1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
82 #include <trace/events/kmem.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
89 #include <asm/tlbflush.h>
91 #include "pgalloc-track.h"
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return pte_marker_uffd_wp(vmf->orig_pte);
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
131 EXPORT_SYMBOL(high_memory);
134 * Randomize the address space (stacks, mmaps, brk, etc.).
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
158 static int __init disable_randmaps(char *s)
160 randomize_va_space = 0;
163 __setup("norandmaps", disable_randmaps);
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
168 unsigned long highest_memmap_pfn __read_mostly;
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173 static int __init init_zero_pfn(void)
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
178 early_initcall(init_zero_pfn);
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 trace_rss_stat(mm, member);
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
192 pgtable_t token = pmd_pgtable(*pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
207 pmd = pmd_offset(pud, addr);
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
223 if (end - 1 > ceiling - 1)
226 pmd = pmd_offset(pud, start);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
241 pud = pud_offset(p4d, addr);
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
257 if (end - 1 > ceiling - 1)
260 pud = pud_offset(p4d, start);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
275 p4d = p4d_offset(pgd, addr);
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
287 ceiling &= PGDIR_MASK;
291 if (end - 1 > ceiling - 1)
294 p4d = p4d_offset(pgd, start);
296 p4d_free_tlb(tlb, p4d, start);
300 * This function frees user-level page tables of a process.
302 void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
310 * The next few lines have given us lots of grief...
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
346 if (end - 1 > ceiling - 1)
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
371 unsigned long addr = vma->vm_start;
372 struct vm_area_struct *next;
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
378 next = mas_find(&mas, ceiling - 1);
381 * Hide vma from rmap and truncate_pagecache before freeing
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
387 unlink_file_vma(vma);
389 if (is_vm_hugetlb_page(vma)) {
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
394 * Optimization: gather nearby vmas into one call down
396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 && !is_vm_hugetlb_page(next)) {
399 next = mas_find(&mas, ceiling - 1);
401 vma_start_write(vma);
402 unlink_anon_vmas(vma);
403 unlink_file_vma(vma);
405 free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
414 spinlock_t *ptl = pmd_lock(mm, pmd);
416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
419 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 * visible before the pte is made visible to other CPUs by being
421 * put into page tables.
423 * The other side of the story is the pointer chasing in the page
424 * table walking code (when walking the page table without locking;
425 * ie. most of the time). Fortunately, these data accesses consist
426 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 * being the notable exception) will already guarantee loads are
428 * seen in-order. See the alpha page table accessors for the
429 * smp_rmb() barriers in page table walking code.
431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 pmd_populate(mm, pmd, *pte);
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
440 pgtable_t new = pte_alloc_one(mm);
444 pmd_install(mm, pmd, &new);
450 int __pte_alloc_kernel(pmd_t *pmd)
452 pte_t *new = pte_alloc_one_kernel(&init_mm);
456 spin_lock(&init_mm.page_table_lock);
457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
458 smp_wmb(); /* See comment in pmd_install() */
459 pmd_populate_kernel(&init_mm, pmd, new);
462 spin_unlock(&init_mm.page_table_lock);
464 pte_free_kernel(&init_mm, new);
468 static inline void init_rss_vec(int *rss)
470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
477 if (current->mm == mm)
479 for (i = 0; i < NR_MM_COUNTERS; i++)
481 add_mm_counter(mm, i, rss[i]);
485 * This function is called to print an error when a bad pte
486 * is found. For example, we might have a PFN-mapped pte in
487 * a region that doesn't allow it.
489 * The calling function must still handle the error.
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte, struct page *page)
494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 p4d_t *p4d = p4d_offset(pgd, addr);
496 pud_t *pud = pud_offset(p4d, addr);
497 pmd_t *pmd = pmd_offset(pud, addr);
498 struct address_space *mapping;
500 static unsigned long resume;
501 static unsigned long nr_shown;
502 static unsigned long nr_unshown;
505 * Allow a burst of 60 reports, then keep quiet for that minute;
506 * or allow a steady drip of one report per second.
508 if (nr_shown == 60) {
509 if (time_before(jiffies, resume)) {
514 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 resume = jiffies + 60 * HZ;
523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 index = linear_page_index(vma, addr);
526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
528 (long long)pte_val(pte), (long long)pmd_val(*pmd));
530 dump_page(page, "bad pte");
531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
535 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 mapping ? mapping->a_ops->read_folio : NULL);
539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
565 * And for normal mappings this is false.
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The disadvantage is that pages are refcounted
579 * (which can be slower and simply not an option for some PFNMAP users). The
580 * advantage is that we don't have to follow the strict linearity rule of
581 * PFNMAP mappings in order to support COWable mappings.
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 unsigned long pfn = pte_pfn(pte);
589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 if (likely(!pte_special(pte)))
592 if (vma->vm_ops && vma->vm_ops->find_special_page)
593 return vma->vm_ops->find_special_page(vma, addr);
594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
596 if (is_zero_pfn(pfn))
600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 * and will have refcounts incremented on their struct pages
602 * when they are inserted into PTEs, thus they are safe to
603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
609 print_bad_pte(vma, addr, pte, NULL);
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
625 if (!is_cow_mapping(vma->vm_flags))
630 if (is_zero_pfn(pfn))
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
644 return pfn_to_page(pfn);
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
650 struct page *page = vm_normal_page(vma, addr, pte);
653 return page_folio(page);
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
661 unsigned long pfn = pmd_pfn(pmd);
664 * There is no pmd_special() but there may be special pmds, e.g.
665 * in a direct-access (dax) mapping, so let's just replicate the
666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 if (vma->vm_flags & VM_MIXEDMAP) {
675 off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 if (pfn == vma->vm_pgoff + off)
678 if (!is_cow_mapping(vma->vm_flags))
685 if (is_huge_zero_pmd(pmd))
687 if (unlikely(pfn > highest_memmap_pfn))
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
695 return pfn_to_page(pfn);
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700 struct page *page, unsigned long address,
707 orig_pte = ptep_get(ptep);
708 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709 if (pte_swp_soft_dirty(orig_pte))
710 pte = pte_mksoft_dirty(pte);
712 entry = pte_to_swp_entry(orig_pte);
713 if (pte_swp_uffd_wp(orig_pte))
714 pte = pte_mkuffd_wp(pte);
715 else if (is_writable_device_exclusive_entry(entry))
716 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
721 * No need to take a page reference as one was already
722 * created when the swap entry was made.
725 page_add_anon_rmap(page, vma, address, RMAP_NONE);
728 * Currently device exclusive access only supports anonymous
729 * memory so the entry shouldn't point to a filebacked page.
733 set_pte_at(vma->vm_mm, address, ptep, pte);
736 * No need to invalidate - it was non-present before. However
737 * secondary CPUs may have mappings that need invalidating.
739 update_mmu_cache(vma, address, ptep);
743 * Tries to restore an exclusive pte if the page lock can be acquired without
747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751 struct page *page = pfn_swap_entry_to_page(entry);
753 if (trylock_page(page)) {
754 restore_exclusive_pte(vma, page, addr, src_pte);
763 * copy one vm_area from one task to the other. Assumes the page tables
764 * already present in the new task to be cleared in the whole range
765 * covered by this vma.
769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
773 unsigned long vm_flags = dst_vma->vm_flags;
774 pte_t orig_pte = ptep_get(src_pte);
775 pte_t pte = orig_pte;
777 swp_entry_t entry = pte_to_swp_entry(orig_pte);
779 if (likely(!non_swap_entry(entry))) {
780 if (swap_duplicate(entry) < 0)
783 /* make sure dst_mm is on swapoff's mmlist. */
784 if (unlikely(list_empty(&dst_mm->mmlist))) {
785 spin_lock(&mmlist_lock);
786 if (list_empty(&dst_mm->mmlist))
787 list_add(&dst_mm->mmlist,
789 spin_unlock(&mmlist_lock);
791 /* Mark the swap entry as shared. */
792 if (pte_swp_exclusive(orig_pte)) {
793 pte = pte_swp_clear_exclusive(orig_pte);
794 set_pte_at(src_mm, addr, src_pte, pte);
797 } else if (is_migration_entry(entry)) {
798 page = pfn_swap_entry_to_page(entry);
800 rss[mm_counter(page)]++;
802 if (!is_readable_migration_entry(entry) &&
803 is_cow_mapping(vm_flags)) {
805 * COW mappings require pages in both parent and child
806 * to be set to read. A previously exclusive entry is
809 entry = make_readable_migration_entry(
811 pte = swp_entry_to_pte(entry);
812 if (pte_swp_soft_dirty(orig_pte))
813 pte = pte_swp_mksoft_dirty(pte);
814 if (pte_swp_uffd_wp(orig_pte))
815 pte = pte_swp_mkuffd_wp(pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
818 } else if (is_device_private_entry(entry)) {
819 page = pfn_swap_entry_to_page(entry);
822 * Update rss count even for unaddressable pages, as
823 * they should treated just like normal pages in this
826 * We will likely want to have some new rss counters
827 * for unaddressable pages, at some point. But for now
828 * keep things as they are.
831 rss[mm_counter(page)]++;
832 /* Cannot fail as these pages cannot get pinned. */
833 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
836 * We do not preserve soft-dirty information, because so
837 * far, checkpoint/restore is the only feature that
838 * requires that. And checkpoint/restore does not work
839 * when a device driver is involved (you cannot easily
840 * save and restore device driver state).
842 if (is_writable_device_private_entry(entry) &&
843 is_cow_mapping(vm_flags)) {
844 entry = make_readable_device_private_entry(
846 pte = swp_entry_to_pte(entry);
847 if (pte_swp_uffd_wp(orig_pte))
848 pte = pte_swp_mkuffd_wp(pte);
849 set_pte_at(src_mm, addr, src_pte, pte);
851 } else if (is_device_exclusive_entry(entry)) {
853 * Make device exclusive entries present by restoring the
854 * original entry then copying as for a present pte. Device
855 * exclusive entries currently only support private writable
856 * (ie. COW) mappings.
858 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
862 } else if (is_pte_marker_entry(entry)) {
863 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
864 set_pte_at(dst_mm, addr, dst_pte, pte);
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
869 set_pte_at(dst_mm, addr, dst_pte, pte);
874 * Copy a present and normal page.
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 struct folio **prealloc, struct page *page)
890 struct folio *new_folio;
893 new_folio = *prealloc;
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
908 /* All done, just insert the new page copy in the child */
909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 /* Uffd-wp needs to be delivered to dest pte as well */
913 pte = pte_mkuffd_wp(pte);
914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 struct folio **prealloc)
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
929 pte_t pte = ptep_get(src_pte);
933 page = vm_normal_page(src_vma, addr, pte);
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 /* Page may be pinned, we have to copy. */
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
953 page_dup_file_rmap(page, false);
954 rss[mm_counter_file(page)]++;
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 ptep_set_wrprotect(src_mm, addr, src_pte);
963 pte = pte_wrprotect(pte);
965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968 * If it's a shared mapping, mark it clean in
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
975 if (!userfaultfd_wp(dst_vma))
976 pte = pte_clear_uffd_wp(pte);
978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
985 struct folio *new_folio;
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
1007 pte_t *orig_src_pte, *orig_dst_pte;
1008 pte_t *src_pte, *dst_pte;
1010 spinlock_t *src_ptl, *dst_ptl;
1011 int progress, ret = 0;
1012 int rss[NR_MM_COUNTERS];
1013 swp_entry_t entry = (swp_entry_t){0};
1014 struct folio *prealloc = NULL;
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1049 if (progress >= 32) {
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1060 if (unlikely(!pte_present(ptent))) {
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1066 entry = pte_to_swp_entry(ptep_get(src_pte));
1068 } else if (ret == -EBUSY) {
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1079 WARN_ON_ONCE(ret != -ENOENT);
1081 /* copy_present_pte() will clear `*prealloc' if consumed */
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1088 if (unlikely(ret == -EAGAIN))
1090 if (unlikely(prealloc)) {
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1097 folio_put(prealloc);
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103 arch_leave_lazy_mmu_mode();
1104 pte_unmap_unlock(orig_src_pte, src_ptl);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 } else if (ret == -EBUSY) {
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1126 /* We've captured and resolved the error. Reset, try again. */
1132 if (unlikely(prealloc))
1133 folio_put(prealloc);
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 src_pmd = pmd_offset(src_pud, addr);
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1165 if (pmd_none_or_clear_bad(src_pmd))
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 src_pud = pud_offset(src_p4d, addr);
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1202 if (pud_none_or_clear_bad(src_pud))
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 src_p4d = p4d_offset(src_pgd, addr);
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1249 if (userfaultfd_wp(dst_vma))
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 if (src_vma->anon_vma)
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1270 pgd_t *src_pgd, *dst_pgd;
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 struct mmu_notifier_range range;
1280 if (!vma_needs_copy(dst_vma, src_vma))
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1291 ret = track_pfn_copy(src_vma);
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1302 is_cow = is_cow_mapping(src_vma->vm_flags);
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 0, src_mm, addr, end);
1307 mmu_notifier_invalidate_range_start(&range);
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1315 mmap_assert_write_locked(src_mm);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1328 untrack_pfn_clear(dst_vma);
1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 mmu_notifier_invalidate_range_end(&range);
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1344 /* By default, zap all pages */
1348 /* Or, we zap COWed pages only if the caller wants to */
1349 return details->even_cows;
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
1359 /* E.g. the caller passes NULL for the case of a zero page */
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1388 if (zap_drop_file_uffd_wp(details))
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pmd_t *pmd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1399 struct mm_struct *mm = tlb->mm;
1400 int force_flush = 0;
1401 int rss[NR_MM_COUNTERS];
1407 tlb_change_page_size(tlb, PAGE_SIZE);
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1413 flush_tlb_batched_pending(mm);
1414 arch_enter_lazy_mmu_mode();
1416 pte_t ptent = ptep_get(pte);
1419 if (pte_none(ptent))
1425 if (pte_present(ptent)) {
1426 unsigned int delay_rmap;
1428 page = vm_normal_page(vma, addr, ptent);
1429 if (unlikely(!should_zap_page(details, page)))
1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
1433 tlb_remove_tlb_entry(tlb, pte, addr);
1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1436 if (unlikely(!page))
1440 if (!PageAnon(page)) {
1441 if (pte_dirty(ptent)) {
1442 set_page_dirty(page);
1443 if (tlb_delay_rmap(tlb)) {
1448 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449 mark_page_accessed(page);
1451 rss[mm_counter(page)]--;
1453 page_remove_rmap(page, vma, false);
1454 if (unlikely(page_mapcount(page) < 0))
1455 print_bad_pte(vma, addr, ptent, page);
1457 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1465 entry = pte_to_swp_entry(ptent);
1466 if (is_device_private_entry(entry) ||
1467 is_device_exclusive_entry(entry)) {
1468 page = pfn_swap_entry_to_page(entry);
1469 if (unlikely(!should_zap_page(details, page)))
1472 * Both device private/exclusive mappings should only
1473 * work with anonymous page so far, so we don't need to
1474 * consider uffd-wp bit when zap. For more information,
1475 * see zap_install_uffd_wp_if_needed().
