mm/memory.c: fix potential pte_unmap_unlock pte error
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139         randomize_va_space = 0;
140         return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154         zero_pfn = page_to_pfn(ZERO_PAGE(0));
155         return 0;
156 }
157 core_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161         trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168         int i;
169
170         for (i = 0; i < NR_MM_COUNTERS; i++) {
171                 if (current->rss_stat.count[i]) {
172                         add_mm_counter(mm, i, current->rss_stat.count[i]);
173                         current->rss_stat.count[i] = 0;
174                 }
175         }
176         current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181         struct task_struct *task = current;
182
183         if (likely(task->mm == mm))
184                 task->rss_stat.count[member] += val;
185         else
186                 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH  (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195         if (unlikely(task != current))
196                 return;
197         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198                 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216                            unsigned long addr)
217 {
218         pgtable_t token = pmd_pgtable(*pmd);
219         pmd_clear(pmd);
220         pte_free_tlb(tlb, token, addr);
221         mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225                                 unsigned long addr, unsigned long end,
226                                 unsigned long floor, unsigned long ceiling)
227 {
228         pmd_t *pmd;
229         unsigned long next;
230         unsigned long start;
231
232         start = addr;
233         pmd = pmd_offset(pud, addr);
234         do {
235                 next = pmd_addr_end(addr, end);
236                 if (pmd_none_or_clear_bad(pmd))
237                         continue;
238                 free_pte_range(tlb, pmd, addr);
239         } while (pmd++, addr = next, addr != end);
240
241         start &= PUD_MASK;
242         if (start < floor)
243                 return;
244         if (ceiling) {
245                 ceiling &= PUD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 return;
251
252         pmd = pmd_offset(pud, start);
253         pud_clear(pud);
254         pmd_free_tlb(tlb, pmd, start);
255         mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259                                 unsigned long addr, unsigned long end,
260                                 unsigned long floor, unsigned long ceiling)
261 {
262         pud_t *pud;
263         unsigned long next;
264         unsigned long start;
265
266         start = addr;
267         pud = pud_offset(p4d, addr);
268         do {
269                 next = pud_addr_end(addr, end);
270                 if (pud_none_or_clear_bad(pud))
271                         continue;
272                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273         } while (pud++, addr = next, addr != end);
274
275         start &= P4D_MASK;
276         if (start < floor)
277                 return;
278         if (ceiling) {
279                 ceiling &= P4D_MASK;
280                 if (!ceiling)
281                         return;
282         }
283         if (end - 1 > ceiling - 1)
284                 return;
285
286         pud = pud_offset(p4d, start);
287         p4d_clear(p4d);
288         pud_free_tlb(tlb, pud, start);
289         mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293                                 unsigned long addr, unsigned long end,
294                                 unsigned long floor, unsigned long ceiling)
295 {
296         p4d_t *p4d;
297         unsigned long next;
298         unsigned long start;
299
300         start = addr;
301         p4d = p4d_offset(pgd, addr);
302         do {
303                 next = p4d_addr_end(addr, end);
304                 if (p4d_none_or_clear_bad(p4d))
305                         continue;
306                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307         } while (p4d++, addr = next, addr != end);
308
309         start &= PGDIR_MASK;
310         if (start < floor)
311                 return;
312         if (ceiling) {
313                 ceiling &= PGDIR_MASK;
314                 if (!ceiling)
315                         return;
316         }
317         if (end - 1 > ceiling - 1)
318                 return;
319
320         p4d = p4d_offset(pgd, start);
321         pgd_clear(pgd);
322         p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329                         unsigned long addr, unsigned long end,
330                         unsigned long floor, unsigned long ceiling)
331 {
332         pgd_t *pgd;
333         unsigned long next;
334
335         /*
336          * The next few lines have given us lots of grief...
337          *
338          * Why are we testing PMD* at this top level?  Because often
339          * there will be no work to do at all, and we'd prefer not to
340          * go all the way down to the bottom just to discover that.
341          *
342          * Why all these "- 1"s?  Because 0 represents both the bottom
343          * of the address space and the top of it (using -1 for the
344          * top wouldn't help much: the masks would do the wrong thing).
345          * The rule is that addr 0 and floor 0 refer to the bottom of
346          * the address space, but end 0 and ceiling 0 refer to the top
347          * Comparisons need to use "end - 1" and "ceiling - 1" (though
348          * that end 0 case should be mythical).
349          *
350          * Wherever addr is brought up or ceiling brought down, we must
351          * be careful to reject "the opposite 0" before it confuses the
352          * subsequent tests.  But what about where end is brought down
353          * by PMD_SIZE below? no, end can't go down to 0 there.
354          *
355          * Whereas we round start (addr) and ceiling down, by different
356          * masks at different levels, in order to test whether a table
357          * now has no other vmas using it, so can be freed, we don't
358          * bother to round floor or end up - the tests don't need that.
359          */
360
361         addr &= PMD_MASK;
362         if (addr < floor) {
363                 addr += PMD_SIZE;
364                 if (!addr)
365                         return;
366         }
367         if (ceiling) {
368                 ceiling &= PMD_MASK;
369                 if (!ceiling)
370                         return;
371         }
372         if (end - 1 > ceiling - 1)
373                 end -= PMD_SIZE;
374         if (addr > end - 1)
375                 return;
376         /*
377          * We add page table cache pages with PAGE_SIZE,
378          * (see pte_free_tlb()), flush the tlb if we need
379          */
380         tlb_change_page_size(tlb, PAGE_SIZE);
381         pgd = pgd_offset(tlb->mm, addr);
382         do {
383                 next = pgd_addr_end(addr, end);
384                 if (pgd_none_or_clear_bad(pgd))
385                         continue;
386                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387         } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391                 unsigned long floor, unsigned long ceiling)
392 {
393         while (vma) {
394                 struct vm_area_struct *next = vma->vm_next;
395                 unsigned long addr = vma->vm_start;
396
397                 /*
398                  * Hide vma from rmap and truncate_pagecache before freeing
399                  * pgtables
400                  */
401                 unlink_anon_vmas(vma);
402                 unlink_file_vma(vma);
403
404                 if (is_vm_hugetlb_page(vma)) {
405                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 } else {
408                         /*
409                          * Optimization: gather nearby vmas into one call down
410                          */
411                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412                                && !is_vm_hugetlb_page(next)) {
413                                 vma = next;
414                                 next = vma->vm_next;
415                                 unlink_anon_vmas(vma);
416                                 unlink_file_vma(vma);
417                         }
418                         free_pgd_range(tlb, addr, vma->vm_end,
419                                 floor, next ? next->vm_start : ceiling);
420                 }
421                 vma = next;
422         }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427         spinlock_t *ptl;
428         pgtable_t new = pte_alloc_one(mm);
429         if (!new)
430                 return -ENOMEM;
431
432         /*
433          * Ensure all pte setup (eg. pte page lock and page clearing) are
434          * visible before the pte is made visible to other CPUs by being
435          * put into page tables.
436          *
437          * The other side of the story is the pointer chasing in the page
438          * table walking code (when walking the page table without locking;
439          * ie. most of the time). Fortunately, these data accesses consist
440          * of a chain of data-dependent loads, meaning most CPUs (alpha
441          * being the notable exception) will already guarantee loads are
442          * seen in-order. See the alpha page table accessors for the
443          * smp_rmb() barriers in page table walking code.
444          */
445         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447         ptl = pmd_lock(mm, pmd);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 mm_inc_nr_ptes(mm);
450                 pmd_populate(mm, pmd, new);
451                 new = NULL;
452         }
453         spin_unlock(ptl);
454         if (new)
455                 pte_free(mm, new);
456         return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461         pte_t *new = pte_alloc_one_kernel(&init_mm);
462         if (!new)
463                 return -ENOMEM;
464
465         smp_wmb(); /* See comment in __pte_alloc */
466
467         spin_lock(&init_mm.page_table_lock);
468         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
469                 pmd_populate_kernel(&init_mm, pmd, new);
470                 new = NULL;
471         }
472         spin_unlock(&init_mm.page_table_lock);
473         if (new)
474                 pte_free_kernel(&init_mm, new);
475         return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485         int i;
486
487         if (current->mm == mm)
488                 sync_mm_rss(mm);
489         for (i = 0; i < NR_MM_COUNTERS; i++)
490                 if (rss[i])
491                         add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502                           pte_t pte, struct page *page)
503 {
504         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505         p4d_t *p4d = p4d_offset(pgd, addr);
506         pud_t *pud = pud_offset(p4d, addr);
507         pmd_t *pmd = pmd_offset(pud, addr);
508         struct address_space *mapping;
509         pgoff_t index;
510         static unsigned long resume;
511         static unsigned long nr_shown;
512         static unsigned long nr_unshown;
513
514         /*
515          * Allow a burst of 60 reports, then keep quiet for that minute;
516          * or allow a steady drip of one report per second.
517          */
518         if (nr_shown == 60) {
519                 if (time_before(jiffies, resume)) {
520                         nr_unshown++;
521                         return;
522                 }
523                 if (nr_unshown) {
524                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525                                  nr_unshown);
526                         nr_unshown = 0;
527                 }
528                 nr_shown = 0;
529         }
530         if (nr_shown++ == 0)
531                 resume = jiffies + 60 * HZ;
532
533         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534         index = linear_page_index(vma, addr);
535
536         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537                  current->comm,
538                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
539         if (page)
540                 dump_page(page, "bad pte");
541         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544                  vma->vm_file,
545                  vma->vm_ops ? vma->vm_ops->fault : NULL,
546                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547                  mapping ? mapping->a_ops->readpage : NULL);
548         dump_stack();
549         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595                             pte_t pte)
596 {
597         unsigned long pfn = pte_pfn(pte);
598
599         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600                 if (likely(!pte_special(pte)))
601                         goto check_pfn;
602                 if (vma->vm_ops && vma->vm_ops->find_special_page)
603                         return vma->vm_ops->find_special_page(vma, addr);
604                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605                         return NULL;
606                 if (is_zero_pfn(pfn))
607                         return NULL;
608                 if (pte_devmap(pte))
609                         return NULL;
610
611                 print_bad_pte(vma, addr, pte, NULL);
612                 return NULL;
613         }
614
615         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618                 if (vma->vm_flags & VM_MIXEDMAP) {
619                         if (!pfn_valid(pfn))
620                                 return NULL;
621                         goto out;
622                 } else {
623                         unsigned long off;
624                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
625                         if (pfn == vma->vm_pgoff + off)
626                                 return NULL;
627                         if (!is_cow_mapping(vma->vm_flags))
628                                 return NULL;
629                 }
630         }
631
632         if (is_zero_pfn(pfn))
633                 return NULL;
634
635 check_pfn:
636         if (unlikely(pfn > highest_memmap_pfn)) {
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /*
642          * NOTE! We still have PageReserved() pages in the page tables.
643          * eg. VDSO mappings can cause them to exist.
644          */
645 out:
646         return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651                                 pmd_t pmd)
652 {
653         unsigned long pfn = pmd_pfn(pmd);
654
655         /*
656          * There is no pmd_special() but there may be special pmds, e.g.
657          * in a direct-access (dax) mapping, so let's just replicate the
658          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659          */
660         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661                 if (vma->vm_flags & VM_MIXEDMAP) {
662                         if (!pfn_valid(pfn))
663                                 return NULL;
664                         goto out;
665                 } else {
666                         unsigned long off;
667                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
668                         if (pfn == vma->vm_pgoff + off)
669                                 return NULL;
670                         if (!is_cow_mapping(vma->vm_flags))
671                                 return NULL;
672                 }
673         }
674
675         if (pmd_devmap(pmd))
676                 return NULL;
677         if (is_huge_zero_pmd(pmd))
678                 return NULL;
679         if (unlikely(pfn > highest_memmap_pfn))
680                 return NULL;
681
682         /*
683          * NOTE! We still have PageReserved() pages in the page tables.
684          * eg. VDSO mappings can cause them to exist.
685          */
686 out:
687         return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700                 unsigned long addr, int *rss)
701 {
702         unsigned long vm_flags = vma->vm_flags;
703         pte_t pte = *src_pte;
704         struct page *page;
705         swp_entry_t entry = pte_to_swp_entry(pte);
706
707         if (likely(!non_swap_entry(entry))) {
708                 if (swap_duplicate(entry) < 0)
709                         return entry.val;
710
711                 /* make sure dst_mm is on swapoff's mmlist. */
712                 if (unlikely(list_empty(&dst_mm->mmlist))) {
713                         spin_lock(&mmlist_lock);
714                         if (list_empty(&dst_mm->mmlist))
715                                 list_add(&dst_mm->mmlist,
716                                                 &src_mm->mmlist);
717                         spin_unlock(&mmlist_lock);
718                 }
719                 rss[MM_SWAPENTS]++;
720         } else if (is_migration_entry(entry)) {
721                 page = migration_entry_to_page(entry);
722
723                 rss[mm_counter(page)]++;
724
725                 if (is_write_migration_entry(entry) &&
726                                 is_cow_mapping(vm_flags)) {
727                         /*
728                          * COW mappings require pages in both
729                          * parent and child to be set to read.
730                          */
731                         make_migration_entry_read(&entry);
732                         pte = swp_entry_to_pte(entry);
733                         if (pte_swp_soft_dirty(*src_pte))
734                                 pte = pte_swp_mksoft_dirty(pte);
735                         if (pte_swp_uffd_wp(*src_pte))
736                                 pte = pte_swp_mkuffd_wp(pte);
737                         set_pte_at(src_mm, addr, src_pte, pte);
738                 }
739         } else if (is_device_private_entry(entry)) {
740                 page = device_private_entry_to_page(entry);
741
742                 /*
743                  * Update rss count even for unaddressable pages, as
744                  * they should treated just like normal pages in this
745                  * respect.
746                  *
747                  * We will likely want to have some new rss counters
748                  * for unaddressable pages, at some point. But for now
749                  * keep things as they are.
750                  */
751                 get_page(page);
752                 rss[mm_counter(page)]++;
753                 page_dup_rmap(page, false);
754
755                 /*
756                  * We do not preserve soft-dirty information, because so
757                  * far, checkpoint/restore is the only feature that
758                  * requires that. And checkpoint/restore does not work
759                  * when a device driver is involved (you cannot easily
760                  * save and restore device driver state).
761                  */
762                 if (is_write_device_private_entry(entry) &&
763                     is_cow_mapping(vm_flags)) {
764                         make_device_private_entry_read(&entry);
765                         pte = swp_entry_to_pte(entry);
766                         if (pte_swp_uffd_wp(*src_pte))
767                                 pte = pte_swp_mkuffd_wp(pte);
768                         set_pte_at(src_mm, addr, src_pte, pte);
769                 }
770         }
771         set_pte_at(dst_mm, addr, dst_pte, pte);
772         return 0;
773 }
774
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798                   struct page **prealloc, pte_t pte, struct page *page)
799 {
800         struct mm_struct *src_mm = src_vma->vm_mm;
801         struct page *new_page;
802
803         if (!is_cow_mapping(src_vma->vm_flags))
804                 return 1;
805
806         /*
807          * What we want to do is to check whether this page may
808          * have been pinned by the parent process.  If so,
809          * instead of wrprotect the pte on both sides, we copy
810          * the page immediately so that we'll always guarantee
811          * the pinned page won't be randomly replaced in the
812          * future.
813          *
814          * The page pinning checks are just "has this mm ever
815          * seen pinning", along with the (inexact) check of
816          * the page count. That might give false positives for
817          * for pinning, but it will work correctly.
818          */
819         if (likely(!atomic_read(&src_mm->has_pinned)))
820                 return 1;
821         if (likely(!page_maybe_dma_pinned(page)))
822                 return 1;
823
824         new_page = *prealloc;
825         if (!new_page)
826                 return -EAGAIN;
827
828         /*
829          * We have a prealloc page, all good!  Take it
830          * over and copy the page & arm it.
831          */
832         *prealloc = NULL;
833         copy_user_highpage(new_page, page, addr, src_vma);
834         __SetPageUptodate(new_page);
835         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837         rss[mm_counter(new_page)]++;
838
839         /* All done, just insert the new page copy in the child */
840         pte = mk_pte(new_page, dst_vma->vm_page_prot);
841         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843         return 0;
844 }
845
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853                  struct page **prealloc)
854 {
855         struct mm_struct *src_mm = src_vma->vm_mm;
856         unsigned long vm_flags = src_vma->vm_flags;
857         pte_t pte = *src_pte;
858         struct page *page;
859
860         page = vm_normal_page(src_vma, addr, pte);
861         if (page) {
862                 int retval;
863
864                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865                                            addr, rss, prealloc, pte, page);
866                 if (retval <= 0)
867                         return retval;
868
869                 get_page(page);
870                 page_dup_rmap(page, false);
871                 rss[mm_counter(page)]++;
872         }
873
874         /*
875          * If it's a COW mapping, write protect it both
876          * in the parent and the child
877          */
878         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879                 ptep_set_wrprotect(src_mm, addr, src_pte);
880                 pte = pte_wrprotect(pte);
881         }
882
883         /*
884          * If it's a shared mapping, mark it clean in
885          * the child
886          */
887         if (vm_flags & VM_SHARED)
888                 pte = pte_mkclean(pte);
889         pte = pte_mkold(pte);
890
891         /*
892          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893          * does not have the VM_UFFD_WP, which means that the uffd
894          * fork event is not enabled.
895          */
896         if (!(vm_flags & VM_UFFD_WP))
897                 pte = pte_clear_uffd_wp(pte);
898
899         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900         return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905                    unsigned long addr)
906 {
907         struct page *new_page;
908
909         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910         if (!new_page)
911                 return NULL;
912
913         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914                 put_page(new_page);
915                 return NULL;
916         }
917         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919         return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925                unsigned long end)
926 {
927         struct mm_struct *dst_mm = dst_vma->vm_mm;
928         struct mm_struct *src_mm = src_vma->vm_mm;
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress, ret = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935         struct page *prealloc = NULL;
936
937 again:
938         progress = 0;
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte) {
943                 ret = -ENOMEM;
944                 goto out;
945         }
946         src_pte = pte_offset_map(src_pmd, addr);
947         src_ptl = pte_lockptr(src_mm, src_pmd);
948         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949         orig_src_pte = src_pte;
950         orig_dst_pte = dst_pte;
951         arch_enter_lazy_mmu_mode();
952
953         do {
954                 /*
955                  * We are holding two locks at this point - either of them
956                  * could generate latencies in another task on another CPU.
