Merge tag 'acpi-6.6-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117                 return false;
118
119         return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140                                         1;
141 #else
142                                         2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148         /*
149          * Transitioning a PTE from 'old' to 'young' can be expensive on
150          * some architectures, even if it's performed in hardware. By
151          * default, "false" means prefaulted entries will be 'young'.
152          */
153         return false;
154 }
155 #endif
156
157 static int __init disable_randmaps(char *s)
158 {
159         randomize_va_space = 0;
160         return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174         zero_pfn = page_to_pfn(ZERO_PAGE(0));
175         return 0;
176 }
177 early_initcall(init_zero_pfn);
178
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181         trace_rss_stat(mm, member);
182 }
183
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189                            unsigned long addr)
190 {
191         pgtable_t token = pmd_pgtable(*pmd);
192         pmd_clear(pmd);
193         pte_free_tlb(tlb, token, addr);
194         mm_dec_nr_ptes(tlb->mm);
195 }
196
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198                                 unsigned long addr, unsigned long end,
199                                 unsigned long floor, unsigned long ceiling)
200 {
201         pmd_t *pmd;
202         unsigned long next;
203         unsigned long start;
204
205         start = addr;
206         pmd = pmd_offset(pud, addr);
207         do {
208                 next = pmd_addr_end(addr, end);
209                 if (pmd_none_or_clear_bad(pmd))
210                         continue;
211                 free_pte_range(tlb, pmd, addr);
212         } while (pmd++, addr = next, addr != end);
213
214         start &= PUD_MASK;
215         if (start < floor)
216                 return;
217         if (ceiling) {
218                 ceiling &= PUD_MASK;
219                 if (!ceiling)
220                         return;
221         }
222         if (end - 1 > ceiling - 1)
223                 return;
224
225         pmd = pmd_offset(pud, start);
226         pud_clear(pud);
227         pmd_free_tlb(tlb, pmd, start);
228         mm_dec_nr_pmds(tlb->mm);
229 }
230
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232                                 unsigned long addr, unsigned long end,
233                                 unsigned long floor, unsigned long ceiling)
234 {
235         pud_t *pud;
236         unsigned long next;
237         unsigned long start;
238
239         start = addr;
240         pud = pud_offset(p4d, addr);
241         do {
242                 next = pud_addr_end(addr, end);
243                 if (pud_none_or_clear_bad(pud))
244                         continue;
245                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246         } while (pud++, addr = next, addr != end);
247
248         start &= P4D_MASK;
249         if (start < floor)
250                 return;
251         if (ceiling) {
252                 ceiling &= P4D_MASK;
253                 if (!ceiling)
254                         return;
255         }
256         if (end - 1 > ceiling - 1)
257                 return;
258
259         pud = pud_offset(p4d, start);
260         p4d_clear(p4d);
261         pud_free_tlb(tlb, pud, start);
262         mm_dec_nr_puds(tlb->mm);
263 }
264
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266                                 unsigned long addr, unsigned long end,
267                                 unsigned long floor, unsigned long ceiling)
268 {
269         p4d_t *p4d;
270         unsigned long next;
271         unsigned long start;
272
273         start = addr;
274         p4d = p4d_offset(pgd, addr);
275         do {
276                 next = p4d_addr_end(addr, end);
277                 if (p4d_none_or_clear_bad(p4d))
278                         continue;
279                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280         } while (p4d++, addr = next, addr != end);
281
282         start &= PGDIR_MASK;
283         if (start < floor)
284                 return;
285         if (ceiling) {
286                 ceiling &= PGDIR_MASK;
287                 if (!ceiling)
288                         return;
289         }
290         if (end - 1 > ceiling - 1)
291                 return;
292
293         p4d = p4d_offset(pgd, start);
294         pgd_clear(pgd);
295         p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302                         unsigned long addr, unsigned long end,
303                         unsigned long floor, unsigned long ceiling)
304 {
305         pgd_t *pgd;
306         unsigned long next;
307
308         /*
309          * The next few lines have given us lots of grief...
310          *
311          * Why are we testing PMD* at this top level?  Because often
312          * there will be no work to do at all, and we'd prefer not to
313          * go all the way down to the bottom just to discover that.
314          *
315          * Why all these "- 1"s?  Because 0 represents both the bottom
316          * of the address space and the top of it (using -1 for the
317          * top wouldn't help much: the masks would do the wrong thing).
