Merge tag 'nfsd-6.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167         trace_rss_stat(mm, member, count);
168 }
169
170 #if defined(SPLIT_RSS_COUNTING)
171
172 void sync_mm_rss(struct mm_struct *mm)
173 {
174         int i;
175
176         for (i = 0; i < NR_MM_COUNTERS; i++) {
177                 if (current->rss_stat.count[i]) {
178                         add_mm_counter(mm, i, current->rss_stat.count[i]);
179                         current->rss_stat.count[i] = 0;
180                 }
181         }
182         current->rss_stat.events = 0;
183 }
184
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187         struct task_struct *task = current;
188
189         if (likely(task->mm == mm))
190                 task->rss_stat.count[member] += val;
191         else
192                 add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH  (64)
199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201         if (unlikely(task != current))
202                 return;
203         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204                 sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210
211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214
215 #endif /* SPLIT_RSS_COUNTING */
216
217 /*
218  * Note: this doesn't free the actual pages themselves. That
219  * has been handled earlier when unmapping all the memory regions.
220  */
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222                            unsigned long addr)
223 {
224         pgtable_t token = pmd_pgtable(*pmd);
225         pmd_clear(pmd);
226         pte_free_tlb(tlb, token, addr);
227         mm_dec_nr_ptes(tlb->mm);
228 }
229
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231                                 unsigned long addr, unsigned long end,
232                                 unsigned long floor, unsigned long ceiling)
233 {
234         pmd_t *pmd;
235         unsigned long next;
236         unsigned long start;
237
238         start = addr;
239         pmd = pmd_offset(pud, addr);
240         do {
241                 next = pmd_addr_end(addr, end);
242                 if (pmd_none_or_clear_bad(pmd))
243                         continue;
244                 free_pte_range(tlb, pmd, addr);
245         } while (pmd++, addr = next, addr != end);
246
247         start &= PUD_MASK;
248         if (start < floor)
249                 return;
250         if (ceiling) {
251                 ceiling &= PUD_MASK;
252                 if (!ceiling)
253                         return;
254         }
255         if (end - 1 > ceiling - 1)
256                 return;
257
258         pmd = pmd_offset(pud, start);
259         pud_clear(pud);
260         pmd_free_tlb(tlb, pmd, start);
261         mm_dec_nr_pmds(tlb->mm);
262 }
263
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265                                 unsigned long addr, unsigned long end,
266                                 unsigned long floor, unsigned long ceiling)
267 {
268         pud_t *pud;
269         unsigned long next;
270         unsigned long start;
271
272         start = addr;
273         pud = pud_offset(p4d, addr);
274         do {
275                 next = pud_addr_end(addr, end);
276                 if (pud_none_or_clear_bad(pud))
277                         continue;
278                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279         } while (pud++, addr = next, addr != end);
280
281         start &= P4D_MASK;
282         if (start < floor)
283                 return;
284         if (ceiling) {
285                 ceiling &= P4D_MASK;
286                 if (!ceiling)
287                         return;
288         }
289         if (end - 1 > ceiling - 1)
290                 return;
291
292         pud = pud_offset(p4d, start);
293         p4d_clear(p4d);
294         pud_free_tlb(tlb, pud, start);
295         mm_dec_nr_puds(tlb->mm);
296 }
297
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299                                 unsigned long addr, unsigned long end,
300                                 unsigned long floor, unsigned long ceiling)
301 {
302         p4d_t *p4d;
303         unsigned long next;
304         unsigned long start;
305
306         start = addr;
307         p4d = p4d_offset(pgd, addr);
308         do {
309                 next = p4d_addr_end(addr, end);
310                 if (p4d_none_or_clear_bad(p4d))
311                         continue;
312                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313         } while (p4d++, addr = next, addr != end);
314
315         start &= PGDIR_MASK;
316         if (start < floor)
317                 return;
318         if (ceiling) {
319                 ceiling &= PGDIR_MASK;
320                 if (!ceiling)
321                         return;
322         }
323         if (end - 1 > ceiling - 1)
324                 return;
325
326         p4d = p4d_offset(pgd, start);
327         pgd_clear(pgd);
328         p4d_free_tlb(tlb, p4d, start);
329 }
330
331 /*
332  * This function frees user-level page tables of a process.
333  */
334 void free_pgd_range(struct mmu_gather *tlb,
335                         unsigned long addr, unsigned long end,
336                         unsigned long floor, unsigned long ceiling)
337 {
338         pgd_t *pgd;
339         unsigned long next;
340
341         /*
342          * The next few lines have given us lots of grief...
343          *
344          * Why are we testing PMD* at this top level?  Because often
345          * there will be no work to do at all, and we'd prefer not to
346          * go all the way down to the bottom just to discover that.
347          *
348          * Why all these "- 1"s?  Because 0 represents both the bottom
349          * of the address space and the top of it (using -1 for the
350          * top wouldn't help much: the masks would do the wrong thing).
351          * The rule is that addr 0 and floor 0 refer to the bottom of
352          * the address space, but end 0 and ceiling 0 refer to the top
353          * Comparisons need to use "end - 1" and "ceiling - 1" (though
354          * that end 0 case should be mythical).
355          *
356          * Wherever addr is brought up or ceiling brought down, we must
357          * be careful to reject "the opposite 0" before it confuses the
358          * subsequent tests.  But what about where end is brought down
359          * by PMD_SIZE below? no, end can't go down to 0 there.
360          *
361          * Whereas we round start (addr) and ceiling down, by different
362          * masks at different levels, in order to test whether a table
363          * now has no other vmas using it, so can be freed, we don't
364          * bother to round floor or end up - the tests don't need that.
365          */
366
367         addr &= PMD_MASK;
368         if (addr < floor) {
369                 addr += PMD_SIZE;
370                 if (!addr)
371                         return;
372         }
373         if (ceiling) {
374                 ceiling &= PMD_MASK;
375                 if (!ceiling)
376                         return;
377         }
378         if (end - 1 > ceiling - 1)
379                 end -= PMD_SIZE;
380         if (addr > end - 1)
381                 return;
382         /*
383          * We add page table cache pages with PAGE_SIZE,
384          * (see pte_free_tlb()), flush the tlb if we need
385          */
386         tlb_change_page_size(tlb, PAGE_SIZE);
387         pgd = pgd_offset(tlb->mm, addr);
388         do {
389                 next = pgd_addr_end(addr, end);
390                 if (pgd_none_or_clear_bad(pgd))
391                         continue;
392                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393         } while (pgd++, addr = next, addr != end);
394 }
395
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397                    struct vm_area_struct *vma, unsigned long floor,
398                    unsigned long ceiling)
399 {
400         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401
402         do {
403                 unsigned long addr = vma->vm_start;
404                 struct vm_area_struct *next;
405
406                 /*
407                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408                  * be 0.  This will underflow and is okay.
409                  */
410                 next = mas_find(&mas, ceiling - 1);
411
412                 /*
413                  * Hide vma from rmap and truncate_pagecache before freeing
414                  * pgtables
415                  */
416                 unlink_anon_vmas(vma);
417                 unlink_file_vma(vma);
418
419                 if (is_vm_hugetlb_page(vma)) {
420                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421                                 floor, next ? next->vm_start : ceiling);
422                 } else {
423                         /*
424                          * Optimization: gather nearby vmas into one call down
425                          */
426                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427                                && !is_vm_hugetlb_page(next)) {
428                                 vma = next;
429                                 next = mas_find(&mas, ceiling - 1);
430                                 unlink_anon_vmas(vma);
431                                 unlink_file_vma(vma);
432                         }
433                         free_pgd_range(tlb, addr, vma->vm_end,
434                                 floor, next ? next->vm_start : ceiling);
435                 }
436                 vma = next;
437         } while (vma);
438 }
439
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442         spinlock_t *ptl = pmd_lock(mm, pmd);
443
444         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
445                 mm_inc_nr_ptes(mm);
446                 /*
447                  * Ensure all pte setup (eg. pte page lock and page clearing) are
448                  * visible before the pte is made visible to other CPUs by being
449                  * put into page tables.
450                  *
451                  * The other side of the story is the pointer chasing in the page
452                  * table walking code (when walking the page table without locking;
453                  * ie. most of the time). Fortunately, these data accesses consist
454                  * of a chain of data-dependent loads, meaning most CPUs (alpha
455                  * being the notable exception) will already guarantee loads are
456                  * seen in-order. See the alpha page table accessors for the
457                  * smp_rmb() barriers in page table walking code.
458                  */
459                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460                 pmd_populate(mm, pmd, *pte);
461                 *pte = NULL;
462         }
463         spin_unlock(ptl);
464 }
465
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468         pgtable_t new = pte_alloc_one(mm);
469         if (!new)
470                 return -ENOMEM;
471
472         pmd_install(mm, pmd, &new);
473         if (new)
474                 pte_free(mm, new);
475         return 0;
476 }
477
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480         pte_t *new = pte_alloc_one_kernel(&init_mm);
481         if (!new)
482                 return -ENOMEM;
483
484         spin_lock(&init_mm.page_table_lock);
485         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
486                 smp_wmb(); /* See comment in pmd_install() */
487                 pmd_populate_kernel(&init_mm, pmd, new);
488                 new = NULL;
489         }
490         spin_unlock(&init_mm.page_table_lock);
491         if (new)
492                 pte_free_kernel(&init_mm, new);
493         return 0;
494 }
495
496 static inline void init_rss_vec(int *rss)
497 {
498         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503         int i;
504
505         if (current->mm == mm)
506                 sync_mm_rss(mm);
507         for (i = 0; i < NR_MM_COUNTERS; i++)
508                 if (rss[i])
509                         add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520                           pte_t pte, struct page *page)
521 {
522         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523         p4d_t *p4d = p4d_offset(pgd, addr);
524         pud_t *pud = pud_offset(p4d, addr);
525         pmd_t *pmd = pmd_offset(pud, addr);
526         struct address_space *mapping;
527         pgoff_t index;
528         static unsigned long resume;
529         static unsigned long nr_shown;
530         static unsigned long nr_unshown;
531
532         /*
533          * Allow a burst of 60 reports, then keep quiet for that minute;
534          * or allow a steady drip of one report per second.
535          */
536         if (nr_shown == 60) {
537                 if (time_before(jiffies, resume)) {
538                         nr_unshown++;
539                         return;
540                 }
541                 if (nr_unshown) {
542                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543                                  nr_unshown);
544                         nr_unshown = 0;
545                 }
546                 nr_shown = 0;
547         }
548         if (nr_shown++ == 0)
549                 resume = jiffies + 60 * HZ;
550
551         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552         index = linear_page_index(vma, addr);
553
554         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555                  current->comm,
556                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
557         if (page)
558                 dump_page(page, "bad pte");
559         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562                  vma->vm_file,
563                  vma->vm_ops ? vma->vm_ops->fault : NULL,
564                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565                  mapping ? mapping->a_ops->read_folio : NULL);
566         dump_stack();
567         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613                             pte_t pte)
614 {
615         unsigned long pfn = pte_pfn(pte);
616
617         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618                 if (likely(!pte_special(pte)))
619                         goto check_pfn;
620                 if (vma->vm_ops && vma->vm_ops->find_special_page)
621                         return vma->vm_ops->find_special_page(vma, addr);
622                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623                         return NULL;
624                 if (is_zero_pfn(pfn))
625                         return NULL;
626                 if (pte_devmap(pte))
627                 /*
628                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629                  * and will have refcounts incremented on their struct pages
630                  * when they are inserted into PTEs, thus they are safe to
631                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632                  * do not have refcounts. Example of legacy ZONE_DEVICE is
633                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634                  */
635                         return NULL;
636
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642
643         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644                 if (vma->vm_flags & VM_MIXEDMAP) {
645                         if (!pfn_valid(pfn))
646                                 return NULL;
647                         goto out;
648                 } else {
649                         unsigned long off;
650                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
651                         if (pfn == vma->vm_pgoff + off)
652                                 return NULL;
653                         if (!is_cow_mapping(vma->vm_flags))
654                                 return NULL;
655                 }
656         }
657
658         if (is_zero_pfn(pfn))
659                 return NULL;
660
661 check_pfn:
662         if (unlikely(pfn > highest_memmap_pfn)) {
663                 print_bad_pte(vma, addr, pte, NULL);
664                 return NULL;
665         }
666
667         /*
668          * NOTE! We still have PageReserved() pages in the page tables.
669          * eg. VDSO mappings can cause them to exist.
670          */
671 out:
672         return pfn_to_page(pfn);
673 }
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677                                 pmd_t pmd)
678 {
679         unsigned long pfn = pmd_pfn(pmd);
680
681         /*
682          * There is no pmd_special() but there may be special pmds, e.g.
683          * in a direct-access (dax) mapping, so let's just replicate the
684          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685          */
686         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687                 if (vma->vm_flags & VM_MIXEDMAP) {
688                         if (!pfn_valid(pfn))
689                                 return NULL;
690                         goto out;
691                 } else {
692                         unsigned long off;
693                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
694                         if (pfn == vma->vm_pgoff + off)
695                                 return NULL;
696                         if (!is_cow_mapping(vma->vm_flags))
697                                 return NULL;
698                 }
699         }
700
701         if (pmd_devmap(pmd))
702                 return NULL;
703         if (is_huge_zero_pmd(pmd))
704                 return NULL;
705         if (unlikely(pfn > highest_memmap_pfn))
706                 return NULL;
707
708         /*
709          * NOTE! We still have PageReserved() pages in the page tables.
710          * eg. VDSO mappings can cause them to exist.
711          */
712 out:
713         return pfn_to_page(pfn);
714 }
715 #endif
716
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718                                   struct page *page, unsigned long address,
719                                   pte_t *ptep)
720 {
721         pte_t pte;
722         swp_entry_t entry;
723
724         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725         if (pte_swp_soft_dirty(*ptep))
726                 pte = pte_mksoft_dirty(pte);
727
728         entry = pte_to_swp_entry(*ptep);
729         if (pte_swp_uffd_wp(*ptep))
730                 pte = pte_mkuffd_wp(pte);
731         else if (is_writable_device_exclusive_entry(entry))
732                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
734         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
736         /*
737          * No need to take a page reference as one was already
738          * created when the swap entry was made.
739          */
740         if (PageAnon(page))
741                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
742         else
743                 /*
744                  * Currently device exclusive access only supports anonymous
745                  * memory so the entry shouldn't point to a filebacked page.
746                  */
747                 WARN_ON_ONCE(1);
748
749         set_pte_at(vma->vm_mm, address, ptep, pte);
750
751         /*
752          * No need to invalidate - it was non-present before. However
753          * secondary CPUs may have mappings that need invalidating.
754          */
755         update_mmu_cache(vma, address, ptep);
756 }
757
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764                         unsigned long addr)
765 {
766         swp_entry_t entry = pte_to_swp_entry(*src_pte);
767         struct page *page = pfn_swap_entry_to_page(entry);
768
769         if (trylock_page(page)) {
770                 restore_exclusive_pte(vma, page, addr, src_pte);
771                 unlock_page(page);
772                 return 0;
773         }
774
775         return -EBUSY;
776 }
777
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789         unsigned long vm_flags = dst_vma->vm_flags;
790         pte_t pte = *src_pte;
791         struct page *page;
792         swp_entry_t entry = pte_to_swp_entry(pte);
793
794         if (likely(!non_swap_entry(entry))) {
795                 if (swap_duplicate(entry) < 0)
796                         return -EIO;
797
798                 /* make sure dst_mm is on swapoff's mmlist. */
799                 if (unlikely(list_empty(&dst_mm->mmlist))) {
800                         spin_lock(&mmlist_lock);
801                         if (list_empty(&dst_mm->mmlist))
802                                 list_add(&dst_mm->mmlist,
803                                                 &src_mm->mmlist);
804                         spin_unlock(&mmlist_lock);
805                 }
806                 /* Mark the swap entry as shared. */
807                 if (pte_swp_exclusive(*src_pte)) {
808                         pte = pte_swp_clear_exclusive(*src_pte);
809                         set_pte_at(src_mm, addr, src_pte, pte);
810                 }
811                 rss[MM_SWAPENTS]++;
812         } else if (is_migration_entry(entry)) {
813                 page = pfn_swap_entry_to_page(entry);
814
815                 rss[mm_counter(page)]++;
816
817                 if (!is_readable_migration_entry(entry) &&
818                                 is_cow_mapping(vm_flags)) {
819                         /*
820                          * COW mappings require pages in both parent and child
821                          * to be set to read. A previously exclusive entry is
822                          * now shared.
823                          */
824                         entry = make_readable_migration_entry(
825                                                         swp_offset(entry));
826                         pte = swp_entry_to_pte(entry);
827                         if (pte_swp_soft_dirty(*src_pte))
828                                 pte = pte_swp_mksoft_dirty(pte);
829                         if (pte_swp_uffd_wp(*src_pte))
830                                 pte = pte_swp_mkuffd_wp(pte);
831                         set_pte_at(src_mm, addr, src_pte, pte);
832                 }
833         } else if (is_device_private_entry(entry)) {
834                 page = pfn_swap_entry_to_page(entry);
835
836                 /*
837                  * Update rss count even for unaddressable pages, as
838                  * they should treated just like normal pages in this
839                  * respect.
840                  *
841                  * We will likely want to have some new rss counters
842                  * for unaddressable pages, at some point. But for now
843                  * keep things as they are.
844                  */
845                 get_page(page);
846                 rss[mm_counter(page)]++;
847                 /* Cannot fail as these pages cannot get pinned. */
848                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849
850                 /*
851                  * We do not preserve soft-dirty information, because so
852                  * far, checkpoint/restore is the only feature that
853                  * requires that. And checkpoint/restore does not work
854                  * when a device driver is involved (you cannot easily
855                  * save and restore device driver state).
856                  */
857                 if (is_writable_device_private_entry(entry) &&
858                     is_cow_mapping(vm_flags)) {
859                         entry = make_readable_device_private_entry(
860                                                         swp_offset(entry));
861                         pte = swp_entry_to_pte(entry);
862                         if (pte_swp_uffd_wp(*src_pte))
863                                 pte = pte_swp_mkuffd_wp(pte);
864                         set_pte_at(src_mm, addr, src_pte, pte);
865                 }
866         } else if (is_device_exclusive_entry(entry)) {
867                 /*
868                  * Make device exclusive entries present by restoring the
869                  * original entry then copying as for a present pte. Device
870                  * exclusive entries currently only support private writable
871                  * (ie. COW) mappings.
872                  */
873                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875                         return -EBUSY;
876                 return -ENOENT;
877         } else if (is_pte_marker_entry(entry)) {
878                 /*
879                  * We're copying the pgtable should only because dst_vma has
880                  * uffd-wp enabled, do sanity check.
881                  */
882                 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883                 set_pte_at(dst_mm, addr, dst_pte, pte);
884                 return 0;
885         }
886         if (!userfaultfd_wp(dst_vma))
887                 pte = pte_swp_clear_uffd_wp(pte);
888         set_pte_at(dst_mm, addr, dst_pte, pte);
889         return 0;
890 }
891
892 /*
893  * Copy a present and normal page.
894  *
895  * NOTE! The usual case is that this isn't required;
896  * instead, the caller can just increase the page refcount
897  * and re-use the pte the traditional way.
898  *
899  * And if we need a pre-allocated page but don't yet have
900  * one, return a negative error to let the preallocation
901  * code know so that it can do so outside the page table
902  * lock.
903  */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907                   struct page **prealloc, struct page *page)
908 {
909         struct page *new_page;
910         pte_t pte;
911
912         new_page = *prealloc;
913         if (!new_page)
914                 return -EAGAIN;
915
916         /*
917          * We have a prealloc page, all good!  Take it
918          * over and copy the page & arm it.
919          */
920         *prealloc = NULL;
921         copy_user_highpage(new_page, page, addr, src_vma);
922         __SetPageUptodate(new_page);
923         page_add_new_anon_rmap(new_page, dst_vma, addr);
924         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925         rss[mm_counter(new_page)]++;
926
927         /* All done, just insert the new page copy in the child */
928         pte = mk_pte(new_page, dst_vma->vm_page_prot);
929         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930         if (userfaultfd_pte_wp(dst_vma, *src_pte))
931                 /* Uffd-wp needs to be delivered to dest pte as well */
932                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
933         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934         return 0;
935 }
936
937 /*
938  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
939  * is required to copy this pte.
940  */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944                  struct page **prealloc)
945 {
946         struct mm_struct *src_mm = src_vma->vm_mm;
947         unsigned long vm_flags = src_vma->vm_flags;
948         pte_t pte = *src_pte;
949         struct page *page;
950
951         page = vm_normal_page(src_vma, addr, pte);
952         if (page && PageAnon(page)) {
953                 /*
954                  * If this page may have been pinned by the parent process,
955                  * copy the page immediately for the child so that we'll always
956                  * guarantee the pinned page won't be randomly replaced in the
957                  * future.
