1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return pte_marker_uffd_wp(vmf->orig_pte);
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
130 EXPORT_SYMBOL(high_memory);
133 * Randomize the address space (stacks, mmaps, brk, etc.).
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
157 static int __init disable_randmaps(char *s)
159 randomize_va_space = 0;
162 __setup("norandmaps", disable_randmaps);
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
167 unsigned long highest_memmap_pfn __read_mostly;
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 static int __init init_zero_pfn(void)
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 early_initcall(init_zero_pfn);
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 trace_rss_stat(mm, member);
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 pgtable_t token = pmd_pgtable(*pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
206 pmd = pmd_offset(pud, addr);
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
222 if (end - 1 > ceiling - 1)
225 pmd = pmd_offset(pud, start);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
240 pud = pud_offset(p4d, addr);
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
256 if (end - 1 > ceiling - 1)
259 pud = pud_offset(p4d, start);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
274 p4d = p4d_offset(pgd, addr);
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
286 ceiling &= PGDIR_MASK;
290 if (end - 1 > ceiling - 1)
293 p4d = p4d_offset(pgd, start);
295 p4d_free_tlb(tlb, p4d, start);
299 * This function frees user-level page tables of a process.
301 void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
309 * The next few lines have given us lots of grief...
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
345 if (end - 1 > ceiling - 1)
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
368 unsigned long addr = vma->vm_start;
369 struct vm_area_struct *next;
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
375 next = mas_find(mas, ceiling - 1);
378 * Hide vma from rmap and truncate_pagecache before freeing
382 vma_start_write(vma);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
386 if (is_vm_hugetlb_page(vma)) {
387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388 floor, next ? next->vm_start : ceiling);
391 * Optimization: gather nearby vmas into one call down
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394 && !is_vm_hugetlb_page(next)) {
396 next = mas_find(mas, ceiling - 1);
398 vma_start_write(vma);
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
402 free_pgd_range(tlb, addr, vma->vm_end,
403 floor, next ? next->vm_start : ceiling);
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
411 spinlock_t *ptl = pmd_lock(mm, pmd);
413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429 pmd_populate(mm, pmd, *pte);
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 pgtable_t new = pte_alloc_one(mm);
441 pmd_install(mm, pmd, &new);
447 int __pte_alloc_kernel(pmd_t *pmd)
449 pte_t *new = pte_alloc_one_kernel(&init_mm);
453 spin_lock(&init_mm.page_table_lock);
454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
455 smp_wmb(); /* See comment in pmd_install() */
456 pmd_populate_kernel(&init_mm, pmd, new);
459 spin_unlock(&init_mm.page_table_lock);
461 pte_free_kernel(&init_mm, new);
465 static inline void init_rss_vec(int *rss)
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 if (current->mm == mm)
476 for (i = 0; i < NR_MM_COUNTERS; i++)
478 add_mm_counter(mm, i, rss[i]);
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
486 * The calling function must still handle the error.
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
518 resume = jiffies + 60 * HZ;
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 dump_page(page, "bad pte");
528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534 mapping ? mapping->a_ops->read_folio : NULL);
536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562 * And for normal mappings this is false.
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 unsigned long pfn = pte_pfn(pte);
586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587 if (likely(!pte_special(pte)))
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 if (is_zero_pfn(pfn))
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 print_bad_pte(vma, addr, pte, NULL);
610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 if (pfn == vma->vm_pgoff + off)
622 if (!is_cow_mapping(vma->vm_flags))
627 if (is_zero_pfn(pfn))
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
637 * NOTE! We still have PageReserved() pages in the page tables.
638 * eg. VDSO mappings can cause them to exist.
641 return pfn_to_page(pfn);
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 struct page *page = vm_normal_page(vma, addr, pte);
650 return page_folio(page);
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 unsigned long pfn = pmd_pfn(pmd);
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
675 if (!is_cow_mapping(vma->vm_flags))
682 if (is_huge_zero_pmd(pmd))
684 if (unlikely(pfn > highest_memmap_pfn))
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
692 return pfn_to_page(pfn);
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
704 orig_pte = ptep_get(ptep);
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(orig_pte))
707 pte = pte_mksoft_dirty(pte);
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
730 set_pte_at(vma->vm_mm, address, ptep, pte);
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
736 update_mmu_cache(vma, address, ptep);
740 * Tries to restore an exclusive pte if the page lock can be acquired without
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748 struct page *page = pfn_swap_entry_to_page(entry);
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
770 unsigned long vm_flags = dst_vma->vm_flags;
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
786 spin_unlock(&mmlist_lock);
788 /* Mark the swap entry as shared. */
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
791 set_pte_at(src_mm, addr, src_pte, pte);
794 } else if (is_migration_entry(entry)) {
795 page = pfn_swap_entry_to_page(entry);
797 rss[mm_counter(page)]++;
799 if (!is_readable_migration_entry(entry) &&
800 is_cow_mapping(vm_flags)) {
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
806 entry = make_readable_migration_entry(
808 pte = swp_entry_to_pte(entry);
809 if (pte_swp_soft_dirty(orig_pte))
810 pte = pte_swp_mksoft_dirty(pte);
811 if (pte_swp_uffd_wp(orig_pte))
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
815 } else if (is_device_private_entry(entry)) {
816 page = pfn_swap_entry_to_page(entry);
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
828 rss[mm_counter(page)]++;
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
839 if (is_writable_device_private_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 entry = make_readable_device_private_entry(
843 pte = swp_entry_to_pte(entry);
844 if (pte_swp_uffd_wp(orig_pte))
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
848 } else if (is_device_exclusive_entry(entry)) {
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 } else if (is_pte_marker_entry(entry)) {
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
869 set_pte_at(dst_mm, addr, dst_pte, pte);
874 * Copy a present and normal page.
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 struct folio **prealloc, struct page *page)
890 struct folio *new_folio;
893 new_folio = *prealloc;
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
908 /* All done, just insert the new page copy in the child */
909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 /* Uffd-wp needs to be delivered to dest pte as well */
913 pte = pte_mkuffd_wp(pte);
914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 struct folio **prealloc)
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
929 pte_t pte = ptep_get(src_pte);
933 page = vm_normal_page(src_vma, addr, pte);
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 /* Page may be pinned, we have to copy. */
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
953 page_dup_file_rmap(page, false);
954 rss[mm_counter_file(page)]++;
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 ptep_set_wrprotect(src_mm, addr, src_pte);
963 pte = pte_wrprotect(pte);
965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968 * If it's a shared mapping, mark it clean in
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
975 if (!userfaultfd_wp(dst_vma))
976 pte = pte_clear_uffd_wp(pte);
978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
985 struct folio *new_folio;
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
1007 pte_t *orig_src_pte, *orig_dst_pte;
1008 pte_t *src_pte, *dst_pte;
1010 spinlock_t *src_ptl, *dst_ptl;
1011 int progress, ret = 0;
1012 int rss[NR_MM_COUNTERS];
1013 swp_entry_t entry = (swp_entry_t){0};
1014 struct folio *prealloc = NULL;
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1049 if (progress >= 32) {
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1060 if (unlikely(!pte_present(ptent))) {
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1066 entry = pte_to_swp_entry(ptep_get(src_pte));
1068 } else if (ret == -EBUSY) {
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1079 WARN_ON_ONCE(ret != -ENOENT);
1081 /* copy_present_pte() will clear `*prealloc' if consumed */
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1088 if (unlikely(ret == -EAGAIN))
1090 if (unlikely(prealloc)) {
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1097 folio_put(prealloc);
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103 arch_leave_lazy_mmu_mode();
1104 pte_unmap_unlock(orig_src_pte, src_ptl);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 } else if (ret == -EBUSY) {
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1126 /* We've captured and resolved the error. Reset, try again. */
1132 if (unlikely(prealloc))
1133 folio_put(prealloc);
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 src_pmd = pmd_offset(src_pud, addr);
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1165 if (pmd_none_or_clear_bad(src_pmd))
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 src_pud = pud_offset(src_p4d, addr);
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1202 if (pud_none_or_clear_bad(src_pud))
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 src_p4d = p4d_offset(src_pgd, addr);
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1249 if (userfaultfd_wp(dst_vma))
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 if (src_vma->anon_vma)
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1270 pgd_t *src_pgd, *dst_pgd;
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 struct mmu_notifier_range range;
1280 if (!vma_needs_copy(dst_vma, src_vma))
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1291 ret = track_pfn_copy(src_vma);
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1302 is_cow = is_cow_mapping(src_vma->vm_flags);
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 0, src_mm, addr, end);
1307 mmu_notifier_invalidate_range_start(&range);
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1315 vma_assert_write_locked(src_vma);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1328 untrack_pfn_clear(dst_vma);
1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 mmu_notifier_invalidate_range_end(&range);
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1344 /* By default, zap all pages */
1348 /* Or, we zap COWed pages only if the caller wants to */
1349 return details->even_cows;
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
1359 /* E.g. the caller passes NULL for the case of a zero page */
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1388 if (zap_drop_file_uffd_wp(details))
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pmd_t *pmd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1399 struct mm_struct *mm = tlb->mm;
1400 int force_flush = 0;
1401 int rss[NR_MM_COUNTERS];
1407 tlb_change_page_size(tlb, PAGE_SIZE);
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1413 flush_tlb_batched_pending(mm);
1414 arch_enter_lazy_mmu_mode();
1416 pte_t ptent = ptep_get(pte);
1419 if (pte_none(ptent))
1425 if (pte_present(ptent)) {
1426 unsigned int delay_rmap;
1428 page = vm_normal_page(vma, addr, ptent);
1429 if (unlikely(!should_zap_page(details, page)))
1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
1433 tlb_remove_tlb_entry(tlb, pte, addr);
1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1436 if (unlikely(!page)) {
1437 ksm_might_unmap_zero_page(mm, ptent);
1442 if (!PageAnon(page)) {
1443 if (pte_dirty(ptent)) {
1444 set_page_dirty(page);
1445 if (tlb_delay_rmap(tlb)) {
1450 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1451 mark_page_accessed(page);
1453 rss[mm_counter(page)]--;
1455 page_remove_rmap(page, vma, false);
1456 if (unlikely(page_mapcount(page) < 0))
1457 print_bad_pte(vma, addr, ptent, page);
1459 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1467 entry = pte_to_swp_entry(ptent);
1468 if (is_device_private_entry(entry) ||
1469 is_device_exclusive_entry(entry)) {
1470 page = pfn_swap_entry_to_page(entry);
1471 if (unlikely(!should_zap_page(details, page)))
1474 * Both device private/exclusive mappings should only
1475 * work with anonymous page so far, so we don't need to
1476 * consider uffd-wp bit when zap. For more information,
1477 * see zap_install_uffd_wp_if_needed().
1479 WARN_ON_ONCE(!vma_is_anonymous(vma));
1480 rss[mm_counter(page)]--;
1481 if (is_device_private_entry(entry))
1482 page_remove_rmap(page, vma, false);
1484 } else if (!non_swap_entry(entry)) {
1485 /* Genuine swap entry, hence a private anon page */
1486 if (!should_zap_cows(details))
1489 if (unlikely(!free_swap_and_cache(entry)))
1490 print_bad_pte(vma, addr, ptent, NULL);
1491 } else if (is_migration_entry(entry)) {
1492 page = pfn_swap_entry_to_page(entry);
1493 if (!should_zap_page(details, page))
1495 rss[mm_counter(page)]--;
1496 } else if (pte_marker_entry_uffd_wp(entry)) {
1498 * For anon: always drop the marker; for file: only
1499 * drop the marker if explicitly requested.
1501 if (!vma_is_anonymous(vma) &&
1502 !zap_drop_file_uffd_wp(details))
1504 } else if (is_hwpoison_entry(entry) ||
1505 is_poisoned_swp_entry(entry)) {
1506 if (!should_zap_cows(details))
1509 /* We should have covered all the swap entry types */
1512 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1513 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1514 } while (pte++, addr += PAGE_SIZE, addr != end);
1516 add_mm_rss_vec(mm, rss);
1517 arch_leave_lazy_mmu_mode();
1519 /* Do the actual TLB flush before dropping ptl */
1521 tlb_flush_mmu_tlbonly(tlb);
1522 tlb_flush_rmaps(tlb, vma);
1524 pte_unmap_unlock(start_pte, ptl);
1527 * If we forced a TLB flush (either due to running out of
1528 * batch buffers or because we needed to flush dirty TLB
1529 * entries before releasing the ptl), free the batched
1530 * memory too. Come back again if we didn't do everything.
1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1539 struct vm_area_struct *vma, pud_t *pud,
1540 unsigned long addr, unsigned long end,
1541 struct zap_details *details)
1546 pmd = pmd_offset(pud, addr);
1548 next = pmd_addr_end(addr, end);
1549 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1550 if (next - addr != HPAGE_PMD_SIZE)
1551 __split_huge_pmd(vma, pmd, addr, false, NULL);
1552 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1557 } else if (details && details->single_folio &&
1558 folio_test_pmd_mappable(details->single_folio) &&
1559 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1562 * Take and drop THP pmd lock so that we cannot return
1563 * prematurely, while zap_huge_pmd() has cleared *pmd,
1564 * but not yet decremented compound_mapcount().
1568 if (pmd_none(*pmd)) {
1572 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1575 } while (pmd++, cond_resched(), addr != end);
1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1581 struct vm_area_struct *vma, p4d_t *p4d,
1582 unsigned long addr, unsigned long end,
1583 struct zap_details *details)
1588 pud = pud_offset(p4d, addr);
1590 next = pud_addr_end(addr, end);
1591 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592 if (next - addr != HPAGE_PUD_SIZE) {
1593 mmap_assert_locked(tlb->mm);
1594 split_huge_pud(vma, pud, addr);
1595 } else if (zap_huge_pud(tlb, vma, pud, addr))
1599 if (pud_none_or_clear_bad(pud))
1601 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1604 } while (pud++, addr = next, addr != end);
1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610 struct vm_area_struct *vma, pgd_t *pgd,
1611 unsigned long addr, unsigned long end,
1612 struct zap_details *details)
1617 p4d = p4d_offset(pgd, addr);
1619 next = p4d_addr_end(addr, end);
1620 if (p4d_none_or_clear_bad(p4d))
1622 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623 } while (p4d++, addr = next, addr != end);
1628 void unmap_page_range(struct mmu_gather *tlb,
1629 struct vm_area_struct *vma,
1630 unsigned long addr, unsigned long end,
1631 struct zap_details *details)
1636 BUG_ON(addr >= end);
1637 tlb_start_vma(tlb, vma);
1638 pgd = pgd_offset(vma->vm_mm, addr);
1640 next = pgd_addr_end(addr, end);
1641 if (pgd_none_or_clear_bad(pgd))
1643 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1644 } while (pgd++, addr = next, addr != end);
1645 tlb_end_vma(tlb, vma);
1649 static void unmap_single_vma(struct mmu_gather *tlb,
1650 struct vm_area_struct *vma, unsigned long start_addr,
1651 unsigned long end_addr,
1652 struct zap_details *details, bool mm_wr_locked)
1654 unsigned long start = max(vma->vm_start, start_addr);
1657 if (start >= vma->vm_end)
1659 end = min(vma->vm_end, end_addr);
1660 if (end <= vma->vm_start)
1664 uprobe_munmap(vma, start, end);
1666 if (unlikely(vma->vm_flags & VM_PFNMAP))
1667 untrack_pfn(vma, 0, 0, mm_wr_locked);
1670 if (unlikely(is_vm_hugetlb_page(vma))) {
1672 * It is undesirable to test vma->vm_file as it
1673 * should be non-null for valid hugetlb area.
