Merge tag 'mfd-next-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 core_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439         spinlock_t *ptl;
440         pgtable_t new = pte_alloc_one(mm);
441         if (!new)
442                 return -ENOMEM;
443
444         /*
445          * Ensure all pte setup (eg. pte page lock and page clearing) are
446          * visible before the pte is made visible to other CPUs by being
447          * put into page tables.
448          *
449          * The other side of the story is the pointer chasing in the page
450          * table walking code (when walking the page table without locking;
451          * ie. most of the time). Fortunately, these data accesses consist
452          * of a chain of data-dependent loads, meaning most CPUs (alpha
453          * being the notable exception) will already guarantee loads are
454          * seen in-order. See the alpha page table accessors for the
455          * smp_rmb() barriers in page table walking code.
456          */
457         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
459         ptl = pmd_lock(mm, pmd);
460         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
461                 mm_inc_nr_ptes(mm);
462                 pmd_populate(mm, pmd, new);
463                 new = NULL;
464         }
465         spin_unlock(ptl);
466         if (new)
467                 pte_free(mm, new);
468         return 0;
469 }
470
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473         pte_t *new = pte_alloc_one_kernel(&init_mm);
474         if (!new)
475                 return -ENOMEM;
476
477         smp_wmb(); /* See comment in __pte_alloc */
478
479         spin_lock(&init_mm.page_table_lock);
480         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
481                 pmd_populate_kernel(&init_mm, pmd, new);
482                 new = NULL;
483         }
484         spin_unlock(&init_mm.page_table_lock);
485         if (new)
486                 pte_free_kernel(&init_mm, new);
487         return 0;
488 }
489
490 static inline void init_rss_vec(int *rss)
491 {
492         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497         int i;
498
499         if (current->mm == mm)
500                 sync_mm_rss(mm);
501         for (i = 0; i < NR_MM_COUNTERS; i++)
502                 if (rss[i])
503                         add_mm_counter(mm, i, rss[i]);
504 }
505
506 /*
507  * This function is called to print an error when a bad pte
508  * is found. For example, we might have a PFN-mapped pte in
509  * a region that doesn't allow it.
510  *
511  * The calling function must still handle the error.
512  */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514                           pte_t pte, struct page *page)
515 {
516         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517         p4d_t *p4d = p4d_offset(pgd, addr);
518         pud_t *pud = pud_offset(p4d, addr);
519         pmd_t *pmd = pmd_offset(pud, addr);
520         struct address_space *mapping;
521         pgoff_t index;
522         static unsigned long resume;
523         static unsigned long nr_shown;
524         static unsigned long nr_unshown;
525
526         /*
527          * Allow a burst of 60 reports, then keep quiet for that minute;
528          * or allow a steady drip of one report per second.
529          */
530         if (nr_shown == 60) {
531                 if (time_before(jiffies, resume)) {
532                         nr_unshown++;
533                         return;
534                 }
535                 if (nr_unshown) {
536                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537                                  nr_unshown);
538                         nr_unshown = 0;
539                 }
540                 nr_shown = 0;
541         }
542         if (nr_shown++ == 0)
543                 resume = jiffies + 60 * HZ;
544
545         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546         index = linear_page_index(vma, addr);
547
548         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
549                  current->comm,
550                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
551         if (page)
552                 dump_page(page, "bad pte");
553         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556                  vma->vm_file,
557                  vma->vm_ops ? vma->vm_ops->fault : NULL,
558                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559                  mapping ? mapping->a_ops->readpage : NULL);
560         dump_stack();
561         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563
564 /*
565  * vm_normal_page -- This function gets the "struct page" associated with a pte.
566  *
567  * "Special" mappings do not wish to be associated with a "struct page" (either
568  * it doesn't exist, or it exists but they don't want to touch it). In this
569  * case, NULL is returned here. "Normal" mappings do have a struct page.
570  *
571  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572  * pte bit, in which case this function is trivial. Secondly, an architecture
573  * may not have a spare pte bit, which requires a more complicated scheme,
574  * described below.
575  *
576  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577  * special mapping (even if there are underlying and valid "struct pages").
578  * COWed pages of a VM_PFNMAP are always normal.
579  *
580  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583  * mapping will always honor the rule
584  *
585  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586  *
587  * And for normal mappings this is false.
588  *
589  * This restricts such mappings to be a linear translation from virtual address
590  * to pfn. To get around this restriction, we allow arbitrary mappings so long
591  * as the vma is not a COW mapping; in that case, we know that all ptes are
592  * special (because none can have been COWed).
593  *
594  *
595  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596  *
597  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598  * page" backing, however the difference is that _all_ pages with a struct
599  * page (that is, those where pfn_valid is true) are refcounted and considered
600  * normal pages by the VM. The disadvantage is that pages are refcounted
601  * (which can be slower and simply not an option for some PFNMAP users). The
602  * advantage is that we don't have to follow the strict linearity rule of
603  * PFNMAP mappings in order to support COWable mappings.
604  *
605  */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607                             pte_t pte)
608 {
609         unsigned long pfn = pte_pfn(pte);
610
611         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612                 if (likely(!pte_special(pte)))
613                         goto check_pfn;
614                 if (vma->vm_ops && vma->vm_ops->find_special_page)
615                         return vma->vm_ops->find_special_page(vma, addr);
616                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617                         return NULL;
618                 if (is_zero_pfn(pfn))
619                         return NULL;
620                 if (pte_devmap(pte))
621                         return NULL;
622
623                 print_bad_pte(vma, addr, pte, NULL);
624                 return NULL;
625         }
626
627         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628
629         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630                 if (vma->vm_flags & VM_MIXEDMAP) {
631                         if (!pfn_valid(pfn))
632                                 return NULL;
633                         goto out;
634                 } else {
635                         unsigned long off;
636                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
637                         if (pfn == vma->vm_pgoff + off)
638                                 return NULL;
639                         if (!is_cow_mapping(vma->vm_flags))
640                                 return NULL;
641                 }
642         }
643
644         if (is_zero_pfn(pfn))
645                 return NULL;
646
647 check_pfn:
648         if (unlikely(pfn > highest_memmap_pfn)) {
649                 print_bad_pte(vma, addr, pte, NULL);
650                 return NULL;
651         }
652
653         /*
654          * NOTE! We still have PageReserved() pages in the page tables.
655          * eg. VDSO mappings can cause them to exist.
656          */
657 out:
658         return pfn_to_page(pfn);
659 }
660
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663                                 pmd_t pmd)
664 {
665         unsigned long pfn = pmd_pfn(pmd);
666
667         /*
668          * There is no pmd_special() but there may be special pmds, e.g.
669          * in a direct-access (dax) mapping, so let's just replicate the
670          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671          */
672         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673                 if (vma->vm_flags & VM_MIXEDMAP) {
674                         if (!pfn_valid(pfn))
675                                 return NULL;
676                         goto out;
677                 } else {
678                         unsigned long off;
679                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
680                         if (pfn == vma->vm_pgoff + off)
681                                 return NULL;
682                         if (!is_cow_mapping(vma->vm_flags))
683                                 return NULL;
684                 }
685         }
686
687         if (pmd_devmap(pmd))
688                 return NULL;
689         if (is_huge_zero_pmd(pmd))
690                 return NULL;
691         if (unlikely(pfn > highest_memmap_pfn))
692                 return NULL;
693
694         /*
695          * NOTE! We still have PageReserved() pages in the page tables.
696          * eg. VDSO mappings can cause them to exist.
697          */
698 out:
699         return pfn_to_page(pfn);
700 }
701 #endif
702
703 /*
704  * copy one vm_area from one task to the other. Assumes the page tables
705  * already present in the new task to be cleared in the whole range
706  * covered by this vma.
707  */
708
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712                 unsigned long addr, int *rss)
713 {
714         unsigned long vm_flags = vma->vm_flags;
715         pte_t pte = *src_pte;
716         struct page *page;
717         swp_entry_t entry = pte_to_swp_entry(pte);
718
719         if (likely(!non_swap_entry(entry))) {
720                 if (swap_duplicate(entry) < 0)
721                         return entry.val;
722
723                 /* make sure dst_mm is on swapoff's mmlist. */
724                 if (unlikely(list_empty(&dst_mm->mmlist))) {
725                         spin_lock(&mmlist_lock);
726                         if (list_empty(&dst_mm->mmlist))
727                                 list_add(&dst_mm->mmlist,
728                                                 &src_mm->mmlist);
729                         spin_unlock(&mmlist_lock);
730                 }
731                 rss[MM_SWAPENTS]++;
732         } else if (is_migration_entry(entry)) {
733                 page = migration_entry_to_page(entry);
734
735                 rss[mm_counter(page)]++;
736
737                 if (is_write_migration_entry(entry) &&
738                                 is_cow_mapping(vm_flags)) {
739                         /*
740                          * COW mappings require pages in both
741                          * parent and child to be set to read.
742                          */
743                         make_migration_entry_read(&entry);
744                         pte = swp_entry_to_pte(entry);
745                         if (pte_swp_soft_dirty(*src_pte))
746                                 pte = pte_swp_mksoft_dirty(pte);
747                         if (pte_swp_uffd_wp(*src_pte))
748                                 pte = pte_swp_mkuffd_wp(pte);
749                         set_pte_at(src_mm, addr, src_pte, pte);
750                 }
751         } else if (is_device_private_entry(entry)) {
752                 page = device_private_entry_to_page(entry);
753
754                 /*
755                  * Update rss count even for unaddressable pages, as
756                  * they should treated just like normal pages in this
757                  * respect.
758                  *
759                  * We will likely want to have some new rss counters
760                  * for unaddressable pages, at some point. But for now
761                  * keep things as they are.
762                  */
763                 get_page(page);
764                 rss[mm_counter(page)]++;
765                 page_dup_rmap(page, false);
766
767                 /*
768                  * We do not preserve soft-dirty information, because so
769                  * far, checkpoint/restore is the only feature that
770                  * requires that. And checkpoint/restore does not work
771                  * when a device driver is involved (you cannot easily
772                  * save and restore device driver state).
773                  */
774                 if (is_write_device_private_entry(entry) &&
775                     is_cow_mapping(vm_flags)) {
776                         make_device_private_entry_read(&entry);
777                         pte = swp_entry_to_pte(entry);
778                         if (pte_swp_uffd_wp(*src_pte))
779                                 pte = pte_swp_mkuffd_wp(pte);
780                         set_pte_at(src_mm, addr, src_pte, pte);
781                 }
782         }
783         set_pte_at(dst_mm, addr, dst_pte, pte);
784         return 0;
785 }
786
787 /*
788  * Copy a present and normal page if necessary.
789  *
790  * NOTE! The usual case is that this doesn't need to do
791  * anything, and can just return a positive value. That
792  * will let the caller know that it can just increase
793  * the page refcount and re-use the pte the traditional
794  * way.
795  *
796  * But _if_ we need to copy it because it needs to be
797  * pinned in the parent (and the child should get its own
798  * copy rather than just a reference to the same page),
799  * we'll do that here and return zero to let the caller
800  * know we're done.
801  *
802  * And if we need a pre-allocated page but don't yet have
803  * one, return a negative error to let the preallocation
804  * code know so that it can do so outside the page table
805  * lock.
806  */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810                   struct page **prealloc, pte_t pte, struct page *page)
811 {
812         struct mm_struct *src_mm = src_vma->vm_mm;
813         struct page *new_page;
814
815         if (!is_cow_mapping(src_vma->vm_flags))
816                 return 1;
817
818         /*
819          * What we want to do is to check whether this page may
820          * have been pinned by the parent process.  If so,
821          * instead of wrprotect the pte on both sides, we copy
822          * the page immediately so that we'll always guarantee
823          * the pinned page won't be randomly replaced in the
824          * future.
825          *
826          * The page pinning checks are just "has this mm ever
827          * seen pinning", along with the (inexact) check of
828          * the page count. That might give false positives for
829          * for pinning, but it will work correctly.
830          */
831         if (likely(!atomic_read(&src_mm->has_pinned)))
832                 return 1;
833         if (likely(!page_maybe_dma_pinned(page)))
834                 return 1;
835
836         new_page = *prealloc;
837         if (!new_page)
838                 return -EAGAIN;
839
840         /*
841          * We have a prealloc page, all good!  Take it
842          * over and copy the page & arm it.
843          */
844         *prealloc = NULL;
845         copy_user_highpage(new_page, page, addr, src_vma);
846         __SetPageUptodate(new_page);
847         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
848         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
849         rss[mm_counter(new_page)]++;
850
851         /* All done, just insert the new page copy in the child */
852         pte = mk_pte(new_page, dst_vma->vm_page_prot);
853         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
854         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
855         return 0;
856 }
857
858 /*
859  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
860  * is required to copy this pte.
861  */
862 static inline int
863 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
864                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
865                  struct page **prealloc)
866 {
867         struct mm_struct *src_mm = src_vma->vm_mm;
868         unsigned long vm_flags = src_vma->vm_flags;
869         pte_t pte = *src_pte;
870         struct page *page;
871
872         page = vm_normal_page(src_vma, addr, pte);
873         if (page) {
874                 int retval;
875
876                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
877                                            addr, rss, prealloc, pte, page);
878                 if (retval <= 0)
879                         return retval;
880
881                 get_page(page);
882                 page_dup_rmap(page, false);
883                 rss[mm_counter(page)]++;
884         }
885
886         /*
887          * If it's a COW mapping, write protect it both
888          * in the parent and the child
889          */
890         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
891                 ptep_set_wrprotect(src_mm, addr, src_pte);
892                 pte = pte_wrprotect(pte);
893         }
894
895         /*
896          * If it's a shared mapping, mark it clean in
897          * the child
898          */
899         if (vm_flags & VM_SHARED)
900                 pte = pte_mkclean(pte);
901         pte = pte_mkold(pte);
902
903         /*
904          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
905          * does not have the VM_UFFD_WP, which means that the uffd
906          * fork event is not enabled.
907          */
908         if (!(vm_flags & VM_UFFD_WP))
909                 pte = pte_clear_uffd_wp(pte);
910
911         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
912         return 0;
913 }
914
915 static inline struct page *
916 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
917                    unsigned long addr)
918 {
919         struct page *new_page;
920
921         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
922         if (!new_page)
923                 return NULL;
924
925         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
926                 put_page(new_page);
927                 return NULL;
928         }
929         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
930
931         return new_page;
932 }
933
934 static int
935 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
936                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
937                unsigned long end)
938 {
939         struct mm_struct *dst_mm = dst_vma->vm_mm;
940         struct mm_struct *src_mm = src_vma->vm_mm;
941         pte_t *orig_src_pte, *orig_dst_pte;
942         pte_t *src_pte, *dst_pte;
943         spinlock_t *src_ptl, *dst_ptl;
944         int progress, ret = 0;
945         int rss[NR_MM_COUNTERS];
946         swp_entry_t entry = (swp_entry_t){0};
947         struct page *prealloc = NULL;
948
949 again:
950         progress = 0;
951         init_rss_vec(rss);
952
953         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
954         if (!dst_pte) {
955                 ret = -ENOMEM;
956                 goto out;
957         }
958         src_pte = pte_offset_map(src_pmd, addr);
959         src_ptl = pte_lockptr(src_mm, src_pmd);
960         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
961         orig_src_pte = src_pte;
962         orig_dst_pte = dst_pte;
963         arch_enter_lazy_mmu_mode();
964
965         do {
966                 /*
967                  * We are holding two locks at this point - either of them
968                  * could generate latencies in another task on another CPU.
969                  */
970                 if (progress >= 32) {
971                         progress = 0;
972                         if (need_resched() ||
973                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
974                                 break;
975                 }
976                 if (pte_none(*src_pte)) {
977                         progress++;
978                         continue;
979                 }
980                 if (unlikely(!pte_present(*src_pte))) {
981                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
982                                                         dst_pte, src_pte,
983                                                         src_vma, addr, rss);
984                         if (entry.val)
985                                 break;
986                         progress += 8;
987                         continue;
988                 }
989                 /* copy_present_pte() will clear `*prealloc' if consumed */
990                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
991                                        addr, rss, &prealloc);
992                 /*
993                  * If we need a pre-allocated page for this pte, drop the
994                  * locks, allocate, and try again.
995                  */
996                 if (unlikely(ret == -EAGAIN))
997                         break;
998                 if (unlikely(prealloc)) {
999                         /*
1000                          * pre-alloc page cannot be reused by next time so as
1001                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1002                          * will allocate page according to address).  This
1003                          * could only happen if one pinned pte changed.