958                  */
959                 get_page(page);
960                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961                         /* Page maybe pinned, we have to copy. */
962                         put_page(page);
963                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964                                                  addr, rss, prealloc, page);
965                 }
966                 rss[mm_counter(page)]++;
967         } else if (page) {
968                 get_page(page);
969                 page_dup_file_rmap(page, false);
970                 rss[mm_counter(page)]++;
971         }
972
973         /*
974          * If it's a COW mapping, write protect it both
975          * in the parent and the child
976          */
977         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978                 ptep_set_wrprotect(src_mm, addr, src_pte);
979                 pte = pte_wrprotect(pte);
980         }
981         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982
983         /*
984          * If it's a shared mapping, mark it clean in
985          * the child
986          */
987         if (vm_flags & VM_SHARED)
988                 pte = pte_mkclean(pte);
989         pte = pte_mkold(pte);
990
991         if (!userfaultfd_wp(dst_vma))
992                 pte = pte_clear_uffd_wp(pte);
993
994         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995         return 0;
996 }
997
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000                    unsigned long addr)
1001 {
1002         struct page *new_page;
1003
1004         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005         if (!new_page)
1006                 return NULL;
1007
1008         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009                 put_page(new_page);
1010                 return NULL;
1011         }
1012         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013
1014         return new_page;
1015 }
1016
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020                unsigned long end)
1021 {
1022         struct mm_struct *dst_mm = dst_vma->vm_mm;
1023         struct mm_struct *src_mm = src_vma->vm_mm;
1024         pte_t *orig_src_pte, *orig_dst_pte;
1025         pte_t *src_pte, *dst_pte;
1026         spinlock_t *src_ptl, *dst_ptl;
1027         int progress, ret = 0;
1028         int rss[NR_MM_COUNTERS];
1029         swp_entry_t entry = (swp_entry_t){0};
1030         struct page *prealloc = NULL;
1031
1032 again:
1033         progress = 0;
1034         init_rss_vec(rss);
1035
1036         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037         if (!dst_pte) {
1038                 ret = -ENOMEM;
1039                 goto out;
1040         }
1041         src_pte = pte_offset_map(src_pmd, addr);
1042         src_ptl = pte_lockptr(src_mm, src_pmd);
1043         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044         orig_src_pte = src_pte;
1045         orig_dst_pte = dst_pte;
1046         arch_enter_lazy_mmu_mode();
1047
1048         do {
1049                 /*
1050                  * We are holding two locks at this point - either of them
1051                  * could generate latencies in another task on another CPU.
1052                  */
1053                 if (progress >= 32) {
1054                         progress = 0;
1055                         if (need_resched() ||
1056                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057                                 break;
1058                 }
1059                 if (pte_none(*src_pte)) {
1060                         progress++;
1061                         continue;
1062                 }
1063                 if (unlikely(!pte_present(*src_pte))) {
1064                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1065                                                   dst_pte, src_pte,
1066                                                   dst_vma, src_vma,
1067                                                   addr, rss);
1068                         if (ret == -EIO) {
1069                                 entry = pte_to_swp_entry(*src_pte);
1070                                 break;
1071                         } else if (ret == -EBUSY) {
1072                                 break;
1073                         } else if (!ret) {
1074                                 progress += 8;
1075                                 continue;
1076                         }
1077
1078                         /*
1079                          * Device exclusive entry restored, continue by copying
1080                          * the now present pte.
1081                          */
1082                         WARN_ON_ONCE(ret != -ENOENT);
1083                 }
1084                 /* copy_present_pte() will clear `*prealloc' if consumed */
1085                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086                                        addr, rss, &prealloc);
1087                 /*
1088                  * If we need a pre-allocated page for this pte, drop the
1089                  * locks, allocate, and try again.
1090                  */
1091                 if (unlikely(ret == -EAGAIN))
1092                         break;
1093                 if (unlikely(prealloc)) {
1094                         /*
1095                          * pre-alloc page cannot be reused by next time so as
1096                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1097                          * will allocate page according to address).  This
1098                          * could only happen if one pinned pte changed.
1099                          */
1100                         put_page(prealloc);
1101                         prealloc = NULL;
1102                 }
1103                 progress += 8;
1104         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105
1106         arch_leave_lazy_mmu_mode();
1107         spin_unlock(src_ptl);
1108         pte_unmap(orig_src_pte);
1109         add_mm_rss_vec(dst_mm, rss);
1110         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111         cond_resched();
1112
1113         if (ret == -EIO) {
1114                 VM_WARN_ON_ONCE(!entry.val);
1115                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116                         ret = -ENOMEM;
1117                         goto out;
1118                 }
1119                 entry.val = 0;
1120         } else if (ret == -EBUSY) {
1121                 goto out;
1122         } else if (ret ==  -EAGAIN) {
1123                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124                 if (!prealloc)
1125                         return -ENOMEM;
1126         } else if (ret) {
1127                 VM_WARN_ON_ONCE(1);
1128         }
1129
1130         /* We've captured and resolved the error. Reset, try again. */
1131         ret = 0;
1132
1133         if (addr != end)
1134                 goto again;
1135 out:
1136         if (unlikely(prealloc))
1137                 put_page(prealloc);
1138         return ret;
1139 }
1140
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144                unsigned long end)
1145 {
1146         struct mm_struct *dst_mm = dst_vma->vm_mm;
1147         struct mm_struct *src_mm = src_vma->vm_mm;
1148         pmd_t *src_pmd, *dst_pmd;
1149         unsigned long next;
1150
1151         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152         if (!dst_pmd)
1153                 return -ENOMEM;
1154         src_pmd = pmd_offset(src_pud, addr);
1155         do {
1156                 next = pmd_addr_end(addr, end);
1157                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158                         || pmd_devmap(*src_pmd)) {
1159                         int err;
1160                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162                                             addr, dst_vma, src_vma);
1163                         if (err == -ENOMEM)
1164                                 return -ENOMEM;
1165                         if (!err)
1166                                 continue;
1167                         /* fall through */
1168                 }
1169                 if (pmd_none_or_clear_bad(src_pmd))
1170                         continue;
1171                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172                                    addr, next))
1173                         return -ENOMEM;
1174         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175         return 0;
1176 }
1177
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181                unsigned long end)
1182 {
1183         struct mm_struct *dst_mm = dst_vma->vm_mm;
1184         struct mm_struct *src_mm = src_vma->vm_mm;
1185         pud_t *src_pud, *dst_pud;
1186         unsigned long next;
1187
1188         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189         if (!dst_pud)
1190                 return -ENOMEM;
1191         src_pud = pud_offset(src_p4d, addr);
1192         do {
1193                 next = pud_addr_end(addr, end);
1194                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195                         int err;
1196
1197                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198                         err = copy_huge_pud(dst_mm, src_mm,
1199                                             dst_pud, src_pud, addr, src_vma);
1200                         if (err == -ENOMEM)
1201                                 return -ENOMEM;
1202                         if (!err)
1203                                 continue;
1204                         /* fall through */
1205                 }
1206                 if (pud_none_or_clear_bad(src_pud))
1207                         continue;
1208                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209                                    addr, next))
1210                         return -ENOMEM;
1211         } while (dst_pud++, src_pud++, addr = next, addr != end);
1212         return 0;
1213 }
1214
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218                unsigned long end)
1219 {
1220         struct mm_struct *dst_mm = dst_vma->vm_mm;
1221         p4d_t *src_p4d, *dst_p4d;
1222         unsigned long next;
1223
1224         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225         if (!dst_p4d)
1226                 return -ENOMEM;
1227         src_p4d = p4d_offset(src_pgd, addr);
1228         do {
1229                 next = p4d_addr_end(addr, end);
1230                 if (p4d_none_or_clear_bad(src_p4d))
1231                         continue;
1232                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233                                    addr, next))
1234                         return -ENOMEM;
1235         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236         return 0;
1237 }
1238
1239 /*
1240  * Return true if the vma needs to copy the pgtable during this fork().  Return
1241  * false when we can speed up fork() by allowing lazy page faults later until
1242  * when the child accesses the memory range.
1243  */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247         /*
1248          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250          * contains uffd-wp protection information, that's something we can't
1251          * retrieve from page cache, and skip copying will lose those info.
1252          */
1253         if (userfaultfd_wp(dst_vma))
1254                 return true;
1255
1256         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257                 return true;
1258
1259         if (src_vma->anon_vma)
1260                 return true;
1261
1262         /*
1263          * Don't copy ptes where a page fault will fill them correctly.  Fork
1264          * becomes much lighter when there are big shared or private readonly
1265          * mappings. The tradeoff is that copy_page_range is more efficient
1266          * than faulting.
1267          */
1268         return false;
1269 }
1270
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274         pgd_t *src_pgd, *dst_pgd;
1275         unsigned long next;
1276         unsigned long addr = src_vma->vm_start;
1277         unsigned long end = src_vma->vm_end;
1278         struct mm_struct *dst_mm = dst_vma->vm_mm;
1279         struct mm_struct *src_mm = src_vma->vm_mm;
1280         struct mmu_notifier_range range;
1281         bool is_cow;
1282         int ret;
1283
1284         if (!vma_needs_copy(dst_vma, src_vma))
1285                 return 0;
1286
1287         if (is_vm_hugetlb_page(src_vma))
1288                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289
1290         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291                 /*
1292                  * We do not free on error cases below as remove_vma
1293                  * gets called on error from higher level routine
1294                  */
1295                 ret = track_pfn_copy(src_vma);
1296                 if (ret)
1297                         return ret;
1298         }
1299
1300         /*
1301          * We need to invalidate the secondary MMU mappings only when
1302          * there could be a permission downgrade on the ptes of the
1303          * parent mm. And a permission downgrade will only happen if
1304          * is_cow_mapping() returns true.
1305          */
1306         is_cow = is_cow_mapping(src_vma->vm_flags);
1307
1308         if (is_cow) {
1309                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310                                         0, src_vma, src_mm, addr, end);
1311                 mmu_notifier_invalidate_range_start(&range);
1312                 /*
1313                  * Disabling preemption is not needed for the write side, as
1314                  * the read side doesn't spin, but goes to the mmap_lock.
1315                  *
1316                  * Use the raw variant of the seqcount_t write API to avoid
1317                  * lockdep complaining about preemptibility.
1318                  */
1319                 mmap_assert_write_locked(src_mm);
1320                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321         }
1322
1323         ret = 0;
1324         dst_pgd = pgd_offset(dst_mm, addr);
1325         src_pgd = pgd_offset(src_mm, addr);
1326         do {
1327                 next = pgd_addr_end(addr, end);
1328                 if (pgd_none_or_clear_bad(src_pgd))
1329                         continue;
1330                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331                                             addr, next))) {
1332                         ret = -ENOMEM;
1333                         break;
1334                 }
1335         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336
1337         if (is_cow) {
1338                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1339                 mmu_notifier_invalidate_range_end(&range);
1340         }
1341         return ret;
1342 }
1343
1344 /*
1345  * Parameter block passed down to zap_pte_range in exceptional cases.
1346  */
1347 struct zap_details {
1348         struct folio *single_folio;     /* Locked folio to be unmapped */
1349         bool even_cows;                 /* Zap COWed private pages too? */
1350         zap_flags_t zap_flags;          /* Extra flags for zapping */
1351 };
1352
1353 /* Whether we should zap all COWed (private) pages too */
1354 static inline bool should_zap_cows(struct zap_details *details)
1355 {
1356         /* By default, zap all pages */
1357         if (!details)
1358                 return true;
1359
1360         /* Or, we zap COWed pages only if the caller wants to */
1361         return details->even_cows;
1362 }
1363
1364 /* Decides whether we should zap this page with the page pointer specified */
1365 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 {
1367         /* If we can make a decision without *page.. */
1368         if (should_zap_cows(details))
1369                 return true;
1370
1371         /* E.g. the caller passes NULL for the case of a zero page */
1372         if (!page)
1373                 return true;
1374
1375         /* Otherwise we should only zap non-anon pages */
1376         return !PageAnon(page);
1377 }
1378
1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380 {
1381         if (!details)
1382                 return false;
1383
1384         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 }
1386
1387 /*
1388  * This function makes sure that we'll replace the none pte with an uffd-wp
1389  * swap special pte marker when necessary. Must be with the pgtable lock held.
1390  */
1391 static inline void
1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393                               unsigned long addr, pte_t *pte,
1394                               struct zap_details *details, pte_t pteval)
1395 {
1396 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1397         if (zap_drop_file_uffd_wp(details))
1398                 return;
1399
1400         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1401 #endif
1402 }
1403
1404 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1405                                 struct vm_area_struct *vma, pmd_t *pmd,
1406                                 unsigned long addr, unsigned long end,
1407                                 struct zap_details *details)
1408 {
1409         struct mm_struct *mm = tlb->mm;
1410         int force_flush = 0;
1411         int rss[NR_MM_COUNTERS];
1412         spinlock_t *ptl;
1413         pte_t *start_pte;
1414         pte_t *pte;
1415         swp_entry_t entry;
1416
1417         tlb_change_page_size(tlb, PAGE_SIZE);
1418 again:
1419         init_rss_vec(rss);
1420         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1421         pte = start_pte;
1422         flush_tlb_batched_pending(mm);
1423         arch_enter_lazy_mmu_mode();
1424         do {
1425                 pte_t ptent = *pte;
1426                 struct page *page;
1427
1428                 if (pte_none(ptent))
1429                         continue;
1430
1431                 if (need_resched())
1432                         break;
1433
1434                 if (pte_present(ptent)) {
1435                         page = vm_normal_page(vma, addr, ptent);
1436                         if (unlikely(!should_zap_page(details, page)))
1437                                 continue;
1438                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1439                                                         tlb->fullmm);
1440                         tlb_remove_tlb_entry(tlb, pte, addr);
1441                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1442                                                       ptent);
1443                         if (unlikely(!page))
1444                                 continue;
1445
1446                         if (!PageAnon(page)) {
1447                                 if (pte_dirty(ptent)) {
1448                                         force_flush = 1;
1449                                         set_page_dirty(page);
1450                                 }
1451                                 if (pte_young(ptent) &&
1452                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1453                                         mark_page_accessed(page);
1454                         }
1455                         rss[mm_counter(page)]--;
1456                         page_remove_rmap(page, vma, false);
1457                         if (unlikely(page_mapcount(page) < 0))
1458                                 print_bad_pte(vma, addr, ptent, page);
1459                         if (unlikely(__tlb_remove_page(tlb, page))) {
1460                                 force_flush = 1;
1461                                 addr += PAGE_SIZE;
1462                                 break;
1463                         }
1464                         continue;
1465                 }
1466
1467                 entry = pte_to_swp_entry(ptent);
1468                 if (is_device_private_entry(entry) ||
1469                     is_device_exclusive_entry(entry)) {
1470                         page = pfn_swap_entry_to_page(entry);
1471                         if (unlikely(!should_zap_page(details, page)))
1472                                 continue;
1473                         /*
1474                          * Both device private/exclusive mappings should only
1475                          * work with anonymous page so far, so we don't need to
1476                          * consider uffd-wp bit when zap. For more information,
1477                          * see zap_install_uffd_wp_if_needed().
1478                          */
1479                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1480                         rss[mm_counter(page)]--;
1481                         if (is_device_private_entry(entry))
1482                                 page_remove_rmap(page, vma, false);
1483                         put_page(page);
1484                 } else if (!non_swap_entry(entry)) {
1485                         /* Genuine swap entry, hence a private anon page */
1486                         if (!should_zap_cows(details))
1487                                 continue;
1488                         rss[MM_SWAPENTS]--;
1489                         if (unlikely(!free_swap_and_cache(entry)))
1490                                 print_bad_pte(vma, addr, ptent, NULL);
1491                 } else if (is_migration_entry(entry)) {
1492                         page = pfn_swap_entry_to_page(entry);
1493                         if (!should_zap_page(details, page))
1494                                 continue;
1495                         rss[mm_counter(page)]--;
1496                 } else if (pte_marker_entry_uffd_wp(entry)) {
1497                         /* Only drop the uffd-wp marker if explicitly requested */
1498                         if (!zap_drop_file_uffd_wp(details))
1499                                 continue;
1500                 } else if (is_hwpoison_entry(entry) ||
1501                            is_swapin_error_entry(entry)) {
1502                         if (!should_zap_cows(details))
1503                                 continue;
1504                 } else {
1505                         /* We should have covered all the swap entry types */
1506                         WARN_ON_ONCE(1);
1507                 }
1508                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1509                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1510         } while (pte++, addr += PAGE_SIZE, addr != end);
1511
1512         add_mm_rss_vec(mm, rss);
1513         arch_leave_lazy_mmu_mode();
1514
1515         /* Do the actual TLB flush before dropping ptl */
1516         if (force_flush)
1517                 tlb_flush_mmu_tlbonly(tlb);
1518         pte_unmap_unlock(start_pte, ptl);
1519
1520         /*
1521          * If we forced a TLB flush (either due to running out of
1522          * batch buffers or because we needed to flush dirty TLB
1523          * entries before releasing the ptl), free the batched
1524          * memory too. Restart if we didn't do everything.
1525          */
1526         if (force_flush) {
1527                 force_flush = 0;
1528                 tlb_flush_mmu(tlb);
1529         }
1530
1531         if (addr != end) {
1532                 cond_resched();
1533                 goto again;
1534         }
1535
1536         return addr;
1537 }
1538
1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1540                                 struct vm_area_struct *vma, pud_t *pud,
1541                                 unsigned long addr, unsigned long end,
1542                                 struct zap_details *details)
1543 {
1544         pmd_t *pmd;
1545         unsigned long next;
1546
1547         pmd = pmd_offset(pud, addr);
1548         do {
1549                 next = pmd_addr_end(addr, end);
1550                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1551                         if (next - addr != HPAGE_PMD_SIZE)
1552                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1553                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1554                                 goto next;
1555                         /* fall through */
1556                 } else if (details && details->single_folio &&
1557                            folio_test_pmd_mappable(details->single_folio) &&
1558                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1559                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1560                         /*
1561                          * Take and drop THP pmd lock so that we cannot return
1562                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1563                          * but not yet decremented compound_mapcount().
1564                          */
1565                         spin_unlock(ptl);
1566                 }
1567
1568                 /*
1569                  * Here there can be other concurrent MADV_DONTNEED or
1570                  * trans huge page faults running, and if the pmd is
1571                  * none or trans huge it can change under us. This is
1572                  * because MADV_DONTNEED holds the mmap_lock in read
1573                  * mode.
1574                  */
1575                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1576                         goto next;
1577                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1578 next:
1579                 cond_resched();
1580         } while (pmd++, addr = next, addr != end);
1581
1582         return addr;
1583 }
1584
1585 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1586                                 struct vm_area_struct *vma, p4d_t *p4d,
1587                                 unsigned long addr, unsigned long end,
1588                                 struct zap_details *details)
1589 {
1590         pud_t *pud;
1591         unsigned long next;
1592
1593         pud = pud_offset(p4d, addr);
1594         do {
1595                 next = pud_addr_end(addr, end);
1596                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1597                         if (next - addr != HPAGE_PUD_SIZE) {
1598                                 mmap_assert_locked(tlb->mm);
1599                                 split_huge_pud(vma, pud, addr);
1600                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1601                                 goto next;
1602                         /* fall through */
1603                 }
1604                 if (pud_none_or_clear_bad(pud))
1605                         continue;
1606                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1607 next:
1608                 cond_resched();
1609         } while (pud++, addr = next, addr != end);
1610
1611         return addr;
1612 }
1613
1614 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1615                                 struct vm_area_struct *vma, pgd_t *pgd,
1616                                 unsigned long addr, unsigned long end,
1617                                 struct zap_details *details)
1618 {
1619         p4d_t *p4d;
1620         unsigned long next;
1621
1622         p4d = p4d_offset(pgd, addr);
1623         do {
1624                 next = p4d_addr_end(addr, end);
1625                 if (p4d_none_or_clear_bad(p4d))
1626                         continue;
1627                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1628         } while (p4d++, addr = next, addr != end);
1629
1630         return addr;
1631 }
1632
1633 void unmap_page_range(struct mmu_gather *tlb,
1634                              struct vm_area_struct *vma,
1635                              unsigned long addr, unsigned long end,
1636                              struct zap_details *details)
1637 {
1638         pgd_t *pgd;
1639         unsigned long next;
1640
1641         BUG_ON(addr >= end);
1642         tlb_start_vma(tlb, vma);
1643         pgd = pgd_offset(vma->vm_mm, addr);
1644         do {
1645                 next = pgd_addr_end(addr, end);
1646                 if (pgd_none_or_clear_bad(pgd))
1647                         continue;
1648                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1649         } while (pgd++, addr = next, addr != end);
1650         tlb_end_vma(tlb, vma);
1651 }
1652
1653
1654 static void unmap_single_vma(struct mmu_gather *tlb,
1655                 struct vm_area_struct *vma, unsigned long start_addr,
1656                 unsigned long end_addr,
1657                 struct zap_details *details)
1658 {
1659         unsigned long start = max(vma->vm_start, start_addr);
1660         unsigned long end;
1661
1662         if (start >= vma->vm_end)
1663                 return;
1664         end = min(vma->vm_end, end_addr);
1665         if (end <= vma->vm_start)
1666                 return;
1667
1668         if (vma->vm_file)
1669                 uprobe_munmap(vma, start, end);
1670
1671         if (unlikely(vma->vm_flags & VM_PFNMAP))
1672                 untrack_pfn(vma, 0, 0);
1673
1674         if (start != end) {
1675                 if (unlikely(is_vm_hugetlb_page(vma))) {
1676                         /*
1677                          * It is undesirable to test vma->vm_file as it
1678                          * should be non-null for valid hugetlb area.
1679                          * However, vm_file will be NULL in the error
1680                          * cleanup path of mmap_region. When
1681                          * hugetlbfs ->mmap method fails,
1682                          * mmap_region() nullifies vma->vm_file
1683                          * before calling this function to clean up.