957                  */
958                 if (progress >= 32) {
959                         progress = 0;
960                         if (need_resched() ||
961                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962                                 break;
963                 }
964                 if (pte_none(*src_pte)) {
965                         progress++;
966                         continue;
967                 }
968                 if (unlikely(!pte_present(*src_pte))) {
969                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970                                                         dst_pte, src_pte,
971                                                         src_vma, addr, rss);
972                         if (entry.val)
973                                 break;
974                         progress += 8;
975                         continue;
976                 }
977                 /* copy_present_pte() will clear `*prealloc' if consumed */
978                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979                                        addr, rss, &prealloc);
980                 /*
981                  * If we need a pre-allocated page for this pte, drop the
982                  * locks, allocate, and try again.
983                  */
984                 if (unlikely(ret == -EAGAIN))
985                         break;
986                 if (unlikely(prealloc)) {
987                         /*
988                          * pre-alloc page cannot be reused by next time so as
989                          * to strictly follow mempolicy (e.g., alloc_page_vma()
990                          * will allocate page according to address).  This
991                          * could only happen if one pinned pte changed.
992                          */
993                         put_page(prealloc);
994                         prealloc = NULL;
995                 }
996                 progress += 8;
997         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999         arch_leave_lazy_mmu_mode();
1000         spin_unlock(src_ptl);
1001         pte_unmap(orig_src_pte);
1002         add_mm_rss_vec(dst_mm, rss);
1003         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004         cond_resched();
1005
1006         if (entry.val) {
1007                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008                         ret = -ENOMEM;
1009                         goto out;
1010                 }
1011                 entry.val = 0;
1012         } else if (ret) {
1013                 WARN_ON_ONCE(ret != -EAGAIN);
1014                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015                 if (!prealloc)
1016                         return -ENOMEM;
1017                 /* We've captured and resolved the error. Reset, try again. */
1018                 ret = 0;
1019         }
1020         if (addr != end)
1021                 goto again;
1022 out:
1023         if (unlikely(prealloc))
1024                 put_page(prealloc);
1025         return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031                unsigned long end)
1032 {
1033         struct mm_struct *dst_mm = dst_vma->vm_mm;
1034         struct mm_struct *src_mm = src_vma->vm_mm;
1035         pmd_t *src_pmd, *dst_pmd;
1036         unsigned long next;
1037
1038         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039         if (!dst_pmd)
1040                 return -ENOMEM;
1041         src_pmd = pmd_offset(src_pud, addr);
1042         do {
1043                 next = pmd_addr_end(addr, end);
1044                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045                         || pmd_devmap(*src_pmd)) {
1046                         int err;
1047                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048                         err = copy_huge_pmd(dst_mm, src_mm,
1049                                             dst_pmd, src_pmd, addr, src_vma);
1050                         if (err == -ENOMEM)
1051                                 return -ENOMEM;
1052                         if (!err)
1053                                 continue;
1054                         /* fall through */
1055                 }
1056                 if (pmd_none_or_clear_bad(src_pmd))
1057                         continue;
1058                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059                                    addr, next))
1060                         return -ENOMEM;
1061         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062         return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068                unsigned long end)
1069 {
1070         struct mm_struct *dst_mm = dst_vma->vm_mm;
1071         struct mm_struct *src_mm = src_vma->vm_mm;
1072         pud_t *src_pud, *dst_pud;
1073         unsigned long next;
1074
1075         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076         if (!dst_pud)
1077                 return -ENOMEM;
1078         src_pud = pud_offset(src_p4d, addr);
1079         do {
1080                 next = pud_addr_end(addr, end);
1081                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082                         int err;
1083
1084                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085                         err = copy_huge_pud(dst_mm, src_mm,
1086                                             dst_pud, src_pud, addr, src_vma);
1087                         if (err == -ENOMEM)
1088                                 return -ENOMEM;
1089                         if (!err)
1090                                 continue;
1091                         /* fall through */
1092                 }
1093                 if (pud_none_or_clear_bad(src_pud))
1094                         continue;
1095                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096                                    addr, next))
1097                         return -ENOMEM;
1098         } while (dst_pud++, src_pud++, addr = next, addr != end);
1099         return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105                unsigned long end)
1106 {
1107         struct mm_struct *dst_mm = dst_vma->vm_mm;
1108         p4d_t *src_p4d, *dst_p4d;
1109         unsigned long next;
1110
1111         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112         if (!dst_p4d)
1113                 return -ENOMEM;
1114         src_p4d = p4d_offset(src_pgd, addr);
1115         do {
1116                 next = p4d_addr_end(addr, end);
1117                 if (p4d_none_or_clear_bad(src_p4d))
1118                         continue;
1119                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120                                    addr, next))
1121                         return -ENOMEM;
1122         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123         return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129         pgd_t *src_pgd, *dst_pgd;
1130         unsigned long next;
1131         unsigned long addr = src_vma->vm_start;
1132         unsigned long end = src_vma->vm_end;
1133         struct mm_struct *dst_mm = dst_vma->vm_mm;
1134         struct mm_struct *src_mm = src_vma->vm_mm;
1135         struct mmu_notifier_range range;
1136         bool is_cow;
1137         int ret;
1138
1139         /*
1140          * Don't copy ptes where a page fault will fill them correctly.
1141          * Fork becomes much lighter when there are big shared or private
1142          * readonly mappings. The tradeoff is that copy_page_range is more
1143          * efficient than faulting.
1144          */
1145         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146             !src_vma->anon_vma)
1147                 return 0;
1148
1149         if (is_vm_hugetlb_page(src_vma))
1150                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153                 /*
1154                  * We do not free on error cases below as remove_vma
1155                  * gets called on error from higher level routine
1156                  */
1157                 ret = track_pfn_copy(src_vma);
1158                 if (ret)
1159                         return ret;
1160         }
1161
1162         /*
1163          * We need to invalidate the secondary MMU mappings only when
1164          * there could be a permission downgrade on the ptes of the
1165          * parent mm. And a permission downgrade will only happen if
1166          * is_cow_mapping() returns true.
1167          */
1168         is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170         if (is_cow) {
1171                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172                                         0, src_vma, src_mm, addr, end);
1173                 mmu_notifier_invalidate_range_start(&range);
1174                 /*
1175                  * Disabling preemption is not needed for the write side, as
1176                  * the read side doesn't spin, but goes to the mmap_lock.
1177                  *
1178                  * Use the raw variant of the seqcount_t write API to avoid
1179                  * lockdep complaining about preemptibility.
1180                  */
1181                 mmap_assert_write_locked(src_mm);
1182                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1183         }
1184
1185         ret = 0;
1186         dst_pgd = pgd_offset(dst_mm, addr);
1187         src_pgd = pgd_offset(src_mm, addr);
1188         do {
1189                 next = pgd_addr_end(addr, end);
1190                 if (pgd_none_or_clear_bad(src_pgd))
1191                         continue;
1192                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1193                                             addr, next))) {
1194                         ret = -ENOMEM;
1195                         break;
1196                 }
1197         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1198
1199         if (is_cow) {
1200                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1201                 mmu_notifier_invalidate_range_end(&range);
1202         }
1203         return ret;
1204 }
1205
1206 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1207                                 struct vm_area_struct *vma, pmd_t *pmd,
1208                                 unsigned long addr, unsigned long end,
1209                                 struct zap_details *details)
1210 {
1211         struct mm_struct *mm = tlb->mm;
1212         int force_flush = 0;
1213         int rss[NR_MM_COUNTERS];
1214         spinlock_t *ptl;
1215         pte_t *start_pte;
1216         pte_t *pte;
1217         swp_entry_t entry;
1218
1219         tlb_change_page_size(tlb, PAGE_SIZE);
1220 again:
1221         init_rss_vec(rss);
1222         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1223         pte = start_pte;
1224         flush_tlb_batched_pending(mm);
1225         arch_enter_lazy_mmu_mode();
1226         do {
1227                 pte_t ptent = *pte;
1228                 if (pte_none(ptent))
1229                         continue;
1230
1231                 if (need_resched())
1232                         break;
1233
1234                 if (pte_present(ptent)) {
1235                         struct page *page;
1236
1237                         page = vm_normal_page(vma, addr, ptent);
1238                         if (unlikely(details) && page) {
1239                                 /*
1240                                  * unmap_shared_mapping_pages() wants to
1241                                  * invalidate cache without truncating:
1242                                  * unmap shared but keep private pages.
1243                                  */
1244                                 if (details->check_mapping &&
1245                                     details->check_mapping != page_rmapping(page))
1246                                         continue;
1247                         }
1248                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1249                                                         tlb->fullmm);
1250                         tlb_remove_tlb_entry(tlb, pte, addr);
1251                         if (unlikely(!page))
1252                                 continue;
1253
1254                         if (!PageAnon(page)) {
1255                                 if (pte_dirty(ptent)) {
1256                                         force_flush = 1;
1257                                         set_page_dirty(page);
1258                                 }
1259                                 if (pte_young(ptent) &&
1260                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1261                                         mark_page_accessed(page);
1262                         }
1263                         rss[mm_counter(page)]--;
1264                         page_remove_rmap(page, false);
1265                         if (unlikely(page_mapcount(page) < 0))
1266                                 print_bad_pte(vma, addr, ptent, page);
1267                         if (unlikely(__tlb_remove_page(tlb, page))) {
1268                                 force_flush = 1;
1269                                 addr += PAGE_SIZE;
1270                                 break;
1271                         }
1272                         continue;
1273                 }
1274
1275                 entry = pte_to_swp_entry(ptent);
1276                 if (is_device_private_entry(entry)) {
1277                         struct page *page = device_private_entry_to_page(entry);
1278
1279                         if (unlikely(details && details->check_mapping)) {
1280                                 /*
1281                                  * unmap_shared_mapping_pages() wants to
1282                                  * invalidate cache without truncating:
1283                                  * unmap shared but keep private pages.
1284                                  */
1285                                 if (details->check_mapping !=
1286                                     page_rmapping(page))
1287                                         continue;
1288                         }
1289
1290                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291                         rss[mm_counter(page)]--;
1292                         page_remove_rmap(page, false);
1293                         put_page(page);
1294                         continue;
1295                 }
1296
1297                 /* If details->check_mapping, we leave swap entries. */
1298                 if (unlikely(details))
1299                         continue;
1300
1301                 if (!non_swap_entry(entry))
1302                         rss[MM_SWAPENTS]--;
1303                 else if (is_migration_entry(entry)) {
1304                         struct page *page;
1305
1306                         page = migration_entry_to_page(entry);
1307                         rss[mm_counter(page)]--;
1308                 }
1309                 if (unlikely(!free_swap_and_cache(entry)))
1310                         print_bad_pte(vma, addr, ptent, NULL);
1311                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1312         } while (pte++, addr += PAGE_SIZE, addr != end);
1313
1314         add_mm_rss_vec(mm, rss);
1315         arch_leave_lazy_mmu_mode();
1316
1317         /* Do the actual TLB flush before dropping ptl */
1318         if (force_flush)
1319                 tlb_flush_mmu_tlbonly(tlb);
1320         pte_unmap_unlock(start_pte, ptl);
1321
1322         /*
1323          * If we forced a TLB flush (either due to running out of
1324          * batch buffers or because we needed to flush dirty TLB
1325          * entries before releasing the ptl), free the batched
1326          * memory too. Restart if we didn't do everything.
1327          */
1328         if (force_flush) {
1329                 force_flush = 0;
1330                 tlb_flush_mmu(tlb);
1331         }
1332
1333         if (addr != end) {
1334                 cond_resched();
1335                 goto again;
1336         }
1337
1338         return addr;
1339 }
1340
1341 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1342                                 struct vm_area_struct *vma, pud_t *pud,
1343                                 unsigned long addr, unsigned long end,
1344                                 struct zap_details *details)
1345 {
1346         pmd_t *pmd;
1347         unsigned long next;
1348
1349         pmd = pmd_offset(pud, addr);
1350         do {
1351                 next = pmd_addr_end(addr, end);
1352                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1353                         if (next - addr != HPAGE_PMD_SIZE)
1354                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1355                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1356                                 goto next;
1357                         /* fall through */
1358                 }
1359                 /*
1360                  * Here there can be other concurrent MADV_DONTNEED or
1361                  * trans huge page faults running, and if the pmd is
1362                  * none or trans huge it can change under us. This is
1363                  * because MADV_DONTNEED holds the mmap_lock in read
1364                  * mode.
1365                  */
1366                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1367                         goto next;
1368                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1369 next:
1370                 cond_resched();
1371         } while (pmd++, addr = next, addr != end);
1372
1373         return addr;
1374 }
1375
1376 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1377                                 struct vm_area_struct *vma, p4d_t *p4d,
1378                                 unsigned long addr, unsigned long end,
1379                                 struct zap_details *details)
1380 {
1381         pud_t *pud;
1382         unsigned long next;
1383
1384         pud = pud_offset(p4d, addr);
1385         do {
1386                 next = pud_addr_end(addr, end);
1387                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1388                         if (next - addr != HPAGE_PUD_SIZE) {
1389                                 mmap_assert_locked(tlb->mm);
1390                                 split_huge_pud(vma, pud, addr);
1391                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1392                                 goto next;
1393                         /* fall through */
1394                 }
1395                 if (pud_none_or_clear_bad(pud))
1396                         continue;
1397                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1398 next:
1399                 cond_resched();
1400         } while (pud++, addr = next, addr != end);
1401
1402         return addr;
1403 }
1404
1405 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1406                                 struct vm_area_struct *vma, pgd_t *pgd,
1407                                 unsigned long addr, unsigned long end,
1408                                 struct zap_details *details)
1409 {
1410         p4d_t *p4d;
1411         unsigned long next;
1412
1413         p4d = p4d_offset(pgd, addr);
1414         do {
1415                 next = p4d_addr_end(addr, end);
1416                 if (p4d_none_or_clear_bad(p4d))
1417                         continue;
1418                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1419         } while (p4d++, addr = next, addr != end);
1420
1421         return addr;
1422 }
1423
1424 void unmap_page_range(struct mmu_gather *tlb,
1425                              struct vm_area_struct *vma,
1426                              unsigned long addr, unsigned long end,
1427                              struct zap_details *details)
1428 {
1429         pgd_t *pgd;
1430         unsigned long next;
1431
1432         BUG_ON(addr >= end);
1433         tlb_start_vma(tlb, vma);
1434         pgd = pgd_offset(vma->vm_mm, addr);
1435         do {
1436                 next = pgd_addr_end(addr, end);
1437                 if (pgd_none_or_clear_bad(pgd))
1438                         continue;
1439                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1440         } while (pgd++, addr = next, addr != end);
1441         tlb_end_vma(tlb, vma);
1442 }
1443
1444
1445 static void unmap_single_vma(struct mmu_gather *tlb,
1446                 struct vm_area_struct *vma, unsigned long start_addr,
1447                 unsigned long end_addr,
1448                 struct zap_details *details)
1449 {
1450         unsigned long start = max(vma->vm_start, start_addr);
1451         unsigned long end;
1452
1453         if (start >= vma->vm_end)
1454                 return;
1455         end = min(vma->vm_end, end_addr);
1456         if (end <= vma->vm_start)
1457                 return;
1458
1459         if (vma->vm_file)
1460                 uprobe_munmap(vma, start, end);
1461
1462         if (unlikely(vma->vm_flags & VM_PFNMAP))
1463                 untrack_pfn(vma, 0, 0);
1464
1465         if (start != end) {
1466                 if (unlikely(is_vm_hugetlb_page(vma))) {
1467                         /*
1468                          * It is undesirable to test vma->vm_file as it
1469                          * should be non-null for valid hugetlb area.
1470                          * However, vm_file will be NULL in the error
1471                          * cleanup path of mmap_region. When
1472                          * hugetlbfs ->mmap method fails,
1473                          * mmap_region() nullifies vma->vm_file
1474                          * before calling this function to clean up.
1475                          * Since no pte has actually been setup, it is
1476                          * safe to do nothing in this case.
1477                          */
1478                         if (vma->vm_file) {
1479                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1480                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1481                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1482                         }
1483                 } else
1484                         unmap_page_range(tlb, vma, start, end, details);
1485         }
1486 }
1487
1488 /**
1489  * unmap_vmas - unmap a range of memory covered by a list of vma's
1490  * @tlb: address of the caller's struct mmu_gather
1491  * @vma: the starting vma
1492  * @start_addr: virtual address at which to start unmapping
1493  * @end_addr: virtual address at which to end unmapping
1494  *
1495  * Unmap all pages in the vma list.
1496  *
1497  * Only addresses between `start' and `end' will be unmapped.
1498  *
1499  * The VMA list must be sorted in ascending virtual address order.
1500  *
1501  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1502  * range after unmap_vmas() returns.  So the only responsibility here is to
1503  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1504  * drops the lock and schedules.
1505  */
1506 void unmap_vmas(struct mmu_gather *tlb,
1507                 struct vm_area_struct *vma, unsigned long start_addr,
1508                 unsigned long end_addr)
1509 {
1510         struct mmu_notifier_range range;
1511
1512         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1513                                 start_addr, end_addr);
1514         mmu_notifier_invalidate_range_start(&range);
1515         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1516                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1517         mmu_notifier_invalidate_range_end(&range);
1518 }
1519
1520 /**
1521  * zap_page_range - remove user pages in a given range
1522  * @vma: vm_area_struct holding the applicable pages
1523  * @start: starting address of pages to zap
1524  * @size: number of bytes to zap
1525  *
1526  * Caller must protect the VMA list
1527  */
1528 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1529                 unsigned long size)
1530 {
1531         struct mmu_notifier_range range;
1532         struct mmu_gather tlb;
1533
1534         lru_add_drain();
1535         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1536                                 start, start + size);
1537         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1538         update_hiwater_rss(vma->vm_mm);
1539         mmu_notifier_invalidate_range_start(&range);
1540         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1541                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1542         mmu_notifier_invalidate_range_end(&range);
1543         tlb_finish_mmu(&tlb, start, range.end);
1544 }
1545
1546 /**
1547  * zap_page_range_single - remove user pages in a given range
1548  * @vma: vm_area_struct holding the applicable pages
1549  * @address: starting address of pages to zap
1550  * @size: number of bytes to zap
1551  * @details: details of shared cache invalidation
1552  *
1553  * The range must fit into one VMA.
1554  */
1555 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1556                 unsigned long size, struct zap_details *details)
1557 {
1558         struct mmu_notifier_range range;
1559         struct mmu_gather tlb;
1560
1561         lru_add_drain();
1562         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1563                                 address, address + size);
1564         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1565         update_hiwater_rss(vma->vm_mm);
1566         mmu_notifier_invalidate_range_start(&range);
1567         unmap_single_vma(&tlb, vma, address, range.end, details);
1568         mmu_notifier_invalidate_range_end(&range);
1569         tlb_finish_mmu(&tlb, address, range.end);
1570 }
1571
1572 /**
1573  * zap_vma_ptes - remove ptes mapping the vma
1574  * @vma: vm_area_struct holding ptes to be zapped
1575  * @address: starting address of pages to zap
1576  * @size: number of bytes to zap
1577  *
1578  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1579  *
1580  * The entire address range must be fully contained within the vma.