1674 * However, vm_file will be NULL in the error
1675 * cleanup path of mmap_region. When
1676 * hugetlbfs ->mmap method fails,
1677 * mmap_region() nullifies vma->vm_file
1678 * before calling this function to clean up.
1679 * Since no pte has actually been setup, it is
1680 * safe to do nothing in this case.
1683 zap_flags_t zap_flags = details ?
1684 details->zap_flags : 0;
1685 __unmap_hugepage_range_final(tlb, vma, start, end,
1689 unmap_page_range(tlb, vma, start, end, details);
1694 * unmap_vmas - unmap a range of memory covered by a list of vma's
1695 * @tlb: address of the caller's struct mmu_gather
1696 * @mas: the maple state
1697 * @vma: the starting vma
1698 * @start_addr: virtual address at which to start unmapping
1699 * @end_addr: virtual address at which to end unmapping
1700 * @tree_end: The maximum index to check
1701 * @mm_wr_locked: lock flag
1703 * Unmap all pages in the vma list.
1705 * Only addresses between `start' and `end' will be unmapped.
1707 * The VMA list must be sorted in ascending virtual address order.
1709 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1710 * range after unmap_vmas() returns. So the only responsibility here is to
1711 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1712 * drops the lock and schedules.
1714 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1715 struct vm_area_struct *vma, unsigned long start_addr,
1716 unsigned long end_addr, unsigned long tree_end,
1719 struct mmu_notifier_range range;
1720 struct zap_details details = {
1721 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1722 /* Careful - we need to zap private pages too! */
1726 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1727 start_addr, end_addr);
1728 mmu_notifier_invalidate_range_start(&range);
1730 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1732 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1733 mmu_notifier_invalidate_range_end(&range);
1737 * zap_page_range_single - remove user pages in a given range
1738 * @vma: vm_area_struct holding the applicable pages
1739 * @address: starting address of pages to zap
1740 * @size: number of bytes to zap
1741 * @details: details of shared cache invalidation
1743 * The range must fit into one VMA.
1745 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1746 unsigned long size, struct zap_details *details)
1748 const unsigned long end = address + size;
1749 struct mmu_notifier_range range;
1750 struct mmu_gather tlb;
1753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1755 if (is_vm_hugetlb_page(vma))
1756 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1758 tlb_gather_mmu(&tlb, vma->vm_mm);
1759 update_hiwater_rss(vma->vm_mm);
1760 mmu_notifier_invalidate_range_start(&range);
1762 * unmap 'address-end' not 'range.start-range.end' as range
1763 * could have been expanded for hugetlb pmd sharing.
1765 unmap_single_vma(&tlb, vma, address, end, details, false);
1766 mmu_notifier_invalidate_range_end(&range);
1767 tlb_finish_mmu(&tlb);
1771 * zap_vma_ptes - remove ptes mapping the vma
1772 * @vma: vm_area_struct holding ptes to be zapped
1773 * @address: starting address of pages to zap
1774 * @size: number of bytes to zap
1776 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1778 * The entire address range must be fully contained within the vma.
1781 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1784 if (!range_in_vma(vma, address, address + size) ||
1785 !(vma->vm_flags & VM_PFNMAP))
1788 zap_page_range_single(vma, address, size, NULL);
1790 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1792 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1799 pgd = pgd_offset(mm, addr);
1800 p4d = p4d_alloc(mm, pgd, addr);
1803 pud = pud_alloc(mm, p4d, addr);
1806 pmd = pmd_alloc(mm, pud, addr);
1810 VM_BUG_ON(pmd_trans_huge(*pmd));
1814 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1817 pmd_t *pmd = walk_to_pmd(mm, addr);
1821 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1824 static int validate_page_before_insert(struct page *page)
1826 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1828 flush_dcache_page(page);
1832 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1833 unsigned long addr, struct page *page, pgprot_t prot)
1835 if (!pte_none(ptep_get(pte)))
1837 /* Ok, finally just insert the thing.. */
1839 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1840 page_add_file_rmap(page, vma, false);
1841 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1846 * This is the old fallback for page remapping.
1848 * For historical reasons, it only allows reserved pages. Only
1849 * old drivers should use this, and they needed to mark their
1850 * pages reserved for the old functions anyway.
1852 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1853 struct page *page, pgprot_t prot)
1859 retval = validate_page_before_insert(page);
1863 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1866 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1867 pte_unmap_unlock(pte, ptl);
1872 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1873 unsigned long addr, struct page *page, pgprot_t prot)
1877 if (!page_count(page))
1879 err = validate_page_before_insert(page);
1882 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1885 /* insert_pages() amortizes the cost of spinlock operations
1886 * when inserting pages in a loop.
1888 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1889 struct page **pages, unsigned long *num, pgprot_t prot)
1892 pte_t *start_pte, *pte;
1893 spinlock_t *pte_lock;
1894 struct mm_struct *const mm = vma->vm_mm;
1895 unsigned long curr_page_idx = 0;
1896 unsigned long remaining_pages_total = *num;
1897 unsigned long pages_to_write_in_pmd;
1901 pmd = walk_to_pmd(mm, addr);
1905 pages_to_write_in_pmd = min_t(unsigned long,
1906 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908 /* Allocate the PTE if necessary; takes PMD lock once only. */
1910 if (pte_alloc(mm, pmd))
1913 while (pages_to_write_in_pmd) {
1915 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1922 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1923 int err = insert_page_in_batch_locked(vma, pte,
1924 addr, pages[curr_page_idx], prot);
1925 if (unlikely(err)) {
1926 pte_unmap_unlock(start_pte, pte_lock);
1928 remaining_pages_total -= pte_idx;
1934 pte_unmap_unlock(start_pte, pte_lock);
1935 pages_to_write_in_pmd -= batch_size;
1936 remaining_pages_total -= batch_size;
1938 if (remaining_pages_total)
1942 *num = remaining_pages_total;
1947 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1948 * @vma: user vma to map to
1949 * @addr: target start user address of these pages
1950 * @pages: source kernel pages
1951 * @num: in: number of pages to map. out: number of pages that were *not*
1952 * mapped. (0 means all pages were successfully mapped).
1954 * Preferred over vm_insert_page() when inserting multiple pages.
1956 * In case of error, we may have mapped a subset of the provided
1957 * pages. It is the caller's responsibility to account for this case.
1959 * The same restrictions apply as in vm_insert_page().
1961 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1962 struct page **pages, unsigned long *num)
1964 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1966 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1968 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1969 BUG_ON(mmap_read_trylock(vma->vm_mm));
1970 BUG_ON(vma->vm_flags & VM_PFNMAP);
1971 vm_flags_set(vma, VM_MIXEDMAP);
1973 /* Defer page refcount checking till we're about to map that page. */
1974 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1976 EXPORT_SYMBOL(vm_insert_pages);
1979 * vm_insert_page - insert single page into user vma
1980 * @vma: user vma to map to
1981 * @addr: target user address of this page
1982 * @page: source kernel page
1984 * This allows drivers to insert individual pages they've allocated
1987 * The page has to be a nice clean _individual_ kernel allocation.
1988 * If you allocate a compound page, you need to have marked it as
1989 * such (__GFP_COMP), or manually just split the page up yourself
1990 * (see split_page()).
1992 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993 * took an arbitrary page protection parameter. This doesn't allow
1994 * that. Your vma protection will have to be set up correctly, which
1995 * means that if you want a shared writable mapping, you'd better
1996 * ask for a shared writable mapping!
1998 * The page does not need to be reserved.
2000 * Usually this function is called from f_op->mmap() handler
2001 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2002 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003 * function from other places, for example from page-fault handler.
2005 * Return: %0 on success, negative error code otherwise.
2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2010 if (addr < vma->vm_start || addr >= vma->vm_end)
2012 if (!page_count(page))
2014 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2015 BUG_ON(mmap_read_trylock(vma->vm_mm));
2016 BUG_ON(vma->vm_flags & VM_PFNMAP);
2017 vm_flags_set(vma, VM_MIXEDMAP);
2019 return insert_page(vma, addr, page, vma->vm_page_prot);
2021 EXPORT_SYMBOL(vm_insert_page);
2024 * __vm_map_pages - maps range of kernel pages into user vma
2025 * @vma: user vma to map to
2026 * @pages: pointer to array of source kernel pages
2027 * @num: number of pages in page array
2028 * @offset: user's requested vm_pgoff
2030 * This allows drivers to map range of kernel pages into a user vma.
2032 * Return: 0 on success and error code otherwise.
2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035 unsigned long num, unsigned long offset)
2037 unsigned long count = vma_pages(vma);
2038 unsigned long uaddr = vma->vm_start;
2041 /* Fail if the user requested offset is beyond the end of the object */
2045 /* Fail if the user requested size exceeds available object size */
2046 if (count > num - offset)
2049 for (i = 0; i < count; i++) {
2050 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2060 * vm_map_pages - maps range of kernel pages starts with non zero offset
2061 * @vma: user vma to map to
2062 * @pages: pointer to array of source kernel pages
2063 * @num: number of pages in page array
2065 * Maps an object consisting of @num pages, catering for the user's
2066 * requested vm_pgoff
2068 * If we fail to insert any page into the vma, the function will return
2069 * immediately leaving any previously inserted pages present. Callers
2070 * from the mmap handler may immediately return the error as their caller
2071 * will destroy the vma, removing any successfully inserted pages. Other
2072 * callers should make their own arrangements for calling unmap_region().
2074 * Context: Process context. Called by mmap handlers.
2075 * Return: 0 on success and error code otherwise.
2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2080 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082 EXPORT_SYMBOL(vm_map_pages);
2085 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086 * @vma: user vma to map to
2087 * @pages: pointer to array of source kernel pages
2088 * @num: number of pages in page array
2090 * Similar to vm_map_pages(), except that it explicitly sets the offset
2091 * to 0. This function is intended for the drivers that did not consider
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2100 return __vm_map_pages(vma, pages, num, 0);
2102 EXPORT_SYMBOL(vm_map_pages_zero);
2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2105 pfn_t pfn, pgprot_t prot, bool mkwrite)
2107 struct mm_struct *mm = vma->vm_mm;
2111 pte = get_locked_pte(mm, addr, &ptl);
2113 return VM_FAULT_OOM;
2114 entry = ptep_get(pte);
2115 if (!pte_none(entry)) {
2118 * For read faults on private mappings the PFN passed
2119 * in may not match the PFN we have mapped if the
2120 * mapped PFN is a writeable COW page. In the mkwrite
2121 * case we are creating a writable PTE for a shared
2122 * mapping and we expect the PFNs to match. If they
2123 * don't match, we are likely racing with block
2124 * allocation and mapping invalidation so just skip the
2127 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2128 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2131 entry = pte_mkyoung(entry);
2132 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2133 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2134 update_mmu_cache(vma, addr, pte);
2139 /* Ok, finally just insert the thing.. */
2140 if (pfn_t_devmap(pfn))
2141 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2143 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2146 entry = pte_mkyoung(entry);
2147 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 set_pte_at(mm, addr, pte, entry);
2151 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2154 pte_unmap_unlock(pte, ptl);
2155 return VM_FAULT_NOPAGE;
2159 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2160 * @vma: user vma to map to
2161 * @addr: target user address of this page
2162 * @pfn: source kernel pfn
2163 * @pgprot: pgprot flags for the inserted page
2165 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2166 * to override pgprot on a per-page basis.
2168 * This only makes sense for IO mappings, and it makes no sense for
2169 * COW mappings. In general, using multiple vmas is preferable;
2170 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2173 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2174 * caching- and encryption bits different than those of @vma->vm_page_prot,
2175 * because the caching- or encryption mode may not be known at mmap() time.
2177 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2178 * to set caching and encryption bits for those vmas (except for COW pages).
2179 * This is ensured by core vm only modifying these page table entries using
2180 * functions that don't touch caching- or encryption bits, using pte_modify()
2181 * if needed. (See for example mprotect()).
2183 * Also when new page-table entries are created, this is only done using the
2184 * fault() callback, and never using the value of vma->vm_page_prot,
2185 * except for page-table entries that point to anonymous pages as the result
2188 * Context: Process context. May allocate using %GFP_KERNEL.
2189 * Return: vm_fault_t value.
2191 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2192 unsigned long pfn, pgprot_t pgprot)
2195 * Technically, architectures with pte_special can avoid all these
2196 * restrictions (same for remap_pfn_range). However we would like
2197 * consistency in testing and feature parity among all, so we should
2198 * try to keep these invariants in place for everybody.
2200 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2201 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2202 (VM_PFNMAP|VM_MIXEDMAP));
2203 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2204 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2206 if (addr < vma->vm_start || addr >= vma->vm_end)
2207 return VM_FAULT_SIGBUS;
2209 if (!pfn_modify_allowed(pfn, pgprot))
2210 return VM_FAULT_SIGBUS;
2212 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2214 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2217 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2220 * vmf_insert_pfn - insert single pfn into user vma
2221 * @vma: user vma to map to
2222 * @addr: target user address of this page
2223 * @pfn: source kernel pfn
2225 * Similar to vm_insert_page, this allows drivers to insert individual pages
2226 * they've allocated into a user vma. Same comments apply.
2228 * This function should only be called from a vm_ops->fault handler, and
2229 * in that case the handler should return the result of this function.
2231 * vma cannot be a COW mapping.
2233 * As this is called only for pages that do not currently exist, we
2234 * do not need to flush old virtual caches or the TLB.
2236 * Context: Process context. May allocate using %GFP_KERNEL.
2237 * Return: vm_fault_t value.