1684                          * Since no pte has actually been setup, it is
1685                          * safe to do nothing in this case.
1686                          */
1687                         if (vma->vm_file) {
1688                                 zap_flags_t zap_flags = details ?
1689                                     details->zap_flags : 0;
1690                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1691                                                              NULL, zap_flags);
1692                         }
1693                 } else
1694                         unmap_page_range(tlb, vma, start, end, details);
1695         }
1696 }
1697
1698 /**
1699  * unmap_vmas - unmap a range of memory covered by a list of vma's
1700  * @tlb: address of the caller's struct mmu_gather
1701  * @mt: the maple tree
1702  * @vma: the starting vma
1703  * @start_addr: virtual address at which to start unmapping
1704  * @end_addr: virtual address at which to end unmapping
1705  *
1706  * Unmap all pages in the vma list.
1707  *
1708  * Only addresses between `start' and `end' will be unmapped.
1709  *
1710  * The VMA list must be sorted in ascending virtual address order.
1711  *
1712  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1713  * range after unmap_vmas() returns.  So the only responsibility here is to
1714  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1715  * drops the lock and schedules.
1716  */
1717 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1718                 struct vm_area_struct *vma, unsigned long start_addr,
1719                 unsigned long end_addr)
1720 {
1721         struct mmu_notifier_range range;
1722         struct zap_details details = {
1723                 .zap_flags = ZAP_FLAG_DROP_MARKER,
1724                 /* Careful - we need to zap private pages too! */
1725                 .even_cows = true,
1726         };
1727         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1728
1729         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1730                                 start_addr, end_addr);
1731         mmu_notifier_invalidate_range_start(&range);
1732         do {
1733                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1734         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1735         mmu_notifier_invalidate_range_end(&range);
1736 }
1737
1738 /**
1739  * zap_page_range - remove user pages in a given range
1740  * @vma: vm_area_struct holding the applicable pages
1741  * @start: starting address of pages to zap
1742  * @size: number of bytes to zap
1743  *
1744  * Caller must protect the VMA list
1745  */
1746 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1747                 unsigned long size)
1748 {
1749         struct maple_tree *mt = &vma->vm_mm->mm_mt;
1750         unsigned long end = start + size;
1751         struct mmu_notifier_range range;
1752         struct mmu_gather tlb;
1753         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1754
1755         lru_add_drain();
1756         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1757                                 start, start + size);
1758         tlb_gather_mmu(&tlb, vma->vm_mm);
1759         update_hiwater_rss(vma->vm_mm);
1760         mmu_notifier_invalidate_range_start(&range);
1761         do {
1762                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1763         } while ((vma = mas_find(&mas, end - 1)) != NULL);
1764         mmu_notifier_invalidate_range_end(&range);
1765         tlb_finish_mmu(&tlb);
1766 }
1767
1768 /**
1769  * zap_page_range_single - remove user pages in a given range
1770  * @vma: vm_area_struct holding the applicable pages
1771  * @address: starting address of pages to zap
1772  * @size: number of bytes to zap
1773  * @details: details of shared cache invalidation
1774  *
1775  * The range must fit into one VMA.
1776  */
1777 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1778                 unsigned long size, struct zap_details *details)
1779 {
1780         struct mmu_notifier_range range;
1781         struct mmu_gather tlb;
1782
1783         lru_add_drain();
1784         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1785                                 address, address + size);
1786         tlb_gather_mmu(&tlb, vma->vm_mm);
1787         update_hiwater_rss(vma->vm_mm);
1788         mmu_notifier_invalidate_range_start(&range);
1789         unmap_single_vma(&tlb, vma, address, range.end, details);
1790         mmu_notifier_invalidate_range_end(&range);
1791         tlb_finish_mmu(&tlb);
1792 }
1793
1794 /**
1795  * zap_vma_ptes - remove ptes mapping the vma
1796  * @vma: vm_area_struct holding ptes to be zapped
1797  * @address: starting address of pages to zap
1798  * @size: number of bytes to zap
1799  *
1800  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1801  *
1802  * The entire address range must be fully contained within the vma.
1803  *
1804  */
1805 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1806                 unsigned long size)
1807 {
1808         if (!range_in_vma(vma, address, address + size) ||
1809                         !(vma->vm_flags & VM_PFNMAP))
1810                 return;
1811
1812         zap_page_range_single(vma, address, size, NULL);
1813 }
1814 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1815
1816 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1817 {
1818         pgd_t *pgd;
1819         p4d_t *p4d;
1820         pud_t *pud;
1821         pmd_t *pmd;
1822
1823         pgd = pgd_offset(mm, addr);
1824         p4d = p4d_alloc(mm, pgd, addr);
1825         if (!p4d)
1826                 return NULL;
1827         pud = pud_alloc(mm, p4d, addr);
1828         if (!pud)
1829                 return NULL;
1830         pmd = pmd_alloc(mm, pud, addr);
1831         if (!pmd)
1832                 return NULL;
1833
1834         VM_BUG_ON(pmd_trans_huge(*pmd));
1835         return pmd;
1836 }
1837
1838 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1839                         spinlock_t **ptl)
1840 {
1841         pmd_t *pmd = walk_to_pmd(mm, addr);
1842
1843         if (!pmd)
1844                 return NULL;
1845         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1846 }
1847
1848 static int validate_page_before_insert(struct page *page)
1849 {
1850         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1851                 return -EINVAL;
1852         flush_dcache_page(page);
1853         return 0;
1854 }
1855
1856 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1857                         unsigned long addr, struct page *page, pgprot_t prot)
1858 {
1859         if (!pte_none(*pte))
1860                 return -EBUSY;
1861         /* Ok, finally just insert the thing.. */
1862         get_page(page);
1863         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1864         page_add_file_rmap(page, vma, false);
1865         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1866         return 0;
1867 }
1868
1869 /*
1870  * This is the old fallback for page remapping.
1871  *
1872  * For historical reasons, it only allows reserved pages. Only
1873  * old drivers should use this, and they needed to mark their
1874  * pages reserved for the old functions anyway.
1875  */
1876 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1877                         struct page *page, pgprot_t prot)
1878 {
1879         int retval;
1880         pte_t *pte;
1881         spinlock_t *ptl;
1882
1883         retval = validate_page_before_insert(page);
1884         if (retval)
1885                 goto out;
1886         retval = -ENOMEM;
1887         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1888         if (!pte)
1889                 goto out;
1890         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1891         pte_unmap_unlock(pte, ptl);
1892 out:
1893         return retval;
1894 }
1895
1896 #ifdef pte_index
1897 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1898                         unsigned long addr, struct page *page, pgprot_t prot)
1899 {
1900         int err;
1901
1902         if (!page_count(page))
1903                 return -EINVAL;
1904         err = validate_page_before_insert(page);
1905         if (err)
1906                 return err;
1907         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1908 }
1909
1910 /* insert_pages() amortizes the cost of spinlock operations
1911  * when inserting pages in a loop. Arch *must* define pte_index.
1912  */
1913 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1914                         struct page **pages, unsigned long *num, pgprot_t prot)
1915 {
1916         pmd_t *pmd = NULL;
1917         pte_t *start_pte, *pte;
1918         spinlock_t *pte_lock;
1919         struct mm_struct *const mm = vma->vm_mm;
1920         unsigned long curr_page_idx = 0;
1921         unsigned long remaining_pages_total = *num;
1922         unsigned long pages_to_write_in_pmd;
1923         int ret;
1924 more:
1925         ret = -EFAULT;
1926         pmd = walk_to_pmd(mm, addr);
1927         if (!pmd)
1928                 goto out;
1929
1930         pages_to_write_in_pmd = min_t(unsigned long,
1931                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1932
1933         /* Allocate the PTE if necessary; takes PMD lock once only. */
1934         ret = -ENOMEM;
1935         if (pte_alloc(mm, pmd))
1936                 goto out;
1937
1938         while (pages_to_write_in_pmd) {
1939                 int pte_idx = 0;
1940                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1941
1942                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1943                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1944                         int err = insert_page_in_batch_locked(vma, pte,
1945                                 addr, pages[curr_page_idx], prot);
1946                         if (unlikely(err)) {
1947                                 pte_unmap_unlock(start_pte, pte_lock);
1948                                 ret = err;
1949                                 remaining_pages_total -= pte_idx;
1950                                 goto out;
1951                         }
1952                         addr += PAGE_SIZE;
1953                         ++curr_page_idx;
1954                 }
1955                 pte_unmap_unlock(start_pte, pte_lock);
1956                 pages_to_write_in_pmd -= batch_size;
1957                 remaining_pages_total -= batch_size;
1958         }
1959         if (remaining_pages_total)
1960                 goto more;
1961         ret = 0;
1962 out:
1963         *num = remaining_pages_total;
1964         return ret;
1965 }
1966 #endif  /* ifdef pte_index */
1967
1968 /**
1969  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1970  * @vma: user vma to map to
1971  * @addr: target start user address of these pages
1972  * @pages: source kernel pages
1973  * @num: in: number of pages to map. out: number of pages that were *not*
1974  * mapped. (0 means all pages were successfully mapped).
1975  *
1976  * Preferred over vm_insert_page() when inserting multiple pages.
1977  *
1978  * In case of error, we may have mapped a subset of the provided
1979  * pages. It is the caller's responsibility to account for this case.
1980  *
1981  * The same restrictions apply as in vm_insert_page().
1982  */
1983 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1984                         struct page **pages, unsigned long *num)
1985 {
1986 #ifdef pte_index
1987         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1988
1989         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1990                 return -EFAULT;
1991         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1992                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1993                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1994                 vma->vm_flags |= VM_MIXEDMAP;
1995         }
1996         /* Defer page refcount checking till we're about to map that page. */
1997         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1998 #else
1999         unsigned long idx = 0, pgcount = *num;
2000         int err = -EINVAL;
2001
2002         for (; idx < pgcount; ++idx) {
2003                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2004                 if (err)
2005                         break;
2006         }
2007         *num = pgcount - idx;
2008         return err;
2009 #endif  /* ifdef pte_index */
2010 }
2011 EXPORT_SYMBOL(vm_insert_pages);
2012
2013 /**
2014  * vm_insert_page - insert single page into user vma
2015  * @vma: user vma to map to
2016  * @addr: target user address of this page
2017  * @page: source kernel page
2018  *
2019  * This allows drivers to insert individual pages they've allocated
2020  * into a user vma.
2021  *
2022  * The page has to be a nice clean _individual_ kernel allocation.
2023  * If you allocate a compound page, you need to have marked it as
2024  * such (__GFP_COMP), or manually just split the page up yourself
2025  * (see split_page()).
2026  *
2027  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2028  * took an arbitrary page protection parameter. This doesn't allow
2029  * that. Your vma protection will have to be set up correctly, which
2030  * means that if you want a shared writable mapping, you'd better
2031  * ask for a shared writable mapping!
2032  *
2033  * The page does not need to be reserved.
2034  *
2035  * Usually this function is called from f_op->mmap() handler
2036  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2037  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2038  * function from other places, for example from page-fault handler.
2039  *
2040  * Return: %0 on success, negative error code otherwise.
2041  */
2042 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2043                         struct page *page)
2044 {
2045         if (addr < vma->vm_start || addr >= vma->vm_end)
2046                 return -EFAULT;
2047         if (!page_count(page))
2048                 return -EINVAL;
2049         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2050                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2051                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2052                 vma->vm_flags |= VM_MIXEDMAP;
2053         }
2054         return insert_page(vma, addr, page, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vm_insert_page);
2057
2058 /*
2059  * __vm_map_pages - maps range of kernel pages into user vma
2060  * @vma: user vma to map to
2061  * @pages: pointer to array of source kernel pages
2062  * @num: number of pages in page array
2063  * @offset: user's requested vm_pgoff
2064  *
2065  * This allows drivers to map range of kernel pages into a user vma.
2066  *
2067  * Return: 0 on success and error code otherwise.
2068  */
2069 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2070                                 unsigned long num, unsigned long offset)
2071 {
2072         unsigned long count = vma_pages(vma);
2073         unsigned long uaddr = vma->vm_start;
2074         int ret, i;
2075
2076         /* Fail if the user requested offset is beyond the end of the object */
2077         if (offset >= num)
2078                 return -ENXIO;
2079
2080         /* Fail if the user requested size exceeds available object size */
2081         if (count > num - offset)
2082                 return -ENXIO;
2083
2084         for (i = 0; i < count; i++) {
2085                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2086                 if (ret < 0)
2087                         return ret;
2088                 uaddr += PAGE_SIZE;
2089         }
2090
2091         return 0;
2092 }
2093
2094 /**
2095  * vm_map_pages - maps range of kernel pages starts with non zero offset
2096  * @vma: user vma to map to
2097  * @pages: pointer to array of source kernel pages
2098  * @num: number of pages in page array
2099  *
2100  * Maps an object consisting of @num pages, catering for the user's
2101  * requested vm_pgoff
2102  *
2103  * If we fail to insert any page into the vma, the function will return
2104  * immediately leaving any previously inserted pages present.  Callers
2105  * from the mmap handler may immediately return the error as their caller
2106  * will destroy the vma, removing any successfully inserted pages. Other
2107  * callers should make their own arrangements for calling unmap_region().
2108  *
2109  * Context: Process context. Called by mmap handlers.
2110  * Return: 0 on success and error code otherwise.
2111  */
2112 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2113                                 unsigned long num)
2114 {
2115         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2116 }
2117 EXPORT_SYMBOL(vm_map_pages);
2118
2119 /**
2120  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2121  * @vma: user vma to map to
2122  * @pages: pointer to array of source kernel pages
2123  * @num: number of pages in page array
2124  *
2125  * Similar to vm_map_pages(), except that it explicitly sets the offset
2126  * to 0. This function is intended for the drivers that did not consider
2127  * vm_pgoff.
2128  *
2129  * Context: Process context. Called by mmap handlers.
2130  * Return: 0 on success and error code otherwise.
2131  */
2132 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2133                                 unsigned long num)
2134 {
2135         return __vm_map_pages(vma, pages, num, 0);
2136 }
2137 EXPORT_SYMBOL(vm_map_pages_zero);
2138
2139 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2141 {
2142         struct mm_struct *mm = vma->vm_mm;
2143         pte_t *pte, entry;
2144         spinlock_t *ptl;
2145
2146         pte = get_locked_pte(mm, addr, &ptl);
2147         if (!pte)
2148                 return VM_FAULT_OOM;
2149         if (!pte_none(*pte)) {
2150                 if (mkwrite) {
2151                         /*
2152                          * For read faults on private mappings the PFN passed
2153                          * in may not match the PFN we have mapped if the
2154                          * mapped PFN is a writeable COW page.  In the mkwrite
2155                          * case we are creating a writable PTE for a shared
2156                          * mapping and we expect the PFNs to match. If they
2157                          * don't match, we are likely racing with block
2158                          * allocation and mapping invalidation so just skip the
2159                          * update.
2160                          */
2161                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2162                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2163                                 goto out_unlock;
2164                         }
2165                         entry = pte_mkyoung(*pte);
2166                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2168                                 update_mmu_cache(vma, addr, pte);
2169                 }
2170                 goto out_unlock;
2171         }
2172
2173         /* Ok, finally just insert the thing.. */
2174         if (pfn_t_devmap(pfn))
2175                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2176         else
2177                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2178
2179         if (mkwrite) {
2180                 entry = pte_mkyoung(entry);
2181                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2182         }
2183
2184         set_pte_at(mm, addr, pte, entry);
2185         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2186
2187 out_unlock:
2188         pte_unmap_unlock(pte, ptl);
2189         return VM_FAULT_NOPAGE;
2190 }
2191
2192 /**
2193  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2194  * @vma: user vma to map to
2195  * @addr: target user address of this page
2196  * @pfn: source kernel pfn
2197  * @pgprot: pgprot flags for the inserted page
2198  *
2199  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2200  * to override pgprot on a per-page basis.
2201  *
2202  * This only makes sense for IO mappings, and it makes no sense for
2203  * COW mappings.  In general, using multiple vmas is preferable;
2204  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2205  * impractical.
2206  *
2207  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2208  * a value of @pgprot different from that of @vma->vm_page_prot.
2209  *
2210  * Context: Process context.  May allocate using %GFP_KERNEL.
2211  * Return: vm_fault_t value.
2212  */
2213 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2214                         unsigned long pfn, pgprot_t pgprot)
2215 {
2216         /*
2217          * Technically, architectures with pte_special can avoid all these
2218          * restrictions (same for remap_pfn_range).  However we would like
2219          * consistency in testing and feature parity among all, so we should
2220          * try to keep these invariants in place for everybody.
2221          */
2222         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2223         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2224                                                 (VM_PFNMAP|VM_MIXEDMAP));
2225         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2226         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2227
2228         if (addr < vma->vm_start || addr >= vma->vm_end)
2229                 return VM_FAULT_SIGBUS;
2230
2231         if (!pfn_modify_allowed(pfn, pgprot))
2232                 return VM_FAULT_SIGBUS;
2233
2234         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2235
2236         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2237                         false);
2238 }
2239 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2240
2241 /**
2242  * vmf_insert_pfn - insert single pfn into user vma
2243  * @vma: user vma to map to
2244  * @addr: target user address of this page
2245  * @pfn: source kernel pfn
2246  *
2247  * Similar to vm_insert_page, this allows drivers to insert individual pages
2248  * they've allocated into a user vma. Same comments apply.
2249  *
2250  * This function should only be called from a vm_ops->fault handler, and
2251  * in that case the handler should return the result of this function.
2252  *
2253  * vma cannot be a COW mapping.
2254  *
2255  * As this is called only for pages that do not currently exist, we
2256  * do not need to flush old virtual caches or the TLB.
2257  *
2258  * Context: Process context.  May allocate using %GFP_KERNEL.
2259  * Return: vm_fault_t value.
2260  */
2261 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2262                         unsigned long pfn)
2263 {
2264         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2265 }
2266 EXPORT_SYMBOL(vmf_insert_pfn);
2267
2268 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2269 {
2270         /* these checks mirror the abort conditions in vm_normal_page */
2271         if (vma->vm_flags & VM_MIXEDMAP)
2272                 return true;
2273         if (pfn_t_devmap(pfn))
2274                 return true;
2275         if (pfn_t_special(pfn))
2276                 return true;
2277         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2278                 return true;
2279         return false;
2280 }
2281
2282 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2283                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2284                 bool mkwrite)
2285 {
2286         int err;
2287
2288         BUG_ON(!vm_mixed_ok(vma, pfn));
2289
2290         if (addr < vma->vm_start || addr >= vma->vm_end)
2291                 return VM_FAULT_SIGBUS;
2292
2293         track_pfn_insert(vma, &pgprot, pfn);
2294
2295         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2296                 return VM_FAULT_SIGBUS;
2297
2298         /*
2299          * If we don't have pte special, then we have to use the pfn_valid()
2300          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2301          * refcount the page if pfn_valid is true (hence insert_page rather
2302          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2303          * without pte special, it would there be refcounted as a normal page.
2304          */
2305         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2306             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2307                 struct page *page;
2308
2309                 /*
2310                  * At this point we are committed to insert_page()
2311                  * regardless of whether the caller specified flags that
2312                  * result in pfn_t_has_page() == false.
2313                  */
2314                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2315                 err = insert_page(vma, addr, page, pgprot);
2316         } else {
2317                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2318         }
2319
2320         if (err == -ENOMEM)
2321                 return VM_FAULT_OOM;
2322         if (err < 0 && err != -EBUSY)
2323                 return VM_FAULT_SIGBUS;
2324
2325         return VM_FAULT_NOPAGE;
2326 }
2327
2328 /**
2329  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2330  * @vma: user vma to map to
2331  * @addr: target user address of this page
2332  * @pfn: source kernel pfn
2333  * @pgprot: pgprot flags for the inserted page
2334  *
2335  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2336  * to override pgprot on a per-page basis.
2337  *
2338  * Typically this function should be used by drivers to set caching- and
2339  * encryption bits different than those of @vma->vm_page_prot, because
2340  * the caching- or encryption mode may not be known at mmap() time.
2341  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2342  * to set caching and encryption bits for those vmas (except for COW pages).
2343  * This is ensured by core vm only modifying these page table entries using
2344  * functions that don't touch caching- or encryption bits, using pte_modify()
2345  * if needed. (See for example mprotect()).
2346  * Also when new page-table entries are created, this is only done using the
2347  * fault() callback, and never using the value of vma->vm_page_prot,
2348  * except for page-table entries that point to anonymous pages as the result
2349  * of COW.
2350  *
2351  * Context: Process context.  May allocate using %GFP_KERNEL.
2352  * Return: vm_fault_t value.
2353  */
2354 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2355                                  pfn_t pfn, pgprot_t pgprot)
2356 {
2357         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2358 }
2359 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2360
2361 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2362                 pfn_t pfn)
2363 {
2364         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2365 }
2366 EXPORT_SYMBOL(vmf_insert_mixed);
2367
2368 /*
2369  *  If the insertion of PTE failed because someone else already added a
2370  *  different entry in the mean time, we treat that as success as we assume
2371  *  the same entry was actually inserted.