1581  *
1582  */
1583 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1584                 unsigned long size)
1585 {
1586         if (address < vma->vm_start || address + size > vma->vm_end ||
1587                         !(vma->vm_flags & VM_PFNMAP))
1588                 return;
1589
1590         zap_page_range_single(vma, address, size, NULL);
1591 }
1592 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1593
1594 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1595 {
1596         pgd_t *pgd;
1597         p4d_t *p4d;
1598         pud_t *pud;
1599         pmd_t *pmd;
1600
1601         pgd = pgd_offset(mm, addr);
1602         p4d = p4d_alloc(mm, pgd, addr);
1603         if (!p4d)
1604                 return NULL;
1605         pud = pud_alloc(mm, p4d, addr);
1606         if (!pud)
1607                 return NULL;
1608         pmd = pmd_alloc(mm, pud, addr);
1609         if (!pmd)
1610                 return NULL;
1611
1612         VM_BUG_ON(pmd_trans_huge(*pmd));
1613         return pmd;
1614 }
1615
1616 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1617                         spinlock_t **ptl)
1618 {
1619         pmd_t *pmd = walk_to_pmd(mm, addr);
1620
1621         if (!pmd)
1622                 return NULL;
1623         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1624 }
1625
1626 static int validate_page_before_insert(struct page *page)
1627 {
1628         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1629                 return -EINVAL;
1630         flush_dcache_page(page);
1631         return 0;
1632 }
1633
1634 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1635                         unsigned long addr, struct page *page, pgprot_t prot)
1636 {
1637         if (!pte_none(*pte))
1638                 return -EBUSY;
1639         /* Ok, finally just insert the thing.. */
1640         get_page(page);
1641         inc_mm_counter_fast(mm, mm_counter_file(page));
1642         page_add_file_rmap(page, false);
1643         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1644         return 0;
1645 }
1646
1647 /*
1648  * This is the old fallback for page remapping.
1649  *
1650  * For historical reasons, it only allows reserved pages. Only
1651  * old drivers should use this, and they needed to mark their
1652  * pages reserved for the old functions anyway.
1653  */
1654 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1655                         struct page *page, pgprot_t prot)
1656 {
1657         struct mm_struct *mm = vma->vm_mm;
1658         int retval;
1659         pte_t *pte;
1660         spinlock_t *ptl;
1661
1662         retval = validate_page_before_insert(page);
1663         if (retval)
1664                 goto out;
1665         retval = -ENOMEM;
1666         pte = get_locked_pte(mm, addr, &ptl);
1667         if (!pte)
1668                 goto out;
1669         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1670         pte_unmap_unlock(pte, ptl);
1671 out:
1672         return retval;
1673 }
1674
1675 #ifdef pte_index
1676 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1677                         unsigned long addr, struct page *page, pgprot_t prot)
1678 {
1679         int err;
1680
1681         if (!page_count(page))
1682                 return -EINVAL;
1683         err = validate_page_before_insert(page);
1684         if (err)
1685                 return err;
1686         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1687 }
1688
1689 /* insert_pages() amortizes the cost of spinlock operations
1690  * when inserting pages in a loop. Arch *must* define pte_index.
1691  */
1692 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1693                         struct page **pages, unsigned long *num, pgprot_t prot)
1694 {
1695         pmd_t *pmd = NULL;
1696         pte_t *start_pte, *pte;
1697         spinlock_t *pte_lock;
1698         struct mm_struct *const mm = vma->vm_mm;
1699         unsigned long curr_page_idx = 0;
1700         unsigned long remaining_pages_total = *num;
1701         unsigned long pages_to_write_in_pmd;
1702         int ret;
1703 more:
1704         ret = -EFAULT;
1705         pmd = walk_to_pmd(mm, addr);
1706         if (!pmd)
1707                 goto out;
1708
1709         pages_to_write_in_pmd = min_t(unsigned long,
1710                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1711
1712         /* Allocate the PTE if necessary; takes PMD lock once only. */
1713         ret = -ENOMEM;
1714         if (pte_alloc(mm, pmd))
1715                 goto out;
1716
1717         while (pages_to_write_in_pmd) {
1718                 int pte_idx = 0;
1719                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1720
1721                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1722                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1723                         int err = insert_page_in_batch_locked(mm, pte,
1724                                 addr, pages[curr_page_idx], prot);
1725                         if (unlikely(err)) {
1726                                 pte_unmap_unlock(start_pte, pte_lock);
1727                                 ret = err;
1728                                 remaining_pages_total -= pte_idx;
1729                                 goto out;
1730                         }
1731                         addr += PAGE_SIZE;
1732                         ++curr_page_idx;
1733                 }
1734                 pte_unmap_unlock(start_pte, pte_lock);
1735                 pages_to_write_in_pmd -= batch_size;
1736                 remaining_pages_total -= batch_size;
1737         }
1738         if (remaining_pages_total)
1739                 goto more;
1740         ret = 0;
1741 out:
1742         *num = remaining_pages_total;
1743         return ret;
1744 }
1745 #endif  /* ifdef pte_index */
1746
1747 /**
1748  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1749  * @vma: user vma to map to
1750  * @addr: target start user address of these pages
1751  * @pages: source kernel pages
1752  * @num: in: number of pages to map. out: number of pages that were *not*
1753  * mapped. (0 means all pages were successfully mapped).
1754  *
1755  * Preferred over vm_insert_page() when inserting multiple pages.
1756  *
1757  * In case of error, we may have mapped a subset of the provided
1758  * pages. It is the caller's responsibility to account for this case.
1759  *
1760  * The same restrictions apply as in vm_insert_page().
1761  */
1762 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1763                         struct page **pages, unsigned long *num)
1764 {
1765 #ifdef pte_index
1766         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1767
1768         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1769                 return -EFAULT;
1770         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1771                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1772                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1773                 vma->vm_flags |= VM_MIXEDMAP;
1774         }
1775         /* Defer page refcount checking till we're about to map that page. */
1776         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1777 #else
1778         unsigned long idx = 0, pgcount = *num;
1779         int err = -EINVAL;
1780
1781         for (; idx < pgcount; ++idx) {
1782                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1783                 if (err)
1784                         break;
1785         }
1786         *num = pgcount - idx;
1787         return err;
1788 #endif  /* ifdef pte_index */
1789 }
1790 EXPORT_SYMBOL(vm_insert_pages);
1791
1792 /**
1793  * vm_insert_page - insert single page into user vma
1794  * @vma: user vma to map to
1795  * @addr: target user address of this page
1796  * @page: source kernel page
1797  *
1798  * This allows drivers to insert individual pages they've allocated
1799  * into a user vma.
1800  *
1801  * The page has to be a nice clean _individual_ kernel allocation.
1802  * If you allocate a compound page, you need to have marked it as
1803  * such (__GFP_COMP), or manually just split the page up yourself
1804  * (see split_page()).
1805  *
1806  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1807  * took an arbitrary page protection parameter. This doesn't allow
1808  * that. Your vma protection will have to be set up correctly, which
1809  * means that if you want a shared writable mapping, you'd better
1810  * ask for a shared writable mapping!
1811  *
1812  * The page does not need to be reserved.
1813  *
1814  * Usually this function is called from f_op->mmap() handler
1815  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1816  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1817  * function from other places, for example from page-fault handler.
1818  *
1819  * Return: %0 on success, negative error code otherwise.
1820  */
1821 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1822                         struct page *page)
1823 {
1824         if (addr < vma->vm_start || addr >= vma->vm_end)
1825                 return -EFAULT;
1826         if (!page_count(page))
1827                 return -EINVAL;
1828         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1829                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1830                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1831                 vma->vm_flags |= VM_MIXEDMAP;
1832         }
1833         return insert_page(vma, addr, page, vma->vm_page_prot);
1834 }
1835 EXPORT_SYMBOL(vm_insert_page);
1836
1837 /*
1838  * __vm_map_pages - maps range of kernel pages into user vma
1839  * @vma: user vma to map to
1840  * @pages: pointer to array of source kernel pages
1841  * @num: number of pages in page array
1842  * @offset: user's requested vm_pgoff
1843  *
1844  * This allows drivers to map range of kernel pages into a user vma.
1845  *
1846  * Return: 0 on success and error code otherwise.
1847  */
1848 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1849                                 unsigned long num, unsigned long offset)
1850 {
1851         unsigned long count = vma_pages(vma);
1852         unsigned long uaddr = vma->vm_start;
1853         int ret, i;
1854
1855         /* Fail if the user requested offset is beyond the end of the object */
1856         if (offset >= num)
1857                 return -ENXIO;
1858
1859         /* Fail if the user requested size exceeds available object size */
1860         if (count > num - offset)
1861                 return -ENXIO;
1862
1863         for (i = 0; i < count; i++) {
1864                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1865                 if (ret < 0)
1866                         return ret;
1867                 uaddr += PAGE_SIZE;
1868         }
1869
1870         return 0;
1871 }
1872
1873 /**
1874  * vm_map_pages - maps range of kernel pages starts with non zero offset
1875  * @vma: user vma to map to
1876  * @pages: pointer to array of source kernel pages
1877  * @num: number of pages in page array
1878  *
1879  * Maps an object consisting of @num pages, catering for the user's
1880  * requested vm_pgoff
1881  *
1882  * If we fail to insert any page into the vma, the function will return
1883  * immediately leaving any previously inserted pages present.  Callers
1884  * from the mmap handler may immediately return the error as their caller
1885  * will destroy the vma, removing any successfully inserted pages. Other
1886  * callers should make their own arrangements for calling unmap_region().
1887  *
1888  * Context: Process context. Called by mmap handlers.
1889  * Return: 0 on success and error code otherwise.
1890  */
1891 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1892                                 unsigned long num)
1893 {
1894         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1895 }
1896 EXPORT_SYMBOL(vm_map_pages);
1897
1898 /**
1899  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1900  * @vma: user vma to map to
1901  * @pages: pointer to array of source kernel pages
1902  * @num: number of pages in page array
1903  *
1904  * Similar to vm_map_pages(), except that it explicitly sets the offset
1905  * to 0. This function is intended for the drivers that did not consider
1906  * vm_pgoff.
1907  *
1908  * Context: Process context. Called by mmap handlers.
1909  * Return: 0 on success and error code otherwise.
1910  */
1911 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1912                                 unsigned long num)
1913 {
1914         return __vm_map_pages(vma, pages, num, 0);
1915 }
1916 EXPORT_SYMBOL(vm_map_pages_zero);
1917
1918 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1919                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1920 {
1921         struct mm_struct *mm = vma->vm_mm;
1922         pte_t *pte, entry;
1923         spinlock_t *ptl;
1924
1925         pte = get_locked_pte(mm, addr, &ptl);
1926         if (!pte)
1927                 return VM_FAULT_OOM;
1928         if (!pte_none(*pte)) {
1929                 if (mkwrite) {
1930                         /*
1931                          * For read faults on private mappings the PFN passed
1932                          * in may not match the PFN we have mapped if the
1933                          * mapped PFN is a writeable COW page.  In the mkwrite
1934                          * case we are creating a writable PTE for a shared
1935                          * mapping and we expect the PFNs to match. If they
1936                          * don't match, we are likely racing with block
1937                          * allocation and mapping invalidation so just skip the
1938                          * update.
1939                          */
1940                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1941                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1942                                 goto out_unlock;
1943                         }
1944                         entry = pte_mkyoung(*pte);
1945                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1947                                 update_mmu_cache(vma, addr, pte);
1948                 }
1949                 goto out_unlock;
1950         }
1951
1952         /* Ok, finally just insert the thing.. */
1953         if (pfn_t_devmap(pfn))
1954                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1955         else
1956                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1957
1958         if (mkwrite) {
1959                 entry = pte_mkyoung(entry);
1960                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1961         }
1962
1963         set_pte_at(mm, addr, pte, entry);
1964         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1965
1966 out_unlock:
1967         pte_unmap_unlock(pte, ptl);
1968         return VM_FAULT_NOPAGE;
1969 }
1970
1971 /**
1972  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1973  * @vma: user vma to map to
1974  * @addr: target user address of this page
1975  * @pfn: source kernel pfn
1976  * @pgprot: pgprot flags for the inserted page
1977  *
1978  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1979  * to override pgprot on a per-page basis.
1980  *
1981  * This only makes sense for IO mappings, and it makes no sense for
1982  * COW mappings.  In general, using multiple vmas is preferable;
1983  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1984  * impractical.
1985  *
1986  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1987  * a value of @pgprot different from that of @vma->vm_page_prot.
1988  *
1989  * Context: Process context.  May allocate using %GFP_KERNEL.
1990  * Return: vm_fault_t value.
1991  */
1992 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1993                         unsigned long pfn, pgprot_t pgprot)
1994 {
1995         /*
1996          * Technically, architectures with pte_special can avoid all these
1997          * restrictions (same for remap_pfn_range).  However we would like
1998          * consistency in testing and feature parity among all, so we should
1999          * try to keep these invariants in place for everybody.
2000          */
2001         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2002         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2003                                                 (VM_PFNMAP|VM_MIXEDMAP));
2004         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2005         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2006
2007         if (addr < vma->vm_start || addr >= vma->vm_end)
2008                 return VM_FAULT_SIGBUS;
2009
2010         if (!pfn_modify_allowed(pfn, pgprot))
2011                 return VM_FAULT_SIGBUS;
2012
2013         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2014
2015         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2016                         false);
2017 }
2018 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2019
2020 /**
2021  * vmf_insert_pfn - insert single pfn into user vma
2022  * @vma: user vma to map to
2023  * @addr: target user address of this page
2024  * @pfn: source kernel pfn
2025  *
2026  * Similar to vm_insert_page, this allows drivers to insert individual pages
2027  * they've allocated into a user vma. Same comments apply.
2028  *
2029  * This function should only be called from a vm_ops->fault handler, and
2030  * in that case the handler should return the result of this function.
2031  *
2032  * vma cannot be a COW mapping.
2033  *
2034  * As this is called only for pages that do not currently exist, we
2035  * do not need to flush old virtual caches or the TLB.
2036  *
2037  * Context: Process context.  May allocate using %GFP_KERNEL.
2038  * Return: vm_fault_t value.
2039  */
2040 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041                         unsigned long pfn)
2042 {
2043         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2044 }
2045 EXPORT_SYMBOL(vmf_insert_pfn);
2046
2047 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2048 {
2049         /* these checks mirror the abort conditions in vm_normal_page */
2050         if (vma->vm_flags & VM_MIXEDMAP)
2051                 return true;
2052         if (pfn_t_devmap(pfn))
2053                 return true;
2054         if (pfn_t_special(pfn))
2055                 return true;
2056         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2057                 return true;
2058         return false;
2059 }
2060
2061 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2062                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2063                 bool mkwrite)
2064 {
2065         int err;
2066
2067         BUG_ON(!vm_mixed_ok(vma, pfn));
2068
2069         if (addr < vma->vm_start || addr >= vma->vm_end)
2070                 return VM_FAULT_SIGBUS;
2071
2072         track_pfn_insert(vma, &pgprot, pfn);
2073
2074         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2075                 return VM_FAULT_SIGBUS;
2076
2077         /*
2078          * If we don't have pte special, then we have to use the pfn_valid()
2079          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2080          * refcount the page if pfn_valid is true (hence insert_page rather
2081          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2082          * without pte special, it would there be refcounted as a normal page.
2083          */
2084         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2085             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2086                 struct page *page;
2087
2088                 /*
2089                  * At this point we are committed to insert_page()
2090                  * regardless of whether the caller specified flags that
2091                  * result in pfn_t_has_page() == false.
2092                  */
2093                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2094                 err = insert_page(vma, addr, page, pgprot);
2095         } else {
2096                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2097         }
2098
2099         if (err == -ENOMEM)
2100                 return VM_FAULT_OOM;
2101         if (err < 0 && err != -EBUSY)
2102                 return VM_FAULT_SIGBUS;
2103
2104         return VM_FAULT_NOPAGE;
2105 }
2106
2107 /**
2108  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2109  * @vma: user vma to map to
2110  * @addr: target user address of this page
2111  * @pfn: source kernel pfn
2112  * @pgprot: pgprot flags for the inserted page
2113  *
2114  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2115  * to override pgprot on a per-page basis.
2116  *
2117  * Typically this function should be used by drivers to set caching- and
2118  * encryption bits different than those of @vma->vm_page_prot, because
2119  * the caching- or encryption mode may not be known at mmap() time.
2120  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2121  * to set caching and encryption bits for those vmas (except for COW pages).
2122  * This is ensured by core vm only modifying these page table entries using
2123  * functions that don't touch caching- or encryption bits, using pte_modify()
2124  * if needed. (See for example mprotect()).
2125  * Also when new page-table entries are created, this is only done using the
2126  * fault() callback, and never using the value of vma->vm_page_prot,
2127  * except for page-table entries that point to anonymous pages as the result
2128  * of COW.
2129  *
2130  * Context: Process context.  May allocate using %GFP_KERNEL.
2131  * Return: vm_fault_t value.
2132  */
2133 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2134                                  pfn_t pfn, pgprot_t pgprot)
2135 {
2136         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2137 }
2138 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2139
2140 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141                 pfn_t pfn)
2142 {
2143         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2144 }
2145 EXPORT_SYMBOL(vmf_insert_mixed);
2146
2147 /*
2148  *  If the insertion of PTE failed because someone else already added a
2149  *  different entry in the mean time, we treat that as success as we assume
2150  *  the same entry was actually inserted.