2239 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2242 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2244 EXPORT_SYMBOL(vmf_insert_pfn);
2246 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2248 /* these checks mirror the abort conditions in vm_normal_page */
2249 if (vma->vm_flags & VM_MIXEDMAP)
2251 if (pfn_t_devmap(pfn))
2253 if (pfn_t_special(pfn))
2255 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2260 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2261 unsigned long addr, pfn_t pfn, bool mkwrite)
2263 pgprot_t pgprot = vma->vm_page_prot;
2266 BUG_ON(!vm_mixed_ok(vma, pfn));
2268 if (addr < vma->vm_start || addr >= vma->vm_end)
2269 return VM_FAULT_SIGBUS;
2271 track_pfn_insert(vma, &pgprot, pfn);
2273 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2274 return VM_FAULT_SIGBUS;
2277 * If we don't have pte special, then we have to use the pfn_valid()
2278 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2279 * refcount the page if pfn_valid is true (hence insert_page rather
2280 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2281 * without pte special, it would there be refcounted as a normal page.
2283 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2284 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2288 * At this point we are committed to insert_page()
2289 * regardless of whether the caller specified flags that
2290 * result in pfn_t_has_page() == false.
2292 page = pfn_to_page(pfn_t_to_pfn(pfn));
2293 err = insert_page(vma, addr, page, pgprot);
2295 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2299 return VM_FAULT_OOM;
2300 if (err < 0 && err != -EBUSY)
2301 return VM_FAULT_SIGBUS;
2303 return VM_FAULT_NOPAGE;
2306 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2309 return __vm_insert_mixed(vma, addr, pfn, false);
2311 EXPORT_SYMBOL(vmf_insert_mixed);
2314 * If the insertion of PTE failed because someone else already added a
2315 * different entry in the mean time, we treat that as success as we assume
2316 * the same entry was actually inserted.
2318 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2319 unsigned long addr, pfn_t pfn)
2321 return __vm_insert_mixed(vma, addr, pfn, true);
2323 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2326 * maps a range of physical memory into the requested pages. the old
2327 * mappings are removed. any references to nonexistent pages results
2328 * in null mappings (currently treated as "copy-on-access")
2330 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2331 unsigned long addr, unsigned long end,
2332 unsigned long pfn, pgprot_t prot)
2334 pte_t *pte, *mapped_pte;
2338 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2341 arch_enter_lazy_mmu_mode();
2343 BUG_ON(!pte_none(ptep_get(pte)));
2344 if (!pfn_modify_allowed(pfn, prot)) {
2348 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2350 } while (pte++, addr += PAGE_SIZE, addr != end);
2351 arch_leave_lazy_mmu_mode();
2352 pte_unmap_unlock(mapped_pte, ptl);
2356 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2357 unsigned long addr, unsigned long end,
2358 unsigned long pfn, pgprot_t prot)
2364 pfn -= addr >> PAGE_SHIFT;
2365 pmd = pmd_alloc(mm, pud, addr);
2368 VM_BUG_ON(pmd_trans_huge(*pmd));
2370 next = pmd_addr_end(addr, end);
2371 err = remap_pte_range(mm, pmd, addr, next,
2372 pfn + (addr >> PAGE_SHIFT), prot);
2375 } while (pmd++, addr = next, addr != end);
2379 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2380 unsigned long addr, unsigned long end,
2381 unsigned long pfn, pgprot_t prot)
2387 pfn -= addr >> PAGE_SHIFT;
2388 pud = pud_alloc(mm, p4d, addr);
2392 next = pud_addr_end(addr, end);
2393 err = remap_pmd_range(mm, pud, addr, next,
2394 pfn + (addr >> PAGE_SHIFT), prot);
2397 } while (pud++, addr = next, addr != end);
2401 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2402 unsigned long addr, unsigned long end,
2403 unsigned long pfn, pgprot_t prot)
2409 pfn -= addr >> PAGE_SHIFT;
2410 p4d = p4d_alloc(mm, pgd, addr);
2414 next = p4d_addr_end(addr, end);
2415 err = remap_pud_range(mm, p4d, addr, next,
2416 pfn + (addr >> PAGE_SHIFT), prot);
2419 } while (p4d++, addr = next, addr != end);
2424 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2425 * must have pre-validated the caching bits of the pgprot_t.
2427 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2428 unsigned long pfn, unsigned long size, pgprot_t prot)
2432 unsigned long end = addr + PAGE_ALIGN(size);
2433 struct mm_struct *mm = vma->vm_mm;
2436 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2440 * Physically remapped pages are special. Tell the
2441 * rest of the world about it:
2442 * VM_IO tells people not to look at these pages
2443 * (accesses can have side effects).
2444 * VM_PFNMAP tells the core MM that the base pages are just
2445 * raw PFN mappings, and do not have a "struct page" associated
2448 * Disable vma merging and expanding with mremap().
2450 * Omit vma from core dump, even when VM_IO turned off.
2452 * There's a horrible special case to handle copy-on-write
2453 * behaviour that some programs depend on. We mark the "original"
2454 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2455 * See vm_normal_page() for details.
2457 if (is_cow_mapping(vma->vm_flags)) {
2458 if (addr != vma->vm_start || end != vma->vm_end)
2460 vma->vm_pgoff = pfn;
2463 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2465 BUG_ON(addr >= end);
2466 pfn -= addr >> PAGE_SHIFT;
2467 pgd = pgd_offset(mm, addr);
2468 flush_cache_range(vma, addr, end);
2470 next = pgd_addr_end(addr, end);
2471 err = remap_p4d_range(mm, pgd, addr, next,
2472 pfn + (addr >> PAGE_SHIFT), prot);
2475 } while (pgd++, addr = next, addr != end);
2481 * remap_pfn_range - remap kernel memory to userspace
2482 * @vma: user vma to map to
2483 * @addr: target page aligned user address to start at
2484 * @pfn: page frame number of kernel physical memory address
2485 * @size: size of mapping area
2486 * @prot: page protection flags for this mapping
2488 * Note: this is only safe if the mm semaphore is held when called.
2490 * Return: %0 on success, negative error code otherwise.
2492 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2493 unsigned long pfn, unsigned long size, pgprot_t prot)
2497 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2501 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2503 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2506 EXPORT_SYMBOL(remap_pfn_range);
2509 * vm_iomap_memory - remap memory to userspace
2510 * @vma: user vma to map to
2511 * @start: start of the physical memory to be mapped
2512 * @len: size of area
2514 * This is a simplified io_remap_pfn_range() for common driver use. The
2515 * driver just needs to give us the physical memory range to be mapped,
2516 * we'll figure out the rest from the vma information.
2518 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2519 * whatever write-combining details or similar.
2521 * Return: %0 on success, negative error code otherwise.
2523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2525 unsigned long vm_len, pfn, pages;
2527 /* Check that the physical memory area passed in looks valid */
2528 if (start + len < start)
2531 * You *really* shouldn't map things that aren't page-aligned,
2532 * but we've historically allowed it because IO memory might
2533 * just have smaller alignment.
2535 len += start & ~PAGE_MASK;
2536 pfn = start >> PAGE_SHIFT;
2537 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2538 if (pfn + pages < pfn)
2541 /* We start the mapping 'vm_pgoff' pages into the area */
2542 if (vma->vm_pgoff > pages)
2544 pfn += vma->vm_pgoff;
2545 pages -= vma->vm_pgoff;
2547 /* Can we fit all of the mapping? */
2548 vm_len = vma->vm_end - vma->vm_start;
2549 if (vm_len >> PAGE_SHIFT > pages)
2552 /* Ok, let it rip */
2553 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2555 EXPORT_SYMBOL(vm_iomap_memory);
2557 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2558 unsigned long addr, unsigned long end,
2559 pte_fn_t fn, void *data, bool create,
2560 pgtbl_mod_mask *mask)
2562 pte_t *pte, *mapped_pte;
2567 mapped_pte = pte = (mm == &init_mm) ?
2568 pte_alloc_kernel_track(pmd, addr, mask) :
2569 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2573 mapped_pte = pte = (mm == &init_mm) ?
2574 pte_offset_kernel(pmd, addr) :
2575 pte_offset_map_lock(mm, pmd, addr, &ptl);
2580 arch_enter_lazy_mmu_mode();
2584 if (create || !pte_none(ptep_get(pte))) {
2585 err = fn(pte++, addr, data);
2589 } while (addr += PAGE_SIZE, addr != end);
2591 *mask |= PGTBL_PTE_MODIFIED;
2593 arch_leave_lazy_mmu_mode();
2596 pte_unmap_unlock(mapped_pte, ptl);
2600 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2601 unsigned long addr, unsigned long end,
2602 pte_fn_t fn, void *data, bool create,
2603 pgtbl_mod_mask *mask)
2609 BUG_ON(pud_huge(*pud));
2612 pmd = pmd_alloc_track(mm, pud, addr, mask);
2616 pmd = pmd_offset(pud, addr);
2619 next = pmd_addr_end(addr, end);
2620 if (pmd_none(*pmd) && !create)
2622 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2624 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2629 err = apply_to_pte_range(mm, pmd, addr, next,
2630 fn, data, create, mask);
2633 } while (pmd++, addr = next, addr != end);
2638 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2639 unsigned long addr, unsigned long end,
2640 pte_fn_t fn, void *data, bool create,
2641 pgtbl_mod_mask *mask)
2648 pud = pud_alloc_track(mm, p4d, addr, mask);
2652 pud = pud_offset(p4d, addr);
2655 next = pud_addr_end(addr, end);
2656 if (pud_none(*pud) && !create)
2658 if (WARN_ON_ONCE(pud_leaf(*pud)))
2660 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2665 err = apply_to_pmd_range(mm, pud, addr, next,
2666 fn, data, create, mask);
2669 } while (pud++, addr = next, addr != end);
2674 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2675 unsigned long addr, unsigned long end,
2676 pte_fn_t fn, void *data, bool create,
2677 pgtbl_mod_mask *mask)
2684 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2688 p4d = p4d_offset(pgd, addr);
2691 next = p4d_addr_end(addr, end);
2692 if (p4d_none(*p4d) && !create)
2694 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2696 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2701 err = apply_to_pud_range(mm, p4d, addr, next,
2702 fn, data, create, mask);
2705 } while (p4d++, addr = next, addr != end);
2710 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2711 unsigned long size, pte_fn_t fn,
2712 void *data, bool create)
2715 unsigned long start = addr, next;
2716 unsigned long end = addr + size;
2717 pgtbl_mod_mask mask = 0;
2720 if (WARN_ON(addr >= end))
2723 pgd = pgd_offset(mm, addr);
2725 next = pgd_addr_end(addr, end);
2726 if (pgd_none(*pgd) && !create)
2728 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2730 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2735 err = apply_to_p4d_range(mm, pgd, addr, next,
2736 fn, data, create, &mask);
2739 } while (pgd++, addr = next, addr != end);
2741 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2742 arch_sync_kernel_mappings(start, start + size);
2748 * Scan a region of virtual memory, filling in page tables as necessary
2749 * and calling a provided function on each leaf page table.
2751 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2752 unsigned long size, pte_fn_t fn, void *data)
2754 return __apply_to_page_range(mm, addr, size, fn, data, true);
2756 EXPORT_SYMBOL_GPL(apply_to_page_range);
2759 * Scan a region of virtual memory, calling a provided function on
2760 * each leaf page table where it exists.
2762 * Unlike apply_to_page_range, this does _not_ fill in page tables
2763 * where they are absent.
2765 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2766 unsigned long size, pte_fn_t fn, void *data)
2768 return __apply_to_page_range(mm, addr, size, fn, data, false);
2770 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2773 * handle_pte_fault chooses page fault handler according to an entry which was
2774 * read non-atomically. Before making any commitment, on those architectures
2775 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2776 * parts, do_swap_page must check under lock before unmapping the pte and
2777 * proceeding (but do_wp_page is only called after already making such a check;
2778 * and do_anonymous_page can safely check later on).
2780 static inline int pte_unmap_same(struct vm_fault *vmf)
2783 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2784 if (sizeof(pte_t) > sizeof(unsigned long)) {
2785 spin_lock(vmf->ptl);
2786 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2787 spin_unlock(vmf->ptl);
2790 pte_unmap(vmf->pte);
2797 * 0: copied succeeded
2798 * -EHWPOISON: copy failed due to hwpoison in source page
2799 * -EAGAIN: copied failed (some other reason)
2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802 struct vm_fault *vmf)
2807 struct vm_area_struct *vma = vmf->vma;
2808 struct mm_struct *mm = vma->vm_mm;
2809 unsigned long addr = vmf->address;
2812 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2813 memory_failure_queue(page_to_pfn(src), 0);
2820 * If the source page was a PFN mapping, we don't have
2821 * a "struct page" for it. We do a best-effort copy by
2822 * just copying from the original user address. If that
2823 * fails, we just zero-fill it. Live with it.
2825 kaddr = kmap_atomic(dst);
2826 uaddr = (void __user *)(addr & PAGE_MASK);
2829 * On architectures with software "accessed" bits, we would
2830 * take a double page fault, so mark it accessed here.
2833 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2836 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2837 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2839 * Other thread has already handled the fault
2840 * and update local tlb only
2843 update_mmu_tlb(vma, addr, vmf->pte);
2848 entry = pte_mkyoung(vmf->orig_pte);
2849 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2854 * This really shouldn't fail, because the page is there
2855 * in the page tables. But it might just be unreadable,
2856 * in which case we just give up and fill the result with
2859 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2863 /* Re-validate under PTL if the page is still mapped */
2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2865 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2866 /* The PTE changed under us, update local tlb */
2868 update_mmu_tlb(vma, addr, vmf->pte);
2874 * The same page can be mapped back since last copy attempt.
2875 * Try to copy again under PTL.
2877 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2879 * Give a warn in case there can be some obscure
2892 pte_unmap_unlock(vmf->pte, vmf->ptl);
2893 kunmap_atomic(kaddr);
2894 flush_dcache_page(dst);
2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2901 struct file *vm_file = vma->vm_file;
2904 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2907 * Special mappings (e.g. VDSO) do not have any file so fake
2908 * a default GFP_KERNEL for them.
2914 * Notify the address space that the page is about to become writable so that
2915 * it can prohibit this or wait for the page to get into an appropriate state.
2917 * We do this without the lock held, so that it can sleep if it needs to.
2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2922 unsigned int old_flags = vmf->flags;
2924 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2926 if (vmf->vma->vm_file &&
2927 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2928 return VM_FAULT_SIGBUS;
2930 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2931 /* Restore original flags so that caller is not surprised */
2932 vmf->flags = old_flags;
2933 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2937 if (!folio->mapping) {
2938 folio_unlock(folio);
2939 return 0; /* retry */
2941 ret |= VM_FAULT_LOCKED;
2943 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2948 * Handle dirtying of a page in shared file mapping on a write fault.
