is no pmd_special() but there may be special pmds, e.g.
812          * in a direct-access (dax) mapping, so let's just replicate the
813          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
814          */
815         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
816                 if (vma->vm_flags & VM_MIXEDMAP) {
817                         if (!pfn_valid(pfn))
818                                 return NULL;
819                         goto out;
820                 } else {
821                         unsigned long off;
822                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
823                         if (pfn == vma->vm_pgoff + off)
824                                 return NULL;
825                         if (!is_cow_mapping(vma->vm_flags))
826                                 return NULL;
827                 }
828         }
829
830         if (is_zero_pfn(pfn))
831                 return NULL;
832         if (unlikely(pfn > highest_memmap_pfn))
833                 return NULL;
834
835         /*
836          * NOTE! We still have PageReserved() pages in the page tables.
837          * eg. VDSO mappings can cause them to exist.
838          */
839 out:
840         return pfn_to_page(pfn);
841 }
842 #endif
843
844 /*
845  * copy one vm_area from one task to the other. Assumes the page tables
846  * already present in the new task to be cleared in the whole range
847  * covered by this vma.
848  */
849
850 static inline unsigned long
851 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
852                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
853                 unsigned long addr, int *rss)
854 {
855         unsigned long vm_flags = vma->vm_flags;
856         pte_t pte = *src_pte;
857         struct page *page;
858
859         /* pte contains position in swap or file, so copy. */
860         if (unlikely(!pte_present(pte))) {
861                 swp_entry_t entry = pte_to_swp_entry(pte);
862
863                 if (likely(!non_swap_entry(entry))) {
864                         if (swap_duplicate(entry) < 0)
865                                 return entry.val;
866
867                         /* make sure dst_mm is on swapoff's mmlist. */
868                         if (unlikely(list_empty(&dst_mm->mmlist))) {
869                                 spin_lock(&mmlist_lock);
870                                 if (list_empty(&dst_mm->mmlist))
871                                         list_add(&dst_mm->mmlist,
872                                                         &src_mm->mmlist);
873                                 spin_unlock(&mmlist_lock);
874                         }
875                         rss[MM_SWAPENTS]++;
876                 } else if (is_migration_entry(entry)) {
877                         page = migration_entry_to_page(entry);
878
879                         rss[mm_counter(page)]++;
880
881                         if (is_write_migration_entry(entry) &&
882                                         is_cow_mapping(vm_flags)) {
883                                 /*
884                                  * COW mappings require pages in both
885                                  * parent and child to be set to read.
886                                  */
887                                 make_migration_entry_read(&entry);
888                                 pte = swp_entry_to_pte(entry);
889                                 if (pte_swp_soft_dirty(*src_pte))
890                                         pte = pte_swp_mksoft_dirty(pte);
891                                 set_pte_at(src_mm, addr, src_pte, pte);
892                         }
893                 }
894                 goto out_set_pte;
895         }
896
897         /*
898          * If it's a COW mapping, write protect it both
899          * in the parent and the child
900          */
901         if (is_cow_mapping(vm_flags)) {
902                 ptep_set_wrprotect(src_mm, addr, src_pte);
903                 pte = pte_wrprotect(pte);
904         }
905
906         /*
907          * If it's a shared mapping, mark it clean in
908          * the child
909          */
910         if (vm_flags & VM_SHARED)
911                 pte = pte_mkclean(pte);
912         pte = pte_mkold(pte);
913
914         page = vm_normal_page(vma, addr, pte);
915         if (page) {
916                 get_page(page);
917                 page_dup_rmap(page, false);
918                 rss[mm_counter(page)]++;
919         }
920
921 out_set_pte:
922         set_pte_at(dst_mm, addr, dst_pte, pte);
923         return 0;
924 }
925
926 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
927                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
928                    unsigned long addr, unsigned long end)
929 {
930         pte_t *orig_src_pte, *orig_dst_pte;
931         pte_t *src_pte, *dst_pte;
932         spinlock_t *src_ptl, *dst_ptl;
933         int progress = 0;
934         int rss[NR_MM_COUNTERS];
935         swp_entry_t entry = (swp_entry_t){0};
936
937 again:
938         init_rss_vec(rss);
939
940         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
941         if (!dst_pte)
942                 return -ENOMEM;
943         src_pte = pte_offset_map(src_pmd, addr);
944         src_ptl = pte_lockptr(src_mm, src_pmd);
945         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
946         orig_src_pte = src_pte;
947         orig_dst_pte = dst_pte;
948         arch_enter_lazy_mmu_mode();
949
950         do {
951                 /*
952                  * We are holding two locks at this point - either of them
953                  * could generate latencies in another task on another CPU.
954                  */
955                 if (progress >= 32) {
956                         progress = 0;
957                         if (need_resched() ||
958                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
959                                 break;
960                 }
961                 if (pte_none(*src_pte)) {
962                         progress++;
963                         continue;
964                 }
965                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
966                                                         vma, addr, rss);
967                 if (entry.val)
968                         break;
969                 progress += 8;
970         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
971
972         arch_leave_lazy_mmu_mode();
973         spin_unlock(src_ptl);
974         pte_unmap(orig_src_pte);
975         add_mm_rss_vec(dst_mm, rss);
976         pte_unmap_unlock(orig_dst_pte, dst_ptl);
977         cond_resched();
978
979         if (entry.val) {
980                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981                         return -ENOMEM;
982                 progress = 0;
983         }
984         if (addr != end)
985                 goto again;
986         return 0;
987 }
988
989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
991                 unsigned long addr, unsigned long end)
992 {
993         pmd_t *src_pmd, *dst_pmd;
994         unsigned long next;
995
996         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
997         if (!dst_pmd)
998                 return -ENOMEM;
999         src_pmd = pmd_offset(src_pud, addr);
1000         do {
1001                 next = pmd_addr_end(addr, end);
1002                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1003                         int err;
1004                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1005                         err = copy_huge_pmd(dst_mm, src_mm,
1006                                             dst_pmd, src_pmd, addr, vma);
1007                         if (err == -ENOMEM)
1008                                 return -ENOMEM;
1009                         if (!err)
1010                                 continue;
1011                         /* fall through */
1012                 }
1013                 if (pmd_none_or_clear_bad(src_pmd))
1014                         continue;
1015                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016                                                 vma, addr, next))
1017                         return -ENOMEM;
1018         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019         return 0;
1020 }
1021
1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024                 unsigned long addr, unsigned long end)
1025 {
1026         pud_t *src_pud, *dst_pud;
1027         unsigned long next;
1028
1029         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030         if (!dst_pud)
1031                 return -ENOMEM;
1032         src_pud = pud_offset(src_pgd, addr);
1033         do {
1034                 next = pud_addr_end(addr, end);
1035                 if (pud_none_or_clear_bad(src_pud))
1036                         continue;
1037                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038                                                 vma, addr, next))
1039                         return -ENOMEM;
1040         } while (dst_pud++, src_pud++, addr = next, addr != end);
1041         return 0;
1042 }
1043
1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045                 struct vm_area_struct *vma)
1046 {
1047         pgd_t *src_pgd, *dst_pgd;
1048         unsigned long next;
1049         unsigned long addr = vma->vm_start;
1050         unsigned long end = vma->vm_end;
1051         unsigned long mmun_start;       /* For mmu_notifiers */
1052         unsigned long mmun_end;         /* For mmu_notifiers */
1053         bool is_cow;
1054         int ret;
1055
1056         /*
1057          * Don't copy ptes where a page fault will fill them correctly.
1058          * Fork becomes much lighter when there are big shared or private
1059          * readonly mappings. The tradeoff is that copy_page_range is more
1060          * efficient than faulting.
1061          */
1062         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1063                         !vma->anon_vma)
1064                 return 0;
1065
1066         if (is_vm_hugetlb_page(vma))
1067                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
1069         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1070                 /*
1071                  * We do not free on error cases below as remove_vma
1072                  * gets called on error from higher level routine
1073                  */
1074                 ret = track_pfn_copy(vma);
1075                 if (ret)
1076                         return ret;
1077         }
1078
1079         /*
1080          * We need to invalidate the secondary MMU mappings only when
1081          * there could be a permission downgrade on the ptes of the
1082          * parent mm. And a permission downgrade will only happen if
1083          * is_cow_mapping() returns true.
1084          */
1085         is_cow = is_cow_mapping(vma->vm_flags);
1086         mmun_start = addr;
1087         mmun_end   = end;
1088         if (is_cow)
1089                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090                                                     mmun_end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow)
1107                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1108         return ret;
1109 }
1110
1111 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1112                                 struct vm_area_struct *vma, pmd_t *pmd,
1113                                 unsigned long addr, unsigned long end,
1114                                 struct zap_details *details)
1115 {
1116         struct mm_struct *mm = tlb->mm;
1117         int force_flush = 0;
1118         int rss[NR_MM_COUNTERS];
1119         spinlock_t *ptl;
1120         pte_t *start_pte;
1121         pte_t *pte;
1122         swp_entry_t entry;
1123
1124         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1125 again:
1126         init_rss_vec(rss);
1127         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128         pte = start_pte;
1129         arch_enter_lazy_mmu_mode();
1130         do {
1131                 pte_t ptent = *pte;
1132                 if (pte_none(ptent)) {
1133                         continue;
1134                 }
1135
1136                 if (pte_present(ptent)) {
1137                         struct page *page;
1138
1139                         page = vm_normal_page(vma, addr, ptent);
1140                         if (unlikely(details) && page) {
1141                                 /*
1142                                  * unmap_shared_mapping_pages() wants to
1143                                  * invalidate cache without truncating:
1144                                  * unmap shared but keep private pages.
1145                                  */
1146                                 if (details->check_mapping &&
1147                                     details->check_mapping != page_rmapping(page))
1148                                         continue;
1149                         }
1150                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1151                                                         tlb->fullmm);
1152                         tlb_remove_tlb_entry(tlb, pte, addr);
1153                         if (unlikely(!page))
1154                                 continue;
1155
1156                         if (!PageAnon(page)) {
1157                                 if (pte_dirty(ptent)) {
1158                                         force_flush = 1;
1159                                         set_page_dirty(page);
1160                                 }
1161                                 if (pte_young(ptent) &&
1162                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1163                                         mark_page_accessed(page);
1164                         }
1165                         rss[mm_counter(page)]--;
1166                         page_remove_rmap(page, false);
1167                         if (unlikely(page_mapcount(page) < 0))
1168                                 print_bad_pte(vma, addr, ptent, page);
1169                         if (unlikely(__tlb_remove_page(tlb, page))) {
1170                                 force_flush = 1;
1171                                 addr += PAGE_SIZE;
1172                                 break;
1173                         }
1174                         continue;
1175                 }
1176                 /* If details->check_mapping, we leave swap entries. */
1177                 if (unlikely(details))
1178                         continue;
1179
1180                 entry = pte_to_swp_entry(ptent);
1181                 if (!non_swap_entry(entry))
1182                         rss[MM_SWAPENTS]--;
1183                 else if (is_migration_entry(entry)) {
1184                         struct page *page;
1185
1186                         page = migration_entry_to_page(entry);
1187                         rss[mm_counter(page)]--;
1188                 }
1189                 if (unlikely(!free_swap_and_cache(entry)))
1190                         print_bad_pte(vma, addr, ptent, NULL);
1191                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1192         } while (pte++, addr += PAGE_SIZE, addr != end);
1193
1194         add_mm_rss_vec(mm, rss);
1195         arch_leave_lazy_mmu_mode();
1196
1197         /* Do the actual TLB flush before dropping ptl */
1198         if (force_flush)
1199                 tlb_flush_mmu_tlbonly(tlb);
1200         pte_unmap_unlock(start_pte, ptl);
1201
1202         /*
1203          * If we forced a TLB flush (either due to running out of
1204          * batch buffers or because we needed to flush dirty TLB
1205          * entries before releasing the ptl), free the batched
1206          * memory too. Restart if we didn't do everything.
1207          */
1208         if (force_flush) {
1209                 force_flush = 0;
1210                 tlb_flush_mmu_free(tlb);
1211                 if (addr != end)
1212                         goto again;
1213         }
1214
1215         return addr;
1216 }
1217
1218 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1219                                 struct vm_area_struct *vma, pud_t *pud,
1220                                 unsigned long addr, unsigned long end,
1221                                 struct zap_details *details)
1222 {
1223         pmd_t *pmd;
1224         unsigned long next;
1225
1226         pmd = pmd_offset(pud, addr);
1227         do {
1228                 next = pmd_addr_end(addr, end);
1229                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1230                         if (next - addr != HPAGE_PMD_SIZE) {
1231                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1232                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1233                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1234                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1235                                 goto next;
1236                         /* fall through */
1237                 }
1238                 /*
1239                  * Here there can be other concurrent MADV_DONTNEED or
1240                  * trans huge page faults running, and if the pmd is
1241                  * none or trans huge it can change under us. This is
1242                  * because MADV_DONTNEED holds the mmap_sem in read
1243                  * mode.