2372  */
2373 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2374                 unsigned long addr, pfn_t pfn)
2375 {
2376         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2377 }
2378 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2379
2380 /*
2381  * maps a range of physical memory into the requested pages. the old
2382  * mappings are removed. any references to nonexistent pages results
2383  * in null mappings (currently treated as "copy-on-access")
2384  */
2385 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2386                         unsigned long addr, unsigned long end,
2387                         unsigned long pfn, pgprot_t prot)
2388 {
2389         pte_t *pte, *mapped_pte;
2390         spinlock_t *ptl;
2391         int err = 0;
2392
2393         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2394         if (!pte)
2395                 return -ENOMEM;
2396         arch_enter_lazy_mmu_mode();
2397         do {
2398                 BUG_ON(!pte_none(*pte));
2399                 if (!pfn_modify_allowed(pfn, prot)) {
2400                         err = -EACCES;
2401                         break;
2402                 }
2403                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2404                 pfn++;
2405         } while (pte++, addr += PAGE_SIZE, addr != end);
2406         arch_leave_lazy_mmu_mode();
2407         pte_unmap_unlock(mapped_pte, ptl);
2408         return err;
2409 }
2410
2411 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2412                         unsigned long addr, unsigned long end,
2413                         unsigned long pfn, pgprot_t prot)
2414 {
2415         pmd_t *pmd;
2416         unsigned long next;
2417         int err;
2418
2419         pfn -= addr >> PAGE_SHIFT;
2420         pmd = pmd_alloc(mm, pud, addr);
2421         if (!pmd)
2422                 return -ENOMEM;
2423         VM_BUG_ON(pmd_trans_huge(*pmd));
2424         do {
2425                 next = pmd_addr_end(addr, end);
2426                 err = remap_pte_range(mm, pmd, addr, next,
2427                                 pfn + (addr >> PAGE_SHIFT), prot);
2428                 if (err)
2429                         return err;
2430         } while (pmd++, addr = next, addr != end);
2431         return 0;
2432 }
2433
2434 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2435                         unsigned long addr, unsigned long end,
2436                         unsigned long pfn, pgprot_t prot)
2437 {
2438         pud_t *pud;
2439         unsigned long next;
2440         int err;
2441
2442         pfn -= addr >> PAGE_SHIFT;
2443         pud = pud_alloc(mm, p4d, addr);
2444         if (!pud)
2445                 return -ENOMEM;
2446         do {
2447                 next = pud_addr_end(addr, end);
2448                 err = remap_pmd_range(mm, pud, addr, next,
2449                                 pfn + (addr >> PAGE_SHIFT), prot);
2450                 if (err)
2451                         return err;
2452         } while (pud++, addr = next, addr != end);
2453         return 0;
2454 }
2455
2456 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2457                         unsigned long addr, unsigned long end,
2458                         unsigned long pfn, pgprot_t prot)
2459 {
2460         p4d_t *p4d;
2461         unsigned long next;
2462         int err;
2463
2464         pfn -= addr >> PAGE_SHIFT;
2465         p4d = p4d_alloc(mm, pgd, addr);
2466         if (!p4d)
2467                 return -ENOMEM;
2468         do {
2469                 next = p4d_addr_end(addr, end);
2470                 err = remap_pud_range(mm, p4d, addr, next,
2471                                 pfn + (addr >> PAGE_SHIFT), prot);
2472                 if (err)
2473                         return err;
2474         } while (p4d++, addr = next, addr != end);
2475         return 0;
2476 }
2477
2478 /*
2479  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2480  * must have pre-validated the caching bits of the pgprot_t.
2481  */
2482 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2483                 unsigned long pfn, unsigned long size, pgprot_t prot)
2484 {
2485         pgd_t *pgd;
2486         unsigned long next;
2487         unsigned long end = addr + PAGE_ALIGN(size);
2488         struct mm_struct *mm = vma->vm_mm;
2489         int err;
2490
2491         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2492                 return -EINVAL;
2493
2494         /*
2495          * Physically remapped pages are special. Tell the
2496          * rest of the world about it:
2497          *   VM_IO tells people not to look at these pages
2498          *      (accesses can have side effects).
2499          *   VM_PFNMAP tells the core MM that the base pages are just
2500          *      raw PFN mappings, and do not have a "struct page" associated
2501          *      with them.
2502          *   VM_DONTEXPAND
2503          *      Disable vma merging and expanding with mremap().
2504          *   VM_DONTDUMP
2505          *      Omit vma from core dump, even when VM_IO turned off.
2506          *
2507          * There's a horrible special case to handle copy-on-write
2508          * behaviour that some programs depend on. We mark the "original"
2509          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2510          * See vm_normal_page() for details.
2511          */
2512         if (is_cow_mapping(vma->vm_flags)) {
2513                 if (addr != vma->vm_start || end != vma->vm_end)
2514                         return -EINVAL;
2515                 vma->vm_pgoff = pfn;
2516         }
2517
2518         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2519
2520         BUG_ON(addr >= end);
2521         pfn -= addr >> PAGE_SHIFT;
2522         pgd = pgd_offset(mm, addr);
2523         flush_cache_range(vma, addr, end);
2524         do {
2525                 next = pgd_addr_end(addr, end);
2526                 err = remap_p4d_range(mm, pgd, addr, next,
2527                                 pfn + (addr >> PAGE_SHIFT), prot);
2528                 if (err)
2529                         return err;
2530         } while (pgd++, addr = next, addr != end);
2531
2532         return 0;
2533 }
2534
2535 /**
2536  * remap_pfn_range - remap kernel memory to userspace
2537  * @vma: user vma to map to
2538  * @addr: target page aligned user address to start at
2539  * @pfn: page frame number of kernel physical memory address
2540  * @size: size of mapping area
2541  * @prot: page protection flags for this mapping
2542  *
2543  * Note: this is only safe if the mm semaphore is held when called.
2544  *
2545  * Return: %0 on success, negative error code otherwise.
2546  */
2547 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2548                     unsigned long pfn, unsigned long size, pgprot_t prot)
2549 {
2550         int err;
2551
2552         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2553         if (err)
2554                 return -EINVAL;
2555
2556         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2557         if (err)
2558                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2559         return err;
2560 }
2561 EXPORT_SYMBOL(remap_pfn_range);
2562
2563 /**
2564  * vm_iomap_memory - remap memory to userspace
2565  * @vma: user vma to map to
2566  * @start: start of the physical memory to be mapped
2567  * @len: size of area
2568  *
2569  * This is a simplified io_remap_pfn_range() for common driver use. The
2570  * driver just needs to give us the physical memory range to be mapped,
2571  * we'll figure out the rest from the vma information.
2572  *
2573  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2574  * whatever write-combining details or similar.
2575  *
2576  * Return: %0 on success, negative error code otherwise.
2577  */
2578 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2579 {
2580         unsigned long vm_len, pfn, pages;
2581
2582         /* Check that the physical memory area passed in looks valid */
2583         if (start + len < start)
2584                 return -EINVAL;
2585         /*
2586          * You *really* shouldn't map things that aren't page-aligned,
2587          * but we've historically allowed it because IO memory might
2588          * just have smaller alignment.
2589          */
2590         len += start & ~PAGE_MASK;
2591         pfn = start >> PAGE_SHIFT;
2592         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2593         if (pfn + pages < pfn)
2594                 return -EINVAL;
2595
2596         /* We start the mapping 'vm_pgoff' pages into the area */
2597         if (vma->vm_pgoff > pages)
2598                 return -EINVAL;
2599         pfn += vma->vm_pgoff;
2600         pages -= vma->vm_pgoff;
2601
2602         /* Can we fit all of the mapping? */
2603         vm_len = vma->vm_end - vma->vm_start;
2604         if (vm_len >> PAGE_SHIFT > pages)
2605                 return -EINVAL;
2606
2607         /* Ok, let it rip */
2608         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2609 }
2610 EXPORT_SYMBOL(vm_iomap_memory);
2611
2612 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2613                                      unsigned long addr, unsigned long end,
2614                                      pte_fn_t fn, void *data, bool create,
2615                                      pgtbl_mod_mask *mask)
2616 {
2617         pte_t *pte, *mapped_pte;
2618         int err = 0;
2619         spinlock_t *ptl;
2620
2621         if (create) {
2622                 mapped_pte = pte = (mm == &init_mm) ?
2623                         pte_alloc_kernel_track(pmd, addr, mask) :
2624                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2625                 if (!pte)
2626                         return -ENOMEM;
2627         } else {
2628                 mapped_pte = pte = (mm == &init_mm) ?
2629                         pte_offset_kernel(pmd, addr) :
2630                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2631         }
2632
2633         BUG_ON(pmd_huge(*pmd));
2634
2635         arch_enter_lazy_mmu_mode();
2636
2637         if (fn) {
2638                 do {
2639                         if (create || !pte_none(*pte)) {
2640                                 err = fn(pte++, addr, data);
2641                                 if (err)
2642                                         break;
2643                         }
2644                 } while (addr += PAGE_SIZE, addr != end);
2645         }
2646         *mask |= PGTBL_PTE_MODIFIED;
2647
2648         arch_leave_lazy_mmu_mode();
2649
2650         if (mm != &init_mm)
2651                 pte_unmap_unlock(mapped_pte, ptl);
2652         return err;
2653 }
2654
2655 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2656                                      unsigned long addr, unsigned long end,
2657                                      pte_fn_t fn, void *data, bool create,
2658                                      pgtbl_mod_mask *mask)
2659 {
2660         pmd_t *pmd;
2661         unsigned long next;
2662         int err = 0;
2663
2664         BUG_ON(pud_huge(*pud));
2665
2666         if (create) {
2667                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2668                 if (!pmd)
2669                         return -ENOMEM;
2670         } else {
2671                 pmd = pmd_offset(pud, addr);
2672         }
2673         do {
2674                 next = pmd_addr_end(addr, end);
2675                 if (pmd_none(*pmd) && !create)
2676                         continue;
2677                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2678                         return -EINVAL;
2679                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2680                         if (!create)
2681                                 continue;
2682                         pmd_clear_bad(pmd);
2683                 }
2684                 err = apply_to_pte_range(mm, pmd, addr, next,
2685                                          fn, data, create, mask);
2686                 if (err)
2687                         break;
2688         } while (pmd++, addr = next, addr != end);
2689
2690         return err;
2691 }
2692
2693 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2694                                      unsigned long addr, unsigned long end,
2695                                      pte_fn_t fn, void *data, bool create,
2696                                      pgtbl_mod_mask *mask)
2697 {
2698         pud_t *pud;
2699         unsigned long next;
2700         int err = 0;
2701
2702         if (create) {
2703                 pud = pud_alloc_track(mm, p4d, addr, mask);
2704                 if (!pud)
2705                         return -ENOMEM;
2706         } else {
2707                 pud = pud_offset(p4d, addr);
2708         }
2709         do {
2710                 next = pud_addr_end(addr, end);
2711                 if (pud_none(*pud) && !create)
2712                         continue;
2713                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2714                         return -EINVAL;
2715                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2716                         if (!create)
2717                                 continue;
2718                         pud_clear_bad(pud);
2719                 }
2720                 err = apply_to_pmd_range(mm, pud, addr, next,
2721                                          fn, data, create, mask);
2722                 if (err)
2723                         break;
2724         } while (pud++, addr = next, addr != end);
2725
2726         return err;
2727 }
2728
2729 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2730                                      unsigned long addr, unsigned long end,
2731                                      pte_fn_t fn, void *data, bool create,
2732                                      pgtbl_mod_mask *mask)
2733 {
2734         p4d_t *p4d;
2735         unsigned long next;
2736         int err = 0;
2737
2738         if (create) {
2739                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2740                 if (!p4d)
2741                         return -ENOMEM;
2742         } else {
2743                 p4d = p4d_offset(pgd, addr);
2744         }
2745         do {
2746                 next = p4d_addr_end(addr, end);
2747                 if (p4d_none(*p4d) && !create)
2748                         continue;
2749                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2750                         return -EINVAL;
2751                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2752                         if (!create)
2753                                 continue;
2754                         p4d_clear_bad(p4d);
2755                 }
2756                 err = apply_to_pud_range(mm, p4d, addr, next,
2757                                          fn, data, create, mask);
2758                 if (err)
2759                         break;
2760         } while (p4d++, addr = next, addr != end);
2761
2762         return err;
2763 }
2764
2765 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766                                  unsigned long size, pte_fn_t fn,
2767                                  void *data, bool create)
2768 {
2769         pgd_t *pgd;
2770         unsigned long start = addr, next;
2771         unsigned long end = addr + size;
2772         pgtbl_mod_mask mask = 0;
2773         int err = 0;
2774
2775         if (WARN_ON(addr >= end))
2776                 return -EINVAL;
2777
2778         pgd = pgd_offset(mm, addr);
2779         do {
2780                 next = pgd_addr_end(addr, end);
2781                 if (pgd_none(*pgd) && !create)
2782                         continue;
2783                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2784                         return -EINVAL;
2785                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2786                         if (!create)
2787                                 continue;
2788                         pgd_clear_bad(pgd);
2789                 }
2790                 err = apply_to_p4d_range(mm, pgd, addr, next,
2791                                          fn, data, create, &mask);
2792                 if (err)
2793                         break;
2794         } while (pgd++, addr = next, addr != end);
2795
2796         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2797                 arch_sync_kernel_mappings(start, start + size);
2798
2799         return err;
2800 }
2801
2802 /*
2803  * Scan a region of virtual memory, filling in page tables as necessary
2804  * and calling a provided function on each leaf page table.
2805  */
2806 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2807                         unsigned long size, pte_fn_t fn, void *data)
2808 {
2809         return __apply_to_page_range(mm, addr, size, fn, data, true);
2810 }
2811 EXPORT_SYMBOL_GPL(apply_to_page_range);
2812
2813 /*
2814  * Scan a region of virtual memory, calling a provided function on
2815  * each leaf page table where it exists.
2816  *
2817  * Unlike apply_to_page_range, this does _not_ fill in page tables
2818  * where they are absent.
2819  */
2820 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2821                                  unsigned long size, pte_fn_t fn, void *data)
2822 {
2823         return __apply_to_page_range(mm, addr, size, fn, data, false);
2824 }
2825 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2826
2827 /*
2828  * handle_pte_fault chooses page fault handler according to an entry which was
2829  * read non-atomically.  Before making any commitment, on those architectures
2830  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2831  * parts, do_swap_page must check under lock before unmapping the pte and
2832  * proceeding (but do_wp_page is only called after already making such a check;
2833  * and do_anonymous_page can safely check later on).
2834  */
2835 static inline int pte_unmap_same(struct vm_fault *vmf)
2836 {
2837         int same = 1;
2838 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2839         if (sizeof(pte_t) > sizeof(unsigned long)) {
2840                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2841                 spin_lock(ptl);
2842                 same = pte_same(*vmf->pte, vmf->orig_pte);
2843                 spin_unlock(ptl);
2844         }
2845 #endif
2846         pte_unmap(vmf->pte);
2847         vmf->pte = NULL;
2848         return same;
2849 }
2850
2851 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2852                                        struct vm_fault *vmf)
2853 {
2854         bool ret;
2855         void *kaddr;
2856         void __user *uaddr;
2857         bool locked = false;
2858         struct vm_area_struct *vma = vmf->vma;
2859         struct mm_struct *mm = vma->vm_mm;
2860         unsigned long addr = vmf->address;
2861
2862         if (likely(src)) {
2863                 copy_user_highpage(dst, src, addr, vma);
2864                 return true;
2865         }
2866
2867         /*
2868          * If the source page was a PFN mapping, we don't have
2869          * a "struct page" for it. We do a best-effort copy by
2870          * just copying from the original user address. If that
2871          * fails, we just zero-fill it. Live with it.
2872          */
2873         kaddr = kmap_atomic(dst);
2874         uaddr = (void __user *)(addr & PAGE_MASK);
2875
2876         /*
2877          * On architectures with software "accessed" bits, we would
2878          * take a double page fault, so mark it accessed here.
2879          */
2880         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2881                 pte_t entry;
2882
2883                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2884                 locked = true;
2885                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2886                         /*
2887                          * Other thread has already handled the fault
2888                          * and update local tlb only
2889                          */
2890                         update_mmu_tlb(vma, addr, vmf->pte);
2891                         ret = false;
2892                         goto pte_unlock;
2893                 }
2894
2895                 entry = pte_mkyoung(vmf->orig_pte);
2896                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2897                         update_mmu_cache(vma, addr, vmf->pte);
2898         }
2899
2900         /*
2901          * This really shouldn't fail, because the page is there
2902          * in the page tables. But it might just be unreadable,
2903          * in which case we just give up and fill the result with
2904          * zeroes.
2905          */
2906         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2907                 if (locked)
2908                         goto warn;
2909
2910                 /* Re-validate under PTL if the page is still mapped */
2911                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2912                 locked = true;
2913                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2914                         /* The PTE changed under us, update local tlb */
2915                         update_mmu_tlb(vma, addr, vmf->pte);
2916                         ret = false;
2917                         goto pte_unlock;
2918                 }
2919
2920                 /*
2921                  * The same page can be mapped back since last copy attempt.
2922                  * Try to copy again under PTL.
2923                  */
2924                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2925                         /*
2926                          * Give a warn in case there can be some obscure
2927                          * use-case
2928                          */
2929 warn:
2930                         WARN_ON_ONCE(1);
2931                         clear_page(kaddr);
2932                 }
2933         }
2934
2935         ret = true;
2936
2937 pte_unlock:
2938         if (locked)
2939                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2940         kunmap_atomic(kaddr);
2941         flush_dcache_page(dst);
2942
2943         return ret;
2944 }
2945
2946 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2947 {
2948         struct file *vm_file = vma->vm_file;
2949
2950         if (vm_file)
2951                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2952
2953         /*
2954          * Special mappings (e.g. VDSO) do not have any file so fake
2955          * a default GFP_KERNEL for them.
2956          */
2957         return GFP_KERNEL;
2958 }
2959
2960 /*
2961  * Notify the address space that the page is about to become writable so that
2962  * it can prohibit this or wait for the page to get into an appropriate state.
2963  *
2964  * We do this without the lock held, so that it can sleep if it needs to.
2965  */
2966 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2967 {
2968         vm_fault_t ret;
2969         struct page *page = vmf->page;
2970         unsigned int old_flags = vmf->flags;
2971
2972         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2973
2974         if (vmf->vma->vm_file &&
2975             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2976                 return VM_FAULT_SIGBUS;
2977
2978         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2979         /* Restore original flags so that caller is not surprised */
2980         vmf->flags = old_flags;
2981         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2982                 return ret;
2983         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2984                 lock_page(page);
2985                 if (!page->mapping) {
2986                         unlock_page(page);
2987                         return 0; /* retry */
2988                 }
2989                 ret |= VM_FAULT_LOCKED;
2990         } else
2991                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2992         return ret;
2993 }
2994
2995 /*
2996  * Handle dirtying of a page in shared file mapping on a write fault.
2997  *
2998  * The function expects the page to be locked and unlocks it.
2999  */
3000 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3001 {
3002         struct vm_area_struct *vma = vmf->vma;
3003         struct address_space *mapping;
3004         struct page *page = vmf->page;
3005         bool dirtied;
3006         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3007
3008         dirtied = set_page_dirty(page);
3009         VM_BUG_ON_PAGE(PageAnon(page), page);
3010         /*
3011          * Take a local copy of the address_space - page.mapping may be zeroed
3012          * by truncate after unlock_page().   The address_space itself remains
3013          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3014          * release semantics to prevent the compiler from undoing this copying.
3015          */
3016         mapping = page_rmapping(page);
3017         unlock_page(page);
3018
3019         if (!page_mkwrite)
3020                 file_update_time(vma->vm_file);
3021
3022         /*
3023          * Throttle page dirtying rate down to writeback speed.
3024          *
3025          * mapping may be NULL here because some device drivers do not
3026          * set page.mapping but still dirty their pages
3027          *
3028          * Drop the mmap_lock before waiting on IO, if we can. The file
3029          * is pinning the mapping, as per above.
3030          */
3031         if ((dirtied || page_mkwrite) && mapping) {
3032                 struct file *fpin;
3033
3034                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3035                 balance_dirty_pages_ratelimited(mapping);
3036                 if (fpin) {
3037                         fput(fpin);
3038                         return VM_FAULT_COMPLETED;
3039                 }
3040         }
3041
3042         return 0;
3043 }
3044
3045 /*
3046  * Handle write page faults for pages that can be reused in the current vma
3047  *
3048  * This can happen either due to the mapping being with the VM_SHARED flag,
3049  * or due to us being the last reference standing to the page. In either
3050  * case, all we need to do here is to mark the page as writable and update
3051  * any related book-keeping.
3052  */
3053 static inline void wp_page_reuse(struct vm_fault *vmf)
3054         __releases(vmf->ptl)
3055 {
3056         struct vm_area_struct *vma = vmf->vma;
3057         struct page *page = vmf->page;
3058         pte_t entry;
3059
3060         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3061         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3062
3063         /*
3064          * Clear the pages cpupid information as the existing
3065          * information potentially belongs to a now completely
3066          * unrelated process.
3067          */
3068         if (page)
3069                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3070
3071         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3072         entry = pte_mkyoung(vmf->orig_pte);
3073         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3074         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3075                 update_mmu_cache(vma, vmf->address, vmf->pte);
3076         pte_unmap_unlock(vmf->pte, vmf->ptl);
3077         count_vm_event(PGREUSE);
3078 }
3079
3080 /*
3081  * Handle the case of a page which we actually need to copy to a new page,
3082  * either due to COW or unsharing.