1477 WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 rss[mm_counter(page)]--;
1479 if (is_device_private_entry(entry))
1480 page_remove_rmap(page, vma, false);
1482 } else if (!non_swap_entry(entry)) {
1483 /* Genuine swap entry, hence a private anon page */
1484 if (!should_zap_cows(details))
1487 if (unlikely(!free_swap_and_cache(entry)))
1488 print_bad_pte(vma, addr, ptent, NULL);
1489 } else if (is_migration_entry(entry)) {
1490 page = pfn_swap_entry_to_page(entry);
1491 if (!should_zap_page(details, page))
1493 rss[mm_counter(page)]--;
1494 } else if (pte_marker_entry_uffd_wp(entry)) {
1496 * For anon: always drop the marker; for file: only
1497 * drop the marker if explicitly requested.
1499 if (!vma_is_anonymous(vma) &&
1500 !zap_drop_file_uffd_wp(details))
1502 } else if (is_hwpoison_entry(entry) ||
1503 is_swapin_error_entry(entry)) {
1504 if (!should_zap_cows(details))
1507 /* We should have covered all the swap entry types */
1510 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512 } while (pte++, addr += PAGE_SIZE, addr != end);
1514 add_mm_rss_vec(mm, rss);
1515 arch_leave_lazy_mmu_mode();
1517 /* Do the actual TLB flush before dropping ptl */
1519 tlb_flush_mmu_tlbonly(tlb);
1520 tlb_flush_rmaps(tlb, vma);
1522 pte_unmap_unlock(start_pte, ptl);
1525 * If we forced a TLB flush (either due to running out of
1526 * batch buffers or because we needed to flush dirty TLB
1527 * entries before releasing the ptl), free the batched
1528 * memory too. Come back again if we didn't do everything.
1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 struct vm_area_struct *vma, pud_t *pud,
1538 unsigned long addr, unsigned long end,
1539 struct zap_details *details)
1544 pmd = pmd_offset(pud, addr);
1546 next = pmd_addr_end(addr, end);
1547 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 if (next - addr != HPAGE_PMD_SIZE)
1549 __split_huge_pmd(vma, pmd, addr, false, NULL);
1550 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1555 } else if (details && details->single_folio &&
1556 folio_test_pmd_mappable(details->single_folio) &&
1557 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1560 * Take and drop THP pmd lock so that we cannot return
1561 * prematurely, while zap_huge_pmd() has cleared *pmd,
1562 * but not yet decremented compound_mapcount().
1566 if (pmd_none(*pmd)) {
1570 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573 } while (pmd++, cond_resched(), addr != end);
1578 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579 struct vm_area_struct *vma, p4d_t *p4d,
1580 unsigned long addr, unsigned long end,
1581 struct zap_details *details)
1586 pud = pud_offset(p4d, addr);
1588 next = pud_addr_end(addr, end);
1589 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590 if (next - addr != HPAGE_PUD_SIZE) {
1591 mmap_assert_locked(tlb->mm);
1592 split_huge_pud(vma, pud, addr);
1593 } else if (zap_huge_pud(tlb, vma, pud, addr))
1597 if (pud_none_or_clear_bad(pud))
1599 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1602 } while (pud++, addr = next, addr != end);
1607 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608 struct vm_area_struct *vma, pgd_t *pgd,
1609 unsigned long addr, unsigned long end,
1610 struct zap_details *details)
1615 p4d = p4d_offset(pgd, addr);
1617 next = p4d_addr_end(addr, end);
1618 if (p4d_none_or_clear_bad(p4d))
1620 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621 } while (p4d++, addr = next, addr != end);
1626 void unmap_page_range(struct mmu_gather *tlb,
1627 struct vm_area_struct *vma,
1628 unsigned long addr, unsigned long end,
1629 struct zap_details *details)
1634 BUG_ON(addr >= end);
1635 tlb_start_vma(tlb, vma);
1636 pgd = pgd_offset(vma->vm_mm, addr);
1638 next = pgd_addr_end(addr, end);
1639 if (pgd_none_or_clear_bad(pgd))
1641 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642 } while (pgd++, addr = next, addr != end);
1643 tlb_end_vma(tlb, vma);
1647 static void unmap_single_vma(struct mmu_gather *tlb,
1648 struct vm_area_struct *vma, unsigned long start_addr,
1649 unsigned long end_addr,
1650 struct zap_details *details, bool mm_wr_locked)
1652 unsigned long start = max(vma->vm_start, start_addr);
1655 if (start >= vma->vm_end)
1657 end = min(vma->vm_end, end_addr);
1658 if (end <= vma->vm_start)
1662 uprobe_munmap(vma, start, end);
1664 if (unlikely(vma->vm_flags & VM_PFNMAP))
1665 untrack_pfn(vma, 0, 0, mm_wr_locked);
1668 if (unlikely(is_vm_hugetlb_page(vma))) {
1670 * It is undesirable to test vma->vm_file as it
1671 * should be non-null for valid hugetlb area.
1672 * However, vm_file will be NULL in the error
1673 * cleanup path of mmap_region. When
1674 * hugetlbfs ->mmap method fails,
1675 * mmap_region() nullifies vma->vm_file
1676 * before calling this function to clean up.
1677 * Since no pte has actually been setup, it is
1678 * safe to do nothing in this case.
1681 zap_flags_t zap_flags = details ?
1682 details->zap_flags : 0;
1683 __unmap_hugepage_range_final(tlb, vma, start, end,
1687 unmap_page_range(tlb, vma, start, end, details);
1692 * unmap_vmas - unmap a range of memory covered by a list of vma's
1693 * @tlb: address of the caller's struct mmu_gather
1694 * @mt: the maple tree
1695 * @vma: the starting vma
1696 * @start_addr: virtual address at which to start unmapping
1697 * @end_addr: virtual address at which to end unmapping
1699 * Unmap all pages in the vma list.
1701 * Only addresses between `start' and `end' will be unmapped.
1703 * The VMA list must be sorted in ascending virtual address order.
1705 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1706 * range after unmap_vmas() returns. So the only responsibility here is to
1707 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1708 * drops the lock and schedules.
1710 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1711 struct vm_area_struct *vma, unsigned long start_addr,
1712 unsigned long end_addr, bool mm_wr_locked)
1714 struct mmu_notifier_range range;
1715 struct zap_details details = {
1716 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1717 /* Careful - we need to zap private pages too! */
1720 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1722 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1723 start_addr, end_addr);
1724 mmu_notifier_invalidate_range_start(&range);
1726 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1728 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1729 mmu_notifier_invalidate_range_end(&range);
1733 * zap_page_range_single - remove user pages in a given range
1734 * @vma: vm_area_struct holding the applicable pages
1735 * @address: starting address of pages to zap
1736 * @size: number of bytes to zap
1737 * @details: details of shared cache invalidation
1739 * The range must fit into one VMA.
1741 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1742 unsigned long size, struct zap_details *details)
1744 const unsigned long end = address + size;
1745 struct mmu_notifier_range range;
1746 struct mmu_gather tlb;
1749 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1751 if (is_vm_hugetlb_page(vma))
1752 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1754 tlb_gather_mmu(&tlb, vma->vm_mm);
1755 update_hiwater_rss(vma->vm_mm);
1756 mmu_notifier_invalidate_range_start(&range);
1758 * unmap 'address-end' not 'range.start-range.end' as range
1759 * could have been expanded for hugetlb pmd sharing.
1761 unmap_single_vma(&tlb, vma, address, end, details, false);
1762 mmu_notifier_invalidate_range_end(&range);
1763 tlb_finish_mmu(&tlb);
1767 * zap_vma_ptes - remove ptes mapping the vma
1768 * @vma: vm_area_struct holding ptes to be zapped
1769 * @address: starting address of pages to zap
1770 * @size: number of bytes to zap
1772 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1774 * The entire address range must be fully contained within the vma.
1777 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1780 if (!range_in_vma(vma, address, address + size) ||
1781 !(vma->vm_flags & VM_PFNMAP))
1784 zap_page_range_single(vma, address, size, NULL);
1786 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1788 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1795 pgd = pgd_offset(mm, addr);
1796 p4d = p4d_alloc(mm, pgd, addr);
1799 pud = pud_alloc(mm, p4d, addr);
1802 pmd = pmd_alloc(mm, pud, addr);
1806 VM_BUG_ON(pmd_trans_huge(*pmd));
1810 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1813 pmd_t *pmd = walk_to_pmd(mm, addr);
1817 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1820 static int validate_page_before_insert(struct page *page)
1822 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1824 flush_dcache_page(page);
1828 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1829 unsigned long addr, struct page *page, pgprot_t prot)
1831 if (!pte_none(ptep_get(pte)))
1833 /* Ok, finally just insert the thing.. */
1835 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1836 page_add_file_rmap(page, vma, false);
1837 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1842 * This is the old fallback for page remapping.
1844 * For historical reasons, it only allows reserved pages. Only
1845 * old drivers should use this, and they needed to mark their
1846 * pages reserved for the old functions anyway.
1848 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1849 struct page *page, pgprot_t prot)
1855 retval = validate_page_before_insert(page);
1859 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1862 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1863 pte_unmap_unlock(pte, ptl);
1869 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1870 unsigned long addr, struct page *page, pgprot_t prot)
1874 if (!page_count(page))
1876 err = validate_page_before_insert(page);
1879 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1882 /* insert_pages() amortizes the cost of spinlock operations
1883 * when inserting pages in a loop. Arch *must* define pte_index.
1885 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1886 struct page **pages, unsigned long *num, pgprot_t prot)
1889 pte_t *start_pte, *pte;
1890 spinlock_t *pte_lock;
1891 struct mm_struct *const mm = vma->vm_mm;
1892 unsigned long curr_page_idx = 0;
1893 unsigned long remaining_pages_total = *num;
1894 unsigned long pages_to_write_in_pmd;
1898 pmd = walk_to_pmd(mm, addr);
1902 pages_to_write_in_pmd = min_t(unsigned long,
1903 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1905 /* Allocate the PTE if necessary; takes PMD lock once only. */
1907 if (pte_alloc(mm, pmd))
1910 while (pages_to_write_in_pmd) {
1912 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1914 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1919 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1920 int err = insert_page_in_batch_locked(vma, pte,
1921 addr, pages[curr_page_idx], prot);
1922 if (unlikely(err)) {
1923 pte_unmap_unlock(start_pte, pte_lock);
1925 remaining_pages_total -= pte_idx;
1931 pte_unmap_unlock(start_pte, pte_lock);
1932 pages_to_write_in_pmd -= batch_size;
1933 remaining_pages_total -= batch_size;
1935 if (remaining_pages_total)
1939 *num = remaining_pages_total;
1942 #endif /* ifdef pte_index */
1945 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1946 * @vma: user vma to map to
1947 * @addr: target start user address of these pages
1948 * @pages: source kernel pages
1949 * @num: in: number of pages to map. out: number of pages that were *not*
1950 * mapped. (0 means all pages were successfully mapped).
1952 * Preferred over vm_insert_page() when inserting multiple pages.
1954 * In case of error, we may have mapped a subset of the provided
1955 * pages. It is the caller's responsibility to account for this case.
1957 * The same restrictions apply as in vm_insert_page().
1959 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1960 struct page **pages, unsigned long *num)
1963 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1965 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1967 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1968 BUG_ON(mmap_read_trylock(vma->vm_mm));
1969 BUG_ON(vma->vm_flags & VM_PFNMAP);
1970 vm_flags_set(vma, VM_MIXEDMAP);
1972 /* Defer page refcount checking till we're about to map that page. */
1973 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1975 unsigned long idx = 0, pgcount = *num;
1978 for (; idx < pgcount; ++idx) {
1979 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1983 *num = pgcount - idx;
1985 #endif /* ifdef pte_index */
1987 EXPORT_SYMBOL(vm_insert_pages);
1990 * vm_insert_page - insert single page into user vma
1991 * @vma: user vma to map to
1992 * @addr: target user address of this page
1993 * @page: source kernel page
1995 * This allows drivers to insert individual pages they've allocated
1998 * The page has to be a nice clean _individual_ kernel allocation.
1999 * If you allocate a compound page, you need to have marked it as
2000 * such (__GFP_COMP), or manually just split the page up yourself
2001 * (see split_page()).
2003 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2004 * took an arbitrary page protection parameter. This doesn't allow
2005 * that. Your vma protection will have to be set up correctly, which
2006 * means that if you want a shared writable mapping, you'd better
2007 * ask for a shared writable mapping!
2009 * The page does not need to be reserved.
2011 * Usually this function is called from f_op->mmap() handler
2012 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2013 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2014 * function from other places, for example from page-fault handler.
2016 * Return: %0 on success, negative error code otherwise.
2018 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 if (addr < vma->vm_start || addr >= vma->vm_end)
2023 if (!page_count(page))
2025 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2026 BUG_ON(mmap_read_trylock(vma->vm_mm));
2027 BUG_ON(vma->vm_flags & VM_PFNMAP);
2028 vm_flags_set(vma, VM_MIXEDMAP);
2030 return insert_page(vma, addr, page, vma->vm_page_prot);
2032 EXPORT_SYMBOL(vm_insert_page);
2035 * __vm_map_pages - maps range of kernel pages into user vma
2036 * @vma: user vma to map to
2037 * @pages: pointer to array of source kernel pages
2038 * @num: number of pages in page array
2039 * @offset: user's requested vm_pgoff
2041 * This allows drivers to map range of kernel pages into a user vma.
2043 * Return: 0 on success and error code otherwise.
2045 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2046 unsigned long num, unsigned long offset)
2048 unsigned long count = vma_pages(vma);
2049 unsigned long uaddr = vma->vm_start;
2052 /* Fail if the user requested offset is beyond the end of the object */
2056 /* Fail if the user requested size exceeds available object size */
2057 if (count > num - offset)
2060 for (i = 0; i < count; i++) {
2061 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2071 * vm_map_pages - maps range of kernel pages starts with non zero offset
2072 * @vma: user vma to map to
2073 * @pages: pointer to array of source kernel pages
2074 * @num: number of pages in page array
2076 * Maps an object consisting of @num pages, catering for the user's
2077 * requested vm_pgoff
2079 * If we fail to insert any page into the vma, the function will return
2080 * immediately leaving any previously inserted pages present. Callers
2081 * from the mmap handler may immediately return the error as their caller
2082 * will destroy the vma, removing any successfully inserted pages. Other
2083 * callers should make their own arrangements for calling unmap_region().
2085 * Context: Process context. Called by mmap handlers.
2086 * Return: 0 on success and error code otherwise.
2088 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2091 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2093 EXPORT_SYMBOL(vm_map_pages);
2096 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2097 * @vma: user vma to map to
2098 * @pages: pointer to array of source kernel pages
2099 * @num: number of pages in page array
2101 * Similar to vm_map_pages(), except that it explicitly sets the offset
2102 * to 0. This function is intended for the drivers that did not consider
2105 * Context: Process context. Called by mmap handlers.
2106 * Return: 0 on success and error code otherwise.