2950 * The function expects the page to be locked and unlocks it.
2952 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2954 struct vm_area_struct *vma = vmf->vma;
2955 struct address_space *mapping;
2956 struct folio *folio = page_folio(vmf->page);
2958 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960 dirtied = folio_mark_dirty(folio);
2961 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2963 * Take a local copy of the address_space - folio.mapping may be zeroed
2964 * by truncate after folio_unlock(). The address_space itself remains
2965 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2966 * release semantics to prevent the compiler from undoing this copying.
2968 mapping = folio_raw_mapping(folio);
2969 folio_unlock(folio);
2972 file_update_time(vma->vm_file);
2975 * Throttle page dirtying rate down to writeback speed.
2977 * mapping may be NULL here because some device drivers do not
2978 * set page.mapping but still dirty their pages
2980 * Drop the mmap_lock before waiting on IO, if we can. The file
2981 * is pinning the mapping, as per above.
2983 if ((dirtied || page_mkwrite) && mapping) {
2986 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2987 balance_dirty_pages_ratelimited(mapping);
2990 return VM_FAULT_COMPLETED;
2998 * Handle write page faults for pages that can be reused in the current vma
3000 * This can happen either due to the mapping being with the VM_SHARED flag,
3001 * or due to us being the last reference standing to the page. In either
3002 * case, all we need to do here is to mark the page as writable and update
3003 * any related book-keeping.
3005 static inline void wp_page_reuse(struct vm_fault *vmf)
3006 __releases(vmf->ptl)
3008 struct vm_area_struct *vma = vmf->vma;
3009 struct page *page = vmf->page;
3012 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3013 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3016 * Clear the pages cpupid information as the existing
3017 * information potentially belongs to a now completely
3018 * unrelated process.
3021 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3024 entry = pte_mkyoung(vmf->orig_pte);
3025 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3026 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3027 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3028 pte_unmap_unlock(vmf->pte, vmf->ptl);
3029 count_vm_event(PGREUSE);
3033 * Handle the case of a page which we actually need to copy to a new page,
3034 * either due to COW or unsharing.
3036 * Called with mmap_lock locked and the old page referenced, but
3037 * without the ptl held.
3039 * High level logic flow:
3041 * - Allocate a page, copy the content of the old page to the new one.
3042 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3043 * - Take the PTL. If the pte changed, bail out and release the allocated page
3044 * - If the pte is still the way we remember it, update the page table and all
3045 * relevant references. This includes dropping the reference the page-table
3046 * held to the old page, as well as updating the rmap.
3047 * - In any case, unlock the PTL and drop the reference we took to the old page.
3049 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3051 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3052 struct vm_area_struct *vma = vmf->vma;
3053 struct mm_struct *mm = vma->vm_mm;
3054 struct folio *old_folio = NULL;
3055 struct folio *new_folio = NULL;
3057 int page_copied = 0;
3058 struct mmu_notifier_range range;
3061 delayacct_wpcopy_start();
3064 old_folio = page_folio(vmf->page);
3065 if (unlikely(anon_vma_prepare(vma)))
3068 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3069 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3073 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3074 vmf->address, false);
3078 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3081 * COW failed, if the fault was solved by other,
3082 * it's fine. If not, userspace would re-fault on
3083 * the same address and we will handle the fault
3084 * from the second attempt.
3085 * The -EHWPOISON case will not be retried.
3087 folio_put(new_folio);
3089 folio_put(old_folio);
3091 delayacct_wpcopy_end();
3092 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3094 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3097 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3099 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3101 __folio_mark_uptodate(new_folio);
3103 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3104 vmf->address & PAGE_MASK,
3105 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3106 mmu_notifier_invalidate_range_start(&range);
3109 * Re-check the pte - we dropped the lock
3111 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3112 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3114 if (!folio_test_anon(old_folio)) {
3115 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3116 inc_mm_counter(mm, MM_ANONPAGES);
3119 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3120 inc_mm_counter(mm, MM_ANONPAGES);
3122 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3123 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3124 entry = pte_sw_mkyoung(entry);
3125 if (unlikely(unshare)) {
3126 if (pte_soft_dirty(vmf->orig_pte))
3127 entry = pte_mksoft_dirty(entry);
3128 if (pte_uffd_wp(vmf->orig_pte))
3129 entry = pte_mkuffd_wp(entry);
3131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3135 * Clear the pte entry and flush it first, before updating the
3136 * pte with the new entry, to keep TLBs on different CPUs in
3137 * sync. This code used to set the new PTE then flush TLBs, but
3138 * that left a window where the new PTE could be loaded into
3139 * some TLBs while the old PTE remains in others.
3141 ptep_clear_flush(vma, vmf->address, vmf->pte);
3142 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143 folio_add_lru_vma(new_folio, vma);
3145 * We call the notify macro here because, when using secondary
3146 * mmu page tables (such as kvm shadow page tables), we want the
3147 * new page to be mapped directly into the secondary page table.
3149 BUG_ON(unshare && pte_write(entry));
3150 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3154 * Only after switching the pte to the new page may
3155 * we remove the mapcount here. Otherwise another
3156 * process may come and find the rmap count decremented
3157 * before the pte is switched to the new page, and
3158 * "reuse" the old page writing into it while our pte
3159 * here still points into it and can be read by other
3162 * The critical issue is to order this
3163 * page_remove_rmap with the ptp_clear_flush above.
3164 * Those stores are ordered by (if nothing else,)
3165 * the barrier present in the atomic_add_negative
3166 * in page_remove_rmap.
3168 * Then the TLB flush in ptep_clear_flush ensures that
3169 * no process can access the old page before the
3170 * decremented mapcount is visible. And the old page
3171 * cannot be reused until after the decremented
3172 * mapcount is visible. So transitively, TLBs to
3173 * old page will be flushed before it can be reused.
3175 page_remove_rmap(vmf->page, vma, false);
3178 /* Free the old page.. */
3179 new_folio = old_folio;
3181 pte_unmap_unlock(vmf->pte, vmf->ptl);
3182 } else if (vmf->pte) {
3183 update_mmu_tlb(vma, vmf->address, vmf->pte);
3184 pte_unmap_unlock(vmf->pte, vmf->ptl);
3187 mmu_notifier_invalidate_range_end(&range);
3190 folio_put(new_folio);
3193 free_swap_cache(&old_folio->page);
3194 folio_put(old_folio);
3197 delayacct_wpcopy_end();
3200 folio_put(new_folio);
3203 folio_put(old_folio);
3205 delayacct_wpcopy_end();
3206 return VM_FAULT_OOM;
3210 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3211 * writeable once the page is prepared
3213 * @vmf: structure describing the fault
3215 * This function handles all that is needed to finish a write page fault in a
3216 * shared mapping due to PTE being read-only once the mapped page is prepared.
3217 * It handles locking of PTE and modifying it.
3219 * The function expects the page to be locked or other protection against
3220 * concurrent faults / writeback (such as DAX radix tree locks).
3222 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3223 * we acquired PTE lock.
3225 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3227 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3228 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3231 return VM_FAULT_NOPAGE;
3233 * We might have raced with another page fault while we released the
3234 * pte_offset_map_lock.
3236 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3237 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3238 pte_unmap_unlock(vmf->pte, vmf->ptl);
3239 return VM_FAULT_NOPAGE;
3246 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3249 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3251 struct vm_area_struct *vma = vmf->vma;
3253 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3256 pte_unmap_unlock(vmf->pte, vmf->ptl);
3257 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3258 vma_end_read(vmf->vma);
3259 return VM_FAULT_RETRY;
3262 vmf->flags |= FAULT_FLAG_MKWRITE;
3263 ret = vma->vm_ops->pfn_mkwrite(vmf);
3264 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3266 return finish_mkwrite_fault(vmf);
3272 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3273 __releases(vmf->ptl)
3275 struct vm_area_struct *vma = vmf->vma;
3280 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3283 pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3286 vma_end_read(vmf->vma);
3287 return VM_FAULT_RETRY;
3290 tmp = do_page_mkwrite(vmf, folio);
3291 if (unlikely(!tmp || (tmp &
3292 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3296 tmp = finish_mkwrite_fault(vmf);
3297 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3298 folio_unlock(folio);
3306 ret |= fault_dirty_shared_page(vmf);
3313 * This routine handles present pages, when
3314 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3315 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3316 * (FAULT_FLAG_UNSHARE)
3318 * It is done by copying the page to a new address and decrementing the
3319 * shared-page counter for the old page.
3321 * Note that this routine assumes that the protection checks have been
3322 * done by the caller (the low-level page fault routine in most cases).
3323 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3324 * done any necessary COW.
3326 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3327 * though the page will change only once the write actually happens. This
3328 * avoids a few races, and potentially makes it more efficient.
3330 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3331 * but allow concurrent faults), with pte both mapped and locked.
3332 * We return with mmap_lock still held, but pte unmapped and unlocked.
3334 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3335 __releases(vmf->ptl)
3337 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3338 struct vm_area_struct *vma = vmf->vma;
3339 struct folio *folio = NULL;
3341 if (likely(!unshare)) {
3342 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3343 pte_unmap_unlock(vmf->pte, vmf->ptl);
3344 return handle_userfault(vmf, VM_UFFD_WP);
3348 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3349 * is flushed in this case before copying.
3351 if (unlikely(userfaultfd_wp(vmf->vma) &&
3352 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3353 flush_tlb_page(vmf->vma, vmf->address);
3356 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3359 folio = page_folio(vmf->page);
3362 * Shared mapping: we are guaranteed to have VM_WRITE and
3363 * FAULT_FLAG_WRITE set at this point.
3365 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3367 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3370 * We should not cow pages in a shared writeable mapping.
3371 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3374 return wp_pfn_shared(vmf);
3375 return wp_page_shared(vmf, folio);
3379 * Private mapping: create an exclusive anonymous page copy if reuse
3380 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3382 if (folio && folio_test_anon(folio)) {
3384 * If the page is exclusive to this process we must reuse the
3385 * page without further checks.
3387 if (PageAnonExclusive(vmf->page))
3391 * We have to verify under folio lock: these early checks are
3392 * just an optimization to avoid locking the folio and freeing
3393 * the swapcache if there is little hope that we can reuse.
3395 * KSM doesn't necessarily raise the folio refcount.
3397 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3399 if (!folio_test_lru(folio))
3401 * We cannot easily detect+handle references from
3402 * remote LRU caches or references to LRU folios.
3405 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3407 if (!folio_trylock(folio))
3409 if (folio_test_swapcache(folio))
3410 folio_free_swap(folio);
3411 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3412 folio_unlock(folio);
3416 * Ok, we've got the only folio reference from our mapping
3417 * and the folio is locked, it's dark out, and we're wearing
3418 * sunglasses. Hit it.
3420 page_move_anon_rmap(vmf->page, vma);
3421 folio_unlock(folio);
3423 if (unlikely(unshare)) {
3424 pte_unmap_unlock(vmf->pte, vmf->ptl);
3431 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3432 pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 vma_end_read(vmf->vma);
3434 return VM_FAULT_RETRY;
3438 * Ok, we need to copy. Oh, well..
3443 pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 if (folio && folio_test_ksm(folio))
3446 count_vm_event(COW_KSM);
3448 return wp_page_copy(vmf);
3451 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3452 unsigned long start_addr, unsigned long end_addr,
3453 struct zap_details *details)
3455 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3458 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3459 pgoff_t first_index,
3461 struct zap_details *details)
3463 struct vm_area_struct *vma;
3464 pgoff_t vba, vea, zba, zea;
3466 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3467 vba = vma->vm_pgoff;
3468 vea = vba + vma_pages(vma) - 1;
3469 zba = max(first_index, vba);
3470 zea = min(last_index, vea);
3472 unmap_mapping_range_vma(vma,
3473 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3474 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3480 * unmap_mapping_folio() - Unmap single folio from processes.
3481 * @folio: The locked folio to be unmapped.
3483 * Unmap this folio from any userspace process which still has it mmaped.
3484 * Typically, for efficiency, the range of nearby pages has already been
3485 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3486 * truncation or invalidation holds the lock on a folio, it may find that
3487 * the page has been remapped again: and then uses unmap_mapping_folio()
3488 * to unmap it finally.
3490 void unmap_mapping_folio(struct folio *folio)
3492 struct address_space *mapping = folio->mapping;
3493 struct zap_details details = { };
3494 pgoff_t first_index;
3497 VM_BUG_ON(!folio_test_locked(folio));
3499 first_index = folio->index;
3500 last_index = folio_next_index(folio) - 1;
3502 details.even_cows = false;
3503 details.single_folio = folio;
3504 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3506 i_mmap_lock_read(mapping);
3507 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3508 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3509 last_index, &details);
3510 i_mmap_unlock_read(mapping);
3514 * unmap_mapping_pages() - Unmap pages from processes.
3515 * @mapping: The address space containing pages to be unmapped.
3516 * @start: Index of first page to be unmapped.
3517 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3518 * @even_cows: Whether to unmap even private COWed pages.
3520 * Unmap the pages in this address space from any userspace process which
3521 * has them mmaped. Generally, you want to remove COWed pages as well when
3522 * a file is being truncated, but not when invalidating pages from the page
3525 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3526 pgoff_t nr, bool even_cows)
3528 struct zap_details details = { };
3529 pgoff_t first_index = start;
3530 pgoff_t last_index = start + nr - 1;
3532 details.even_cows = even_cows;
3533 if (last_index < first_index)
3534 last_index = ULONG_MAX;
3536 i_mmap_lock_read(mapping);
3537 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3538 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3539 last_index, &details);
3540 i_mmap_unlock_read(mapping);
3542 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3545 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3546 * address_space corresponding to the specified byte range in the underlying
3549 * @mapping: the address space containing mmaps to be unmapped.
3550 * @holebegin: byte in first page to unmap, relative to the start of
3551 * the underlying file. This will be rounded down to a PAGE_SIZE
3552 * boundary. Note that this is different from truncate_pagecache(), which
3553 * must keep the partial page. In contrast, we must get rid of
3555 * @holelen: size of prospective hole in bytes. This will be rounded
3556 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3558 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3559 * but 0 when invalidating pagecache, don't throw away private data.