1004                          */
1005                         put_page(prealloc);
1006                         prealloc = NULL;
1007                 }
1008                 progress += 8;
1009         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1010
1011         arch_leave_lazy_mmu_mode();
1012         spin_unlock(src_ptl);
1013         pte_unmap(orig_src_pte);
1014         add_mm_rss_vec(dst_mm, rss);
1015         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1016         cond_resched();
1017
1018         if (entry.val) {
1019                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1020                         ret = -ENOMEM;
1021                         goto out;
1022                 }
1023                 entry.val = 0;
1024         } else if (ret) {
1025                 WARN_ON_ONCE(ret != -EAGAIN);
1026                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1027                 if (!prealloc)
1028                         return -ENOMEM;
1029                 /* We've captured and resolved the error. Reset, try again. */
1030                 ret = 0;
1031         }
1032         if (addr != end)
1033                 goto again;
1034 out:
1035         if (unlikely(prealloc))
1036                 put_page(prealloc);
1037         return ret;
1038 }
1039
1040 static inline int
1041 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1042                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043                unsigned long end)
1044 {
1045         struct mm_struct *dst_mm = dst_vma->vm_mm;
1046         struct mm_struct *src_mm = src_vma->vm_mm;
1047         pmd_t *src_pmd, *dst_pmd;
1048         unsigned long next;
1049
1050         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1051         if (!dst_pmd)
1052                 return -ENOMEM;
1053         src_pmd = pmd_offset(src_pud, addr);
1054         do {
1055                 next = pmd_addr_end(addr, end);
1056                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1057                         || pmd_devmap(*src_pmd)) {
1058                         int err;
1059                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1060                         err = copy_huge_pmd(dst_mm, src_mm,
1061                                             dst_pmd, src_pmd, addr, src_vma);
1062                         if (err == -ENOMEM)
1063                                 return -ENOMEM;
1064                         if (!err)
1065                                 continue;
1066                         /* fall through */
1067                 }
1068                 if (pmd_none_or_clear_bad(src_pmd))
1069                         continue;
1070                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1071                                    addr, next))
1072                         return -ENOMEM;
1073         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1074         return 0;
1075 }
1076
1077 static inline int
1078 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1080                unsigned long end)
1081 {
1082         struct mm_struct *dst_mm = dst_vma->vm_mm;
1083         struct mm_struct *src_mm = src_vma->vm_mm;
1084         pud_t *src_pud, *dst_pud;
1085         unsigned long next;
1086
1087         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1088         if (!dst_pud)
1089                 return -ENOMEM;
1090         src_pud = pud_offset(src_p4d, addr);
1091         do {
1092                 next = pud_addr_end(addr, end);
1093                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1094                         int err;
1095
1096                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1097                         err = copy_huge_pud(dst_mm, src_mm,
1098                                             dst_pud, src_pud, addr, src_vma);
1099                         if (err == -ENOMEM)
1100                                 return -ENOMEM;
1101                         if (!err)
1102                                 continue;
1103                         /* fall through */
1104                 }
1105                 if (pud_none_or_clear_bad(src_pud))
1106                         continue;
1107                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1108                                    addr, next))
1109                         return -ENOMEM;
1110         } while (dst_pud++, src_pud++, addr = next, addr != end);
1111         return 0;
1112 }
1113
1114 static inline int
1115 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1116                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1117                unsigned long end)
1118 {
1119         struct mm_struct *dst_mm = dst_vma->vm_mm;
1120         p4d_t *src_p4d, *dst_p4d;
1121         unsigned long next;
1122
1123         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1124         if (!dst_p4d)
1125                 return -ENOMEM;
1126         src_p4d = p4d_offset(src_pgd, addr);
1127         do {
1128                 next = p4d_addr_end(addr, end);
1129                 if (p4d_none_or_clear_bad(src_p4d))
1130                         continue;
1131                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1132                                    addr, next))
1133                         return -ENOMEM;
1134         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1135         return 0;
1136 }
1137
1138 int
1139 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1140 {
1141         pgd_t *src_pgd, *dst_pgd;
1142         unsigned long next;
1143         unsigned long addr = src_vma->vm_start;
1144         unsigned long end = src_vma->vm_end;
1145         struct mm_struct *dst_mm = dst_vma->vm_mm;
1146         struct mm_struct *src_mm = src_vma->vm_mm;
1147         struct mmu_notifier_range range;
1148         bool is_cow;
1149         int ret;
1150
1151         /*
1152          * Don't copy ptes where a page fault will fill them correctly.
1153          * Fork becomes much lighter when there are big shared or private
1154          * readonly mappings. The tradeoff is that copy_page_range is more
1155          * efficient than faulting.
1156          */
1157         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1158             !src_vma->anon_vma)
1159                 return 0;
1160
1161         if (is_vm_hugetlb_page(src_vma))
1162                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1163
1164         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1165                 /*
1166                  * We do not free on error cases below as remove_vma
1167                  * gets called on error from higher level routine
1168                  */
1169                 ret = track_pfn_copy(src_vma);
1170                 if (ret)
1171                         return ret;
1172         }
1173
1174         /*
1175          * We need to invalidate the secondary MMU mappings only when
1176          * there could be a permission downgrade on the ptes of the
1177          * parent mm. And a permission downgrade will only happen if
1178          * is_cow_mapping() returns true.
1179          */
1180         is_cow = is_cow_mapping(src_vma->vm_flags);
1181
1182         if (is_cow) {
1183                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1184                                         0, src_vma, src_mm, addr, end);
1185                 mmu_notifier_invalidate_range_start(&range);
1186                 /*
1187                  * Disabling preemption is not needed for the write side, as
1188                  * the read side doesn't spin, but goes to the mmap_lock.
1189                  *
1190                  * Use the raw variant of the seqcount_t write API to avoid
1191                  * lockdep complaining about preemptibility.
1192                  */
1193                 mmap_assert_write_locked(src_mm);
1194                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1195         }
1196
1197         ret = 0;
1198         dst_pgd = pgd_offset(dst_mm, addr);
1199         src_pgd = pgd_offset(src_mm, addr);
1200         do {
1201                 next = pgd_addr_end(addr, end);
1202                 if (pgd_none_or_clear_bad(src_pgd))
1203                         continue;
1204                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1205                                             addr, next))) {
1206                         ret = -ENOMEM;
1207                         break;
1208                 }
1209         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1210
1211         if (is_cow) {
1212                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1213                 mmu_notifier_invalidate_range_end(&range);
1214         }
1215         return ret;
1216 }
1217
1218 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1219                                 struct vm_area_struct *vma, pmd_t *pmd,
1220                                 unsigned long addr, unsigned long end,
1221                                 struct zap_details *details)
1222 {
1223         struct mm_struct *mm = tlb->mm;
1224         int force_flush = 0;
1225         int rss[NR_MM_COUNTERS];
1226         spinlock_t *ptl;
1227         pte_t *start_pte;
1228         pte_t *pte;
1229         swp_entry_t entry;
1230
1231         tlb_change_page_size(tlb, PAGE_SIZE);
1232 again:
1233         init_rss_vec(rss);
1234         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1235         pte = start_pte;
1236         flush_tlb_batched_pending(mm);
1237         arch_enter_lazy_mmu_mode();
1238         do {
1239                 pte_t ptent = *pte;
1240                 if (pte_none(ptent))
1241                         continue;
1242
1243                 if (need_resched())
1244                         break;
1245
1246                 if (pte_present(ptent)) {
1247                         struct page *page;
1248
1249                         page = vm_normal_page(vma, addr, ptent);
1250                         if (unlikely(details) && page) {
1251                                 /*
1252                                  * unmap_shared_mapping_pages() wants to
1253                                  * invalidate cache without truncating:
1254                                  * unmap shared but keep private pages.
1255                                  */
1256                                 if (details->check_mapping &&
1257                                     details->check_mapping != page_rmapping(page))
1258                                         continue;
1259                         }
1260                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1261                                                         tlb->fullmm);
1262                         tlb_remove_tlb_entry(tlb, pte, addr);
1263                         if (unlikely(!page))
1264                                 continue;
1265
1266                         if (!PageAnon(page)) {
1267                                 if (pte_dirty(ptent)) {
1268                                         force_flush = 1;
1269                                         set_page_dirty(page);
1270                                 }
1271                                 if (pte_young(ptent) &&
1272                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1273                                         mark_page_accessed(page);
1274                         }
1275                         rss[mm_counter(page)]--;
1276                         page_remove_rmap(page, false);
1277                         if (unlikely(page_mapcount(page) < 0))
1278                                 print_bad_pte(vma, addr, ptent, page);
1279                         if (unlikely(__tlb_remove_page(tlb, page))) {
1280                                 force_flush = 1;
1281                                 addr += PAGE_SIZE;
1282                                 break;
1283                         }
1284                         continue;
1285                 }
1286
1287                 entry = pte_to_swp_entry(ptent);
1288                 if (is_device_private_entry(entry)) {
1289                         struct page *page = device_private_entry_to_page(entry);
1290
1291                         if (unlikely(details && details->check_mapping)) {
1292                                 /*
1293                                  * unmap_shared_mapping_pages() wants to
1294                                  * invalidate cache without truncating:
1295                                  * unmap shared but keep private pages.
1296                                  */
1297                                 if (details->check_mapping !=
1298                                     page_rmapping(page))
1299                                         continue;
1300                         }
1301
1302                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1303                         rss[mm_counter(page)]--;
1304                         page_remove_rmap(page, false);
1305                         put_page(page);
1306                         continue;
1307                 }
1308
1309                 /* If details->check_mapping, we leave swap entries. */
1310                 if (unlikely(details))
1311                         continue;
1312
1313                 if (!non_swap_entry(entry))
1314                         rss[MM_SWAPENTS]--;
1315                 else if (is_migration_entry(entry)) {
1316                         struct page *page;
1317
1318                         page = migration_entry_to_page(entry);
1319                         rss[mm_counter(page)]--;
1320                 }
1321                 if (unlikely(!free_swap_and_cache(entry)))
1322                         print_bad_pte(vma, addr, ptent, NULL);
1323                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1324         } while (pte++, addr += PAGE_SIZE, addr != end);
1325
1326         add_mm_rss_vec(mm, rss);
1327         arch_leave_lazy_mmu_mode();
1328
1329         /* Do the actual TLB flush before dropping ptl */
1330         if (force_flush)
1331                 tlb_flush_mmu_tlbonly(tlb);
1332         pte_unmap_unlock(start_pte, ptl);
1333
1334         /*
1335          * If we forced a TLB flush (either due to running out of
1336          * batch buffers or because we needed to flush dirty TLB
1337          * entries before releasing the ptl), free the batched
1338          * memory too. Restart if we didn't do everything.
1339          */
1340         if (force_flush) {
1341                 force_flush = 0;
1342                 tlb_flush_mmu(tlb);
1343         }
1344
1345         if (addr != end) {
1346                 cond_resched();
1347                 goto again;
1348         }
1349
1350         return addr;
1351 }
1352
1353 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1354                                 struct vm_area_struct *vma, pud_t *pud,
1355                                 unsigned long addr, unsigned long end,
1356                                 struct zap_details *details)
1357 {
1358         pmd_t *pmd;
1359         unsigned long next;
1360
1361         pmd = pmd_offset(pud, addr);
1362         do {
1363                 next = pmd_addr_end(addr, end);
1364                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1365                         if (next - addr != HPAGE_PMD_SIZE)
1366                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1367                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1368                                 goto next;
1369                         /* fall through */
1370                 }
1371                 /*
1372                  * Here there can be other concurrent MADV_DONTNEED or
1373                  * trans huge page faults running, and if the pmd is
1374                  * none or trans huge it can change under us. This is
1375                  * because MADV_DONTNEED holds the mmap_lock in read
1376                  * mode.
1377                  */
1378                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379                         goto next;
1380                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1381 next:
1382                 cond_resched();
1383         } while (pmd++, addr = next, addr != end);
1384
1385         return addr;
1386 }
1387
1388 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1389                                 struct vm_area_struct *vma, p4d_t *p4d,
1390                                 unsigned long addr, unsigned long end,
1391                                 struct zap_details *details)
1392 {
1393         pud_t *pud;
1394         unsigned long next;
1395
1396         pud = pud_offset(p4d, addr);
1397         do {
1398                 next = pud_addr_end(addr, end);
1399                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400                         if (next - addr != HPAGE_PUD_SIZE) {
1401                                 mmap_assert_locked(tlb->mm);
1402                                 split_huge_pud(vma, pud, addr);
1403                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1404                                 goto next;
1405                         /* fall through */
1406                 }
1407                 if (pud_none_or_clear_bad(pud))
1408                         continue;
1409                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1410 next:
1411                 cond_resched();
1412         } while (pud++, addr = next, addr != end);
1413
1414         return addr;
1415 }
1416
1417 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418                                 struct vm_area_struct *vma, pgd_t *pgd,
1419                                 unsigned long addr, unsigned long end,
1420                                 struct zap_details *details)
1421 {
1422         p4d_t *p4d;
1423         unsigned long next;
1424
1425         p4d = p4d_offset(pgd, addr);
1426         do {
1427                 next = p4d_addr_end(addr, end);
1428                 if (p4d_none_or_clear_bad(p4d))
1429                         continue;
1430                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431         } while (p4d++, addr = next, addr != end);
1432
1433         return addr;
1434 }
1435
1436 void unmap_page_range(struct mmu_gather *tlb,
1437                              struct vm_area_struct *vma,
1438                              unsigned long addr, unsigned long end,
1439                              struct zap_details *details)
1440 {
1441         pgd_t *pgd;
1442         unsigned long next;
1443
1444         BUG_ON(addr >= end);
1445         tlb_start_vma(tlb, vma);
1446         pgd = pgd_offset(vma->vm_mm, addr);
1447         do {
1448                 next = pgd_addr_end(addr, end);
1449                 if (pgd_none_or_clear_bad(pgd))
1450                         continue;
1451                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1452         } while (pgd++, addr = next, addr != end);
1453         tlb_end_vma(tlb, vma);
1454 }
1455
1456
1457 static void unmap_single_vma(struct mmu_gather *tlb,
1458                 struct vm_area_struct *vma, unsigned long start_addr,
1459                 unsigned long end_addr,
1460                 struct zap_details *details)
1461 {
1462         unsigned long start = max(vma->vm_start, start_addr);
1463         unsigned long end;
1464
1465         if (start >= vma->vm_end)
1466                 return;
1467         end = min(vma->vm_end, end_addr);
1468         if (end <= vma->vm_start)
1469                 return;
1470
1471         if (vma->vm_file)
1472                 uprobe_munmap(vma, start, end);
1473
1474         if (unlikely(vma->vm_flags & VM_PFNMAP))
1475                 untrack_pfn(vma, 0, 0);
1476
1477         if (start != end) {
1478                 if (unlikely(is_vm_hugetlb_page(vma))) {
1479                         /*
1480                          * It is undesirable to test vma->vm_file as it
1481                          * should be non-null for valid hugetlb area.
1482                          * However, vm_file will be NULL in the error
1483                          * cleanup path of mmap_region. When
1484                          * hugetlbfs ->mmap method fails,
1485                          * mmap_region() nullifies vma->vm_file
1486                          * before calling this function to clean up.
1487                          * Since no pte has actually been setup, it is
1488                          * safe to do nothing in this case.
1489                          */
1490                         if (vma->vm_file) {
1491                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1492                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1493                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1494                         }
1495                 } else
1496                         unmap_page_range(tlb, vma, start, end, details);
1497         }
1498 }
1499
1500 /**
1501  * unmap_vmas - unmap a range of memory covered by a list of vma's
1502  * @tlb: address of the caller's struct mmu_gather
1503  * @vma: the starting vma
1504  * @start_addr: virtual address at which to start unmapping
1505  * @end_addr: virtual address at which to end unmapping
1506  *
1507  * Unmap all pages in the vma list.
1508  *
1509  * Only addresses between `start' and `end' will be unmapped.
1510  *
1511  * The VMA list must be sorted in ascending virtual address order.
1512  *
1513  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514  * range after unmap_vmas() returns.  So the only responsibility here is to
1515  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516  * drops the lock and schedules.
1517  */
1518 void unmap_vmas(struct mmu_gather *tlb,
1519                 struct vm_area_struct *vma, unsigned long start_addr,
1520                 unsigned long end_addr)
1521 {
1522         struct mmu_notifier_range range;
1523
1524         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525                                 start_addr, end_addr);
1526         mmu_notifier_invalidate_range_start(&range);
1527         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1528                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1529         mmu_notifier_invalidate_range_end(&range);
1530 }
1531
1532 /**
1533  * zap_page_range - remove user pages in a given range
1534  * @vma: vm_area_struct holding the applicable pages
1535  * @start: starting address of pages to zap
1536  * @size: number of bytes to zap
1537  *
1538  * Caller must protect the VMA list
1539  */
1540 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1541                 unsigned long size)
1542 {
1543         struct mmu_notifier_range range;
1544         struct mmu_gather tlb;
1545
1546         lru_add_drain();
1547         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548                                 start, start + size);
1549         tlb_gather_mmu(&tlb, vma->vm_mm);
1550         update_hiwater_rss(vma->vm_mm);
1551         mmu_notifier_invalidate_range_start(&range);
1552         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554         mmu_notifier_invalidate_range_end(&range);
1555         tlb_finish_mmu(&tlb);
1556 }
1557
1558 /**
1559  * zap_page_range_single - remove user pages in a given range
1560  * @vma: vm_area_struct holding the applicable pages
1561  * @address: starting address of pages to zap
1562  * @size: number of bytes to zap
1563  * @details: details of shared cache invalidation
1564  *
1565  * The range must fit into one VMA.
1566  */
1567 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1568                 unsigned long size, struct zap_details *details)
1569 {
1570         struct mmu_notifier_range range;
1571         struct mmu_gather tlb;
1572
1573         lru_add_drain();
1574         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1575                                 address, address + size);
1576         tlb_gather_mmu(&tlb, vma->vm_mm);
1577         update_hiwater_rss(vma->vm_mm);
1578         mmu_notifier_invalidate_range_start(&range);
1579         unmap_single_vma(&tlb, vma, address, range.end, details);
1580         mmu_notifier_invalidate_range_end(&range);
1581         tlb_finish_mmu(&tlb);
1582 }
1583
1584 /**
1585  * zap_vma_ptes - remove ptes mapping the vma
1586  * @vma: vm_area_struct holding ptes to be zapped
1587  * @address: starting address of pages to zap
1588  * @size: number of bytes to zap
1589  *
1590  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591  *
1592  * The entire address range must be fully contained within the vma.
1593  *
1594  */
1595 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1596                 unsigned long size)
1597 {
1598         if (address < vma->vm_start || address + size > vma->vm_end ||
1599                         !(vma->vm_flags & VM_PFNMAP))
1600                 return;
1601
1602         zap_page_range_single(vma, address, size, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605
1606 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1607 {
1608         pgd_t *pgd;
1609         p4d_t *p4d;
1610         pud_t *pud;
1611         pmd_t *pmd;
1612
1613         pgd = pgd_offset(mm, addr);
1614         p4d = p4d_alloc(mm, pgd, addr);
1615         if (!p4d)
1616                 return NULL;
1617         pud = pud_alloc(mm, p4d, addr);
1618         if (!pud)
1619                 return NULL;
1620         pmd = pmd_alloc(mm, pud, addr);
1621         if (!pmd)
1622                 return NULL;
1623
1624         VM_BUG_ON(pmd_trans_huge(*pmd));
1625         return pmd;
1626 }
1627
1628 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629                         spinlock_t **ptl)
1630 {
1631         pmd_t *pmd = walk_to_pmd(mm, addr);
1632
1633         if (!pmd)
1634                 return NULL;
1635         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1636 }
1637
1638 static int validate_page_before_insert(struct page *page)
1639 {
1640         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641                 return -EINVAL;
1642         flush_dcache_page(page);
1643         return 0;
1644 }
1645
1646 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647                         unsigned long addr, struct page *page, pgprot_t prot)
1648 {
1649         if (!pte_none(*pte))
1650                 return -EBUSY;
1651         /* Ok, finally just insert the thing.. */
1652         get_page(page);
1653         inc_mm_counter_fast(mm, mm_counter_file(page));
1654         page_add_file_rmap(page, false);
1655         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656         return 0;
1657 }
1658
1659 /*
1660  * This is the old fallback for page remapping.