2151  */
2152 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2153                 unsigned long addr, pfn_t pfn)
2154 {
2155         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2158
2159 /*
2160  * maps a range of physical memory into the requested pages. the old
2161  * mappings are removed. any references to nonexistent pages results
2162  * in null mappings (currently treated as "copy-on-access")
2163  */
2164 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2165                         unsigned long addr, unsigned long end,
2166                         unsigned long pfn, pgprot_t prot)
2167 {
2168         pte_t *pte, *mapped_pte;
2169         spinlock_t *ptl;
2170         int err = 0;
2171
2172         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2173         if (!pte)
2174                 return -ENOMEM;
2175         arch_enter_lazy_mmu_mode();
2176         do {
2177                 BUG_ON(!pte_none(*pte));
2178                 if (!pfn_modify_allowed(pfn, prot)) {
2179                         err = -EACCES;
2180                         break;
2181                 }
2182                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2183                 pfn++;
2184         } while (pte++, addr += PAGE_SIZE, addr != end);
2185         arch_leave_lazy_mmu_mode();
2186         pte_unmap_unlock(mapped_pte, ptl);
2187         return err;
2188 }
2189
2190 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2191                         unsigned long addr, unsigned long end,
2192                         unsigned long pfn, pgprot_t prot)
2193 {
2194         pmd_t *pmd;
2195         unsigned long next;
2196         int err;
2197
2198         pfn -= addr >> PAGE_SHIFT;
2199         pmd = pmd_alloc(mm, pud, addr);
2200         if (!pmd)
2201                 return -ENOMEM;
2202         VM_BUG_ON(pmd_trans_huge(*pmd));
2203         do {
2204                 next = pmd_addr_end(addr, end);
2205                 err = remap_pte_range(mm, pmd, addr, next,
2206                                 pfn + (addr >> PAGE_SHIFT), prot);
2207                 if (err)
2208                         return err;
2209         } while (pmd++, addr = next, addr != end);
2210         return 0;
2211 }
2212
2213 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2214                         unsigned long addr, unsigned long end,
2215                         unsigned long pfn, pgprot_t prot)
2216 {
2217         pud_t *pud;
2218         unsigned long next;
2219         int err;
2220
2221         pfn -= addr >> PAGE_SHIFT;
2222         pud = pud_alloc(mm, p4d, addr);
2223         if (!pud)
2224                 return -ENOMEM;
2225         do {
2226                 next = pud_addr_end(addr, end);
2227                 err = remap_pmd_range(mm, pud, addr, next,
2228                                 pfn + (addr >> PAGE_SHIFT), prot);
2229                 if (err)
2230                         return err;
2231         } while (pud++, addr = next, addr != end);
2232         return 0;
2233 }
2234
2235 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2236                         unsigned long addr, unsigned long end,
2237                         unsigned long pfn, pgprot_t prot)
2238 {
2239         p4d_t *p4d;
2240         unsigned long next;
2241         int err;
2242
2243         pfn -= addr >> PAGE_SHIFT;
2244         p4d = p4d_alloc(mm, pgd, addr);
2245         if (!p4d)
2246                 return -ENOMEM;
2247         do {
2248                 next = p4d_addr_end(addr, end);
2249                 err = remap_pud_range(mm, p4d, addr, next,
2250                                 pfn + (addr >> PAGE_SHIFT), prot);
2251                 if (err)
2252                         return err;
2253         } while (p4d++, addr = next, addr != end);
2254         return 0;
2255 }
2256
2257 /**
2258  * remap_pfn_range - remap kernel memory to userspace
2259  * @vma: user vma to map to
2260  * @addr: target page aligned user address to start at
2261  * @pfn: page frame number of kernel physical memory address
2262  * @size: size of mapping area
2263  * @prot: page protection flags for this mapping
2264  *
2265  * Note: this is only safe if the mm semaphore is held when called.
2266  *
2267  * Return: %0 on success, negative error code otherwise.
2268  */
2269 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2270                     unsigned long pfn, unsigned long size, pgprot_t prot)
2271 {
2272         pgd_t *pgd;
2273         unsigned long next;
2274         unsigned long end = addr + PAGE_ALIGN(size);
2275         struct mm_struct *mm = vma->vm_mm;
2276         unsigned long remap_pfn = pfn;
2277         int err;
2278
2279         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2280                 return -EINVAL;
2281
2282         /*
2283          * Physically remapped pages are special. Tell the
2284          * rest of the world about it:
2285          *   VM_IO tells people not to look at these pages
2286          *      (accesses can have side effects).
2287          *   VM_PFNMAP tells the core MM that the base pages are just
2288          *      raw PFN mappings, and do not have a "struct page" associated
2289          *      with them.
2290          *   VM_DONTEXPAND
2291          *      Disable vma merging and expanding with mremap().
2292          *   VM_DONTDUMP
2293          *      Omit vma from core dump, even when VM_IO turned off.
2294          *
2295          * There's a horrible special case to handle copy-on-write
2296          * behaviour that some programs depend on. We mark the "original"
2297          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2298          * See vm_normal_page() for details.
2299          */
2300         if (is_cow_mapping(vma->vm_flags)) {
2301                 if (addr != vma->vm_start || end != vma->vm_end)
2302                         return -EINVAL;
2303                 vma->vm_pgoff = pfn;
2304         }
2305
2306         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2307         if (err)
2308                 return -EINVAL;
2309
2310         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2311
2312         BUG_ON(addr >= end);
2313         pfn -= addr >> PAGE_SHIFT;
2314         pgd = pgd_offset(mm, addr);
2315         flush_cache_range(vma, addr, end);
2316         do {
2317                 next = pgd_addr_end(addr, end);
2318                 err = remap_p4d_range(mm, pgd, addr, next,
2319                                 pfn + (addr >> PAGE_SHIFT), prot);
2320                 if (err)
2321                         break;
2322         } while (pgd++, addr = next, addr != end);
2323
2324         if (err)
2325                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2326
2327         return err;
2328 }
2329 EXPORT_SYMBOL(remap_pfn_range);
2330
2331 /**
2332  * vm_iomap_memory - remap memory to userspace
2333  * @vma: user vma to map to
2334  * @start: start of the physical memory to be mapped
2335  * @len: size of area
2336  *
2337  * This is a simplified io_remap_pfn_range() for common driver use. The
2338  * driver just needs to give us the physical memory range to be mapped,
2339  * we'll figure out the rest from the vma information.
2340  *
2341  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2342  * whatever write-combining details or similar.
2343  *
2344  * Return: %0 on success, negative error code otherwise.
2345  */
2346 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2347 {
2348         unsigned long vm_len, pfn, pages;
2349
2350         /* Check that the physical memory area passed in looks valid */
2351         if (start + len < start)
2352                 return -EINVAL;
2353         /*
2354          * You *really* shouldn't map things that aren't page-aligned,
2355          * but we've historically allowed it because IO memory might
2356          * just have smaller alignment.
2357          */
2358         len += start & ~PAGE_MASK;
2359         pfn = start >> PAGE_SHIFT;
2360         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2361         if (pfn + pages < pfn)
2362                 return -EINVAL;
2363
2364         /* We start the mapping 'vm_pgoff' pages into the area */
2365         if (vma->vm_pgoff > pages)
2366                 return -EINVAL;
2367         pfn += vma->vm_pgoff;
2368         pages -= vma->vm_pgoff;
2369
2370         /* Can we fit all of the mapping? */
2371         vm_len = vma->vm_end - vma->vm_start;
2372         if (vm_len >> PAGE_SHIFT > pages)
2373                 return -EINVAL;
2374
2375         /* Ok, let it rip */
2376         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2377 }
2378 EXPORT_SYMBOL(vm_iomap_memory);
2379
2380 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381                                      unsigned long addr, unsigned long end,
2382                                      pte_fn_t fn, void *data, bool create,
2383                                      pgtbl_mod_mask *mask)
2384 {
2385         pte_t *pte;
2386         int err = 0;
2387         spinlock_t *ptl;
2388
2389         if (create) {
2390                 pte = (mm == &init_mm) ?
2391                         pte_alloc_kernel_track(pmd, addr, mask) :
2392                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2393                 if (!pte)
2394                         return -ENOMEM;
2395         } else {
2396                 pte = (mm == &init_mm) ?
2397                         pte_offset_kernel(pmd, addr) :
2398                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2399         }
2400
2401         BUG_ON(pmd_huge(*pmd));
2402
2403         arch_enter_lazy_mmu_mode();
2404
2405         if (fn) {
2406                 do {
2407                         if (create || !pte_none(*pte)) {
2408                                 err = fn(pte++, addr, data);
2409                                 if (err)
2410                                         break;
2411                         }
2412                 } while (addr += PAGE_SIZE, addr != end);
2413         }
2414         *mask |= PGTBL_PTE_MODIFIED;
2415
2416         arch_leave_lazy_mmu_mode();
2417
2418         if (mm != &init_mm)
2419                 pte_unmap_unlock(pte-1, ptl);
2420         return err;
2421 }
2422
2423 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2424                                      unsigned long addr, unsigned long end,
2425                                      pte_fn_t fn, void *data, bool create,
2426                                      pgtbl_mod_mask *mask)
2427 {
2428         pmd_t *pmd;
2429         unsigned long next;
2430         int err = 0;
2431
2432         BUG_ON(pud_huge(*pud));
2433
2434         if (create) {
2435                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2436                 if (!pmd)
2437                         return -ENOMEM;
2438         } else {
2439                 pmd = pmd_offset(pud, addr);
2440         }
2441         do {
2442                 next = pmd_addr_end(addr, end);
2443                 if (create || !pmd_none_or_clear_bad(pmd)) {
2444                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2445                                                  create, mask);
2446                         if (err)
2447                                 break;
2448                 }
2449         } while (pmd++, addr = next, addr != end);
2450         return err;
2451 }
2452
2453 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2454                                      unsigned long addr, unsigned long end,
2455                                      pte_fn_t fn, void *data, bool create,
2456                                      pgtbl_mod_mask *mask)
2457 {
2458         pud_t *pud;
2459         unsigned long next;
2460         int err = 0;
2461
2462         if (create) {
2463                 pud = pud_alloc_track(mm, p4d, addr, mask);
2464                 if (!pud)
2465                         return -ENOMEM;
2466         } else {
2467                 pud = pud_offset(p4d, addr);
2468         }
2469         do {
2470                 next = pud_addr_end(addr, end);
2471                 if (create || !pud_none_or_clear_bad(pud)) {
2472                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2473                                                  create, mask);
2474                         if (err)
2475                                 break;
2476                 }
2477         } while (pud++, addr = next, addr != end);
2478         return err;
2479 }
2480
2481 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2482                                      unsigned long addr, unsigned long end,
2483                                      pte_fn_t fn, void *data, bool create,
2484                                      pgtbl_mod_mask *mask)
2485 {
2486         p4d_t *p4d;
2487         unsigned long next;
2488         int err = 0;
2489
2490         if (create) {
2491                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2492                 if (!p4d)
2493                         return -ENOMEM;
2494         } else {
2495                 p4d = p4d_offset(pgd, addr);
2496         }
2497         do {
2498                 next = p4d_addr_end(addr, end);
2499                 if (create || !p4d_none_or_clear_bad(p4d)) {
2500                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2501                                                  create, mask);
2502                         if (err)
2503                                 break;
2504                 }
2505         } while (p4d++, addr = next, addr != end);
2506         return err;
2507 }
2508
2509 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2510                                  unsigned long size, pte_fn_t fn,
2511                                  void *data, bool create)
2512 {
2513         pgd_t *pgd;
2514         unsigned long start = addr, next;
2515         unsigned long end = addr + size;
2516         pgtbl_mod_mask mask = 0;
2517         int err = 0;
2518
2519         if (WARN_ON(addr >= end))
2520                 return -EINVAL;
2521
2522         pgd = pgd_offset(mm, addr);
2523         do {
2524                 next = pgd_addr_end(addr, end);
2525                 if (!create && pgd_none_or_clear_bad(pgd))
2526                         continue;
2527                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2528                 if (err)
2529                         break;
2530         } while (pgd++, addr = next, addr != end);
2531
2532         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2533                 arch_sync_kernel_mappings(start, start + size);
2534
2535         return err;
2536 }
2537
2538 /*
2539  * Scan a region of virtual memory, filling in page tables as necessary
2540  * and calling a provided function on each leaf page table.
2541  */
2542 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2543                         unsigned long size, pte_fn_t fn, void *data)
2544 {
2545         return __apply_to_page_range(mm, addr, size, fn, data, true);
2546 }
2547 EXPORT_SYMBOL_GPL(apply_to_page_range);
2548
2549 /*
2550  * Scan a region of virtual memory, calling a provided function on
2551  * each leaf page table where it exists.
2552  *
2553  * Unlike apply_to_page_range, this does _not_ fill in page tables
2554  * where they are absent.
2555  */
2556 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2557                                  unsigned long size, pte_fn_t fn, void *data)
2558 {
2559         return __apply_to_page_range(mm, addr, size, fn, data, false);
2560 }
2561 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2562
2563 /*
2564  * handle_pte_fault chooses page fault handler according to an entry which was
2565  * read non-atomically.  Before making any commitment, on those architectures
2566  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2567  * parts, do_swap_page must check under lock before unmapping the pte and
2568  * proceeding (but do_wp_page is only called after already making such a check;
2569  * and do_anonymous_page can safely check later on).
2570  */
2571 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2572                                 pte_t *page_table, pte_t orig_pte)
2573 {
2574         int same = 1;
2575 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2576         if (sizeof(pte_t) > sizeof(unsigned long)) {
2577                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2578                 spin_lock(ptl);
2579                 same = pte_same(*page_table, orig_pte);
2580                 spin_unlock(ptl);
2581         }
2582 #endif
2583         pte_unmap(page_table);
2584         return same;
2585 }
2586
2587 static inline bool cow_user_page(struct page *dst, struct page *src,
2588                                  struct vm_fault *vmf)
2589 {
2590         bool ret;
2591         void *kaddr;
2592         void __user *uaddr;
2593         bool locked = false;
2594         struct vm_area_struct *vma = vmf->vma;
2595         struct mm_struct *mm = vma->vm_mm;
2596         unsigned long addr = vmf->address;
2597
2598         if (likely(src)) {
2599                 copy_user_highpage(dst, src, addr, vma);
2600                 return true;
2601         }
2602
2603         /*
2604          * If the source page was a PFN mapping, we don't have
2605          * a "struct page" for it. We do a best-effort copy by
2606          * just copying from the original user address. If that
2607          * fails, we just zero-fill it. Live with it.
2608          */
2609         kaddr = kmap_atomic(dst);
2610         uaddr = (void __user *)(addr & PAGE_MASK);
2611
2612         /*
2613          * On architectures with software "accessed" bits, we would
2614          * take a double page fault, so mark it accessed here.
2615          */
2616         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2617                 pte_t entry;
2618
2619                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2620                 locked = true;
2621                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2622                         /*
2623                          * Other thread has already handled the fault
2624                          * and update local tlb only
2625                          */
2626                         update_mmu_tlb(vma, addr, vmf->pte);
2627                         ret = false;
2628                         goto pte_unlock;
2629                 }
2630
2631                 entry = pte_mkyoung(vmf->orig_pte);
2632                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2633                         update_mmu_cache(vma, addr, vmf->pte);
2634         }
2635
2636         /*
2637          * This really shouldn't fail, because the page is there
2638          * in the page tables. But it might just be unreadable,
2639          * in which case we just give up and fill the result with
2640          * zeroes.
2641          */
2642         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2643                 if (locked)
2644                         goto warn;
2645
2646                 /* Re-validate under PTL if the page is still mapped */
2647                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2648                 locked = true;
2649                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2650                         /* The PTE changed under us, update local tlb */
2651                         update_mmu_tlb(vma, addr, vmf->pte);
2652                         ret = false;
2653                         goto pte_unlock;
2654                 }
2655
2656                 /*
2657                  * The same page can be mapped back since last copy attempt.
2658                  * Try to copy again under PTL.
2659                  */
2660                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2661                         /*
2662                          * Give a warn in case there can be some obscure
2663                          * use-case
2664                          */
2665 warn:
2666                         WARN_ON_ONCE(1);
2667                         clear_page(kaddr);
2668                 }
2669         }
2670
2671         ret = true;
2672
2673 pte_unlock:
2674         if (locked)
2675                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2676         kunmap_atomic(kaddr);
2677         flush_dcache_page(dst);
2678
2679         return ret;
2680 }
2681
2682 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2683 {
2684         struct file *vm_file = vma->vm_file;
2685
2686         if (vm_file)
2687                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2688
2689         /*
2690          * Special mappings (e.g. VDSO) do not have any file so fake
2691          * a default GFP_KERNEL for them.
2692          */
2693         return GFP_KERNEL;
2694 }
2695
2696 /*
2697  * Notify the address space that the page is about to become writable so that
2698  * it can prohibit this or wait for the page to get into an appropriate state.
2699  *
2700  * We do this without the lock held, so that it can sleep if it needs to.
2701  */
2702 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2703 {
2704         vm_fault_t ret;
2705         struct page *page = vmf->page;
2706         unsigned int old_flags = vmf->flags;
2707
2708         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2709
2710         if (vmf->vma->vm_file &&
2711             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2712                 return VM_FAULT_SIGBUS;
2713
2714         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2715         /* Restore original flags so that caller is not surprised */
2716         vmf->flags = old_flags;
2717         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2718                 return ret;
2719         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2720                 lock_page(page);
2721                 if (!page->mapping) {
2722                         unlock_page(page);
2723                         return 0; /* retry */
2724                 }
2725                 ret |= VM_FAULT_LOCKED;
2726         } else
2727                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2728         return ret;
2729 }
2730
2731 /*
2732  * Handle dirtying of a page in shared file mapping on a write fault.
2733  *
2734  * The function expects the page to be locked and unlocks it.
2735  */
2736 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2737 {
2738         struct vm_area_struct *vma = vmf->vma;
2739         struct address_space *mapping;
2740         struct page *page = vmf->page;
2741         bool dirtied;
2742         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2743
2744         dirtied = set_page_dirty(page);
2745         VM_BUG_ON_PAGE(PageAnon(page), page);
2746         /*
2747          * Take a local copy of the address_space - page.mapping may be zeroed
2748          * by truncate after unlock_page().   The address_space itself remains
2749          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2750          * release semantics to prevent the compiler from undoing this copying.
2751          */
2752         mapping = page_rmapping(page);
2753         unlock_page(page);
2754
2755         if (!page_mkwrite)
2756                 file_update_time(vma->vm_file);
2757
2758         /*
2759          * Throttle page dirtying rate down to writeback speed.
2760          *
2761          * mapping may be NULL here because some device drivers do not
2762          * set page.mapping but still dirty their pages
2763          *
2764          * Drop the mmap_lock before waiting on IO, if we can. The file
2765          * is pinning the mapping, as per above.
2766          */
2767         if ((dirtied || page_mkwrite) && mapping) {
2768                 struct file *fpin;
2769
2770                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2771                 balance_dirty_pages_ratelimited(mapping);
2772                 if (fpin) {
2773                         fput(fpin);
2774                         return VM_FAULT_RETRY;
2775                 }
2776         }
2777
2778         return 0;
2779 }
2780
2781 /*
2782  * Handle write page faults for pages that can be reused in the current vma
2783  *
2784  * This can happen either due to the mapping being with the VM_SHARED flag,
2785  * or due to us being the last reference standing to the page. In either
2786  * case, all we need to do here is to mark the page as writable and update
2787  * any related book-keeping.
2788  */
2789 static inline void wp_page_reuse(struct vm_fault *vmf)
2790         __releases(vmf->ptl)
2791 {
2792         struct vm_area_struct *vma = vmf->vma;
2793         struct page *page = vmf->page;
2794         pte_t entry;
2795         /*
2796          * Clear the pages cpupid information as the existing
2797          * information potentially belongs to a now completely
2798          * unrelated process.