2108 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2111 return __vm_map_pages(vma, pages, num, 0);
2113 EXPORT_SYMBOL(vm_map_pages_zero);
2115 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2116 pfn_t pfn, pgprot_t prot, bool mkwrite)
2118 struct mm_struct *mm = vma->vm_mm;
2122 pte = get_locked_pte(mm, addr, &ptl);
2124 return VM_FAULT_OOM;
2125 entry = ptep_get(pte);
2126 if (!pte_none(entry)) {
2129 * For read faults on private mappings the PFN passed
2130 * in may not match the PFN we have mapped if the
2131 * mapped PFN is a writeable COW page. In the mkwrite
2132 * case we are creating a writable PTE for a shared
2133 * mapping and we expect the PFNs to match. If they
2134 * don't match, we are likely racing with block
2135 * allocation and mapping invalidation so just skip the
2138 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2139 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2142 entry = pte_mkyoung(entry);
2143 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2144 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2145 update_mmu_cache(vma, addr, pte);
2150 /* Ok, finally just insert the thing.. */
2151 if (pfn_t_devmap(pfn))
2152 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2154 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2157 entry = pte_mkyoung(entry);
2158 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2161 set_pte_at(mm, addr, pte, entry);
2162 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2165 pte_unmap_unlock(pte, ptl);
2166 return VM_FAULT_NOPAGE;
2170 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2171 * @vma: user vma to map to
2172 * @addr: target user address of this page
2173 * @pfn: source kernel pfn
2174 * @pgprot: pgprot flags for the inserted page
2176 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2177 * to override pgprot on a per-page basis.
2179 * This only makes sense for IO mappings, and it makes no sense for
2180 * COW mappings. In general, using multiple vmas is preferable;
2181 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2184 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2185 * caching- and encryption bits different than those of @vma->vm_page_prot,
2186 * because the caching- or encryption mode may not be known at mmap() time.
2188 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2189 * to set caching and encryption bits for those vmas (except for COW pages).
2190 * This is ensured by core vm only modifying these page table entries using
2191 * functions that don't touch caching- or encryption bits, using pte_modify()
2192 * if needed. (See for example mprotect()).
2194 * Also when new page-table entries are created, this is only done using the
2195 * fault() callback, and never using the value of vma->vm_page_prot,
2196 * except for page-table entries that point to anonymous pages as the result
2199 * Context: Process context. May allocate using %GFP_KERNEL.
2200 * Return: vm_fault_t value.
2202 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2203 unsigned long pfn, pgprot_t pgprot)
2206 * Technically, architectures with pte_special can avoid all these
2207 * restrictions (same for remap_pfn_range). However we would like
2208 * consistency in testing and feature parity among all, so we should
2209 * try to keep these invariants in place for everybody.
2211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 (VM_PFNMAP|VM_MIXEDMAP));
2214 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2217 if (addr < vma->vm_start || addr >= vma->vm_end)
2218 return VM_FAULT_SIGBUS;
2220 if (!pfn_modify_allowed(pfn, pgprot))
2221 return VM_FAULT_SIGBUS;
2223 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2225 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2228 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2231 * vmf_insert_pfn - insert single pfn into user vma
2232 * @vma: user vma to map to
2233 * @addr: target user address of this page
2234 * @pfn: source kernel pfn
2236 * Similar to vm_insert_page, this allows drivers to insert individual pages
2237 * they've allocated into a user vma. Same comments apply.
2239 * This function should only be called from a vm_ops->fault handler, and
2240 * in that case the handler should return the result of this function.
2242 * vma cannot be a COW mapping.
2244 * As this is called only for pages that do not currently exist, we
2245 * do not need to flush old virtual caches or the TLB.
2247 * Context: Process context. May allocate using %GFP_KERNEL.
2248 * Return: vm_fault_t value.
2250 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2253 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2255 EXPORT_SYMBOL(vmf_insert_pfn);
2257 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2259 /* these checks mirror the abort conditions in vm_normal_page */
2260 if (vma->vm_flags & VM_MIXEDMAP)
2262 if (pfn_t_devmap(pfn))
2264 if (pfn_t_special(pfn))
2266 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2272 unsigned long addr, pfn_t pfn, bool mkwrite)
2274 pgprot_t pgprot = vma->vm_page_prot;
2277 BUG_ON(!vm_mixed_ok(vma, pfn));
2279 if (addr < vma->vm_start || addr >= vma->vm_end)
2280 return VM_FAULT_SIGBUS;
2282 track_pfn_insert(vma, &pgprot, pfn);
2284 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2285 return VM_FAULT_SIGBUS;
2288 * If we don't have pte special, then we have to use the pfn_valid()
2289 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2290 * refcount the page if pfn_valid is true (hence insert_page rather
2291 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2292 * without pte special, it would there be refcounted as a normal page.
2294 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2295 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2299 * At this point we are committed to insert_page()
2300 * regardless of whether the caller specified flags that
2301 * result in pfn_t_has_page() == false.
2303 page = pfn_to_page(pfn_t_to_pfn(pfn));
2304 err = insert_page(vma, addr, page, pgprot);
2306 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2310 return VM_FAULT_OOM;
2311 if (err < 0 && err != -EBUSY)
2312 return VM_FAULT_SIGBUS;
2314 return VM_FAULT_NOPAGE;
2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 return __vm_insert_mixed(vma, addr, pfn, false);
2322 EXPORT_SYMBOL(vmf_insert_mixed);
2325 * If the insertion of PTE failed because someone else already added a
2326 * different entry in the mean time, we treat that as success as we assume
2327 * the same entry was actually inserted.
2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330 unsigned long addr, pfn_t pfn)
2332 return __vm_insert_mixed(vma, addr, pfn, true);
2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337 * maps a range of physical memory into the requested pages. the old
2338 * mappings are removed. any references to nonexistent pages results
2339 * in null mappings (currently treated as "copy-on-access")
2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342 unsigned long addr, unsigned long end,
2343 unsigned long pfn, pgprot_t prot)
2345 pte_t *pte, *mapped_pte;
2349 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 arch_enter_lazy_mmu_mode();
2354 BUG_ON(!pte_none(ptep_get(pte)));
2355 if (!pfn_modify_allowed(pfn, prot)) {
2359 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2361 } while (pte++, addr += PAGE_SIZE, addr != end);
2362 arch_leave_lazy_mmu_mode();
2363 pte_unmap_unlock(mapped_pte, ptl);
2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368 unsigned long addr, unsigned long end,
2369 unsigned long pfn, pgprot_t prot)
2375 pfn -= addr >> PAGE_SHIFT;
2376 pmd = pmd_alloc(mm, pud, addr);
2379 VM_BUG_ON(pmd_trans_huge(*pmd));
2381 next = pmd_addr_end(addr, end);
2382 err = remap_pte_range(mm, pmd, addr, next,
2383 pfn + (addr >> PAGE_SHIFT), prot);
2386 } while (pmd++, addr = next, addr != end);
2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391 unsigned long addr, unsigned long end,
2392 unsigned long pfn, pgprot_t prot)
2398 pfn -= addr >> PAGE_SHIFT;
2399 pud = pud_alloc(mm, p4d, addr);
2403 next = pud_addr_end(addr, end);
2404 err = remap_pmd_range(mm, pud, addr, next,
2405 pfn + (addr >> PAGE_SHIFT), prot);
2408 } while (pud++, addr = next, addr != end);
2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413 unsigned long addr, unsigned long end,
2414 unsigned long pfn, pgprot_t prot)
2420 pfn -= addr >> PAGE_SHIFT;
2421 p4d = p4d_alloc(mm, pgd, addr);
2425 next = p4d_addr_end(addr, end);
2426 err = remap_pud_range(mm, p4d, addr, next,
2427 pfn + (addr >> PAGE_SHIFT), prot);
2430 } while (p4d++, addr = next, addr != end);
2435 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2436 * must have pre-validated the caching bits of the pgprot_t.
2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439 unsigned long pfn, unsigned long size, pgprot_t prot)
2443 unsigned long end = addr + PAGE_ALIGN(size);
2444 struct mm_struct *mm = vma->vm_mm;
2447 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2451 * Physically remapped pages are special. Tell the
2452 * rest of the world about it:
2453 * VM_IO tells people not to look at these pages
2454 * (accesses can have side effects).
2455 * VM_PFNMAP tells the core MM that the base pages are just
2456 * raw PFN mappings, and do not have a "struct page" associated
2459 * Disable vma merging and expanding with mremap().
2461 * Omit vma from core dump, even when VM_IO turned off.
2463 * There's a horrible special case to handle copy-on-write
2464 * behaviour that some programs depend on. We mark the "original"
2465 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466 * See vm_normal_page() for details.
2468 if (is_cow_mapping(vma->vm_flags)) {
2469 if (addr != vma->vm_start || end != vma->vm_end)
2471 vma->vm_pgoff = pfn;
2474 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2476 BUG_ON(addr >= end);
2477 pfn -= addr >> PAGE_SHIFT;
2478 pgd = pgd_offset(mm, addr);
2479 flush_cache_range(vma, addr, end);
2481 next = pgd_addr_end(addr, end);
2482 err = remap_p4d_range(mm, pgd, addr, next,
2483 pfn + (addr >> PAGE_SHIFT), prot);
2486 } while (pgd++, addr = next, addr != end);
2492 * remap_pfn_range - remap kernel memory to userspace
2493 * @vma: user vma to map to
2494 * @addr: target page aligned user address to start at
2495 * @pfn: page frame number of kernel physical memory address
2496 * @size: size of mapping area
2497 * @prot: page protection flags for this mapping
2499 * Note: this is only safe if the mm semaphore is held when called.
2501 * Return: %0 on success, negative error code otherwise.
2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504 unsigned long pfn, unsigned long size, pgprot_t prot)
2508 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2512 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2514 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2517 EXPORT_SYMBOL(remap_pfn_range);
2520 * vm_iomap_memory - remap memory to userspace
2521 * @vma: user vma to map to
2522 * @start: start of the physical memory to be mapped
2523 * @len: size of area
2525 * This is a simplified io_remap_pfn_range() for common driver use. The
2526 * driver just needs to give us the physical memory range to be mapped,
2527 * we'll figure out the rest from the vma information.
2529 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530 * whatever write-combining details or similar.
2532 * Return: %0 on success, negative error code otherwise.
2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2536 unsigned long vm_len, pfn, pages;
2538 /* Check that the physical memory area passed in looks valid */
2539 if (start + len < start)
2542 * You *really* shouldn't map things that aren't page-aligned,
2543 * but we've historically allowed it because IO memory might
2544 * just have smaller alignment.
2546 len += start & ~PAGE_MASK;
2547 pfn = start >> PAGE_SHIFT;
2548 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549 if (pfn + pages < pfn)
2552 /* We start the mapping 'vm_pgoff' pages into the area */
2553 if (vma->vm_pgoff > pages)
2555 pfn += vma->vm_pgoff;
2556 pages -= vma->vm_pgoff;
2558 /* Can we fit all of the mapping? */
2559 vm_len = vma->vm_end - vma->vm_start;
2560 if (vm_len >> PAGE_SHIFT > pages)
2563 /* Ok, let it rip */
2564 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2566 EXPORT_SYMBOL(vm_iomap_memory);
2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569 unsigned long addr, unsigned long end,
2570 pte_fn_t fn, void *data, bool create,
2571 pgtbl_mod_mask *mask)
2573 pte_t *pte, *mapped_pte;
2578 mapped_pte = pte = (mm == &init_mm) ?
2579 pte_alloc_kernel_track(pmd, addr, mask) :
2580 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2584 mapped_pte = pte = (mm == &init_mm) ?
2585 pte_offset_kernel(pmd, addr) :
2586 pte_offset_map_lock(mm, pmd, addr, &ptl);
2591 arch_enter_lazy_mmu_mode();
2595 if (create || !pte_none(ptep_get(pte))) {
2596 err = fn(pte++, addr, data);
2600 } while (addr += PAGE_SIZE, addr != end);
2602 *mask |= PGTBL_PTE_MODIFIED;
2604 arch_leave_lazy_mmu_mode();
2607 pte_unmap_unlock(mapped_pte, ptl);
2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612 unsigned long addr, unsigned long end,
2613 pte_fn_t fn, void *data, bool create,
2614 pgtbl_mod_mask *mask)
2620 BUG_ON(pud_huge(*pud));
2623 pmd = pmd_alloc_track(mm, pud, addr, mask);
2627 pmd = pmd_offset(pud, addr);
2630 next = pmd_addr_end(addr, end);
2631 if (pmd_none(*pmd) && !create)
2633 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2635 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640 err = apply_to_pte_range(mm, pmd, addr, next,
2641 fn, data, create, mask);
2644 } while (pmd++, addr = next, addr != end);
2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650 unsigned long addr, unsigned long end,
2651 pte_fn_t fn, void *data, bool create,
2652 pgtbl_mod_mask *mask)
2659 pud = pud_alloc_track(mm, p4d, addr, mask);
2663 pud = pud_offset(p4d, addr);
2666 next = pud_addr_end(addr, end);
2667 if (pud_none(*pud) && !create)
2669 if (WARN_ON_ONCE(pud_leaf(*pud)))
2671 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676 err = apply_to_pmd_range(mm, pud, addr, next,
2677 fn, data, create, mask);
2680 } while (pud++, addr = next, addr != end);
2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686 unsigned long addr, unsigned long end,
2687 pte_fn_t fn, void *data, bool create,
2688 pgtbl_mod_mask *mask)
2695 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2699 p4d = p4d_offset(pgd, addr);
2702 next = p4d_addr_end(addr, end);
2703 if (p4d_none(*p4d) && !create)
2705 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2707 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712 err = apply_to_pud_range(mm, p4d, addr, next,
2713 fn, data, create, mask);
2716 } while (p4d++, addr = next, addr != end);
2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722 unsigned long size, pte_fn_t fn,
2723 void *data, bool create)
2726 unsigned long start = addr, next;
2727 unsigned long end = addr + size;
2728 pgtbl_mod_mask mask = 0;
2731 if (WARN_ON(addr >= end))
2734 pgd = pgd_offset(mm, addr);
2736 next = pgd_addr_end(addr, end);
2737 if (pgd_none(*pgd) && !create)
2739 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2741 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746 err = apply_to_p4d_range(mm, pgd, addr, next,
2747 fn, data, create, &mask);
2750 } while (pgd++, addr = next, addr != end);
2752 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753 arch_sync_kernel_mappings(start, start + size);
2759 * Scan a region of virtual memory, filling in page tables as necessary
2760 * and calling a provided function on each leaf page table.
2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763 unsigned long size, pte_fn_t fn, void *data)
2765 return __apply_to_page_range(mm, addr, size, fn, data, true);
2767 EXPORT_SYMBOL_GPL(apply_to_page_range);
2770 * Scan a region of virtual memory, calling a provided function on
2771 * each leaf page table where it exists.
2773 * Unlike apply_to_page_range, this does _not_ fill in page tables
2774 * where they are absent.