1244                  */
1245                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1246                         goto next;
1247                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1248 next:
1249                 cond_resched();
1250         } while (pmd++, addr = next, addr != end);
1251
1252         return addr;
1253 }
1254
1255 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1256                                 struct vm_area_struct *vma, pgd_t *pgd,
1257                                 unsigned long addr, unsigned long end,
1258                                 struct zap_details *details)
1259 {
1260         pud_t *pud;
1261         unsigned long next;
1262
1263         pud = pud_offset(pgd, addr);
1264         do {
1265                 next = pud_addr_end(addr, end);
1266                 if (pud_none_or_clear_bad(pud))
1267                         continue;
1268                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1269         } while (pud++, addr = next, addr != end);
1270
1271         return addr;
1272 }
1273
1274 void unmap_page_range(struct mmu_gather *tlb,
1275                              struct vm_area_struct *vma,
1276                              unsigned long addr, unsigned long end,
1277                              struct zap_details *details)
1278 {
1279         pgd_t *pgd;
1280         unsigned long next;
1281
1282         BUG_ON(addr >= end);
1283         tlb_start_vma(tlb, vma);
1284         pgd = pgd_offset(vma->vm_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(pgd))
1288                         continue;
1289                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290         } while (pgd++, addr = next, addr != end);
1291         tlb_end_vma(tlb, vma);
1292 }
1293
1294
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296                 struct vm_area_struct *vma, unsigned long start_addr,
1297                 unsigned long end_addr,
1298                 struct zap_details *details)
1299 {
1300         unsigned long start = max(vma->vm_start, start_addr);
1301         unsigned long end;
1302
1303         if (start >= vma->vm_end)
1304                 return;
1305         end = min(vma->vm_end, end_addr);
1306         if (end <= vma->vm_start)
1307                 return;
1308
1309         if (vma->vm_file)
1310                 uprobe_munmap(vma, start, end);
1311
1312         if (unlikely(vma->vm_flags & VM_PFNMAP))
1313                 untrack_pfn(vma, 0, 0);
1314
1315         if (start != end) {
1316                 if (unlikely(is_vm_hugetlb_page(vma))) {
1317                         /*
1318                          * It is undesirable to test vma->vm_file as it
1319                          * should be non-null for valid hugetlb area.
1320                          * However, vm_file will be NULL in the error
1321                          * cleanup path of mmap_region. When
1322                          * hugetlbfs ->mmap method fails,
1323                          * mmap_region() nullifies vma->vm_file
1324                          * before calling this function to clean up.
1325                          * Since no pte has actually been setup, it is
1326                          * safe to do nothing in this case.
1327                          */
1328                         if (vma->vm_file) {
1329                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1330                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1332                         }
1333                 } else
1334                         unmap_page_range(tlb, vma, start, end, details);
1335         }
1336 }
1337
1338 /**
1339  * unmap_vmas - unmap a range of memory covered by a list of vma's
1340  * @tlb: address of the caller's struct mmu_gather
1341  * @vma: the starting vma
1342  * @start_addr: virtual address at which to start unmapping
1343  * @end_addr: virtual address at which to end unmapping
1344  *
1345  * Unmap all pages in the vma list.
1346  *
1347  * Only addresses between `start' and `end' will be unmapped.
1348  *
1349  * The VMA list must be sorted in ascending virtual address order.
1350  *
1351  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352  * range after unmap_vmas() returns.  So the only responsibility here is to
1353  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354  * drops the lock and schedules.
1355  */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357                 struct vm_area_struct *vma, unsigned long start_addr,
1358                 unsigned long end_addr)
1359 {
1360         struct mm_struct *mm = vma->vm_mm;
1361
1362         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367
1368 /**
1369  * zap_page_range - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @start: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  *
1374  * Caller must protect the VMA list
1375  */
1376 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1377                 unsigned long size)
1378 {
1379         struct mm_struct *mm = vma->vm_mm;
1380         struct mmu_gather tlb;
1381         unsigned long end = start + size;
1382
1383         lru_add_drain();
1384         tlb_gather_mmu(&tlb, mm, start, end);
1385         update_hiwater_rss(mm);
1386         mmu_notifier_invalidate_range_start(mm, start, end);
1387         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1388                 unmap_single_vma(&tlb, vma, start, end, NULL);
1389         mmu_notifier_invalidate_range_end(mm, start, end);
1390         tlb_finish_mmu(&tlb, start, end);
1391 }
1392
1393 /**
1394  * zap_page_range_single - remove user pages in a given range
1395  * @vma: vm_area_struct holding the applicable pages
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  * @details: details of shared cache invalidation
1399  *
1400  * The range must fit into one VMA.
1401  */
1402 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1403                 unsigned long size, struct zap_details *details)
1404 {
1405         struct mm_struct *mm = vma->vm_mm;
1406         struct mmu_gather tlb;
1407         unsigned long end = address + size;
1408
1409         lru_add_drain();
1410         tlb_gather_mmu(&tlb, mm, address, end);
1411         update_hiwater_rss(mm);
1412         mmu_notifier_invalidate_range_start(mm, address, end);
1413         unmap_single_vma(&tlb, vma, address, end, details);
1414         mmu_notifier_invalidate_range_end(mm, address, end);
1415         tlb_finish_mmu(&tlb, address, end);
1416 }
1417
1418 /**
1419  * zap_vma_ptes - remove ptes mapping the vma
1420  * @vma: vm_area_struct holding ptes to be zapped
1421  * @address: starting address of pages to zap
1422  * @size: number of bytes to zap
1423  *
1424  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1425  *
1426  * The entire address range must be fully contained within the vma.
1427  *
1428  * Returns 0 if successful.
1429  */
1430 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1431                 unsigned long size)
1432 {
1433         if (address < vma->vm_start || address + size > vma->vm_end ||
1434                         !(vma->vm_flags & VM_PFNMAP))
1435                 return -1;
1436         zap_page_range_single(vma, address, size, NULL);
1437         return 0;
1438 }
1439 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1440
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442                         spinlock_t **ptl)
1443 {
1444         pgd_t * pgd = pgd_offset(mm, addr);
1445         pud_t * pud = pud_alloc(mm, pgd, addr);
1446         if (pud) {
1447                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1448                 if (pmd) {
1449                         VM_BUG_ON(pmd_trans_huge(*pmd));
1450                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1451                 }
1452         }
1453         return NULL;
1454 }
1455
1456 /*
1457  * This is the old fallback for page remapping.
1458  *
1459  * For historical reasons, it only allows reserved pages. Only
1460  * old drivers should use this, and they needed to mark their
1461  * pages reserved for the old functions anyway.
1462  */
1463 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1464                         struct page *page, pgprot_t prot)
1465 {
1466         struct mm_struct *mm = vma->vm_mm;
1467         int retval;
1468         pte_t *pte;
1469         spinlock_t *ptl;
1470
1471         retval = -EINVAL;
1472         if (PageAnon(page))
1473                 goto out;
1474         retval = -ENOMEM;
1475         flush_dcache_page(page);
1476         pte = get_locked_pte(mm, addr, &ptl);
1477         if (!pte)
1478                 goto out;
1479         retval = -EBUSY;
1480         if (!pte_none(*pte))
1481                 goto out_unlock;
1482
1483         /* Ok, finally just insert the thing.. */
1484         get_page(page);
1485         inc_mm_counter_fast(mm, mm_counter_file(page));
1486         page_add_file_rmap(page, false);
1487         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1488
1489         retval = 0;
1490         pte_unmap_unlock(pte, ptl);
1491         return retval;
1492 out_unlock:
1493         pte_unmap_unlock(pte, ptl);
1494 out:
1495         return retval;
1496 }
1497
1498 /**
1499  * vm_insert_page - insert single page into user vma
1500  * @vma: user vma to map to
1501  * @addr: target user address of this page
1502  * @page: source kernel page
1503  *
1504  * This allows drivers to insert individual pages they've allocated
1505  * into a user vma.
1506  *
1507  * The page has to be a nice clean _individual_ kernel allocation.
1508  * If you allocate a compound page, you need to have marked it as
1509  * such (__GFP_COMP), or manually just split the page up yourself
1510  * (see split_page()).
1511  *
1512  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1513  * took an arbitrary page protection parameter. This doesn't allow
1514  * that. Your vma protection will have to be set up correctly, which
1515  * means that if you want a shared writable mapping, you'd better
1516  * ask for a shared writable mapping!
1517  *
1518  * The page does not need to be reserved.
1519  *
1520  * Usually this function is called from f_op->mmap() handler
1521  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1522  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1523  * function from other places, for example from page-fault handler.
1524  */
1525 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1526                         struct page *page)
1527 {
1528         if (addr < vma->vm_start || addr >= vma->vm_end)
1529                 return -EFAULT;
1530         if (!page_count(page))
1531                 return -EINVAL;
1532         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1533                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1534                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1535                 vma->vm_flags |= VM_MIXEDMAP;
1536         }
1537         return insert_page(vma, addr, page, vma->vm_page_prot);
1538 }
1539 EXPORT_SYMBOL(vm_insert_page);
1540
1541 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1542                         pfn_t pfn, pgprot_t prot)
1543 {
1544         struct mm_struct *mm = vma->vm_mm;
1545         int retval;
1546         pte_t *pte, entry;
1547         spinlock_t *ptl;
1548
1549         retval = -ENOMEM;
1550         pte = get_locked_pte(mm, addr, &ptl);
1551         if (!pte)
1552                 goto out;
1553         retval = -EBUSY;
1554         if (!pte_none(*pte))
1555                 goto out_unlock;
1556
1557         /* Ok, finally just insert the thing.. */
1558         if (pfn_t_devmap(pfn))
1559                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1560         else
1561                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1562         set_pte_at(mm, addr, pte, entry);
1563         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1564
1565         retval = 0;
1566 out_unlock:
1567         pte_unmap_unlock(pte, ptl);
1568 out:
1569         return retval;
1570 }
1571
1572 /**
1573  * vm_insert_pfn - insert single pfn into user vma
1574  * @vma: user vma to map to
1575  * @addr: target user address of this page
1576  * @pfn: source kernel pfn
1577  *
1578  * Similar to vm_insert_page, this allows drivers to insert individual pages
1579  * they've allocated into a user vma. Same comments apply.
1580  *
1581  * This function should only be called from a vm_ops->fault handler, and
1582  * in that case the handler should return NULL.
1583  *
1584  * vma cannot be a COW mapping.
1585  *
1586  * As this is called only for pages that do not currently exist, we
1587  * do not need to flush old virtual caches or the TLB.
1588  */
1589 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1590                         unsigned long pfn)
1591 {
1592         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1593 }
1594 EXPORT_SYMBOL(vm_insert_pfn);
1595
1596 /**
1597  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1598  * @vma: user vma to map to
1599  * @addr: target user address of this page
1600  * @pfn: source kernel pfn
1601  * @pgprot: pgprot flags for the inserted page
1602  *
1603  * This is exactly like vm_insert_pfn, except that it allows drivers to
1604  * to override pgprot on a per-page basis.
1605  *
1606  * This only makes sense for IO mappings, and it makes no sense for
1607  * cow mappings.  In general, using multiple vmas is preferable;
1608  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1609  * impractical.
1610  */
1611 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1612                         unsigned long pfn, pgprot_t pgprot)
1613 {
1614         int ret;
1615         /*
1616          * Technically, architectures with pte_special can avoid all these
1617          * restrictions (same for remap_pfn_range).  However we would like
1618          * consistency in testing and feature parity among all, so we should
1619          * try to keep these invariants in place for everybody.
1620          */
1621         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1622         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1623                                                 (VM_PFNMAP|VM_MIXEDMAP));
1624         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1625         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1626
1627         if (addr < vma->vm_start || addr >= vma->vm_end)
1628                 return -EFAULT;
1629
1630         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1631
1632         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1633
1634         return ret;
1635 }
1636 EXPORT_SYMBOL(vm_insert_pfn_prot);
1637
1638 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1639                         pfn_t pfn)
1640 {
1641         pgprot_t pgprot = vma->vm_page_prot;
1642
1643         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1644
1645         if (addr < vma->vm_start || addr >= vma->vm_end)
1646                 return -EFAULT;
1647
1648         track_pfn_insert(vma, &pgprot, pfn);
1649
1650         /*
1651          * If we don't have pte special, then we have to use the pfn_valid()
1652          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1653          * refcount the page if pfn_valid is true (hence insert_page rather
1654          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1655          * without pte special, it would there be refcounted as a normal page.
1656          */
1657         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1658                 struct page *page;
1659
1660                 /*
1661                  * At this point we are committed to insert_page()
1662                  * regardless of whether the caller specified flags that
1663                  * result in pfn_t_has_page() == false.