2799          */
2800         if (page)
2801                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2802
2803         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2804         entry = pte_mkyoung(vmf->orig_pte);
2805         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2806         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2807                 update_mmu_cache(vma, vmf->address, vmf->pte);
2808         pte_unmap_unlock(vmf->pte, vmf->ptl);
2809         count_vm_event(PGREUSE);
2810 }
2811
2812 /*
2813  * Handle the case of a page which we actually need to copy to a new page.
2814  *
2815  * Called with mmap_lock locked and the old page referenced, but
2816  * without the ptl held.
2817  *
2818  * High level logic flow:
2819  *
2820  * - Allocate a page, copy the content of the old page to the new one.
2821  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2822  * - Take the PTL. If the pte changed, bail out and release the allocated page
2823  * - If the pte is still the way we remember it, update the page table and all
2824  *   relevant references. This includes dropping the reference the page-table
2825  *   held to the old page, as well as updating the rmap.
2826  * - In any case, unlock the PTL and drop the reference we took to the old page.
2827  */
2828 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2829 {
2830         struct vm_area_struct *vma = vmf->vma;
2831         struct mm_struct *mm = vma->vm_mm;
2832         struct page *old_page = vmf->page;
2833         struct page *new_page = NULL;
2834         pte_t entry;
2835         int page_copied = 0;
2836         struct mmu_notifier_range range;
2837
2838         if (unlikely(anon_vma_prepare(vma)))
2839                 goto oom;
2840
2841         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2842                 new_page = alloc_zeroed_user_highpage_movable(vma,
2843                                                               vmf->address);
2844                 if (!new_page)
2845                         goto oom;
2846         } else {
2847                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2848                                 vmf->address);
2849                 if (!new_page)
2850                         goto oom;
2851
2852                 if (!cow_user_page(new_page, old_page, vmf)) {
2853                         /*
2854                          * COW failed, if the fault was solved by other,
2855                          * it's fine. If not, userspace would re-fault on
2856                          * the same address and we will handle the fault
2857                          * from the second attempt.
2858                          */
2859                         put_page(new_page);
2860                         if (old_page)
2861                                 put_page(old_page);
2862                         return 0;
2863                 }
2864         }
2865
2866         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2867                 goto oom_free_new;
2868         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2869
2870         __SetPageUptodate(new_page);
2871
2872         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2873                                 vmf->address & PAGE_MASK,
2874                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2875         mmu_notifier_invalidate_range_start(&range);
2876
2877         /*
2878          * Re-check the pte - we dropped the lock
2879          */
2880         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2881         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2882                 if (old_page) {
2883                         if (!PageAnon(old_page)) {
2884                                 dec_mm_counter_fast(mm,
2885                                                 mm_counter_file(old_page));
2886                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2887                         }
2888                 } else {
2889                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2890                 }
2891                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2892                 entry = mk_pte(new_page, vma->vm_page_prot);
2893                 entry = pte_sw_mkyoung(entry);
2894                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2895                 /*
2896                  * Clear the pte entry and flush it first, before updating the
2897                  * pte with the new entry. This will avoid a race condition
2898                  * seen in the presence of one thread doing SMC and another
2899                  * thread doing COW.
2900                  */
2901                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2902                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2903                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2904                 /*
2905                  * We call the notify macro here because, when using secondary
2906                  * mmu page tables (such as kvm shadow page tables), we want the
2907                  * new page to be mapped directly into the secondary page table.
2908                  */
2909                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2910                 update_mmu_cache(vma, vmf->address, vmf->pte);
2911                 if (old_page) {
2912                         /*
2913                          * Only after switching the pte to the new page may
2914                          * we remove the mapcount here. Otherwise another
2915                          * process may come and find the rmap count decremented
2916                          * before the pte is switched to the new page, and
2917                          * "reuse" the old page writing into it while our pte
2918                          * here still points into it and can be read by other
2919                          * threads.
2920                          *
2921                          * The critical issue is to order this
2922                          * page_remove_rmap with the ptp_clear_flush above.
2923                          * Those stores are ordered by (if nothing else,)
2924                          * the barrier present in the atomic_add_negative
2925                          * in page_remove_rmap.
2926                          *
2927                          * Then the TLB flush in ptep_clear_flush ensures that
2928                          * no process can access the old page before the
2929                          * decremented mapcount is visible. And the old page
2930                          * cannot be reused until after the decremented
2931                          * mapcount is visible. So transitively, TLBs to
2932                          * old page will be flushed before it can be reused.
2933                          */
2934                         page_remove_rmap(old_page, false);
2935                 }
2936
2937                 /* Free the old page.. */
2938                 new_page = old_page;
2939                 page_copied = 1;
2940         } else {
2941                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2942         }
2943
2944         if (new_page)
2945                 put_page(new_page);
2946
2947         pte_unmap_unlock(vmf->pte, vmf->ptl);
2948         /*
2949          * No need to double call mmu_notifier->invalidate_range() callback as
2950          * the above ptep_clear_flush_notify() did already call it.
2951          */
2952         mmu_notifier_invalidate_range_only_end(&range);
2953         if (old_page) {
2954                 /*
2955                  * Don't let another task, with possibly unlocked vma,
2956                  * keep the mlocked page.
2957                  */
2958                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2959                         lock_page(old_page);    /* LRU manipulation */
2960                         if (PageMlocked(old_page))
2961                                 munlock_vma_page(old_page);
2962                         unlock_page(old_page);
2963                 }
2964                 put_page(old_page);
2965         }
2966         return page_copied ? VM_FAULT_WRITE : 0;
2967 oom_free_new:
2968         put_page(new_page);
2969 oom:
2970         if (old_page)
2971                 put_page(old_page);
2972         return VM_FAULT_OOM;
2973 }
2974
2975 /**
2976  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2977  *                        writeable once the page is prepared
2978  *
2979  * @vmf: structure describing the fault
2980  *
2981  * This function handles all that is needed to finish a write page fault in a
2982  * shared mapping due to PTE being read-only once the mapped page is prepared.
2983  * It handles locking of PTE and modifying it.
2984  *
2985  * The function expects the page to be locked or other protection against
2986  * concurrent faults / writeback (such as DAX radix tree locks).
2987  *
2988  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2989  * we acquired PTE lock.
2990  */
2991 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2992 {
2993         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2994         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2995                                        &vmf->ptl);
2996         /*
2997          * We might have raced with another page fault while we released the
2998          * pte_offset_map_lock.
2999          */
3000         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3001                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3002                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3003                 return VM_FAULT_NOPAGE;
3004         }
3005         wp_page_reuse(vmf);
3006         return 0;
3007 }
3008
3009 /*
3010  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3011  * mapping
3012  */
3013 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3014 {
3015         struct vm_area_struct *vma = vmf->vma;
3016
3017         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3018                 vm_fault_t ret;
3019
3020                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3021                 vmf->flags |= FAULT_FLAG_MKWRITE;
3022                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3023                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3024                         return ret;
3025                 return finish_mkwrite_fault(vmf);
3026         }
3027         wp_page_reuse(vmf);
3028         return VM_FAULT_WRITE;
3029 }
3030
3031 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3032         __releases(vmf->ptl)
3033 {
3034         struct vm_area_struct *vma = vmf->vma;
3035         vm_fault_t ret = VM_FAULT_WRITE;
3036
3037         get_page(vmf->page);
3038
3039         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3040                 vm_fault_t tmp;
3041
3042                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3043                 tmp = do_page_mkwrite(vmf);
3044                 if (unlikely(!tmp || (tmp &
3045                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3046                         put_page(vmf->page);
3047                         return tmp;
3048                 }
3049                 tmp = finish_mkwrite_fault(vmf);
3050                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3051                         unlock_page(vmf->page);
3052                         put_page(vmf->page);
3053                         return tmp;
3054                 }
3055         } else {
3056                 wp_page_reuse(vmf);
3057                 lock_page(vmf->page);
3058         }
3059         ret |= fault_dirty_shared_page(vmf);
3060         put_page(vmf->page);
3061
3062         return ret;
3063 }
3064
3065 /*
3066  * This routine handles present pages, when users try to write
3067  * to a shared page. It is done by copying the page to a new address
3068  * and decrementing the shared-page counter for the old page.
3069  *
3070  * Note that this routine assumes that the protection checks have been
3071  * done by the caller (the low-level page fault routine in most cases).
3072  * Thus we can safely just mark it writable once we've done any necessary
3073  * COW.
3074  *
3075  * We also mark the page dirty at this point even though the page will
3076  * change only once the write actually happens. This avoids a few races,
3077  * and potentially makes it more efficient.
3078  *
3079  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3080  * but allow concurrent faults), with pte both mapped and locked.
3081  * We return with mmap_lock still held, but pte unmapped and unlocked.
3082  */
3083 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3084         __releases(vmf->ptl)
3085 {
3086         struct vm_area_struct *vma = vmf->vma;
3087
3088         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3089                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3090                 return handle_userfault(vmf, VM_UFFD_WP);
3091         }
3092
3093         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3094         if (!vmf->page) {
3095                 /*
3096                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3097                  * VM_PFNMAP VMA.
3098                  *
3099                  * We should not cow pages in a shared writeable mapping.
3100                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3101                  */
3102                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3103                                      (VM_WRITE|VM_SHARED))
3104                         return wp_pfn_shared(vmf);
3105
3106                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3107                 return wp_page_copy(vmf);
3108         }
3109
3110         /*
3111          * Take out anonymous pages first, anonymous shared vmas are
3112          * not dirty accountable.
3113          */
3114         if (PageAnon(vmf->page)) {
3115                 struct page *page = vmf->page;
3116
3117                 /* PageKsm() doesn't necessarily raise the page refcount */
3118                 if (PageKsm(page) || page_count(page) != 1)
3119                         goto copy;
3120                 if (!trylock_page(page))
3121                         goto copy;
3122                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3123                         unlock_page(page);
3124                         goto copy;
3125                 }
3126                 /*
3127                  * Ok, we've got the only map reference, and the only
3128                  * page count reference, and the page is locked,
3129                  * it's dark out, and we're wearing sunglasses. Hit it.
3130                  */
3131                 unlock_page(page);
3132                 wp_page_reuse(vmf);
3133                 return VM_FAULT_WRITE;
3134         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3135                                         (VM_WRITE|VM_SHARED))) {
3136                 return wp_page_shared(vmf);
3137         }
3138 copy:
3139         /*
3140          * Ok, we need to copy. Oh, well..
3141          */
3142         get_page(vmf->page);
3143
3144         pte_unmap_unlock(vmf->pte, vmf->ptl);
3145         return wp_page_copy(vmf);
3146 }
3147
3148 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3149                 unsigned long start_addr, unsigned long end_addr,
3150                 struct zap_details *details)
3151 {
3152         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3153 }
3154
3155 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3156                                             struct zap_details *details)
3157 {
3158         struct vm_area_struct *vma;
3159         pgoff_t vba, vea, zba, zea;
3160
3161         vma_interval_tree_foreach(vma, root,
3162                         details->first_index, details->last_index) {
3163
3164                 vba = vma->vm_pgoff;
3165                 vea = vba + vma_pages(vma) - 1;
3166                 zba = details->first_index;
3167                 if (zba < vba)
3168                         zba = vba;
3169                 zea = details->last_index;
3170                 if (zea > vea)
3171                         zea = vea;
3172
3173                 unmap_mapping_range_vma(vma,
3174                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3175                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3176                                 details);
3177         }
3178 }
3179
3180 /**
3181  * unmap_mapping_pages() - Unmap pages from processes.
3182  * @mapping: The address space containing pages to be unmapped.
3183  * @start: Index of first page to be unmapped.
3184  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3185  * @even_cows: Whether to unmap even private COWed pages.
3186  *
3187  * Unmap the pages in this address space from any userspace process which
3188  * has them mmaped.  Generally, you want to remove COWed pages as well when
3189  * a file is being truncated, but not when invalidating pages from the page
3190  * cache.
3191  */
3192 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3193                 pgoff_t nr, bool even_cows)
3194 {
3195         struct zap_details details = { };
3196
3197         details.check_mapping = even_cows ? NULL : mapping;
3198         details.first_index = start;
3199         details.last_index = start + nr - 1;
3200         if (details.last_index < details.first_index)
3201                 details.last_index = ULONG_MAX;
3202
3203         i_mmap_lock_write(mapping);
3204         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3205                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3206         i_mmap_unlock_write(mapping);
3207 }
3208
3209 /**
3210  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3211  * address_space corresponding to the specified byte range in the underlying
3212  * file.
3213  *
3214  * @mapping: the address space containing mmaps to be unmapped.
3215  * @holebegin: byte in first page to unmap, relative to the start of
3216  * the underlying file.  This will be rounded down to a PAGE_SIZE
3217  * boundary.  Note that this is different from truncate_pagecache(), which
3218  * must keep the partial page.  In contrast, we must get rid of
3219  * partial pages.
3220  * @holelen: size of prospective hole in bytes.  This will be rounded
3221  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3222  * end of the file.
3223  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3224  * but 0 when invalidating pagecache, don't throw away private data.
3225  */
3226 void unmap_mapping_range(struct address_space *mapping,
3227                 loff_t const holebegin, loff_t const holelen, int even_cows)
3228 {
3229         pgoff_t hba = holebegin >> PAGE_SHIFT;
3230         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3231
3232         /* Check for overflow. */
3233         if (sizeof(holelen) > sizeof(hlen)) {
3234                 long long holeend =
3235                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3236                 if (holeend & ~(long long)ULONG_MAX)
3237                         hlen = ULONG_MAX - hba + 1;
3238         }
3239
3240         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3241 }
3242 EXPORT_SYMBOL(unmap_mapping_range);
3243
3244 /*
3245  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3246  * but allow concurrent faults), and pte mapped but not yet locked.
3247  * We return with pte unmapped and unlocked.
3248  *
3249  * We return with the mmap_lock locked or unlocked in the same cases
3250  * as does filemap_fault().
3251  */
3252 vm_fault_t do_swap_page(struct vm_fault *vmf)
3253 {
3254         struct vm_area_struct *vma = vmf->vma;
3255         struct page *page = NULL, *swapcache;
3256         swp_entry_t entry;
3257         pte_t pte;
3258         int locked;
3259         int exclusive = 0;
3260         vm_fault_t ret = 0;
3261         void *shadow = NULL;
3262
3263         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3264                 goto out;
3265
3266         entry = pte_to_swp_entry(vmf->orig_pte);
3267         if (unlikely(non_swap_entry(entry))) {
3268                 if (is_migration_entry(entry)) {
3269                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3270                                              vmf->address);
3271                 } else if (is_device_private_entry(entry)) {
3272                         vmf->page = device_private_entry_to_page(entry);
3273                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3274                 } else if (is_hwpoison_entry(entry)) {
3275                         ret = VM_FAULT_HWPOISON;
3276                 } else {
3277                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3278                         ret = VM_FAULT_SIGBUS;
3279                 }
3280                 goto out;
3281         }
3282
3283
3284         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3285         page = lookup_swap_cache(entry, vma, vmf->address);
3286         swapcache = page;
3287
3288         if (!page) {
3289                 struct swap_info_struct *si = swp_swap_info(entry);
3290
3291                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3292                     __swap_count(entry) == 1) {
3293                         /* skip swapcache */
3294                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3295                                                         vmf->address);
3296                         if (page) {
3297                                 int err;
3298
3299                                 __SetPageLocked(page);
3300                                 __SetPageSwapBacked(page);
3301                                 set_page_private(page, entry.val);
3302
3303                                 /* Tell memcg to use swap ownership records */
3304                                 SetPageSwapCache(page);
3305                                 err = mem_cgroup_charge(page, vma->vm_mm,
3306                                                         GFP_KERNEL);
3307                                 ClearPageSwapCache(page);
3308                                 if (err) {
3309                                         ret = VM_FAULT_OOM;
3310                                         goto out_page;
3311                                 }
3312
3313                                 shadow = get_shadow_from_swap_cache(entry);
3314                                 if (shadow)
3315                                         workingset_refault(page, shadow);
3316
3317                                 lru_cache_add(page);
3318                                 swap_readpage(page, true);
3319                         }
3320                 } else {
3321                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3322                                                 vmf);
3323                         swapcache = page;
3324                 }
3325
3326                 if (!page) {
3327                         /*
3328                          * Back out if somebody else faulted in this pte
3329                          * while we released the pte lock.
3330                          */
3331                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3332                                         vmf->address, &vmf->ptl);
3333                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3334                                 ret = VM_FAULT_OOM;
3335                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3336                         goto unlock;
3337                 }
3338
3339                 /* Had to read the page from swap area: Major fault */
3340                 ret = VM_FAULT_MAJOR;
3341                 count_vm_event(PGMAJFAULT);
3342                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3343         } else if (PageHWPoison(page)) {
3344                 /*
3345                  * hwpoisoned dirty swapcache pages are kept for killing
3346                  * owner processes (which may be unknown at hwpoison time)
3347                  */
3348                 ret = VM_FAULT_HWPOISON;
3349                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3350                 goto out_release;
3351         }
3352
3353         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3354
3355         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3356         if (!locked) {
3357                 ret |= VM_FAULT_RETRY;
3358                 goto out_release;
3359         }
3360
3361         /*
3362          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3363          * release the swapcache from under us.  The page pin, and pte_same
3364          * test below, are not enough to exclude that.  Even if it is still
3365          * swapcache, we need to check that the page's swap has not changed.
3366          */
3367         if (unlikely((!PageSwapCache(page) ||
3368                         page_private(page) != entry.val)) && swapcache)
3369                 goto out_page;
3370
3371         page = ksm_might_need_to_copy(page, vma, vmf->address);
3372         if (unlikely(!page)) {
3373                 ret = VM_FAULT_OOM;
3374                 page = swapcache;
3375                 goto out_page;
3376         }
3377
3378         cgroup_throttle_swaprate(page, GFP_KERNEL);
3379
3380         /*
3381          * Back out if somebody else already faulted in this pte.
3382          */
3383         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3384                         &vmf->ptl);
3385         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3386                 goto out_nomap;
3387
3388         if (unlikely(!PageUptodate(page))) {
3389                 ret = VM_FAULT_SIGBUS;
3390                 goto out_nomap;
3391         }
3392
3393         /*
3394          * The page isn't present yet, go ahead with the fault.
3395          *
3396          * Be careful about the sequence of operations here.
3397          * To get its accounting right, reuse_swap_page() must be called
3398          * while the page is counted on swap but not yet in mapcount i.e.
3399          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3400          * must be called after the swap_free(), or it will never succeed.