1661  *
1662  * For historical reasons, it only allows reserved pages. Only
1663  * old drivers should use this, and they needed to mark their
1664  * pages reserved for the old functions anyway.
1665  */
1666 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667                         struct page *page, pgprot_t prot)
1668 {
1669         struct mm_struct *mm = vma->vm_mm;
1670         int retval;
1671         pte_t *pte;
1672         spinlock_t *ptl;
1673
1674         retval = validate_page_before_insert(page);
1675         if (retval)
1676                 goto out;
1677         retval = -ENOMEM;
1678         pte = get_locked_pte(mm, addr, &ptl);
1679         if (!pte)
1680                 goto out;
1681         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1682         pte_unmap_unlock(pte, ptl);
1683 out:
1684         return retval;
1685 }
1686
1687 #ifdef pte_index
1688 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1689                         unsigned long addr, struct page *page, pgprot_t prot)
1690 {
1691         int err;
1692
1693         if (!page_count(page))
1694                 return -EINVAL;
1695         err = validate_page_before_insert(page);
1696         if (err)
1697                 return err;
1698         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1699 }
1700
1701 /* insert_pages() amortizes the cost of spinlock operations
1702  * when inserting pages in a loop. Arch *must* define pte_index.
1703  */
1704 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705                         struct page **pages, unsigned long *num, pgprot_t prot)
1706 {
1707         pmd_t *pmd = NULL;
1708         pte_t *start_pte, *pte;
1709         spinlock_t *pte_lock;
1710         struct mm_struct *const mm = vma->vm_mm;
1711         unsigned long curr_page_idx = 0;
1712         unsigned long remaining_pages_total = *num;
1713         unsigned long pages_to_write_in_pmd;
1714         int ret;
1715 more:
1716         ret = -EFAULT;
1717         pmd = walk_to_pmd(mm, addr);
1718         if (!pmd)
1719                 goto out;
1720
1721         pages_to_write_in_pmd = min_t(unsigned long,
1722                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723
1724         /* Allocate the PTE if necessary; takes PMD lock once only. */
1725         ret = -ENOMEM;
1726         if (pte_alloc(mm, pmd))
1727                 goto out;
1728
1729         while (pages_to_write_in_pmd) {
1730                 int pte_idx = 0;
1731                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732
1733                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735                         int err = insert_page_in_batch_locked(mm, pte,
1736                                 addr, pages[curr_page_idx], prot);
1737                         if (unlikely(err)) {
1738                                 pte_unmap_unlock(start_pte, pte_lock);
1739                                 ret = err;
1740                                 remaining_pages_total -= pte_idx;
1741                                 goto out;
1742                         }
1743                         addr += PAGE_SIZE;
1744                         ++curr_page_idx;
1745                 }
1746                 pte_unmap_unlock(start_pte, pte_lock);
1747                 pages_to_write_in_pmd -= batch_size;
1748                 remaining_pages_total -= batch_size;
1749         }
1750         if (remaining_pages_total)
1751                 goto more;
1752         ret = 0;
1753 out:
1754         *num = remaining_pages_total;
1755         return ret;
1756 }
1757 #endif  /* ifdef pte_index */
1758
1759 /**
1760  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761  * @vma: user vma to map to
1762  * @addr: target start user address of these pages
1763  * @pages: source kernel pages
1764  * @num: in: number of pages to map. out: number of pages that were *not*
1765  * mapped. (0 means all pages were successfully mapped).
1766  *
1767  * Preferred over vm_insert_page() when inserting multiple pages.
1768  *
1769  * In case of error, we may have mapped a subset of the provided
1770  * pages. It is the caller's responsibility to account for this case.
1771  *
1772  * The same restrictions apply as in vm_insert_page().
1773  */
1774 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775                         struct page **pages, unsigned long *num)
1776 {
1777 #ifdef pte_index
1778         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779
1780         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781                 return -EFAULT;
1782         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1783                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1784                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1785                 vma->vm_flags |= VM_MIXEDMAP;
1786         }
1787         /* Defer page refcount checking till we're about to map that page. */
1788         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789 #else
1790         unsigned long idx = 0, pgcount = *num;
1791         int err = -EINVAL;
1792
1793         for (; idx < pgcount; ++idx) {
1794                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795                 if (err)
1796                         break;
1797         }
1798         *num = pgcount - idx;
1799         return err;
1800 #endif  /* ifdef pte_index */
1801 }
1802 EXPORT_SYMBOL(vm_insert_pages);
1803
1804 /**
1805  * vm_insert_page - insert single page into user vma
1806  * @vma: user vma to map to
1807  * @addr: target user address of this page
1808  * @page: source kernel page
1809  *
1810  * This allows drivers to insert individual pages they've allocated
1811  * into a user vma.
1812  *
1813  * The page has to be a nice clean _individual_ kernel allocation.
1814  * If you allocate a compound page, you need to have marked it as
1815  * such (__GFP_COMP), or manually just split the page up yourself
1816  * (see split_page()).
1817  *
1818  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819  * took an arbitrary page protection parameter. This doesn't allow
1820  * that. Your vma protection will have to be set up correctly, which
1821  * means that if you want a shared writable mapping, you'd better
1822  * ask for a shared writable mapping!
1823  *
1824  * The page does not need to be reserved.
1825  *
1826  * Usually this function is called from f_op->mmap() handler
1827  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1828  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829  * function from other places, for example from page-fault handler.
1830  *
1831  * Return: %0 on success, negative error code otherwise.
1832  */
1833 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834                         struct page *page)
1835 {
1836         if (addr < vma->vm_start || addr >= vma->vm_end)
1837                 return -EFAULT;
1838         if (!page_count(page))
1839                 return -EINVAL;
1840         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1841                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1842                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1843                 vma->vm_flags |= VM_MIXEDMAP;
1844         }
1845         return insert_page(vma, addr, page, vma->vm_page_prot);
1846 }
1847 EXPORT_SYMBOL(vm_insert_page);
1848
1849 /*
1850  * __vm_map_pages - maps range of kernel pages into user vma
1851  * @vma: user vma to map to
1852  * @pages: pointer to array of source kernel pages
1853  * @num: number of pages in page array
1854  * @offset: user's requested vm_pgoff
1855  *
1856  * This allows drivers to map range of kernel pages into a user vma.
1857  *
1858  * Return: 0 on success and error code otherwise.
1859  */
1860 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861                                 unsigned long num, unsigned long offset)
1862 {
1863         unsigned long count = vma_pages(vma);
1864         unsigned long uaddr = vma->vm_start;
1865         int ret, i;
1866
1867         /* Fail if the user requested offset is beyond the end of the object */
1868         if (offset >= num)
1869                 return -ENXIO;
1870
1871         /* Fail if the user requested size exceeds available object size */
1872         if (count > num - offset)
1873                 return -ENXIO;
1874
1875         for (i = 0; i < count; i++) {
1876                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877                 if (ret < 0)
1878                         return ret;
1879                 uaddr += PAGE_SIZE;
1880         }
1881
1882         return 0;
1883 }
1884
1885 /**
1886  * vm_map_pages - maps range of kernel pages starts with non zero offset
1887  * @vma: user vma to map to
1888  * @pages: pointer to array of source kernel pages
1889  * @num: number of pages in page array
1890  *
1891  * Maps an object consisting of @num pages, catering for the user's
1892  * requested vm_pgoff
1893  *
1894  * If we fail to insert any page into the vma, the function will return
1895  * immediately leaving any previously inserted pages present.  Callers
1896  * from the mmap handler may immediately return the error as their caller
1897  * will destroy the vma, removing any successfully inserted pages. Other
1898  * callers should make their own arrangements for calling unmap_region().
1899  *
1900  * Context: Process context. Called by mmap handlers.
1901  * Return: 0 on success and error code otherwise.
1902  */
1903 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904                                 unsigned long num)
1905 {
1906         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907 }
1908 EXPORT_SYMBOL(vm_map_pages);
1909
1910 /**
1911  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912  * @vma: user vma to map to
1913  * @pages: pointer to array of source kernel pages
1914  * @num: number of pages in page array
1915  *
1916  * Similar to vm_map_pages(), except that it explicitly sets the offset
1917  * to 0. This function is intended for the drivers that did not consider
1918  * vm_pgoff.
1919  *
1920  * Context: Process context. Called by mmap handlers.
1921  * Return: 0 on success and error code otherwise.
1922  */
1923 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924                                 unsigned long num)
1925 {
1926         return __vm_map_pages(vma, pages, num, 0);
1927 }
1928 EXPORT_SYMBOL(vm_map_pages_zero);
1929
1930 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1932 {
1933         struct mm_struct *mm = vma->vm_mm;
1934         pte_t *pte, entry;
1935         spinlock_t *ptl;
1936
1937         pte = get_locked_pte(mm, addr, &ptl);
1938         if (!pte)
1939                 return VM_FAULT_OOM;
1940         if (!pte_none(*pte)) {
1941                 if (mkwrite) {
1942                         /*
1943                          * For read faults on private mappings the PFN passed
1944                          * in may not match the PFN we have mapped if the
1945                          * mapped PFN is a writeable COW page.  In the mkwrite
1946                          * case we are creating a writable PTE for a shared
1947                          * mapping and we expect the PFNs to match. If they
1948                          * don't match, we are likely racing with block
1949                          * allocation and mapping invalidation so just skip the
1950                          * update.
1951                          */
1952                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1954                                 goto out_unlock;
1955                         }
1956                         entry = pte_mkyoung(*pte);
1957                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959                                 update_mmu_cache(vma, addr, pte);
1960                 }
1961                 goto out_unlock;
1962         }
1963
1964         /* Ok, finally just insert the thing.. */
1965         if (pfn_t_devmap(pfn))
1966                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967         else
1968                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1969
1970         if (mkwrite) {
1971                 entry = pte_mkyoung(entry);
1972                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973         }
1974
1975         set_pte_at(mm, addr, pte, entry);
1976         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1977
1978 out_unlock:
1979         pte_unmap_unlock(pte, ptl);
1980         return VM_FAULT_NOPAGE;
1981 }
1982
1983 /**
1984  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985  * @vma: user vma to map to
1986  * @addr: target user address of this page
1987  * @pfn: source kernel pfn
1988  * @pgprot: pgprot flags for the inserted page
1989  *
1990  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1991  * to override pgprot on a per-page basis.
1992  *
1993  * This only makes sense for IO mappings, and it makes no sense for
1994  * COW mappings.  In general, using multiple vmas is preferable;
1995  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1996  * impractical.
1997  *
1998  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999  * a value of @pgprot different from that of @vma->vm_page_prot.
2000  *
2001  * Context: Process context.  May allocate using %GFP_KERNEL.
2002  * Return: vm_fault_t value.
2003  */
2004 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005                         unsigned long pfn, pgprot_t pgprot)
2006 {
2007         /*
2008          * Technically, architectures with pte_special can avoid all these
2009          * restrictions (same for remap_pfn_range).  However we would like
2010          * consistency in testing and feature parity among all, so we should
2011          * try to keep these invariants in place for everybody.
2012          */
2013         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015                                                 (VM_PFNMAP|VM_MIXEDMAP));
2016         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018
2019         if (addr < vma->vm_start || addr >= vma->vm_end)
2020                 return VM_FAULT_SIGBUS;
2021
2022         if (!pfn_modify_allowed(pfn, pgprot))
2023                 return VM_FAULT_SIGBUS;
2024
2025         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026
2027         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2028                         false);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2031
2032 /**
2033  * vmf_insert_pfn - insert single pfn into user vma
2034  * @vma: user vma to map to
2035  * @addr: target user address of this page
2036  * @pfn: source kernel pfn
2037  *
2038  * Similar to vm_insert_page, this allows drivers to insert individual pages
2039  * they've allocated into a user vma. Same comments apply.
2040  *
2041  * This function should only be called from a vm_ops->fault handler, and
2042  * in that case the handler should return the result of this function.
2043  *
2044  * vma cannot be a COW mapping.
2045  *
2046  * As this is called only for pages that do not currently exist, we
2047  * do not need to flush old virtual caches or the TLB.
2048  *
2049  * Context: Process context.  May allocate using %GFP_KERNEL.
2050  * Return: vm_fault_t value.
2051  */
2052 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053                         unsigned long pfn)
2054 {
2055         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vmf_insert_pfn);
2058
2059 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060 {
2061         /* these checks mirror the abort conditions in vm_normal_page */
2062         if (vma->vm_flags & VM_MIXEDMAP)
2063                 return true;
2064         if (pfn_t_devmap(pfn))
2065                 return true;
2066         if (pfn_t_special(pfn))
2067                 return true;
2068         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069                 return true;
2070         return false;
2071 }
2072
2073 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2074                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075                 bool mkwrite)
2076 {
2077         int err;
2078
2079         BUG_ON(!vm_mixed_ok(vma, pfn));
2080
2081         if (addr < vma->vm_start || addr >= vma->vm_end)
2082                 return VM_FAULT_SIGBUS;
2083
2084         track_pfn_insert(vma, &pgprot, pfn);
2085
2086         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2087                 return VM_FAULT_SIGBUS;
2088
2089         /*
2090          * If we don't have pte special, then we have to use the pfn_valid()
2091          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092          * refcount the page if pfn_valid is true (hence insert_page rather
2093          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2094          * without pte special, it would there be refcounted as a normal page.
2095          */
2096         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2098                 struct page *page;
2099
2100                 /*
2101                  * At this point we are committed to insert_page()
2102                  * regardless of whether the caller specified flags that
2103                  * result in pfn_t_has_page() == false.
2104                  */
2105                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2106                 err = insert_page(vma, addr, page, pgprot);
2107         } else {
2108                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2109         }
2110
2111         if (err == -ENOMEM)
2112                 return VM_FAULT_OOM;
2113         if (err < 0 && err != -EBUSY)
2114                 return VM_FAULT_SIGBUS;
2115
2116         return VM_FAULT_NOPAGE;
2117 }
2118
2119 /**
2120  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  * @pgprot: pgprot flags for the inserted page
2125  *
2126  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2127  * to override pgprot on a per-page basis.
2128  *
2129  * Typically this function should be used by drivers to set caching- and
2130  * encryption bits different than those of @vma->vm_page_prot, because
2131  * the caching- or encryption mode may not be known at mmap() time.
2132  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133  * to set caching and encryption bits for those vmas (except for COW pages).
2134  * This is ensured by core vm only modifying these page table entries using
2135  * functions that don't touch caching- or encryption bits, using pte_modify()
2136  * if needed. (See for example mprotect()).
2137  * Also when new page-table entries are created, this is only done using the
2138  * fault() callback, and never using the value of vma->vm_page_prot,
2139  * except for page-table entries that point to anonymous pages as the result
2140  * of COW.
2141  *
2142  * Context: Process context.  May allocate using %GFP_KERNEL.
2143  * Return: vm_fault_t value.
2144  */
2145 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146                                  pfn_t pfn, pgprot_t pgprot)
2147 {
2148         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2151
2152 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153                 pfn_t pfn)
2154 {
2155         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed);
2158
2159 /*
2160  *  If the insertion of PTE failed because someone else already added a
2161  *  different entry in the mean time, we treat that as success as we assume
2162  *  the same entry was actually inserted.
2163  */
2164 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165                 unsigned long addr, pfn_t pfn)
2166 {
2167         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2170
2171 /*
2172  * maps a range of physical memory into the requested pages. the old
2173  * mappings are removed. any references to nonexistent pages results
2174  * in null mappings (currently treated as "copy-on-access")
2175  */
2176 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177                         unsigned long addr, unsigned long end,
2178                         unsigned long pfn, pgprot_t prot)
2179 {
2180         pte_t *pte;
2181         spinlock_t *ptl;
2182         int err = 0;
2183
2184         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2185         if (!pte)
2186                 return -ENOMEM;
2187         arch_enter_lazy_mmu_mode();
2188         do {
2189                 BUG_ON(!pte_none(*pte));
2190                 if (!pfn_modify_allowed(pfn, prot)) {
2191                         err = -EACCES;
2192                         break;
2193                 }
2194                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195                 pfn++;
2196         } while (pte++, addr += PAGE_SIZE, addr != end);
2197         arch_leave_lazy_mmu_mode();
2198         pte_unmap_unlock(pte - 1, ptl);
2199         return err;
2200 }
2201
2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203                         unsigned long addr, unsigned long end,
2204                         unsigned long pfn, pgprot_t prot)
2205 {
2206         pmd_t *pmd;
2207         unsigned long next;
2208         int err;
2209
2210         pfn -= addr >> PAGE_SHIFT;
2211         pmd = pmd_alloc(mm, pud, addr);
2212         if (!pmd)
2213                 return -ENOMEM;
2214         VM_BUG_ON(pmd_trans_huge(*pmd));
2215         do {
2216                 next = pmd_addr_end(addr, end);
2217                 err = remap_pte_range(mm, pmd, addr, next,
2218                                 pfn + (addr >> PAGE_SHIFT), prot);
2219                 if (err)
2220                         return err;
2221         } while (pmd++, addr = next, addr != end);
2222         return 0;
2223 }
2224
2225 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2226                         unsigned long addr, unsigned long end,
2227                         unsigned long pfn, pgprot_t prot)
2228 {
2229         pud_t *pud;
2230         unsigned long next;
2231         int err;
2232
2233         pfn -= addr >> PAGE_SHIFT;
2234         pud = pud_alloc(mm, p4d, addr);
2235         if (!pud)
2236                 return -ENOMEM;
2237         do {
2238                 next = pud_addr_end(addr, end);
2239                 err = remap_pmd_range(mm, pud, addr, next,
2240                                 pfn + (addr >> PAGE_SHIFT), prot);
2241                 if (err)
2242                         return err;
2243         } while (pud++, addr = next, addr != end);
2244         return 0;
2245 }
2246
2247 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248                         unsigned long addr, unsigned long end,
2249                         unsigned long pfn, pgprot_t prot)
2250 {
2251         p4d_t *p4d;
2252         unsigned long next;
2253         int err;
2254
2255         pfn -= addr >> PAGE_SHIFT;
2256         p4d = p4d_alloc(mm, pgd, addr);
2257         if (!p4d)
2258                 return -ENOMEM;
2259         do {
2260                 next = p4d_addr_end(addr, end);
2261                 err = remap_pud_range(mm, p4d, addr, next,
2262                                 pfn + (addr >> PAGE_SHIFT), prot);
2263                 if (err)
2264                         return err;
2265         } while (p4d++, addr = next, addr != end);
2266         return 0;
2267 }
2268
2269 /**
2270  * remap_pfn_range - remap kernel memory to userspace
2271  * @vma: user vma to map to
2272  * @addr: target page aligned user address to start at
2273  * @pfn: page frame number of kernel physical memory address
2274  * @size: size of mapping area
2275  * @prot: page protection flags for this mapping
2276  *
2277  * Note: this is only safe if the mm semaphore is held when called.