2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777 unsigned long size, pte_fn_t fn, void *data)
2779 return __apply_to_page_range(mm, addr, size, fn, data, false);
2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2784 * handle_pte_fault chooses page fault handler according to an entry which was
2785 * read non-atomically. Before making any commitment, on those architectures
2786 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787 * parts, do_swap_page must check under lock before unmapping the pte and
2788 * proceeding (but do_wp_page is only called after already making such a check;
2789 * and do_anonymous_page can safely check later on).
2791 static inline int pte_unmap_same(struct vm_fault *vmf)
2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795 if (sizeof(pte_t) > sizeof(unsigned long)) {
2796 spin_lock(vmf->ptl);
2797 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2798 spin_unlock(vmf->ptl);
2801 pte_unmap(vmf->pte);
2808 * 0: copied succeeded
2809 * -EHWPOISON: copy failed due to hwpoison in source page
2810 * -EAGAIN: copied failed (some other reason)
2812 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2813 struct vm_fault *vmf)
2818 struct vm_area_struct *vma = vmf->vma;
2819 struct mm_struct *mm = vma->vm_mm;
2820 unsigned long addr = vmf->address;
2823 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2824 memory_failure_queue(page_to_pfn(src), 0);
2831 * If the source page was a PFN mapping, we don't have
2832 * a "struct page" for it. We do a best-effort copy by
2833 * just copying from the original user address. If that
2834 * fails, we just zero-fill it. Live with it.
2836 kaddr = kmap_atomic(dst);
2837 uaddr = (void __user *)(addr & PAGE_MASK);
2840 * On architectures with software "accessed" bits, we would
2841 * take a double page fault, so mark it accessed here.
2844 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2847 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2848 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2850 * Other thread has already handled the fault
2851 * and update local tlb only
2854 update_mmu_tlb(vma, addr, vmf->pte);
2859 entry = pte_mkyoung(vmf->orig_pte);
2860 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2861 update_mmu_cache(vma, addr, vmf->pte);
2865 * This really shouldn't fail, because the page is there
2866 * in the page tables. But it might just be unreadable,
2867 * in which case we just give up and fill the result with
2870 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2874 /* Re-validate under PTL if the page is still mapped */
2875 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2876 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2877 /* The PTE changed under us, update local tlb */
2879 update_mmu_tlb(vma, addr, vmf->pte);
2885 * The same page can be mapped back since last copy attempt.
2886 * Try to copy again under PTL.
2888 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2890 * Give a warn in case there can be some obscure
2903 pte_unmap_unlock(vmf->pte, vmf->ptl);
2904 kunmap_atomic(kaddr);
2905 flush_dcache_page(dst);
2910 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2912 struct file *vm_file = vma->vm_file;
2915 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2918 * Special mappings (e.g. VDSO) do not have any file so fake
2919 * a default GFP_KERNEL for them.
2925 * Notify the address space that the page is about to become writable so that
2926 * it can prohibit this or wait for the page to get into an appropriate state.
2928 * We do this without the lock held, so that it can sleep if it needs to.
2930 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2933 struct page *page = vmf->page;
2934 unsigned int old_flags = vmf->flags;
2936 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2938 if (vmf->vma->vm_file &&
2939 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2940 return VM_FAULT_SIGBUS;
2942 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2943 /* Restore original flags so that caller is not surprised */
2944 vmf->flags = old_flags;
2945 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2947 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2949 if (!page->mapping) {
2951 return 0; /* retry */
2953 ret |= VM_FAULT_LOCKED;
2955 VM_BUG_ON_PAGE(!PageLocked(page), page);
2960 * Handle dirtying of a page in shared file mapping on a write fault.
2962 * The function expects the page to be locked and unlocks it.
2964 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2966 struct vm_area_struct *vma = vmf->vma;
2967 struct address_space *mapping;
2968 struct page *page = vmf->page;
2970 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2972 dirtied = set_page_dirty(page);
2973 VM_BUG_ON_PAGE(PageAnon(page), page);
2975 * Take a local copy of the address_space - page.mapping may be zeroed
2976 * by truncate after unlock_page(). The address_space itself remains
2977 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2978 * release semantics to prevent the compiler from undoing this copying.
2980 mapping = page_rmapping(page);
2984 file_update_time(vma->vm_file);
2987 * Throttle page dirtying rate down to writeback speed.
2989 * mapping may be NULL here because some device drivers do not
2990 * set page.mapping but still dirty their pages
2992 * Drop the mmap_lock before waiting on IO, if we can. The file
2993 * is pinning the mapping, as per above.
2995 if ((dirtied || page_mkwrite) && mapping) {
2998 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2999 balance_dirty_pages_ratelimited(mapping);
3002 return VM_FAULT_COMPLETED;
3010 * Handle write page faults for pages that can be reused in the current vma
3012 * This can happen either due to the mapping being with the VM_SHARED flag,
3013 * or due to us being the last reference standing to the page. In either
3014 * case, all we need to do here is to mark the page as writable and update
3015 * any related book-keeping.
3017 static inline void wp_page_reuse(struct vm_fault *vmf)
3018 __releases(vmf->ptl)
3020 struct vm_area_struct *vma = vmf->vma;
3021 struct page *page = vmf->page;
3024 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3025 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3028 * Clear the pages cpupid information as the existing
3029 * information potentially belongs to a now completely
3030 * unrelated process.
3033 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3035 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3036 entry = pte_mkyoung(vmf->orig_pte);
3037 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3038 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3039 update_mmu_cache(vma, vmf->address, vmf->pte);
3040 pte_unmap_unlock(vmf->pte, vmf->ptl);
3041 count_vm_event(PGREUSE);
3045 * Handle the case of a page which we actually need to copy to a new page,
3046 * either due to COW or unsharing.
3048 * Called with mmap_lock locked and the old page referenced, but
3049 * without the ptl held.
3051 * High level logic flow:
3053 * - Allocate a page, copy the content of the old page to the new one.
3054 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3055 * - Take the PTL. If the pte changed, bail out and release the allocated page
3056 * - If the pte is still the way we remember it, update the page table and all
3057 * relevant references. This includes dropping the reference the page-table
3058 * held to the old page, as well as updating the rmap.
3059 * - In any case, unlock the PTL and drop the reference we took to the old page.
3061 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3063 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3064 struct vm_area_struct *vma = vmf->vma;
3065 struct mm_struct *mm = vma->vm_mm;
3066 struct folio *old_folio = NULL;
3067 struct folio *new_folio = NULL;
3069 int page_copied = 0;
3070 struct mmu_notifier_range range;
3073 delayacct_wpcopy_start();
3076 old_folio = page_folio(vmf->page);
3077 if (unlikely(anon_vma_prepare(vma)))
3080 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3081 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3085 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3086 vmf->address, false);
3090 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3093 * COW failed, if the fault was solved by other,
3094 * it's fine. If not, userspace would re-fault on
3095 * the same address and we will handle the fault
3096 * from the second attempt.
3097 * The -EHWPOISON case will not be retried.
3099 folio_put(new_folio);
3101 folio_put(old_folio);
3103 delayacct_wpcopy_end();
3104 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3106 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3109 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3111 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3113 __folio_mark_uptodate(new_folio);
3115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3116 vmf->address & PAGE_MASK,
3117 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3118 mmu_notifier_invalidate_range_start(&range);
3121 * Re-check the pte - we dropped the lock
3123 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3126 if (!folio_test_anon(old_folio)) {
3127 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3128 inc_mm_counter(mm, MM_ANONPAGES);
3131 inc_mm_counter(mm, MM_ANONPAGES);
3133 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3135 entry = pte_sw_mkyoung(entry);
3136 if (unlikely(unshare)) {
3137 if (pte_soft_dirty(vmf->orig_pte))
3138 entry = pte_mksoft_dirty(entry);
3139 if (pte_uffd_wp(vmf->orig_pte))
3140 entry = pte_mkuffd_wp(entry);
3142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3146 * Clear the pte entry and flush it first, before updating the
3147 * pte with the new entry, to keep TLBs on different CPUs in
3148 * sync. This code used to set the new PTE then flush TLBs, but
3149 * that left a window where the new PTE could be loaded into
3150 * some TLBs while the old PTE remains in others.
3152 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3154 folio_add_lru_vma(new_folio, vma);
3156 * We call the notify macro here because, when using secondary
3157 * mmu page tables (such as kvm shadow page tables), we want the
3158 * new page to be mapped directly into the secondary page table.
3160 BUG_ON(unshare && pte_write(entry));
3161 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162 update_mmu_cache(vma, vmf->address, vmf->pte);
3165 * Only after switching the pte to the new page may
3166 * we remove the mapcount here. Otherwise another
3167 * process may come and find the rmap count decremented
3168 * before the pte is switched to the new page, and
3169 * "reuse" the old page writing into it while our pte
3170 * here still points into it and can be read by other
3173 * The critical issue is to order this
3174 * page_remove_rmap with the ptp_clear_flush above.
3175 * Those stores are ordered by (if nothing else,)
3176 * the barrier present in the atomic_add_negative
3177 * in page_remove_rmap.
3179 * Then the TLB flush in ptep_clear_flush ensures that
3180 * no process can access the old page before the
3181 * decremented mapcount is visible. And the old page
3182 * cannot be reused until after the decremented
3183 * mapcount is visible. So transitively, TLBs to
3184 * old page will be flushed before it can be reused.
3186 page_remove_rmap(vmf->page, vma, false);
3189 /* Free the old page.. */
3190 new_folio = old_folio;
3192 pte_unmap_unlock(vmf->pte, vmf->ptl);
3193 } else if (vmf->pte) {
3194 update_mmu_tlb(vma, vmf->address, vmf->pte);
3195 pte_unmap_unlock(vmf->pte, vmf->ptl);
3199 * No need to double call mmu_notifier->invalidate_range() callback as
3200 * the above ptep_clear_flush_notify() did already call it.
3202 mmu_notifier_invalidate_range_only_end(&range);
3205 folio_put(new_folio);
3208 free_swap_cache(&old_folio->page);
3209 folio_put(old_folio);
3212 delayacct_wpcopy_end();
3215 folio_put(new_folio);
3218 folio_put(old_folio);
3220 delayacct_wpcopy_end();
3221 return VM_FAULT_OOM;
3225 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226 * writeable once the page is prepared
3228 * @vmf: structure describing the fault
3230 * This function handles all that is needed to finish a write page fault in a
3231 * shared mapping due to PTE being read-only once the mapped page is prepared.
3232 * It handles locking of PTE and modifying it.
3234 * The function expects the page to be locked or other protection against
3235 * concurrent faults / writeback (such as DAX radix tree locks).
3237 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238 * we acquired PTE lock.
3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3242 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3246 return VM_FAULT_NOPAGE;
3248 * We might have raced with another page fault while we released the
3249 * pte_offset_map_lock.
3251 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253 pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 return VM_FAULT_NOPAGE;
3261 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3266 struct vm_area_struct *vma = vmf->vma;
3268 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3271 pte_unmap_unlock(vmf->pte, vmf->ptl);
3272 vmf->flags |= FAULT_FLAG_MKWRITE;
3273 ret = vma->vm_ops->pfn_mkwrite(vmf);
3274 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3276 return finish_mkwrite_fault(vmf);
3282 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3283 __releases(vmf->ptl)
3285 struct vm_area_struct *vma = vmf->vma;
3288 get_page(vmf->page);
3290 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3293 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 tmp = do_page_mkwrite(vmf);
3295 if (unlikely(!tmp || (tmp &
3296 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297 put_page(vmf->page);
3300 tmp = finish_mkwrite_fault(vmf);
3301 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3302 unlock_page(vmf->page);
3303 put_page(vmf->page);
3308 lock_page(vmf->page);
3310 ret |= fault_dirty_shared_page(vmf);
3311 put_page(vmf->page);
3317 * This routine handles present pages, when
3318 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3319 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3320 * (FAULT_FLAG_UNSHARE)
3322 * It is done by copying the page to a new address and decrementing the
3323 * shared-page counter for the old page.
3325 * Note that this routine assumes that the protection checks have been
3326 * done by the caller (the low-level page fault routine in most cases).
3327 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3328 * done any necessary COW.
3330 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3331 * though the page will change only once the write actually happens. This
3332 * avoids a few races, and potentially makes it more efficient.
3334 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3335 * but allow concurrent faults), with pte both mapped and locked.
3336 * We return with mmap_lock still held, but pte unmapped and unlocked.
3338 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3339 __releases(vmf->ptl)
3341 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3342 struct vm_area_struct *vma = vmf->vma;
3343 struct folio *folio = NULL;
3345 if (likely(!unshare)) {
3346 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3347 pte_unmap_unlock(vmf->pte, vmf->ptl);
3348 return handle_userfault(vmf, VM_UFFD_WP);
3352 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3353 * is flushed in this case before copying.
3355 if (unlikely(userfaultfd_wp(vmf->vma) &&
3356 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3357 flush_tlb_page(vmf->vma, vmf->address);
3360 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3363 * Shared mapping: we are guaranteed to have VM_WRITE and
3364 * FAULT_FLAG_WRITE set at this point.
3366 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3371 * We should not cow pages in a shared writeable mapping.
3372 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3375 return wp_pfn_shared(vmf);
3376 return wp_page_shared(vmf);
3380 folio = page_folio(vmf->page);
3383 * Private mapping: create an exclusive anonymous page copy if reuse
3384 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3386 if (folio && folio_test_anon(folio)) {
3388 * If the page is exclusive to this process we must reuse the
3389 * page without further checks.
3391 if (PageAnonExclusive(vmf->page))
3395 * We have to verify under folio lock: these early checks are
3396 * just an optimization to avoid locking the folio and freeing
3397 * the swapcache if there is little hope that we can reuse.
3399 * KSM doesn't necessarily raise the folio refcount.
3401 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3403 if (!folio_test_lru(folio))
3405 * We cannot easily detect+handle references from
3406 * remote LRU caches or references to LRU folios.
3409 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3411 if (!folio_trylock(folio))
3413 if (folio_test_swapcache(folio))
3414 folio_free_swap(folio);
3415 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3416 folio_unlock(folio);
3420 * Ok, we've got the only folio reference from our mapping
3421 * and the folio is locked, it's dark out, and we're wearing
3422 * sunglasses. Hit it.
3424 page_move_anon_rmap(vmf->page, vma);
3425 folio_unlock(folio);
3427 if (unlikely(unshare)) {
3428 pte_unmap_unlock(vmf->pte, vmf->ptl);
3436 * Ok, we need to copy. Oh, well..
3441 pte_unmap_unlock(vmf->pte, vmf->ptl);
3443 if (folio && folio_test_ksm(folio))
3444 count_vm_event(COW_KSM);
3446 return wp_page_copy(vmf);
3449 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3450 unsigned long start_addr, unsigned long end_addr,
3451 struct zap_details *details)
3453 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3456 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3457 pgoff_t first_index,
3459 struct zap_details *details)
3461 struct vm_area_struct *vma;
3462 pgoff_t vba, vea, zba, zea;
3464 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3465 vba = vma->vm_pgoff;
3466 vea = vba + vma_pages(vma) - 1;
3467 zba = max(first_index, vba);
3468 zea = min(last_index, vea);
3470 unmap_mapping_range_vma(vma,
3471 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3472 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3478 * unmap_mapping_folio() - Unmap single folio from processes.