3561 void unmap_mapping_range(struct address_space *mapping,
3562 loff_t const holebegin, loff_t const holelen, int even_cows)
3564 pgoff_t hba = holebegin >> PAGE_SHIFT;
3565 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3567 /* Check for overflow. */
3568 if (sizeof(holelen) > sizeof(hlen)) {
3570 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3571 if (holeend & ~(long long)ULONG_MAX)
3572 hlen = ULONG_MAX - hba + 1;
3575 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3577 EXPORT_SYMBOL(unmap_mapping_range);
3580 * Restore a potential device exclusive pte to a working pte entry
3582 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3584 struct folio *folio = page_folio(vmf->page);
3585 struct vm_area_struct *vma = vmf->vma;
3586 struct mmu_notifier_range range;
3590 * We need a reference to lock the folio because we don't hold
3591 * the PTL so a racing thread can remove the device-exclusive
3592 * entry and unmap it. If the folio is free the entry must
3593 * have been removed already. If it happens to have already
3594 * been re-allocated after being freed all we do is lock and
3597 if (!folio_try_get(folio))
3600 ret = folio_lock_or_retry(folio, vmf);
3605 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3606 vma->vm_mm, vmf->address & PAGE_MASK,
3607 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3608 mmu_notifier_invalidate_range_start(&range);
3610 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3612 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3613 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3616 pte_unmap_unlock(vmf->pte, vmf->ptl);
3617 folio_unlock(folio);
3620 mmu_notifier_invalidate_range_end(&range);
3624 static inline bool should_try_to_free_swap(struct folio *folio,
3625 struct vm_area_struct *vma,
3626 unsigned int fault_flags)
3628 if (!folio_test_swapcache(folio))
3630 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3631 folio_test_mlocked(folio))
3634 * If we want to map a page that's in the swapcache writable, we
3635 * have to detect via the refcount if we're really the exclusive
3636 * user. Try freeing the swapcache to get rid of the swapcache
3637 * reference only in case it's likely that we'll be the exlusive user.
3639 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3640 folio_ref_count(folio) == 2;
3643 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3645 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3646 vmf->address, &vmf->ptl);
3650 * Be careful so that we will only recover a special uffd-wp pte into a
3651 * none pte. Otherwise it means the pte could have changed, so retry.
3653 * This should also cover the case where e.g. the pte changed
3654 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3655 * So is_pte_marker() check is not enough to safely drop the pte.
3657 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3658 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3659 pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3665 if (vma_is_anonymous(vmf->vma))
3666 return do_anonymous_page(vmf);
3668 return do_fault(vmf);
3672 * This is actually a page-missing access, but with uffd-wp special pte
3673 * installed. It means this pte was wr-protected before being unmapped.
3675 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3678 * Just in case there're leftover special ptes even after the region
3679 * got unregistered - we can simply clear them.
3681 if (unlikely(!userfaultfd_wp(vmf->vma)))
3682 return pte_marker_clear(vmf);
3684 return do_pte_missing(vmf);
3687 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3689 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3690 unsigned long marker = pte_marker_get(entry);
3693 * PTE markers should never be empty. If anything weird happened,
3694 * the best thing to do is to kill the process along with its mm.
3696 if (WARN_ON_ONCE(!marker))
3697 return VM_FAULT_SIGBUS;
3699 /* Higher priority than uffd-wp when data corrupted */
3700 if (marker & PTE_MARKER_POISONED)
3701 return VM_FAULT_HWPOISON;
3703 if (pte_marker_entry_uffd_wp(entry))
3704 return pte_marker_handle_uffd_wp(vmf);
3706 /* This is an unknown pte marker */
3707 return VM_FAULT_SIGBUS;
3711 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3712 * but allow concurrent faults), and pte mapped but not yet locked.
3713 * We return with pte unmapped and unlocked.
3715 * We return with the mmap_lock locked or unlocked in the same cases
3716 * as does filemap_fault().
3718 vm_fault_t do_swap_page(struct vm_fault *vmf)
3720 struct vm_area_struct *vma = vmf->vma;
3721 struct folio *swapcache, *folio = NULL;
3723 struct swap_info_struct *si = NULL;
3724 rmap_t rmap_flags = RMAP_NONE;
3725 bool exclusive = false;
3729 void *shadow = NULL;
3731 if (!pte_unmap_same(vmf))
3734 entry = pte_to_swp_entry(vmf->orig_pte);
3735 if (unlikely(non_swap_entry(entry))) {
3736 if (is_migration_entry(entry)) {
3737 migration_entry_wait(vma->vm_mm, vmf->pmd,
3739 } else if (is_device_exclusive_entry(entry)) {
3740 vmf->page = pfn_swap_entry_to_page(entry);
3741 ret = remove_device_exclusive_entry(vmf);
3742 } else if (is_device_private_entry(entry)) {
3743 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3745 * migrate_to_ram is not yet ready to operate
3749 ret = VM_FAULT_RETRY;
3753 vmf->page = pfn_swap_entry_to_page(entry);
3754 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3755 vmf->address, &vmf->ptl);
3756 if (unlikely(!vmf->pte ||
3757 !pte_same(ptep_get(vmf->pte),
3762 * Get a page reference while we know the page can't be
3765 get_page(vmf->page);
3766 pte_unmap_unlock(vmf->pte, vmf->ptl);
3767 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3768 put_page(vmf->page);
3769 } else if (is_hwpoison_entry(entry)) {
3770 ret = VM_FAULT_HWPOISON;
3771 } else if (is_pte_marker_entry(entry)) {
3772 ret = handle_pte_marker(vmf);
3774 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3775 ret = VM_FAULT_SIGBUS;
3780 /* Prevent swapoff from happening to us. */
3781 si = get_swap_device(entry);
3785 folio = swap_cache_get_folio(entry, vma, vmf->address);
3787 page = folio_file_page(folio, swp_offset(entry));
3791 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3792 __swap_count(entry) == 1) {
3793 /* skip swapcache */
3794 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3795 vma, vmf->address, false);
3796 page = &folio->page;
3798 __folio_set_locked(folio);
3799 __folio_set_swapbacked(folio);
3801 if (mem_cgroup_swapin_charge_folio(folio,
3802 vma->vm_mm, GFP_KERNEL,
3807 mem_cgroup_swapin_uncharge_swap(entry);
3809 shadow = get_shadow_from_swap_cache(entry);
3811 workingset_refault(folio, shadow);
3813 folio_add_lru(folio);
3815 /* To provide entry to swap_readpage() */
3816 folio->swap = entry;
3817 swap_readpage(page, true, NULL);
3818 folio->private = NULL;
3821 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3824 folio = page_folio(page);
3830 * Back out if somebody else faulted in this pte
3831 * while we released the pte lock.
3833 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3834 vmf->address, &vmf->ptl);
3835 if (likely(vmf->pte &&
3836 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3841 /* Had to read the page from swap area: Major fault */
3842 ret = VM_FAULT_MAJOR;
3843 count_vm_event(PGMAJFAULT);
3844 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3845 } else if (PageHWPoison(page)) {
3847 * hwpoisoned dirty swapcache pages are kept for killing
3848 * owner processes (which may be unknown at hwpoison time)
3850 ret = VM_FAULT_HWPOISON;
3854 ret |= folio_lock_or_retry(folio, vmf);
3855 if (ret & VM_FAULT_RETRY)
3860 * Make sure folio_free_swap() or swapoff did not release the
3861 * swapcache from under us. The page pin, and pte_same test
3862 * below, are not enough to exclude that. Even if it is still
3863 * swapcache, we need to check that the page's swap has not
3866 if (unlikely(!folio_test_swapcache(folio) ||
3867 page_swap_entry(page).val != entry.val))
3871 * KSM sometimes has to copy on read faults, for example, if
3872 * page->index of !PageKSM() pages would be nonlinear inside the
3873 * anon VMA -- PageKSM() is lost on actual swapout.
3875 page = ksm_might_need_to_copy(page, vma, vmf->address);
3876 if (unlikely(!page)) {
3879 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3880 ret = VM_FAULT_HWPOISON;
3883 folio = page_folio(page);
3886 * If we want to map a page that's in the swapcache writable, we
3887 * have to detect via the refcount if we're really the exclusive
3888 * owner. Try removing the extra reference from the local LRU
3889 * caches if required.
3891 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3892 !folio_test_ksm(folio) && !folio_test_lru(folio))
3896 folio_throttle_swaprate(folio, GFP_KERNEL);
3899 * Back out if somebody else already faulted in this pte.
3901 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3903 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3906 if (unlikely(!folio_test_uptodate(folio))) {
3907 ret = VM_FAULT_SIGBUS;
3912 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3913 * must never point at an anonymous page in the swapcache that is
3914 * PG_anon_exclusive. Sanity check that this holds and especially, that
3915 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3916 * check after taking the PT lock and making sure that nobody
3917 * concurrently faulted in this page and set PG_anon_exclusive.
3919 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3920 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3923 * Check under PT lock (to protect against concurrent fork() sharing
3924 * the swap entry concurrently) for certainly exclusive pages.
3926 if (!folio_test_ksm(folio)) {
3927 exclusive = pte_swp_exclusive(vmf->orig_pte);
3928 if (folio != swapcache) {
3930 * We have a fresh page that is not exposed to the
3931 * swapcache -> certainly exclusive.
3934 } else if (exclusive && folio_test_writeback(folio) &&
3935 data_race(si->flags & SWP_STABLE_WRITES)) {
3937 * This is tricky: not all swap backends support
3938 * concurrent page modifications while under writeback.
3940 * So if we stumble over such a page in the swapcache
3941 * we must not set the page exclusive, otherwise we can
3942 * map it writable without further checks and modify it
3943 * while still under writeback.
3945 * For these problematic swap backends, simply drop the
3946 * exclusive marker: this is perfectly fine as we start
3947 * writeback only if we fully unmapped the page and
3948 * there are no unexpected references on the page after
3949 * unmapping succeeded. After fully unmapped, no
3950 * further GUP references (FOLL_GET and FOLL_PIN) can
3951 * appear, so dropping the exclusive marker and mapping
3952 * it only R/O is fine.
3959 * Some architectures may have to restore extra metadata to the page
3960 * when reading from swap. This metadata may be indexed by swap entry
3961 * so this must be called before swap_free().
3963 arch_swap_restore(entry, folio);
3966 * Remove the swap entry and conditionally try to free up the swapcache.
3967 * We're already holding a reference on the page but haven't mapped it
3971 if (should_try_to_free_swap(folio, vma, vmf->flags))
3972 folio_free_swap(folio);
3974 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3975 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3976 pte = mk_pte(page, vma->vm_page_prot);
3979 * Same logic as in do_wp_page(); however, optimize for pages that are
3980 * certainly not shared either because we just allocated them without
3981 * exposing them to the swapcache or because the swap entry indicates
3984 if (!folio_test_ksm(folio) &&
3985 (exclusive || folio_ref_count(folio) == 1)) {
3986 if (vmf->flags & FAULT_FLAG_WRITE) {
3987 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3988 vmf->flags &= ~FAULT_FLAG_WRITE;
3990 rmap_flags |= RMAP_EXCLUSIVE;
3992 flush_icache_page(vma, page);
3993 if (pte_swp_soft_dirty(vmf->orig_pte))
3994 pte = pte_mksoft_dirty(pte);
3995 if (pte_swp_uffd_wp(vmf->orig_pte))
3996 pte = pte_mkuffd_wp(pte);
3997 vmf->orig_pte = pte;
3999 /* ksm created a completely new copy */
4000 if (unlikely(folio != swapcache && swapcache)) {
4001 page_add_new_anon_rmap(page, vma, vmf->address);
4002 folio_add_lru_vma(folio, vma);
4004 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4007 VM_BUG_ON(!folio_test_anon(folio) ||
4008 (pte_write(pte) && !PageAnonExclusive(page)));
4009 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4010 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4012 folio_unlock(folio);
4013 if (folio != swapcache && swapcache) {
4015 * Hold the lock to avoid the swap entry to be reused
4016 * until we take the PT lock for the pte_same() check
4017 * (to avoid false positives from pte_same). For
4018 * further safety release the lock after the swap_free
4019 * so that the swap count won't change under a
4020 * parallel locked swapcache.
4022 folio_unlock(swapcache);
4023 folio_put(swapcache);
4026 if (vmf->flags & FAULT_FLAG_WRITE) {
4027 ret |= do_wp_page(vmf);
4028 if (ret & VM_FAULT_ERROR)
4029 ret &= VM_FAULT_ERROR;
4033 /* No need to invalidate - it was non-present before */
4034 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4037 pte_unmap_unlock(vmf->pte, vmf->ptl);
4040 put_swap_device(si);
4044 pte_unmap_unlock(vmf->pte, vmf->ptl);
4046 folio_unlock(folio);
4049 if (folio != swapcache && swapcache) {
4050 folio_unlock(swapcache);
4051 folio_put(swapcache);
4054 put_swap_device(si);
4059 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4060 * but allow concurrent faults), and pte mapped but not yet locked.
4061 * We return with mmap_lock still held, but pte unmapped and unlocked.
4063 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4065 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4066 struct vm_area_struct *vma = vmf->vma;
4067 struct folio *folio;
4071 /* File mapping without ->vm_ops ? */
4072 if (vma->vm_flags & VM_SHARED)
4073 return VM_FAULT_SIGBUS;
4076 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4077 * be distinguished from a transient failure of pte_offset_map().
4079 if (pte_alloc(vma->vm_mm, vmf->pmd))
4080 return VM_FAULT_OOM;
4082 /* Use the zero-page for reads */
4083 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4084 !mm_forbids_zeropage(vma->vm_mm)) {
4085 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4086 vma->vm_page_prot));
4087 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4088 vmf->address, &vmf->ptl);
4091 if (vmf_pte_changed(vmf)) {
4092 update_mmu_tlb(vma, vmf->address, vmf->pte);
4095 ret = check_stable_address_space(vma->vm_mm);
4098 /* Deliver the page fault to userland, check inside PT lock */
4099 if (userfaultfd_missing(vma)) {
4100 pte_unmap_unlock(vmf->pte, vmf->ptl);
4101 return handle_userfault(vmf, VM_UFFD_MISSING);
4106 /* Allocate our own private page. */
4107 if (unlikely(anon_vma_prepare(vma)))
4109 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4113 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4115 folio_throttle_swaprate(folio, GFP_KERNEL);
4118 * The memory barrier inside __folio_mark_uptodate makes sure that
4119 * preceding stores to the page contents become visible before
4120 * the set_pte_at() write.