2278  *
2279  * Return: %0 on success, negative error code otherwise.
2280  */
2281 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282                     unsigned long pfn, unsigned long size, pgprot_t prot)
2283 {
2284         pgd_t *pgd;
2285         unsigned long next;
2286         unsigned long end = addr + PAGE_ALIGN(size);
2287         struct mm_struct *mm = vma->vm_mm;
2288         unsigned long remap_pfn = pfn;
2289         int err;
2290
2291         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292                 return -EINVAL;
2293
2294         /*
2295          * Physically remapped pages are special. Tell the
2296          * rest of the world about it:
2297          *   VM_IO tells people not to look at these pages
2298          *      (accesses can have side effects).
2299          *   VM_PFNMAP tells the core MM that the base pages are just
2300          *      raw PFN mappings, and do not have a "struct page" associated
2301          *      with them.
2302          *   VM_DONTEXPAND
2303          *      Disable vma merging and expanding with mremap().
2304          *   VM_DONTDUMP
2305          *      Omit vma from core dump, even when VM_IO turned off.
2306          *
2307          * There's a horrible special case to handle copy-on-write
2308          * behaviour that some programs depend on. We mark the "original"
2309          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2310          * See vm_normal_page() for details.
2311          */
2312         if (is_cow_mapping(vma->vm_flags)) {
2313                 if (addr != vma->vm_start || end != vma->vm_end)
2314                         return -EINVAL;
2315                 vma->vm_pgoff = pfn;
2316         }
2317
2318         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2319         if (err)
2320                 return -EINVAL;
2321
2322         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2323
2324         BUG_ON(addr >= end);
2325         pfn -= addr >> PAGE_SHIFT;
2326         pgd = pgd_offset(mm, addr);
2327         flush_cache_range(vma, addr, end);
2328         do {
2329                 next = pgd_addr_end(addr, end);
2330                 err = remap_p4d_range(mm, pgd, addr, next,
2331                                 pfn + (addr >> PAGE_SHIFT), prot);
2332                 if (err)
2333                         break;
2334         } while (pgd++, addr = next, addr != end);
2335
2336         if (err)
2337                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2338
2339         return err;
2340 }
2341 EXPORT_SYMBOL(remap_pfn_range);
2342
2343 /**
2344  * vm_iomap_memory - remap memory to userspace
2345  * @vma: user vma to map to
2346  * @start: start of the physical memory to be mapped
2347  * @len: size of area
2348  *
2349  * This is a simplified io_remap_pfn_range() for common driver use. The
2350  * driver just needs to give us the physical memory range to be mapped,
2351  * we'll figure out the rest from the vma information.
2352  *
2353  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354  * whatever write-combining details or similar.
2355  *
2356  * Return: %0 on success, negative error code otherwise.
2357  */
2358 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359 {
2360         unsigned long vm_len, pfn, pages;
2361
2362         /* Check that the physical memory area passed in looks valid */
2363         if (start + len < start)
2364                 return -EINVAL;
2365         /*
2366          * You *really* shouldn't map things that aren't page-aligned,
2367          * but we've historically allowed it because IO memory might
2368          * just have smaller alignment.
2369          */
2370         len += start & ~PAGE_MASK;
2371         pfn = start >> PAGE_SHIFT;
2372         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373         if (pfn + pages < pfn)
2374                 return -EINVAL;
2375
2376         /* We start the mapping 'vm_pgoff' pages into the area */
2377         if (vma->vm_pgoff > pages)
2378                 return -EINVAL;
2379         pfn += vma->vm_pgoff;
2380         pages -= vma->vm_pgoff;
2381
2382         /* Can we fit all of the mapping? */
2383         vm_len = vma->vm_end - vma->vm_start;
2384         if (vm_len >> PAGE_SHIFT > pages)
2385                 return -EINVAL;
2386
2387         /* Ok, let it rip */
2388         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389 }
2390 EXPORT_SYMBOL(vm_iomap_memory);
2391
2392 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393                                      unsigned long addr, unsigned long end,
2394                                      pte_fn_t fn, void *data, bool create,
2395                                      pgtbl_mod_mask *mask)
2396 {
2397         pte_t *pte;
2398         int err = 0;
2399         spinlock_t *ptl;
2400
2401         if (create) {
2402                 pte = (mm == &init_mm) ?
2403                         pte_alloc_kernel_track(pmd, addr, mask) :
2404                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405                 if (!pte)
2406                         return -ENOMEM;
2407         } else {
2408                 pte = (mm == &init_mm) ?
2409                         pte_offset_kernel(pmd, addr) :
2410                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2411         }
2412
2413         BUG_ON(pmd_huge(*pmd));
2414
2415         arch_enter_lazy_mmu_mode();
2416
2417         if (fn) {
2418                 do {
2419                         if (create || !pte_none(*pte)) {
2420                                 err = fn(pte++, addr, data);
2421                                 if (err)
2422                                         break;
2423                         }
2424                 } while (addr += PAGE_SIZE, addr != end);
2425         }
2426         *mask |= PGTBL_PTE_MODIFIED;
2427
2428         arch_leave_lazy_mmu_mode();
2429
2430         if (mm != &init_mm)
2431                 pte_unmap_unlock(pte-1, ptl);
2432         return err;
2433 }
2434
2435 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436                                      unsigned long addr, unsigned long end,
2437                                      pte_fn_t fn, void *data, bool create,
2438                                      pgtbl_mod_mask *mask)
2439 {
2440         pmd_t *pmd;
2441         unsigned long next;
2442         int err = 0;
2443
2444         BUG_ON(pud_huge(*pud));
2445
2446         if (create) {
2447                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2448                 if (!pmd)
2449                         return -ENOMEM;
2450         } else {
2451                 pmd = pmd_offset(pud, addr);
2452         }
2453         do {
2454                 next = pmd_addr_end(addr, end);
2455                 if (create || !pmd_none_or_clear_bad(pmd)) {
2456                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2457                                                  create, mask);
2458                         if (err)
2459                                 break;
2460                 }
2461         } while (pmd++, addr = next, addr != end);
2462         return err;
2463 }
2464
2465 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2466                                      unsigned long addr, unsigned long end,
2467                                      pte_fn_t fn, void *data, bool create,
2468                                      pgtbl_mod_mask *mask)
2469 {
2470         pud_t *pud;
2471         unsigned long next;
2472         int err = 0;
2473
2474         if (create) {
2475                 pud = pud_alloc_track(mm, p4d, addr, mask);
2476                 if (!pud)
2477                         return -ENOMEM;
2478         } else {
2479                 pud = pud_offset(p4d, addr);
2480         }
2481         do {
2482                 next = pud_addr_end(addr, end);
2483                 if (create || !pud_none_or_clear_bad(pud)) {
2484                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2485                                                  create, mask);
2486                         if (err)
2487                                 break;
2488                 }
2489         } while (pud++, addr = next, addr != end);
2490         return err;
2491 }
2492
2493 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494                                      unsigned long addr, unsigned long end,
2495                                      pte_fn_t fn, void *data, bool create,
2496                                      pgtbl_mod_mask *mask)
2497 {
2498         p4d_t *p4d;
2499         unsigned long next;
2500         int err = 0;
2501
2502         if (create) {
2503                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2504                 if (!p4d)
2505                         return -ENOMEM;
2506         } else {
2507                 p4d = p4d_offset(pgd, addr);
2508         }
2509         do {
2510                 next = p4d_addr_end(addr, end);
2511                 if (create || !p4d_none_or_clear_bad(p4d)) {
2512                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2513                                                  create, mask);
2514                         if (err)
2515                                 break;
2516                 }
2517         } while (p4d++, addr = next, addr != end);
2518         return err;
2519 }
2520
2521 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522                                  unsigned long size, pte_fn_t fn,
2523                                  void *data, bool create)
2524 {
2525         pgd_t *pgd;
2526         unsigned long start = addr, next;
2527         unsigned long end = addr + size;
2528         pgtbl_mod_mask mask = 0;
2529         int err = 0;
2530
2531         if (WARN_ON(addr >= end))
2532                 return -EINVAL;
2533
2534         pgd = pgd_offset(mm, addr);
2535         do {
2536                 next = pgd_addr_end(addr, end);
2537                 if (!create && pgd_none_or_clear_bad(pgd))
2538                         continue;
2539                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2540                 if (err)
2541                         break;
2542         } while (pgd++, addr = next, addr != end);
2543
2544         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545                 arch_sync_kernel_mappings(start, start + size);
2546
2547         return err;
2548 }
2549
2550 /*
2551  * Scan a region of virtual memory, filling in page tables as necessary
2552  * and calling a provided function on each leaf page table.
2553  */
2554 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555                         unsigned long size, pte_fn_t fn, void *data)
2556 {
2557         return __apply_to_page_range(mm, addr, size, fn, data, true);
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560
2561 /*
2562  * Scan a region of virtual memory, calling a provided function on
2563  * each leaf page table where it exists.
2564  *
2565  * Unlike apply_to_page_range, this does _not_ fill in page tables
2566  * where they are absent.
2567  */
2568 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569                                  unsigned long size, pte_fn_t fn, void *data)
2570 {
2571         return __apply_to_page_range(mm, addr, size, fn, data, false);
2572 }
2573 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574
2575 /*
2576  * handle_pte_fault chooses page fault handler according to an entry which was
2577  * read non-atomically.  Before making any commitment, on those architectures
2578  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579  * parts, do_swap_page must check under lock before unmapping the pte and
2580  * proceeding (but do_wp_page is only called after already making such a check;
2581  * and do_anonymous_page can safely check later on).
2582  */
2583 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2584                                 pte_t *page_table, pte_t orig_pte)
2585 {
2586         int same = 1;
2587 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2588         if (sizeof(pte_t) > sizeof(unsigned long)) {
2589                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2590                 spin_lock(ptl);
2591                 same = pte_same(*page_table, orig_pte);
2592                 spin_unlock(ptl);
2593         }
2594 #endif
2595         pte_unmap(page_table);
2596         return same;
2597 }
2598
2599 static inline bool cow_user_page(struct page *dst, struct page *src,
2600                                  struct vm_fault *vmf)
2601 {
2602         bool ret;
2603         void *kaddr;
2604         void __user *uaddr;
2605         bool locked = false;
2606         struct vm_area_struct *vma = vmf->vma;
2607         struct mm_struct *mm = vma->vm_mm;
2608         unsigned long addr = vmf->address;
2609
2610         if (likely(src)) {
2611                 copy_user_highpage(dst, src, addr, vma);
2612                 return true;
2613         }
2614
2615         /*
2616          * If the source page was a PFN mapping, we don't have
2617          * a "struct page" for it. We do a best-effort copy by
2618          * just copying from the original user address. If that
2619          * fails, we just zero-fill it. Live with it.
2620          */
2621         kaddr = kmap_atomic(dst);
2622         uaddr = (void __user *)(addr & PAGE_MASK);
2623
2624         /*
2625          * On architectures with software "accessed" bits, we would
2626          * take a double page fault, so mark it accessed here.
2627          */
2628         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2629                 pte_t entry;
2630
2631                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2632                 locked = true;
2633                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634                         /*
2635                          * Other thread has already handled the fault
2636                          * and update local tlb only
2637                          */
2638                         update_mmu_tlb(vma, addr, vmf->pte);
2639                         ret = false;
2640                         goto pte_unlock;
2641                 }
2642
2643                 entry = pte_mkyoung(vmf->orig_pte);
2644                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645                         update_mmu_cache(vma, addr, vmf->pte);
2646         }
2647
2648         /*
2649          * This really shouldn't fail, because the page is there
2650          * in the page tables. But it might just be unreadable,
2651          * in which case we just give up and fill the result with
2652          * zeroes.
2653          */
2654         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2655                 if (locked)
2656                         goto warn;
2657
2658                 /* Re-validate under PTL if the page is still mapped */
2659                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660                 locked = true;
2661                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2662                         /* The PTE changed under us, update local tlb */
2663                         update_mmu_tlb(vma, addr, vmf->pte);
2664                         ret = false;
2665                         goto pte_unlock;
2666                 }
2667
2668                 /*
2669                  * The same page can be mapped back since last copy attempt.
2670                  * Try to copy again under PTL.
2671                  */
2672                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673                         /*
2674                          * Give a warn in case there can be some obscure
2675                          * use-case
2676                          */
2677 warn:
2678                         WARN_ON_ONCE(1);
2679                         clear_page(kaddr);
2680                 }
2681         }
2682
2683         ret = true;
2684
2685 pte_unlock:
2686         if (locked)
2687                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688         kunmap_atomic(kaddr);
2689         flush_dcache_page(dst);
2690
2691         return ret;
2692 }
2693
2694 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695 {
2696         struct file *vm_file = vma->vm_file;
2697
2698         if (vm_file)
2699                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700
2701         /*
2702          * Special mappings (e.g. VDSO) do not have any file so fake
2703          * a default GFP_KERNEL for them.
2704          */
2705         return GFP_KERNEL;
2706 }
2707
2708 /*
2709  * Notify the address space that the page is about to become writable so that
2710  * it can prohibit this or wait for the page to get into an appropriate state.
2711  *
2712  * We do this without the lock held, so that it can sleep if it needs to.
2713  */
2714 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2715 {
2716         vm_fault_t ret;
2717         struct page *page = vmf->page;
2718         unsigned int old_flags = vmf->flags;
2719
2720         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2721
2722         if (vmf->vma->vm_file &&
2723             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724                 return VM_FAULT_SIGBUS;
2725
2726         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2727         /* Restore original flags so that caller is not surprised */
2728         vmf->flags = old_flags;
2729         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730                 return ret;
2731         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732                 lock_page(page);
2733                 if (!page->mapping) {
2734                         unlock_page(page);
2735                         return 0; /* retry */
2736                 }
2737                 ret |= VM_FAULT_LOCKED;
2738         } else
2739                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2740         return ret;
2741 }
2742
2743 /*
2744  * Handle dirtying of a page in shared file mapping on a write fault.
2745  *
2746  * The function expects the page to be locked and unlocks it.
2747  */
2748 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2749 {
2750         struct vm_area_struct *vma = vmf->vma;
2751         struct address_space *mapping;
2752         struct page *page = vmf->page;
2753         bool dirtied;
2754         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755
2756         dirtied = set_page_dirty(page);
2757         VM_BUG_ON_PAGE(PageAnon(page), page);
2758         /*
2759          * Take a local copy of the address_space - page.mapping may be zeroed
2760          * by truncate after unlock_page().   The address_space itself remains
2761          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2762          * release semantics to prevent the compiler from undoing this copying.
2763          */
2764         mapping = page_rmapping(page);
2765         unlock_page(page);
2766
2767         if (!page_mkwrite)
2768                 file_update_time(vma->vm_file);
2769
2770         /*
2771          * Throttle page dirtying rate down to writeback speed.
2772          *
2773          * mapping may be NULL here because some device drivers do not
2774          * set page.mapping but still dirty their pages
2775          *
2776          * Drop the mmap_lock before waiting on IO, if we can. The file
2777          * is pinning the mapping, as per above.
2778          */
2779         if ((dirtied || page_mkwrite) && mapping) {
2780                 struct file *fpin;
2781
2782                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2783                 balance_dirty_pages_ratelimited(mapping);
2784                 if (fpin) {
2785                         fput(fpin);
2786                         return VM_FAULT_RETRY;
2787                 }
2788         }
2789
2790         return 0;
2791 }
2792
2793 /*
2794  * Handle write page faults for pages that can be reused in the current vma
2795  *
2796  * This can happen either due to the mapping being with the VM_SHARED flag,
2797  * or due to us being the last reference standing to the page. In either
2798  * case, all we need to do here is to mark the page as writable and update
2799  * any related book-keeping.
2800  */
2801 static inline void wp_page_reuse(struct vm_fault *vmf)
2802         __releases(vmf->ptl)
2803 {
2804         struct vm_area_struct *vma = vmf->vma;
2805         struct page *page = vmf->page;
2806         pte_t entry;
2807         /*
2808          * Clear the pages cpupid information as the existing
2809          * information potentially belongs to a now completely
2810          * unrelated process.
2811          */
2812         if (page)
2813                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814
2815         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816         entry = pte_mkyoung(vmf->orig_pte);
2817         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819                 update_mmu_cache(vma, vmf->address, vmf->pte);
2820         pte_unmap_unlock(vmf->pte, vmf->ptl);
2821         count_vm_event(PGREUSE);
2822 }
2823
2824 /*
2825  * Handle the case of a page which we actually need to copy to a new page.
2826  *
2827  * Called with mmap_lock locked and the old page referenced, but
2828  * without the ptl held.
2829  *
2830  * High level logic flow:
2831  *
2832  * - Allocate a page, copy the content of the old page to the new one.