3479 * @folio: The locked folio to be unmapped.
3481 * Unmap this folio from any userspace process which still has it mmaped.
3482 * Typically, for efficiency, the range of nearby pages has already been
3483 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3484 * truncation or invalidation holds the lock on a folio, it may find that
3485 * the page has been remapped again: and then uses unmap_mapping_folio()
3486 * to unmap it finally.
3488 void unmap_mapping_folio(struct folio *folio)
3490 struct address_space *mapping = folio->mapping;
3491 struct zap_details details = { };
3492 pgoff_t first_index;
3495 VM_BUG_ON(!folio_test_locked(folio));
3497 first_index = folio->index;
3498 last_index = folio->index + folio_nr_pages(folio) - 1;
3500 details.even_cows = false;
3501 details.single_folio = folio;
3502 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3504 i_mmap_lock_read(mapping);
3505 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3506 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3507 last_index, &details);
3508 i_mmap_unlock_read(mapping);
3512 * unmap_mapping_pages() - Unmap pages from processes.
3513 * @mapping: The address space containing pages to be unmapped.
3514 * @start: Index of first page to be unmapped.
3515 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3516 * @even_cows: Whether to unmap even private COWed pages.
3518 * Unmap the pages in this address space from any userspace process which
3519 * has them mmaped. Generally, you want to remove COWed pages as well when
3520 * a file is being truncated, but not when invalidating pages from the page
3523 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3524 pgoff_t nr, bool even_cows)
3526 struct zap_details details = { };
3527 pgoff_t first_index = start;
3528 pgoff_t last_index = start + nr - 1;
3530 details.even_cows = even_cows;
3531 if (last_index < first_index)
3532 last_index = ULONG_MAX;
3534 i_mmap_lock_read(mapping);
3535 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3536 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3537 last_index, &details);
3538 i_mmap_unlock_read(mapping);
3540 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3543 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3544 * address_space corresponding to the specified byte range in the underlying
3547 * @mapping: the address space containing mmaps to be unmapped.
3548 * @holebegin: byte in first page to unmap, relative to the start of
3549 * the underlying file. This will be rounded down to a PAGE_SIZE
3550 * boundary. Note that this is different from truncate_pagecache(), which
3551 * must keep the partial page. In contrast, we must get rid of
3553 * @holelen: size of prospective hole in bytes. This will be rounded
3554 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3556 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3557 * but 0 when invalidating pagecache, don't throw away private data.
3559 void unmap_mapping_range(struct address_space *mapping,
3560 loff_t const holebegin, loff_t const holelen, int even_cows)
3562 pgoff_t hba = holebegin >> PAGE_SHIFT;
3563 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3565 /* Check for overflow. */
3566 if (sizeof(holelen) > sizeof(hlen)) {
3568 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3569 if (holeend & ~(long long)ULONG_MAX)
3570 hlen = ULONG_MAX - hba + 1;
3573 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3575 EXPORT_SYMBOL(unmap_mapping_range);
3578 * Restore a potential device exclusive pte to a working pte entry
3580 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3582 struct folio *folio = page_folio(vmf->page);
3583 struct vm_area_struct *vma = vmf->vma;
3584 struct mmu_notifier_range range;
3587 * We need a reference to lock the folio because we don't hold
3588 * the PTL so a racing thread can remove the device-exclusive
3589 * entry and unmap it. If the folio is free the entry must
3590 * have been removed already. If it happens to have already
3591 * been re-allocated after being freed all we do is lock and
3594 if (!folio_try_get(folio))
3597 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3599 return VM_FAULT_RETRY;
3601 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3602 vma->vm_mm, vmf->address & PAGE_MASK,
3603 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3604 mmu_notifier_invalidate_range_start(&range);
3606 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3608 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3609 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3612 pte_unmap_unlock(vmf->pte, vmf->ptl);
3613 folio_unlock(folio);
3616 mmu_notifier_invalidate_range_end(&range);
3620 static inline bool should_try_to_free_swap(struct folio *folio,
3621 struct vm_area_struct *vma,
3622 unsigned int fault_flags)
3624 if (!folio_test_swapcache(folio))
3626 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3627 folio_test_mlocked(folio))
3630 * If we want to map a page that's in the swapcache writable, we
3631 * have to detect via the refcount if we're really the exclusive
3632 * user. Try freeing the swapcache to get rid of the swapcache
3633 * reference only in case it's likely that we'll be the exlusive user.
3635 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3636 folio_ref_count(folio) == 2;
3639 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3641 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3642 vmf->address, &vmf->ptl);
3646 * Be careful so that we will only recover a special uffd-wp pte into a
3647 * none pte. Otherwise it means the pte could have changed, so retry.
3649 * This should also cover the case where e.g. the pte changed
3650 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3651 * So is_pte_marker() check is not enough to safely drop the pte.
3653 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3654 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3655 pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3661 if (vma_is_anonymous(vmf->vma))
3662 return do_anonymous_page(vmf);
3664 return do_fault(vmf);
3668 * This is actually a page-missing access, but with uffd-wp special pte
3669 * installed. It means this pte was wr-protected before being unmapped.
3671 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3674 * Just in case there're leftover special ptes even after the region
3675 * got unregistered - we can simply clear them.
3677 if (unlikely(!userfaultfd_wp(vmf->vma)))
3678 return pte_marker_clear(vmf);
3680 return do_pte_missing(vmf);
3683 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3685 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3686 unsigned long marker = pte_marker_get(entry);
3689 * PTE markers should never be empty. If anything weird happened,
3690 * the best thing to do is to kill the process along with its mm.
3692 if (WARN_ON_ONCE(!marker))
3693 return VM_FAULT_SIGBUS;
3695 /* Higher priority than uffd-wp when data corrupted */
3696 if (marker & PTE_MARKER_SWAPIN_ERROR)
3697 return VM_FAULT_SIGBUS;
3699 if (pte_marker_entry_uffd_wp(entry))
3700 return pte_marker_handle_uffd_wp(vmf);
3702 /* This is an unknown pte marker */
3703 return VM_FAULT_SIGBUS;
3707 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3708 * but allow concurrent faults), and pte mapped but not yet locked.
3709 * We return with pte unmapped and unlocked.
3711 * We return with the mmap_lock locked or unlocked in the same cases
3712 * as does filemap_fault().
3714 vm_fault_t do_swap_page(struct vm_fault *vmf)
3716 struct vm_area_struct *vma = vmf->vma;
3717 struct folio *swapcache, *folio = NULL;
3719 struct swap_info_struct *si = NULL;
3720 rmap_t rmap_flags = RMAP_NONE;
3721 bool exclusive = false;
3726 void *shadow = NULL;
3728 if (!pte_unmap_same(vmf))
3731 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3732 ret = VM_FAULT_RETRY;
3736 entry = pte_to_swp_entry(vmf->orig_pte);
3737 if (unlikely(non_swap_entry(entry))) {
3738 if (is_migration_entry(entry)) {
3739 migration_entry_wait(vma->vm_mm, vmf->pmd,
3741 } else if (is_device_exclusive_entry(entry)) {
3742 vmf->page = pfn_swap_entry_to_page(entry);
3743 ret = remove_device_exclusive_entry(vmf);
3744 } else if (is_device_private_entry(entry)) {
3745 vmf->page = pfn_swap_entry_to_page(entry);
3746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3747 vmf->address, &vmf->ptl);
3748 if (unlikely(!vmf->pte ||
3749 !pte_same(ptep_get(vmf->pte),
3754 * Get a page reference while we know the page can't be
3757 get_page(vmf->page);
3758 pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3760 put_page(vmf->page);
3761 } else if (is_hwpoison_entry(entry)) {
3762 ret = VM_FAULT_HWPOISON;
3763 } else if (is_pte_marker_entry(entry)) {
3764 ret = handle_pte_marker(vmf);
3766 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3767 ret = VM_FAULT_SIGBUS;
3772 /* Prevent swapoff from happening to us. */
3773 si = get_swap_device(entry);
3777 folio = swap_cache_get_folio(entry, vma, vmf->address);
3779 page = folio_file_page(folio, swp_offset(entry));
3783 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3784 __swap_count(entry) == 1) {
3785 /* skip swapcache */
3786 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3787 vma, vmf->address, false);
3788 page = &folio->page;
3790 __folio_set_locked(folio);
3791 __folio_set_swapbacked(folio);
3793 if (mem_cgroup_swapin_charge_folio(folio,
3794 vma->vm_mm, GFP_KERNEL,
3799 mem_cgroup_swapin_uncharge_swap(entry);
3801 shadow = get_shadow_from_swap_cache(entry);
3803 workingset_refault(folio, shadow);
3805 folio_add_lru(folio);
3807 /* To provide entry to swap_readpage() */
3808 folio_set_swap_entry(folio, entry);
3809 swap_readpage(page, true, NULL);
3810 folio->private = NULL;
3813 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3816 folio = page_folio(page);
3822 * Back out if somebody else faulted in this pte
3823 * while we released the pte lock.
3825 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3826 vmf->address, &vmf->ptl);
3827 if (likely(vmf->pte &&
3828 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3833 /* Had to read the page from swap area: Major fault */
3834 ret = VM_FAULT_MAJOR;
3835 count_vm_event(PGMAJFAULT);
3836 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3837 } else if (PageHWPoison(page)) {
3839 * hwpoisoned dirty swapcache pages are kept for killing
3840 * owner processes (which may be unknown at hwpoison time)
3842 ret = VM_FAULT_HWPOISON;
3846 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3849 ret |= VM_FAULT_RETRY;
3855 * Make sure folio_free_swap() or swapoff did not release the
3856 * swapcache from under us. The page pin, and pte_same test
3857 * below, are not enough to exclude that. Even if it is still
3858 * swapcache, we need to check that the page's swap has not
3861 if (unlikely(!folio_test_swapcache(folio) ||
3862 page_private(page) != entry.val))
3866 * KSM sometimes has to copy on read faults, for example, if
3867 * page->index of !PageKSM() pages would be nonlinear inside the
3868 * anon VMA -- PageKSM() is lost on actual swapout.
3870 page = ksm_might_need_to_copy(page, vma, vmf->address);
3871 if (unlikely(!page)) {
3874 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3875 ret = VM_FAULT_HWPOISON;
3878 folio = page_folio(page);
3881 * If we want to map a page that's in the swapcache writable, we
3882 * have to detect via the refcount if we're really the exclusive
3883 * owner. Try removing the extra reference from the local LRU
3884 * caches if required.
3886 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3887 !folio_test_ksm(folio) && !folio_test_lru(folio))
3891 folio_throttle_swaprate(folio, GFP_KERNEL);
3894 * Back out if somebody else already faulted in this pte.
3896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3898 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3901 if (unlikely(!folio_test_uptodate(folio))) {
3902 ret = VM_FAULT_SIGBUS;
3907 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3908 * must never point at an anonymous page in the swapcache that is
3909 * PG_anon_exclusive. Sanity check that this holds and especially, that
3910 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3911 * check after taking the PT lock and making sure that nobody
3912 * concurrently faulted in this page and set PG_anon_exclusive.
3914 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3915 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3918 * Check under PT lock (to protect against concurrent fork() sharing
3919 * the swap entry concurrently) for certainly exclusive pages.
3921 if (!folio_test_ksm(folio)) {
3922 exclusive = pte_swp_exclusive(vmf->orig_pte);
3923 if (folio != swapcache) {
3925 * We have a fresh page that is not exposed to the
3926 * swapcache -> certainly exclusive.
3929 } else if (exclusive && folio_test_writeback(folio) &&
3930 data_race(si->flags & SWP_STABLE_WRITES)) {
3932 * This is tricky: not all swap backends support
3933 * concurrent page modifications while under writeback.
3935 * So if we stumble over such a page in the swapcache
3936 * we must not set the page exclusive, otherwise we can
3937 * map it writable without further checks and modify it
3938 * while still under writeback.
3940 * For these problematic swap backends, simply drop the
3941 * exclusive marker: this is perfectly fine as we start
3942 * writeback only if we fully unmapped the page and
3943 * there are no unexpected references on the page after
3944 * unmapping succeeded. After fully unmapped, no
3945 * further GUP references (FOLL_GET and FOLL_PIN) can
3946 * appear, so dropping the exclusive marker and mapping
3947 * it only R/O is fine.
3954 * Some architectures may have to restore extra metadata to the page
3955 * when reading from swap. This metadata may be indexed by swap entry
3956 * so this must be called before swap_free().
3958 arch_swap_restore(entry, folio);
3961 * Remove the swap entry and conditionally try to free up the swapcache.
3962 * We're already holding a reference on the page but haven't mapped it
3966 if (should_try_to_free_swap(folio, vma, vmf->flags))
3967 folio_free_swap(folio);
3969 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3970 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3971 pte = mk_pte(page, vma->vm_page_prot);
3974 * Same logic as in do_wp_page(); however, optimize for pages that are
3975 * certainly not shared either because we just allocated them without
3976 * exposing them to the swapcache or because the swap entry indicates
3979 if (!folio_test_ksm(folio) &&
3980 (exclusive || folio_ref_count(folio) == 1)) {
3981 if (vmf->flags & FAULT_FLAG_WRITE) {
3982 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3983 vmf->flags &= ~FAULT_FLAG_WRITE;
3985 rmap_flags |= RMAP_EXCLUSIVE;
3987 flush_icache_page(vma, page);
3988 if (pte_swp_soft_dirty(vmf->orig_pte))
3989 pte = pte_mksoft_dirty(pte);
3990 if (pte_swp_uffd_wp(vmf->orig_pte))
3991 pte = pte_mkuffd_wp(pte);
3992 vmf->orig_pte = pte;
3994 /* ksm created a completely new copy */
3995 if (unlikely(folio != swapcache && swapcache)) {
3996 page_add_new_anon_rmap(page, vma, vmf->address);
3997 folio_add_lru_vma(folio, vma);
3999 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4002 VM_BUG_ON(!folio_test_anon(folio) ||
4003 (pte_write(pte) && !PageAnonExclusive(page)));
4004 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4005 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4007 folio_unlock(folio);
4008 if (folio != swapcache && swapcache) {
4010 * Hold the lock to avoid the swap entry to be reused
4011 * until we take the PT lock for the pte_same() check
4012 * (to avoid false positives from pte_same). For
4013 * further safety release the lock after the swap_free
4014 * so that the swap count won't change under a
4015 * parallel locked swapcache.
4017 folio_unlock(swapcache);
4018 folio_put(swapcache);
4021 if (vmf->flags & FAULT_FLAG_WRITE) {
4022 ret |= do_wp_page(vmf);
4023 if (ret & VM_FAULT_ERROR)
4024 ret &= VM_FAULT_ERROR;
4028 /* No need to invalidate - it was non-present before */
4029 update_mmu_cache(vma, vmf->address, vmf->pte);
4032 pte_unmap_unlock(vmf->pte, vmf->ptl);
4035 put_swap_device(si);
4039 pte_unmap_unlock(vmf->pte, vmf->ptl);
4041 folio_unlock(folio);
4044 if (folio != swapcache && swapcache) {
4045 folio_unlock(swapcache);
4046 folio_put(swapcache);
4049 put_swap_device(si);
4054 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4055 * but allow concurrent faults), and pte mapped but not yet locked.