3083  *
3084  * Called with mmap_lock locked and the old page referenced, but
3085  * without the ptl held.
3086  *
3087  * High level logic flow:
3088  *
3089  * - Allocate a page, copy the content of the old page to the new one.
3090  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3091  * - Take the PTL. If the pte changed, bail out and release the allocated page
3092  * - If the pte is still the way we remember it, update the page table and all
3093  *   relevant references. This includes dropping the reference the page-table
3094  *   held to the old page, as well as updating the rmap.
3095  * - In any case, unlock the PTL and drop the reference we took to the old page.
3096  */
3097 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3098 {
3099         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3100         struct vm_area_struct *vma = vmf->vma;
3101         struct mm_struct *mm = vma->vm_mm;
3102         struct page *old_page = vmf->page;
3103         struct page *new_page = NULL;
3104         pte_t entry;
3105         int page_copied = 0;
3106         struct mmu_notifier_range range;
3107
3108         delayacct_wpcopy_start();
3109
3110         if (unlikely(anon_vma_prepare(vma)))
3111                 goto oom;
3112
3113         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3114                 new_page = alloc_zeroed_user_highpage_movable(vma,
3115                                                               vmf->address);
3116                 if (!new_page)
3117                         goto oom;
3118         } else {
3119                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3120                                 vmf->address);
3121                 if (!new_page)
3122                         goto oom;
3123
3124                 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3125                         /*
3126                          * COW failed, if the fault was solved by other,
3127                          * it's fine. If not, userspace would re-fault on
3128                          * the same address and we will handle the fault
3129                          * from the second attempt.
3130                          */
3131                         put_page(new_page);
3132                         if (old_page)
3133                                 put_page(old_page);
3134
3135                         delayacct_wpcopy_end();
3136                         return 0;
3137                 }
3138                 kmsan_copy_page_meta(new_page, old_page);
3139         }
3140
3141         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3142                 goto oom_free_new;
3143         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3144
3145         __SetPageUptodate(new_page);
3146
3147         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3148                                 vmf->address & PAGE_MASK,
3149                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3150         mmu_notifier_invalidate_range_start(&range);
3151
3152         /*
3153          * Re-check the pte - we dropped the lock
3154          */
3155         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3156         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3157                 if (old_page) {
3158                         if (!PageAnon(old_page)) {
3159                                 dec_mm_counter_fast(mm,
3160                                                 mm_counter_file(old_page));
3161                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3162                         }
3163                 } else {
3164                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3165                 }
3166                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3167                 entry = mk_pte(new_page, vma->vm_page_prot);
3168                 entry = pte_sw_mkyoung(entry);
3169                 if (unlikely(unshare)) {
3170                         if (pte_soft_dirty(vmf->orig_pte))
3171                                 entry = pte_mksoft_dirty(entry);
3172                         if (pte_uffd_wp(vmf->orig_pte))
3173                                 entry = pte_mkuffd_wp(entry);
3174                 } else {
3175                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3176                 }
3177
3178                 /*
3179                  * Clear the pte entry and flush it first, before updating the
3180                  * pte with the new entry, to keep TLBs on different CPUs in
3181                  * sync. This code used to set the new PTE then flush TLBs, but
3182                  * that left a window where the new PTE could be loaded into
3183                  * some TLBs while the old PTE remains in others.
3184                  */
3185                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3186                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3187                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3188                 /*
3189                  * We call the notify macro here because, when using secondary
3190                  * mmu page tables (such as kvm shadow page tables), we want the
3191                  * new page to be mapped directly into the secondary page table.
3192                  */
3193                 BUG_ON(unshare && pte_write(entry));
3194                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3195                 update_mmu_cache(vma, vmf->address, vmf->pte);
3196                 if (old_page) {
3197                         /*
3198                          * Only after switching the pte to the new page may
3199                          * we remove the mapcount here. Otherwise another
3200                          * process may come and find the rmap count decremented
3201                          * before the pte is switched to the new page, and
3202                          * "reuse" the old page writing into it while our pte
3203                          * here still points into it and can be read by other
3204                          * threads.
3205                          *
3206                          * The critical issue is to order this
3207                          * page_remove_rmap with the ptp_clear_flush above.
3208                          * Those stores are ordered by (if nothing else,)
3209                          * the barrier present in the atomic_add_negative
3210                          * in page_remove_rmap.
3211                          *
3212                          * Then the TLB flush in ptep_clear_flush ensures that
3213                          * no process can access the old page before the
3214                          * decremented mapcount is visible. And the old page
3215                          * cannot be reused until after the decremented
3216                          * mapcount is visible. So transitively, TLBs to
3217                          * old page will be flushed before it can be reused.
3218                          */
3219                         page_remove_rmap(old_page, vma, false);
3220                 }
3221
3222                 /* Free the old page.. */
3223                 new_page = old_page;
3224                 page_copied = 1;
3225         } else {
3226                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3227         }
3228
3229         if (new_page)
3230                 put_page(new_page);
3231
3232         pte_unmap_unlock(vmf->pte, vmf->ptl);
3233         /*
3234          * No need to double call mmu_notifier->invalidate_range() callback as
3235          * the above ptep_clear_flush_notify() did already call it.
3236          */
3237         mmu_notifier_invalidate_range_only_end(&range);
3238         if (old_page) {
3239                 if (page_copied)
3240                         free_swap_cache(old_page);
3241                 put_page(old_page);
3242         }
3243
3244         delayacct_wpcopy_end();
3245         return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3246 oom_free_new:
3247         put_page(new_page);
3248 oom:
3249         if (old_page)
3250                 put_page(old_page);
3251
3252         delayacct_wpcopy_end();
3253         return VM_FAULT_OOM;
3254 }
3255
3256 /**
3257  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3258  *                        writeable once the page is prepared
3259  *
3260  * @vmf: structure describing the fault
3261  *
3262  * This function handles all that is needed to finish a write page fault in a
3263  * shared mapping due to PTE being read-only once the mapped page is prepared.
3264  * It handles locking of PTE and modifying it.
3265  *
3266  * The function expects the page to be locked or other protection against
3267  * concurrent faults / writeback (such as DAX radix tree locks).
3268  *
3269  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3270  * we acquired PTE lock.
3271  */
3272 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3273 {
3274         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3275         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3276                                        &vmf->ptl);
3277         /*
3278          * We might have raced with another page fault while we released the
3279          * pte_offset_map_lock.
3280          */
3281         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3282                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3283                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3284                 return VM_FAULT_NOPAGE;
3285         }
3286         wp_page_reuse(vmf);
3287         return 0;
3288 }
3289
3290 /*
3291  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3292  * mapping
3293  */
3294 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3295 {
3296         struct vm_area_struct *vma = vmf->vma;
3297
3298         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3299                 vm_fault_t ret;
3300
3301                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3302                 vmf->flags |= FAULT_FLAG_MKWRITE;
3303                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3304                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3305                         return ret;
3306                 return finish_mkwrite_fault(vmf);
3307         }
3308         wp_page_reuse(vmf);
3309         return VM_FAULT_WRITE;
3310 }
3311
3312 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3313         __releases(vmf->ptl)
3314 {
3315         struct vm_area_struct *vma = vmf->vma;
3316         vm_fault_t ret = VM_FAULT_WRITE;
3317
3318         get_page(vmf->page);
3319
3320         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3321                 vm_fault_t tmp;
3322
3323                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3324                 tmp = do_page_mkwrite(vmf);
3325                 if (unlikely(!tmp || (tmp &
3326                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3327                         put_page(vmf->page);
3328                         return tmp;
3329                 }
3330                 tmp = finish_mkwrite_fault(vmf);
3331                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3332                         unlock_page(vmf->page);
3333                         put_page(vmf->page);
3334                         return tmp;
3335                 }
3336         } else {
3337                 wp_page_reuse(vmf);
3338                 lock_page(vmf->page);
3339         }
3340         ret |= fault_dirty_shared_page(vmf);
3341         put_page(vmf->page);
3342
3343         return ret;
3344 }
3345
3346 /*
3347  * This routine handles present pages, when
3348  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3349  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3350  *   (FAULT_FLAG_UNSHARE)
3351  *
3352  * It is done by copying the page to a new address and decrementing the
3353  * shared-page counter for the old page.
3354  *
3355  * Note that this routine assumes that the protection checks have been
3356  * done by the caller (the low-level page fault routine in most cases).
3357  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3358  * done any necessary COW.
3359  *
3360  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3361  * though the page will change only once the write actually happens. This
3362  * avoids a few races, and potentially makes it more efficient.
3363  *
3364  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3365  * but allow concurrent faults), with pte both mapped and locked.
3366  * We return with mmap_lock still held, but pte unmapped and unlocked.
3367  */
3368 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3369         __releases(vmf->ptl)
3370 {
3371         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3372         struct vm_area_struct *vma = vmf->vma;
3373         struct folio *folio;
3374
3375         VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3376         VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3377
3378         if (likely(!unshare)) {
3379                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3380                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3381                         return handle_userfault(vmf, VM_UFFD_WP);
3382                 }
3383
3384                 /*
3385                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3386                  * is flushed in this case before copying.
3387                  */
3388                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3389                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3390                         flush_tlb_page(vmf->vma, vmf->address);
3391         }
3392
3393         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3394         if (!vmf->page) {
3395                 if (unlikely(unshare)) {
3396                         /* No anonymous page -> nothing to do. */
3397                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3398                         return 0;
3399                 }
3400
3401                 /*
3402                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3403                  * VM_PFNMAP VMA.
3404                  *
3405                  * We should not cow pages in a shared writeable mapping.
3406                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3407                  */
3408                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3409                                      (VM_WRITE|VM_SHARED))
3410                         return wp_pfn_shared(vmf);
3411
3412                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3413                 return wp_page_copy(vmf);
3414         }
3415
3416         /*
3417          * Take out anonymous pages first, anonymous shared vmas are
3418          * not dirty accountable.
3419          */
3420         folio = page_folio(vmf->page);
3421         if (folio_test_anon(folio)) {
3422                 /*
3423                  * If the page is exclusive to this process we must reuse the
3424                  * page without further checks.
3425                  */
3426                 if (PageAnonExclusive(vmf->page))
3427                         goto reuse;
3428
3429                 /*
3430                  * We have to verify under folio lock: these early checks are
3431                  * just an optimization to avoid locking the folio and freeing
3432                  * the swapcache if there is little hope that we can reuse.
3433                  *
3434                  * KSM doesn't necessarily raise the folio refcount.
3435                  */
3436                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3437                         goto copy;
3438                 if (!folio_test_lru(folio))
3439                         /*
3440                          * Note: We cannot easily detect+handle references from
3441                          * remote LRU pagevecs or references to LRU folios.
3442                          */
3443                         lru_add_drain();
3444                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3445                         goto copy;
3446                 if (!folio_trylock(folio))
3447                         goto copy;
3448                 if (folio_test_swapcache(folio))
3449                         folio_free_swap(folio);
3450                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3451                         folio_unlock(folio);
3452                         goto copy;
3453                 }
3454                 /*
3455                  * Ok, we've got the only folio reference from our mapping
3456                  * and the folio is locked, it's dark out, and we're wearing
3457                  * sunglasses. Hit it.
3458                  */
3459                 page_move_anon_rmap(vmf->page, vma);
3460                 folio_unlock(folio);
3461 reuse:
3462                 if (unlikely(unshare)) {
3463                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3464                         return 0;
3465                 }
3466                 wp_page_reuse(vmf);
3467                 return VM_FAULT_WRITE;
3468         } else if (unshare) {
3469                 /* No anonymous page -> nothing to do. */
3470                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3471                 return 0;
3472         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3473                                         (VM_WRITE|VM_SHARED))) {
3474                 return wp_page_shared(vmf);
3475         }
3476 copy:
3477         /*
3478          * Ok, we need to copy. Oh, well..
3479          */
3480         get_page(vmf->page);
3481
3482         pte_unmap_unlock(vmf->pte, vmf->ptl);
3483 #ifdef CONFIG_KSM
3484         if (PageKsm(vmf->page))
3485                 count_vm_event(COW_KSM);
3486 #endif
3487         return wp_page_copy(vmf);
3488 }
3489
3490 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3491                 unsigned long start_addr, unsigned long end_addr,
3492                 struct zap_details *details)
3493 {
3494         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3495 }
3496
3497 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3498                                             pgoff_t first_index,
3499                                             pgoff_t last_index,
3500                                             struct zap_details *details)
3501 {
3502         struct vm_area_struct *vma;
3503         pgoff_t vba, vea, zba, zea;
3504
3505         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3506                 vba = vma->vm_pgoff;
3507                 vea = vba + vma_pages(vma) - 1;
3508                 zba = max(first_index, vba);
3509                 zea = min(last_index, vea);
3510
3511                 unmap_mapping_range_vma(vma,
3512                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3513                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3514                                 details);
3515         }
3516 }
3517
3518 /**
3519  * unmap_mapping_folio() - Unmap single folio from processes.
3520  * @folio: The locked folio to be unmapped.
3521  *
3522  * Unmap this folio from any userspace process which still has it mmaped.
3523  * Typically, for efficiency, the range of nearby pages has already been
3524  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3525  * truncation or invalidation holds the lock on a folio, it may find that
3526  * the page has been remapped again: and then uses unmap_mapping_folio()
3527  * to unmap it finally.
3528  */
3529 void unmap_mapping_folio(struct folio *folio)
3530 {
3531         struct address_space *mapping = folio->mapping;
3532         struct zap_details details = { };
3533         pgoff_t first_index;
3534         pgoff_t last_index;
3535
3536         VM_BUG_ON(!folio_test_locked(folio));
3537
3538         first_index = folio->index;
3539         last_index = folio->index + folio_nr_pages(folio) - 1;
3540
3541         details.even_cows = false;
3542         details.single_folio = folio;
3543         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3544
3545         i_mmap_lock_read(mapping);
3546         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3547                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3548                                          last_index, &details);
3549         i_mmap_unlock_read(mapping);
3550 }
3551
3552 /**
3553  * unmap_mapping_pages() - Unmap pages from processes.
3554  * @mapping: The address space containing pages to be unmapped.
3555  * @start: Index of first page to be unmapped.
3556  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3557  * @even_cows: Whether to unmap even private COWed pages.
3558  *
3559  * Unmap the pages in this address space from any userspace process which
3560  * has them mmaped.  Generally, you want to remove COWed pages as well when
3561  * a file is being truncated, but not when invalidating pages from the page
3562  * cache.
3563  */
3564 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3565                 pgoff_t nr, bool even_cows)
3566 {
3567         struct zap_details details = { };
3568         pgoff_t first_index = start;
3569         pgoff_t last_index = start + nr - 1;
3570
3571         details.even_cows = even_cows;
3572         if (last_index < first_index)
3573                 last_index = ULONG_MAX;
3574
3575         i_mmap_lock_read(mapping);
3576         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3577                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3578                                          last_index, &details);
3579         i_mmap_unlock_read(mapping);
3580 }
3581 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3582
3583 /**
3584  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3585  * address_space corresponding to the specified byte range in the underlying
3586  * file.
3587  *
3588  * @mapping: the address space containing mmaps to be unmapped.
3589  * @holebegin: byte in first page to unmap, relative to the start of
3590  * the underlying file.  This will be rounded down to a PAGE_SIZE
3591  * boundary.  Note that this is different from truncate_pagecache(), which
3592  * must keep the partial page.  In contrast, we must get rid of
3593  * partial pages.
3594  * @holelen: size of prospective hole in bytes.  This will be rounded
3595  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3596  * end of the file.
3597  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3598  * but 0 when invalidating pagecache, don't throw away private data.
3599  */
3600 void unmap_mapping_range(struct address_space *mapping,
3601                 loff_t const holebegin, loff_t const holelen, int even_cows)
3602 {
3603         pgoff_t hba = holebegin >> PAGE_SHIFT;
3604         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3605
3606         /* Check for overflow. */
3607         if (sizeof(holelen) > sizeof(hlen)) {
3608                 long long holeend =
3609                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3610                 if (holeend & ~(long long)ULONG_MAX)
3611                         hlen = ULONG_MAX - hba + 1;
3612         }
3613
3614         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3615 }
3616 EXPORT_SYMBOL(unmap_mapping_range);
3617
3618 /*
3619  * Restore a potential device exclusive pte to a working pte entry
3620  */
3621 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3622 {
3623         struct folio *folio = page_folio(vmf->page);
3624         struct vm_area_struct *vma = vmf->vma;
3625         struct mmu_notifier_range range;
3626
3627         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3628                 return VM_FAULT_RETRY;
3629         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3630                                 vma->vm_mm, vmf->address & PAGE_MASK,
3631                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3632         mmu_notifier_invalidate_range_start(&range);
3633
3634         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3635                                 &vmf->ptl);
3636         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3637                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3638
3639         pte_unmap_unlock(vmf->pte, vmf->ptl);
3640         folio_unlock(folio);
3641
3642         mmu_notifier_invalidate_range_end(&range);
3643         return 0;
3644 }
3645
3646 static inline bool should_try_to_free_swap(struct folio *folio,
3647                                            struct vm_area_struct *vma,
3648                                            unsigned int fault_flags)
3649 {
3650         if (!folio_test_swapcache(folio))
3651                 return false;
3652         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3653             folio_test_mlocked(folio))
3654                 return true;
3655         /*
3656          * If we want to map a page that's in the swapcache writable, we
3657          * have to detect via the refcount if we're really the exclusive
3658          * user. Try freeing the swapcache to get rid of the swapcache
3659          * reference only in case it's likely that we'll be the exlusive user.
3660          */
3661         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3662                 folio_ref_count(folio) == 2;
3663 }
3664
3665 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3666 {
3667         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3668                                        vmf->address, &vmf->ptl);
3669         /*
3670          * Be careful so that we will only recover a special uffd-wp pte into a
3671          * none pte.  Otherwise it means the pte could have changed, so retry.
3672          */
3673         if (is_pte_marker(*vmf->pte))
3674                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3675         pte_unmap_unlock(vmf->pte, vmf->ptl);
3676         return 0;
3677 }
3678
3679 /*
3680  * This is actually a page-missing access, but with uffd-wp special pte
3681  * installed.  It means this pte was wr-protected before being unmapped.
3682  */
3683 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3684 {
3685         /*
3686          * Just in case there're leftover special ptes even after the region
3687          * got unregistered - we can simply clear them.  We can also do that
3688          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3689          * ranges, but it should be more efficient to be done lazily here.
3690          */
3691         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3692                 return pte_marker_clear(vmf);
3693
3694         /* do_fault() can handle pte markers too like none pte */
3695         return do_fault(vmf);
3696 }
3697
3698 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3699 {
3700         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3701         unsigned long marker = pte_marker_get(entry);
3702
3703         /*
3704          * PTE markers should always be with file-backed memories, and the
3705          * marker should never be empty.  If anything weird happened, the best
3706          * thing to do is to kill the process along with its mm.
3707          */
3708         if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3709                 return VM_FAULT_SIGBUS;
3710
3711         if (pte_marker_entry_uffd_wp(entry))
3712                 return pte_marker_handle_uffd_wp(vmf);
3713
3714         /* This is an unknown pte marker */
3715         return VM_FAULT_SIGBUS;
3716 }
3717
3718 /*
3719  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3720  * but allow concurrent faults), and pte mapped but not yet locked.
3721  * We return with pte unmapped and unlocked.
3722  *
3723  * We return with the mmap_lock locked or unlocked in the same cases
3724  * as does filemap_fault().
3725  */
3726 vm_fault_t do_swap_page(struct vm_fault *vmf)
3727 {
3728         struct vm_area_struct *vma = vmf->vma;
3729         struct folio *swapcache, *folio = NULL;
3730         struct page *page;
3731         struct swap_info_struct *si = NULL;
3732         rmap_t rmap_flags = RMAP_NONE;
3733         bool exclusive = false;
3734         swp_entry_t entry;
3735         pte_t pte;
3736         int locked;
3737         vm_fault_t ret = 0;
3738         void *shadow = NULL;
3739
3740         if (!pte_unmap_same(vmf))
3741                 goto out;
3742
3743         entry = pte_to_swp_entry(vmf->orig_pte);
3744         if (unlikely(non_swap_entry(entry))) {
3745                 if (is_migration_entry(entry)) {
3746                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3747                                              vmf->address);
3748                 } else if (is_device_exclusive_entry(entry)) {
3749                         vmf->page = pfn_swap_entry_to_page(entry);
3750                         ret = remove_device_exclusive_entry(vmf);
3751                 } else if (is_device_private_entry(entry)) {
3752                         vmf->page = pfn_swap_entry_to_page(entry);
3753                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3754                                         vmf->address, &vmf->ptl);
3755                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3756                                 spin_unlock(vmf->ptl);
3757                                 goto out;
3758                         }
3759
3760                         /*
3761                          * Get a page reference while we know the page can't be
3762                          * freed.