4122 __folio_mark_uptodate(folio);
4124 entry = mk_pte(&folio->page, vma->vm_page_prot);
4125 entry = pte_sw_mkyoung(entry);
4126 if (vma->vm_flags & VM_WRITE)
4127 entry = pte_mkwrite(pte_mkdirty(entry));
4129 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4133 if (vmf_pte_changed(vmf)) {
4134 update_mmu_tlb(vma, vmf->address, vmf->pte);
4138 ret = check_stable_address_space(vma->vm_mm);
4142 /* Deliver the page fault to userland, check inside PT lock */
4143 if (userfaultfd_missing(vma)) {
4144 pte_unmap_unlock(vmf->pte, vmf->ptl);
4146 return handle_userfault(vmf, VM_UFFD_MISSING);
4149 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4150 folio_add_new_anon_rmap(folio, vma, vmf->address);
4151 folio_add_lru_vma(folio, vma);
4154 entry = pte_mkuffd_wp(entry);
4155 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4157 /* No need to invalidate - it was non-present before */
4158 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4161 pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 return VM_FAULT_OOM;
4173 * The mmap_lock must have been held on entry, and may have been
4174 * released depending on flags and vma->vm_ops->fault() return value.
4175 * See filemap_fault() and __lock_page_retry().
4177 static vm_fault_t __do_fault(struct vm_fault *vmf)
4179 struct vm_area_struct *vma = vmf->vma;
4183 * Preallocate pte before we take page_lock because this might lead to
4184 * deadlocks for memcg reclaim which waits for pages under writeback:
4186 * SetPageWriteback(A)
4192 * wait_on_page_writeback(A)
4193 * SetPageWriteback(B)
4195 * # flush A, B to clear the writeback
4197 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4198 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4199 if (!vmf->prealloc_pte)
4200 return VM_FAULT_OOM;
4203 ret = vma->vm_ops->fault(vmf);
4204 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4205 VM_FAULT_DONE_COW)))
4208 if (unlikely(PageHWPoison(vmf->page))) {
4209 struct page *page = vmf->page;
4210 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4211 if (ret & VM_FAULT_LOCKED) {
4212 if (page_mapped(page))
4213 unmap_mapping_pages(page_mapping(page),
4214 page->index, 1, false);
4215 /* Retry if a clean page was removed from the cache. */
4216 if (invalidate_inode_page(page))
4217 poisonret = VM_FAULT_NOPAGE;
4225 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4226 lock_page(vmf->page);
4228 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4234 static void deposit_prealloc_pte(struct vm_fault *vmf)
4236 struct vm_area_struct *vma = vmf->vma;
4238 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4240 * We are going to consume the prealloc table,
4241 * count that as nr_ptes.
4243 mm_inc_nr_ptes(vma->vm_mm);
4244 vmf->prealloc_pte = NULL;
4247 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4249 struct vm_area_struct *vma = vmf->vma;
4250 bool write = vmf->flags & FAULT_FLAG_WRITE;
4251 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4253 vm_fault_t ret = VM_FAULT_FALLBACK;
4255 if (!transhuge_vma_suitable(vma, haddr))
4258 page = compound_head(page);
4259 if (compound_order(page) != HPAGE_PMD_ORDER)
4263 * Just backoff if any subpage of a THP is corrupted otherwise
4264 * the corrupted page may mapped by PMD silently to escape the
4265 * check. This kind of THP just can be PTE mapped. Access to
4266 * the corrupted subpage should trigger SIGBUS as expected.
4268 if (unlikely(PageHasHWPoisoned(page)))
4272 * Archs like ppc64 need additional space to store information
4273 * related to pte entry. Use the preallocated table for that.
4275 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4276 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4277 if (!vmf->prealloc_pte)
4278 return VM_FAULT_OOM;
4281 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4282 if (unlikely(!pmd_none(*vmf->pmd)))
4285 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4287 entry = mk_huge_pmd(page, vma->vm_page_prot);
4289 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4291 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4292 page_add_file_rmap(page, vma, true);
4295 * deposit and withdraw with pmd lock held
4297 if (arch_needs_pgtable_deposit())
4298 deposit_prealloc_pte(vmf);
4300 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4302 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4304 /* fault is handled */
4306 count_vm_event(THP_FILE_MAPPED);
4308 spin_unlock(vmf->ptl);
4312 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4314 return VM_FAULT_FALLBACK;
4319 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4320 * @vmf: Fault decription.
4321 * @folio: The folio that contains @page.
4322 * @page: The first page to create a PTE for.
4323 * @nr: The number of PTEs to create.
4324 * @addr: The first address to create a PTE for.
4326 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4327 struct page *page, unsigned int nr, unsigned long addr)
4329 struct vm_area_struct *vma = vmf->vma;
4330 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4331 bool write = vmf->flags & FAULT_FLAG_WRITE;
4332 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4335 flush_icache_pages(vma, page, nr);
4336 entry = mk_pte(page, vma->vm_page_prot);
4338 if (prefault && arch_wants_old_prefaulted_pte())
4339 entry = pte_mkold(entry);
4341 entry = pte_sw_mkyoung(entry);
4344 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4345 if (unlikely(uffd_wp))
4346 entry = pte_mkuffd_wp(entry);
4347 /* copy-on-write page */
4348 if (write && !(vma->vm_flags & VM_SHARED)) {
4349 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4350 VM_BUG_ON_FOLIO(nr != 1, folio);
4351 folio_add_new_anon_rmap(folio, vma, addr);
4352 folio_add_lru_vma(folio, vma);
4354 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4355 folio_add_file_rmap_range(folio, page, nr, vma, false);
4357 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4359 /* no need to invalidate: a not-present page won't be cached */
4360 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4363 static bool vmf_pte_changed(struct vm_fault *vmf)
4365 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4366 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4368 return !pte_none(ptep_get(vmf->pte));
4372 * finish_fault - finish page fault once we have prepared the page to fault
4374 * @vmf: structure describing the fault
4376 * This function handles all that is needed to finish a page fault once the
4377 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4378 * given page, adds reverse page mapping, handles memcg charges and LRU
4381 * The function expects the page to be locked and on success it consumes a
4382 * reference of a page being mapped (for the PTE which maps it).
4384 * Return: %0 on success, %VM_FAULT_ code in case of error.
4386 vm_fault_t finish_fault(struct vm_fault *vmf)
4388 struct vm_area_struct *vma = vmf->vma;
4392 /* Did we COW the page? */
4393 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4394 page = vmf->cow_page;
4399 * check even for read faults because we might have lost our CoWed
4402 if (!(vma->vm_flags & VM_SHARED)) {
4403 ret = check_stable_address_space(vma->vm_mm);
4408 if (pmd_none(*vmf->pmd)) {
4409 if (PageTransCompound(page)) {
4410 ret = do_set_pmd(vmf, page);
4411 if (ret != VM_FAULT_FALLBACK)
4415 if (vmf->prealloc_pte)
4416 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4417 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4418 return VM_FAULT_OOM;
4421 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4422 vmf->address, &vmf->ptl);
4424 return VM_FAULT_NOPAGE;
4426 /* Re-check under ptl */
4427 if (likely(!vmf_pte_changed(vmf))) {
4428 struct folio *folio = page_folio(page);
4430 set_pte_range(vmf, folio, page, 1, vmf->address);
4433 update_mmu_tlb(vma, vmf->address, vmf->pte);
4434 ret = VM_FAULT_NOPAGE;
4437 pte_unmap_unlock(vmf->pte, vmf->ptl);
4441 static unsigned long fault_around_pages __read_mostly =
4442 65536 >> PAGE_SHIFT;
4444 #ifdef CONFIG_DEBUG_FS
4445 static int fault_around_bytes_get(void *data, u64 *val)
4447 *val = fault_around_pages << PAGE_SHIFT;
4452 * fault_around_bytes must be rounded down to the nearest page order as it's
4453 * what do_fault_around() expects to see.
4455 static int fault_around_bytes_set(void *data, u64 val)
4457 if (val / PAGE_SIZE > PTRS_PER_PTE)
4461 * The minimum value is 1 page, however this results in no fault-around
4462 * at all. See should_fault_around().
4464 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4468 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4469 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4471 static int __init fault_around_debugfs(void)
4473 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4474 &fault_around_bytes_fops);
4477 late_initcall(fault_around_debugfs);
4481 * do_fault_around() tries to map few pages around the fault address. The hope
4482 * is that the pages will be needed soon and this will lower the number of
4485 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4486 * not ready to be mapped: not up-to-date, locked, etc.
4488 * This function doesn't cross VMA or page table boundaries, in order to call
4489 * map_pages() and acquire a PTE lock only once.
4491 * fault_around_pages defines how many pages we'll try to map.
4492 * do_fault_around() expects it to be set to a power of two less than or equal
4495 * The virtual address of the area that we map is naturally aligned to
4496 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4497 * (and therefore to page order). This way it's easier to guarantee
4498 * that we don't cross page table boundaries.
4500 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4502 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4503 pgoff_t pte_off = pte_index(vmf->address);
4504 /* The page offset of vmf->address within the VMA. */
4505 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4506 pgoff_t from_pte, to_pte;
4509 /* The PTE offset of the start address, clamped to the VMA. */
4510 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4511 pte_off - min(pte_off, vma_off));
4513 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4514 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4515 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4517 if (pmd_none(*vmf->pmd)) {
4518 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4519 if (!vmf->prealloc_pte)
4520 return VM_FAULT_OOM;
4524 ret = vmf->vma->vm_ops->map_pages(vmf,
4525 vmf->pgoff + from_pte - pte_off,
4526 vmf->pgoff + to_pte - pte_off);
4532 /* Return true if we should do read fault-around, false otherwise */
4533 static inline bool should_fault_around(struct vm_fault *vmf)
4535 /* No ->map_pages? No way to fault around... */
4536 if (!vmf->vma->vm_ops->map_pages)
4539 if (uffd_disable_fault_around(vmf->vma))
4542 /* A single page implies no faulting 'around' at all. */
4543 return fault_around_pages > 1;
4546 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4549 struct folio *folio;
4552 * Let's call ->map_pages() first and use ->fault() as fallback
4553 * if page by the offset is not ready to be mapped (cold cache or
4556 if (should_fault_around(vmf)) {
4557 ret = do_fault_around(vmf);
4562 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4563 vma_end_read(vmf->vma);
4564 return VM_FAULT_RETRY;
4567 ret = __do_fault(vmf);
4568 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 ret |= finish_fault(vmf);
4572 folio = page_folio(vmf->page);
4573 folio_unlock(folio);
4574 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4579 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4581 struct vm_area_struct *vma = vmf->vma;
4584 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4586 return VM_FAULT_RETRY;
4589 if (unlikely(anon_vma_prepare(vma)))
4590 return VM_FAULT_OOM;
4592 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4594 return VM_FAULT_OOM;
4596 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4598 put_page(vmf->cow_page);
4599 return VM_FAULT_OOM;
4601 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4603 ret = __do_fault(vmf);
4604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4606 if (ret & VM_FAULT_DONE_COW)
4609 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4610 __SetPageUptodate(vmf->cow_page);
4612 ret |= finish_fault(vmf);
4613 unlock_page(vmf->page);
4614 put_page(vmf->page);
4615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4619 put_page(vmf->cow_page);
4623 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4625 struct vm_area_struct *vma = vmf->vma;
4626 vm_fault_t ret, tmp;
4627 struct folio *folio;
4629 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4631 return VM_FAULT_RETRY;
4634 ret = __do_fault(vmf);
4635 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4638 folio = page_folio(vmf->page);
4641 * Check if the backing address space wants to know that the page is
4642 * about to become writable
4644 if (vma->vm_ops->page_mkwrite) {
4645 folio_unlock(folio);
4646 tmp = do_page_mkwrite(vmf, folio);
4647 if (unlikely(!tmp ||
4648 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4654 ret |= finish_fault(vmf);
4655 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4657 folio_unlock(folio);
4662 ret |= fault_dirty_shared_page(vmf);
4667 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4668 * but allow concurrent faults).
4669 * The mmap_lock may have been released depending on flags and our
4670 * return value. See filemap_fault() and __folio_lock_or_retry().
4671 * If mmap_lock is released, vma may become invalid (for example
4672 * by other thread calling munmap()).
4674 static vm_fault_t do_fault(struct vm_fault *vmf)
4676 struct vm_area_struct *vma = vmf->vma;
4677 struct mm_struct *vm_mm = vma->vm_mm;
4681 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4683 if (!vma->vm_ops->fault) {
4684 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4685 vmf->address, &vmf->ptl);
4686 if (unlikely(!vmf->pte))
4687 ret = VM_FAULT_SIGBUS;
4690 * Make sure this is not a temporary clearing of pte
4691 * by holding ptl and checking again. A R/M/W update
4692 * of pte involves: take ptl, clearing the pte so that
4693 * we don't have concurrent modification by hardware
4694 * followed by an update.
4696 if (unlikely(pte_none(ptep_get(vmf->pte))))
4697 ret = VM_FAULT_SIGBUS;
4699 ret = VM_FAULT_NOPAGE;
4701 pte_unmap_unlock(vmf->pte, vmf->ptl);
4703 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4704 ret = do_read_fault(vmf);
4705 else if (!(vma->vm_flags & VM_SHARED))
4706 ret = do_cow_fault(vmf);
4708 ret = do_shared_fault(vmf);
4710 /* preallocated pagetable is unused: free it */
4711 if (vmf->prealloc_pte) {
4712 pte_free(vm_mm, vmf->prealloc_pte);
4713 vmf->prealloc_pte = NULL;
4718 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4719 unsigned long addr, int page_nid, int *flags)
4723 /* Record the current PID acceesing VMA */
4724 vma_set_access_pid_bit(vma);
4726 count_vm_numa_event(NUMA_HINT_FAULTS);
4727 if (page_nid == numa_node_id()) {
4728 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4729 *flags |= TNF_FAULT_LOCAL;
4732 return mpol_misplaced(page, vma, addr);
4735 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4737 struct vm_area_struct *vma = vmf->vma;
4738 struct page *page = NULL;
4739 int page_nid = NUMA_NO_NODE;
4740 bool writable = false;
4747 * The "pte" at this point cannot be used safely without
4748 * validation through pte_unmap_same(). It's of NUMA type but
4749 * the pfn may be screwed if the read is non atomic.
4751 spin_lock(vmf->ptl);
4752 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4753 pte_unmap_unlock(vmf->pte, vmf->ptl);
4757 /* Get the normal PTE */
4758 old_pte = ptep_get(vmf->pte);
4759 pte = pte_modify(old_pte, vma->vm_page_prot);
4762 * Detect now whether the PTE could be writable; this information
4763 * is only valid while holding the PT lock.