4056 * We return with mmap_lock still held, but pte unmapped and unlocked.
4058 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4060 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4061 struct vm_area_struct *vma = vmf->vma;
4062 struct folio *folio;
4066 /* File mapping without ->vm_ops ? */
4067 if (vma->vm_flags & VM_SHARED)
4068 return VM_FAULT_SIGBUS;
4071 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4072 * be distinguished from a transient failure of pte_offset_map().
4074 if (pte_alloc(vma->vm_mm, vmf->pmd))
4075 return VM_FAULT_OOM;
4077 /* Use the zero-page for reads */
4078 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4079 !mm_forbids_zeropage(vma->vm_mm)) {
4080 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4081 vma->vm_page_prot));
4082 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4083 vmf->address, &vmf->ptl);
4086 if (vmf_pte_changed(vmf)) {
4087 update_mmu_tlb(vma, vmf->address, vmf->pte);
4090 ret = check_stable_address_space(vma->vm_mm);
4093 /* Deliver the page fault to userland, check inside PT lock */
4094 if (userfaultfd_missing(vma)) {
4095 pte_unmap_unlock(vmf->pte, vmf->ptl);
4096 return handle_userfault(vmf, VM_UFFD_MISSING);
4101 /* Allocate our own private page. */
4102 if (unlikely(anon_vma_prepare(vma)))
4104 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4108 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4110 folio_throttle_swaprate(folio, GFP_KERNEL);
4113 * The memory barrier inside __folio_mark_uptodate makes sure that
4114 * preceding stores to the page contents become visible before
4115 * the set_pte_at() write.
4117 __folio_mark_uptodate(folio);
4119 entry = mk_pte(&folio->page, vma->vm_page_prot);
4120 entry = pte_sw_mkyoung(entry);
4121 if (vma->vm_flags & VM_WRITE)
4122 entry = pte_mkwrite(pte_mkdirty(entry));
4124 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4128 if (vmf_pte_changed(vmf)) {
4129 update_mmu_tlb(vma, vmf->address, vmf->pte);
4133 ret = check_stable_address_space(vma->vm_mm);
4137 /* Deliver the page fault to userland, check inside PT lock */
4138 if (userfaultfd_missing(vma)) {
4139 pte_unmap_unlock(vmf->pte, vmf->ptl);
4141 return handle_userfault(vmf, VM_UFFD_MISSING);
4144 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4145 folio_add_new_anon_rmap(folio, vma, vmf->address);
4146 folio_add_lru_vma(folio, vma);
4149 entry = pte_mkuffd_wp(entry);
4150 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4152 /* No need to invalidate - it was non-present before */
4153 update_mmu_cache(vma, vmf->address, vmf->pte);
4156 pte_unmap_unlock(vmf->pte, vmf->ptl);
4164 return VM_FAULT_OOM;
4168 * The mmap_lock must have been held on entry, and may have been
4169 * released depending on flags and vma->vm_ops->fault() return value.
4170 * See filemap_fault() and __lock_page_retry().
4172 static vm_fault_t __do_fault(struct vm_fault *vmf)
4174 struct vm_area_struct *vma = vmf->vma;
4178 * Preallocate pte before we take page_lock because this might lead to
4179 * deadlocks for memcg reclaim which waits for pages under writeback:
4181 * SetPageWriteback(A)
4187 * wait_on_page_writeback(A)
4188 * SetPageWriteback(B)
4190 * # flush A, B to clear the writeback
4192 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4193 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4194 if (!vmf->prealloc_pte)
4195 return VM_FAULT_OOM;
4198 ret = vma->vm_ops->fault(vmf);
4199 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4200 VM_FAULT_DONE_COW)))
4203 if (unlikely(PageHWPoison(vmf->page))) {
4204 struct page *page = vmf->page;
4205 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4206 if (ret & VM_FAULT_LOCKED) {
4207 if (page_mapped(page))
4208 unmap_mapping_pages(page_mapping(page),
4209 page->index, 1, false);
4210 /* Retry if a clean page was removed from the cache. */
4211 if (invalidate_inode_page(page))
4212 poisonret = VM_FAULT_NOPAGE;
4220 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4221 lock_page(vmf->page);
4223 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 static void deposit_prealloc_pte(struct vm_fault *vmf)
4231 struct vm_area_struct *vma = vmf->vma;
4233 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4235 * We are going to consume the prealloc table,
4236 * count that as nr_ptes.
4238 mm_inc_nr_ptes(vma->vm_mm);
4239 vmf->prealloc_pte = NULL;
4242 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4244 struct vm_area_struct *vma = vmf->vma;
4245 bool write = vmf->flags & FAULT_FLAG_WRITE;
4246 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4249 vm_fault_t ret = VM_FAULT_FALLBACK;
4251 if (!transhuge_vma_suitable(vma, haddr))
4254 page = compound_head(page);
4255 if (compound_order(page) != HPAGE_PMD_ORDER)
4259 * Just backoff if any subpage of a THP is corrupted otherwise
4260 * the corrupted page may mapped by PMD silently to escape the
4261 * check. This kind of THP just can be PTE mapped. Access to
4262 * the corrupted subpage should trigger SIGBUS as expected.
4264 if (unlikely(PageHasHWPoisoned(page)))
4268 * Archs like ppc64 need additional space to store information
4269 * related to pte entry. Use the preallocated table for that.
4271 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4272 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4273 if (!vmf->prealloc_pte)
4274 return VM_FAULT_OOM;
4277 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4278 if (unlikely(!pmd_none(*vmf->pmd)))
4281 for (i = 0; i < HPAGE_PMD_NR; i++)
4282 flush_icache_page(vma, page + i);
4284 entry = mk_huge_pmd(page, vma->vm_page_prot);
4286 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4288 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4289 page_add_file_rmap(page, vma, true);
4292 * deposit and withdraw with pmd lock held
4294 if (arch_needs_pgtable_deposit())
4295 deposit_prealloc_pte(vmf);
4297 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4299 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4301 /* fault is handled */
4303 count_vm_event(THP_FILE_MAPPED);
4305 spin_unlock(vmf->ptl);
4309 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4311 return VM_FAULT_FALLBACK;
4315 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4317 struct vm_area_struct *vma = vmf->vma;
4318 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4319 bool write = vmf->flags & FAULT_FLAG_WRITE;
4320 bool prefault = vmf->address != addr;
4323 flush_icache_page(vma, page);
4324 entry = mk_pte(page, vma->vm_page_prot);
4326 if (prefault && arch_wants_old_prefaulted_pte())
4327 entry = pte_mkold(entry);
4329 entry = pte_sw_mkyoung(entry);
4332 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4333 if (unlikely(uffd_wp))
4334 entry = pte_mkuffd_wp(entry);
4335 /* copy-on-write page */
4336 if (write && !(vma->vm_flags & VM_SHARED)) {
4337 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4338 page_add_new_anon_rmap(page, vma, addr);
4339 lru_cache_add_inactive_or_unevictable(page, vma);
4341 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4342 page_add_file_rmap(page, vma, false);
4344 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4347 static bool vmf_pte_changed(struct vm_fault *vmf)
4349 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4350 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4352 return !pte_none(ptep_get(vmf->pte));
4356 * finish_fault - finish page fault once we have prepared the page to fault
4358 * @vmf: structure describing the fault
4360 * This function handles all that is needed to finish a page fault once the
4361 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4362 * given page, adds reverse page mapping, handles memcg charges and LRU
4365 * The function expects the page to be locked and on success it consumes a
4366 * reference of a page being mapped (for the PTE which maps it).
4368 * Return: %0 on success, %VM_FAULT_ code in case of error.
4370 vm_fault_t finish_fault(struct vm_fault *vmf)
4372 struct vm_area_struct *vma = vmf->vma;
4376 /* Did we COW the page? */
4377 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4378 page = vmf->cow_page;
4383 * check even for read faults because we might have lost our CoWed
4386 if (!(vma->vm_flags & VM_SHARED)) {
4387 ret = check_stable_address_space(vma->vm_mm);
4392 if (pmd_none(*vmf->pmd)) {
4393 if (PageTransCompound(page)) {
4394 ret = do_set_pmd(vmf, page);
4395 if (ret != VM_FAULT_FALLBACK)
4399 if (vmf->prealloc_pte)
4400 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4401 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4402 return VM_FAULT_OOM;
4405 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4406 vmf->address, &vmf->ptl);
4408 return VM_FAULT_NOPAGE;
4410 /* Re-check under ptl */
4411 if (likely(!vmf_pte_changed(vmf))) {
4412 do_set_pte(vmf, page, vmf->address);
4414 /* no need to invalidate: a not-present page won't be cached */
4415 update_mmu_cache(vma, vmf->address, vmf->pte);
4419 update_mmu_tlb(vma, vmf->address, vmf->pte);
4420 ret = VM_FAULT_NOPAGE;
4423 pte_unmap_unlock(vmf->pte, vmf->ptl);
4427 static unsigned long fault_around_pages __read_mostly =
4428 65536 >> PAGE_SHIFT;
4430 #ifdef CONFIG_DEBUG_FS
4431 static int fault_around_bytes_get(void *data, u64 *val)
4433 *val = fault_around_pages << PAGE_SHIFT;
4438 * fault_around_bytes must be rounded down to the nearest page order as it's
4439 * what do_fault_around() expects to see.
4441 static int fault_around_bytes_set(void *data, u64 val)
4443 if (val / PAGE_SIZE > PTRS_PER_PTE)
4447 * The minimum value is 1 page, however this results in no fault-around
4448 * at all. See should_fault_around().
4450 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4454 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4455 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4457 static int __init fault_around_debugfs(void)
4459 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4460 &fault_around_bytes_fops);
4463 late_initcall(fault_around_debugfs);
4467 * do_fault_around() tries to map few pages around the fault address. The hope
4468 * is that the pages will be needed soon and this will lower the number of
4471 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4472 * not ready to be mapped: not up-to-date, locked, etc.
4474 * This function doesn't cross VMA or page table boundaries, in order to call
4475 * map_pages() and acquire a PTE lock only once.
4477 * fault_around_pages defines how many pages we'll try to map.
4478 * do_fault_around() expects it to be set to a power of two less than or equal
4481 * The virtual address of the area that we map is naturally aligned to
4482 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4483 * (and therefore to page order). This way it's easier to guarantee
4484 * that we don't cross page table boundaries.
4486 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4488 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4489 pgoff_t pte_off = pte_index(vmf->address);
4490 /* The page offset of vmf->address within the VMA. */
4491 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4492 pgoff_t from_pte, to_pte;
4495 /* The PTE offset of the start address, clamped to the VMA. */
4496 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4497 pte_off - min(pte_off, vma_off));
4499 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4500 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4501 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4503 if (pmd_none(*vmf->pmd)) {
4504 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4505 if (!vmf->prealloc_pte)
4506 return VM_FAULT_OOM;
4510 ret = vmf->vma->vm_ops->map_pages(vmf,
4511 vmf->pgoff + from_pte - pte_off,
4512 vmf->pgoff + to_pte - pte_off);
4518 /* Return true if we should do read fault-around, false otherwise */
4519 static inline bool should_fault_around(struct vm_fault *vmf)
4521 /* No ->map_pages? No way to fault around... */
4522 if (!vmf->vma->vm_ops->map_pages)
4525 if (uffd_disable_fault_around(vmf->vma))
4528 /* A single page implies no faulting 'around' at all. */
4529 return fault_around_pages > 1;
4532 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4537 * Let's call ->map_pages() first and use ->fault() as fallback
4538 * if page by the offset is not ready to be mapped (cold cache or
4541 if (should_fault_around(vmf)) {
4542 ret = do_fault_around(vmf);
4547 ret = __do_fault(vmf);
4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4551 ret |= finish_fault(vmf);
4552 unlock_page(vmf->page);
4553 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554 put_page(vmf->page);
4558 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4560 struct vm_area_struct *vma = vmf->vma;
4563 if (unlikely(anon_vma_prepare(vma)))
4564 return VM_FAULT_OOM;
4566 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4568 return VM_FAULT_OOM;
4570 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4572 put_page(vmf->cow_page);
4573 return VM_FAULT_OOM;
4575 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4577 ret = __do_fault(vmf);
4578 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4580 if (ret & VM_FAULT_DONE_COW)
4583 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4584 __SetPageUptodate(vmf->cow_page);
4586 ret |= finish_fault(vmf);
4587 unlock_page(vmf->page);
4588 put_page(vmf->page);
4589 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4593 put_page(vmf->cow_page);
4597 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4599 struct vm_area_struct *vma = vmf->vma;
4600 vm_fault_t ret, tmp;
4602 ret = __do_fault(vmf);
4603 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4607 * Check if the backing address space wants to know that the page is
4608 * about to become writable
4610 if (vma->vm_ops->page_mkwrite) {
4611 unlock_page(vmf->page);
4612 tmp = do_page_mkwrite(vmf);
4613 if (unlikely(!tmp ||
4614 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4615 put_page(vmf->page);
4620 ret |= finish_fault(vmf);
4621 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4623 unlock_page(vmf->page);
4624 put_page(vmf->page);
4628 ret |= fault_dirty_shared_page(vmf);
4633 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4634 * but allow concurrent faults).
4635 * The mmap_lock may have been released depending on flags and our
4636 * return value. See filemap_fault() and __folio_lock_or_retry().
4637 * If mmap_lock is released, vma may become invalid (for example
4638 * by other thread calling munmap()).
4640 static vm_fault_t do_fault(struct vm_fault *vmf)
4642 struct vm_area_struct *vma = vmf->vma;
4643 struct mm_struct *vm_mm = vma->vm_mm;
4647 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4649 if (!vma->vm_ops->fault) {
4650 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4651 vmf->address, &vmf->ptl);
4652 if (unlikely(!vmf->pte))
4653 ret = VM_FAULT_SIGBUS;
4656 * Make sure this is not a temporary clearing of pte
4657 * by holding ptl and checking again. A R/M/W update
4658 * of pte involves: take ptl, clearing the pte so that
4659 * we don't have concurrent modification by hardware
4660 * followed by an update.