3763                          */
3764                         get_page(vmf->page);
3765                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3766                         vmf->page->pgmap->ops->migrate_to_ram(vmf);
3767                         put_page(vmf->page);
3768                 } else if (is_hwpoison_entry(entry)) {
3769                         ret = VM_FAULT_HWPOISON;
3770                 } else if (is_swapin_error_entry(entry)) {
3771                         ret = VM_FAULT_SIGBUS;
3772                 } else if (is_pte_marker_entry(entry)) {
3773                         ret = handle_pte_marker(vmf);
3774                 } else {
3775                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3776                         ret = VM_FAULT_SIGBUS;
3777                 }
3778                 goto out;
3779         }
3780
3781         /* Prevent swapoff from happening to us. */
3782         si = get_swap_device(entry);
3783         if (unlikely(!si))
3784                 goto out;
3785
3786         folio = swap_cache_get_folio(entry, vma, vmf->address);
3787         if (folio)
3788                 page = folio_file_page(folio, swp_offset(entry));
3789         swapcache = folio;
3790
3791         if (!folio) {
3792                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3793                     __swap_count(entry) == 1) {
3794                         /* skip swapcache */
3795                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3796                                                 vma, vmf->address, false);
3797                         page = &folio->page;
3798                         if (folio) {
3799                                 __folio_set_locked(folio);
3800                                 __folio_set_swapbacked(folio);
3801
3802                                 if (mem_cgroup_swapin_charge_folio(folio,
3803                                                         vma->vm_mm, GFP_KERNEL,
3804                                                         entry)) {
3805                                         ret = VM_FAULT_OOM;
3806                                         goto out_page;
3807                                 }
3808                                 mem_cgroup_swapin_uncharge_swap(entry);
3809
3810                                 shadow = get_shadow_from_swap_cache(entry);
3811                                 if (shadow)
3812                                         workingset_refault(folio, shadow);
3813
3814                                 folio_add_lru(folio);
3815
3816                                 /* To provide entry to swap_readpage() */
3817                                 folio_set_swap_entry(folio, entry);
3818                                 swap_readpage(page, true, NULL);
3819                                 folio->private = NULL;
3820                         }
3821                 } else {
3822                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3823                                                 vmf);
3824                         if (page)
3825                                 folio = page_folio(page);
3826                         swapcache = folio;
3827                 }
3828
3829                 if (!folio) {
3830                         /*
3831                          * Back out if somebody else faulted in this pte
3832                          * while we released the pte lock.
3833                          */
3834                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3835                                         vmf->address, &vmf->ptl);
3836                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3837                                 ret = VM_FAULT_OOM;
3838                         goto unlock;
3839                 }
3840
3841                 /* Had to read the page from swap area: Major fault */
3842                 ret = VM_FAULT_MAJOR;
3843                 count_vm_event(PGMAJFAULT);
3844                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3845         } else if (PageHWPoison(page)) {
3846                 /*
3847                  * hwpoisoned dirty swapcache pages are kept for killing
3848                  * owner processes (which may be unknown at hwpoison time)
3849                  */
3850                 ret = VM_FAULT_HWPOISON;
3851                 goto out_release;
3852         }
3853
3854         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3855
3856         if (!locked) {
3857                 ret |= VM_FAULT_RETRY;
3858                 goto out_release;
3859         }
3860
3861         if (swapcache) {
3862                 /*
3863                  * Make sure folio_free_swap() or swapoff did not release the
3864                  * swapcache from under us.  The page pin, and pte_same test
3865                  * below, are not enough to exclude that.  Even if it is still
3866                  * swapcache, we need to check that the page's swap has not
3867                  * changed.
3868                  */
3869                 if (unlikely(!folio_test_swapcache(folio) ||
3870                              page_private(page) != entry.val))
3871                         goto out_page;
3872
3873                 /*
3874                  * KSM sometimes has to copy on read faults, for example, if
3875                  * page->index of !PageKSM() pages would be nonlinear inside the
3876                  * anon VMA -- PageKSM() is lost on actual swapout.
3877                  */
3878                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3879                 if (unlikely(!page)) {
3880                         ret = VM_FAULT_OOM;
3881                         goto out_page;
3882                 }
3883                 folio = page_folio(page);
3884
3885                 /*
3886                  * If we want to map a page that's in the swapcache writable, we
3887                  * have to detect via the refcount if we're really the exclusive
3888                  * owner. Try removing the extra reference from the local LRU
3889                  * pagevecs if required.
3890                  */
3891                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3892                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3893                         lru_add_drain();
3894         }
3895
3896         cgroup_throttle_swaprate(page, GFP_KERNEL);
3897
3898         /*
3899          * Back out if somebody else already faulted in this pte.
3900          */
3901         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3902                         &vmf->ptl);
3903         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3904                 goto out_nomap;
3905
3906         if (unlikely(!folio_test_uptodate(folio))) {
3907                 ret = VM_FAULT_SIGBUS;
3908                 goto out_nomap;
3909         }
3910
3911         /*
3912          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3913          * must never point at an anonymous page in the swapcache that is
3914          * PG_anon_exclusive. Sanity check that this holds and especially, that
3915          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3916          * check after taking the PT lock and making sure that nobody
3917          * concurrently faulted in this page and set PG_anon_exclusive.
3918          */
3919         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3920         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3921
3922         /*
3923          * Check under PT lock (to protect against concurrent fork() sharing
3924          * the swap entry concurrently) for certainly exclusive pages.
3925          */
3926         if (!folio_test_ksm(folio)) {
3927                 /*
3928                  * Note that pte_swp_exclusive() == false for architectures
3929                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3930                  */
3931                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3932                 if (folio != swapcache) {
3933                         /*
3934                          * We have a fresh page that is not exposed to the
3935                          * swapcache -> certainly exclusive.
3936                          */
3937                         exclusive = true;
3938                 } else if (exclusive && folio_test_writeback(folio) &&
3939                           data_race(si->flags & SWP_STABLE_WRITES)) {
3940                         /*
3941                          * This is tricky: not all swap backends support
3942                          * concurrent page modifications while under writeback.
3943                          *
3944                          * So if we stumble over such a page in the swapcache
3945                          * we must not set the page exclusive, otherwise we can
3946                          * map it writable without further checks and modify it
3947                          * while still under writeback.
3948                          *
3949                          * For these problematic swap backends, simply drop the
3950                          * exclusive marker: this is perfectly fine as we start
3951                          * writeback only if we fully unmapped the page and
3952                          * there are no unexpected references on the page after
3953                          * unmapping succeeded. After fully unmapped, no
3954                          * further GUP references (FOLL_GET and FOLL_PIN) can
3955                          * appear, so dropping the exclusive marker and mapping
3956                          * it only R/O is fine.
3957                          */
3958                         exclusive = false;
3959                 }
3960         }
3961
3962         /*
3963          * Remove the swap entry and conditionally try to free up the swapcache.
3964          * We're already holding a reference on the page but haven't mapped it
3965          * yet.
3966          */
3967         swap_free(entry);
3968         if (should_try_to_free_swap(folio, vma, vmf->flags))
3969                 folio_free_swap(folio);
3970
3971         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3972         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3973         pte = mk_pte(page, vma->vm_page_prot);
3974
3975         /*
3976          * Same logic as in do_wp_page(); however, optimize for pages that are
3977          * certainly not shared either because we just allocated them without
3978          * exposing them to the swapcache or because the swap entry indicates
3979          * exclusivity.
3980          */
3981         if (!folio_test_ksm(folio) &&
3982             (exclusive || folio_ref_count(folio) == 1)) {
3983                 if (vmf->flags & FAULT_FLAG_WRITE) {
3984                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3985                         vmf->flags &= ~FAULT_FLAG_WRITE;
3986                         ret |= VM_FAULT_WRITE;
3987                 }
3988                 rmap_flags |= RMAP_EXCLUSIVE;
3989         }
3990         flush_icache_page(vma, page);
3991         if (pte_swp_soft_dirty(vmf->orig_pte))
3992                 pte = pte_mksoft_dirty(pte);
3993         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3994                 pte = pte_mkuffd_wp(pte);
3995                 pte = pte_wrprotect(pte);
3996         }
3997         vmf->orig_pte = pte;
3998
3999         /* ksm created a completely new copy */
4000         if (unlikely(folio != swapcache && swapcache)) {
4001                 page_add_new_anon_rmap(page, vma, vmf->address);
4002                 folio_add_lru_vma(folio, vma);
4003         } else {
4004                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4005         }
4006
4007         VM_BUG_ON(!folio_test_anon(folio) ||
4008                         (pte_write(pte) && !PageAnonExclusive(page)));
4009         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4010         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4011
4012         folio_unlock(folio);
4013         if (folio != swapcache && swapcache) {
4014                 /*
4015                  * Hold the lock to avoid the swap entry to be reused
4016                  * until we take the PT lock for the pte_same() check
4017                  * (to avoid false positives from pte_same). For
4018                  * further safety release the lock after the swap_free
4019                  * so that the swap count won't change under a
4020                  * parallel locked swapcache.
4021                  */
4022                 folio_unlock(swapcache);
4023                 folio_put(swapcache);
4024         }
4025
4026         if (vmf->flags & FAULT_FLAG_WRITE) {
4027                 ret |= do_wp_page(vmf);
4028                 if (ret & VM_FAULT_ERROR)
4029                         ret &= VM_FAULT_ERROR;
4030                 goto out;
4031         }
4032
4033         /* No need to invalidate - it was non-present before */
4034         update_mmu_cache(vma, vmf->address, vmf->pte);
4035 unlock:
4036         pte_unmap_unlock(vmf->pte, vmf->ptl);
4037 out:
4038         if (si)
4039                 put_swap_device(si);
4040         return ret;
4041 out_nomap:
4042         pte_unmap_unlock(vmf->pte, vmf->ptl);
4043 out_page:
4044         folio_unlock(folio);
4045 out_release:
4046         folio_put(folio);
4047         if (folio != swapcache && swapcache) {
4048                 folio_unlock(swapcache);
4049                 folio_put(swapcache);
4050         }
4051         if (si)
4052                 put_swap_device(si);
4053         return ret;
4054 }
4055
4056 /*
4057  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4058  * but allow concurrent faults), and pte mapped but not yet locked.
4059  * We return with mmap_lock still held, but pte unmapped and unlocked.
4060  */
4061 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4062 {
4063         struct vm_area_struct *vma = vmf->vma;
4064         struct page *page;
4065         vm_fault_t ret = 0;
4066         pte_t entry;
4067
4068         /* File mapping without ->vm_ops ? */
4069         if (vma->vm_flags & VM_SHARED)
4070                 return VM_FAULT_SIGBUS;
4071
4072         /*
4073          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4074          * pte_offset_map() on pmds where a huge pmd might be created
4075          * from a different thread.
4076          *
4077          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4078          * parallel threads are excluded by other means.
4079          *
4080          * Here we only have mmap_read_lock(mm).
4081          */
4082         if (pte_alloc(vma->vm_mm, vmf->pmd))
4083                 return VM_FAULT_OOM;
4084
4085         /* See comment in handle_pte_fault() */
4086         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4087                 return 0;
4088
4089         /* Use the zero-page for reads */
4090         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4091                         !mm_forbids_zeropage(vma->vm_mm)) {
4092                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4093                                                 vma->vm_page_prot));
4094                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4095                                 vmf->address, &vmf->ptl);
4096                 if (!pte_none(*vmf->pte)) {
4097                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4098                         goto unlock;
4099                 }
4100                 ret = check_stable_address_space(vma->vm_mm);
4101                 if (ret)
4102                         goto unlock;
4103                 /* Deliver the page fault to userland, check inside PT lock */
4104                 if (userfaultfd_missing(vma)) {
4105                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4106                         return handle_userfault(vmf, VM_UFFD_MISSING);
4107                 }
4108                 goto setpte;
4109         }
4110
4111         /* Allocate our own private page. */
4112         if (unlikely(anon_vma_prepare(vma)))
4113                 goto oom;
4114         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4115         if (!page)
4116                 goto oom;
4117
4118         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4119                 goto oom_free_page;
4120         cgroup_throttle_swaprate(page, GFP_KERNEL);
4121
4122         /*
4123          * The memory barrier inside __SetPageUptodate makes sure that
4124          * preceding stores to the page contents become visible before
4125          * the set_pte_at() write.
4126          */
4127         __SetPageUptodate(page);
4128
4129         entry = mk_pte(page, vma->vm_page_prot);
4130         entry = pte_sw_mkyoung(entry);
4131         if (vma->vm_flags & VM_WRITE)
4132                 entry = pte_mkwrite(pte_mkdirty(entry));
4133
4134         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4135                         &vmf->ptl);
4136         if (!pte_none(*vmf->pte)) {
4137                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4138                 goto release;
4139         }
4140
4141         ret = check_stable_address_space(vma->vm_mm);
4142         if (ret)
4143                 goto release;
4144
4145         /* Deliver the page fault to userland, check inside PT lock */
4146         if (userfaultfd_missing(vma)) {
4147                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4148                 put_page(page);
4149                 return handle_userfault(vmf, VM_UFFD_MISSING);
4150         }
4151
4152         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4153         page_add_new_anon_rmap(page, vma, vmf->address);
4154         lru_cache_add_inactive_or_unevictable(page, vma);
4155 setpte:
4156         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4157
4158         /* No need to invalidate - it was non-present before */
4159         update_mmu_cache(vma, vmf->address, vmf->pte);
4160 unlock:
4161         pte_unmap_unlock(vmf->pte, vmf->ptl);
4162         return ret;
4163 release:
4164         put_page(page);
4165         goto unlock;
4166 oom_free_page:
4167         put_page(page);
4168 oom:
4169         return VM_FAULT_OOM;
4170 }
4171
4172 /*
4173  * The mmap_lock must have been held on entry, and may have been
4174  * released depending on flags and vma->vm_ops->fault() return value.
4175  * See filemap_fault() and __lock_page_retry().
4176  */
4177 static vm_fault_t __do_fault(struct vm_fault *vmf)
4178 {
4179         struct vm_area_struct *vma = vmf->vma;
4180         vm_fault_t ret;
4181
4182         /*
4183          * Preallocate pte before we take page_lock because this might lead to
4184          * deadlocks for memcg reclaim which waits for pages under writeback:
4185          *                              lock_page(A)
4186          *                              SetPageWriteback(A)
4187          *                              unlock_page(A)
4188          * lock_page(B)
4189          *                              lock_page(B)
4190          * pte_alloc_one
4191          *   shrink_page_list
4192          *     wait_on_page_writeback(A)
4193          *                              SetPageWriteback(B)
4194          *                              unlock_page(B)
4195          *                              # flush A, B to clear the writeback
4196          */
4197         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4198                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4199                 if (!vmf->prealloc_pte)
4200                         return VM_FAULT_OOM;
4201         }
4202
4203         ret = vma->vm_ops->fault(vmf);
4204         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4205                             VM_FAULT_DONE_COW)))
4206                 return ret;
4207
4208         if (unlikely(PageHWPoison(vmf->page))) {
4209                 struct page *page = vmf->page;
4210                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4211                 if (ret & VM_FAULT_LOCKED) {
4212                         if (page_mapped(page))
4213                                 unmap_mapping_pages(page_mapping(page),
4214                                                     page->index, 1, false);
4215                         /* Retry if a clean page was removed from the cache. */
4216                         if (invalidate_inode_page(page))
4217                                 poisonret = VM_FAULT_NOPAGE;
4218                         unlock_page(page);
4219                 }
4220                 put_page(page);
4221                 vmf->page = NULL;
4222                 return poisonret;
4223         }
4224
4225         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4226                 lock_page(vmf->page);
4227         else
4228                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4229
4230         return ret;
4231 }
4232
4233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4234 static void deposit_prealloc_pte(struct vm_fault *vmf)
4235 {
4236         struct vm_area_struct *vma = vmf->vma;
4237
4238         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4239         /*
4240          * We are going to consume the prealloc table,
4241          * count that as nr_ptes.
4242          */
4243         mm_inc_nr_ptes(vma->vm_mm);
4244         vmf->prealloc_pte = NULL;
4245 }
4246
4247 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4248 {
4249         struct vm_area_struct *vma = vmf->vma;
4250         bool write = vmf->flags & FAULT_FLAG_WRITE;
4251         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4252         pmd_t entry;
4253         int i;
4254         vm_fault_t ret = VM_FAULT_FALLBACK;
4255
4256         if (!transhuge_vma_suitable(vma, haddr))
4257                 return ret;
4258
4259         page = compound_head(page);
4260         if (compound_order(page) != HPAGE_PMD_ORDER)
4261                 return ret;
4262
4263         /*
4264          * Just backoff if any subpage of a THP is corrupted otherwise
4265          * the corrupted page may mapped by PMD silently to escape the
4266          * check.  This kind of THP just can be PTE mapped.  Access to
4267          * the corrupted subpage should trigger SIGBUS as expected.
4268          */
4269         if (unlikely(PageHasHWPoisoned(page)))
4270                 return ret;
4271
4272         /*
4273          * Archs like ppc64 need additional space to store information
4274          * related to pte entry. Use the preallocated table for that.
4275          */
4276         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4277                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4278                 if (!vmf->prealloc_pte)
4279                         return VM_FAULT_OOM;
4280         }
4281
4282         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4283         if (unlikely(!pmd_none(*vmf->pmd)))
4284                 goto out;
4285
4286         for (i = 0; i < HPAGE_PMD_NR; i++)
4287                 flush_icache_page(vma, page + i);
4288
4289         entry = mk_huge_pmd(page, vma->vm_page_prot);
4290         if (write)
4291                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4292
4293         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4294         page_add_file_rmap(page, vma, true);
4295
4296         /*
4297          * deposit and withdraw with pmd lock held
4298          */
4299         if (arch_needs_pgtable_deposit())
4300                 deposit_prealloc_pte(vmf);
4301
4302         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4303
4304         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4305
4306         /* fault is handled */
4307         ret = 0;
4308         count_vm_event(THP_FILE_MAPPED);
4309 out:
4310         spin_unlock(vmf->ptl);
4311         return ret;
4312 }
4313 #else
4314 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4315 {
4316         return VM_FAULT_FALLBACK;
4317 }
4318 #endif
4319
4320 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4321 {
4322         struct vm_area_struct *vma = vmf->vma;
4323         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4324         bool write = vmf->flags & FAULT_FLAG_WRITE;
4325         bool prefault = vmf->address != addr;
4326         pte_t entry;
4327
4328         flush_icache_page(vma, page);
4329         entry = mk_pte(page, vma->vm_page_prot);
4330
4331         if (prefault && arch_wants_old_prefaulted_pte())
4332                 entry = pte_mkold(entry);
4333         else
4334                 entry = pte_sw_mkyoung(entry);
4335
4336         if (write)
4337                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4338         if (unlikely(uffd_wp))
4339                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4340         /* copy-on-write page */
4341         if (write && !(vma->vm_flags & VM_SHARED)) {
4342                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4343                 page_add_new_anon_rmap(page, vma, addr);
4344                 lru_cache_add_inactive_or_unevictable(page, vma);
4345         } else {
4346                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4347                 page_add_file_rmap(page, vma, false);
4348         }
4349         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4350 }
4351
4352 static bool vmf_pte_changed(struct vm_fault *vmf)
4353 {
4354         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4355                 return !pte_same(*vmf->pte, vmf->orig_pte);
4356
4357         return !pte_none(*vmf->pte);
4358 }
4359
4360 /**
4361  * finish_fault - finish page fault once we have prepared the page to fault
4362  *
4363  * @vmf: structure describing the fault
4364  *
4365  * This function handles all that is needed to finish a page fault once the
4366  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4367  * given page, adds reverse page mapping, handles memcg charges and LRU
4368  * addition.
4369  *
4370  * The function expects the page to be locked and on success it consumes a
4371  * reference of a page being mapped (for the PTE which maps it).
4372  *
4373  * Return: %0 on success, %VM_FAULT_ code in case of error.
4374  */
4375 vm_fault_t finish_fault(struct vm_fault *vmf)
4376 {
4377         struct vm_area_struct *vma = vmf->vma;
4378         struct page *page;
4379         vm_fault_t ret;
4380
4381         /* Did we COW the page? */
4382         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4383                 page = vmf->cow_page;
4384         else
4385                 page = vmf->page;
4386
4387         /*
4388          * check even for read faults because we might have lost our CoWed
4389          * page
4390          */
4391         if (!(vma->vm_flags & VM_SHARED)) {
4392                 ret = check_stable_address_space(vma->vm_mm);
4393                 if (ret)
4394                         return ret;
4395         }
4396
4397         if (pmd_none(*vmf->pmd)) {
4398                 if (PageTransCompound(page)) {
4399                         ret = do_set_pmd(vmf, page);
4400                         if (ret != VM_FAULT_FALLBACK)
4401                                 return ret;
4402                 }
4403
4404                 if (vmf->prealloc_pte)
4405                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4406                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4407                         return VM_FAULT_OOM;
4408         }
4409
4410         /*
4411          * See comment in handle_pte_fault() for how this scenario happens, we
4412          * need to return NOPAGE so that we drop this page.
4413          */
4414         if (pmd_devmap_trans_unstable(vmf->pmd))
4415                 return VM_FAULT_NOPAGE;
4416
4417         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4418                                       vmf->address, &vmf->ptl);
4419
4420         /* Re-check under ptl */
4421         if (likely(!vmf_pte_changed(vmf))) {
4422                 do_set_pte(vmf, page, vmf->address);
4423
4424                 /* no need to invalidate: a not-present page won't be cached */
4425                 update_mmu_cache(vma, vmf->address, vmf->pte);
4426
4427                 ret = 0;
4428         } else {
4429                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4430                 ret = VM_FAULT_NOPAGE;
4431         }
4432
4433         pte_unmap_unlock(vmf->pte, vmf->ptl);
4434         return ret;
4435 }
4436
4437 static unsigned long fault_around_bytes __read_mostly =
4438         rounddown_pow_of_two(65536);
4439
4440 #ifdef CONFIG_DEBUG_FS
4441 static int fault_around_bytes_get(void *data, u64 *val)
4442 {
4443         *val = fault_around_bytes;
4444         return 0;
4445 }
4446
4447 /*
4448  * fault_around_bytes must be rounded down to the nearest page order as it's
4449  * what do_fault_around() expects to see.