3401          */
3402
3403         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3404         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3405         pte = mk_pte(page, vma->vm_page_prot);
3406         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3407                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3408                 vmf->flags &= ~FAULT_FLAG_WRITE;
3409                 ret |= VM_FAULT_WRITE;
3410                 exclusive = RMAP_EXCLUSIVE;
3411         }
3412         flush_icache_page(vma, page);
3413         if (pte_swp_soft_dirty(vmf->orig_pte))
3414                 pte = pte_mksoft_dirty(pte);
3415         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3416                 pte = pte_mkuffd_wp(pte);
3417                 pte = pte_wrprotect(pte);
3418         }
3419         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3420         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3421         vmf->orig_pte = pte;
3422
3423         /* ksm created a completely new copy */
3424         if (unlikely(page != swapcache && swapcache)) {
3425                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3426                 lru_cache_add_inactive_or_unevictable(page, vma);
3427         } else {
3428                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3429         }
3430
3431         swap_free(entry);
3432         if (mem_cgroup_swap_full(page) ||
3433             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3434                 try_to_free_swap(page);
3435         unlock_page(page);
3436         if (page != swapcache && swapcache) {
3437                 /*
3438                  * Hold the lock to avoid the swap entry to be reused
3439                  * until we take the PT lock for the pte_same() check
3440                  * (to avoid false positives from pte_same). For
3441                  * further safety release the lock after the swap_free
3442                  * so that the swap count won't change under a
3443                  * parallel locked swapcache.
3444                  */
3445                 unlock_page(swapcache);
3446                 put_page(swapcache);
3447         }
3448
3449         if (vmf->flags & FAULT_FLAG_WRITE) {
3450                 ret |= do_wp_page(vmf);
3451                 if (ret & VM_FAULT_ERROR)
3452                         ret &= VM_FAULT_ERROR;
3453                 goto out;
3454         }
3455
3456         /* No need to invalidate - it was non-present before */
3457         update_mmu_cache(vma, vmf->address, vmf->pte);
3458 unlock:
3459         pte_unmap_unlock(vmf->pte, vmf->ptl);
3460 out:
3461         return ret;
3462 out_nomap:
3463         pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 out_page:
3465         unlock_page(page);
3466 out_release:
3467         put_page(page);
3468         if (page != swapcache && swapcache) {
3469                 unlock_page(swapcache);
3470                 put_page(swapcache);
3471         }
3472         return ret;
3473 }
3474
3475 /*
3476  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3477  * but allow concurrent faults), and pte mapped but not yet locked.
3478  * We return with mmap_lock still held, but pte unmapped and unlocked.
3479  */
3480 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3481 {
3482         struct vm_area_struct *vma = vmf->vma;
3483         struct page *page;
3484         vm_fault_t ret = 0;
3485         pte_t entry;
3486
3487         /* File mapping without ->vm_ops ? */
3488         if (vma->vm_flags & VM_SHARED)
3489                 return VM_FAULT_SIGBUS;
3490
3491         /*
3492          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3493          * pte_offset_map() on pmds where a huge pmd might be created
3494          * from a different thread.
3495          *
3496          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3497          * parallel threads are excluded by other means.
3498          *
3499          * Here we only have mmap_read_lock(mm).
3500          */
3501         if (pte_alloc(vma->vm_mm, vmf->pmd))
3502                 return VM_FAULT_OOM;
3503
3504         /* See the comment in pte_alloc_one_map() */
3505         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3506                 return 0;
3507
3508         /* Use the zero-page for reads */
3509         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3510                         !mm_forbids_zeropage(vma->vm_mm)) {
3511                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3512                                                 vma->vm_page_prot));
3513                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3514                                 vmf->address, &vmf->ptl);
3515                 if (!pte_none(*vmf->pte)) {
3516                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3517                         goto unlock;
3518                 }
3519                 ret = check_stable_address_space(vma->vm_mm);
3520                 if (ret)
3521                         goto unlock;
3522                 /* Deliver the page fault to userland, check inside PT lock */
3523                 if (userfaultfd_missing(vma)) {
3524                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3525                         return handle_userfault(vmf, VM_UFFD_MISSING);
3526                 }
3527                 goto setpte;
3528         }
3529
3530         /* Allocate our own private page. */
3531         if (unlikely(anon_vma_prepare(vma)))
3532                 goto oom;
3533         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3534         if (!page)
3535                 goto oom;
3536
3537         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3538                 goto oom_free_page;
3539         cgroup_throttle_swaprate(page, GFP_KERNEL);
3540
3541         /*
3542          * The memory barrier inside __SetPageUptodate makes sure that
3543          * preceding stores to the page contents become visible before
3544          * the set_pte_at() write.
3545          */
3546         __SetPageUptodate(page);
3547
3548         entry = mk_pte(page, vma->vm_page_prot);
3549         entry = pte_sw_mkyoung(entry);
3550         if (vma->vm_flags & VM_WRITE)
3551                 entry = pte_mkwrite(pte_mkdirty(entry));
3552
3553         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3554                         &vmf->ptl);
3555         if (!pte_none(*vmf->pte)) {
3556                 update_mmu_cache(vma, vmf->address, vmf->pte);
3557                 goto release;
3558         }
3559
3560         ret = check_stable_address_space(vma->vm_mm);
3561         if (ret)
3562                 goto release;
3563
3564         /* Deliver the page fault to userland, check inside PT lock */
3565         if (userfaultfd_missing(vma)) {
3566                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3567                 put_page(page);
3568                 return handle_userfault(vmf, VM_UFFD_MISSING);
3569         }
3570
3571         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3572         page_add_new_anon_rmap(page, vma, vmf->address, false);
3573         lru_cache_add_inactive_or_unevictable(page, vma);
3574 setpte:
3575         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3576
3577         /* No need to invalidate - it was non-present before */
3578         update_mmu_cache(vma, vmf->address, vmf->pte);
3579 unlock:
3580         pte_unmap_unlock(vmf->pte, vmf->ptl);
3581         return ret;
3582 release:
3583         put_page(page);
3584         goto unlock;
3585 oom_free_page:
3586         put_page(page);
3587 oom:
3588         return VM_FAULT_OOM;
3589 }
3590
3591 /*
3592  * The mmap_lock must have been held on entry, and may have been
3593  * released depending on flags and vma->vm_ops->fault() return value.
3594  * See filemap_fault() and __lock_page_retry().
3595  */
3596 static vm_fault_t __do_fault(struct vm_fault *vmf)
3597 {
3598         struct vm_area_struct *vma = vmf->vma;
3599         vm_fault_t ret;
3600
3601         /*
3602          * Preallocate pte before we take page_lock because this might lead to
3603          * deadlocks for memcg reclaim which waits for pages under writeback:
3604          *                              lock_page(A)
3605          *                              SetPageWriteback(A)
3606          *                              unlock_page(A)
3607          * lock_page(B)
3608          *                              lock_page(B)
3609          * pte_alloc_one
3610          *   shrink_page_list
3611          *     wait_on_page_writeback(A)
3612          *                              SetPageWriteback(B)
3613          *                              unlock_page(B)
3614          *                              # flush A, B to clear the writeback
3615          */
3616         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3617                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3618                 if (!vmf->prealloc_pte)
3619                         return VM_FAULT_OOM;
3620                 smp_wmb(); /* See comment in __pte_alloc() */
3621         }
3622
3623         ret = vma->vm_ops->fault(vmf);
3624         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3625                             VM_FAULT_DONE_COW)))
3626                 return ret;
3627
3628         if (unlikely(PageHWPoison(vmf->page))) {
3629                 if (ret & VM_FAULT_LOCKED)
3630                         unlock_page(vmf->page);
3631                 put_page(vmf->page);
3632                 vmf->page = NULL;
3633                 return VM_FAULT_HWPOISON;
3634         }
3635
3636         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3637                 lock_page(vmf->page);
3638         else
3639                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3640
3641         return ret;
3642 }
3643
3644 /*
3645  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3646  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3647  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3648  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3649  */
3650 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3651 {
3652         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3653 }
3654
3655 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3656 {
3657         struct vm_area_struct *vma = vmf->vma;
3658
3659         if (!pmd_none(*vmf->pmd))
3660                 goto map_pte;
3661         if (vmf->prealloc_pte) {
3662                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3663                 if (unlikely(!pmd_none(*vmf->pmd))) {
3664                         spin_unlock(vmf->ptl);
3665                         goto map_pte;
3666                 }
3667
3668                 mm_inc_nr_ptes(vma->vm_mm);
3669                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3670                 spin_unlock(vmf->ptl);
3671                 vmf->prealloc_pte = NULL;
3672         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3673                 return VM_FAULT_OOM;
3674         }
3675 map_pte:
3676         /*
3677          * If a huge pmd materialized under us just retry later.  Use
3678          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3679          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3680          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3681          * running immediately after a huge pmd fault in a different thread of
3682          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3683          * All we have to ensure is that it is a regular pmd that we can walk
3684          * with pte_offset_map() and we can do that through an atomic read in
3685          * C, which is what pmd_trans_unstable() provides.
3686          */
3687         if (pmd_devmap_trans_unstable(vmf->pmd))
3688                 return VM_FAULT_NOPAGE;
3689
3690         /*
3691          * At this point we know that our vmf->pmd points to a page of ptes
3692          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3693          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3694          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3695          * be valid and we will re-check to make sure the vmf->pte isn't
3696          * pte_none() under vmf->ptl protection when we return to
3697          * alloc_set_pte().
3698          */
3699         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3700                         &vmf->ptl);
3701         return 0;
3702 }
3703
3704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3705 static void deposit_prealloc_pte(struct vm_fault *vmf)
3706 {
3707         struct vm_area_struct *vma = vmf->vma;
3708
3709         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3710         /*
3711          * We are going to consume the prealloc table,
3712          * count that as nr_ptes.
3713          */
3714         mm_inc_nr_ptes(vma->vm_mm);
3715         vmf->prealloc_pte = NULL;
3716 }
3717
3718 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3719 {
3720         struct vm_area_struct *vma = vmf->vma;
3721         bool write = vmf->flags & FAULT_FLAG_WRITE;
3722         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3723         pmd_t entry;
3724         int i;
3725         vm_fault_t ret = VM_FAULT_FALLBACK;
3726
3727         if (!transhuge_vma_suitable(vma, haddr))
3728                 return ret;
3729
3730         page = compound_head(page);
3731         if (compound_order(page) != HPAGE_PMD_ORDER)
3732                 return ret;
3733
3734         /*
3735          * Archs like ppc64 need additonal space to store information
3736          * related to pte entry. Use the preallocated table for that.
3737          */
3738         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3739                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3740                 if (!vmf->prealloc_pte)
3741                         return VM_FAULT_OOM;
3742                 smp_wmb(); /* See comment in __pte_alloc() */
3743         }
3744
3745         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3746         if (unlikely(!pmd_none(*vmf->pmd)))
3747                 goto out;
3748
3749         for (i = 0; i < HPAGE_PMD_NR; i++)
3750                 flush_icache_page(vma, page + i);
3751
3752         entry = mk_huge_pmd(page, vma->vm_page_prot);
3753         if (write)
3754                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3755
3756         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3757         page_add_file_rmap(page, true);
3758         /*
3759          * deposit and withdraw with pmd lock held
3760          */
3761         if (arch_needs_pgtable_deposit())
3762                 deposit_prealloc_pte(vmf);
3763
3764         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3765
3766         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3767
3768         /* fault is handled */
3769         ret = 0;
3770         count_vm_event(THP_FILE_MAPPED);
3771 out:
3772         spin_unlock(vmf->ptl);
3773         return ret;
3774 }
3775 #else
3776 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3777 {
3778         BUILD_BUG();
3779         return 0;
3780 }
3781 #endif
3782
3783 /**
3784  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3785  * mapping. If needed, the function allocates page table or use pre-allocated.
3786  *
3787  * @vmf: fault environment
3788  * @page: page to map
3789  *
3790  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3791  * return.
3792  *
3793  * Target users are page handler itself and implementations of
3794  * vm_ops->map_pages.
3795  *
3796  * Return: %0 on success, %VM_FAULT_ code in case of error.
3797  */
3798 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3799 {
3800         struct vm_area_struct *vma = vmf->vma;
3801         bool write = vmf->flags & FAULT_FLAG_WRITE;
3802         pte_t entry;
3803         vm_fault_t ret;
3804
3805         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3806                 ret = do_set_pmd(vmf, page);
3807                 if (ret != VM_FAULT_FALLBACK)
3808                         return ret;
3809         }
3810
3811         if (!vmf->pte) {
3812                 ret = pte_alloc_one_map(vmf);
3813                 if (ret)
3814                         return ret;
3815         }
3816
3817         /* Re-check under ptl */
3818         if (unlikely(!pte_none(*vmf->pte))) {
3819                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3820                 return VM_FAULT_NOPAGE;
3821         }
3822
3823         flush_icache_page(vma, page);
3824         entry = mk_pte(page, vma->vm_page_prot);
3825         entry = pte_sw_mkyoung(entry);
3826         if (write)
3827                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3828         /* copy-on-write page */
3829         if (write && !(vma->vm_flags & VM_SHARED)) {
3830                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3831                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3832                 lru_cache_add_inactive_or_unevictable(page, vma);
3833         } else {
3834                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3835                 page_add_file_rmap(page, false);
3836         }
3837         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3838
3839         /* no need to invalidate: a not-present page won't be cached */
3840         update_mmu_cache(vma, vmf->address, vmf->pte);
3841
3842         return 0;
3843 }
3844
3845
3846 /**
3847  * finish_fault - finish page fault once we have prepared the page to fault
3848  *
3849  * @vmf: structure describing the fault
3850  *
3851  * This function handles all that is needed to finish a page fault once the
3852  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3853  * given page, adds reverse page mapping, handles memcg charges and LRU
3854  * addition.
3855  *
3856  * The function expects the page to be locked and on success it consumes a
3857  * reference of a page being mapped (for the PTE which maps it).
3858  *
3859  * Return: %0 on success, %VM_FAULT_ code in case of error.
3860  */
3861 vm_fault_t finish_fault(struct vm_fault *vmf)
3862 {
3863         struct page *page;
3864         vm_fault_t ret = 0;
3865
3866         /* Did we COW the page? */
3867         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3868             !(vmf->vma->vm_flags & VM_SHARED))
3869                 page = vmf->cow_page;
3870         else
3871                 page = vmf->page;
3872
3873         /*
3874          * check even for read faults because we might have lost our CoWed
3875          * page
3876          */
3877         if (!(vmf->vma->vm_flags & VM_SHARED))
3878                 ret = check_stable_address_space(vmf->vma->vm_mm);
3879         if (!ret)
3880                 ret = alloc_set_pte(vmf, page);
3881         if (vmf->pte)
3882                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3883         return ret;
3884 }
3885
3886 static unsigned long fault_around_bytes __read_mostly =
3887         rounddown_pow_of_two(65536);
3888
3889 #ifdef CONFIG_DEBUG_FS
3890 static int fault_around_bytes_get(void *data, u64 *val)
3891 {
3892         *val = fault_around_bytes;
3893         return 0;
3894 }
3895
3896 /*
3897  * fault_around_bytes must be rounded down to the nearest page order as it's
3898  * what do_fault_around() expects to see.
3899  */
3900 static int fault_around_bytes_set(void *data, u64 val)
3901 {
3902         if (val / PAGE_SIZE > PTRS_PER_PTE)
3903                 return -EINVAL;
3904         if (val > PAGE_SIZE)
3905                 fault_around_bytes = rounddown_pow_of_two(val);
3906         else
3907                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3908         return 0;
3909 }
3910 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3911                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3912
3913 static int __init fault_around_debugfs(void)
3914 {
3915         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3916                                    &fault_around_bytes_fops);
3917         return 0;
3918 }
3919 late_initcall(fault_around_debugfs);
3920 #endif
3921
3922 /*
3923  * do_fault_around() tries to map few pages around the fault address. The hope
3924  * is that the pages will be needed soon and this will lower the number of
3925  * faults to handle.
3926  *
3927  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3928  * not ready to be mapped: not up-to-date, locked, etc.
3929  *
3930  * This function is called with the page table lock taken. In the split ptlock
3931  * case the page table lock only protects only those entries which belong to
3932  * the page table corresponding to the fault address.
3933  *
3934  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3935  * only once.
3936  *
3937  * fault_around_bytes defines how many bytes we'll try to map.
3938  * do_fault_around() expects it to be set to a power of two less than or equal
3939  * to PTRS_PER_PTE.
3940  *
3941  * The virtual address of the area that we map is naturally aligned to
3942  * fault_around_bytes rounded down to the machine page size
3943  * (and therefore to page order).  This way it's easier to guarantee
3944  * that we don't cross page table boundaries.
3945  */
3946 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3947 {
3948         unsigned long address = vmf->address, nr_pages, mask;
3949         pgoff_t start_pgoff = vmf->pgoff;
3950         pgoff_t end_pgoff;
3951         int off;
3952         vm_fault_t ret = 0;
3953
3954         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3955         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3956
3957         vmf->address = max(address & mask, vmf->vma->vm_start);
3958         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3959         start_pgoff -= off;
3960
3961         /*
3962          *  end_pgoff is either the end of the page table, the end of
3963          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3964          */
3965         end_pgoff = start_pgoff -
3966                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3967                 PTRS_PER_PTE - 1;
3968         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3969                         start_pgoff + nr_pages - 1);
3970
3971         if (pmd_none(*vmf->pmd)) {
3972                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3973                 if (!vmf->prealloc_pte)
3974                         goto out;
3975                 smp_wmb(); /* See comment in __pte_alloc() */
3976         }
3977
3978         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3979
3980         /* Huge page is mapped? Page fault is solved */
3981         if (pmd_trans_huge(*vmf->pmd)) {
3982                 ret = VM_FAULT_NOPAGE;
3983                 goto out;
3984         }
3985
3986         /* ->map_pages() haven't done anything useful. Cold page cache? */
3987         if (!vmf->pte)
3988                 goto out;
3989
3990         /* check if the page fault is solved */
3991         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3992         if (!pte_none(*vmf->pte))
3993                 ret = VM_FAULT_NOPAGE;
3994         pte_unmap_unlock(vmf->pte, vmf->ptl);
3995 out:
3996         vmf->address = address;
3997         vmf->pte = NULL;
3998         return ret;
3999 }
4000
4001 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4002 {
4003         struct vm_area_struct *vma = vmf->vma;
4004         vm_fault_t ret = 0;
4005
4006         /*
4007          * Let's call ->map_pages() first and use ->fault() as fallback
4008          * if page by the offset is not ready to be mapped (cold cache or
4009          * something).