1664                  */
1665                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1666                 return insert_page(vma, addr, page, pgprot);
1667         }
1668         return insert_pfn(vma, addr, pfn, pgprot);
1669 }
1670 EXPORT_SYMBOL(vm_insert_mixed);
1671
1672 /*
1673  * maps a range of physical memory into the requested pages. the old
1674  * mappings are removed. any references to nonexistent pages results
1675  * in null mappings (currently treated as "copy-on-access")
1676  */
1677 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1678                         unsigned long addr, unsigned long end,
1679                         unsigned long pfn, pgprot_t prot)
1680 {
1681         pte_t *pte;
1682         spinlock_t *ptl;
1683
1684         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1685         if (!pte)
1686                 return -ENOMEM;
1687         arch_enter_lazy_mmu_mode();
1688         do {
1689                 BUG_ON(!pte_none(*pte));
1690                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1691                 pfn++;
1692         } while (pte++, addr += PAGE_SIZE, addr != end);
1693         arch_leave_lazy_mmu_mode();
1694         pte_unmap_unlock(pte - 1, ptl);
1695         return 0;
1696 }
1697
1698 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1699                         unsigned long addr, unsigned long end,
1700                         unsigned long pfn, pgprot_t prot)
1701 {
1702         pmd_t *pmd;
1703         unsigned long next;
1704
1705         pfn -= addr >> PAGE_SHIFT;
1706         pmd = pmd_alloc(mm, pud, addr);
1707         if (!pmd)
1708                 return -ENOMEM;
1709         VM_BUG_ON(pmd_trans_huge(*pmd));
1710         do {
1711                 next = pmd_addr_end(addr, end);
1712                 if (remap_pte_range(mm, pmd, addr, next,
1713                                 pfn + (addr >> PAGE_SHIFT), prot))
1714                         return -ENOMEM;
1715         } while (pmd++, addr = next, addr != end);
1716         return 0;
1717 }
1718
1719 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1720                         unsigned long addr, unsigned long end,
1721                         unsigned long pfn, pgprot_t prot)
1722 {
1723         pud_t *pud;
1724         unsigned long next;
1725
1726         pfn -= addr >> PAGE_SHIFT;
1727         pud = pud_alloc(mm, pgd, addr);
1728         if (!pud)
1729                 return -ENOMEM;
1730         do {
1731                 next = pud_addr_end(addr, end);
1732                 if (remap_pmd_range(mm, pud, addr, next,
1733                                 pfn + (addr >> PAGE_SHIFT), prot))
1734                         return -ENOMEM;
1735         } while (pud++, addr = next, addr != end);
1736         return 0;
1737 }
1738
1739 /**
1740  * remap_pfn_range - remap kernel memory to userspace
1741  * @vma: user vma to map to
1742  * @addr: target user address to start at
1743  * @pfn: physical address of kernel memory
1744  * @size: size of map area
1745  * @prot: page protection flags for this mapping
1746  *
1747  *  Note: this is only safe if the mm semaphore is held when called.
1748  */
1749 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1750                     unsigned long pfn, unsigned long size, pgprot_t prot)
1751 {
1752         pgd_t *pgd;
1753         unsigned long next;
1754         unsigned long end = addr + PAGE_ALIGN(size);
1755         struct mm_struct *mm = vma->vm_mm;
1756         unsigned long remap_pfn = pfn;
1757         int err;
1758
1759         /*
1760          * Physically remapped pages are special. Tell the
1761          * rest of the world about it:
1762          *   VM_IO tells people not to look at these pages
1763          *      (accesses can have side effects).
1764          *   VM_PFNMAP tells the core MM that the base pages are just
1765          *      raw PFN mappings, and do not have a "struct page" associated
1766          *      with them.
1767          *   VM_DONTEXPAND
1768          *      Disable vma merging and expanding with mremap().
1769          *   VM_DONTDUMP
1770          *      Omit vma from core dump, even when VM_IO turned off.
1771          *
1772          * There's a horrible special case to handle copy-on-write
1773          * behaviour that some programs depend on. We mark the "original"
1774          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1775          * See vm_normal_page() for details.
1776          */
1777         if (is_cow_mapping(vma->vm_flags)) {
1778                 if (addr != vma->vm_start || end != vma->vm_end)
1779                         return -EINVAL;
1780                 vma->vm_pgoff = pfn;
1781         }
1782
1783         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1784         if (err)
1785                 return -EINVAL;
1786
1787         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1788
1789         BUG_ON(addr >= end);
1790         pfn -= addr >> PAGE_SHIFT;
1791         pgd = pgd_offset(mm, addr);
1792         flush_cache_range(vma, addr, end);
1793         do {
1794                 next = pgd_addr_end(addr, end);
1795                 err = remap_pud_range(mm, pgd, addr, next,
1796                                 pfn + (addr >> PAGE_SHIFT), prot);
1797                 if (err)
1798                         break;
1799         } while (pgd++, addr = next, addr != end);
1800
1801         if (err)
1802                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1803
1804         return err;
1805 }
1806 EXPORT_SYMBOL(remap_pfn_range);
1807
1808 /**
1809  * vm_iomap_memory - remap memory to userspace
1810  * @vma: user vma to map to
1811  * @start: start of area
1812  * @len: size of area
1813  *
1814  * This is a simplified io_remap_pfn_range() for common driver use. The
1815  * driver just needs to give us the physical memory range to be mapped,
1816  * we'll figure out the rest from the vma information.
1817  *
1818  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1819  * whatever write-combining details or similar.
1820  */
1821 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1822 {
1823         unsigned long vm_len, pfn, pages;
1824
1825         /* Check that the physical memory area passed in looks valid */
1826         if (start + len < start)
1827                 return -EINVAL;
1828         /*
1829          * You *really* shouldn't map things that aren't page-aligned,
1830          * but we've historically allowed it because IO memory might
1831          * just have smaller alignment.
1832          */
1833         len += start & ~PAGE_MASK;
1834         pfn = start >> PAGE_SHIFT;
1835         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1836         if (pfn + pages < pfn)
1837                 return -EINVAL;
1838
1839         /* We start the mapping 'vm_pgoff' pages into the area */
1840         if (vma->vm_pgoff > pages)
1841                 return -EINVAL;
1842         pfn += vma->vm_pgoff;
1843         pages -= vma->vm_pgoff;
1844
1845         /* Can we fit all of the mapping? */
1846         vm_len = vma->vm_end - vma->vm_start;
1847         if (vm_len >> PAGE_SHIFT > pages)
1848                 return -EINVAL;
1849
1850         /* Ok, let it rip */
1851         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1852 }
1853 EXPORT_SYMBOL(vm_iomap_memory);
1854
1855 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1856                                      unsigned long addr, unsigned long end,
1857                                      pte_fn_t fn, void *data)
1858 {
1859         pte_t *pte;
1860         int err;
1861         pgtable_t token;
1862         spinlock_t *uninitialized_var(ptl);
1863
1864         pte = (mm == &init_mm) ?
1865                 pte_alloc_kernel(pmd, addr) :
1866                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1867         if (!pte)
1868                 return -ENOMEM;
1869
1870         BUG_ON(pmd_huge(*pmd));
1871
1872         arch_enter_lazy_mmu_mode();
1873
1874         token = pmd_pgtable(*pmd);
1875
1876         do {
1877                 err = fn(pte++, token, addr, data);
1878                 if (err)
1879                         break;
1880         } while (addr += PAGE_SIZE, addr != end);
1881
1882         arch_leave_lazy_mmu_mode();
1883
1884         if (mm != &init_mm)
1885                 pte_unmap_unlock(pte-1, ptl);
1886         return err;
1887 }
1888
1889 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1890                                      unsigned long addr, unsigned long end,
1891                                      pte_fn_t fn, void *data)
1892 {
1893         pmd_t *pmd;
1894         unsigned long next;
1895         int err;
1896
1897         BUG_ON(pud_huge(*pud));
1898
1899         pmd = pmd_alloc(mm, pud, addr);
1900         if (!pmd)
1901                 return -ENOMEM;
1902         do {
1903                 next = pmd_addr_end(addr, end);
1904                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1905                 if (err)
1906                         break;
1907         } while (pmd++, addr = next, addr != end);
1908         return err;
1909 }
1910
1911 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1912                                      unsigned long addr, unsigned long end,
1913                                      pte_fn_t fn, void *data)
1914 {
1915         pud_t *pud;
1916         unsigned long next;
1917         int err;
1918
1919         pud = pud_alloc(mm, pgd, addr);
1920         if (!pud)
1921                 return -ENOMEM;
1922         do {
1923                 next = pud_addr_end(addr, end);
1924                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1925                 if (err)
1926                         break;
1927         } while (pud++, addr = next, addr != end);
1928         return err;
1929 }
1930
1931 /*
1932  * Scan a region of virtual memory, filling in page tables as necessary
1933  * and calling a provided function on each leaf page table.
1934  */
1935 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1936                         unsigned long size, pte_fn_t fn, void *data)
1937 {
1938         pgd_t *pgd;
1939         unsigned long next;
1940         unsigned long end = addr + size;
1941         int err;
1942
1943         if (WARN_ON(addr >= end))
1944                 return -EINVAL;
1945
1946         pgd = pgd_offset(mm, addr);
1947         do {
1948                 next = pgd_addr_end(addr, end);
1949                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1950                 if (err)
1951                         break;
1952         } while (pgd++, addr = next, addr != end);
1953
1954         return err;
1955 }
1956 EXPORT_SYMBOL_GPL(apply_to_page_range);
1957
1958 /*
1959  * handle_pte_fault chooses page fault handler according to an entry which was
1960  * read non-atomically.  Before making any commitment, on those architectures
1961  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1962  * parts, do_swap_page must check under lock before unmapping the pte and
1963  * proceeding (but do_wp_page is only called after already making such a check;
1964  * and do_anonymous_page can safely check later on).
1965  */
1966 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1967                                 pte_t *page_table, pte_t orig_pte)
1968 {
1969         int same = 1;
1970 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1971         if (sizeof(pte_t) > sizeof(unsigned long)) {
1972                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1973                 spin_lock(ptl);
1974                 same = pte_same(*page_table, orig_pte);
1975                 spin_unlock(ptl);
1976         }
1977 #endif
1978         pte_unmap(page_table);
1979         return same;
1980 }
1981
1982 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1983 {
1984         debug_dma_assert_idle(src);
1985
1986         /*
1987          * If the source page was a PFN mapping, we don't have
1988          * a "struct page" for it. We do a best-effort copy by
1989          * just copying from the original user address. If that
1990          * fails, we just zero-fill it. Live with it.
1991          */
1992         if (unlikely(!src)) {
1993                 void *kaddr = kmap_atomic(dst);
1994                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1995
1996                 /*
1997                  * This really shouldn't fail, because the page is there
1998                  * in the page tables. But it might just be unreadable,
1999                  * in which case we just give up and fill the result with
2000                  * zeroes.
2001                  */
2002                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2003                         clear_page(kaddr);
2004                 kunmap_atomic(kaddr);
2005                 flush_dcache_page(dst);
2006         } else
2007                 copy_user_highpage(dst, src, va, vma);
2008 }
2009
2010 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2011 {
2012         struct file *vm_file = vma->vm_file;
2013
2014         if (vm_file)
2015                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2016
2017         /*
2018          * Special mappings (e.g. VDSO) do not have any file so fake
2019          * a default GFP_KERNEL for them.
2020          */
2021         return GFP_KERNEL;
2022 }
2023
2024 /*
2025  * Notify the address space that the page is about to become writable so that
2026  * it can prohibit this or wait for the page to get into an appropriate state.
2027  *
2028  * We do this without the lock held, so that it can sleep if it needs to.
2029  */
2030 static int do_page_mkwrite(struct vm_fault *vmf)
2031 {
2032         int ret;
2033         struct page *page = vmf->page;
2034         unsigned int old_flags = vmf->flags;
2035
2036         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2037
2038         ret = vmf->vma->vm_ops->page_mkwrite(vmf->vma, vmf);
2039         /* Restore original flags so that caller is not surprised */
2040         vmf->flags = old_flags;
2041         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2042                 return ret;
2043         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2044                 lock_page(page);
2045                 if (!page->mapping) {
2046                         unlock_page(page);
2047                         return 0; /* retry */
2048                 }
2049                 ret |= VM_FAULT_LOCKED;
2050         } else
2051                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2052         return ret;
2053 }
2054
2055 /*
2056  * Handle dirtying of a page in shared file mapping on a write fault.
2057  *
2058  * The function expects the page to be locked and unlocks it.
2059  */
2060 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2061                                     struct page *page)
2062 {
2063         struct address_space *mapping;
2064         bool dirtied;
2065         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2066
2067         dirtied = set_page_dirty(page);
2068         VM_BUG_ON_PAGE(PageAnon(page), page);
2069         /*
2070          * Take a local copy of the address_space - page.mapping may be zeroed
2071          * by truncate after unlock_page().   The address_space itself remains
2072          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2073          * release semantics to prevent the compiler from undoing this copying.
2074          */
2075         mapping = page_rmapping(page);
2076         unlock_page(page);
2077
2078         if ((dirtied || page_mkwrite) && mapping) {
2079                 /*
2080                  * Some device drivers do not set page.mapping
2081                  * but still dirty their pages
2082                  */
2083                 balance_dirty_pages_ratelimited(mapping);
2084         }
2085
2086         if (!page_mkwrite)
2087                 file_update_time(vma->vm_file);
2088 }
2089
2090 /*
2091  * Handle write page faults for pages that can be reused in the current vma
2092  *
2093  * This can happen either due to the mapping being with the VM_SHARED flag,
2094  * or due to us being the last reference standing to the page. In either
2095  * case, all we need to do here is to mark the page as writable and update
2096  * any related book-keeping.