4450  */
4451 static int fault_around_bytes_set(void *data, u64 val)
4452 {
4453         if (val / PAGE_SIZE > PTRS_PER_PTE)
4454                 return -EINVAL;
4455         if (val > PAGE_SIZE)
4456                 fault_around_bytes = rounddown_pow_of_two(val);
4457         else
4458                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4459         return 0;
4460 }
4461 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4462                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4463
4464 static int __init fault_around_debugfs(void)
4465 {
4466         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4467                                    &fault_around_bytes_fops);
4468         return 0;
4469 }
4470 late_initcall(fault_around_debugfs);
4471 #endif
4472
4473 /*
4474  * do_fault_around() tries to map few pages around the fault address. The hope
4475  * is that the pages will be needed soon and this will lower the number of
4476  * faults to handle.
4477  *
4478  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4479  * not ready to be mapped: not up-to-date, locked, etc.
4480  *
4481  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4482  * only once.
4483  *
4484  * fault_around_bytes defines how many bytes we'll try to map.
4485  * do_fault_around() expects it to be set to a power of two less than or equal
4486  * to PTRS_PER_PTE.
4487  *
4488  * The virtual address of the area that we map is naturally aligned to
4489  * fault_around_bytes rounded down to the machine page size
4490  * (and therefore to page order).  This way it's easier to guarantee
4491  * that we don't cross page table boundaries.
4492  */
4493 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4494 {
4495         unsigned long address = vmf->address, nr_pages, mask;
4496         pgoff_t start_pgoff = vmf->pgoff;
4497         pgoff_t end_pgoff;
4498         int off;
4499
4500         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4501         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4502
4503         address = max(address & mask, vmf->vma->vm_start);
4504         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4505         start_pgoff -= off;
4506
4507         /*
4508          *  end_pgoff is either the end of the page table, the end of
4509          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4510          */
4511         end_pgoff = start_pgoff -
4512                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4513                 PTRS_PER_PTE - 1;
4514         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4515                         start_pgoff + nr_pages - 1);
4516
4517         if (pmd_none(*vmf->pmd)) {
4518                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4519                 if (!vmf->prealloc_pte)
4520                         return VM_FAULT_OOM;
4521         }
4522
4523         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4524 }
4525
4526 /* Return true if we should do read fault-around, false otherwise */
4527 static inline bool should_fault_around(struct vm_fault *vmf)
4528 {
4529         /* No ->map_pages?  No way to fault around... */
4530         if (!vmf->vma->vm_ops->map_pages)
4531                 return false;
4532
4533         if (uffd_disable_fault_around(vmf->vma))
4534                 return false;
4535
4536         return fault_around_bytes >> PAGE_SHIFT > 1;
4537 }
4538
4539 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4540 {
4541         vm_fault_t ret = 0;
4542
4543         /*
4544          * Let's call ->map_pages() first and use ->fault() as fallback
4545          * if page by the offset is not ready to be mapped (cold cache or
4546          * something).
4547          */
4548         if (should_fault_around(vmf)) {
4549                 ret = do_fault_around(vmf);
4550                 if (ret)
4551                         return ret;
4552         }
4553
4554         ret = __do_fault(vmf);
4555         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556                 return ret;
4557
4558         ret |= finish_fault(vmf);
4559         unlock_page(vmf->page);
4560         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4561                 put_page(vmf->page);
4562         return ret;
4563 }
4564
4565 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4566 {
4567         struct vm_area_struct *vma = vmf->vma;
4568         vm_fault_t ret;
4569
4570         if (unlikely(anon_vma_prepare(vma)))
4571                 return VM_FAULT_OOM;
4572
4573         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4574         if (!vmf->cow_page)
4575                 return VM_FAULT_OOM;
4576
4577         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4578                                 GFP_KERNEL)) {
4579                 put_page(vmf->cow_page);
4580                 return VM_FAULT_OOM;
4581         }
4582         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4583
4584         ret = __do_fault(vmf);
4585         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4586                 goto uncharge_out;
4587         if (ret & VM_FAULT_DONE_COW)
4588                 return ret;
4589
4590         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4591         __SetPageUptodate(vmf->cow_page);
4592
4593         ret |= finish_fault(vmf);
4594         unlock_page(vmf->page);
4595         put_page(vmf->page);
4596         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4597                 goto uncharge_out;
4598         return ret;
4599 uncharge_out:
4600         put_page(vmf->cow_page);
4601         return ret;
4602 }
4603
4604 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4605 {
4606         struct vm_area_struct *vma = vmf->vma;
4607         vm_fault_t ret, tmp;
4608
4609         ret = __do_fault(vmf);
4610         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4611                 return ret;
4612
4613         /*
4614          * Check if the backing address space wants to know that the page is
4615          * about to become writable
4616          */
4617         if (vma->vm_ops->page_mkwrite) {
4618                 unlock_page(vmf->page);
4619                 tmp = do_page_mkwrite(vmf);
4620                 if (unlikely(!tmp ||
4621                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4622                         put_page(vmf->page);
4623                         return tmp;
4624                 }
4625         }
4626
4627         ret |= finish_fault(vmf);
4628         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4629                                         VM_FAULT_RETRY))) {
4630                 unlock_page(vmf->page);
4631                 put_page(vmf->page);
4632                 return ret;
4633         }
4634
4635         ret |= fault_dirty_shared_page(vmf);
4636         return ret;
4637 }
4638
4639 /*
4640  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4641  * but allow concurrent faults).
4642  * The mmap_lock may have been released depending on flags and our
4643  * return value.  See filemap_fault() and __folio_lock_or_retry().
4644  * If mmap_lock is released, vma may become invalid (for example
4645  * by other thread calling munmap()).
4646  */
4647 static vm_fault_t do_fault(struct vm_fault *vmf)
4648 {
4649         struct vm_area_struct *vma = vmf->vma;
4650         struct mm_struct *vm_mm = vma->vm_mm;
4651         vm_fault_t ret;
4652
4653         /*
4654          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4655          */
4656         if (!vma->vm_ops->fault) {
4657                 /*
4658                  * If we find a migration pmd entry or a none pmd entry, which
4659                  * should never happen, return SIGBUS
4660                  */
4661                 if (unlikely(!pmd_present(*vmf->pmd)))
4662                         ret = VM_FAULT_SIGBUS;
4663                 else {
4664                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4665                                                        vmf->pmd,
4666                                                        vmf->address,
4667                                                        &vmf->ptl);
4668                         /*
4669                          * Make sure this is not a temporary clearing of pte
4670                          * by holding ptl and checking again. A R/M/W update
4671                          * of pte involves: take ptl, clearing the pte so that
4672                          * we don't have concurrent modification by hardware
4673                          * followed by an update.
4674                          */
4675                         if (unlikely(pte_none(*vmf->pte)))
4676                                 ret = VM_FAULT_SIGBUS;
4677                         else
4678                                 ret = VM_FAULT_NOPAGE;
4679
4680                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4681                 }
4682         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4683                 ret = do_read_fault(vmf);
4684         else if (!(vma->vm_flags & VM_SHARED))
4685                 ret = do_cow_fault(vmf);
4686         else
4687                 ret = do_shared_fault(vmf);
4688
4689         /* preallocated pagetable is unused: free it */
4690         if (vmf->prealloc_pte) {
4691                 pte_free(vm_mm, vmf->prealloc_pte);
4692                 vmf->prealloc_pte = NULL;
4693         }
4694         return ret;
4695 }
4696
4697 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4698                       unsigned long addr, int page_nid, int *flags)
4699 {
4700         get_page(page);
4701
4702         count_vm_numa_event(NUMA_HINT_FAULTS);
4703         if (page_nid == numa_node_id()) {
4704                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4705                 *flags |= TNF_FAULT_LOCAL;
4706         }
4707
4708         return mpol_misplaced(page, vma, addr);
4709 }
4710
4711 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4712 {
4713         struct vm_area_struct *vma = vmf->vma;
4714         struct page *page = NULL;
4715         int page_nid = NUMA_NO_NODE;
4716         int last_cpupid;
4717         int target_nid;
4718         pte_t pte, old_pte;
4719         bool was_writable = pte_savedwrite(vmf->orig_pte);
4720         int flags = 0;
4721
4722         /*
4723          * The "pte" at this point cannot be used safely without
4724          * validation through pte_unmap_same(). It's of NUMA type but
4725          * the pfn may be screwed if the read is non atomic.
4726          */
4727         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4728         spin_lock(vmf->ptl);
4729         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4730                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4731                 goto out;
4732         }
4733
4734         /* Get the normal PTE  */
4735         old_pte = ptep_get(vmf->pte);
4736         pte = pte_modify(old_pte, vma->vm_page_prot);
4737
4738         page = vm_normal_page(vma, vmf->address, pte);
4739         if (!page || is_zone_device_page(page))
4740                 goto out_map;
4741
4742         /* TODO: handle PTE-mapped THP */
4743         if (PageCompound(page))
4744                 goto out_map;
4745
4746         /*
4747          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4748          * much anyway since they can be in shared cache state. This misses
4749          * the case where a mapping is writable but the process never writes
4750          * to it but pte_write gets cleared during protection updates and
4751          * pte_dirty has unpredictable behaviour between PTE scan updates,
4752          * background writeback, dirty balancing and application behaviour.
4753          */
4754         if (!was_writable)
4755                 flags |= TNF_NO_GROUP;
4756
4757         /*
4758          * Flag if the page is shared between multiple address spaces. This
4759          * is later used when determining whether to group tasks together
4760          */
4761         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4762                 flags |= TNF_SHARED;
4763
4764         page_nid = page_to_nid(page);
4765         /*
4766          * For memory tiering mode, cpupid of slow memory page is used
4767          * to record page access time.  So use default value.
4768          */
4769         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4770             !node_is_toptier(page_nid))
4771                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4772         else
4773                 last_cpupid = page_cpupid_last(page);
4774         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4775                         &flags);
4776         if (target_nid == NUMA_NO_NODE) {
4777                 put_page(page);
4778                 goto out_map;
4779         }
4780         pte_unmap_unlock(vmf->pte, vmf->ptl);
4781
4782         /* Migrate to the requested node */
4783         if (migrate_misplaced_page(page, vma, target_nid)) {
4784                 page_nid = target_nid;
4785                 flags |= TNF_MIGRATED;
4786         } else {
4787                 flags |= TNF_MIGRATE_FAIL;
4788                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4789                 spin_lock(vmf->ptl);
4790                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4791                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4792                         goto out;
4793                 }
4794                 goto out_map;
4795         }
4796
4797 out:
4798         if (page_nid != NUMA_NO_NODE)
4799                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4800         return 0;
4801 out_map:
4802         /*
4803          * Make it present again, depending on how arch implements
4804          * non-accessible ptes, some can allow access by kernel mode.
4805          */
4806         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4807         pte = pte_modify(old_pte, vma->vm_page_prot);
4808         pte = pte_mkyoung(pte);
4809         if (was_writable)
4810                 pte = pte_mkwrite(pte);
4811         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4812         update_mmu_cache(vma, vmf->address, vmf->pte);
4813         pte_unmap_unlock(vmf->pte, vmf->ptl);
4814         goto out;
4815 }
4816
4817 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4818 {
4819         if (vma_is_anonymous(vmf->vma))
4820                 return do_huge_pmd_anonymous_page(vmf);
4821         if (vmf->vma->vm_ops->huge_fault)
4822                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4823         return VM_FAULT_FALLBACK;
4824 }
4825
4826 /* `inline' is required to avoid gcc 4.1.2 build error */
4827 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4828 {
4829         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4830
4831         if (vma_is_anonymous(vmf->vma)) {
4832                 if (likely(!unshare) &&
4833                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4834                         return handle_userfault(vmf, VM_UFFD_WP);
4835                 return do_huge_pmd_wp_page(vmf);
4836         }
4837         if (vmf->vma->vm_ops->huge_fault) {
4838                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4839
4840                 if (!(ret & VM_FAULT_FALLBACK))
4841                         return ret;
4842         }
4843
4844         /* COW or write-notify handled on pte level: split pmd. */
4845         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4846
4847         return VM_FAULT_FALLBACK;
4848 }
4849
4850 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4851 {
4852 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4853         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4854         /* No support for anonymous transparent PUD pages yet */
4855         if (vma_is_anonymous(vmf->vma))
4856                 return VM_FAULT_FALLBACK;
4857         if (vmf->vma->vm_ops->huge_fault)
4858                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4859 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4860         return VM_FAULT_FALLBACK;
4861 }
4862
4863 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4864 {
4865 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4866         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4867         /* No support for anonymous transparent PUD pages yet */
4868         if (vma_is_anonymous(vmf->vma))
4869                 goto split;
4870         if (vmf->vma->vm_ops->huge_fault) {
4871                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4872
4873                 if (!(ret & VM_FAULT_FALLBACK))
4874                         return ret;
4875         }
4876 split:
4877         /* COW or write-notify not handled on PUD level: split pud.*/
4878         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4880         return VM_FAULT_FALLBACK;
4881 }
4882
4883 /*
4884  * These routines also need to handle stuff like marking pages dirty
4885  * and/or accessed for architectures that don't do it in hardware (most
4886  * RISC architectures).  The early dirtying is also good on the i386.
4887  *
4888  * There is also a hook called "update_mmu_cache()" that architectures
4889  * with external mmu caches can use to update those (ie the Sparc or
4890  * PowerPC hashed page tables that act as extended TLBs).
4891  *
4892  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4893  * concurrent faults).
4894  *
4895  * The mmap_lock may have been released depending on flags and our return value.
4896  * See filemap_fault() and __folio_lock_or_retry().
4897  */
4898 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4899 {
4900         pte_t entry;
4901
4902         if (unlikely(pmd_none(*vmf->pmd))) {
4903                 /*
4904                  * Leave __pte_alloc() until later: because vm_ops->fault may
4905                  * want to allocate huge page, and if we expose page table
4906                  * for an instant, it will be difficult to retract from
4907                  * concurrent faults and from rmap lookups.
4908                  */
4909                 vmf->pte = NULL;
4910                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4911         } else {
4912                 /*
4913                  * If a huge pmd materialized under us just retry later.  Use
4914                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4915                  * of pmd_trans_huge() to ensure the pmd didn't become
4916                  * pmd_trans_huge under us and then back to pmd_none, as a
4917                  * result of MADV_DONTNEED running immediately after a huge pmd
4918                  * fault in a different thread of this mm, in turn leading to a
4919                  * misleading pmd_trans_huge() retval. All we have to ensure is
4920                  * that it is a regular pmd that we can walk with
4921                  * pte_offset_map() and we can do that through an atomic read
4922                  * in C, which is what pmd_trans_unstable() provides.
4923                  */
4924                 if (pmd_devmap_trans_unstable(vmf->pmd))
4925                         return 0;
4926                 /*
4927                  * A regular pmd is established and it can't morph into a huge
4928                  * pmd from under us anymore at this point because we hold the
4929                  * mmap_lock read mode and khugepaged takes it in write mode.
4930                  * So now it's safe to run pte_offset_map().
4931                  */
4932                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4933                 vmf->orig_pte = *vmf->pte;
4934                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4935
4936                 /*
4937                  * some architectures can have larger ptes than wordsize,
4938                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4939                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4940                  * accesses.  The code below just needs a consistent view
4941                  * for the ifs and we later double check anyway with the
4942                  * ptl lock held. So here a barrier will do.
4943                  */
4944                 barrier();
4945                 if (pte_none(vmf->orig_pte)) {
4946                         pte_unmap(vmf->pte);
4947                         vmf->pte = NULL;
4948                 }
4949         }
4950
4951         if (!vmf->pte) {
4952                 if (vma_is_anonymous(vmf->vma))
4953                         return do_anonymous_page(vmf);
4954                 else
4955                         return do_fault(vmf);
4956         }
4957
4958         if (!pte_present(vmf->orig_pte))
4959                 return do_swap_page(vmf);
4960
4961         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4962                 return do_numa_page(vmf);
4963
4964         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4965         spin_lock(vmf->ptl);
4966         entry = vmf->orig_pte;
4967         if (unlikely(!pte_same(*vmf->pte, entry))) {
4968                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4969                 goto unlock;
4970         }
4971         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4972                 if (!pte_write(entry))
4973                         return do_wp_page(vmf);
4974                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4975                         entry = pte_mkdirty(entry);
4976         }
4977         entry = pte_mkyoung(entry);
4978         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4979                                 vmf->flags & FAULT_FLAG_WRITE)) {
4980                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4981         } else {
4982                 /* Skip spurious TLB flush for retried page fault */
4983                 if (vmf->flags & FAULT_FLAG_TRIED)
4984                         goto unlock;
4985                 /*
4986                  * This is needed only for protection faults but the arch code
4987                  * is not yet telling us if this is a protection fault or not.
4988                  * This still avoids useless tlb flushes for .text page faults
4989                  * with threads.
4990                  */
4991                 if (vmf->flags & FAULT_FLAG_WRITE)
4992                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4993         }
4994 unlock:
4995         pte_unmap_unlock(vmf->pte, vmf->ptl);
4996         return 0;
4997 }
4998
4999 /*
5000  * By the time we get here, we already hold the mm semaphore
5001  *
5002  * The mmap_lock may have been released depending on flags and our
5003  * return value.  See filemap_fault() and __folio_lock_or_retry().
5004  */
5005 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5006                 unsigned long address, unsigned int flags)
5007 {
5008         struct vm_fault vmf = {
5009                 .vma = vma,
5010                 .address = address & PAGE_MASK,
5011                 .real_address = address,
5012                 .flags = flags,
5013                 .pgoff = linear_page_index(vma, address),
5014                 .gfp_mask = __get_fault_gfp_mask(vma),
5015         };
5016         struct mm_struct *mm = vma->vm_mm;
5017         unsigned long vm_flags = vma->vm_flags;
5018         pgd_t *pgd;
5019         p4d_t *p4d;
5020         vm_fault_t ret;
5021
5022         pgd = pgd_offset(mm, address);
5023         p4d = p4d_alloc(mm, pgd, address);
5024         if (!p4d)
5025                 return VM_FAULT_OOM;
5026
5027         vmf.pud = pud_alloc(mm, p4d, address);
5028         if (!vmf.pud)
5029                 return VM_FAULT_OOM;
5030 retry_pud:
5031         if (pud_none(*vmf.pud) &&
5032             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5033                 ret = create_huge_pud(&vmf);
5034                 if (!(ret & VM_FAULT_FALLBACK))
5035                         return ret;
5036         } else {
5037                 pud_t orig_pud = *vmf.pud;
5038
5039                 barrier();
5040                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5041
5042                         /*
5043                          * TODO once we support anonymous PUDs: NUMA case and
5044                          * FAULT_FLAG_UNSHARE handling.
5045                          */
5046                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5047                                 ret = wp_huge_pud(&vmf, orig_pud);
5048                                 if (!(ret & VM_FAULT_FALLBACK))
5049                                         return ret;
5050                         } else {
5051                                 huge_pud_set_accessed(&vmf, orig_pud);
5052                                 return 0;
5053                         }
5054                 }
5055         }
5056
5057         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5058         if (!vmf.pmd)
5059                 return VM_FAULT_OOM;
5060
5061         /* Huge pud page fault raced with pmd_alloc? */
5062         if (pud_trans_unstable(vmf.pud))
5063                 goto retry_pud;
5064
5065         if (pmd_none(*vmf.pmd) &&
5066             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5067                 ret = create_huge_pmd(&vmf);
5068                 if (!(ret & VM_FAULT_FALLBACK))
5069                         return ret;
5070         } else {
5071                 vmf.orig_pmd = *vmf.pmd;
5072
5073                 barrier();
5074                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5075                         VM_BUG_ON(thp_migration_supported() &&
5076                                           !is_pmd_migration_entry(vmf.orig_pmd));
5077                         if (is_pmd_migration_entry(vmf.orig_pmd))
5078                                 pmd_migration_entry_wait(mm, vmf.pmd);
5079                         return 0;
5080                 }
5081                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5082                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5083                                 return do_huge_pmd_numa_page(&vmf);
5084
5085                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5086                             !pmd_write(vmf.orig_pmd)) {
5087                                 ret = wp_huge_pmd(&vmf);
5088                                 if (!(ret & VM_FAULT_FALLBACK))
5089                                         return ret;
5090                         } else {
5091                                 huge_pmd_set_accessed(&vmf);
5092                                 return 0;
5093                         }
5094                 }
5095         }
5096
5097         return handle_pte_fault(&vmf);
5098 }
5099
5100 /**
5101  * mm_account_fault - Do page fault accounting
5102  *
5103  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5104  *        of perf event counters, but we'll still do the per-task accounting to
5105  *        the task who triggered this page fault.
5106  * @address: the faulted address.
5107  * @flags: the fault flags.
5108  * @ret: the fault retcode.
5109  *
5110  * This will take care of most of the page fault accounting.  Meanwhile, it
5111  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5112  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5113  * still be in per-arch page fault handlers at the entry of page fault.