4010          */
4011         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4012                 ret = do_fault_around(vmf);
4013                 if (ret)
4014                         return ret;
4015         }
4016
4017         ret = __do_fault(vmf);
4018         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4019                 return ret;
4020
4021         ret |= finish_fault(vmf);
4022         unlock_page(vmf->page);
4023         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4024                 put_page(vmf->page);
4025         return ret;
4026 }
4027
4028 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4029 {
4030         struct vm_area_struct *vma = vmf->vma;
4031         vm_fault_t ret;
4032
4033         if (unlikely(anon_vma_prepare(vma)))
4034                 return VM_FAULT_OOM;
4035
4036         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4037         if (!vmf->cow_page)
4038                 return VM_FAULT_OOM;
4039
4040         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4041                 put_page(vmf->cow_page);
4042                 return VM_FAULT_OOM;
4043         }
4044         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4045
4046         ret = __do_fault(vmf);
4047         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4048                 goto uncharge_out;
4049         if (ret & VM_FAULT_DONE_COW)
4050                 return ret;
4051
4052         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4053         __SetPageUptodate(vmf->cow_page);
4054
4055         ret |= finish_fault(vmf);
4056         unlock_page(vmf->page);
4057         put_page(vmf->page);
4058         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4059                 goto uncharge_out;
4060         return ret;
4061 uncharge_out:
4062         put_page(vmf->cow_page);
4063         return ret;
4064 }
4065
4066 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4067 {
4068         struct vm_area_struct *vma = vmf->vma;
4069         vm_fault_t ret, tmp;
4070
4071         ret = __do_fault(vmf);
4072         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4073                 return ret;
4074
4075         /*
4076          * Check if the backing address space wants to know that the page is
4077          * about to become writable
4078          */
4079         if (vma->vm_ops->page_mkwrite) {
4080                 unlock_page(vmf->page);
4081                 tmp = do_page_mkwrite(vmf);
4082                 if (unlikely(!tmp ||
4083                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4084                         put_page(vmf->page);
4085                         return tmp;
4086                 }
4087         }
4088
4089         ret |= finish_fault(vmf);
4090         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4091                                         VM_FAULT_RETRY))) {
4092                 unlock_page(vmf->page);
4093                 put_page(vmf->page);
4094                 return ret;
4095         }
4096
4097         ret |= fault_dirty_shared_page(vmf);
4098         return ret;
4099 }
4100
4101 /*
4102  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4103  * but allow concurrent faults).
4104  * The mmap_lock may have been released depending on flags and our
4105  * return value.  See filemap_fault() and __lock_page_or_retry().
4106  * If mmap_lock is released, vma may become invalid (for example
4107  * by other thread calling munmap()).
4108  */
4109 static vm_fault_t do_fault(struct vm_fault *vmf)
4110 {
4111         struct vm_area_struct *vma = vmf->vma;
4112         struct mm_struct *vm_mm = vma->vm_mm;
4113         vm_fault_t ret;
4114
4115         /*
4116          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4117          */
4118         if (!vma->vm_ops->fault) {
4119                 /*
4120                  * If we find a migration pmd entry or a none pmd entry, which
4121                  * should never happen, return SIGBUS
4122                  */
4123                 if (unlikely(!pmd_present(*vmf->pmd)))
4124                         ret = VM_FAULT_SIGBUS;
4125                 else {
4126                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4127                                                        vmf->pmd,
4128                                                        vmf->address,
4129                                                        &vmf->ptl);
4130                         /*
4131                          * Make sure this is not a temporary clearing of pte
4132                          * by holding ptl and checking again. A R/M/W update
4133                          * of pte involves: take ptl, clearing the pte so that
4134                          * we don't have concurrent modification by hardware
4135                          * followed by an update.
4136                          */
4137                         if (unlikely(pte_none(*vmf->pte)))
4138                                 ret = VM_FAULT_SIGBUS;
4139                         else
4140                                 ret = VM_FAULT_NOPAGE;
4141
4142                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4143                 }
4144         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4145                 ret = do_read_fault(vmf);
4146         else if (!(vma->vm_flags & VM_SHARED))
4147                 ret = do_cow_fault(vmf);
4148         else
4149                 ret = do_shared_fault(vmf);
4150
4151         /* preallocated pagetable is unused: free it */
4152         if (vmf->prealloc_pte) {
4153                 pte_free(vm_mm, vmf->prealloc_pte);
4154                 vmf->prealloc_pte = NULL;
4155         }
4156         return ret;
4157 }
4158
4159 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4160                                 unsigned long addr, int page_nid,
4161                                 int *flags)
4162 {
4163         get_page(page);
4164
4165         count_vm_numa_event(NUMA_HINT_FAULTS);
4166         if (page_nid == numa_node_id()) {
4167                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4168                 *flags |= TNF_FAULT_LOCAL;
4169         }
4170
4171         return mpol_misplaced(page, vma, addr);
4172 }
4173
4174 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4175 {
4176         struct vm_area_struct *vma = vmf->vma;
4177         struct page *page = NULL;
4178         int page_nid = NUMA_NO_NODE;
4179         int last_cpupid;
4180         int target_nid;
4181         bool migrated = false;
4182         pte_t pte, old_pte;
4183         bool was_writable = pte_savedwrite(vmf->orig_pte);
4184         int flags = 0;
4185
4186         /*
4187          * The "pte" at this point cannot be used safely without
4188          * validation through pte_unmap_same(). It's of NUMA type but
4189          * the pfn may be screwed if the read is non atomic.
4190          */
4191         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4192         spin_lock(vmf->ptl);
4193         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4194                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4195                 goto out;
4196         }
4197
4198         /*
4199          * Make it present again, Depending on how arch implementes non
4200          * accessible ptes, some can allow access by kernel mode.
4201          */
4202         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4203         pte = pte_modify(old_pte, vma->vm_page_prot);
4204         pte = pte_mkyoung(pte);
4205         if (was_writable)
4206                 pte = pte_mkwrite(pte);
4207         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4208         update_mmu_cache(vma, vmf->address, vmf->pte);
4209
4210         page = vm_normal_page(vma, vmf->address, pte);
4211         if (!page) {
4212                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4213                 return 0;
4214         }
4215
4216         /* TODO: handle PTE-mapped THP */
4217         if (PageCompound(page)) {
4218                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4219                 return 0;
4220         }
4221
4222         /*
4223          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4224          * much anyway since they can be in shared cache state. This misses
4225          * the case where a mapping is writable but the process never writes
4226          * to it but pte_write gets cleared during protection updates and
4227          * pte_dirty has unpredictable behaviour between PTE scan updates,
4228          * background writeback, dirty balancing and application behaviour.
4229          */
4230         if (!pte_write(pte))
4231                 flags |= TNF_NO_GROUP;
4232
4233         /*
4234          * Flag if the page is shared between multiple address spaces. This
4235          * is later used when determining whether to group tasks together
4236          */
4237         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4238                 flags |= TNF_SHARED;
4239
4240         last_cpupid = page_cpupid_last(page);
4241         page_nid = page_to_nid(page);
4242         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4243                         &flags);
4244         pte_unmap_unlock(vmf->pte, vmf->ptl);
4245         if (target_nid == NUMA_NO_NODE) {
4246                 put_page(page);
4247                 goto out;
4248         }
4249
4250         /* Migrate to the requested node */
4251         migrated = migrate_misplaced_page(page, vma, target_nid);
4252         if (migrated) {
4253                 page_nid = target_nid;
4254                 flags |= TNF_MIGRATED;
4255         } else
4256                 flags |= TNF_MIGRATE_FAIL;
4257
4258 out:
4259         if (page_nid != NUMA_NO_NODE)
4260                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4261         return 0;
4262 }
4263
4264 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4265 {
4266         if (vma_is_anonymous(vmf->vma))
4267                 return do_huge_pmd_anonymous_page(vmf);
4268         if (vmf->vma->vm_ops->huge_fault)
4269                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4270         return VM_FAULT_FALLBACK;
4271 }
4272
4273 /* `inline' is required to avoid gcc 4.1.2 build error */
4274 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4275 {
4276         if (vma_is_anonymous(vmf->vma)) {
4277                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4278                         return handle_userfault(vmf, VM_UFFD_WP);
4279                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4280         }
4281         if (vmf->vma->vm_ops->huge_fault) {
4282                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4283
4284                 if (!(ret & VM_FAULT_FALLBACK))
4285                         return ret;
4286         }
4287
4288         /* COW or write-notify handled on pte level: split pmd. */
4289         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4290
4291         return VM_FAULT_FALLBACK;
4292 }
4293
4294 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4295 {
4296 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4297         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4298         /* No support for anonymous transparent PUD pages yet */
4299         if (vma_is_anonymous(vmf->vma))
4300                 goto split;
4301         if (vmf->vma->vm_ops->huge_fault) {
4302                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4303
4304                 if (!(ret & VM_FAULT_FALLBACK))
4305                         return ret;
4306         }
4307 split:
4308         /* COW or write-notify not handled on PUD level: split pud.*/
4309         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4310 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4311         return VM_FAULT_FALLBACK;
4312 }
4313
4314 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4315 {
4316 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4317         /* No support for anonymous transparent PUD pages yet */
4318         if (vma_is_anonymous(vmf->vma))
4319                 return VM_FAULT_FALLBACK;
4320         if (vmf->vma->vm_ops->huge_fault)
4321                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4322 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4323         return VM_FAULT_FALLBACK;
4324 }
4325
4326 /*
4327  * These routines also need to handle stuff like marking pages dirty
4328  * and/or accessed for architectures that don't do it in hardware (most
4329  * RISC architectures).  The early dirtying is also good on the i386.
4330  *
4331  * There is also a hook called "update_mmu_cache()" that architectures
4332  * with external mmu caches can use to update those (ie the Sparc or
4333  * PowerPC hashed page tables that act as extended TLBs).
4334  *
4335  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4336  * concurrent faults).
4337  *
4338  * The mmap_lock may have been released depending on flags and our return value.
4339  * See filemap_fault() and __lock_page_or_retry().
4340  */
4341 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4342 {
4343         pte_t entry;
4344
4345         if (unlikely(pmd_none(*vmf->pmd))) {
4346                 /*
4347                  * Leave __pte_alloc() until later: because vm_ops->fault may
4348                  * want to allocate huge page, and if we expose page table
4349                  * for an instant, it will be difficult to retract from
4350                  * concurrent faults and from rmap lookups.
4351                  */
4352                 vmf->pte = NULL;
4353         } else {
4354                 /* See comment in pte_alloc_one_map() */
4355                 if (pmd_devmap_trans_unstable(vmf->pmd))
4356                         return 0;
4357                 /*
4358                  * A regular pmd is established and it can't morph into a huge
4359                  * pmd from under us anymore at this point because we hold the
4360                  * mmap_lock read mode and khugepaged takes it in write mode.
4361                  * So now it's safe to run pte_offset_map().
4362                  */
4363                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4364                 vmf->orig_pte = *vmf->pte;
4365
4366                 /*
4367                  * some architectures can have larger ptes than wordsize,
4368                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4369                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4370                  * accesses.  The code below just needs a consistent view
4371                  * for the ifs and we later double check anyway with the
4372                  * ptl lock held. So here a barrier will do.
4373                  */
4374                 barrier();
4375                 if (pte_none(vmf->orig_pte)) {
4376                         pte_unmap(vmf->pte);
4377                         vmf->pte = NULL;
4378                 }
4379         }
4380
4381         if (!vmf->pte) {
4382                 if (vma_is_anonymous(vmf->vma))
4383                         return do_anonymous_page(vmf);
4384                 else
4385                         return do_fault(vmf);
4386         }
4387
4388         if (!pte_present(vmf->orig_pte))
4389                 return do_swap_page(vmf);
4390
4391         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4392                 return do_numa_page(vmf);
4393
4394         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4395         spin_lock(vmf->ptl);
4396         entry = vmf->orig_pte;
4397         if (unlikely(!pte_same(*vmf->pte, entry))) {
4398                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4399                 goto unlock;
4400         }
4401         if (vmf->flags & FAULT_FLAG_WRITE) {
4402                 if (!pte_write(entry))
4403                         return do_wp_page(vmf);
4404                 entry = pte_mkdirty(entry);
4405         }
4406         entry = pte_mkyoung(entry);
4407         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4408                                 vmf->flags & FAULT_FLAG_WRITE)) {
4409                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4410         } else {
4411                 /* Skip spurious TLB flush for retried page fault */
4412                 if (vmf->flags & FAULT_FLAG_TRIED)
4413                         goto unlock;
4414                 /*
4415                  * This is needed only for protection faults but the arch code
4416                  * is not yet telling us if this is a protection fault or not.
4417                  * This still avoids useless tlb flushes for .text page faults
4418                  * with threads.
4419                  */
4420                 if (vmf->flags & FAULT_FLAG_WRITE)
4421                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4422         }
4423 unlock:
4424         pte_unmap_unlock(vmf->pte, vmf->ptl);
4425         return 0;
4426 }
4427
4428 /*
4429  * By the time we get here, we already hold the mm semaphore
4430  *
4431  * The mmap_lock may have been released depending on flags and our
4432  * return value.  See filemap_fault() and __lock_page_or_retry().
4433  */
4434 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4435                 unsigned long address, unsigned int flags)
4436 {
4437         struct vm_fault vmf = {
4438                 .vma = vma,
4439                 .address = address & PAGE_MASK,
4440                 .flags = flags,
4441                 .pgoff = linear_page_index(vma, address),
4442                 .gfp_mask = __get_fault_gfp_mask(vma),
4443         };
4444         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4445         struct mm_struct *mm = vma->vm_mm;
4446         pgd_t *pgd;
4447         p4d_t *p4d;
4448         vm_fault_t ret;
4449
4450         pgd = pgd_offset(mm, address);
4451         p4d = p4d_alloc(mm, pgd, address);
4452         if (!p4d)
4453                 return VM_FAULT_OOM;
4454
4455         vmf.pud = pud_alloc(mm, p4d, address);
4456         if (!vmf.pud)
4457                 return VM_FAULT_OOM;
4458 retry_pud:
4459         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4460                 ret = create_huge_pud(&vmf);
4461                 if (!(ret & VM_FAULT_FALLBACK))
4462                         return ret;
4463         } else {
4464                 pud_t orig_pud = *vmf.pud;
4465
4466                 barrier();
4467                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4468
4469                         /* NUMA case for anonymous PUDs would go here */
4470
4471                         if (dirty && !pud_write(orig_pud)) {
4472                                 ret = wp_huge_pud(&vmf, orig_pud);
4473                                 if (!(ret & VM_FAULT_FALLBACK))
4474                                         return ret;
4475                         } else {
4476                                 huge_pud_set_accessed(&vmf, orig_pud);
4477                                 return 0;
4478                         }
4479                 }
4480         }
4481
4482         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4483         if (!vmf.pmd)
4484                 return VM_FAULT_OOM;
4485
4486         /* Huge pud page fault raced with pmd_alloc? */
4487         if (pud_trans_unstable(vmf.pud))
4488                 goto retry_pud;
4489
4490         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4491                 ret = create_huge_pmd(&vmf);
4492                 if (!(ret & VM_FAULT_FALLBACK))
4493                         return ret;
4494         } else {
4495                 pmd_t orig_pmd = *vmf.pmd;
4496
4497                 barrier();
4498                 if (unlikely(is_swap_pmd(orig_pmd))) {
4499                         VM_BUG_ON(thp_migration_supported() &&
4500                                           !is_pmd_migration_entry(orig_pmd));
4501                         if (is_pmd_migration_entry(orig_pmd))
4502                                 pmd_migration_entry_wait(mm, vmf.pmd);
4503                         return 0;
4504                 }
4505                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4506                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4507                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4508
4509                         if (dirty && !pmd_write(orig_pmd)) {
4510                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4511                                 if (!(ret & VM_FAULT_FALLBACK))
4512                                         return ret;
4513                         } else {
4514                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4515                                 return 0;
4516                         }
4517                 }
4518         }
4519
4520         return handle_pte_fault(&vmf);
4521 }
4522
4523 /**
4524  * mm_account_fault - Do page fault accountings
4525  *
4526  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4527  *        of perf event counters, but we'll still do the per-task accounting to
4528  *        the task who triggered this page fault.
4529  * @address: the faulted address.
4530  * @flags: the fault flags.
4531  * @ret: the fault retcode.
4532  *
4533  * This will take care of most of the page fault accountings.  Meanwhile, it
4534  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4535  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4536  * still be in per-arch page fault handlers at the entry of page fault.
4537  */
4538 static inline void mm_account_fault(struct pt_regs *regs,
4539                                     unsigned long address, unsigned int flags,
4540                                     vm_fault_t ret)
4541 {
4542         bool major;
4543
4544         /*
4545          * We don't do accounting for some specific faults:
4546          *
4547          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4548          *   includes arch_vma_access_permitted() failing before reaching here.
4549          *   So this is not a "this many hardware page faults" counter.  We
4550          *   should use the hw profiling for that.
4551          *
4552          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4553          *   once they're completed.
4554          */
4555         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4556                 return;
4557
4558         /*
4559          * We define the fault as a major fault when the final successful fault
4560          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4561          * handle it immediately previously).
4562          */
4563         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4564
4565         if (major)
4566                 current->maj_flt++;
4567         else
4568                 current->min_flt++;
4569
4570         /*
4571          * If the fault is done for GUP, regs will be NULL.  We only do the
4572          * accounting for the per thread fault counters who triggered the
4573          * fault, and we skip the perf event updates.
4574          */
4575         if (!regs)
4576                 return;
4577
4578         if (major)
4579                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4580         else
4581                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4582 }
4583
4584 /*
4585  * By the time we get here, we already hold the mm semaphore
4586  *
4587  * The mmap_lock may have been released depending on flags and our
4588  * return value.  See filemap_fault() and __lock_page_or_retry().
4589  */
4590 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4591                            unsigned int flags, struct pt_regs *regs)
4592 {
4593         vm_fault_t ret;
4594
4595         __set_current_state(TASK_RUNNING);
4596
4597         count_vm_event(PGFAULT);
4598         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4599
4600         /* do counter updates before entering really critical section. */
4601         check_sync_rss_stat(current);
4602
4603         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4604                                             flags & FAULT_FLAG_INSTRUCTION,
4605                                             flags & FAULT_FLAG_REMOTE))
4606                 return VM_FAULT_SIGSEGV;
4607
4608         /*
4609          * Enable the memcg OOM handling for faults triggered in user
4610          * space.  Kernel faults are handled more gracefully.
4611          */
4612         if (flags & FAULT_FLAG_USER)
4613                 mem_cgroup_enter_user_fault();
4614
4615         if (unlikely(is_vm_hugetlb_page(vma)))
4616                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4617         else
4618                 ret = __handle_mm_fault(vma, address, flags);
4619
4620         if (flags & FAULT_FLAG_USER) {
4621                 mem_cgroup_exit_user_fault();
4622                 /*
4623                  * The task may have entered a memcg OOM situation but
4624                  * if the allocation error was handled gracefully (no
4625                  * VM_FAULT_OOM), there is no need to kill anything.