2097  */
2098 static inline void wp_page_reuse(struct vm_fault *vmf)
2099         __releases(vmf->ptl)
2100 {
2101         struct vm_area_struct *vma = vmf->vma;
2102         struct page *page = vmf->page;
2103         pte_t entry;
2104         /*
2105          * Clear the pages cpupid information as the existing
2106          * information potentially belongs to a now completely
2107          * unrelated process.
2108          */
2109         if (page)
2110                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2111
2112         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2113         entry = pte_mkyoung(vmf->orig_pte);
2114         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2115         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2116                 update_mmu_cache(vma, vmf->address, vmf->pte);
2117         pte_unmap_unlock(vmf->pte, vmf->ptl);
2118 }
2119
2120 /*
2121  * Handle the case of a page which we actually need to copy to a new page.
2122  *
2123  * Called with mmap_sem locked and the old page referenced, but
2124  * without the ptl held.
2125  *
2126  * High level logic flow:
2127  *
2128  * - Allocate a page, copy the content of the old page to the new one.
2129  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2130  * - Take the PTL. If the pte changed, bail out and release the allocated page
2131  * - If the pte is still the way we remember it, update the page table and all
2132  *   relevant references. This includes dropping the reference the page-table
2133  *   held to the old page, as well as updating the rmap.
2134  * - In any case, unlock the PTL and drop the reference we took to the old page.
2135  */
2136 static int wp_page_copy(struct vm_fault *vmf)
2137 {
2138         struct vm_area_struct *vma = vmf->vma;
2139         struct mm_struct *mm = vma->vm_mm;
2140         struct page *old_page = vmf->page;
2141         struct page *new_page = NULL;
2142         pte_t entry;
2143         int page_copied = 0;
2144         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2145         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2146         struct mem_cgroup *memcg;
2147
2148         if (unlikely(anon_vma_prepare(vma)))
2149                 goto oom;
2150
2151         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2152                 new_page = alloc_zeroed_user_highpage_movable(vma,
2153                                                               vmf->address);
2154                 if (!new_page)
2155                         goto oom;
2156         } else {
2157                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2158                                 vmf->address);
2159                 if (!new_page)
2160                         goto oom;
2161                 cow_user_page(new_page, old_page, vmf->address, vma);
2162         }
2163
2164         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2165                 goto oom_free_new;
2166
2167         __SetPageUptodate(new_page);
2168
2169         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2170
2171         /*
2172          * Re-check the pte - we dropped the lock
2173          */
2174         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2175         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2176                 if (old_page) {
2177                         if (!PageAnon(old_page)) {
2178                                 dec_mm_counter_fast(mm,
2179                                                 mm_counter_file(old_page));
2180                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2181                         }
2182                 } else {
2183                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2184                 }
2185                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2186                 entry = mk_pte(new_page, vma->vm_page_prot);
2187                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2188                 /*
2189                  * Clear the pte entry and flush it first, before updating the
2190                  * pte with the new entry. This will avoid a race condition
2191                  * seen in the presence of one thread doing SMC and another
2192                  * thread doing COW.
2193                  */
2194                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2195                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2196                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2197                 lru_cache_add_active_or_unevictable(new_page, vma);
2198                 /*
2199                  * We call the notify macro here because, when using secondary
2200                  * mmu page tables (such as kvm shadow page tables), we want the
2201                  * new page to be mapped directly into the secondary page table.
2202                  */
2203                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2204                 update_mmu_cache(vma, vmf->address, vmf->pte);
2205                 if (old_page) {
2206                         /*
2207                          * Only after switching the pte to the new page may
2208                          * we remove the mapcount here. Otherwise another
2209                          * process may come and find the rmap count decremented
2210                          * before the pte is switched to the new page, and
2211                          * "reuse" the old page writing into it while our pte
2212                          * here still points into it and can be read by other
2213                          * threads.
2214                          *
2215                          * The critical issue is to order this
2216                          * page_remove_rmap with the ptp_clear_flush above.
2217                          * Those stores are ordered by (if nothing else,)
2218                          * the barrier present in the atomic_add_negative
2219                          * in page_remove_rmap.
2220                          *
2221                          * Then the TLB flush in ptep_clear_flush ensures that
2222                          * no process can access the old page before the
2223                          * decremented mapcount is visible. And the old page
2224                          * cannot be reused until after the decremented
2225                          * mapcount is visible. So transitively, TLBs to
2226                          * old page will be flushed before it can be reused.
2227                          */
2228                         page_remove_rmap(old_page, false);
2229                 }
2230
2231                 /* Free the old page.. */
2232                 new_page = old_page;
2233                 page_copied = 1;
2234         } else {
2235                 mem_cgroup_cancel_charge(new_page, memcg, false);
2236         }
2237
2238         if (new_page)
2239                 put_page(new_page);
2240
2241         pte_unmap_unlock(vmf->pte, vmf->ptl);
2242         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2243         if (old_page) {
2244                 /*
2245                  * Don't let another task, with possibly unlocked vma,
2246                  * keep the mlocked page.
2247                  */
2248                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2249                         lock_page(old_page);    /* LRU manipulation */
2250                         if (PageMlocked(old_page))
2251                                 munlock_vma_page(old_page);
2252                         unlock_page(old_page);
2253                 }
2254                 put_page(old_page);
2255         }
2256         return page_copied ? VM_FAULT_WRITE : 0;
2257 oom_free_new:
2258         put_page(new_page);
2259 oom:
2260         if (old_page)
2261                 put_page(old_page);
2262         return VM_FAULT_OOM;
2263 }
2264
2265 /**
2266  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2267  *                        writeable once the page is prepared
2268  *
2269  * @vmf: structure describing the fault
2270  *
2271  * This function handles all that is needed to finish a write page fault in a
2272  * shared mapping due to PTE being read-only once the mapped page is prepared.
2273  * It handles locking of PTE and modifying it. The function returns
2274  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2275  * lock.
2276  *
2277  * The function expects the page to be locked or other protection against
2278  * concurrent faults / writeback (such as DAX radix tree locks).
2279  */
2280 int finish_mkwrite_fault(struct vm_fault *vmf)
2281 {
2282         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2283         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2284                                        &vmf->ptl);
2285         /*
2286          * We might have raced with another page fault while we released the
2287          * pte_offset_map_lock.
2288          */
2289         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2290                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2291                 return VM_FAULT_NOPAGE;
2292         }
2293         wp_page_reuse(vmf);
2294         return 0;
2295 }
2296
2297 /*
2298  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2299  * mapping
2300  */
2301 static int wp_pfn_shared(struct vm_fault *vmf)
2302 {
2303         struct vm_area_struct *vma = vmf->vma;
2304
2305         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2306                 int ret;
2307
2308                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2309                 vmf->flags |= FAULT_FLAG_MKWRITE;
2310                 ret = vma->vm_ops->pfn_mkwrite(vma, vmf);
2311                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2312                         return ret;
2313                 return finish_mkwrite_fault(vmf);
2314         }
2315         wp_page_reuse(vmf);
2316         return VM_FAULT_WRITE;
2317 }
2318
2319 static int wp_page_shared(struct vm_fault *vmf)
2320         __releases(vmf->ptl)
2321 {
2322         struct vm_area_struct *vma = vmf->vma;
2323
2324         get_page(vmf->page);
2325
2326         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2327                 int tmp;
2328
2329                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2330                 tmp = do_page_mkwrite(vmf);
2331                 if (unlikely(!tmp || (tmp &
2332                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2333                         put_page(vmf->page);
2334                         return tmp;
2335                 }
2336                 tmp = finish_mkwrite_fault(vmf);
2337                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2338                         unlock_page(vmf->page);
2339                         put_page(vmf->page);
2340                         return tmp;
2341                 }
2342         } else {
2343                 wp_page_reuse(vmf);
2344                 lock_page(vmf->page);
2345         }
2346         fault_dirty_shared_page(vma, vmf->page);
2347         put_page(vmf->page);
2348
2349         return VM_FAULT_WRITE;
2350 }
2351
2352 /*
2353  * This routine handles present pages, when users try to write
2354  * to a shared page. It is done by copying the page to a new address
2355  * and decrementing the shared-page counter for the old page.
2356  *
2357  * Note that this routine assumes that the protection checks have been
2358  * done by the caller (the low-level page fault routine in most cases).
2359  * Thus we can safely just mark it writable once we've done any necessary
2360  * COW.
2361  *
2362  * We also mark the page dirty at this point even though the page will
2363  * change only once the write actually happens. This avoids a few races,
2364  * and potentially makes it more efficient.
2365  *
2366  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367  * but allow concurrent faults), with pte both mapped and locked.
2368  * We return with mmap_sem still held, but pte unmapped and unlocked.
2369  */
2370 static int do_wp_page(struct vm_fault *vmf)
2371         __releases(vmf->ptl)
2372 {
2373         struct vm_area_struct *vma = vmf->vma;
2374
2375         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2376         if (!vmf->page) {
2377                 /*
2378                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2379                  * VM_PFNMAP VMA.
2380                  *
2381                  * We should not cow pages in a shared writeable mapping.
2382                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2383                  */
2384                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2385                                      (VM_WRITE|VM_SHARED))
2386                         return wp_pfn_shared(vmf);
2387
2388                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2389                 return wp_page_copy(vmf);
2390         }
2391
2392         /*
2393          * Take out anonymous pages first, anonymous shared vmas are
2394          * not dirty accountable.
2395          */
2396         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2397                 int total_mapcount;
2398                 if (!trylock_page(vmf->page)) {
2399                         get_page(vmf->page);
2400                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2401                         lock_page(vmf->page);
2402                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2403                                         vmf->address, &vmf->ptl);
2404                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2405                                 unlock_page(vmf->page);
2406                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2407                                 put_page(vmf->page);
2408                                 return 0;
2409                         }
2410                         put_page(vmf->page);
2411                 }
2412                 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2413                         if (total_mapcount == 1) {
2414                                 /*
2415                                  * The page is all ours. Move it to
2416                                  * our anon_vma so the rmap code will
2417                                  * not search our parent or siblings.
2418                                  * Protected against the rmap code by
2419                                  * the page lock.
2420                                  */
2421                                 page_move_anon_rmap(vmf->page, vma);
2422                         }
2423                         unlock_page(vmf->page);
2424                         wp_page_reuse(vmf);
2425                         return VM_FAULT_WRITE;
2426                 }
2427                 unlock_page(vmf->page);
2428         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2429                                         (VM_WRITE|VM_SHARED))) {
2430                 return wp_page_shared(vmf);
2431         }
2432
2433         /*
2434          * Ok, we need to copy. Oh, well..
2435          */
2436         get_page(vmf->page);
2437
2438         pte_unmap_unlock(vmf->pte, vmf->ptl);
2439         return wp_page_copy(vmf);
2440 }
2441
2442 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2443                 unsigned long start_addr, unsigned long end_addr,
2444                 struct zap_details *details)
2445 {
2446         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2447 }
2448
2449 static inline void unmap_mapping_range_tree(struct rb_root *root,
2450                                             struct zap_details *details)
2451 {
2452         struct vm_area_struct *vma;
2453         pgoff_t vba, vea, zba, zea;
2454
2455         vma_interval_tree_foreach(vma, root,
2456                         details->first_index, details->last_index) {
2457
2458                 vba = vma->vm_pgoff;
2459                 vea = vba + vma_pages(vma) - 1;
2460                 zba = details->first_index;
2461                 if (zba < vba)
2462                         zba = vba;
2463                 zea = details->last_index;
2464                 if (zea > vea)
2465                         zea = vea;
2466
2467                 unmap_mapping_range_vma(vma,
2468                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2469                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2470                                 details);
2471         }
2472 }
2473
2474 /**
2475  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2476  * address_space corresponding to the specified page range in the underlying
2477  * file.
2478  *
2479  * @mapping: the address space containing mmaps to be unmapped.
2480  * @holebegin: byte in first page to unmap, relative to the start of
2481  * the underlying file.  This will be rounded down to a PAGE_SIZE
2482  * boundary.  Note that this is different from truncate_pagecache(), which
2483  * must keep the partial page.  In contrast, we must get rid of
2484  * partial pages.
2485  * @holelen: size of prospective hole in bytes.  This will be rounded
2486  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2487  * end of the file.
2488  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2489  * but 0 when invalidating pagecache, don't throw away private data.