4765 writable = pte_write(pte);
4766 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4767 can_change_pte_writable(vma, vmf->address, pte))
4770 page = vm_normal_page(vma, vmf->address, pte);
4771 if (!page || is_zone_device_page(page))
4774 /* TODO: handle PTE-mapped THP */
4775 if (PageCompound(page))
4779 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4780 * much anyway since they can be in shared cache state. This misses
4781 * the case where a mapping is writable but the process never writes
4782 * to it but pte_write gets cleared during protection updates and
4783 * pte_dirty has unpredictable behaviour between PTE scan updates,
4784 * background writeback, dirty balancing and application behaviour.
4787 flags |= TNF_NO_GROUP;
4790 * Flag if the page is shared between multiple address spaces. This
4791 * is later used when determining whether to group tasks together
4793 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4794 flags |= TNF_SHARED;
4796 page_nid = page_to_nid(page);
4798 * For memory tiering mode, cpupid of slow memory page is used
4799 * to record page access time. So use default value.
4801 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4802 !node_is_toptier(page_nid))
4803 last_cpupid = (-1 & LAST_CPUPID_MASK);
4805 last_cpupid = page_cpupid_last(page);
4806 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4808 if (target_nid == NUMA_NO_NODE) {
4812 pte_unmap_unlock(vmf->pte, vmf->ptl);
4815 /* Migrate to the requested node */
4816 if (migrate_misplaced_page(page, vma, target_nid)) {
4817 page_nid = target_nid;
4818 flags |= TNF_MIGRATED;
4820 flags |= TNF_MIGRATE_FAIL;
4821 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4822 vmf->address, &vmf->ptl);
4823 if (unlikely(!vmf->pte))
4825 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4826 pte_unmap_unlock(vmf->pte, vmf->ptl);
4833 if (page_nid != NUMA_NO_NODE)
4834 task_numa_fault(last_cpupid, page_nid, 1, flags);
4838 * Make it present again, depending on how arch implements
4839 * non-accessible ptes, some can allow access by kernel mode.
4841 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4842 pte = pte_modify(old_pte, vma->vm_page_prot);
4843 pte = pte_mkyoung(pte);
4845 pte = pte_mkwrite(pte);
4846 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4847 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4848 pte_unmap_unlock(vmf->pte, vmf->ptl);
4852 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4854 struct vm_area_struct *vma = vmf->vma;
4855 if (vma_is_anonymous(vma))
4856 return do_huge_pmd_anonymous_page(vmf);
4857 if (vma->vm_ops->huge_fault)
4858 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4859 return VM_FAULT_FALLBACK;
4862 /* `inline' is required to avoid gcc 4.1.2 build error */
4863 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4865 struct vm_area_struct *vma = vmf->vma;
4866 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4869 if (vma_is_anonymous(vma)) {
4870 if (likely(!unshare) &&
4871 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4872 return handle_userfault(vmf, VM_UFFD_WP);
4873 return do_huge_pmd_wp_page(vmf);
4876 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877 if (vma->vm_ops->huge_fault) {
4878 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4879 if (!(ret & VM_FAULT_FALLBACK))
4884 /* COW or write-notify handled on pte level: split pmd. */
4885 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4887 return VM_FAULT_FALLBACK;
4890 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4892 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4893 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4894 struct vm_area_struct *vma = vmf->vma;
4895 /* No support for anonymous transparent PUD pages yet */
4896 if (vma_is_anonymous(vma))
4897 return VM_FAULT_FALLBACK;
4898 if (vma->vm_ops->huge_fault)
4899 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4900 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4901 return VM_FAULT_FALLBACK;
4904 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4906 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4907 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4908 struct vm_area_struct *vma = vmf->vma;
4911 /* No support for anonymous transparent PUD pages yet */
4912 if (vma_is_anonymous(vma))
4914 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4915 if (vma->vm_ops->huge_fault) {
4916 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4917 if (!(ret & VM_FAULT_FALLBACK))
4922 /* COW or write-notify not handled on PUD level: split pud.*/
4923 __split_huge_pud(vma, vmf->pud, vmf->address);
4924 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4925 return VM_FAULT_FALLBACK;
4929 * These routines also need to handle stuff like marking pages dirty
4930 * and/or accessed for architectures that don't do it in hardware (most
4931 * RISC architectures). The early dirtying is also good on the i386.
4933 * There is also a hook called "update_mmu_cache()" that architectures
4934 * with external mmu caches can use to update those (ie the Sparc or
4935 * PowerPC hashed page tables that act as extended TLBs).
4937 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4938 * concurrent faults).
4940 * The mmap_lock may have been released depending on flags and our return value.
4941 * See filemap_fault() and __folio_lock_or_retry().
4943 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4947 if (unlikely(pmd_none(*vmf->pmd))) {
4949 * Leave __pte_alloc() until later: because vm_ops->fault may
4950 * want to allocate huge page, and if we expose page table
4951 * for an instant, it will be difficult to retract from
4952 * concurrent faults and from rmap lookups.
4955 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4958 * A regular pmd is established and it can't morph into a huge
4959 * pmd by anon khugepaged, since that takes mmap_lock in write
4960 * mode; but shmem or file collapse to THP could still morph
4961 * it into a huge pmd: just retry later if so.
4963 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4964 vmf->address, &vmf->ptl);
4965 if (unlikely(!vmf->pte))
4967 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4968 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4970 if (pte_none(vmf->orig_pte)) {
4971 pte_unmap(vmf->pte);
4977 return do_pte_missing(vmf);
4979 if (!pte_present(vmf->orig_pte))
4980 return do_swap_page(vmf);
4982 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4983 return do_numa_page(vmf);
4985 spin_lock(vmf->ptl);
4986 entry = vmf->orig_pte;
4987 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4988 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4991 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4992 if (!pte_write(entry))
4993 return do_wp_page(vmf);
4994 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4995 entry = pte_mkdirty(entry);
4997 entry = pte_mkyoung(entry);
4998 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4999 vmf->flags & FAULT_FLAG_WRITE)) {
5000 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5003 /* Skip spurious TLB flush for retried page fault */
5004 if (vmf->flags & FAULT_FLAG_TRIED)
5007 * This is needed only for protection faults but the arch code
5008 * is not yet telling us if this is a protection fault or not.
5009 * This still avoids useless tlb flushes for .text page faults
5012 if (vmf->flags & FAULT_FLAG_WRITE)
5013 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5017 pte_unmap_unlock(vmf->pte, vmf->ptl);
5022 * On entry, we hold either the VMA lock or the mmap_lock
5023 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5024 * the result, the mmap_lock is not held on exit. See filemap_fault()
5025 * and __folio_lock_or_retry().
5027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5028 unsigned long address, unsigned int flags)
5030 struct vm_fault vmf = {
5032 .address = address & PAGE_MASK,
5033 .real_address = address,
5035 .pgoff = linear_page_index(vma, address),
5036 .gfp_mask = __get_fault_gfp_mask(vma),
5038 struct mm_struct *mm = vma->vm_mm;
5039 unsigned long vm_flags = vma->vm_flags;
5044 pgd = pgd_offset(mm, address);
5045 p4d = p4d_alloc(mm, pgd, address);
5047 return VM_FAULT_OOM;
5049 vmf.pud = pud_alloc(mm, p4d, address);
5051 return VM_FAULT_OOM;
5053 if (pud_none(*vmf.pud) &&
5054 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5055 ret = create_huge_pud(&vmf);
5056 if (!(ret & VM_FAULT_FALLBACK))
5059 pud_t orig_pud = *vmf.pud;
5062 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5065 * TODO once we support anonymous PUDs: NUMA case and
5066 * FAULT_FLAG_UNSHARE handling.
5068 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5069 ret = wp_huge_pud(&vmf, orig_pud);
5070 if (!(ret & VM_FAULT_FALLBACK))
5073 huge_pud_set_accessed(&vmf, orig_pud);
5079 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5081 return VM_FAULT_OOM;
5083 /* Huge pud page fault raced with pmd_alloc? */
5084 if (pud_trans_unstable(vmf.pud))
5087 if (pmd_none(*vmf.pmd) &&
5088 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5089 ret = create_huge_pmd(&vmf);
5090 if (!(ret & VM_FAULT_FALLBACK))
5093 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5095 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5096 VM_BUG_ON(thp_migration_supported() &&
5097 !is_pmd_migration_entry(vmf.orig_pmd));
5098 if (is_pmd_migration_entry(vmf.orig_pmd))
5099 pmd_migration_entry_wait(mm, vmf.pmd);
5102 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5103 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5104 return do_huge_pmd_numa_page(&vmf);
5106 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5107 !pmd_write(vmf.orig_pmd)) {
5108 ret = wp_huge_pmd(&vmf);
5109 if (!(ret & VM_FAULT_FALLBACK))
5112 huge_pmd_set_accessed(&vmf);
5118 return handle_pte_fault(&vmf);
5122 * mm_account_fault - Do page fault accounting
5123 * @mm: mm from which memcg should be extracted. It can be NULL.
5124 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5125 * of perf event counters, but we'll still do the per-task accounting to
5126 * the task who triggered this page fault.
5127 * @address: the faulted address.
5128 * @flags: the fault flags.
5129 * @ret: the fault retcode.
5131 * This will take care of most of the page fault accounting. Meanwhile, it
5132 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5133 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5134 * still be in per-arch page fault handlers at the entry of page fault.
5136 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5137 unsigned long address, unsigned int flags,
5142 /* Incomplete faults will be accounted upon completion. */
5143 if (ret & VM_FAULT_RETRY)
5147 * To preserve the behavior of older kernels, PGFAULT counters record
5148 * both successful and failed faults, as opposed to perf counters,
5149 * which ignore failed cases.
5151 count_vm_event(PGFAULT);
5152 count_memcg_event_mm(mm, PGFAULT);
5155 * Do not account for unsuccessful faults (e.g. when the address wasn't
5156 * valid). That includes arch_vma_access_permitted() failing before
5157 * reaching here. So this is not a "this many hardware page faults"
5158 * counter. We should use the hw profiling for that.
5160 if (ret & VM_FAULT_ERROR)
5164 * We define the fault as a major fault when the final successful fault
5165 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5166 * handle it immediately previously).
5168 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5176 * If the fault is done for GUP, regs will be NULL. We only do the
5177 * accounting for the per thread fault counters who triggered the
5178 * fault, and we skip the perf event updates.
5184 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5186 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5189 #ifdef CONFIG_LRU_GEN
5190 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5192 /* the LRU algorithm only applies to accesses with recency */
5193 current->in_lru_fault = vma_has_recency(vma);
5196 static void lru_gen_exit_fault(void)
5198 current->in_lru_fault = false;
5201 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5205 static void lru_gen_exit_fault(void)
5208 #endif /* CONFIG_LRU_GEN */
5210 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5211 unsigned int *flags)
5213 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5214 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5215 return VM_FAULT_SIGSEGV;
5217 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5218 * just treat it like an ordinary read-fault otherwise.
5220 if (!is_cow_mapping(vma->vm_flags))
5221 *flags &= ~FAULT_FLAG_UNSHARE;
5222 } else if (*flags & FAULT_FLAG_WRITE) {
5223 /* Write faults on read-only mappings are impossible ... */
5224 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5225 return VM_FAULT_SIGSEGV;
5226 /* ... and FOLL_FORCE only applies to COW mappings. */
5227 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5228 !is_cow_mapping(vma->vm_flags)))
5229 return VM_FAULT_SIGSEGV;
5231 #ifdef CONFIG_PER_VMA_LOCK
5233 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5234 * the assumption that lock is dropped on VM_FAULT_RETRY.
5236 if (WARN_ON_ONCE((*flags &
5237 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5238 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5239 return VM_FAULT_SIGSEGV;
5246 * By the time we get here, we already hold the mm semaphore
5248 * The mmap_lock may have been released depending on flags and our
5249 * return value. See filemap_fault() and __folio_lock_or_retry().
5251 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5252 unsigned int flags, struct pt_regs *regs)
5254 /* If the fault handler drops the mmap_lock, vma may be freed */
5255 struct mm_struct *mm = vma->vm_mm;
5258 __set_current_state(TASK_RUNNING);
5260 ret = sanitize_fault_flags(vma, &flags);
5264 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5265 flags & FAULT_FLAG_INSTRUCTION,
5266 flags & FAULT_FLAG_REMOTE)) {
5267 ret = VM_FAULT_SIGSEGV;
5272 * Enable the memcg OOM handling for faults triggered in user
5273 * space. Kernel faults are handled more gracefully.
5275 if (flags & FAULT_FLAG_USER)
5276 mem_cgroup_enter_user_fault();
5278 lru_gen_enter_fault(vma);
5280 if (unlikely(is_vm_hugetlb_page(vma)))
5281 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5283 ret = __handle_mm_fault(vma, address, flags);
5285 lru_gen_exit_fault();
5287 if (flags & FAULT_FLAG_USER) {
5288 mem_cgroup_exit_user_fault();
5290 * The task may have entered a memcg OOM situation but
5291 * if the allocation error was handled gracefully (no
5292 * VM_FAULT_OOM), there is no need to kill anything.
5293 * Just clean up the OOM state peacefully.
5295 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5296 mem_cgroup_oom_synchronize(false);
5299 mm_account_fault(mm, regs, address, flags, ret);
5303 EXPORT_SYMBOL_GPL(handle_mm_fault);
5305 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5306 #include <linux/extable.h>
5308 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5310 if (likely(mmap_read_trylock(mm)))
5313 if (regs && !user_mode(regs)) {
5314 unsigned long ip = instruction_pointer(regs);
5315 if (!search_exception_tables(ip))
5319 return !mmap_read_lock_killable(mm);
5322 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5325 * We don't have this operation yet.
5327 * It should be easy enough to do: it's basically a
5328 * atomic_long_try_cmpxchg_acquire()
5329 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5330 * it also needs the proper lockdep magic etc.
5335 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5337 mmap_read_unlock(mm);
5338 if (regs && !user_mode(regs)) {
5339 unsigned long ip = instruction_pointer(regs);
5340 if (!search_exception_tables(ip))
5343 return !mmap_write_lock_killable(mm);
5347 * Helper for page fault handling.
5349 * This is kind of equivalend to "mmap_read_lock()" followed
5350 * by "find_extend_vma()", except it's a lot more careful about
5351 * the locking (and will drop the lock on failure).
5353 * For example, if we have a kernel bug that causes a page
5354 * fault, we don't want to just use mmap_read_lock() to get
5355 * the mm lock, because that would deadlock if the bug were
5356 * to happen while we're holding the mm lock for writing.
5358 * So this checks the exception tables on kernel faults in
5359 * order to only do this all for instructions that are actually
5360 * expected to fault.
5362 * We can also actually take the mm lock for writing if we
5363 * need to extend the vma, which helps the VM layer a lot.