4626                  * Just clean up the OOM state peacefully.
4627                  */
4628                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4629                         mem_cgroup_oom_synchronize(false);
4630         }
4631
4632         mm_account_fault(regs, address, flags, ret);
4633
4634         return ret;
4635 }
4636 EXPORT_SYMBOL_GPL(handle_mm_fault);
4637
4638 #ifndef __PAGETABLE_P4D_FOLDED
4639 /*
4640  * Allocate p4d page table.
4641  * We've already handled the fast-path in-line.
4642  */
4643 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4644 {
4645         p4d_t *new = p4d_alloc_one(mm, address);
4646         if (!new)
4647                 return -ENOMEM;
4648
4649         smp_wmb(); /* See comment in __pte_alloc */
4650
4651         spin_lock(&mm->page_table_lock);
4652         if (pgd_present(*pgd))          /* Another has populated it */
4653                 p4d_free(mm, new);
4654         else
4655                 pgd_populate(mm, pgd, new);
4656         spin_unlock(&mm->page_table_lock);
4657         return 0;
4658 }
4659 #endif /* __PAGETABLE_P4D_FOLDED */
4660
4661 #ifndef __PAGETABLE_PUD_FOLDED
4662 /*
4663  * Allocate page upper directory.
4664  * We've already handled the fast-path in-line.
4665  */
4666 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4667 {
4668         pud_t *new = pud_alloc_one(mm, address);
4669         if (!new)
4670                 return -ENOMEM;
4671
4672         smp_wmb(); /* See comment in __pte_alloc */
4673
4674         spin_lock(&mm->page_table_lock);
4675         if (!p4d_present(*p4d)) {
4676                 mm_inc_nr_puds(mm);
4677                 p4d_populate(mm, p4d, new);
4678         } else  /* Another has populated it */
4679                 pud_free(mm, new);
4680         spin_unlock(&mm->page_table_lock);
4681         return 0;
4682 }
4683 #endif /* __PAGETABLE_PUD_FOLDED */
4684
4685 #ifndef __PAGETABLE_PMD_FOLDED
4686 /*
4687  * Allocate page middle directory.
4688  * We've already handled the fast-path in-line.
4689  */
4690 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4691 {
4692         spinlock_t *ptl;
4693         pmd_t *new = pmd_alloc_one(mm, address);
4694         if (!new)
4695                 return -ENOMEM;
4696
4697         smp_wmb(); /* See comment in __pte_alloc */
4698
4699         ptl = pud_lock(mm, pud);
4700         if (!pud_present(*pud)) {
4701                 mm_inc_nr_pmds(mm);
4702                 pud_populate(mm, pud, new);
4703         } else  /* Another has populated it */
4704                 pmd_free(mm, new);
4705         spin_unlock(ptl);
4706         return 0;
4707 }
4708 #endif /* __PAGETABLE_PMD_FOLDED */
4709
4710 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4711                           struct mmu_notifier_range *range, pte_t **ptepp,
4712                           pmd_t **pmdpp, spinlock_t **ptlp)
4713 {
4714         pgd_t *pgd;
4715         p4d_t *p4d;
4716         pud_t *pud;
4717         pmd_t *pmd;
4718         pte_t *ptep;
4719
4720         pgd = pgd_offset(mm, address);
4721         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4722                 goto out;
4723
4724         p4d = p4d_offset(pgd, address);
4725         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4726                 goto out;
4727
4728         pud = pud_offset(p4d, address);
4729         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4730                 goto out;
4731
4732         pmd = pmd_offset(pud, address);
4733         VM_BUG_ON(pmd_trans_huge(*pmd));
4734
4735         if (pmd_huge(*pmd)) {
4736                 if (!pmdpp)
4737                         goto out;
4738
4739                 if (range) {
4740                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4741                                                 NULL, mm, address & PMD_MASK,
4742                                                 (address & PMD_MASK) + PMD_SIZE);
4743                         mmu_notifier_invalidate_range_start(range);
4744                 }
4745                 *ptlp = pmd_lock(mm, pmd);
4746                 if (pmd_huge(*pmd)) {
4747                         *pmdpp = pmd;
4748                         return 0;
4749                 }
4750                 spin_unlock(*ptlp);
4751                 if (range)
4752                         mmu_notifier_invalidate_range_end(range);
4753         }
4754
4755         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4756                 goto out;
4757
4758         if (range) {
4759                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4760                                         address & PAGE_MASK,
4761                                         (address & PAGE_MASK) + PAGE_SIZE);
4762                 mmu_notifier_invalidate_range_start(range);
4763         }
4764         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4765         if (!pte_present(*ptep))
4766                 goto unlock;
4767         *ptepp = ptep;
4768         return 0;
4769 unlock:
4770         pte_unmap_unlock(ptep, *ptlp);
4771         if (range)
4772                 mmu_notifier_invalidate_range_end(range);
4773 out:
4774         return -EINVAL;
4775 }
4776
4777 /**
4778  * follow_pte - look up PTE at a user virtual address
4779  * @mm: the mm_struct of the target address space
4780  * @address: user virtual address
4781  * @ptepp: location to store found PTE
4782  * @ptlp: location to store the lock for the PTE
4783  *
4784  * On a successful return, the pointer to the PTE is stored in @ptepp;
4785  * the corresponding lock is taken and its location is stored in @ptlp.
4786  * The contents of the PTE are only stable until @ptlp is released;
4787  * any further use, if any, must be protected against invalidation
4788  * with MMU notifiers.
4789  *
4790  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4791  * should be taken for read.
4792  *
4793  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4794  * it is not a good general-purpose API.
4795  *
4796  * Return: zero on success, -ve otherwise.
4797  */
4798 int follow_pte(struct mm_struct *mm, unsigned long address,
4799                pte_t **ptepp, spinlock_t **ptlp)
4800 {
4801         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4802 }
4803 EXPORT_SYMBOL_GPL(follow_pte);
4804
4805 /**
4806  * follow_pfn - look up PFN at a user virtual address
4807  * @vma: memory mapping
4808  * @address: user virtual address
4809  * @pfn: location to store found PFN
4810  *
4811  * Only IO mappings and raw PFN mappings are allowed.
4812  *
4813  * This function does not allow the caller to read the permissions
4814  * of the PTE.  Do not use it.
4815  *
4816  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4817  */
4818 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4819         unsigned long *pfn)
4820 {
4821         int ret = -EINVAL;
4822         spinlock_t *ptl;
4823         pte_t *ptep;
4824
4825         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4826                 return ret;
4827
4828         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4829         if (ret)
4830                 return ret;
4831         *pfn = pte_pfn(*ptep);
4832         pte_unmap_unlock(ptep, ptl);
4833         return 0;
4834 }
4835 EXPORT_SYMBOL(follow_pfn);
4836
4837 #ifdef CONFIG_HAVE_IOREMAP_PROT
4838 int follow_phys(struct vm_area_struct *vma,
4839                 unsigned long address, unsigned int flags,
4840                 unsigned long *prot, resource_size_t *phys)
4841 {
4842         int ret = -EINVAL;
4843         pte_t *ptep, pte;
4844         spinlock_t *ptl;
4845
4846         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4847                 goto out;
4848
4849         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4850                 goto out;
4851         pte = *ptep;
4852
4853         if ((flags & FOLL_WRITE) && !pte_write(pte))
4854                 goto unlock;
4855
4856         *prot = pgprot_val(pte_pgprot(pte));
4857         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4858
4859         ret = 0;
4860 unlock:
4861         pte_unmap_unlock(ptep, ptl);
4862 out:
4863         return ret;
4864 }
4865
4866 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4867                         void *buf, int len, int write)
4868 {
4869         resource_size_t phys_addr;
4870         unsigned long prot = 0;
4871         void __iomem *maddr;
4872         int offset = addr & (PAGE_SIZE-1);
4873
4874         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4875                 return -EINVAL;
4876
4877         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4878         if (!maddr)
4879                 return -ENOMEM;
4880
4881         if (write)
4882                 memcpy_toio(maddr + offset, buf, len);
4883         else
4884                 memcpy_fromio(buf, maddr + offset, len);
4885         iounmap(maddr);
4886
4887         return len;
4888 }
4889 EXPORT_SYMBOL_GPL(generic_access_phys);
4890 #endif
4891
4892 /*
4893  * Access another process' address space as given in mm.  If non-NULL, use the
4894  * given task for page fault accounting.
4895  */
4896 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4897                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4898 {
4899         struct vm_area_struct *vma;
4900         void *old_buf = buf;
4901         int write = gup_flags & FOLL_WRITE;
4902
4903         if (mmap_read_lock_killable(mm))
4904                 return 0;
4905
4906         /* ignore errors, just check how much was successfully transferred */
4907         while (len) {
4908                 int bytes, ret, offset;
4909                 void *maddr;
4910                 struct page *page = NULL;
4911
4912                 ret = get_user_pages_remote(mm, addr, 1,
4913                                 gup_flags, &page, &vma, NULL);
4914                 if (ret <= 0) {
4915 #ifndef CONFIG_HAVE_IOREMAP_PROT
4916                         break;
4917 #else
4918                         /*
4919                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4920                          * we can access using slightly different code.
4921                          */
4922                         vma = find_vma(mm, addr);
4923                         if (!vma || vma->vm_start > addr)
4924                                 break;
4925                         if (vma->vm_ops && vma->vm_ops->access)
4926                                 ret = vma->vm_ops->access(vma, addr, buf,
4927                                                           len, write);
4928                         if (ret <= 0)
4929                                 break;
4930                         bytes = ret;
4931 #endif
4932                 } else {
4933                         bytes = len;
4934                         offset = addr & (PAGE_SIZE-1);
4935                         if (bytes > PAGE_SIZE-offset)
4936                                 bytes = PAGE_SIZE-offset;
4937
4938                         maddr = kmap(page);
4939                         if (write) {
4940                                 copy_to_user_page(vma, page, addr,
4941                                                   maddr + offset, buf, bytes);
4942                                 set_page_dirty_lock(page);
4943                         } else {
4944                                 copy_from_user_page(vma, page, addr,
4945                                                     buf, maddr + offset, bytes);
4946                         }
4947                         kunmap(page);
4948                         put_page(page);
4949                 }
4950                 len -= bytes;
4951                 buf += bytes;
4952                 addr += bytes;
4953         }
4954         mmap_read_unlock(mm);
4955
4956         return buf - old_buf;
4957 }
4958
4959 /**
4960  * access_remote_vm - access another process' address space
4961  * @mm:         the mm_struct of the target address space
4962  * @addr:       start address to access
4963  * @buf:        source or destination buffer
4964  * @len:        number of bytes to transfer
4965  * @gup_flags:  flags modifying lookup behaviour
4966  *
4967  * The caller must hold a reference on @mm.
4968  *
4969  * Return: number of bytes copied from source to destination.
4970  */
4971 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4972                 void *buf, int len, unsigned int gup_flags)
4973 {
4974         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4975 }
4976
4977 /*
4978  * Access another process' address space.
4979  * Source/target buffer must be kernel space,
4980  * Do not walk the page table directly, use get_user_pages
4981  */
4982 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4983                 void *buf, int len, unsigned int gup_flags)
4984 {
4985         struct mm_struct *mm;
4986         int ret;
4987
4988         mm = get_task_mm(tsk);
4989         if (!mm)
4990                 return 0;
4991
4992         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4993
4994         mmput(mm);
4995
4996         return ret;
4997 }
4998 EXPORT_SYMBOL_GPL(access_process_vm);
4999
5000 /*
5001  * Print the name of a VMA.
5002  */
5003 void print_vma_addr(char *prefix, unsigned long ip)
5004 {
5005         struct mm_struct *mm = current->mm;
5006         struct vm_area_struct *vma;
5007
5008         /*
5009          * we might be running from an atomic context so we cannot sleep
5010          */
5011         if (!mmap_read_trylock(mm))
5012                 return;
5013
5014         vma = find_vma(mm, ip);
5015         if (vma && vma->vm_file) {
5016                 struct file *f = vma->vm_file;
5017                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5018                 if (buf) {
5019                         char *p;
5020
5021                         p = file_path(f, buf, PAGE_SIZE);
5022                         if (IS_ERR(p))
5023                                 p = "?";
5024                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5025                                         vma->vm_start,
5026                                         vma->vm_end - vma->vm_start);
5027                         free_page((unsigned long)buf);
5028                 }
5029         }
5030         mmap_read_unlock(mm);
5031 }
5032
5033 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5034 void __might_fault(const char *file, int line)
5035 {
5036         /*
5037          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5038          * holding the mmap_lock, this is safe because kernel memory doesn't
5039          * get paged out, therefore we'll never actually fault, and the
5040          * below annotations will generate false positives.
5041          */
5042         if (uaccess_kernel())
5043                 return;
5044         if (pagefault_disabled())
5045                 return;
5046         __might_sleep(file, line, 0);
5047 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5048         if (current->mm)
5049                 might_lock_read(&current->mm->mmap_lock);
5050 #endif
5051 }
5052 EXPORT_SYMBOL(__might_fault);
5053 #endif
5054
5055 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5056 /*
5057  * Process all subpages of the specified huge page with the specified
5058  * operation.  The target subpage will be processed last to keep its
5059  * cache lines hot.
5060  */
5061 static inline void process_huge_page(
5062         unsigned long addr_hint, unsigned int pages_per_huge_page,
5063         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5064         void *arg)
5065 {
5066         int i, n, base, l;
5067         unsigned long addr = addr_hint &
5068                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5069
5070         /* Process target subpage last to keep its cache lines hot */
5071         might_sleep();
5072         n = (addr_hint - addr) / PAGE_SIZE;
5073         if (2 * n <= pages_per_huge_page) {
5074                 /* If target subpage in first half of huge page */
5075                 base = 0;
5076                 l = n;
5077                 /* Process subpages at the end of huge page */
5078                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5079                         cond_resched();
5080                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5081                 }
5082         } else {
5083                 /* If target subpage in second half of huge page */
5084                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5085                 l = pages_per_huge_page - n;
5086                 /* Process subpages at the begin of huge page */
5087                 for (i = 0; i < base; i++) {
5088                         cond_resched();
5089                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5090                 }
5091         }
5092         /*
5093          * Process remaining subpages in left-right-left-right pattern
5094          * towards the target subpage
5095          */
5096         for (i = 0; i < l; i++) {
5097                 int left_idx = base + i;
5098                 int right_idx = base + 2 * l - 1 - i;
5099
5100                 cond_resched();
5101                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5102                 cond_resched();
5103                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5104         }
5105 }
5106
5107 static void clear_gigantic_page(struct page *page,
5108                                 unsigned long addr,
5109                                 unsigned int pages_per_huge_page)
5110 {
5111         int i;
5112         struct page *p = page;
5113
5114         might_sleep();
5115         for (i = 0; i < pages_per_huge_page;
5116              i++, p = mem_map_next(p, page, i)) {
5117                 cond_resched();
5118                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5119         }
5120 }
5121
5122 static void clear_subpage(unsigned long addr, int idx, void *arg)
5123 {
5124         struct page *page = arg;
5125
5126         clear_user_highpage(page + idx, addr);
5127 }
5128
5129 void clear_huge_page(struct page *page,
5130                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5131 {
5132         unsigned long addr = addr_hint &
5133                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5134
5135         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5136                 clear_gigantic_page(page, addr, pages_per_huge_page);
5137                 return;
5138         }
5139
5140         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5141 }
5142
5143 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5144                                     unsigned long addr,
5145                                     struct vm_area_struct *vma,
5146                                     unsigned int pages_per_huge_page)
5147 {
5148         int i;
5149         struct page *dst_base = dst;
5150         struct page *src_base = src;
5151
5152         for (i = 0; i < pages_per_huge_page; ) {
5153                 cond_resched();
5154                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5155
5156                 i++;
5157                 dst = mem_map_next(dst, dst_base, i);
5158                 src = mem_map_next(src, src_base, i);
5159         }
5160 }
5161
5162 struct copy_subpage_arg {
5163         struct page *dst;
5164         struct page *src;
5165         struct vm_area_struct *vma;
5166 };
5167
5168 static void copy_subpage(unsigned long addr, int idx, void *arg)
5169 {
5170         struct copy_subpage_arg *copy_arg = arg;
5171
5172         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5173                            addr, copy_arg->vma);
5174 }
5175
5176 void copy_user_huge_page(struct page *dst, struct page *src,
5177                          unsigned long addr_hint, struct vm_area_struct *vma,
5178                          unsigned int pages_per_huge_page)
5179 {
5180         unsigned long addr = addr_hint &
5181                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5182         struct copy_subpage_arg arg = {
5183                 .dst = dst,
5184                 .src = src,
5185                 .vma = vma,
5186         };
5187
5188         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5189                 copy_user_gigantic_page(dst, src, addr, vma,
5190                                         pages_per_huge_page);
5191                 return;
5192         }
5193
5194         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5195 }
5196
5197 long copy_huge_page_from_user(struct page *dst_page,
5198                                 const void __user *usr_src,
5199                                 unsigned int pages_per_huge_page,
5200                                 bool allow_pagefault)
5201 {
5202         void *src = (void *)usr_src;
5203         void *page_kaddr;
5204         unsigned long i, rc = 0;
5205         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5206
5207         for (i = 0; i < pages_per_huge_page; i++) {
5208                 if (allow_pagefault)
5209                         page_kaddr = kmap(dst_page + i);
5210                 else
5211                         page_kaddr = kmap_atomic(dst_page + i);
5212                 rc = copy_from_user(page_kaddr,
5213                                 (const void __user *)(src + i * PAGE_SIZE),
5214                                 PAGE_SIZE);
5215                 if (allow_pagefault)
5216                         kunmap(dst_page + i);
5217                 else
5218                         kunmap_atomic(page_kaddr);
5219
5220                 ret_val -= (PAGE_SIZE - rc);
5221                 if (rc)
5222                         break;
5223
5224                 cond_resched();
5225         }
5226         return ret_val;
5227 }
5228 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5229
5230 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5231
5232 static struct kmem_cache *page_ptl_cachep;
5233
5234 void __init ptlock_cache_init(void)
5235 {
5236         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5237                         SLAB_PANIC, NULL);
5238 }
5239
5240 bool ptlock_alloc(struct page *page)
5241 {
5242         spinlock_t *ptl;
5243
5244         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5245         if (!ptl)
5246                 return false;
5247         page->ptl = ptl;
5248         return true;
5249 }
5250
5251 void ptlock_free(struct page *page)
5252 {
5253         kmem_cache_free(page_ptl_cachep, page->ptl);
5254 }
5255 #endif