2490  */
2491 void unmap_mapping_range(struct address_space *mapping,
2492                 loff_t const holebegin, loff_t const holelen, int even_cows)
2493 {
2494         struct zap_details details = { };
2495         pgoff_t hba = holebegin >> PAGE_SHIFT;
2496         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2497
2498         /* Check for overflow. */
2499         if (sizeof(holelen) > sizeof(hlen)) {
2500                 long long holeend =
2501                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2502                 if (holeend & ~(long long)ULONG_MAX)
2503                         hlen = ULONG_MAX - hba + 1;
2504         }
2505
2506         details.check_mapping = even_cows? NULL: mapping;
2507         details.first_index = hba;
2508         details.last_index = hba + hlen - 1;
2509         if (details.last_index < details.first_index)
2510                 details.last_index = ULONG_MAX;
2511
2512         i_mmap_lock_write(mapping);
2513         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2514                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2515         i_mmap_unlock_write(mapping);
2516 }
2517 EXPORT_SYMBOL(unmap_mapping_range);
2518
2519 /*
2520  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521  * but allow concurrent faults), and pte mapped but not yet locked.
2522  * We return with pte unmapped and unlocked.
2523  *
2524  * We return with the mmap_sem locked or unlocked in the same cases
2525  * as does filemap_fault().
2526  */
2527 int do_swap_page(struct vm_fault *vmf)
2528 {
2529         struct vm_area_struct *vma = vmf->vma;
2530         struct page *page, *swapcache;
2531         struct mem_cgroup *memcg;
2532         swp_entry_t entry;
2533         pte_t pte;
2534         int locked;
2535         int exclusive = 0;
2536         int ret = 0;
2537
2538         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2539                 goto out;
2540
2541         entry = pte_to_swp_entry(vmf->orig_pte);
2542         if (unlikely(non_swap_entry(entry))) {
2543                 if (is_migration_entry(entry)) {
2544                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2545                                              vmf->address);
2546                 } else if (is_hwpoison_entry(entry)) {
2547                         ret = VM_FAULT_HWPOISON;
2548                 } else {
2549                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2550                         ret = VM_FAULT_SIGBUS;
2551                 }
2552                 goto out;
2553         }
2554         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2555         page = lookup_swap_cache(entry);
2556         if (!page) {
2557                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2558                                         vmf->address);
2559                 if (!page) {
2560                         /*
2561                          * Back out if somebody else faulted in this pte
2562                          * while we released the pte lock.
2563                          */
2564                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2565                                         vmf->address, &vmf->ptl);
2566                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2567                                 ret = VM_FAULT_OOM;
2568                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2569                         goto unlock;
2570                 }
2571
2572                 /* Had to read the page from swap area: Major fault */
2573                 ret = VM_FAULT_MAJOR;
2574                 count_vm_event(PGMAJFAULT);
2575                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2576         } else if (PageHWPoison(page)) {
2577                 /*
2578                  * hwpoisoned dirty swapcache pages are kept for killing
2579                  * owner processes (which may be unknown at hwpoison time)
2580                  */
2581                 ret = VM_FAULT_HWPOISON;
2582                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2583                 swapcache = page;
2584                 goto out_release;
2585         }
2586
2587         swapcache = page;
2588         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2589
2590         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591         if (!locked) {
2592                 ret |= VM_FAULT_RETRY;
2593                 goto out_release;
2594         }
2595
2596         /*
2597          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2598          * release the swapcache from under us.  The page pin, and pte_same
2599          * test below, are not enough to exclude that.  Even if it is still
2600          * swapcache, we need to check that the page's swap has not changed.
2601          */
2602         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2603                 goto out_page;
2604
2605         page = ksm_might_need_to_copy(page, vma, vmf->address);
2606         if (unlikely(!page)) {
2607                 ret = VM_FAULT_OOM;
2608                 page = swapcache;
2609                 goto out_page;
2610         }
2611
2612         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2613                                 &memcg, false)) {
2614                 ret = VM_FAULT_OOM;
2615                 goto out_page;
2616         }
2617
2618         /*
2619          * Back out if somebody else already faulted in this pte.
2620          */
2621         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2622                         &vmf->ptl);
2623         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2624                 goto out_nomap;
2625
2626         if (unlikely(!PageUptodate(page))) {
2627                 ret = VM_FAULT_SIGBUS;
2628                 goto out_nomap;
2629         }
2630
2631         /*
2632          * The page isn't present yet, go ahead with the fault.
2633          *
2634          * Be careful about the sequence of operations here.
2635          * To get its accounting right, reuse_swap_page() must be called
2636          * while the page is counted on swap but not yet in mapcount i.e.
2637          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2638          * must be called after the swap_free(), or it will never succeed.
2639          */
2640
2641         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2642         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2643         pte = mk_pte(page, vma->vm_page_prot);
2644         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2645                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2646                 vmf->flags &= ~FAULT_FLAG_WRITE;
2647                 ret |= VM_FAULT_WRITE;
2648                 exclusive = RMAP_EXCLUSIVE;
2649         }
2650         flush_icache_page(vma, page);
2651         if (pte_swp_soft_dirty(vmf->orig_pte))
2652                 pte = pte_mksoft_dirty(pte);
2653         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2654         vmf->orig_pte = pte;
2655         if (page == swapcache) {
2656                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2657                 mem_cgroup_commit_charge(page, memcg, true, false);
2658                 activate_page(page);
2659         } else { /* ksm created a completely new copy */
2660                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2661                 mem_cgroup_commit_charge(page, memcg, false, false);
2662                 lru_cache_add_active_or_unevictable(page, vma);
2663         }
2664
2665         swap_free(entry);
2666         if (mem_cgroup_swap_full(page) ||
2667             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2668                 try_to_free_swap(page);
2669         unlock_page(page);
2670         if (page != swapcache) {
2671                 /*
2672                  * Hold the lock to avoid the swap entry to be reused
2673                  * until we take the PT lock for the pte_same() check
2674                  * (to avoid false positives from pte_same). For
2675                  * further safety release the lock after the swap_free
2676                  * so that the swap count won't change under a
2677                  * parallel locked swapcache.
2678                  */
2679                 unlock_page(swapcache);
2680                 put_page(swapcache);
2681         }
2682
2683         if (vmf->flags & FAULT_FLAG_WRITE) {
2684                 ret |= do_wp_page(vmf);
2685                 if (ret & VM_FAULT_ERROR)
2686                         ret &= VM_FAULT_ERROR;
2687                 goto out;
2688         }
2689
2690         /* No need to invalidate - it was non-present before */
2691         update_mmu_cache(vma, vmf->address, vmf->pte);
2692 unlock:
2693         pte_unmap_unlock(vmf->pte, vmf->ptl);
2694 out:
2695         return ret;
2696 out_nomap:
2697         mem_cgroup_cancel_charge(page, memcg, false);
2698         pte_unmap_unlock(vmf->pte, vmf->ptl);
2699 out_page:
2700         unlock_page(page);
2701 out_release:
2702         put_page(page);
2703         if (page != swapcache) {
2704                 unlock_page(swapcache);
2705                 put_page(swapcache);
2706         }
2707         return ret;
2708 }
2709
2710 /*
2711  * This is like a special single-page "expand_{down|up}wards()",
2712  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2713  * doesn't hit another vma.
2714  */
2715 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2716 {
2717         address &= PAGE_MASK;
2718         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2719                 struct vm_area_struct *prev = vma->vm_prev;
2720
2721                 /*
2722                  * Is there a mapping abutting this one below?
2723                  *
2724                  * That's only ok if it's the same stack mapping
2725                  * that has gotten split..
2726                  */
2727                 if (prev && prev->vm_end == address)
2728                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2729
2730                 return expand_downwards(vma, address - PAGE_SIZE);
2731         }
2732         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2733                 struct vm_area_struct *next = vma->vm_next;
2734
2735                 /* As VM_GROWSDOWN but s/below/above/ */
2736                 if (next && next->vm_start == address + PAGE_SIZE)
2737                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2738
2739                 return expand_upwards(vma, address + PAGE_SIZE);
2740         }
2741         return 0;
2742 }
2743
2744 /*
2745  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746  * but allow concurrent faults), and pte mapped but not yet locked.
2747  * We return with mmap_sem still held, but pte unmapped and unlocked.
2748  */
2749 static int do_anonymous_page(struct vm_fault *vmf)
2750 {
2751         struct vm_area_struct *vma = vmf->vma;
2752         struct mem_cgroup *memcg;
2753         struct page *page;
2754         pte_t entry;
2755
2756         /* File mapping without ->vm_ops ? */
2757         if (vma->vm_flags & VM_SHARED)
2758                 return VM_FAULT_SIGBUS;
2759
2760         /* Check if we need to add a guard page to the stack */
2761         if (check_stack_guard_page(vma, vmf->address) < 0)
2762                 return VM_FAULT_SIGSEGV;
2763
2764         /*
2765          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2766          * pte_offset_map() on pmds where a huge pmd might be created
2767          * from a different thread.
2768          *
2769          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2770          * parallel threads are excluded by other means.
2771          *
2772          * Here we only have down_read(mmap_sem).
2773          */
2774         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2775                 return VM_FAULT_OOM;
2776
2777         /* See the comment in pte_alloc_one_map() */
2778         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2779                 return 0;
2780
2781         /* Use the zero-page for reads */
2782         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2783                         !mm_forbids_zeropage(vma->vm_mm)) {
2784                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2785                                                 vma->vm_page_prot));
2786                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2787                                 vmf->address, &vmf->ptl);
2788                 if (!pte_none(*vmf->pte))
2789                         goto unlock;
2790                 /* Deliver the page fault to userland, check inside PT lock */
2791                 if (userfaultfd_missing(vma)) {
2792                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2793                         return handle_userfault(vmf, VM_UFFD_MISSING);
2794                 }
2795                 goto setpte;
2796         }
2797
2798         /* Allocate our own private page. */
2799         if (unlikely(anon_vma_prepare(vma)))
2800                 goto oom;
2801         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2802         if (!page)
2803                 goto oom;
2804
2805         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2806                 goto oom_free_page;
2807
2808         /*
2809          * The memory barrier inside __SetPageUptodate makes sure that
2810          * preceeding stores to the page contents become visible before
2811          * the set_pte_at() write.
2812          */
2813         __SetPageUptodate(page);
2814
2815         entry = mk_pte(page, vma->vm_page_prot);
2816         if (vma->vm_flags & VM_WRITE)
2817                 entry = pte_mkwrite(pte_mkdirty(entry));
2818
2819         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2820                         &vmf->ptl);
2821         if (!pte_none(*vmf->pte))
2822                 goto release;
2823
2824         /* Deliver the page fault to userland, check inside PT lock */
2825         if (userfaultfd_missing(vma)) {
2826                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2827                 mem_cgroup_cancel_charge(page, memcg, false);
2828                 put_page(page);
2829                 return handle_userfault(vmf, VM_UFFD_MISSING);
2830         }
2831
2832         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2833         page_add_new_anon_rmap(page, vma, vmf->address, false);
2834         mem_cgroup_commit_charge(page, memcg, false, false);
2835         lru_cache_add_active_or_unevictable(page, vma);
2836 setpte:
2837         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2838
2839         /* No need to invalidate - it was non-present before */
2840         update_mmu_cache(vma, vmf->address, vmf->pte);
2841 unlock:
2842         pte_unmap_unlock(vmf->pte, vmf->ptl);
2843         return 0;
2844 release:
2845         mem_cgroup_cancel_charge(page, memcg, false);
2846         put_page(page);
2847         goto unlock;
2848 oom_free_page:
2849         put_page(page);
2850 oom:
2851         return VM_FAULT_OOM;
2852 }
2853
2854 /*
2855  * The mmap_sem must have been held on entry, and may have been
2856  * released depending on flags and vma->vm_ops->fault() return value.
2857  * See filemap_fault() and __lock_page_retry().
2858  */
2859 static int __do_fault(struct vm_fault *vmf)
2860 {
2861         struct vm_area_struct *vma = vmf->vma;
2862         int ret;
2863
2864         ret = vma->vm_ops->fault(vma, vmf);
2865         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2866                             VM_FAULT_DONE_COW)))
2867                 return ret;
2868
2869         if (unlikely(PageHWPoison(vmf->page))) {
2870                 if (ret & VM_FAULT_LOCKED)
2871                         unlock_page(vmf->page);
2872                 put_page(vmf->page);
2873                 vmf->page = NULL;
2874                 return VM_FAULT_HWPOISON;
2875         }
2876
2877         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2878                 lock_page(vmf->page);
2879         else
2880                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2881
2882         return ret;
2883 }
2884
2885 static int pte_alloc_one_map(struct vm_fault *vmf)
2886 {
2887         struct vm_area_struct *vma = vmf->vma;
2888
2889         if (!pmd_none(*vmf->pmd))
2890                 goto map_pte;
2891         if (vmf->prealloc_pte) {
2892                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2893                 if (unlikely(!pmd_none(*vmf->pmd))) {
2894                         spin_unlock(vmf->ptl);
2895                         goto map_pte;
2896                 }
2897
2898                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2899                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2900                 spin_unlock(vmf->ptl);
2901                 vmf->prealloc_pte = 0;
2902         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2903                 return VM_FAULT_OOM;
2904         }
2905 map_pte:
2906         /*
2907          * If a huge pmd materialized under us just retry later.  Use
2908          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2909          * didn't become pmd_trans_huge under us and then back to pmd_none, as
2910          * a result of MADV_DONTNEED running immediately after a huge pmd fault
2911          * in a different thread of this mm, in turn leading to a misleading
2912          * pmd_trans_huge() retval.  All we have to ensure is that it is a
2913          * regular pmd that we can walk with pte_offset_map() and we can do that
2914          * through an atomic read in C, which is what pmd_trans_unstable()
2915          * provides.