4662 if (unlikely(pte_none(ptep_get(vmf->pte))))
4663 ret = VM_FAULT_SIGBUS;
4665 ret = VM_FAULT_NOPAGE;
4667 pte_unmap_unlock(vmf->pte, vmf->ptl);
4669 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4670 ret = do_read_fault(vmf);
4671 else if (!(vma->vm_flags & VM_SHARED))
4672 ret = do_cow_fault(vmf);
4674 ret = do_shared_fault(vmf);
4676 /* preallocated pagetable is unused: free it */
4677 if (vmf->prealloc_pte) {
4678 pte_free(vm_mm, vmf->prealloc_pte);
4679 vmf->prealloc_pte = NULL;
4684 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4685 unsigned long addr, int page_nid, int *flags)
4689 /* Record the current PID acceesing VMA */
4690 vma_set_access_pid_bit(vma);
4692 count_vm_numa_event(NUMA_HINT_FAULTS);
4693 if (page_nid == numa_node_id()) {
4694 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4695 *flags |= TNF_FAULT_LOCAL;
4698 return mpol_misplaced(page, vma, addr);
4701 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4703 struct vm_area_struct *vma = vmf->vma;
4704 struct page *page = NULL;
4705 int page_nid = NUMA_NO_NODE;
4706 bool writable = false;
4713 * The "pte" at this point cannot be used safely without
4714 * validation through pte_unmap_same(). It's of NUMA type but
4715 * the pfn may be screwed if the read is non atomic.
4717 spin_lock(vmf->ptl);
4718 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4719 pte_unmap_unlock(vmf->pte, vmf->ptl);
4723 /* Get the normal PTE */
4724 old_pte = ptep_get(vmf->pte);
4725 pte = pte_modify(old_pte, vma->vm_page_prot);
4728 * Detect now whether the PTE could be writable; this information
4729 * is only valid while holding the PT lock.
4731 writable = pte_write(pte);
4732 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4733 can_change_pte_writable(vma, vmf->address, pte))
4736 page = vm_normal_page(vma, vmf->address, pte);
4737 if (!page || is_zone_device_page(page))
4740 /* TODO: handle PTE-mapped THP */
4741 if (PageCompound(page))
4745 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4746 * much anyway since they can be in shared cache state. This misses
4747 * the case where a mapping is writable but the process never writes
4748 * to it but pte_write gets cleared during protection updates and
4749 * pte_dirty has unpredictable behaviour between PTE scan updates,
4750 * background writeback, dirty balancing and application behaviour.
4753 flags |= TNF_NO_GROUP;
4756 * Flag if the page is shared between multiple address spaces. This
4757 * is later used when determining whether to group tasks together
4759 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4760 flags |= TNF_SHARED;
4762 page_nid = page_to_nid(page);
4764 * For memory tiering mode, cpupid of slow memory page is used
4765 * to record page access time. So use default value.
4767 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4768 !node_is_toptier(page_nid))
4769 last_cpupid = (-1 & LAST_CPUPID_MASK);
4771 last_cpupid = page_cpupid_last(page);
4772 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4774 if (target_nid == NUMA_NO_NODE) {
4778 pte_unmap_unlock(vmf->pte, vmf->ptl);
4781 /* Migrate to the requested node */
4782 if (migrate_misplaced_page(page, vma, target_nid)) {
4783 page_nid = target_nid;
4784 flags |= TNF_MIGRATED;
4786 flags |= TNF_MIGRATE_FAIL;
4787 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788 vmf->address, &vmf->ptl);
4789 if (unlikely(!vmf->pte))
4791 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4792 pte_unmap_unlock(vmf->pte, vmf->ptl);
4799 if (page_nid != NUMA_NO_NODE)
4800 task_numa_fault(last_cpupid, page_nid, 1, flags);
4804 * Make it present again, depending on how arch implements
4805 * non-accessible ptes, some can allow access by kernel mode.
4807 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4808 pte = pte_modify(old_pte, vma->vm_page_prot);
4809 pte = pte_mkyoung(pte);
4811 pte = pte_mkwrite(pte);
4812 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4813 update_mmu_cache(vma, vmf->address, vmf->pte);
4814 pte_unmap_unlock(vmf->pte, vmf->ptl);
4818 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4820 if (vma_is_anonymous(vmf->vma))
4821 return do_huge_pmd_anonymous_page(vmf);
4822 if (vmf->vma->vm_ops->huge_fault)
4823 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4824 return VM_FAULT_FALLBACK;
4827 /* `inline' is required to avoid gcc 4.1.2 build error */
4828 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4830 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4833 if (vma_is_anonymous(vmf->vma)) {
4834 if (likely(!unshare) &&
4835 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4836 return handle_userfault(vmf, VM_UFFD_WP);
4837 return do_huge_pmd_wp_page(vmf);
4840 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4841 if (vmf->vma->vm_ops->huge_fault) {
4842 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4843 if (!(ret & VM_FAULT_FALLBACK))
4848 /* COW or write-notify handled on pte level: split pmd. */
4849 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4851 return VM_FAULT_FALLBACK;
4854 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4856 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4857 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4858 /* No support for anonymous transparent PUD pages yet */
4859 if (vma_is_anonymous(vmf->vma))
4860 return VM_FAULT_FALLBACK;
4861 if (vmf->vma->vm_ops->huge_fault)
4862 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4864 return VM_FAULT_FALLBACK;
4867 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4869 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4870 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4873 /* No support for anonymous transparent PUD pages yet */
4874 if (vma_is_anonymous(vmf->vma))
4876 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877 if (vmf->vma->vm_ops->huge_fault) {
4878 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4879 if (!(ret & VM_FAULT_FALLBACK))
4884 /* COW or write-notify not handled on PUD level: split pud.*/
4885 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4886 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4887 return VM_FAULT_FALLBACK;
4891 * These routines also need to handle stuff like marking pages dirty
4892 * and/or accessed for architectures that don't do it in hardware (most
4893 * RISC architectures). The early dirtying is also good on the i386.
4895 * There is also a hook called "update_mmu_cache()" that architectures
4896 * with external mmu caches can use to update those (ie the Sparc or
4897 * PowerPC hashed page tables that act as extended TLBs).
4899 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4900 * concurrent faults).
4902 * The mmap_lock may have been released depending on flags and our return value.
4903 * See filemap_fault() and __folio_lock_or_retry().
4905 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4909 if (unlikely(pmd_none(*vmf->pmd))) {
4911 * Leave __pte_alloc() until later: because vm_ops->fault may
4912 * want to allocate huge page, and if we expose page table
4913 * for an instant, it will be difficult to retract from
4914 * concurrent faults and from rmap lookups.
4917 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4920 * A regular pmd is established and it can't morph into a huge
4921 * pmd by anon khugepaged, since that takes mmap_lock in write
4922 * mode; but shmem or file collapse to THP could still morph
4923 * it into a huge pmd: just retry later if so.
4925 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4926 vmf->address, &vmf->ptl);
4927 if (unlikely(!vmf->pte))
4929 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4930 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4932 if (pte_none(vmf->orig_pte)) {
4933 pte_unmap(vmf->pte);
4939 return do_pte_missing(vmf);
4941 if (!pte_present(vmf->orig_pte))
4942 return do_swap_page(vmf);
4944 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4945 return do_numa_page(vmf);
4947 spin_lock(vmf->ptl);
4948 entry = vmf->orig_pte;
4949 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4950 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4953 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4954 if (!pte_write(entry))
4955 return do_wp_page(vmf);
4956 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4957 entry = pte_mkdirty(entry);
4959 entry = pte_mkyoung(entry);
4960 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4961 vmf->flags & FAULT_FLAG_WRITE)) {
4962 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4964 /* Skip spurious TLB flush for retried page fault */
4965 if (vmf->flags & FAULT_FLAG_TRIED)
4968 * This is needed only for protection faults but the arch code
4969 * is not yet telling us if this is a protection fault or not.
4970 * This still avoids useless tlb flushes for .text page faults
4973 if (vmf->flags & FAULT_FLAG_WRITE)
4974 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4978 pte_unmap_unlock(vmf->pte, vmf->ptl);
4983 * By the time we get here, we already hold the mm semaphore
4985 * The mmap_lock may have been released depending on flags and our
4986 * return value. See filemap_fault() and __folio_lock_or_retry().
4988 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4989 unsigned long address, unsigned int flags)
4991 struct vm_fault vmf = {
4993 .address = address & PAGE_MASK,
4994 .real_address = address,
4996 .pgoff = linear_page_index(vma, address),
4997 .gfp_mask = __get_fault_gfp_mask(vma),
4999 struct mm_struct *mm = vma->vm_mm;
5000 unsigned long vm_flags = vma->vm_flags;
5005 pgd = pgd_offset(mm, address);
5006 p4d = p4d_alloc(mm, pgd, address);
5008 return VM_FAULT_OOM;
5010 vmf.pud = pud_alloc(mm, p4d, address);
5012 return VM_FAULT_OOM;
5014 if (pud_none(*vmf.pud) &&
5015 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5016 ret = create_huge_pud(&vmf);
5017 if (!(ret & VM_FAULT_FALLBACK))
5020 pud_t orig_pud = *vmf.pud;
5023 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5026 * TODO once we support anonymous PUDs: NUMA case and
5027 * FAULT_FLAG_UNSHARE handling.
5029 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5030 ret = wp_huge_pud(&vmf, orig_pud);
5031 if (!(ret & VM_FAULT_FALLBACK))
5034 huge_pud_set_accessed(&vmf, orig_pud);
5040 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5042 return VM_FAULT_OOM;
5044 /* Huge pud page fault raced with pmd_alloc? */
5045 if (pud_trans_unstable(vmf.pud))
5048 if (pmd_none(*vmf.pmd) &&
5049 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5050 ret = create_huge_pmd(&vmf);
5051 if (!(ret & VM_FAULT_FALLBACK))
5054 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5056 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5057 VM_BUG_ON(thp_migration_supported() &&
5058 !is_pmd_migration_entry(vmf.orig_pmd));
5059 if (is_pmd_migration_entry(vmf.orig_pmd))
5060 pmd_migration_entry_wait(mm, vmf.pmd);
5063 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5064 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5065 return do_huge_pmd_numa_page(&vmf);
5067 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5068 !pmd_write(vmf.orig_pmd)) {
5069 ret = wp_huge_pmd(&vmf);
5070 if (!(ret & VM_FAULT_FALLBACK))
5073 huge_pmd_set_accessed(&vmf);
5079 return handle_pte_fault(&vmf);
5083 * mm_account_fault - Do page fault accounting
5085 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5086 * of perf event counters, but we'll still do the per-task accounting to
5087 * the task who triggered this page fault.
5088 * @address: the faulted address.
5089 * @flags: the fault flags.
5090 * @ret: the fault retcode.
5092 * This will take care of most of the page fault accounting. Meanwhile, it
5093 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5094 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5095 * still be in per-arch page fault handlers at the entry of page fault.
5097 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5098 unsigned long address, unsigned int flags,
5103 /* Incomplete faults will be accounted upon completion. */
5104 if (ret & VM_FAULT_RETRY)
5108 * To preserve the behavior of older kernels, PGFAULT counters record
5109 * both successful and failed faults, as opposed to perf counters,
5110 * which ignore failed cases.
5112 count_vm_event(PGFAULT);
5113 count_memcg_event_mm(mm, PGFAULT);
5116 * Do not account for unsuccessful faults (e.g. when the address wasn't
5117 * valid). That includes arch_vma_access_permitted() failing before
5118 * reaching here. So this is not a "this many hardware page faults"
5119 * counter. We should use the hw profiling for that.
5121 if (ret & VM_FAULT_ERROR)
5125 * We define the fault as a major fault when the final successful fault
5126 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5127 * handle it immediately previously).
5129 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5137 * If the fault is done for GUP, regs will be NULL. We only do the
5138 * accounting for the per thread fault counters who triggered the
5139 * fault, and we skip the perf event updates.
5145 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5147 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5150 #ifdef CONFIG_LRU_GEN
5151 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5153 /* the LRU algorithm only applies to accesses with recency */
5154 current->in_lru_fault = vma_has_recency(vma);
5157 static void lru_gen_exit_fault(void)
5159 current->in_lru_fault = false;
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5166 static void lru_gen_exit_fault(void)
5169 #endif /* CONFIG_LRU_GEN */
5171 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5172 unsigned int *flags)
5174 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5175 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5176 return VM_FAULT_SIGSEGV;
5178 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5179 * just treat it like an ordinary read-fault otherwise.
5181 if (!is_cow_mapping(vma->vm_flags))
5182 *flags &= ~FAULT_FLAG_UNSHARE;
5183 } else if (*flags & FAULT_FLAG_WRITE) {
5184 /* Write faults on read-only mappings are impossible ... */
5185 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5186 return VM_FAULT_SIGSEGV;
5187 /* ... and FOLL_FORCE only applies to COW mappings. */
5188 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5189 !is_cow_mapping(vma->vm_flags)))
5190 return VM_FAULT_SIGSEGV;
5196 * By the time we get here, we already hold the mm semaphore
5198 * The mmap_lock may have been released depending on flags and our
5199 * return value. See filemap_fault() and __folio_lock_or_retry().
5201 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5202 unsigned int flags, struct pt_regs *regs)
5204 /* If the fault handler drops the mmap_lock, vma may be freed */
5205 struct mm_struct *mm = vma->vm_mm;
5208 __set_current_state(TASK_RUNNING);
5210 ret = sanitize_fault_flags(vma, &flags);
5214 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5215 flags & FAULT_FLAG_INSTRUCTION,
5216 flags & FAULT_FLAG_REMOTE)) {
5217 ret = VM_FAULT_SIGSEGV;
5222 * Enable the memcg OOM handling for faults triggered in user
5223 * space. Kernel faults are handled more gracefully.
5225 if (flags & FAULT_FLAG_USER)
5226 mem_cgroup_enter_user_fault();
5228 lru_gen_enter_fault(vma);
5230 if (unlikely(is_vm_hugetlb_page(vma)))
5231 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5233 ret = __handle_mm_fault(vma, address, flags);
5235 lru_gen_exit_fault();
5237 if (flags & FAULT_FLAG_USER) {
5238 mem_cgroup_exit_user_fault();
5240 * The task may have entered a memcg OOM situation but
5241 * if the allocation error was handled gracefully (no
5242 * VM_FAULT_OOM), there is no need to kill anything.
5243 * Just clean up the OOM state peacefully.
5245 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5246 mem_cgroup_oom_synchronize(false);
5249 mm_account_fault(mm, regs, address, flags, ret);
5253 EXPORT_SYMBOL_GPL(handle_mm_fault);
5255 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5256 #include <linux/extable.h>
5258 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5260 /* Even if this succeeds, make it clear we *might* have slept */
5261 if (likely(mmap_read_trylock(mm))) {
5266 if (regs && !user_mode(regs)) {
5267 unsigned long ip = instruction_pointer(regs);
5268 if (!search_exception_tables(ip))
5272 return !mmap_read_lock_killable(mm);
5275 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5278 * We don't have this operation yet.
5280 * It should be easy enough to do: it's basically a
5281 * atomic_long_try_cmpxchg_acquire()
5282 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5283 * it also needs the proper lockdep magic etc.
5288 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5290 mmap_read_unlock(mm);
5291 if (regs && !user_mode(regs)) {
5292 unsigned long ip = instruction_pointer(regs);
5293 if (!search_exception_tables(ip))
5296 return !mmap_write_lock_killable(mm);
5300 * Helper for page fault handling.
5302 * This is kind of equivalend to "mmap_read_lock()" followed
5303 * by "find_extend_vma()", except it's a lot more careful about
5304 * the locking (and will drop the lock on failure).