2833  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834  * - Take the PTL. If the pte changed, bail out and release the allocated page
2835  * - If the pte is still the way we remember it, update the page table and all
2836  *   relevant references. This includes dropping the reference the page-table
2837  *   held to the old page, as well as updating the rmap.
2838  * - In any case, unlock the PTL and drop the reference we took to the old page.
2839  */
2840 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2841 {
2842         struct vm_area_struct *vma = vmf->vma;
2843         struct mm_struct *mm = vma->vm_mm;
2844         struct page *old_page = vmf->page;
2845         struct page *new_page = NULL;
2846         pte_t entry;
2847         int page_copied = 0;
2848         struct mmu_notifier_range range;
2849
2850         if (unlikely(anon_vma_prepare(vma)))
2851                 goto oom;
2852
2853         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2854                 new_page = alloc_zeroed_user_highpage_movable(vma,
2855                                                               vmf->address);
2856                 if (!new_page)
2857                         goto oom;
2858         } else {
2859                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2860                                 vmf->address);
2861                 if (!new_page)
2862                         goto oom;
2863
2864                 if (!cow_user_page(new_page, old_page, vmf)) {
2865                         /*
2866                          * COW failed, if the fault was solved by other,
2867                          * it's fine. If not, userspace would re-fault on
2868                          * the same address and we will handle the fault
2869                          * from the second attempt.
2870                          */
2871                         put_page(new_page);
2872                         if (old_page)
2873                                 put_page(old_page);
2874                         return 0;
2875                 }
2876         }
2877
2878         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2879                 goto oom_free_new;
2880         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2881
2882         __SetPageUptodate(new_page);
2883
2884         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2885                                 vmf->address & PAGE_MASK,
2886                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2887         mmu_notifier_invalidate_range_start(&range);
2888
2889         /*
2890          * Re-check the pte - we dropped the lock
2891          */
2892         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2893         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2894                 if (old_page) {
2895                         if (!PageAnon(old_page)) {
2896                                 dec_mm_counter_fast(mm,
2897                                                 mm_counter_file(old_page));
2898                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2899                         }
2900                 } else {
2901                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2902                 }
2903                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2904                 entry = mk_pte(new_page, vma->vm_page_prot);
2905                 entry = pte_sw_mkyoung(entry);
2906                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2907
2908                 /*
2909                  * Clear the pte entry and flush it first, before updating the
2910                  * pte with the new entry, to keep TLBs on different CPUs in
2911                  * sync. This code used to set the new PTE then flush TLBs, but
2912                  * that left a window where the new PTE could be loaded into
2913                  * some TLBs while the old PTE remains in others.
2914                  */
2915                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2916                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2917                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2918                 /*
2919                  * We call the notify macro here because, when using secondary
2920                  * mmu page tables (such as kvm shadow page tables), we want the
2921                  * new page to be mapped directly into the secondary page table.
2922                  */
2923                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2924                 update_mmu_cache(vma, vmf->address, vmf->pte);
2925                 if (old_page) {
2926                         /*
2927                          * Only after switching the pte to the new page may
2928                          * we remove the mapcount here. Otherwise another
2929                          * process may come and find the rmap count decremented
2930                          * before the pte is switched to the new page, and
2931                          * "reuse" the old page writing into it while our pte
2932                          * here still points into it and can be read by other
2933                          * threads.
2934                          *
2935                          * The critical issue is to order this
2936                          * page_remove_rmap with the ptp_clear_flush above.
2937                          * Those stores are ordered by (if nothing else,)
2938                          * the barrier present in the atomic_add_negative
2939                          * in page_remove_rmap.
2940                          *
2941                          * Then the TLB flush in ptep_clear_flush ensures that
2942                          * no process can access the old page before the
2943                          * decremented mapcount is visible. And the old page
2944                          * cannot be reused until after the decremented
2945                          * mapcount is visible. So transitively, TLBs to
2946                          * old page will be flushed before it can be reused.
2947                          */
2948                         page_remove_rmap(old_page, false);
2949                 }
2950
2951                 /* Free the old page.. */
2952                 new_page = old_page;
2953                 page_copied = 1;
2954         } else {
2955                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2956         }
2957
2958         if (new_page)
2959                 put_page(new_page);
2960
2961         pte_unmap_unlock(vmf->pte, vmf->ptl);
2962         /*
2963          * No need to double call mmu_notifier->invalidate_range() callback as
2964          * the above ptep_clear_flush_notify() did already call it.
2965          */
2966         mmu_notifier_invalidate_range_only_end(&range);
2967         if (old_page) {
2968                 /*
2969                  * Don't let another task, with possibly unlocked vma,
2970                  * keep the mlocked page.
2971                  */
2972                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2973                         lock_page(old_page);    /* LRU manipulation */
2974                         if (PageMlocked(old_page))
2975                                 munlock_vma_page(old_page);
2976                         unlock_page(old_page);
2977                 }
2978                 put_page(old_page);
2979         }
2980         return page_copied ? VM_FAULT_WRITE : 0;
2981 oom_free_new:
2982         put_page(new_page);
2983 oom:
2984         if (old_page)
2985                 put_page(old_page);
2986         return VM_FAULT_OOM;
2987 }
2988
2989 /**
2990  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2991  *                        writeable once the page is prepared
2992  *
2993  * @vmf: structure describing the fault
2994  *
2995  * This function handles all that is needed to finish a write page fault in a
2996  * shared mapping due to PTE being read-only once the mapped page is prepared.
2997  * It handles locking of PTE and modifying it.
2998  *
2999  * The function expects the page to be locked or other protection against
3000  * concurrent faults / writeback (such as DAX radix tree locks).
3001  *
3002  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3003  * we acquired PTE lock.
3004  */
3005 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3006 {
3007         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3008         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3009                                        &vmf->ptl);
3010         /*
3011          * We might have raced with another page fault while we released the
3012          * pte_offset_map_lock.
3013          */
3014         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3015                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3016                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3017                 return VM_FAULT_NOPAGE;
3018         }
3019         wp_page_reuse(vmf);
3020         return 0;
3021 }
3022
3023 /*
3024  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3025  * mapping
3026  */
3027 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3028 {
3029         struct vm_area_struct *vma = vmf->vma;
3030
3031         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3032                 vm_fault_t ret;
3033
3034                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3035                 vmf->flags |= FAULT_FLAG_MKWRITE;
3036                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3037                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3038                         return ret;
3039                 return finish_mkwrite_fault(vmf);
3040         }
3041         wp_page_reuse(vmf);
3042         return VM_FAULT_WRITE;
3043 }
3044
3045 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3046         __releases(vmf->ptl)
3047 {
3048         struct vm_area_struct *vma = vmf->vma;
3049         vm_fault_t ret = VM_FAULT_WRITE;
3050
3051         get_page(vmf->page);
3052
3053         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3054                 vm_fault_t tmp;
3055
3056                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3057                 tmp = do_page_mkwrite(vmf);
3058                 if (unlikely(!tmp || (tmp &
3059                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3060                         put_page(vmf->page);
3061                         return tmp;
3062                 }
3063                 tmp = finish_mkwrite_fault(vmf);
3064                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3065                         unlock_page(vmf->page);
3066                         put_page(vmf->page);
3067                         return tmp;
3068                 }
3069         } else {
3070                 wp_page_reuse(vmf);
3071                 lock_page(vmf->page);
3072         }
3073         ret |= fault_dirty_shared_page(vmf);
3074         put_page(vmf->page);
3075
3076         return ret;
3077 }
3078
3079 /*
3080  * This routine handles present pages, when users try to write
3081  * to a shared page. It is done by copying the page to a new address
3082  * and decrementing the shared-page counter for the old page.
3083  *
3084  * Note that this routine assumes that the protection checks have been
3085  * done by the caller (the low-level page fault routine in most cases).
3086  * Thus we can safely just mark it writable once we've done any necessary
3087  * COW.
3088  *
3089  * We also mark the page dirty at this point even though the page will
3090  * change only once the write actually happens. This avoids a few races,
3091  * and potentially makes it more efficient.
3092  *
3093  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3094  * but allow concurrent faults), with pte both mapped and locked.
3095  * We return with mmap_lock still held, but pte unmapped and unlocked.
3096  */
3097 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3098         __releases(vmf->ptl)
3099 {
3100         struct vm_area_struct *vma = vmf->vma;
3101
3102         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3103                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3104                 return handle_userfault(vmf, VM_UFFD_WP);
3105         }
3106
3107         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3108         if (!vmf->page) {
3109                 /*
3110                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3111                  * VM_PFNMAP VMA.
3112                  *
3113                  * We should not cow pages in a shared writeable mapping.
3114                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3115                  */
3116                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3117                                      (VM_WRITE|VM_SHARED))
3118                         return wp_pfn_shared(vmf);
3119
3120                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3121                 return wp_page_copy(vmf);
3122         }
3123
3124         /*
3125          * Take out anonymous pages first, anonymous shared vmas are
3126          * not dirty accountable.
3127          */
3128         if (PageAnon(vmf->page)) {
3129                 struct page *page = vmf->page;
3130
3131                 /* PageKsm() doesn't necessarily raise the page refcount */
3132                 if (PageKsm(page) || page_count(page) != 1)
3133                         goto copy;
3134                 if (!trylock_page(page))
3135                         goto copy;
3136                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3137                         unlock_page(page);
3138                         goto copy;
3139                 }
3140                 /*
3141                  * Ok, we've got the only map reference, and the only
3142                  * page count reference, and the page is locked,
3143                  * it's dark out, and we're wearing sunglasses. Hit it.
3144                  */
3145                 unlock_page(page);
3146                 wp_page_reuse(vmf);
3147                 return VM_FAULT_WRITE;
3148         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3149                                         (VM_WRITE|VM_SHARED))) {
3150                 return wp_page_shared(vmf);
3151         }
3152 copy:
3153         /*
3154          * Ok, we need to copy. Oh, well..
3155          */
3156         get_page(vmf->page);
3157
3158         pte_unmap_unlock(vmf->pte, vmf->ptl);
3159         return wp_page_copy(vmf);
3160 }
3161
3162 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3163                 unsigned long start_addr, unsigned long end_addr,
3164                 struct zap_details *details)
3165 {
3166         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3167 }
3168
3169 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3170                                             struct zap_details *details)
3171 {
3172         struct vm_area_struct *vma;
3173         pgoff_t vba, vea, zba, zea;
3174
3175         vma_interval_tree_foreach(vma, root,
3176                         details->first_index, details->last_index) {
3177
3178                 vba = vma->vm_pgoff;
3179                 vea = vba + vma_pages(vma) - 1;
3180                 zba = details->first_index;
3181                 if (zba < vba)
3182                         zba = vba;
3183                 zea = details->last_index;
3184                 if (zea > vea)
3185                         zea = vea;
3186
3187                 unmap_mapping_range_vma(vma,
3188                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3189                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3190                                 details);
3191         }
3192 }
3193
3194 /**
3195  * unmap_mapping_pages() - Unmap pages from processes.
3196  * @mapping: The address space containing pages to be unmapped.
3197  * @start: Index of first page to be unmapped.
3198  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3199  * @even_cows: Whether to unmap even private COWed pages.
3200  *
3201  * Unmap the pages in this address space from any userspace process which
3202  * has them mmaped.  Generally, you want to remove COWed pages as well when
3203  * a file is being truncated, but not when invalidating pages from the page
3204  * cache.
3205  */
3206 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3207                 pgoff_t nr, bool even_cows)
3208 {
3209         struct zap_details details = { };
3210
3211         details.check_mapping = even_cows ? NULL : mapping;
3212         details.first_index = start;
3213         details.last_index = start + nr - 1;
3214         if (details.last_index < details.first_index)
3215                 details.last_index = ULONG_MAX;
3216
3217         i_mmap_lock_write(mapping);
3218         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3219                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3220         i_mmap_unlock_write(mapping);
3221 }
3222
3223 /**
3224  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3225  * address_space corresponding to the specified byte range in the underlying
3226  * file.
3227  *
3228  * @mapping: the address space containing mmaps to be unmapped.
3229  * @holebegin: byte in first page to unmap, relative to the start of
3230  * the underlying file.  This will be rounded down to a PAGE_SIZE
3231  * boundary.  Note that this is different from truncate_pagecache(), which
3232  * must keep the partial page.  In contrast, we must get rid of
3233  * partial pages.
3234  * @holelen: size of prospective hole in bytes.  This will be rounded
3235  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3236  * end of the file.
3237  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3238  * but 0 when invalidating pagecache, don't throw away private data.
3239  */
3240 void unmap_mapping_range(struct address_space *mapping,
3241                 loff_t const holebegin, loff_t const holelen, int even_cows)
3242 {
3243         pgoff_t hba = holebegin >> PAGE_SHIFT;
3244         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3245
3246         /* Check for overflow. */
3247         if (sizeof(holelen) > sizeof(hlen)) {
3248                 long long holeend =
3249                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3250                 if (holeend & ~(long long)ULONG_MAX)
3251                         hlen = ULONG_MAX - hba + 1;
3252         }
3253
3254         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3255 }
3256 EXPORT_SYMBOL(unmap_mapping_range);
3257
3258 /*
3259  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3260  * but allow concurrent faults), and pte mapped but not yet locked.
3261  * We return with pte unmapped and unlocked.
3262  *
3263  * We return with the mmap_lock locked or unlocked in the same cases
3264  * as does filemap_fault().
3265  */
3266 vm_fault_t do_swap_page(struct vm_fault *vmf)
3267 {
3268         struct vm_area_struct *vma = vmf->vma;
3269         struct page *page = NULL, *swapcache;
3270         swp_entry_t entry;
3271         pte_t pte;
3272         int locked;
3273         int exclusive = 0;
3274         vm_fault_t ret = 0;
3275         void *shadow = NULL;
3276
3277         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3278                 goto out;
3279
3280         entry = pte_to_swp_entry(vmf->orig_pte);
3281         if (unlikely(non_swap_entry(entry))) {
3282                 if (is_migration_entry(entry)) {
3283                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3284                                              vmf->address);
3285                 } else if (is_device_private_entry(entry)) {
3286                         vmf->page = device_private_entry_to_page(entry);
3287                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3288                 } else if (is_hwpoison_entry(entry)) {
3289                         ret = VM_FAULT_HWPOISON;
3290                 } else {
3291                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3292                         ret = VM_FAULT_SIGBUS;
3293                 }
3294                 goto out;
3295         }
3296
3297
3298         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3299         page = lookup_swap_cache(entry, vma, vmf->address);
3300         swapcache = page;
3301
3302         if (!page) {
3303                 struct swap_info_struct *si = swp_swap_info(entry);
3304
3305                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3306                     __swap_count(entry) == 1) {
3307                         /* skip swapcache */
3308                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3309                                                         vmf->address);
3310                         if (page) {
3311                                 int err;
3312
3313                                 __SetPageLocked(page);
3314                                 __SetPageSwapBacked(page);
3315                                 set_page_private(page, entry.val);
3316
3317                                 /* Tell memcg to use swap ownership records */
3318                                 SetPageSwapCache(page);
3319                                 err = mem_cgroup_charge(page, vma->vm_mm,
3320                                                         GFP_KERNEL);
3321                                 ClearPageSwapCache(page);
3322                                 if (err) {
3323                                         ret = VM_FAULT_OOM;
3324                                         goto out_page;
3325                                 }
3326
3327                                 shadow = get_shadow_from_swap_cache(entry);
3328                                 if (shadow)
3329                                         workingset_refault(page, shadow);
3330
3331                                 lru_cache_add(page);
3332                                 swap_readpage(page, true);
3333                         }
3334                 } else {
3335                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3336                                                 vmf);
3337                         swapcache = page;
3338                 }
3339
3340                 if (!page) {
3341                         /*
3342                          * Back out if somebody else faulted in this pte
3343                          * while we released the pte lock.
3344                          */
3345                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3346                                         vmf->address, &vmf->ptl);
3347                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3348                                 ret = VM_FAULT_OOM;
3349                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3350                         goto unlock;
3351                 }
3352
3353                 /* Had to read the page from swap area: Major fault */
3354                 ret = VM_FAULT_MAJOR;
3355                 count_vm_event(PGMAJFAULT);
3356                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3357         } else if (PageHWPoison(page)) {
3358                 /*
3359                  * hwpoisoned dirty swapcache pages are kept for killing
3360                  * owner processes (which may be unknown at hwpoison time)
3361                  */
3362                 ret = VM_FAULT_HWPOISON;
3363                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3364                 goto out_release;
3365         }
3366
3367         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3368
3369         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3370         if (!locked) {
3371                 ret |= VM_FAULT_RETRY;
3372                 goto out_release;
3373         }
3374
3375         /*
3376          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3377          * release the swapcache from under us.  The page pin, and pte_same
3378          * test below, are not enough to exclude that.  Even if it is still
3379          * swapcache, we need to check that the page's swap has not changed.
3380          */
3381         if (unlikely((!PageSwapCache(page) ||
3382                         page_private(page) != entry.val)) && swapcache)
3383                 goto out_page;
3384
3385         page = ksm_might_need_to_copy(page, vma, vmf->address);
3386         if (unlikely(!page)) {
3387                 ret = VM_FAULT_OOM;
3388                 page = swapcache;
3389                 goto out_page;
3390         }
3391
3392         cgroup_throttle_swaprate(page, GFP_KERNEL);
3393
3394         /*
3395          * Back out if somebody else already faulted in this pte.
3396          */
3397         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3398                         &vmf->ptl);
3399         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3400                 goto out_nomap;
3401
3402         if (unlikely(!PageUptodate(page))) {
3403                 ret = VM_FAULT_SIGBUS;
3404                 goto out_nomap;
3405         }
3406
3407         /*
3408          * The page isn't present yet, go ahead with the fault.
3409          *
3410          * Be careful about the sequence of operations here.
3411          * To get its accounting right, reuse_swap_page() must be called
3412          * while the page is counted on swap but not yet in mapcount i.e.
3413          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3414          * must be called after the swap_free(), or it will never succeed.