2916          */
2917         if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2918                 return VM_FAULT_NOPAGE;
2919
2920         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2921                         &vmf->ptl);
2922         return 0;
2923 }
2924
2925 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2926
2927 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2928 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2929                 unsigned long haddr)
2930 {
2931         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2932                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2933                 return false;
2934         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2935                 return false;
2936         return true;
2937 }
2938
2939 static void deposit_prealloc_pte(struct vm_fault *vmf)
2940 {
2941         struct vm_area_struct *vma = vmf->vma;
2942
2943         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2944         /*
2945          * We are going to consume the prealloc table,
2946          * count that as nr_ptes.
2947          */
2948         atomic_long_inc(&vma->vm_mm->nr_ptes);
2949         vmf->prealloc_pte = 0;
2950 }
2951
2952 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2953 {
2954         struct vm_area_struct *vma = vmf->vma;
2955         bool write = vmf->flags & FAULT_FLAG_WRITE;
2956         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2957         pmd_t entry;
2958         int i, ret;
2959
2960         if (!transhuge_vma_suitable(vma, haddr))
2961                 return VM_FAULT_FALLBACK;
2962
2963         ret = VM_FAULT_FALLBACK;
2964         page = compound_head(page);
2965
2966         /*
2967          * Archs like ppc64 need additonal space to store information
2968          * related to pte entry. Use the preallocated table for that.
2969          */
2970         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2971                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2972                 if (!vmf->prealloc_pte)
2973                         return VM_FAULT_OOM;
2974                 smp_wmb(); /* See comment in __pte_alloc() */
2975         }
2976
2977         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2978         if (unlikely(!pmd_none(*vmf->pmd)))
2979                 goto out;
2980
2981         for (i = 0; i < HPAGE_PMD_NR; i++)
2982                 flush_icache_page(vma, page + i);
2983
2984         entry = mk_huge_pmd(page, vma->vm_page_prot);
2985         if (write)
2986                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2987
2988         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2989         page_add_file_rmap(page, true);
2990         /*
2991          * deposit and withdraw with pmd lock held
2992          */
2993         if (arch_needs_pgtable_deposit())
2994                 deposit_prealloc_pte(vmf);
2995
2996         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
2997
2998         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
2999
3000         /* fault is handled */
3001         ret = 0;
3002         count_vm_event(THP_FILE_MAPPED);
3003 out:
3004         spin_unlock(vmf->ptl);
3005         return ret;
3006 }
3007 #else
3008 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3009 {
3010         BUILD_BUG();
3011         return 0;
3012 }
3013 #endif
3014
3015 /**
3016  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3017  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3018  *
3019  * @vmf: fault environment
3020  * @memcg: memcg to charge page (only for private mappings)
3021  * @page: page to map
3022  *
3023  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3024  * return.
3025  *
3026  * Target users are page handler itself and implementations of
3027  * vm_ops->map_pages.
3028  */
3029 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3030                 struct page *page)
3031 {
3032         struct vm_area_struct *vma = vmf->vma;
3033         bool write = vmf->flags & FAULT_FLAG_WRITE;
3034         pte_t entry;
3035         int ret;
3036
3037         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3038                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3039                 /* THP on COW? */
3040                 VM_BUG_ON_PAGE(memcg, page);
3041
3042                 ret = do_set_pmd(vmf, page);
3043                 if (ret != VM_FAULT_FALLBACK)
3044                         return ret;
3045         }
3046
3047         if (!vmf->pte) {
3048                 ret = pte_alloc_one_map(vmf);
3049                 if (ret)
3050                         return ret;
3051         }
3052
3053         /* Re-check under ptl */
3054         if (unlikely(!pte_none(*vmf->pte)))
3055                 return VM_FAULT_NOPAGE;
3056
3057         flush_icache_page(vma, page);
3058         entry = mk_pte(page, vma->vm_page_prot);
3059         if (write)
3060                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3061         /* copy-on-write page */
3062         if (write && !(vma->vm_flags & VM_SHARED)) {
3063                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3064                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3065                 mem_cgroup_commit_charge(page, memcg, false, false);
3066                 lru_cache_add_active_or_unevictable(page, vma);
3067         } else {
3068                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3069                 page_add_file_rmap(page, false);
3070         }
3071         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3072
3073         /* no need to invalidate: a not-present page won't be cached */
3074         update_mmu_cache(vma, vmf->address, vmf->pte);
3075
3076         return 0;
3077 }
3078
3079
3080 /**
3081  * finish_fault - finish page fault once we have prepared the page to fault
3082  *
3083  * @vmf: structure describing the fault
3084  *
3085  * This function handles all that is needed to finish a page fault once the
3086  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3087  * given page, adds reverse page mapping, handles memcg charges and LRU
3088  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3089  * error.
3090  *
3091  * The function expects the page to be locked and on success it consumes a
3092  * reference of a page being mapped (for the PTE which maps it).
3093  */
3094 int finish_fault(struct vm_fault *vmf)
3095 {
3096         struct page *page;
3097         int ret;
3098
3099         /* Did we COW the page? */
3100         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3101             !(vmf->vma->vm_flags & VM_SHARED))
3102                 page = vmf->cow_page;
3103         else
3104                 page = vmf->page;
3105         ret = alloc_set_pte(vmf, vmf->memcg, page);
3106         if (vmf->pte)
3107                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3108         return ret;
3109 }
3110
3111 static unsigned long fault_around_bytes __read_mostly =
3112         rounddown_pow_of_two(65536);
3113
3114 #ifdef CONFIG_DEBUG_FS
3115 static int fault_around_bytes_get(void *data, u64 *val)
3116 {
3117         *val = fault_around_bytes;
3118         return 0;
3119 }
3120
3121 /*
3122  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3123  * rounded down to nearest page order. It's what do_fault_around() expects to
3124  * see.
3125  */
3126 static int fault_around_bytes_set(void *data, u64 val)
3127 {
3128         if (val / PAGE_SIZE > PTRS_PER_PTE)
3129                 return -EINVAL;
3130         if (val > PAGE_SIZE)
3131                 fault_around_bytes = rounddown_pow_of_two(val);
3132         else
3133                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3134         return 0;
3135 }
3136 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3137                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3138
3139 static int __init fault_around_debugfs(void)
3140 {
3141         void *ret;
3142
3143         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3144                         &fault_around_bytes_fops);
3145         if (!ret)
3146                 pr_warn("Failed to create fault_around_bytes in debugfs");
3147         return 0;
3148 }
3149 late_initcall(fault_around_debugfs);
3150 #endif
3151
3152 /*
3153  * do_fault_around() tries to map few pages around the fault address. The hope
3154  * is that the pages will be needed soon and this will lower the number of
3155  * faults to handle.
3156  *
3157  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3158  * not ready to be mapped: not up-to-date, locked, etc.
3159  *
3160  * This function is called with the page table lock taken. In the split ptlock
3161  * case the page table lock only protects only those entries which belong to
3162  * the page table corresponding to the fault address.
3163  *
3164  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3165  * only once.
3166  *
3167  * fault_around_pages() defines how many pages we'll try to map.
3168  * do_fault_around() expects it to return a power of two less than or equal to
3169  * PTRS_PER_PTE.
3170  *
3171  * The virtual address of the area that we map is naturally aligned to the
3172  * fault_around_pages() value (and therefore to page order).  This way it's
3173  * easier to guarantee that we don't cross page table boundaries.
3174  */
3175 static int do_fault_around(struct vm_fault *vmf)
3176 {
3177         unsigned long address = vmf->address, nr_pages, mask;
3178         pgoff_t start_pgoff = vmf->pgoff;
3179         pgoff_t end_pgoff;
3180         int off, ret = 0;
3181
3182         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3183         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3184
3185         vmf->address = max(address & mask, vmf->vma->vm_start);
3186         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3187         start_pgoff -= off;
3188
3189         /*
3190          *  end_pgoff is either end of page table or end of vma
3191          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3192          */
3193         end_pgoff = start_pgoff -
3194                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3195                 PTRS_PER_PTE - 1;
3196         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3197                         start_pgoff + nr_pages - 1);
3198
3199         if (pmd_none(*vmf->pmd)) {
3200                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3201                                                   vmf->address);
3202                 if (!vmf->prealloc_pte)
3203                         goto out;
3204                 smp_wmb(); /* See comment in __pte_alloc() */
3205         }
3206
3207         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3208
3209         /* Huge page is mapped? Page fault is solved */
3210         if (pmd_trans_huge(*vmf->pmd)) {
3211                 ret = VM_FAULT_NOPAGE;
3212                 goto out;
3213         }
3214
3215         /* ->map_pages() haven't done anything useful. Cold page cache? */
3216         if (!vmf->pte)
3217                 goto out;
3218
3219         /* check if the page fault is solved */
3220         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3221         if (!pte_none(*vmf->pte))
3222                 ret = VM_FAULT_NOPAGE;
3223         pte_unmap_unlock(vmf->pte, vmf->ptl);
3224 out:
3225         vmf->address = address;
3226         vmf->pte = NULL;
3227         return ret;
3228 }
3229
3230 static int do_read_fault(struct vm_fault *vmf)
3231 {
3232         struct vm_area_struct *vma = vmf->vma;
3233         int ret = 0;
3234
3235         /*
3236          * Let's call ->map_pages() first and use ->fault() as fallback
3237          * if page by the offset is not ready to be mapped (cold cache or
3238          * something).
3239          */
3240         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3241                 ret = do_fault_around(vmf);
3242                 if (ret)
3243                         return ret;
3244         }
3245
3246         ret = __do_fault(vmf);
3247         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3248                 return ret;
3249
3250         ret |= finish_fault(vmf);
3251         unlock_page(vmf->page);
3252         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3253                 put_page(vmf->page);
3254         return ret;
3255 }
3256
3257 static int do_cow_fault(struct vm_fault *vmf)
3258 {
3259         struct vm_area_struct *vma = vmf->vma;
3260         int ret;
3261
3262         if (unlikely(anon_vma_prepare(vma)))
3263                 return VM_FAULT_OOM;
3264
3265         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3266         if (!vmf->cow_page)
3267                 return VM_FAULT_OOM;
3268
3269         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3270                                 &vmf->memcg, false)) {
3271                 put_page(vmf->cow_page);
3272                 return VM_FAULT_OOM;
3273         }
3274
3275         ret = __do_fault(vmf);
3276         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3277                 goto uncharge_out;
3278         if (ret & VM_FAULT_DONE_COW)
3279                 return ret;
3280
3281         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3282         __SetPageUptodate(vmf->cow_page);
3283
3284         ret |= finish_fault(vmf);
3285         unlock_page(vmf->page);
3286         put_page(vmf->page);
3287         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3288                 goto uncharge_out;
3289         return ret;
3290 uncharge_out:
3291         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3292         put_page(vmf->cow_page);
3293         return ret;
3294 }
3295
3296 static int do_shared_fault(struct vm_fault *vmf)
3297 {
3298         struct vm_area_struct *vma = vmf->vma;
3299         int ret, tmp;
3300
3301         ret = __do_fault(vmf);
3302         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3303                 return ret;
3304
3305         /*
3306          * Check if the backing address space wants to know that the page is
3307          * about to become writable
3308          */
3309         if (vma->vm_ops->page_mkwrite) {
3310                 unlock_page(vmf->page);
3311                 tmp = do_page_mkwrite(vmf);
3312                 if (unlikely(!tmp ||
3313                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3314                         put_page(vmf->page);
3315                         return tmp;
3316                 }
3317         }
3318
3319         ret |= finish_fault(vmf);
3320         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3321                                         VM_FAULT_RETRY))) {
3322                 unlock_page(vmf->page);
3323                 put_page(vmf->page);
3324                 return ret;
3325         }
3326
3327         fault_dirty_shared_page(vma, vmf->page);
3328         return ret;
3329 }
3330
3331 /*
3332  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3333  * but allow concurrent faults).
3334  * The mmap_sem may have been released depending on flags and our
3335  * return value.  See filemap_fault() and __lock_page_or_retry().