5306 * For example, if we have a kernel bug that causes a page
5307 * fault, we don't want to just use mmap_read_lock() to get
5308 * the mm lock, because that would deadlock if the bug were
5309 * to happen while we're holding the mm lock for writing.
5311 * So this checks the exception tables on kernel faults in
5312 * order to only do this all for instructions that are actually
5313 * expected to fault.
5315 * We can also actually take the mm lock for writing if we
5316 * need to extend the vma, which helps the VM layer a lot.
5318 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5319 unsigned long addr, struct pt_regs *regs)
5321 struct vm_area_struct *vma;
5323 if (!get_mmap_lock_carefully(mm, regs))
5326 vma = find_vma(mm, addr);
5327 if (likely(vma && (vma->vm_start <= addr)))
5331 * Well, dang. We might still be successful, but only
5332 * if we can extend a vma to do so.
5334 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5335 mmap_read_unlock(mm);
5340 * We can try to upgrade the mmap lock atomically,
5341 * in which case we can continue to use the vma
5342 * we already looked up.
5344 * Otherwise we'll have to drop the mmap lock and
5345 * re-take it, and also look up the vma again,
5348 if (!mmap_upgrade_trylock(mm)) {
5349 if (!upgrade_mmap_lock_carefully(mm, regs))
5352 vma = find_vma(mm, addr);
5355 if (vma->vm_start <= addr)
5357 if (!(vma->vm_flags & VM_GROWSDOWN))
5361 if (expand_stack_locked(vma, addr))
5365 mmap_write_downgrade(mm);
5369 mmap_write_unlock(mm);
5374 #ifdef CONFIG_PER_VMA_LOCK
5376 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5377 * stable and not isolated. If the VMA is not found or is being modified the
5378 * function returns NULL.
5380 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5381 unsigned long address)
5383 MA_STATE(mas, &mm->mm_mt, address, address);
5384 struct vm_area_struct *vma;
5388 vma = mas_walk(&mas);
5392 /* Only anonymous and tcp vmas are supported for now */
5393 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5396 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5397 if (!vma->anon_vma && !vma_is_tcp(vma))
5400 if (!vma_start_read(vma))
5404 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5405 * it for now and fall back to page fault handling under mmap_lock.
5407 if (userfaultfd_armed(vma)) {
5412 /* Check since vm_start/vm_end might change before we lock the VMA */
5413 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5418 /* Check if the VMA got isolated after we found it */
5419 if (vma->detached) {
5421 count_vm_vma_lock_event(VMA_LOCK_MISS);
5422 /* The area was replaced with another one */
5430 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5433 #endif /* CONFIG_PER_VMA_LOCK */
5435 #ifndef __PAGETABLE_P4D_FOLDED
5437 * Allocate p4d page table.
5438 * We've already handled the fast-path in-line.
5440 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5442 p4d_t *new = p4d_alloc_one(mm, address);
5446 spin_lock(&mm->page_table_lock);
5447 if (pgd_present(*pgd)) { /* Another has populated it */
5450 smp_wmb(); /* See comment in pmd_install() */
5451 pgd_populate(mm, pgd, new);
5453 spin_unlock(&mm->page_table_lock);
5456 #endif /* __PAGETABLE_P4D_FOLDED */
5458 #ifndef __PAGETABLE_PUD_FOLDED
5460 * Allocate page upper directory.
5461 * We've already handled the fast-path in-line.
5463 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5465 pud_t *new = pud_alloc_one(mm, address);
5469 spin_lock(&mm->page_table_lock);
5470 if (!p4d_present(*p4d)) {
5472 smp_wmb(); /* See comment in pmd_install() */
5473 p4d_populate(mm, p4d, new);
5474 } else /* Another has populated it */
5476 spin_unlock(&mm->page_table_lock);
5479 #endif /* __PAGETABLE_PUD_FOLDED */
5481 #ifndef __PAGETABLE_PMD_FOLDED
5483 * Allocate page middle directory.
5484 * We've already handled the fast-path in-line.
5486 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5489 pmd_t *new = pmd_alloc_one(mm, address);
5493 ptl = pud_lock(mm, pud);
5494 if (!pud_present(*pud)) {
5496 smp_wmb(); /* See comment in pmd_install() */
5497 pud_populate(mm, pud, new);
5498 } else { /* Another has populated it */
5504 #endif /* __PAGETABLE_PMD_FOLDED */
5507 * follow_pte - look up PTE at a user virtual address
5508 * @mm: the mm_struct of the target address space
5509 * @address: user virtual address
5510 * @ptepp: location to store found PTE
5511 * @ptlp: location to store the lock for the PTE
5513 * On a successful return, the pointer to the PTE is stored in @ptepp;
5514 * the corresponding lock is taken and its location is stored in @ptlp.
5515 * The contents of the PTE are only stable until @ptlp is released;
5516 * any further use, if any, must be protected against invalidation
5517 * with MMU notifiers.
5519 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5520 * should be taken for read.
5522 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5523 * it is not a good general-purpose API.
5525 * Return: zero on success, -ve otherwise.
5527 int follow_pte(struct mm_struct *mm, unsigned long address,
5528 pte_t **ptepp, spinlock_t **ptlp)
5536 pgd = pgd_offset(mm, address);
5537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5540 p4d = p4d_offset(pgd, address);
5541 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5544 pud = pud_offset(p4d, address);
5545 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5548 pmd = pmd_offset(pud, address);
5549 VM_BUG_ON(pmd_trans_huge(*pmd));
5551 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5554 if (!pte_present(ptep_get(ptep)))
5559 pte_unmap_unlock(ptep, *ptlp);
5563 EXPORT_SYMBOL_GPL(follow_pte);
5566 * follow_pfn - look up PFN at a user virtual address
5567 * @vma: memory mapping
5568 * @address: user virtual address
5569 * @pfn: location to store found PFN
5571 * Only IO mappings and raw PFN mappings are allowed.
5573 * This function does not allow the caller to read the permissions
5574 * of the PTE. Do not use it.
5576 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5578 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5585 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5588 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5591 *pfn = pte_pfn(ptep_get(ptep));
5592 pte_unmap_unlock(ptep, ptl);
5595 EXPORT_SYMBOL(follow_pfn);
5597 #ifdef CONFIG_HAVE_IOREMAP_PROT
5598 int follow_phys(struct vm_area_struct *vma,
5599 unsigned long address, unsigned int flags,
5600 unsigned long *prot, resource_size_t *phys)
5606 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5609 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5611 pte = ptep_get(ptep);
5613 if ((flags & FOLL_WRITE) && !pte_write(pte))
5616 *prot = pgprot_val(pte_pgprot(pte));
5617 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5621 pte_unmap_unlock(ptep, ptl);
5627 * generic_access_phys - generic implementation for iomem mmap access
5628 * @vma: the vma to access
5629 * @addr: userspace address, not relative offset within @vma
5630 * @buf: buffer to read/write
5631 * @len: length of transfer
5632 * @write: set to FOLL_WRITE when writing, otherwise reading
5634 * This is a generic implementation for &vm_operations_struct.access for an
5635 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5638 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5639 void *buf, int len, int write)
5641 resource_size_t phys_addr;
5642 unsigned long prot = 0;
5643 void __iomem *maddr;
5646 int offset = offset_in_page(addr);
5649 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5653 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5655 pte = ptep_get(ptep);
5656 pte_unmap_unlock(ptep, ptl);
5658 prot = pgprot_val(pte_pgprot(pte));
5659 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5661 if ((write & FOLL_WRITE) && !pte_write(pte))
5664 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5668 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5671 if (!pte_same(pte, ptep_get(ptep))) {
5672 pte_unmap_unlock(ptep, ptl);
5679 memcpy_toio(maddr + offset, buf, len);
5681 memcpy_fromio(buf, maddr + offset, len);
5683 pte_unmap_unlock(ptep, ptl);
5689 EXPORT_SYMBOL_GPL(generic_access_phys);
5693 * Access another process' address space as given in mm.
5695 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5696 int len, unsigned int gup_flags)
5698 void *old_buf = buf;
5699 int write = gup_flags & FOLL_WRITE;
5701 if (mmap_read_lock_killable(mm))
5704 /* Avoid triggering the temporary warning in __get_user_pages */
5705 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5708 /* ignore errors, just check how much was successfully transferred */
5712 struct vm_area_struct *vma = NULL;
5713 struct page *page = get_user_page_vma_remote(mm, addr,
5716 if (IS_ERR_OR_NULL(page)) {
5717 /* We might need to expand the stack to access it */
5718 vma = vma_lookup(mm, addr);
5720 vma = expand_stack(mm, addr);
5722 /* mmap_lock was dropped on failure */
5724 return buf - old_buf;
5726 /* Try again if stack expansion worked */
5732 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5733 * we can access using slightly different code.
5736 #ifdef CONFIG_HAVE_IOREMAP_PROT
5737 if (vma->vm_ops && vma->vm_ops->access)
5738 bytes = vma->vm_ops->access(vma, addr, buf,
5745 offset = addr & (PAGE_SIZE-1);
5746 if (bytes > PAGE_SIZE-offset)
5747 bytes = PAGE_SIZE-offset;
5751 copy_to_user_page(vma, page, addr,
5752 maddr + offset, buf, bytes);
5753 set_page_dirty_lock(page);
5755 copy_from_user_page(vma, page, addr,
5756 buf, maddr + offset, bytes);
5765 mmap_read_unlock(mm);
5767 return buf - old_buf;
5771 * access_remote_vm - access another process' address space
5772 * @mm: the mm_struct of the target address space
5773 * @addr: start address to access
5774 * @buf: source or destination buffer
5775 * @len: number of bytes to transfer
5776 * @gup_flags: flags modifying lookup behaviour
5778 * The caller must hold a reference on @mm.
5780 * Return: number of bytes copied from source to destination.
5782 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5783 void *buf, int len, unsigned int gup_flags)
5785 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5789 * Access another process' address space.
5790 * Source/target buffer must be kernel space,
5791 * Do not walk the page table directly, use get_user_pages
5793 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5794 void *buf, int len, unsigned int gup_flags)
5796 struct mm_struct *mm;
5799 mm = get_task_mm(tsk);
5803 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5809 EXPORT_SYMBOL_GPL(access_process_vm);
5812 * Print the name of a VMA.
5814 void print_vma_addr(char *prefix, unsigned long ip)
5816 struct mm_struct *mm = current->mm;
5817 struct vm_area_struct *vma;
5820 * we might be running from an atomic context so we cannot sleep
5822 if (!mmap_read_trylock(mm))
5825 vma = find_vma(mm, ip);
5826 if (vma && vma->vm_file) {
5827 struct file *f = vma->vm_file;
5828 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5832 p = file_path(f, buf, PAGE_SIZE);
5835 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5837 vma->vm_end - vma->vm_start);
5838 free_page((unsigned long)buf);
5841 mmap_read_unlock(mm);
5844 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5845 void __might_fault(const char *file, int line)
5847 if (pagefault_disabled())
5849 __might_sleep(file, line);
5850 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5852 might_lock_read(¤t->mm->mmap_lock);
5855 EXPORT_SYMBOL(__might_fault);
5858 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5860 * Process all subpages of the specified huge page with the specified
5861 * operation. The target subpage will be processed last to keep its
5864 static inline int process_huge_page(
5865 unsigned long addr_hint, unsigned int pages_per_huge_page,
5866 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5869 int i, n, base, l, ret;
5870 unsigned long addr = addr_hint &
5871 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5873 /* Process target subpage last to keep its cache lines hot */
5875 n = (addr_hint - addr) / PAGE_SIZE;
5876 if (2 * n <= pages_per_huge_page) {
5877 /* If target subpage in first half of huge page */
5880 /* Process subpages at the end of huge page */
5881 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5883 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5888 /* If target subpage in second half of huge page */
5889 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5890 l = pages_per_huge_page - n;
5891 /* Process subpages at the begin of huge page */
5892 for (i = 0; i < base; i++) {
5894 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5900 * Process remaining subpages in left-right-left-right pattern
5901 * towards the target subpage
5903 for (i = 0; i < l; i++) {
5904 int left_idx = base + i;
5905 int right_idx = base + 2 * l - 1 - i;
5908 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5912 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5919 static void clear_gigantic_page(struct page *page,
5921 unsigned int pages_per_huge_page)
5927 for (i = 0; i < pages_per_huge_page; i++) {
5928 p = nth_page(page, i);
5930 clear_user_highpage(p, addr + i * PAGE_SIZE);
5934 static int clear_subpage(unsigned long addr, int idx, void *arg)
5936 struct page *page = arg;
5938 clear_user_highpage(page + idx, addr);
5942 void clear_huge_page(struct page *page,
5943 unsigned long addr_hint, unsigned int pages_per_huge_page)
5945 unsigned long addr = addr_hint &
5946 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5948 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5949 clear_gigantic_page(page, addr, pages_per_huge_page);
5953 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5956 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5958 struct vm_area_struct *vma,
5959 unsigned int pages_per_huge_page)
5962 struct page *dst_page;
5963 struct page *src_page;
5965 for (i = 0; i < pages_per_huge_page; i++) {
5966 dst_page = folio_page(dst, i);
5967 src_page = folio_page(src, i);
5970 if (copy_mc_user_highpage(dst_page, src_page,
5971 addr + i*PAGE_SIZE, vma)) {
5972 memory_failure_queue(page_to_pfn(src_page), 0);
5979 struct copy_subpage_arg {
5982 struct vm_area_struct *vma;
5985 static int copy_subpage(unsigned long addr, int idx, void *arg)
5987 struct copy_subpage_arg *copy_arg = arg;
5989 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5990 addr, copy_arg->vma)) {
5991 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5997 int copy_user_large_folio(struct folio *dst, struct folio *src,
5998 unsigned long addr_hint, struct vm_area_struct *vma)
6000 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6001 unsigned long addr = addr_hint &
6002 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6003 struct copy_subpage_arg arg = {
6009 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6010 return copy_user_gigantic_page(dst, src, addr, vma,
6011 pages_per_huge_page);
6013 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6016 long copy_folio_from_user(struct folio *dst_folio,
6017 const void __user *usr_src,
6018 bool allow_pagefault)
6021 unsigned long i, rc = 0;
6022 unsigned int nr_pages = folio_nr_pages(dst_folio);
6023 unsigned long ret_val = nr_pages * PAGE_SIZE;
6024 struct page *subpage;
6026 for (i = 0; i < nr_pages; i++) {
6027 subpage = folio_page(dst_folio, i);
6028 kaddr = kmap_local_page(subpage);
6029 if (!allow_pagefault)
6030 pagefault_disable();
6031 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6032 if (!allow_pagefault)
6034 kunmap_local(kaddr);
6036 ret_val -= (PAGE_SIZE - rc);
6040 flush_dcache_page(subpage);
6046 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6048 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6050 static struct kmem_cache *page_ptl_cachep;
6052 void __init ptlock_cache_init(void)
6054 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6058 bool ptlock_alloc(struct page *page)
6062 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6069 void ptlock_free(struct page *page)
6071 kmem_cache_free(page_ptl_cachep, page->ptl);