3415          */
3416
3417         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3418         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3419         pte = mk_pte(page, vma->vm_page_prot);
3420         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3421                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3422                 vmf->flags &= ~FAULT_FLAG_WRITE;
3423                 ret |= VM_FAULT_WRITE;
3424                 exclusive = RMAP_EXCLUSIVE;
3425         }
3426         flush_icache_page(vma, page);
3427         if (pte_swp_soft_dirty(vmf->orig_pte))
3428                 pte = pte_mksoft_dirty(pte);
3429         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3430                 pte = pte_mkuffd_wp(pte);
3431                 pte = pte_wrprotect(pte);
3432         }
3433         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3434         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3435         vmf->orig_pte = pte;
3436
3437         /* ksm created a completely new copy */
3438         if (unlikely(page != swapcache && swapcache)) {
3439                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3440                 lru_cache_add_inactive_or_unevictable(page, vma);
3441         } else {
3442                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3443         }
3444
3445         swap_free(entry);
3446         if (mem_cgroup_swap_full(page) ||
3447             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3448                 try_to_free_swap(page);
3449         unlock_page(page);
3450         if (page != swapcache && swapcache) {
3451                 /*
3452                  * Hold the lock to avoid the swap entry to be reused
3453                  * until we take the PT lock for the pte_same() check
3454                  * (to avoid false positives from pte_same). For
3455                  * further safety release the lock after the swap_free
3456                  * so that the swap count won't change under a
3457                  * parallel locked swapcache.
3458                  */
3459                 unlock_page(swapcache);
3460                 put_page(swapcache);
3461         }
3462
3463         if (vmf->flags & FAULT_FLAG_WRITE) {
3464                 ret |= do_wp_page(vmf);
3465                 if (ret & VM_FAULT_ERROR)
3466                         ret &= VM_FAULT_ERROR;
3467                 goto out;
3468         }
3469
3470         /* No need to invalidate - it was non-present before */
3471         update_mmu_cache(vma, vmf->address, vmf->pte);
3472 unlock:
3473         pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 out:
3475         return ret;
3476 out_nomap:
3477         pte_unmap_unlock(vmf->pte, vmf->ptl);
3478 out_page:
3479         unlock_page(page);
3480 out_release:
3481         put_page(page);
3482         if (page != swapcache && swapcache) {
3483                 unlock_page(swapcache);
3484                 put_page(swapcache);
3485         }
3486         return ret;
3487 }
3488
3489 /*
3490  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3491  * but allow concurrent faults), and pte mapped but not yet locked.
3492  * We return with mmap_lock still held, but pte unmapped and unlocked.
3493  */
3494 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3495 {
3496         struct vm_area_struct *vma = vmf->vma;
3497         struct page *page;
3498         vm_fault_t ret = 0;
3499         pte_t entry;
3500
3501         /* File mapping without ->vm_ops ? */
3502         if (vma->vm_flags & VM_SHARED)
3503                 return VM_FAULT_SIGBUS;
3504
3505         /*
3506          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3507          * pte_offset_map() on pmds where a huge pmd might be created
3508          * from a different thread.
3509          *
3510          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3511          * parallel threads are excluded by other means.
3512          *
3513          * Here we only have mmap_read_lock(mm).
3514          */
3515         if (pte_alloc(vma->vm_mm, vmf->pmd))
3516                 return VM_FAULT_OOM;
3517
3518         /* See comment in handle_pte_fault() */
3519         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3520                 return 0;
3521
3522         /* Use the zero-page for reads */
3523         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3524                         !mm_forbids_zeropage(vma->vm_mm)) {
3525                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3526                                                 vma->vm_page_prot));
3527                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3528                                 vmf->address, &vmf->ptl);
3529                 if (!pte_none(*vmf->pte)) {
3530                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3531                         goto unlock;
3532                 }
3533                 ret = check_stable_address_space(vma->vm_mm);
3534                 if (ret)
3535                         goto unlock;
3536                 /* Deliver the page fault to userland, check inside PT lock */
3537                 if (userfaultfd_missing(vma)) {
3538                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3539                         return handle_userfault(vmf, VM_UFFD_MISSING);
3540                 }
3541                 goto setpte;
3542         }
3543
3544         /* Allocate our own private page. */
3545         if (unlikely(anon_vma_prepare(vma)))
3546                 goto oom;
3547         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3548         if (!page)
3549                 goto oom;
3550
3551         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3552                 goto oom_free_page;
3553         cgroup_throttle_swaprate(page, GFP_KERNEL);
3554
3555         /*
3556          * The memory barrier inside __SetPageUptodate makes sure that
3557          * preceding stores to the page contents become visible before
3558          * the set_pte_at() write.
3559          */
3560         __SetPageUptodate(page);
3561
3562         entry = mk_pte(page, vma->vm_page_prot);
3563         entry = pte_sw_mkyoung(entry);
3564         if (vma->vm_flags & VM_WRITE)
3565                 entry = pte_mkwrite(pte_mkdirty(entry));
3566
3567         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3568                         &vmf->ptl);
3569         if (!pte_none(*vmf->pte)) {
3570                 update_mmu_cache(vma, vmf->address, vmf->pte);
3571                 goto release;
3572         }
3573
3574         ret = check_stable_address_space(vma->vm_mm);
3575         if (ret)
3576                 goto release;
3577
3578         /* Deliver the page fault to userland, check inside PT lock */
3579         if (userfaultfd_missing(vma)) {
3580                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3581                 put_page(page);
3582                 return handle_userfault(vmf, VM_UFFD_MISSING);
3583         }
3584
3585         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3586         page_add_new_anon_rmap(page, vma, vmf->address, false);
3587         lru_cache_add_inactive_or_unevictable(page, vma);
3588 setpte:
3589         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3590
3591         /* No need to invalidate - it was non-present before */
3592         update_mmu_cache(vma, vmf->address, vmf->pte);
3593 unlock:
3594         pte_unmap_unlock(vmf->pte, vmf->ptl);
3595         return ret;
3596 release:
3597         put_page(page);
3598         goto unlock;
3599 oom_free_page:
3600         put_page(page);
3601 oom:
3602         return VM_FAULT_OOM;
3603 }
3604
3605 /*
3606  * The mmap_lock must have been held on entry, and may have been
3607  * released depending on flags and vma->vm_ops->fault() return value.
3608  * See filemap_fault() and __lock_page_retry().
3609  */
3610 static vm_fault_t __do_fault(struct vm_fault *vmf)
3611 {
3612         struct vm_area_struct *vma = vmf->vma;
3613         vm_fault_t ret;
3614
3615         /*
3616          * Preallocate pte before we take page_lock because this might lead to
3617          * deadlocks for memcg reclaim which waits for pages under writeback:
3618          *                              lock_page(A)
3619          *                              SetPageWriteback(A)
3620          *                              unlock_page(A)
3621          * lock_page(B)
3622          *                              lock_page(B)
3623          * pte_alloc_one
3624          *   shrink_page_list
3625          *     wait_on_page_writeback(A)
3626          *                              SetPageWriteback(B)
3627          *                              unlock_page(B)
3628          *                              # flush A, B to clear the writeback
3629          */
3630         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3631                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3632                 if (!vmf->prealloc_pte)
3633                         return VM_FAULT_OOM;
3634                 smp_wmb(); /* See comment in __pte_alloc() */
3635         }
3636
3637         ret = vma->vm_ops->fault(vmf);
3638         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3639                             VM_FAULT_DONE_COW)))
3640                 return ret;
3641
3642         if (unlikely(PageHWPoison(vmf->page))) {
3643                 if (ret & VM_FAULT_LOCKED)
3644                         unlock_page(vmf->page);
3645                 put_page(vmf->page);
3646                 vmf->page = NULL;
3647                 return VM_FAULT_HWPOISON;
3648         }
3649
3650         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3651                 lock_page(vmf->page);
3652         else
3653                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3654
3655         return ret;
3656 }
3657
3658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3659 static void deposit_prealloc_pte(struct vm_fault *vmf)
3660 {
3661         struct vm_area_struct *vma = vmf->vma;
3662
3663         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3664         /*
3665          * We are going to consume the prealloc table,
3666          * count that as nr_ptes.
3667          */
3668         mm_inc_nr_ptes(vma->vm_mm);
3669         vmf->prealloc_pte = NULL;
3670 }
3671
3672 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3673 {
3674         struct vm_area_struct *vma = vmf->vma;
3675         bool write = vmf->flags & FAULT_FLAG_WRITE;
3676         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3677         pmd_t entry;
3678         int i;
3679         vm_fault_t ret = VM_FAULT_FALLBACK;
3680
3681         if (!transhuge_vma_suitable(vma, haddr))
3682                 return ret;
3683
3684         page = compound_head(page);
3685         if (compound_order(page) != HPAGE_PMD_ORDER)
3686                 return ret;
3687
3688         /*
3689          * Archs like ppc64 need additonal space to store information
3690          * related to pte entry. Use the preallocated table for that.
3691          */
3692         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3693                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3694                 if (!vmf->prealloc_pte)
3695                         return VM_FAULT_OOM;
3696                 smp_wmb(); /* See comment in __pte_alloc() */
3697         }
3698
3699         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3700         if (unlikely(!pmd_none(*vmf->pmd)))
3701                 goto out;
3702
3703         for (i = 0; i < HPAGE_PMD_NR; i++)
3704                 flush_icache_page(vma, page + i);
3705
3706         entry = mk_huge_pmd(page, vma->vm_page_prot);
3707         if (write)
3708                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3709
3710         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3711         page_add_file_rmap(page, true);
3712         /*
3713          * deposit and withdraw with pmd lock held
3714          */
3715         if (arch_needs_pgtable_deposit())
3716                 deposit_prealloc_pte(vmf);
3717
3718         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3719
3720         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3721
3722         /* fault is handled */
3723         ret = 0;
3724         count_vm_event(THP_FILE_MAPPED);
3725 out:
3726         spin_unlock(vmf->ptl);
3727         return ret;
3728 }
3729 #else
3730 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3731 {
3732         return VM_FAULT_FALLBACK;
3733 }
3734 #endif
3735
3736 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3737 {
3738         struct vm_area_struct *vma = vmf->vma;
3739         bool write = vmf->flags & FAULT_FLAG_WRITE;
3740         bool prefault = vmf->address != addr;
3741         pte_t entry;
3742
3743         flush_icache_page(vma, page);
3744         entry = mk_pte(page, vma->vm_page_prot);
3745
3746         if (prefault && arch_wants_old_prefaulted_pte())
3747                 entry = pte_mkold(entry);
3748         else
3749                 entry = pte_sw_mkyoung(entry);
3750
3751         if (write)
3752                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3753         /* copy-on-write page */
3754         if (write && !(vma->vm_flags & VM_SHARED)) {
3755                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3756                 page_add_new_anon_rmap(page, vma, addr, false);
3757                 lru_cache_add_inactive_or_unevictable(page, vma);
3758         } else {
3759                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3760                 page_add_file_rmap(page, false);
3761         }
3762         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3763 }
3764
3765 /**
3766  * finish_fault - finish page fault once we have prepared the page to fault
3767  *
3768  * @vmf: structure describing the fault
3769  *
3770  * This function handles all that is needed to finish a page fault once the
3771  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3772  * given page, adds reverse page mapping, handles memcg charges and LRU
3773  * addition.
3774  *
3775  * The function expects the page to be locked and on success it consumes a
3776  * reference of a page being mapped (for the PTE which maps it).
3777  *
3778  * Return: %0 on success, %VM_FAULT_ code in case of error.
3779  */
3780 vm_fault_t finish_fault(struct vm_fault *vmf)
3781 {
3782         struct vm_area_struct *vma = vmf->vma;
3783         struct page *page;
3784         vm_fault_t ret;
3785
3786         /* Did we COW the page? */
3787         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3788                 page = vmf->cow_page;
3789         else
3790                 page = vmf->page;
3791
3792         /*
3793          * check even for read faults because we might have lost our CoWed
3794          * page
3795          */
3796         if (!(vma->vm_flags & VM_SHARED)) {
3797                 ret = check_stable_address_space(vma->vm_mm);
3798                 if (ret)
3799                         return ret;
3800         }
3801
3802         if (pmd_none(*vmf->pmd)) {
3803                 if (PageTransCompound(page)) {
3804                         ret = do_set_pmd(vmf, page);
3805                         if (ret != VM_FAULT_FALLBACK)
3806                                 return ret;
3807                 }
3808
3809                 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3810                         return VM_FAULT_OOM;
3811         }
3812
3813         /* See comment in handle_pte_fault() */
3814         if (pmd_devmap_trans_unstable(vmf->pmd))
3815                 return 0;
3816
3817         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3818                                       vmf->address, &vmf->ptl);
3819         ret = 0;
3820         /* Re-check under ptl */
3821         if (likely(pte_none(*vmf->pte)))
3822                 do_set_pte(vmf, page, vmf->address);
3823         else
3824                 ret = VM_FAULT_NOPAGE;
3825
3826         update_mmu_tlb(vma, vmf->address, vmf->pte);
3827         pte_unmap_unlock(vmf->pte, vmf->ptl);
3828         return ret;
3829 }
3830
3831 static unsigned long fault_around_bytes __read_mostly =
3832         rounddown_pow_of_two(65536);
3833
3834 #ifdef CONFIG_DEBUG_FS
3835 static int fault_around_bytes_get(void *data, u64 *val)
3836 {
3837         *val = fault_around_bytes;
3838         return 0;
3839 }
3840
3841 /*
3842  * fault_around_bytes must be rounded down to the nearest page order as it's
3843  * what do_fault_around() expects to see.
3844  */
3845 static int fault_around_bytes_set(void *data, u64 val)
3846 {
3847         if (val / PAGE_SIZE > PTRS_PER_PTE)
3848                 return -EINVAL;
3849         if (val > PAGE_SIZE)
3850                 fault_around_bytes = rounddown_pow_of_two(val);
3851         else
3852                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3853         return 0;
3854 }
3855 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3856                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3857
3858 static int __init fault_around_debugfs(void)
3859 {
3860         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3861                                    &fault_around_bytes_fops);
3862         return 0;
3863 }
3864 late_initcall(fault_around_debugfs);
3865 #endif
3866
3867 /*
3868  * do_fault_around() tries to map few pages around the fault address. The hope
3869  * is that the pages will be needed soon and this will lower the number of
3870  * faults to handle.
3871  *
3872  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3873  * not ready to be mapped: not up-to-date, locked, etc.
3874  *
3875  * This function is called with the page table lock taken. In the split ptlock
3876  * case the page table lock only protects only those entries which belong to
3877  * the page table corresponding to the fault address.
3878  *
3879  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3880  * only once.
3881  *
3882  * fault_around_bytes defines how many bytes we'll try to map.
3883  * do_fault_around() expects it to be set to a power of two less than or equal
3884  * to PTRS_PER_PTE.
3885  *
3886  * The virtual address of the area that we map is naturally aligned to
3887  * fault_around_bytes rounded down to the machine page size
3888  * (and therefore to page order).  This way it's easier to guarantee
3889  * that we don't cross page table boundaries.
3890  */
3891 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3892 {
3893         unsigned long address = vmf->address, nr_pages, mask;
3894         pgoff_t start_pgoff = vmf->pgoff;
3895         pgoff_t end_pgoff;
3896         int off;
3897
3898         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3899         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3900
3901         address = max(address & mask, vmf->vma->vm_start);
3902         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3903         start_pgoff -= off;
3904
3905         /*
3906          *  end_pgoff is either the end of the page table, the end of
3907          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3908          */
3909         end_pgoff = start_pgoff -
3910                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3911                 PTRS_PER_PTE - 1;
3912         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3913                         start_pgoff + nr_pages - 1);
3914
3915         if (pmd_none(*vmf->pmd)) {
3916                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3917                 if (!vmf->prealloc_pte)
3918                         return VM_FAULT_OOM;
3919                 smp_wmb(); /* See comment in __pte_alloc() */
3920         }
3921
3922         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3923 }
3924
3925 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3926 {
3927         struct vm_area_struct *vma = vmf->vma;
3928         vm_fault_t ret = 0;
3929
3930         /*
3931          * Let's call ->map_pages() first and use ->fault() as fallback
3932          * if page by the offset is not ready to be mapped (cold cache or
3933          * something).
3934          */
3935         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3936                 ret = do_fault_around(vmf);
3937                 if (ret)
3938                         return ret;
3939         }
3940
3941         ret = __do_fault(vmf);
3942         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3943                 return ret;
3944
3945         ret |= finish_fault(vmf);
3946         unlock_page(vmf->page);
3947         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3948                 put_page(vmf->page);
3949         return ret;
3950 }
3951
3952 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3953 {
3954         struct vm_area_struct *vma = vmf->vma;
3955         vm_fault_t ret;
3956
3957         if (unlikely(anon_vma_prepare(vma)))
3958                 return VM_FAULT_OOM;
3959
3960         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3961         if (!vmf->cow_page)
3962                 return VM_FAULT_OOM;
3963
3964         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3965                 put_page(vmf->cow_page);
3966                 return VM_FAULT_OOM;
3967         }
3968         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3969
3970         ret = __do_fault(vmf);
3971         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3972                 goto uncharge_out;
3973         if (ret & VM_FAULT_DONE_COW)
3974                 return ret;
3975
3976         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3977         __SetPageUptodate(vmf->cow_page);
3978
3979         ret |= finish_fault(vmf);
3980         unlock_page(vmf->page);
3981         put_page(vmf->page);
3982         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3983                 goto uncharge_out;
3984         return ret;
3985 uncharge_out:
3986         put_page(vmf->cow_page);
3987         return ret;
3988 }
3989
3990 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3991 {
3992         struct vm_area_struct *vma = vmf->vma;
3993         vm_fault_t ret, tmp;
3994
3995         ret = __do_fault(vmf);
3996         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3997                 return ret;
3998
3999         /*
4000          * Check if the backing address space wants to know that the page is
4001          * about to become writable
4002          */
4003         if (vma->vm_ops->page_mkwrite) {
4004                 unlock_page(vmf->page);
4005                 tmp = do_page_mkwrite(vmf);
4006                 if (unlikely(!tmp ||
4007                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4008                         put_page(vmf->page);
4009                         return tmp;
4010                 }
4011         }
4012
4013         ret |= finish_fault(vmf);
4014         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4015                                         VM_FAULT_RETRY))) {
4016                 unlock_page(vmf->page);
4017                 put_page(vmf->page);
4018                 return ret;
4019         }
4020
4021         ret |= fault_dirty_shared_page(vmf);
4022         return ret;
4023 }
4024
4025 /*
4026  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4027  * but allow concurrent faults).