3336  */
3337 static int do_fault(struct vm_fault *vmf)
3338 {
3339         struct vm_area_struct *vma = vmf->vma;
3340         int ret;
3341
3342         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3343         if (!vma->vm_ops->fault)
3344                 ret = VM_FAULT_SIGBUS;
3345         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3346                 ret = do_read_fault(vmf);
3347         else if (!(vma->vm_flags & VM_SHARED))
3348                 ret = do_cow_fault(vmf);
3349         else
3350                 ret = do_shared_fault(vmf);
3351
3352         /* preallocated pagetable is unused: free it */
3353         if (vmf->prealloc_pte) {
3354                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3355                 vmf->prealloc_pte = 0;
3356         }
3357         return ret;
3358 }
3359
3360 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3361                                 unsigned long addr, int page_nid,
3362                                 int *flags)
3363 {
3364         get_page(page);
3365
3366         count_vm_numa_event(NUMA_HINT_FAULTS);
3367         if (page_nid == numa_node_id()) {
3368                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3369                 *flags |= TNF_FAULT_LOCAL;
3370         }
3371
3372         return mpol_misplaced(page, vma, addr);
3373 }
3374
3375 static int do_numa_page(struct vm_fault *vmf)
3376 {
3377         struct vm_area_struct *vma = vmf->vma;
3378         struct page *page = NULL;
3379         int page_nid = -1;
3380         int last_cpupid;
3381         int target_nid;
3382         bool migrated = false;
3383         pte_t pte = vmf->orig_pte;
3384         bool was_writable = pte_write(pte);
3385         int flags = 0;
3386
3387         /*
3388         * The "pte" at this point cannot be used safely without
3389         * validation through pte_unmap_same(). It's of NUMA type but
3390         * the pfn may be screwed if the read is non atomic.
3391         *
3392         * We can safely just do a "set_pte_at()", because the old
3393         * page table entry is not accessible, so there would be no
3394         * concurrent hardware modifications to the PTE.
3395         */
3396         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3397         spin_lock(vmf->ptl);
3398         if (unlikely(!pte_same(*vmf->pte, pte))) {
3399                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3400                 goto out;
3401         }
3402
3403         /* Make it present again */
3404         pte = pte_modify(pte, vma->vm_page_prot);
3405         pte = pte_mkyoung(pte);
3406         if (was_writable)
3407                 pte = pte_mkwrite(pte);
3408         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3409         update_mmu_cache(vma, vmf->address, vmf->pte);
3410
3411         page = vm_normal_page(vma, vmf->address, pte);
3412         if (!page) {
3413                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3414                 return 0;
3415         }
3416
3417         /* TODO: handle PTE-mapped THP */
3418         if (PageCompound(page)) {
3419                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3420                 return 0;
3421         }
3422
3423         /*
3424          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3425          * much anyway since they can be in shared cache state. This misses
3426          * the case where a mapping is writable but the process never writes
3427          * to it but pte_write gets cleared during protection updates and
3428          * pte_dirty has unpredictable behaviour between PTE scan updates,
3429          * background writeback, dirty balancing and application behaviour.
3430          */
3431         if (!pte_write(pte))
3432                 flags |= TNF_NO_GROUP;
3433
3434         /*
3435          * Flag if the page is shared between multiple address spaces. This
3436          * is later used when determining whether to group tasks together
3437          */
3438         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3439                 flags |= TNF_SHARED;
3440
3441         last_cpupid = page_cpupid_last(page);
3442         page_nid = page_to_nid(page);
3443         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3444                         &flags);
3445         pte_unmap_unlock(vmf->pte, vmf->ptl);
3446         if (target_nid == -1) {
3447                 put_page(page);
3448                 goto out;
3449         }
3450
3451         /* Migrate to the requested node */
3452         migrated = migrate_misplaced_page(page, vma, target_nid);
3453         if (migrated) {
3454                 page_nid = target_nid;
3455                 flags |= TNF_MIGRATED;
3456         } else
3457                 flags |= TNF_MIGRATE_FAIL;
3458
3459 out:
3460         if (page_nid != -1)
3461                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3462         return 0;
3463 }
3464
3465 static int create_huge_pmd(struct vm_fault *vmf)
3466 {
3467         if (vma_is_anonymous(vmf->vma))
3468                 return do_huge_pmd_anonymous_page(vmf);
3469         if (vmf->vma->vm_ops->pmd_fault)
3470                 return vmf->vma->vm_ops->pmd_fault(vmf);
3471         return VM_FAULT_FALLBACK;
3472 }
3473
3474 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3475 {
3476         if (vma_is_anonymous(vmf->vma))
3477                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3478         if (vmf->vma->vm_ops->pmd_fault)
3479                 return vmf->vma->vm_ops->pmd_fault(vmf);
3480
3481         /* COW handled on pte level: split pmd */
3482         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3483         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3484
3485         return VM_FAULT_FALLBACK;
3486 }
3487
3488 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3489 {
3490         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3491 }
3492
3493 /*
3494  * These routines also need to handle stuff like marking pages dirty
3495  * and/or accessed for architectures that don't do it in hardware (most
3496  * RISC architectures).  The early dirtying is also good on the i386.
3497  *
3498  * There is also a hook called "update_mmu_cache()" that architectures
3499  * with external mmu caches can use to update those (ie the Sparc or
3500  * PowerPC hashed page tables that act as extended TLBs).
3501  *
3502  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3503  * concurrent faults).
3504  *
3505  * The mmap_sem may have been released depending on flags and our return value.
3506  * See filemap_fault() and __lock_page_or_retry().
3507  */
3508 static int handle_pte_fault(struct vm_fault *vmf)
3509 {
3510         pte_t entry;
3511
3512         if (unlikely(pmd_none(*vmf->pmd))) {
3513                 /*
3514                  * Leave __pte_alloc() until later: because vm_ops->fault may
3515                  * want to allocate huge page, and if we expose page table
3516                  * for an instant, it will be difficult to retract from
3517                  * concurrent faults and from rmap lookups.
3518                  */
3519                 vmf->pte = NULL;
3520         } else {
3521                 /* See comment in pte_alloc_one_map() */
3522                 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3523                         return 0;
3524                 /*
3525                  * A regular pmd is established and it can't morph into a huge
3526                  * pmd from under us anymore at this point because we hold the
3527                  * mmap_sem read mode and khugepaged takes it in write mode.
3528                  * So now it's safe to run pte_offset_map().
3529                  */
3530                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3531                 vmf->orig_pte = *vmf->pte;
3532
3533                 /*
3534                  * some architectures can have larger ptes than wordsize,
3535                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3536                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3537                  * atomic accesses.  The code below just needs a consistent
3538                  * view for the ifs and we later double check anyway with the
3539                  * ptl lock held. So here a barrier will do.
3540                  */
3541                 barrier();
3542                 if (pte_none(vmf->orig_pte)) {
3543                         pte_unmap(vmf->pte);
3544                         vmf->pte = NULL;
3545                 }
3546         }
3547
3548         if (!vmf->pte) {
3549                 if (vma_is_anonymous(vmf->vma))
3550                         return do_anonymous_page(vmf);
3551                 else
3552                         return do_fault(vmf);
3553         }
3554
3555         if (!pte_present(vmf->orig_pte))
3556                 return do_swap_page(vmf);
3557
3558         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3559                 return do_numa_page(vmf);
3560
3561         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3562         spin_lock(vmf->ptl);
3563         entry = vmf->orig_pte;
3564         if (unlikely(!pte_same(*vmf->pte, entry)))
3565                 goto unlock;
3566         if (vmf->flags & FAULT_FLAG_WRITE) {
3567                 if (!pte_write(entry))
3568                         return do_wp_page(vmf);
3569                 entry = pte_mkdirty(entry);
3570         }
3571         entry = pte_mkyoung(entry);
3572         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3573                                 vmf->flags & FAULT_FLAG_WRITE)) {
3574                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3575         } else {
3576                 /*
3577                  * This is needed only for protection faults but the arch code
3578                  * is not yet telling us if this is a protection fault or not.
3579                  * This still avoids useless tlb flushes for .text page faults
3580                  * with threads.
3581                  */
3582                 if (vmf->flags & FAULT_FLAG_WRITE)
3583                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3584         }
3585 unlock:
3586         pte_unmap_unlock(vmf->pte, vmf->ptl);
3587         return 0;
3588 }
3589
3590 /*
3591  * By the time we get here, we already hold the mm semaphore
3592  *
3593  * The mmap_sem may have been released depending on flags and our
3594  * return value.  See filemap_fault() and __lock_page_or_retry().
3595  */
3596 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3597                 unsigned int flags)
3598 {
3599         struct vm_fault vmf = {
3600                 .vma = vma,
3601                 .address = address & PAGE_MASK,
3602                 .flags = flags,
3603                 .pgoff = linear_page_index(vma, address),
3604                 .gfp_mask = __get_fault_gfp_mask(vma),
3605         };
3606         struct mm_struct *mm = vma->vm_mm;
3607         pgd_t *pgd;
3608         pud_t *pud;
3609
3610         pgd = pgd_offset(mm, address);
3611         pud = pud_alloc(mm, pgd, address);
3612         if (!pud)
3613                 return VM_FAULT_OOM;
3614         vmf.pmd = pmd_alloc(mm, pud, address);
3615         if (!vmf.pmd)
3616                 return VM_FAULT_OOM;
3617         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3618                 int ret = create_huge_pmd(&vmf);
3619                 if (!(ret & VM_FAULT_FALLBACK))
3620                         return ret;
3621         } else {
3622                 pmd_t orig_pmd = *vmf.pmd;
3623                 int ret;
3624
3625                 barrier();
3626                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3627                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3628                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3629
3630                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3631                                         !pmd_write(orig_pmd)) {
3632                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3633                                 if (!(ret & VM_FAULT_FALLBACK))
3634                                         return ret;
3635                         } else {
3636                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3637                                 return 0;
3638                         }
3639                 }
3640         }
3641
3642         return handle_pte_fault(&vmf);
3643 }
3644
3645 /*
3646  * By the time we get here, we already hold the mm semaphore
3647  *
3648  * The mmap_sem may have been released depending on flags and our
3649  * return value.  See filemap_fault() and __lock_page_or_retry().
3650  */
3651 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3652                 unsigned int flags)
3653 {
3654         int ret;
3655
3656         __set_current_state(TASK_RUNNING);
3657
3658         count_vm_event(PGFAULT);
3659         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3660
3661         /* do counter updates before entering really critical section. */
3662         check_sync_rss_stat(current);
3663
3664         /*
3665          * Enable the memcg OOM handling for faults triggered in user
3666          * space.  Kernel faults are handled more gracefully.
3667          */
3668         if (flags & FAULT_FLAG_USER)
3669                 mem_cgroup_oom_enable();
3670
3671         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3672                                             flags & FAULT_FLAG_INSTRUCTION,
3673                                             flags & FAULT_FLAG_REMOTE))
3674                 return VM_FAULT_SIGSEGV;
3675
3676         if (unlikely(is_vm_hugetlb_page(vma)))
3677                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3678         else
3679                 ret = __handle_mm_fault(vma, address, flags);
3680
3681         if (flags & FAULT_FLAG_USER) {
3682                 mem_cgroup_oom_disable();
3683                 /*
3684                  * The task may have entered a memcg OOM situation but
3685                  * if the allocation error was handled gracefully (no
3686                  * VM_FAULT_OOM), there is no need to kill anything.
3687                  * Just clean up the OOM state peacefully.
3688                  */
3689                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3690                         mem_cgroup_oom_synchronize(false);
3691         }
3692
3693         /*
3694          * This mm has been already reaped by the oom reaper and so the
3695          * refault cannot be trusted in general. Anonymous refaults would
3696          * lose data and give a zero page instead e.g. This is especially
3697          * problem for use_mm() because regular tasks will just die and
3698          * the corrupted data will not be visible anywhere while kthread
3699          * will outlive the oom victim and potentially propagate the date
3700          * further.
3701          */
3702         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3703                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3704                 ret = VM_FAULT_SIGBUS;
3705
3706         return ret;
3707 }
3708 EXPORT_SYMBOL_GPL(handle_mm_fault);
3709
3710 #ifndef __PAGETABLE_PUD_FOLDED
3711 /*
3712  * Allocate page upper directory.
3713  * We've already handled the fast-path in-line.
3714  */
3715 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3716 {
3717         pud_t *new = pud_alloc_one(mm, address);
3718         if (!new)
3719                 return -ENOMEM;
3720
3721         smp_wmb(); /* See comment in __pte_alloc */
3722
3723         spin_lock(&mm->page_table_lock);
3724         if (pgd_present(*pgd))          /* Another has populated it */
3725                 pud_free(mm, new);
3726         else
3727                 pgd_populate(mm, pgd, new);
3728         spin_unlock(&mm->page_table_lock);
3729         return 0;
3730 }
3731 #endif /* __PAGETABLE_PUD_FOLDED */
3732
3733 #ifndef __PAGETABLE_PMD_FOLDED
3734 /*
3735  * Allocate page middle directory.
3736  * We've already handled the fast-path in-line.