5365 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5366 unsigned long addr, struct pt_regs *regs)
5368 struct vm_area_struct *vma;
5370 if (!get_mmap_lock_carefully(mm, regs))
5373 vma = find_vma(mm, addr);
5374 if (likely(vma && (vma->vm_start <= addr)))
5378 * Well, dang. We might still be successful, but only
5379 * if we can extend a vma to do so.
5381 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5382 mmap_read_unlock(mm);
5387 * We can try to upgrade the mmap lock atomically,
5388 * in which case we can continue to use the vma
5389 * we already looked up.
5391 * Otherwise we'll have to drop the mmap lock and
5392 * re-take it, and also look up the vma again,
5395 if (!mmap_upgrade_trylock(mm)) {
5396 if (!upgrade_mmap_lock_carefully(mm, regs))
5399 vma = find_vma(mm, addr);
5402 if (vma->vm_start <= addr)
5404 if (!(vma->vm_flags & VM_GROWSDOWN))
5408 if (expand_stack_locked(vma, addr))
5412 mmap_write_downgrade(mm);
5416 mmap_write_unlock(mm);
5421 #ifdef CONFIG_PER_VMA_LOCK
5423 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5424 * stable and not isolated. If the VMA is not found or is being modified the
5425 * function returns NULL.
5427 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5428 unsigned long address)
5430 MA_STATE(mas, &mm->mm_mt, address, address);
5431 struct vm_area_struct *vma;
5435 vma = mas_walk(&mas);
5439 if (!vma_start_read(vma))
5443 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5444 * This check must happen after vma_start_read(); otherwise, a
5445 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5446 * from its anon_vma.
5448 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5449 goto inval_end_read;
5451 /* Check since vm_start/vm_end might change before we lock the VMA */
5452 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5453 goto inval_end_read;
5455 /* Check if the VMA got isolated after we found it */
5456 if (vma->detached) {
5458 count_vm_vma_lock_event(VMA_LOCK_MISS);
5459 /* The area was replaced with another one */
5470 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5473 #endif /* CONFIG_PER_VMA_LOCK */
5475 #ifndef __PAGETABLE_P4D_FOLDED
5477 * Allocate p4d page table.
5478 * We've already handled the fast-path in-line.
5480 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5482 p4d_t *new = p4d_alloc_one(mm, address);
5486 spin_lock(&mm->page_table_lock);
5487 if (pgd_present(*pgd)) { /* Another has populated it */
5490 smp_wmb(); /* See comment in pmd_install() */
5491 pgd_populate(mm, pgd, new);
5493 spin_unlock(&mm->page_table_lock);
5496 #endif /* __PAGETABLE_P4D_FOLDED */
5498 #ifndef __PAGETABLE_PUD_FOLDED
5500 * Allocate page upper directory.
5501 * We've already handled the fast-path in-line.
5503 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5505 pud_t *new = pud_alloc_one(mm, address);
5509 spin_lock(&mm->page_table_lock);
5510 if (!p4d_present(*p4d)) {
5512 smp_wmb(); /* See comment in pmd_install() */
5513 p4d_populate(mm, p4d, new);
5514 } else /* Another has populated it */
5516 spin_unlock(&mm->page_table_lock);
5519 #endif /* __PAGETABLE_PUD_FOLDED */
5521 #ifndef __PAGETABLE_PMD_FOLDED
5523 * Allocate page middle directory.
5524 * We've already handled the fast-path in-line.
5526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5529 pmd_t *new = pmd_alloc_one(mm, address);
5533 ptl = pud_lock(mm, pud);
5534 if (!pud_present(*pud)) {
5536 smp_wmb(); /* See comment in pmd_install() */
5537 pud_populate(mm, pud, new);
5538 } else { /* Another has populated it */
5544 #endif /* __PAGETABLE_PMD_FOLDED */
5547 * follow_pte - look up PTE at a user virtual address
5548 * @mm: the mm_struct of the target address space
5549 * @address: user virtual address
5550 * @ptepp: location to store found PTE
5551 * @ptlp: location to store the lock for the PTE
5553 * On a successful return, the pointer to the PTE is stored in @ptepp;
5554 * the corresponding lock is taken and its location is stored in @ptlp.
5555 * The contents of the PTE are only stable until @ptlp is released;
5556 * any further use, if any, must be protected against invalidation
5557 * with MMU notifiers.
5559 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5560 * should be taken for read.
5562 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5563 * it is not a good general-purpose API.
5565 * Return: zero on success, -ve otherwise.
5567 int follow_pte(struct mm_struct *mm, unsigned long address,
5568 pte_t **ptepp, spinlock_t **ptlp)
5576 pgd = pgd_offset(mm, address);
5577 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5580 p4d = p4d_offset(pgd, address);
5581 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5584 pud = pud_offset(p4d, address);
5585 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5588 pmd = pmd_offset(pud, address);
5589 VM_BUG_ON(pmd_trans_huge(*pmd));
5591 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5594 if (!pte_present(ptep_get(ptep)))
5599 pte_unmap_unlock(ptep, *ptlp);
5603 EXPORT_SYMBOL_GPL(follow_pte);
5606 * follow_pfn - look up PFN at a user virtual address
5607 * @vma: memory mapping
5608 * @address: user virtual address
5609 * @pfn: location to store found PFN
5611 * Only IO mappings and raw PFN mappings are allowed.
5613 * This function does not allow the caller to read the permissions
5614 * of the PTE. Do not use it.
5616 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5618 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5625 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5628 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5631 *pfn = pte_pfn(ptep_get(ptep));
5632 pte_unmap_unlock(ptep, ptl);
5635 EXPORT_SYMBOL(follow_pfn);
5637 #ifdef CONFIG_HAVE_IOREMAP_PROT
5638 int follow_phys(struct vm_area_struct *vma,
5639 unsigned long address, unsigned int flags,
5640 unsigned long *prot, resource_size_t *phys)
5646 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5649 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5651 pte = ptep_get(ptep);
5653 if ((flags & FOLL_WRITE) && !pte_write(pte))
5656 *prot = pgprot_val(pte_pgprot(pte));
5657 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5661 pte_unmap_unlock(ptep, ptl);
5667 * generic_access_phys - generic implementation for iomem mmap access
5668 * @vma: the vma to access
5669 * @addr: userspace address, not relative offset within @vma
5670 * @buf: buffer to read/write
5671 * @len: length of transfer
5672 * @write: set to FOLL_WRITE when writing, otherwise reading
5674 * This is a generic implementation for &vm_operations_struct.access for an
5675 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5678 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5679 void *buf, int len, int write)
5681 resource_size_t phys_addr;
5682 unsigned long prot = 0;
5683 void __iomem *maddr;
5686 int offset = offset_in_page(addr);
5689 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5693 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5695 pte = ptep_get(ptep);
5696 pte_unmap_unlock(ptep, ptl);
5698 prot = pgprot_val(pte_pgprot(pte));
5699 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5701 if ((write & FOLL_WRITE) && !pte_write(pte))
5704 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5708 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5711 if (!pte_same(pte, ptep_get(ptep))) {
5712 pte_unmap_unlock(ptep, ptl);
5719 memcpy_toio(maddr + offset, buf, len);
5721 memcpy_fromio(buf, maddr + offset, len);
5723 pte_unmap_unlock(ptep, ptl);
5729 EXPORT_SYMBOL_GPL(generic_access_phys);
5733 * Access another process' address space as given in mm.
5735 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5736 int len, unsigned int gup_flags)
5738 void *old_buf = buf;
5739 int write = gup_flags & FOLL_WRITE;
5741 if (mmap_read_lock_killable(mm))
5744 /* Untag the address before looking up the VMA */
5745 addr = untagged_addr_remote(mm, addr);
5747 /* Avoid triggering the temporary warning in __get_user_pages */
5748 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5751 /* ignore errors, just check how much was successfully transferred */
5755 struct vm_area_struct *vma = NULL;
5756 struct page *page = get_user_page_vma_remote(mm, addr,
5759 if (IS_ERR_OR_NULL(page)) {
5760 /* We might need to expand the stack to access it */
5761 vma = vma_lookup(mm, addr);
5763 vma = expand_stack(mm, addr);
5765 /* mmap_lock was dropped on failure */
5767 return buf - old_buf;
5769 /* Try again if stack expansion worked */
5775 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5776 * we can access using slightly different code.
5779 #ifdef CONFIG_HAVE_IOREMAP_PROT
5780 if (vma->vm_ops && vma->vm_ops->access)
5781 bytes = vma->vm_ops->access(vma, addr, buf,
5788 offset = addr & (PAGE_SIZE-1);
5789 if (bytes > PAGE_SIZE-offset)
5790 bytes = PAGE_SIZE-offset;
5794 copy_to_user_page(vma, page, addr,
5795 maddr + offset, buf, bytes);
5796 set_page_dirty_lock(page);
5798 copy_from_user_page(vma, page, addr,
5799 buf, maddr + offset, bytes);
5808 mmap_read_unlock(mm);
5810 return buf - old_buf;
5814 * access_remote_vm - access another process' address space
5815 * @mm: the mm_struct of the target address space
5816 * @addr: start address to access
5817 * @buf: source or destination buffer
5818 * @len: number of bytes to transfer
5819 * @gup_flags: flags modifying lookup behaviour
5821 * The caller must hold a reference on @mm.
5823 * Return: number of bytes copied from source to destination.
5825 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5826 void *buf, int len, unsigned int gup_flags)
5828 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5832 * Access another process' address space.
5833 * Source/target buffer must be kernel space,
5834 * Do not walk the page table directly, use get_user_pages
5836 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5837 void *buf, int len, unsigned int gup_flags)
5839 struct mm_struct *mm;
5842 mm = get_task_mm(tsk);
5846 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5852 EXPORT_SYMBOL_GPL(access_process_vm);
5855 * Print the name of a VMA.
5857 void print_vma_addr(char *prefix, unsigned long ip)
5859 struct mm_struct *mm = current->mm;
5860 struct vm_area_struct *vma;
5863 * we might be running from an atomic context so we cannot sleep
5865 if (!mmap_read_trylock(mm))
5868 vma = find_vma(mm, ip);
5869 if (vma && vma->vm_file) {
5870 struct file *f = vma->vm_file;
5871 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5875 p = file_path(f, buf, PAGE_SIZE);
5878 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5880 vma->vm_end - vma->vm_start);
5881 free_page((unsigned long)buf);
5884 mmap_read_unlock(mm);
5887 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5888 void __might_fault(const char *file, int line)
5890 if (pagefault_disabled())
5892 __might_sleep(file, line);
5893 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5895 might_lock_read(¤t->mm->mmap_lock);
5898 EXPORT_SYMBOL(__might_fault);
5901 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5903 * Process all subpages of the specified huge page with the specified
5904 * operation. The target subpage will be processed last to keep its
5907 static inline int process_huge_page(
5908 unsigned long addr_hint, unsigned int pages_per_huge_page,
5909 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5912 int i, n, base, l, ret;
5913 unsigned long addr = addr_hint &
5914 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5916 /* Process target subpage last to keep its cache lines hot */
5918 n = (addr_hint - addr) / PAGE_SIZE;
5919 if (2 * n <= pages_per_huge_page) {
5920 /* If target subpage in first half of huge page */
5923 /* Process subpages at the end of huge page */
5924 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5926 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5931 /* If target subpage in second half of huge page */
5932 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5933 l = pages_per_huge_page - n;
5934 /* Process subpages at the begin of huge page */
5935 for (i = 0; i < base; i++) {
5937 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5943 * Process remaining subpages in left-right-left-right pattern
5944 * towards the target subpage
5946 for (i = 0; i < l; i++) {
5947 int left_idx = base + i;
5948 int right_idx = base + 2 * l - 1 - i;
5951 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5955 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5962 static void clear_gigantic_page(struct page *page,
5964 unsigned int pages_per_huge_page)
5970 for (i = 0; i < pages_per_huge_page; i++) {
5971 p = nth_page(page, i);
5973 clear_user_highpage(p, addr + i * PAGE_SIZE);
5977 static int clear_subpage(unsigned long addr, int idx, void *arg)
5979 struct page *page = arg;
5981 clear_user_highpage(page + idx, addr);
5985 void clear_huge_page(struct page *page,
5986 unsigned long addr_hint, unsigned int pages_per_huge_page)
5988 unsigned long addr = addr_hint &
5989 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5991 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5992 clear_gigantic_page(page, addr, pages_per_huge_page);
5996 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5999 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6001 struct vm_area_struct *vma,
6002 unsigned int pages_per_huge_page)
6005 struct page *dst_page;
6006 struct page *src_page;
6008 for (i = 0; i < pages_per_huge_page; i++) {
6009 dst_page = folio_page(dst, i);
6010 src_page = folio_page(src, i);
6013 if (copy_mc_user_highpage(dst_page, src_page,
6014 addr + i*PAGE_SIZE, vma)) {
6015 memory_failure_queue(page_to_pfn(src_page), 0);
6022 struct copy_subpage_arg {
6025 struct vm_area_struct *vma;
6028 static int copy_subpage(unsigned long addr, int idx, void *arg)
6030 struct copy_subpage_arg *copy_arg = arg;
6032 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6033 addr, copy_arg->vma)) {
6034 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6040 int copy_user_large_folio(struct folio *dst, struct folio *src,
6041 unsigned long addr_hint, struct vm_area_struct *vma)
6043 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6044 unsigned long addr = addr_hint &
6045 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6046 struct copy_subpage_arg arg = {
6052 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6053 return copy_user_gigantic_page(dst, src, addr, vma,
6054 pages_per_huge_page);
6056 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6059 long copy_folio_from_user(struct folio *dst_folio,
6060 const void __user *usr_src,
6061 bool allow_pagefault)
6064 unsigned long i, rc = 0;
6065 unsigned int nr_pages = folio_nr_pages(dst_folio);
6066 unsigned long ret_val = nr_pages * PAGE_SIZE;
6067 struct page *subpage;
6069 for (i = 0; i < nr_pages; i++) {
6070 subpage = folio_page(dst_folio, i);
6071 kaddr = kmap_local_page(subpage);
6072 if (!allow_pagefault)
6073 pagefault_disable();
6074 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6075 if (!allow_pagefault)
6077 kunmap_local(kaddr);
6079 ret_val -= (PAGE_SIZE - rc);
6083 flush_dcache_page(subpage);
6089 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6091 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6093 static struct kmem_cache *page_ptl_cachep;
6095 void __init ptlock_cache_init(void)
6097 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6101 bool ptlock_alloc(struct ptdesc *ptdesc)
6105 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6112 void ptlock_free(struct ptdesc *ptdesc)
6114 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);