4028  * The mmap_lock may have been released depending on flags and our
4029  * return value.  See filemap_fault() and __lock_page_or_retry().
4030  * If mmap_lock is released, vma may become invalid (for example
4031  * by other thread calling munmap()).
4032  */
4033 static vm_fault_t do_fault(struct vm_fault *vmf)
4034 {
4035         struct vm_area_struct *vma = vmf->vma;
4036         struct mm_struct *vm_mm = vma->vm_mm;
4037         vm_fault_t ret;
4038
4039         /*
4040          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4041          */
4042         if (!vma->vm_ops->fault) {
4043                 /*
4044                  * If we find a migration pmd entry or a none pmd entry, which
4045                  * should never happen, return SIGBUS
4046                  */
4047                 if (unlikely(!pmd_present(*vmf->pmd)))
4048                         ret = VM_FAULT_SIGBUS;
4049                 else {
4050                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4051                                                        vmf->pmd,
4052                                                        vmf->address,
4053                                                        &vmf->ptl);
4054                         /*
4055                          * Make sure this is not a temporary clearing of pte
4056                          * by holding ptl and checking again. A R/M/W update
4057                          * of pte involves: take ptl, clearing the pte so that
4058                          * we don't have concurrent modification by hardware
4059                          * followed by an update.
4060                          */
4061                         if (unlikely(pte_none(*vmf->pte)))
4062                                 ret = VM_FAULT_SIGBUS;
4063                         else
4064                                 ret = VM_FAULT_NOPAGE;
4065
4066                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4067                 }
4068         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4069                 ret = do_read_fault(vmf);
4070         else if (!(vma->vm_flags & VM_SHARED))
4071                 ret = do_cow_fault(vmf);
4072         else
4073                 ret = do_shared_fault(vmf);
4074
4075         /* preallocated pagetable is unused: free it */
4076         if (vmf->prealloc_pte) {
4077                 pte_free(vm_mm, vmf->prealloc_pte);
4078                 vmf->prealloc_pte = NULL;
4079         }
4080         return ret;
4081 }
4082
4083 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4084                                 unsigned long addr, int page_nid,
4085                                 int *flags)
4086 {
4087         get_page(page);
4088
4089         count_vm_numa_event(NUMA_HINT_FAULTS);
4090         if (page_nid == numa_node_id()) {
4091                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4092                 *flags |= TNF_FAULT_LOCAL;
4093         }
4094
4095         return mpol_misplaced(page, vma, addr);
4096 }
4097
4098 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4099 {
4100         struct vm_area_struct *vma = vmf->vma;
4101         struct page *page = NULL;
4102         int page_nid = NUMA_NO_NODE;
4103         int last_cpupid;
4104         int target_nid;
4105         bool migrated = false;
4106         pte_t pte, old_pte;
4107         bool was_writable = pte_savedwrite(vmf->orig_pte);
4108         int flags = 0;
4109
4110         /*
4111          * The "pte" at this point cannot be used safely without
4112          * validation through pte_unmap_same(). It's of NUMA type but
4113          * the pfn may be screwed if the read is non atomic.
4114          */
4115         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4116         spin_lock(vmf->ptl);
4117         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4118                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4119                 goto out;
4120         }
4121
4122         /*
4123          * Make it present again, Depending on how arch implementes non
4124          * accessible ptes, some can allow access by kernel mode.
4125          */
4126         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4127         pte = pte_modify(old_pte, vma->vm_page_prot);
4128         pte = pte_mkyoung(pte);
4129         if (was_writable)
4130                 pte = pte_mkwrite(pte);
4131         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4132         update_mmu_cache(vma, vmf->address, vmf->pte);
4133
4134         page = vm_normal_page(vma, vmf->address, pte);
4135         if (!page) {
4136                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4137                 return 0;
4138         }
4139
4140         /* TODO: handle PTE-mapped THP */
4141         if (PageCompound(page)) {
4142                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4143                 return 0;
4144         }
4145
4146         /*
4147          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4148          * much anyway since they can be in shared cache state. This misses
4149          * the case where a mapping is writable but the process never writes
4150          * to it but pte_write gets cleared during protection updates and
4151          * pte_dirty has unpredictable behaviour between PTE scan updates,
4152          * background writeback, dirty balancing and application behaviour.
4153          */
4154         if (!pte_write(pte))
4155                 flags |= TNF_NO_GROUP;
4156
4157         /*
4158          * Flag if the page is shared between multiple address spaces. This
4159          * is later used when determining whether to group tasks together
4160          */
4161         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4162                 flags |= TNF_SHARED;
4163
4164         last_cpupid = page_cpupid_last(page);
4165         page_nid = page_to_nid(page);
4166         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4167                         &flags);
4168         pte_unmap_unlock(vmf->pte, vmf->ptl);
4169         if (target_nid == NUMA_NO_NODE) {
4170                 put_page(page);
4171                 goto out;
4172         }
4173
4174         /* Migrate to the requested node */
4175         migrated = migrate_misplaced_page(page, vma, target_nid);
4176         if (migrated) {
4177                 page_nid = target_nid;
4178                 flags |= TNF_MIGRATED;
4179         } else
4180                 flags |= TNF_MIGRATE_FAIL;
4181
4182 out:
4183         if (page_nid != NUMA_NO_NODE)
4184                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4185         return 0;
4186 }
4187
4188 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4189 {
4190         if (vma_is_anonymous(vmf->vma))
4191                 return do_huge_pmd_anonymous_page(vmf);
4192         if (vmf->vma->vm_ops->huge_fault)
4193                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4194         return VM_FAULT_FALLBACK;
4195 }
4196
4197 /* `inline' is required to avoid gcc 4.1.2 build error */
4198 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4199 {
4200         if (vma_is_anonymous(vmf->vma)) {
4201                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4202                         return handle_userfault(vmf, VM_UFFD_WP);
4203                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4204         }
4205         if (vmf->vma->vm_ops->huge_fault) {
4206                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4207
4208                 if (!(ret & VM_FAULT_FALLBACK))
4209                         return ret;
4210         }
4211
4212         /* COW or write-notify handled on pte level: split pmd. */
4213         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4214
4215         return VM_FAULT_FALLBACK;
4216 }
4217
4218 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4219 {
4220 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4221         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4222         /* No support for anonymous transparent PUD pages yet */
4223         if (vma_is_anonymous(vmf->vma))
4224                 goto split;
4225         if (vmf->vma->vm_ops->huge_fault) {
4226                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4227
4228                 if (!(ret & VM_FAULT_FALLBACK))
4229                         return ret;
4230         }
4231 split:
4232         /* COW or write-notify not handled on PUD level: split pud.*/
4233         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4234 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4235         return VM_FAULT_FALLBACK;
4236 }
4237
4238 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4239 {
4240 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4241         /* No support for anonymous transparent PUD pages yet */
4242         if (vma_is_anonymous(vmf->vma))
4243                 return VM_FAULT_FALLBACK;
4244         if (vmf->vma->vm_ops->huge_fault)
4245                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4246 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4247         return VM_FAULT_FALLBACK;
4248 }
4249
4250 /*
4251  * These routines also need to handle stuff like marking pages dirty
4252  * and/or accessed for architectures that don't do it in hardware (most
4253  * RISC architectures).  The early dirtying is also good on the i386.
4254  *
4255  * There is also a hook called "update_mmu_cache()" that architectures
4256  * with external mmu caches can use to update those (ie the Sparc or
4257  * PowerPC hashed page tables that act as extended TLBs).
4258  *
4259  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4260  * concurrent faults).
4261  *
4262  * The mmap_lock may have been released depending on flags and our return value.
4263  * See filemap_fault() and __lock_page_or_retry().
4264  */
4265 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4266 {
4267         pte_t entry;
4268
4269         if (unlikely(pmd_none(*vmf->pmd))) {
4270                 /*
4271                  * Leave __pte_alloc() until later: because vm_ops->fault may
4272                  * want to allocate huge page, and if we expose page table
4273                  * for an instant, it will be difficult to retract from
4274                  * concurrent faults and from rmap lookups.
4275                  */
4276                 vmf->pte = NULL;
4277         } else {
4278                 /*
4279                  * If a huge pmd materialized under us just retry later.  Use
4280                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4281                  * of pmd_trans_huge() to ensure the pmd didn't become
4282                  * pmd_trans_huge under us and then back to pmd_none, as a
4283                  * result of MADV_DONTNEED running immediately after a huge pmd
4284                  * fault in a different thread of this mm, in turn leading to a
4285                  * misleading pmd_trans_huge() retval. All we have to ensure is
4286                  * that it is a regular pmd that we can walk with
4287                  * pte_offset_map() and we can do that through an atomic read
4288                  * in C, which is what pmd_trans_unstable() provides.
4289                  */
4290                 if (pmd_devmap_trans_unstable(vmf->pmd))
4291                         return 0;
4292                 /*
4293                  * A regular pmd is established and it can't morph into a huge
4294                  * pmd from under us anymore at this point because we hold the
4295                  * mmap_lock read mode and khugepaged takes it in write mode.
4296                  * So now it's safe to run pte_offset_map().
4297                  */
4298                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4299                 vmf->orig_pte = *vmf->pte;
4300
4301                 /*
4302                  * some architectures can have larger ptes than wordsize,
4303                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4304                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4305                  * accesses.  The code below just needs a consistent view
4306                  * for the ifs and we later double check anyway with the
4307                  * ptl lock held. So here a barrier will do.
4308                  */
4309                 barrier();
4310                 if (pte_none(vmf->orig_pte)) {
4311                         pte_unmap(vmf->pte);
4312                         vmf->pte = NULL;
4313                 }
4314         }
4315
4316         if (!vmf->pte) {
4317                 if (vma_is_anonymous(vmf->vma))
4318                         return do_anonymous_page(vmf);
4319                 else
4320                         return do_fault(vmf);
4321         }
4322
4323         if (!pte_present(vmf->orig_pte))
4324                 return do_swap_page(vmf);
4325
4326         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4327                 return do_numa_page(vmf);
4328
4329         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4330         spin_lock(vmf->ptl);
4331         entry = vmf->orig_pte;
4332         if (unlikely(!pte_same(*vmf->pte, entry))) {
4333                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4334                 goto unlock;
4335         }
4336         if (vmf->flags & FAULT_FLAG_WRITE) {
4337                 if (!pte_write(entry))
4338                         return do_wp_page(vmf);
4339                 entry = pte_mkdirty(entry);
4340         }
4341         entry = pte_mkyoung(entry);
4342         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4343                                 vmf->flags & FAULT_FLAG_WRITE)) {
4344                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4345         } else {
4346                 /* Skip spurious TLB flush for retried page fault */
4347                 if (vmf->flags & FAULT_FLAG_TRIED)
4348                         goto unlock;
4349                 /*
4350                  * This is needed only for protection faults but the arch code
4351                  * is not yet telling us if this is a protection fault or not.
4352                  * This still avoids useless tlb flushes for .text page faults
4353                  * with threads.
4354                  */
4355                 if (vmf->flags & FAULT_FLAG_WRITE)
4356                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4357         }
4358 unlock:
4359         pte_unmap_unlock(vmf->pte, vmf->ptl);
4360         return 0;
4361 }
4362
4363 /*
4364  * By the time we get here, we already hold the mm semaphore
4365  *
4366  * The mmap_lock may have been released depending on flags and our
4367  * return value.  See filemap_fault() and __lock_page_or_retry().
4368  */
4369 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4370                 unsigned long address, unsigned int flags)
4371 {
4372         struct vm_fault vmf = {
4373                 .vma = vma,
4374                 .address = address & PAGE_MASK,
4375                 .flags = flags,
4376                 .pgoff = linear_page_index(vma, address),
4377                 .gfp_mask = __get_fault_gfp_mask(vma),
4378         };
4379         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4380         struct mm_struct *mm = vma->vm_mm;
4381         pgd_t *pgd;
4382         p4d_t *p4d;
4383         vm_fault_t ret;
4384
4385         pgd = pgd_offset(mm, address);
4386         p4d = p4d_alloc(mm, pgd, address);
4387         if (!p4d)
4388                 return VM_FAULT_OOM;
4389
4390         vmf.pud = pud_alloc(mm, p4d, address);
4391         if (!vmf.pud)
4392                 return VM_FAULT_OOM;
4393 retry_pud:
4394         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4395                 ret = create_huge_pud(&vmf);
4396                 if (!(ret & VM_FAULT_FALLBACK))
4397                         return ret;
4398         } else {
4399                 pud_t orig_pud = *vmf.pud;
4400
4401                 barrier();
4402                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4403
4404                         /* NUMA case for anonymous PUDs would go here */
4405
4406                         if (dirty && !pud_write(orig_pud)) {
4407                                 ret = wp_huge_pud(&vmf, orig_pud);
4408                                 if (!(ret & VM_FAULT_FALLBACK))
4409                                         return ret;
4410                         } else {
4411                                 huge_pud_set_accessed(&vmf, orig_pud);
4412                                 return 0;
4413                         }
4414                 }
4415         }
4416
4417         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4418         if (!vmf.pmd)
4419                 return VM_FAULT_OOM;
4420
4421         /* Huge pud page fault raced with pmd_alloc? */
4422         if (pud_trans_unstable(vmf.pud))
4423                 goto retry_pud;
4424
4425         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4426                 ret = create_huge_pmd(&vmf);
4427                 if (!(ret & VM_FAULT_FALLBACK))
4428                         return ret;
4429         } else {
4430                 pmd_t orig_pmd = *vmf.pmd;
4431
4432                 barrier();
4433                 if (unlikely(is_swap_pmd(orig_pmd))) {
4434                         VM_BUG_ON(thp_migration_supported() &&
4435                                           !is_pmd_migration_entry(orig_pmd));
4436                         if (is_pmd_migration_entry(orig_pmd))
4437                                 pmd_migration_entry_wait(mm, vmf.pmd);
4438                         return 0;
4439                 }
4440                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4441                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4442                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4443
4444                         if (dirty && !pmd_write(orig_pmd)) {
4445                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4446                                 if (!(ret & VM_FAULT_FALLBACK))
4447                                         return ret;
4448                         } else {
4449                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4450                                 return 0;
4451                         }
4452                 }
4453         }
4454
4455         return handle_pte_fault(&vmf);
4456 }
4457
4458 /**
4459  * mm_account_fault - Do page fault accountings
4460  *
4461  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4462  *        of perf event counters, but we'll still do the per-task accounting to
4463  *        the task who triggered this page fault.
4464  * @address: the faulted address.
4465  * @flags: the fault flags.
4466  * @ret: the fault retcode.
4467  *
4468  * This will take care of most of the page fault accountings.  Meanwhile, it
4469  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4470  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4471  * still be in per-arch page fault handlers at the entry of page fault.
4472  */
4473 static inline void mm_account_fault(struct pt_regs *regs,
4474                                     unsigned long address, unsigned int flags,
4475                                     vm_fault_t ret)
4476 {
4477         bool major;
4478
4479         /*
4480          * We don't do accounting for some specific faults:
4481          *
4482          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4483          *   includes arch_vma_access_permitted() failing before reaching here.
4484          *   So this is not a "this many hardware page faults" counter.  We
4485          *   should use the hw profiling for that.
4486          *
4487          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4488          *   once they're completed.
4489          */
4490         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4491                 return;
4492
4493         /*
4494          * We define the fault as a major fault when the final successful fault
4495          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4496          * handle it immediately previously).
4497          */
4498         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4499
4500         if (major)
4501                 current->maj_flt++;
4502         else
4503                 current->min_flt++;
4504
4505         /*
4506          * If the fault is done for GUP, regs will be NULL.  We only do the
4507          * accounting for the per thread fault counters who triggered the
4508          * fault, and we skip the perf event updates.
4509          */
4510         if (!regs)
4511                 return;
4512
4513         if (major)
4514                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4515         else
4516                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4517 }
4518
4519 /*
4520  * By the time we get here, we already hold the mm semaphore
4521  *
4522  * The mmap_lock may have been released depending on flags and our
4523  * return value.  See filemap_fault() and __lock_page_or_retry().
4524  */
4525 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4526                            unsigned int flags, struct pt_regs *regs)
4527 {
4528         vm_fault_t ret;
4529
4530         __set_current_state(TASK_RUNNING);
4531
4532         count_vm_event(PGFAULT);
4533         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4534
4535         /* do counter updates before entering really critical section. */
4536         check_sync_rss_stat(current);
4537
4538         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4539                                             flags & FAULT_FLAG_INSTRUCTION,
4540                                             flags & FAULT_FLAG_REMOTE))
4541                 return VM_FAULT_SIGSEGV;
4542
4543         /*
4544          * Enable the memcg OOM handling for faults triggered in user
4545          * space.  Kernel faults are handled more gracefully.
4546          */
4547         if (flags & FAULT_FLAG_USER)
4548                 mem_cgroup_enter_user_fault();
4549
4550         if (unlikely(is_vm_hugetlb_page(vma)))
4551                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4552         else
4553                 ret = __handle_mm_fault(vma, address, flags);
4554
4555         if (flags & FAULT_FLAG_USER) {
4556                 mem_cgroup_exit_user_fault();
4557                 /*
4558                  * The task may have entered a memcg OOM situation but
4559                  * if the allocation error was handled gracefully (no
4560                  * VM_FAULT_OOM), there is no need to kill anything.
4561                  * Just clean up the OOM state peacefully.
4562                  */
4563                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4564                         mem_cgroup_oom_synchronize(false);
4565         }
4566
4567         mm_account_fault(regs, address, flags, ret);
4568
4569         return ret;
4570 }
4571 EXPORT_SYMBOL_GPL(handle_mm_fault);
4572
4573 #ifndef __PAGETABLE_P4D_FOLDED
4574 /*
4575  * Allocate p4d page table.
4576  * We've already handled the fast-path in-line.