3737  */
3738 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3739 {
3740         pmd_t *new = pmd_alloc_one(mm, address);
3741         if (!new)
3742                 return -ENOMEM;
3743
3744         smp_wmb(); /* See comment in __pte_alloc */
3745
3746         spin_lock(&mm->page_table_lock);
3747 #ifndef __ARCH_HAS_4LEVEL_HACK
3748         if (!pud_present(*pud)) {
3749                 mm_inc_nr_pmds(mm);
3750                 pud_populate(mm, pud, new);
3751         } else  /* Another has populated it */
3752                 pmd_free(mm, new);
3753 #else
3754         if (!pgd_present(*pud)) {
3755                 mm_inc_nr_pmds(mm);
3756                 pgd_populate(mm, pud, new);
3757         } else /* Another has populated it */
3758                 pmd_free(mm, new);
3759 #endif /* __ARCH_HAS_4LEVEL_HACK */
3760         spin_unlock(&mm->page_table_lock);
3761         return 0;
3762 }
3763 #endif /* __PAGETABLE_PMD_FOLDED */
3764
3765 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3766                 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3767 {
3768         pgd_t *pgd;
3769         pud_t *pud;
3770         pmd_t *pmd;
3771         pte_t *ptep;
3772
3773         pgd = pgd_offset(mm, address);
3774         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3775                 goto out;
3776
3777         pud = pud_offset(pgd, address);
3778         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3779                 goto out;
3780
3781         pmd = pmd_offset(pud, address);
3782         VM_BUG_ON(pmd_trans_huge(*pmd));
3783
3784         if (pmd_huge(*pmd)) {
3785                 if (!pmdpp)
3786                         goto out;
3787
3788                 *ptlp = pmd_lock(mm, pmd);
3789                 if (pmd_huge(*pmd)) {
3790                         *pmdpp = pmd;
3791                         return 0;
3792                 }
3793                 spin_unlock(*ptlp);
3794         }
3795
3796         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3797                 goto out;
3798
3799         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3800         if (!ptep)
3801                 goto out;
3802         if (!pte_present(*ptep))
3803                 goto unlock;
3804         *ptepp = ptep;
3805         return 0;
3806 unlock:
3807         pte_unmap_unlock(ptep, *ptlp);
3808 out:
3809         return -EINVAL;
3810 }
3811
3812 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3813                              pte_t **ptepp, spinlock_t **ptlp)
3814 {
3815         int res;
3816
3817         /* (void) is needed to make gcc happy */
3818         (void) __cond_lock(*ptlp,
3819                            !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3820                                            ptlp)));
3821         return res;
3822 }
3823
3824 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3825                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3826 {
3827         int res;
3828
3829         /* (void) is needed to make gcc happy */
3830         (void) __cond_lock(*ptlp,
3831                            !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3832                                            ptlp)));
3833         return res;
3834 }
3835 EXPORT_SYMBOL(follow_pte_pmd);
3836
3837 /**
3838  * follow_pfn - look up PFN at a user virtual address
3839  * @vma: memory mapping
3840  * @address: user virtual address
3841  * @pfn: location to store found PFN
3842  *
3843  * Only IO mappings and raw PFN mappings are allowed.
3844  *
3845  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3846  */
3847 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3848         unsigned long *pfn)
3849 {
3850         int ret = -EINVAL;
3851         spinlock_t *ptl;
3852         pte_t *ptep;
3853
3854         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3855                 return ret;
3856
3857         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3858         if (ret)
3859                 return ret;
3860         *pfn = pte_pfn(*ptep);
3861         pte_unmap_unlock(ptep, ptl);
3862         return 0;
3863 }
3864 EXPORT_SYMBOL(follow_pfn);
3865
3866 #ifdef CONFIG_HAVE_IOREMAP_PROT
3867 int follow_phys(struct vm_area_struct *vma,
3868                 unsigned long address, unsigned int flags,
3869                 unsigned long *prot, resource_size_t *phys)
3870 {
3871         int ret = -EINVAL;
3872         pte_t *ptep, pte;
3873         spinlock_t *ptl;
3874
3875         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3876                 goto out;
3877
3878         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3879                 goto out;
3880         pte = *ptep;
3881
3882         if ((flags & FOLL_WRITE) && !pte_write(pte))
3883                 goto unlock;
3884
3885         *prot = pgprot_val(pte_pgprot(pte));
3886         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3887
3888         ret = 0;
3889 unlock:
3890         pte_unmap_unlock(ptep, ptl);
3891 out:
3892         return ret;
3893 }
3894
3895 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3896                         void *buf, int len, int write)
3897 {
3898         resource_size_t phys_addr;
3899         unsigned long prot = 0;
3900         void __iomem *maddr;
3901         int offset = addr & (PAGE_SIZE-1);
3902
3903         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3904                 return -EINVAL;
3905
3906         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3907         if (write)
3908                 memcpy_toio(maddr + offset, buf, len);
3909         else
3910                 memcpy_fromio(buf, maddr + offset, len);
3911         iounmap(maddr);
3912
3913         return len;
3914 }
3915 EXPORT_SYMBOL_GPL(generic_access_phys);
3916 #endif
3917
3918 /*
3919  * Access another process' address space as given in mm.  If non-NULL, use the
3920  * given task for page fault accounting.
3921  */
3922 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3923                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3924 {
3925         struct vm_area_struct *vma;
3926         void *old_buf = buf;
3927         int write = gup_flags & FOLL_WRITE;
3928
3929         down_read(&mm->mmap_sem);
3930         /* ignore errors, just check how much was successfully transferred */
3931         while (len) {
3932                 int bytes, ret, offset;
3933                 void *maddr;
3934                 struct page *page = NULL;
3935
3936                 ret = get_user_pages_remote(tsk, mm, addr, 1,
3937                                 gup_flags, &page, &vma, NULL);
3938                 if (ret <= 0) {
3939 #ifndef CONFIG_HAVE_IOREMAP_PROT
3940                         break;
3941 #else
3942                         /*
3943                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3944                          * we can access using slightly different code.
3945                          */
3946                         vma = find_vma(mm, addr);
3947                         if (!vma || vma->vm_start > addr)
3948                                 break;
3949                         if (vma->vm_ops && vma->vm_ops->access)
3950                                 ret = vma->vm_ops->access(vma, addr, buf,
3951                                                           len, write);
3952                         if (ret <= 0)
3953                                 break;
3954                         bytes = ret;
3955 #endif
3956                 } else {
3957                         bytes = len;
3958                         offset = addr & (PAGE_SIZE-1);
3959                         if (bytes > PAGE_SIZE-offset)
3960                                 bytes = PAGE_SIZE-offset;
3961
3962                         maddr = kmap(page);
3963                         if (write) {
3964                                 copy_to_user_page(vma, page, addr,
3965                                                   maddr + offset, buf, bytes);
3966                                 set_page_dirty_lock(page);
3967                         } else {
3968                                 copy_from_user_page(vma, page, addr,
3969                                                     buf, maddr + offset, bytes);
3970                         }
3971                         kunmap(page);
3972                         put_page(page);
3973                 }
3974                 len -= bytes;
3975                 buf += bytes;
3976                 addr += bytes;
3977         }
3978         up_read(&mm->mmap_sem);
3979
3980         return buf - old_buf;
3981 }
3982
3983 /**
3984  * access_remote_vm - access another process' address space
3985  * @mm:         the mm_struct of the target address space
3986  * @addr:       start address to access
3987  * @buf:        source or destination buffer
3988  * @len:        number of bytes to transfer
3989  * @gup_flags:  flags modifying lookup behaviour
3990  *
3991  * The caller must hold a reference on @mm.
3992  */
3993 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3994                 void *buf, int len, unsigned int gup_flags)
3995 {
3996         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3997 }
3998
3999 /*
4000  * Access another process' address space.
4001  * Source/target buffer must be kernel space,
4002  * Do not walk the page table directly, use get_user_pages
4003  */
4004 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4005                 void *buf, int len, unsigned int gup_flags)
4006 {
4007         struct mm_struct *mm;
4008         int ret;
4009
4010         mm = get_task_mm(tsk);
4011         if (!mm)
4012                 return 0;
4013
4014         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4015
4016         mmput(mm);
4017
4018         return ret;
4019 }
4020 EXPORT_SYMBOL_GPL(access_process_vm);
4021
4022 /*
4023  * Print the name of a VMA.
4024  */
4025 void print_vma_addr(char *prefix, unsigned long ip)
4026 {
4027         struct mm_struct *mm = current->mm;
4028         struct vm_area_struct *vma;
4029
4030         /*
4031          * Do not print if we are in atomic
4032          * contexts (in exception stacks, etc.):
4033          */
4034         if (preempt_count())
4035                 return;
4036
4037         down_read(&mm->mmap_sem);
4038         vma = find_vma(mm, ip);
4039         if (vma && vma->vm_file) {
4040                 struct file *f = vma->vm_file;
4041                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4042                 if (buf) {
4043                         char *p;
4044
4045                         p = file_path(f, buf, PAGE_SIZE);
4046                         if (IS_ERR(p))
4047                                 p = "?";
4048                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4049                                         vma->vm_start,
4050                                         vma->vm_end - vma->vm_start);
4051                         free_page((unsigned long)buf);
4052                 }
4053         }
4054         up_read(&mm->mmap_sem);
4055 }
4056
4057 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4058 void __might_fault(const char *file, int line)
4059 {
4060         /*
4061          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4062          * holding the mmap_sem, this is safe because kernel memory doesn't
4063          * get paged out, therefore we'll never actually fault, and the
4064          * below annotations will generate false positives.
4065          */
4066         if (segment_eq(get_fs(), KERNEL_DS))
4067                 return;
4068         if (pagefault_disabled())
4069                 return;
4070         __might_sleep(file, line, 0);
4071 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4072         if (current->mm)
4073                 might_lock_read(&current->mm->mmap_sem);
4074 #endif
4075 }
4076 EXPORT_SYMBOL(__might_fault);
4077 #endif
4078
4079 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4080 static void clear_gigantic_page(struct page *page,
4081                                 unsigned long addr,
4082                                 unsigned int pages_per_huge_page)
4083 {
4084         int i;
4085         struct page *p = page;
4086
4087         might_sleep();
4088         for (i = 0; i < pages_per_huge_page;
4089              i++, p = mem_map_next(p, page, i)) {
4090                 cond_resched();
4091                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4092         }
4093 }
4094 void clear_huge_page(struct page *page,
4095                      unsigned long addr, unsigned int pages_per_huge_page)
4096 {
4097         int i;
4098
4099         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4100                 clear_gigantic_page(page, addr, pages_per_huge_page);
4101                 return;
4102         }
4103
4104         might_sleep();
4105         for (i = 0; i < pages_per_huge_page; i++) {
4106                 cond_resched();
4107                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4108         }
4109 }
4110
4111 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4112                                     unsigned long addr,
4113                                     struct vm_area_struct *vma,
4114                                     unsigned int pages_per_huge_page)
4115 {
4116         int i;
4117         struct page *dst_base = dst;
4118         struct page *src_base = src;
4119
4120         for (i = 0; i < pages_per_huge_page; ) {
4121                 cond_resched();
4122                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4123
4124                 i++;
4125                 dst = mem_map_next(dst, dst_base, i);
4126                 src = mem_map_next(src, src_base, i);
4127         }
4128 }
4129
4130 void copy_user_huge_page(struct page *dst, struct page *src,
4131                          unsigned long addr, struct vm_area_struct *vma,
4132                          unsigned int pages_per_huge_page)
4133 {
4134         int i;
4135
4136         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4137                 copy_user_gigantic_page(dst, src, addr, vma,
4138                                         pages_per_huge_page);
4139                 return;
4140         }
4141
4142         might_sleep();
4143         for (i = 0; i < pages_per_huge_page; i++) {
4144                 cond_resched();
4145                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4146         }
4147 }
4148
4149 long copy_huge_page_from_user(struct page *dst_page,
4150                                 const void __user *usr_src,
4151                                 unsigned int pages_per_huge_page,
4152                                 bool allow_pagefault)
4153 {
4154         void *src = (void *)usr_src;
4155         void *page_kaddr;
4156         unsigned long i, rc = 0;
4157         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4158
4159         for (i = 0; i < pages_per_huge_page; i++) {
4160                 if (allow_pagefault)
4161                         page_kaddr = kmap(dst_page + i);
4162                 else
4163                         page_kaddr = kmap_atomic(dst_page + i);
4164                 rc = copy_from_user(page_kaddr,
4165                                 (const void __user *)(src + i * PAGE_SIZE),
4166                                 PAGE_SIZE);
4167                 if (allow_pagefault)
4168                         kunmap(dst_page + i);
4169                 else
4170                         kunmap_atomic(page_kaddr);
4171
4172                 ret_val -= (PAGE_SIZE - rc);
4173                 if (rc)
4174                         break;
4175
4176                 cond_resched();
4177         }
4178         return ret_val;
4179 }
4180 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4181
4182 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4183
4184 static struct kmem_cache *page_ptl_cachep;
4185
4186 void __init ptlock_cache_init(void)
4187 {
4188         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4189                         SLAB_PANIC, NULL);
4190 }
4191
4192 bool ptlock_alloc(struct page *page)
4193 {
4194         spinlock_t *ptl;
4195
4196         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4197         if (!ptl)
4198                 return false;
4199         page->ptl = ptl;
4200         return true;
4201 }
4202
4203 void ptlock_free(struct page *page)
4204 {
4205         kmem_cache_free(page_ptl_cachep, page->ptl);
4206 }
4207 #endif