5114  */
5115 static inline void mm_account_fault(struct pt_regs *regs,
5116                                     unsigned long address, unsigned int flags,
5117                                     vm_fault_t ret)
5118 {
5119         bool major;
5120
5121         /*
5122          * We don't do accounting for some specific faults:
5123          *
5124          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5125          *   includes arch_vma_access_permitted() failing before reaching here.
5126          *   So this is not a "this many hardware page faults" counter.  We
5127          *   should use the hw profiling for that.
5128          *
5129          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5130          *   once they're completed.
5131          */
5132         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5133                 return;
5134
5135         /*
5136          * We define the fault as a major fault when the final successful fault
5137          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138          * handle it immediately previously).
5139          */
5140         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141
5142         if (major)
5143                 current->maj_flt++;
5144         else
5145                 current->min_flt++;
5146
5147         /*
5148          * If the fault is done for GUP, regs will be NULL.  We only do the
5149          * accounting for the per thread fault counters who triggered the
5150          * fault, and we skip the perf event updates.
5151          */
5152         if (!regs)
5153                 return;
5154
5155         if (major)
5156                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5157         else
5158                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5159 }
5160
5161 #ifdef CONFIG_LRU_GEN
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164         /* the LRU algorithm doesn't apply to sequential or random reads */
5165         current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5166 }
5167
5168 static void lru_gen_exit_fault(void)
5169 {
5170         current->in_lru_fault = false;
5171 }
5172 #else
5173 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174 {
5175 }
5176
5177 static void lru_gen_exit_fault(void)
5178 {
5179 }
5180 #endif /* CONFIG_LRU_GEN */
5181
5182 /*
5183  * By the time we get here, we already hold the mm semaphore
5184  *
5185  * The mmap_lock may have been released depending on flags and our
5186  * return value.  See filemap_fault() and __folio_lock_or_retry().
5187  */
5188 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5189                            unsigned int flags, struct pt_regs *regs)
5190 {
5191         vm_fault_t ret;
5192
5193         __set_current_state(TASK_RUNNING);
5194
5195         count_vm_event(PGFAULT);
5196         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5197
5198         /* do counter updates before entering really critical section. */
5199         check_sync_rss_stat(current);
5200
5201         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5202                                             flags & FAULT_FLAG_INSTRUCTION,
5203                                             flags & FAULT_FLAG_REMOTE))
5204                 return VM_FAULT_SIGSEGV;
5205
5206         /*
5207          * Enable the memcg OOM handling for faults triggered in user
5208          * space.  Kernel faults are handled more gracefully.
5209          */
5210         if (flags & FAULT_FLAG_USER)
5211                 mem_cgroup_enter_user_fault();
5212
5213         lru_gen_enter_fault(vma);
5214
5215         if (unlikely(is_vm_hugetlb_page(vma)))
5216                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5217         else
5218                 ret = __handle_mm_fault(vma, address, flags);
5219
5220         lru_gen_exit_fault();
5221
5222         if (flags & FAULT_FLAG_USER) {
5223                 mem_cgroup_exit_user_fault();
5224                 /*
5225                  * The task may have entered a memcg OOM situation but
5226                  * if the allocation error was handled gracefully (no
5227                  * VM_FAULT_OOM), there is no need to kill anything.
5228                  * Just clean up the OOM state peacefully.
5229                  */
5230                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5231                         mem_cgroup_oom_synchronize(false);
5232         }
5233
5234         mm_account_fault(regs, address, flags, ret);
5235
5236         return ret;
5237 }
5238 EXPORT_SYMBOL_GPL(handle_mm_fault);
5239
5240 #ifndef __PAGETABLE_P4D_FOLDED
5241 /*
5242  * Allocate p4d page table.
5243  * We've already handled the fast-path in-line.
5244  */
5245 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5246 {
5247         p4d_t *new = p4d_alloc_one(mm, address);
5248         if (!new)
5249                 return -ENOMEM;
5250
5251         spin_lock(&mm->page_table_lock);
5252         if (pgd_present(*pgd)) {        /* Another has populated it */
5253                 p4d_free(mm, new);
5254         } else {
5255                 smp_wmb(); /* See comment in pmd_install() */
5256                 pgd_populate(mm, pgd, new);
5257         }
5258         spin_unlock(&mm->page_table_lock);
5259         return 0;
5260 }
5261 #endif /* __PAGETABLE_P4D_FOLDED */
5262
5263 #ifndef __PAGETABLE_PUD_FOLDED
5264 /*
5265  * Allocate page upper directory.
5266  * We've already handled the fast-path in-line.
5267  */
5268 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5269 {
5270         pud_t *new = pud_alloc_one(mm, address);
5271         if (!new)
5272                 return -ENOMEM;
5273
5274         spin_lock(&mm->page_table_lock);
5275         if (!p4d_present(*p4d)) {
5276                 mm_inc_nr_puds(mm);
5277                 smp_wmb(); /* See comment in pmd_install() */
5278                 p4d_populate(mm, p4d, new);
5279         } else  /* Another has populated it */
5280                 pud_free(mm, new);
5281         spin_unlock(&mm->page_table_lock);
5282         return 0;
5283 }
5284 #endif /* __PAGETABLE_PUD_FOLDED */
5285
5286 #ifndef __PAGETABLE_PMD_FOLDED
5287 /*
5288  * Allocate page middle directory.
5289  * We've already handled the fast-path in-line.
5290  */
5291 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5292 {
5293         spinlock_t *ptl;
5294         pmd_t *new = pmd_alloc_one(mm, address);
5295         if (!new)
5296                 return -ENOMEM;
5297
5298         ptl = pud_lock(mm, pud);
5299         if (!pud_present(*pud)) {
5300                 mm_inc_nr_pmds(mm);
5301                 smp_wmb(); /* See comment in pmd_install() */
5302                 pud_populate(mm, pud, new);
5303         } else {        /* Another has populated it */
5304                 pmd_free(mm, new);
5305         }
5306         spin_unlock(ptl);
5307         return 0;
5308 }
5309 #endif /* __PAGETABLE_PMD_FOLDED */
5310
5311 /**
5312  * follow_pte - look up PTE at a user virtual address
5313  * @mm: the mm_struct of the target address space
5314  * @address: user virtual address
5315  * @ptepp: location to store found PTE
5316  * @ptlp: location to store the lock for the PTE
5317  *
5318  * On a successful return, the pointer to the PTE is stored in @ptepp;
5319  * the corresponding lock is taken and its location is stored in @ptlp.
5320  * The contents of the PTE are only stable until @ptlp is released;
5321  * any further use, if any, must be protected against invalidation
5322  * with MMU notifiers.
5323  *
5324  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5325  * should be taken for read.
5326  *
5327  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5328  * it is not a good general-purpose API.
5329  *
5330  * Return: zero on success, -ve otherwise.
5331  */
5332 int follow_pte(struct mm_struct *mm, unsigned long address,
5333                pte_t **ptepp, spinlock_t **ptlp)
5334 {
5335         pgd_t *pgd;
5336         p4d_t *p4d;
5337         pud_t *pud;
5338         pmd_t *pmd;
5339         pte_t *ptep;
5340
5341         pgd = pgd_offset(mm, address);
5342         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5343                 goto out;
5344
5345         p4d = p4d_offset(pgd, address);
5346         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5347                 goto out;
5348
5349         pud = pud_offset(p4d, address);
5350         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5351                 goto out;
5352
5353         pmd = pmd_offset(pud, address);
5354         VM_BUG_ON(pmd_trans_huge(*pmd));
5355
5356         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5357                 goto out;
5358
5359         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5360         if (!pte_present(*ptep))
5361                 goto unlock;
5362         *ptepp = ptep;
5363         return 0;
5364 unlock:
5365         pte_unmap_unlock(ptep, *ptlp);
5366 out:
5367         return -EINVAL;
5368 }
5369 EXPORT_SYMBOL_GPL(follow_pte);
5370
5371 /**
5372  * follow_pfn - look up PFN at a user virtual address
5373  * @vma: memory mapping
5374  * @address: user virtual address
5375  * @pfn: location to store found PFN
5376  *
5377  * Only IO mappings and raw PFN mappings are allowed.
5378  *
5379  * This function does not allow the caller to read the permissions
5380  * of the PTE.  Do not use it.
5381  *
5382  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5383  */
5384 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5385         unsigned long *pfn)
5386 {
5387         int ret = -EINVAL;
5388         spinlock_t *ptl;
5389         pte_t *ptep;
5390
5391         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5392                 return ret;
5393
5394         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5395         if (ret)
5396                 return ret;
5397         *pfn = pte_pfn(*ptep);
5398         pte_unmap_unlock(ptep, ptl);
5399         return 0;
5400 }
5401 EXPORT_SYMBOL(follow_pfn);
5402
5403 #ifdef CONFIG_HAVE_IOREMAP_PROT
5404 int follow_phys(struct vm_area_struct *vma,
5405                 unsigned long address, unsigned int flags,
5406                 unsigned long *prot, resource_size_t *phys)
5407 {
5408         int ret = -EINVAL;
5409         pte_t *ptep, pte;
5410         spinlock_t *ptl;
5411
5412         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5413                 goto out;
5414
5415         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5416                 goto out;
5417         pte = *ptep;
5418
5419         if ((flags & FOLL_WRITE) && !pte_write(pte))
5420                 goto unlock;
5421
5422         *prot = pgprot_val(pte_pgprot(pte));
5423         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5424
5425         ret = 0;
5426 unlock:
5427         pte_unmap_unlock(ptep, ptl);
5428 out:
5429         return ret;
5430 }
5431
5432 /**
5433  * generic_access_phys - generic implementation for iomem mmap access
5434  * @vma: the vma to access
5435  * @addr: userspace address, not relative offset within @vma
5436  * @buf: buffer to read/write
5437  * @len: length of transfer
5438  * @write: set to FOLL_WRITE when writing, otherwise reading
5439  *
5440  * This is a generic implementation for &vm_operations_struct.access for an
5441  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5442  * not page based.
5443  */
5444 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5445                         void *buf, int len, int write)
5446 {
5447         resource_size_t phys_addr;
5448         unsigned long prot = 0;
5449         void __iomem *maddr;
5450         pte_t *ptep, pte;
5451         spinlock_t *ptl;
5452         int offset = offset_in_page(addr);
5453         int ret = -EINVAL;
5454
5455         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5456                 return -EINVAL;
5457
5458 retry:
5459         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5460                 return -EINVAL;
5461         pte = *ptep;
5462         pte_unmap_unlock(ptep, ptl);
5463
5464         prot = pgprot_val(pte_pgprot(pte));
5465         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5466
5467         if ((write & FOLL_WRITE) && !pte_write(pte))
5468                 return -EINVAL;
5469
5470         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5471         if (!maddr)
5472                 return -ENOMEM;
5473
5474         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5475                 goto out_unmap;
5476
5477         if (!pte_same(pte, *ptep)) {
5478                 pte_unmap_unlock(ptep, ptl);
5479                 iounmap(maddr);
5480
5481                 goto retry;
5482         }
5483
5484         if (write)
5485                 memcpy_toio(maddr + offset, buf, len);
5486         else
5487                 memcpy_fromio(buf, maddr + offset, len);
5488         ret = len;
5489         pte_unmap_unlock(ptep, ptl);
5490 out_unmap:
5491         iounmap(maddr);
5492
5493         return ret;
5494 }
5495 EXPORT_SYMBOL_GPL(generic_access_phys);
5496 #endif
5497
5498 /*
5499  * Access another process' address space as given in mm.
5500  */
5501 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5502                        int len, unsigned int gup_flags)
5503 {
5504         struct vm_area_struct *vma;
5505         void *old_buf = buf;
5506         int write = gup_flags & FOLL_WRITE;
5507
5508         if (mmap_read_lock_killable(mm))
5509                 return 0;
5510
5511         /* ignore errors, just check how much was successfully transferred */
5512         while (len) {
5513                 int bytes, ret, offset;
5514                 void *maddr;
5515                 struct page *page = NULL;
5516
5517                 ret = get_user_pages_remote(mm, addr, 1,
5518                                 gup_flags, &page, &vma, NULL);
5519                 if (ret <= 0) {
5520 #ifndef CONFIG_HAVE_IOREMAP_PROT
5521                         break;
5522 #else
5523                         /*
5524                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5525                          * we can access using slightly different code.
5526                          */
5527                         vma = vma_lookup(mm, addr);
5528                         if (!vma)
5529                                 break;
5530                         if (vma->vm_ops && vma->vm_ops->access)
5531                                 ret = vma->vm_ops->access(vma, addr, buf,
5532                                                           len, write);
5533                         if (ret <= 0)
5534                                 break;
5535                         bytes = ret;
5536 #endif
5537                 } else {
5538                         bytes = len;
5539                         offset = addr & (PAGE_SIZE-1);
5540                         if (bytes > PAGE_SIZE-offset)
5541                                 bytes = PAGE_SIZE-offset;
5542
5543                         maddr = kmap(page);
5544                         if (write) {
5545                                 copy_to_user_page(vma, page, addr,
5546                                                   maddr + offset, buf, bytes);
5547                                 set_page_dirty_lock(page);
5548                         } else {
5549                                 copy_from_user_page(vma, page, addr,
5550                                                     buf, maddr + offset, bytes);
5551                         }
5552                         kunmap(page);
5553                         put_page(page);
5554                 }
5555                 len -= bytes;
5556                 buf += bytes;
5557                 addr += bytes;
5558         }
5559         mmap_read_unlock(mm);
5560
5561         return buf - old_buf;
5562 }
5563
5564 /**
5565  * access_remote_vm - access another process' address space
5566  * @mm:         the mm_struct of the target address space
5567  * @addr:       start address to access
5568  * @buf:        source or destination buffer
5569  * @len:        number of bytes to transfer
5570  * @gup_flags:  flags modifying lookup behaviour
5571  *
5572  * The caller must hold a reference on @mm.
5573  *
5574  * Return: number of bytes copied from source to destination.
5575  */
5576 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5577                 void *buf, int len, unsigned int gup_flags)
5578 {
5579         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5580 }
5581
5582 /*
5583  * Access another process' address space.
5584  * Source/target buffer must be kernel space,
5585  * Do not walk the page table directly, use get_user_pages
5586  */
5587 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5588                 void *buf, int len, unsigned int gup_flags)
5589 {
5590         struct mm_struct *mm;
5591         int ret;
5592
5593         mm = get_task_mm(tsk);
5594         if (!mm)
5595                 return 0;
5596
5597         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5598
5599         mmput(mm);
5600
5601         return ret;
5602 }
5603 EXPORT_SYMBOL_GPL(access_process_vm);
5604
5605 /*
5606  * Print the name of a VMA.
5607  */
5608 void print_vma_addr(char *prefix, unsigned long ip)
5609 {
5610         struct mm_struct *mm = current->mm;
5611         struct vm_area_struct *vma;
5612
5613         /*
5614          * we might be running from an atomic context so we cannot sleep
5615          */
5616         if (!mmap_read_trylock(mm))
5617                 return;
5618
5619         vma = find_vma(mm, ip);
5620         if (vma && vma->vm_file) {
5621                 struct file *f = vma->vm_file;
5622                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5623                 if (buf) {
5624                         char *p;
5625
5626                         p = file_path(f, buf, PAGE_SIZE);
5627                         if (IS_ERR(p))
5628                                 p = "?";
5629                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5630                                         vma->vm_start,
5631                                         vma->vm_end - vma->vm_start);
5632                         free_page((unsigned long)buf);
5633                 }
5634         }
5635         mmap_read_unlock(mm);
5636 }
5637
5638 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5639 void __might_fault(const char *file, int line)
5640 {
5641         if (pagefault_disabled())
5642                 return;
5643         __might_sleep(file, line);
5644 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5645         if (current->mm)
5646                 might_lock_read(&current->mm->mmap_lock);
5647 #endif
5648 }
5649 EXPORT_SYMBOL(__might_fault);
5650 #endif
5651
5652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5653 /*
5654  * Process all subpages of the specified huge page with the specified
5655  * operation.  The target subpage will be processed last to keep its
5656  * cache lines hot.
5657  */
5658 static inline void process_huge_page(
5659         unsigned long addr_hint, unsigned int pages_per_huge_page,
5660         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5661         void *arg)
5662 {
5663         int i, n, base, l;
5664         unsigned long addr = addr_hint &
5665                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5666
5667         /* Process target subpage last to keep its cache lines hot */
5668         might_sleep();
5669         n = (addr_hint - addr) / PAGE_SIZE;
5670         if (2 * n <= pages_per_huge_page) {
5671                 /* If target subpage in first half of huge page */
5672                 base = 0;
5673                 l = n;
5674                 /* Process subpages at the end of huge page */
5675                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5676                         cond_resched();
5677                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5678                 }
5679         } else {
5680                 /* If target subpage in second half of huge page */
5681                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5682                 l = pages_per_huge_page - n;
5683                 /* Process subpages at the begin of huge page */
5684                 for (i = 0; i < base; i++) {
5685                         cond_resched();
5686                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5687                 }
5688         }
5689         /*
5690          * Process remaining subpages in left-right-left-right pattern
5691          * towards the target subpage
5692          */
5693         for (i = 0; i < l; i++) {
5694                 int left_idx = base + i;
5695                 int right_idx = base + 2 * l - 1 - i;
5696
5697                 cond_resched();
5698                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5699                 cond_resched();
5700                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5701         }
5702 }
5703
5704 static void clear_gigantic_page(struct page *page,
5705                                 unsigned long addr,
5706                                 unsigned int pages_per_huge_page)
5707 {
5708         int i;
5709         struct page *p;
5710
5711         might_sleep();
5712         for (i = 0; i < pages_per_huge_page; i++) {
5713                 p = nth_page(page, i);
5714                 cond_resched();
5715                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5716         }
5717 }
5718
5719 static void clear_subpage(unsigned long addr, int idx, void *arg)
5720 {
5721         struct page *page = arg;
5722
5723         clear_user_highpage(page + idx, addr);
5724 }
5725
5726 void clear_huge_page(struct page *page,
5727                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5728 {
5729         unsigned long addr = addr_hint &
5730                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5731
5732         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5733                 clear_gigantic_page(page, addr, pages_per_huge_page);
5734                 return;
5735         }
5736
5737         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5738 }
5739
5740 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5741                                     unsigned long addr,
5742                                     struct vm_area_struct *vma,
5743                                     unsigned int pages_per_huge_page)
5744 {
5745         int i;
5746         struct page *dst_base = dst;
5747         struct page *src_base = src;
5748
5749         for (i = 0; i < pages_per_huge_page; i++) {
5750                 dst = nth_page(dst_base, i);
5751                 src = nth_page(src_base, i);
5752
5753                 cond_resched();
5754                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5755         }
5756 }
5757
5758 struct copy_subpage_arg {
5759         struct page *dst;
5760         struct page *src;
5761         struct vm_area_struct *vma;
5762 };
5763
5764 static void copy_subpage(unsigned long addr, int idx, void *arg)
5765 {
5766         struct copy_subpage_arg *copy_arg = arg;
5767
5768         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5769                            addr, copy_arg->vma);
5770 }
5771
5772 void copy_user_huge_page(struct page *dst, struct page *src,
5773                          unsigned long addr_hint, struct vm_area_struct *vma,
5774                          unsigned int pages_per_huge_page)
5775 {
5776         unsigned long addr = addr_hint &
5777                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5778         struct copy_subpage_arg arg = {
5779                 .dst = dst,
5780                 .src = src,
5781                 .vma = vma,
5782         };
5783
5784         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5785                 copy_user_gigantic_page(dst, src, addr, vma,
5786                                         pages_per_huge_page);
5787                 return;
5788         }
5789
5790         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5791 }
5792
5793 long copy_huge_page_from_user(struct page *dst_page,
5794                                 const void __user *usr_src,
5795                                 unsigned int pages_per_huge_page,
5796                                 bool allow_pagefault)
5797 {
5798         void *page_kaddr;
5799         unsigned long i, rc = 0;
5800         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5801         struct page *subpage;
5802
5803         for (i = 0; i < pages_per_huge_page; i++) {
5804                 subpage = nth_page(dst_page, i);
5805                 if (allow_pagefault)
5806                         page_kaddr = kmap(subpage);
5807                 else
5808                         page_kaddr = kmap_atomic(subpage);
5809                 rc = copy_from_user(page_kaddr,
5810                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5811                 if (allow_pagefault)
5812                         kunmap(subpage);
5813                 else
5814                         kunmap_atomic(page_kaddr);
5815
5816                 ret_val -= (PAGE_SIZE - rc);
5817                 if (rc)
5818                         break;
5819
5820                 flush_dcache_page(subpage);
5821
5822                 cond_resched();
5823         }
5824         return ret_val;
5825 }
5826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5827
5828 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5829
5830 static struct kmem_cache *page_ptl_cachep;
5831
5832 void __init ptlock_cache_init(void)
5833 {
5834         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5835                         SLAB_PANIC, NULL);
5836 }
5837
5838 bool ptlock_alloc(struct page *page)
5839 {
5840         spinlock_t *ptl;
5841
5842         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5843         if (!ptl)
5844                 return false;
5845         page->ptl = ptl;
5846         return true;
5847 }
5848
5849 void ptlock_free(struct page *page)
5850 {
5851         kmem_cache_free(page_ptl_cachep, page->ptl);
5852 }
5853 #endif