4577  */
4578 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4579 {
4580         p4d_t *new = p4d_alloc_one(mm, address);
4581         if (!new)
4582                 return -ENOMEM;
4583
4584         smp_wmb(); /* See comment in __pte_alloc */
4585
4586         spin_lock(&mm->page_table_lock);
4587         if (pgd_present(*pgd))          /* Another has populated it */
4588                 p4d_free(mm, new);
4589         else
4590                 pgd_populate(mm, pgd, new);
4591         spin_unlock(&mm->page_table_lock);
4592         return 0;
4593 }
4594 #endif /* __PAGETABLE_P4D_FOLDED */
4595
4596 #ifndef __PAGETABLE_PUD_FOLDED
4597 /*
4598  * Allocate page upper directory.
4599  * We've already handled the fast-path in-line.
4600  */
4601 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4602 {
4603         pud_t *new = pud_alloc_one(mm, address);
4604         if (!new)
4605                 return -ENOMEM;
4606
4607         smp_wmb(); /* See comment in __pte_alloc */
4608
4609         spin_lock(&mm->page_table_lock);
4610         if (!p4d_present(*p4d)) {
4611                 mm_inc_nr_puds(mm);
4612                 p4d_populate(mm, p4d, new);
4613         } else  /* Another has populated it */
4614                 pud_free(mm, new);
4615         spin_unlock(&mm->page_table_lock);
4616         return 0;
4617 }
4618 #endif /* __PAGETABLE_PUD_FOLDED */
4619
4620 #ifndef __PAGETABLE_PMD_FOLDED
4621 /*
4622  * Allocate page middle directory.
4623  * We've already handled the fast-path in-line.
4624  */
4625 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4626 {
4627         spinlock_t *ptl;
4628         pmd_t *new = pmd_alloc_one(mm, address);
4629         if (!new)
4630                 return -ENOMEM;
4631
4632         smp_wmb(); /* See comment in __pte_alloc */
4633
4634         ptl = pud_lock(mm, pud);
4635         if (!pud_present(*pud)) {
4636                 mm_inc_nr_pmds(mm);
4637                 pud_populate(mm, pud, new);
4638         } else  /* Another has populated it */
4639                 pmd_free(mm, new);
4640         spin_unlock(ptl);
4641         return 0;
4642 }
4643 #endif /* __PAGETABLE_PMD_FOLDED */
4644
4645 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4646                           struct mmu_notifier_range *range, pte_t **ptepp,
4647                           pmd_t **pmdpp, spinlock_t **ptlp)
4648 {
4649         pgd_t *pgd;
4650         p4d_t *p4d;
4651         pud_t *pud;
4652         pmd_t *pmd;
4653         pte_t *ptep;
4654
4655         pgd = pgd_offset(mm, address);
4656         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4657                 goto out;
4658
4659         p4d = p4d_offset(pgd, address);
4660         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4661                 goto out;
4662
4663         pud = pud_offset(p4d, address);
4664         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4665                 goto out;
4666
4667         pmd = pmd_offset(pud, address);
4668         VM_BUG_ON(pmd_trans_huge(*pmd));
4669
4670         if (pmd_huge(*pmd)) {
4671                 if (!pmdpp)
4672                         goto out;
4673
4674                 if (range) {
4675                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4676                                                 NULL, mm, address & PMD_MASK,
4677                                                 (address & PMD_MASK) + PMD_SIZE);
4678                         mmu_notifier_invalidate_range_start(range);
4679                 }
4680                 *ptlp = pmd_lock(mm, pmd);
4681                 if (pmd_huge(*pmd)) {
4682                         *pmdpp = pmd;
4683                         return 0;
4684                 }
4685                 spin_unlock(*ptlp);
4686                 if (range)
4687                         mmu_notifier_invalidate_range_end(range);
4688         }
4689
4690         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4691                 goto out;
4692
4693         if (range) {
4694                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4695                                         address & PAGE_MASK,
4696                                         (address & PAGE_MASK) + PAGE_SIZE);
4697                 mmu_notifier_invalidate_range_start(range);
4698         }
4699         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4700         if (!pte_present(*ptep))
4701                 goto unlock;
4702         *ptepp = ptep;
4703         return 0;
4704 unlock:
4705         pte_unmap_unlock(ptep, *ptlp);
4706         if (range)
4707                 mmu_notifier_invalidate_range_end(range);
4708 out:
4709         return -EINVAL;
4710 }
4711
4712 /**
4713  * follow_pte - look up PTE at a user virtual address
4714  * @mm: the mm_struct of the target address space
4715  * @address: user virtual address
4716  * @ptepp: location to store found PTE
4717  * @ptlp: location to store the lock for the PTE
4718  *
4719  * On a successful return, the pointer to the PTE is stored in @ptepp;
4720  * the corresponding lock is taken and its location is stored in @ptlp.
4721  * The contents of the PTE are only stable until @ptlp is released;
4722  * any further use, if any, must be protected against invalidation
4723  * with MMU notifiers.
4724  *
4725  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4726  * should be taken for read.
4727  *
4728  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4729  * it is not a good general-purpose API.
4730  *
4731  * Return: zero on success, -ve otherwise.
4732  */
4733 int follow_pte(struct mm_struct *mm, unsigned long address,
4734                pte_t **ptepp, spinlock_t **ptlp)
4735 {
4736         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4737 }
4738 EXPORT_SYMBOL_GPL(follow_pte);
4739
4740 /**
4741  * follow_pfn - look up PFN at a user virtual address
4742  * @vma: memory mapping
4743  * @address: user virtual address
4744  * @pfn: location to store found PFN
4745  *
4746  * Only IO mappings and raw PFN mappings are allowed.
4747  *
4748  * This function does not allow the caller to read the permissions
4749  * of the PTE.  Do not use it.
4750  *
4751  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4752  */
4753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4754         unsigned long *pfn)
4755 {
4756         int ret = -EINVAL;
4757         spinlock_t *ptl;
4758         pte_t *ptep;
4759
4760         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4761                 return ret;
4762
4763         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4764         if (ret)
4765                 return ret;
4766         *pfn = pte_pfn(*ptep);
4767         pte_unmap_unlock(ptep, ptl);
4768         return 0;
4769 }
4770 EXPORT_SYMBOL(follow_pfn);
4771
4772 #ifdef CONFIG_HAVE_IOREMAP_PROT
4773 int follow_phys(struct vm_area_struct *vma,
4774                 unsigned long address, unsigned int flags,
4775                 unsigned long *prot, resource_size_t *phys)
4776 {
4777         int ret = -EINVAL;
4778         pte_t *ptep, pte;
4779         spinlock_t *ptl;
4780
4781         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4782                 goto out;
4783
4784         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4785                 goto out;
4786         pte = *ptep;
4787
4788         if ((flags & FOLL_WRITE) && !pte_write(pte))
4789                 goto unlock;
4790
4791         *prot = pgprot_val(pte_pgprot(pte));
4792         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4793
4794         ret = 0;
4795 unlock:
4796         pte_unmap_unlock(ptep, ptl);
4797 out:
4798         return ret;
4799 }
4800
4801 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4802                         void *buf, int len, int write)
4803 {
4804         resource_size_t phys_addr;
4805         unsigned long prot = 0;
4806         void __iomem *maddr;
4807         int offset = addr & (PAGE_SIZE-1);
4808
4809         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4810                 return -EINVAL;
4811
4812         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4813         if (!maddr)
4814                 return -ENOMEM;
4815
4816         if (write)
4817                 memcpy_toio(maddr + offset, buf, len);
4818         else
4819                 memcpy_fromio(buf, maddr + offset, len);
4820         iounmap(maddr);
4821
4822         return len;
4823 }
4824 EXPORT_SYMBOL_GPL(generic_access_phys);
4825 #endif
4826
4827 /*
4828  * Access another process' address space as given in mm.
4829  */
4830 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4831                        int len, unsigned int gup_flags)
4832 {
4833         struct vm_area_struct *vma;
4834         void *old_buf = buf;
4835         int write = gup_flags & FOLL_WRITE;
4836
4837         if (mmap_read_lock_killable(mm))
4838                 return 0;
4839
4840         /* ignore errors, just check how much was successfully transferred */
4841         while (len) {
4842                 int bytes, ret, offset;
4843                 void *maddr;
4844                 struct page *page = NULL;
4845
4846                 ret = get_user_pages_remote(mm, addr, 1,
4847                                 gup_flags, &page, &vma, NULL);
4848                 if (ret <= 0) {
4849 #ifndef CONFIG_HAVE_IOREMAP_PROT
4850                         break;
4851 #else
4852                         /*
4853                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4854                          * we can access using slightly different code.
4855                          */
4856                         vma = find_vma(mm, addr);
4857                         if (!vma || vma->vm_start > addr)
4858                                 break;
4859                         if (vma->vm_ops && vma->vm_ops->access)
4860                                 ret = vma->vm_ops->access(vma, addr, buf,
4861                                                           len, write);
4862                         if (ret <= 0)
4863                                 break;
4864                         bytes = ret;
4865 #endif
4866                 } else {
4867                         bytes = len;
4868                         offset = addr & (PAGE_SIZE-1);
4869                         if (bytes > PAGE_SIZE-offset)
4870                                 bytes = PAGE_SIZE-offset;
4871
4872                         maddr = kmap(page);
4873                         if (write) {
4874                                 copy_to_user_page(vma, page, addr,
4875                                                   maddr + offset, buf, bytes);
4876                                 set_page_dirty_lock(page);
4877                         } else {
4878                                 copy_from_user_page(vma, page, addr,
4879                                                     buf, maddr + offset, bytes);
4880                         }
4881                         kunmap(page);
4882                         put_page(page);
4883                 }
4884                 len -= bytes;
4885                 buf += bytes;
4886                 addr += bytes;
4887         }
4888         mmap_read_unlock(mm);
4889
4890         return buf - old_buf;
4891 }
4892
4893 /**
4894  * access_remote_vm - access another process' address space
4895  * @mm:         the mm_struct of the target address space
4896  * @addr:       start address to access
4897  * @buf:        source or destination buffer
4898  * @len:        number of bytes to transfer
4899  * @gup_flags:  flags modifying lookup behaviour
4900  *
4901  * The caller must hold a reference on @mm.
4902  *
4903  * Return: number of bytes copied from source to destination.
4904  */
4905 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4906                 void *buf, int len, unsigned int gup_flags)
4907 {
4908         return __access_remote_vm(mm, addr, buf, len, gup_flags);
4909 }
4910
4911 /*
4912  * Access another process' address space.
4913  * Source/target buffer must be kernel space,
4914  * Do not walk the page table directly, use get_user_pages
4915  */
4916 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4917                 void *buf, int len, unsigned int gup_flags)
4918 {
4919         struct mm_struct *mm;
4920         int ret;
4921
4922         mm = get_task_mm(tsk);
4923         if (!mm)
4924                 return 0;
4925
4926         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4927
4928         mmput(mm);
4929
4930         return ret;
4931 }
4932 EXPORT_SYMBOL_GPL(access_process_vm);
4933
4934 /*
4935  * Print the name of a VMA.
4936  */
4937 void print_vma_addr(char *prefix, unsigned long ip)
4938 {
4939         struct mm_struct *mm = current->mm;
4940         struct vm_area_struct *vma;
4941
4942         /*
4943          * we might be running from an atomic context so we cannot sleep
4944          */
4945         if (!mmap_read_trylock(mm))
4946                 return;
4947
4948         vma = find_vma(mm, ip);
4949         if (vma && vma->vm_file) {
4950                 struct file *f = vma->vm_file;
4951                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4952                 if (buf) {
4953                         char *p;
4954
4955                         p = file_path(f, buf, PAGE_SIZE);
4956                         if (IS_ERR(p))
4957                                 p = "?";
4958                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4959                                         vma->vm_start,
4960                                         vma->vm_end - vma->vm_start);
4961                         free_page((unsigned long)buf);
4962                 }
4963         }
4964         mmap_read_unlock(mm);
4965 }
4966
4967 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4968 void __might_fault(const char *file, int line)
4969 {
4970         /*
4971          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4972          * holding the mmap_lock, this is safe because kernel memory doesn't
4973          * get paged out, therefore we'll never actually fault, and the
4974          * below annotations will generate false positives.
4975          */
4976         if (uaccess_kernel())
4977                 return;
4978         if (pagefault_disabled())
4979                 return;
4980         __might_sleep(file, line, 0);
4981 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4982         if (current->mm)
4983                 might_lock_read(&current->mm->mmap_lock);
4984 #endif
4985 }
4986 EXPORT_SYMBOL(__might_fault);
4987 #endif
4988
4989 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4990 /*
4991  * Process all subpages of the specified huge page with the specified
4992  * operation.  The target subpage will be processed last to keep its
4993  * cache lines hot.
4994  */
4995 static inline void process_huge_page(
4996         unsigned long addr_hint, unsigned int pages_per_huge_page,
4997         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4998         void *arg)
4999 {
5000         int i, n, base, l;
5001         unsigned long addr = addr_hint &
5002                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5003
5004         /* Process target subpage last to keep its cache lines hot */
5005         might_sleep();
5006         n = (addr_hint - addr) / PAGE_SIZE;
5007         if (2 * n <= pages_per_huge_page) {
5008                 /* If target subpage in first half of huge page */
5009                 base = 0;
5010                 l = n;
5011                 /* Process subpages at the end of huge page */
5012                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5013                         cond_resched();
5014                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5015                 }
5016         } else {
5017                 /* If target subpage in second half of huge page */
5018                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5019                 l = pages_per_huge_page - n;
5020                 /* Process subpages at the begin of huge page */
5021                 for (i = 0; i < base; i++) {
5022                         cond_resched();
5023                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5024                 }
5025         }
5026         /*
5027          * Process remaining subpages in left-right-left-right pattern
5028          * towards the target subpage
5029          */
5030         for (i = 0; i < l; i++) {
5031                 int left_idx = base + i;
5032                 int right_idx = base + 2 * l - 1 - i;
5033
5034                 cond_resched();
5035                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5036                 cond_resched();
5037                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5038         }
5039 }
5040
5041 static void clear_gigantic_page(struct page *page,
5042                                 unsigned long addr,
5043                                 unsigned int pages_per_huge_page)
5044 {
5045         int i;
5046         struct page *p = page;
5047
5048         might_sleep();
5049         for (i = 0; i < pages_per_huge_page;
5050              i++, p = mem_map_next(p, page, i)) {
5051                 cond_resched();
5052                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5053         }
5054 }
5055
5056 static void clear_subpage(unsigned long addr, int idx, void *arg)
5057 {
5058         struct page *page = arg;
5059
5060         clear_user_highpage(page + idx, addr);
5061 }
5062
5063 void clear_huge_page(struct page *page,
5064                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5065 {
5066         unsigned long addr = addr_hint &
5067                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5068
5069         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5070                 clear_gigantic_page(page, addr, pages_per_huge_page);
5071                 return;
5072         }
5073
5074         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5075 }
5076
5077 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5078                                     unsigned long addr,
5079                                     struct vm_area_struct *vma,
5080                                     unsigned int pages_per_huge_page)
5081 {
5082         int i;
5083         struct page *dst_base = dst;
5084         struct page *src_base = src;
5085
5086         for (i = 0; i < pages_per_huge_page; ) {
5087                 cond_resched();
5088                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5089
5090                 i++;
5091                 dst = mem_map_next(dst, dst_base, i);
5092                 src = mem_map_next(src, src_base, i);
5093         }
5094 }
5095
5096 struct copy_subpage_arg {
5097         struct page *dst;
5098         struct page *src;
5099         struct vm_area_struct *vma;
5100 };
5101
5102 static void copy_subpage(unsigned long addr, int idx, void *arg)
5103 {
5104         struct copy_subpage_arg *copy_arg = arg;
5105
5106         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5107                            addr, copy_arg->vma);
5108 }
5109
5110 void copy_user_huge_page(struct page *dst, struct page *src,
5111                          unsigned long addr_hint, struct vm_area_struct *vma,
5112                          unsigned int pages_per_huge_page)
5113 {
5114         unsigned long addr = addr_hint &
5115                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5116         struct copy_subpage_arg arg = {
5117                 .dst = dst,
5118                 .src = src,
5119                 .vma = vma,
5120         };
5121
5122         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5123                 copy_user_gigantic_page(dst, src, addr, vma,
5124                                         pages_per_huge_page);
5125                 return;
5126         }
5127
5128         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5129 }
5130
5131 long copy_huge_page_from_user(struct page *dst_page,
5132                                 const void __user *usr_src,
5133                                 unsigned int pages_per_huge_page,
5134                                 bool allow_pagefault)
5135 {
5136         void *src = (void *)usr_src;
5137         void *page_kaddr;
5138         unsigned long i, rc = 0;
5139         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5140
5141         for (i = 0; i < pages_per_huge_page; i++) {
5142                 if (allow_pagefault)
5143                         page_kaddr = kmap(dst_page + i);
5144                 else
5145                         page_kaddr = kmap_atomic(dst_page + i);
5146                 rc = copy_from_user(page_kaddr,
5147                                 (const void __user *)(src + i * PAGE_SIZE),
5148                                 PAGE_SIZE);
5149                 if (allow_pagefault)
5150                         kunmap(dst_page + i);
5151                 else
5152                         kunmap_atomic(page_kaddr);
5153
5154                 ret_val -= (PAGE_SIZE - rc);
5155                 if (rc)
5156                         break;
5157
5158                 cond_resched();
5159         }
5160         return ret_val;
5161 }
5162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5163
5164 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5165
5166 static struct kmem_cache *page_ptl_cachep;
5167
5168 void __init ptlock_cache_init(void)
5169 {
5170         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5171                         SLAB_PANIC, NULL);
5172 }
5173
5174 bool ptlock_alloc(struct page *page)
5175 {
5176         spinlock_t *ptl;
5177
5178         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5179         if (!ptl)
5180                 return false;
5181         page->ptl = ptl;
5182         return true;
5183 }
5184
5185 void ptlock_free(struct page *page)
5186 {
5187         kmem_cache_free(page_ptl_cachep, page->ptl);
5188 }
5189 #endif