318          * The rule is that addr 0 and floor 0 refer to the bottom of
319          * the address space, but end 0 and ceiling 0 refer to the top
320          * Comparisons need to use "end - 1" and "ceiling - 1" (though
321          * that end 0 case should be mythical).
322          *
323          * Wherever addr is brought up or ceiling brought down, we must
324          * be careful to reject "the opposite 0" before it confuses the
325          * subsequent tests.  But what about where end is brought down
326          * by PMD_SIZE below? no, end can't go down to 0 there.
327          *
328          * Whereas we round start (addr) and ceiling down, by different
329          * masks at different levels, in order to test whether a table
330          * now has no other vmas using it, so can be freed, we don't
331          * bother to round floor or end up - the tests don't need that.
332          */
333
334         addr &= PMD_MASK;
335         if (addr < floor) {
336                 addr += PMD_SIZE;
337                 if (!addr)
338                         return;
339         }
340         if (ceiling) {
341                 ceiling &= PMD_MASK;
342                 if (!ceiling)
343                         return;
344         }
345         if (end - 1 > ceiling - 1)
346                 end -= PMD_SIZE;
347         if (addr > end - 1)
348                 return;
349         /*
350          * We add page table cache pages with PAGE_SIZE,
351          * (see pte_free_tlb()), flush the tlb if we need
352          */
353         tlb_change_page_size(tlb, PAGE_SIZE);
354         pgd = pgd_offset(tlb->mm, addr);
355         do {
356                 next = pgd_addr_end(addr, end);
357                 if (pgd_none_or_clear_bad(pgd))
358                         continue;
359                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360         } while (pgd++, addr = next, addr != end);
361 }
362
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364                    struct vm_area_struct *vma, unsigned long floor,
365                    unsigned long ceiling, bool mm_wr_locked)
366 {
367         do {
368                 unsigned long addr = vma->vm_start;
369                 struct vm_area_struct *next;
370
371                 /*
372                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373                  * be 0.  This will underflow and is okay.
374                  */
375                 next = mas_find(mas, ceiling - 1);
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 if (mm_wr_locked)
382                         vma_start_write(vma);
383                 unlink_anon_vmas(vma);
384                 unlink_file_vma(vma);
385
386                 if (is_vm_hugetlb_page(vma)) {
387                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388                                 floor, next ? next->vm_start : ceiling);
389                 } else {
390                         /*
391                          * Optimization: gather nearby vmas into one call down
392                          */
393                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394                                && !is_vm_hugetlb_page(next)) {
395                                 vma = next;
396                                 next = mas_find(mas, ceiling - 1);
397                                 if (mm_wr_locked)
398                                         vma_start_write(vma);
399                                 unlink_anon_vmas(vma);
400                                 unlink_file_vma(vma);
401                         }
402                         free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 }
405                 vma = next;
406         } while (vma);
407 }
408
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411         spinlock_t *ptl = pmd_lock(mm, pmd);
412
413         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
414                 mm_inc_nr_ptes(mm);
415                 /*
416                  * Ensure all pte setup (eg. pte page lock and page clearing) are
417                  * visible before the pte is made visible to other CPUs by being
418                  * put into page tables.
419                  *
420                  * The other side of the story is the pointer chasing in the page
421                  * table walking code (when walking the page table without locking;
422                  * ie. most of the time). Fortunately, these data accesses consist
423                  * of a chain of data-dependent loads, meaning most CPUs (alpha
424                  * being the notable exception) will already guarantee loads are
425                  * seen in-order. See the alpha page table accessors for the
426                  * smp_rmb() barriers in page table walking code.
427                  */
428                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429                 pmd_populate(mm, pmd, *pte);
430                 *pte = NULL;
431         }
432         spin_unlock(ptl);
433 }
434
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437         pgtable_t new = pte_alloc_one(mm);
438         if (!new)
439                 return -ENOMEM;
440
441         pmd_install(mm, pmd, &new);
442         if (new)
443                 pte_free(mm, new);
444         return 0;
445 }
446
447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449         pte_t *new = pte_alloc_one_kernel(&init_mm);
450         if (!new)
451                 return -ENOMEM;
452
453         spin_lock(&init_mm.page_table_lock);
454         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
455                 smp_wmb(); /* See comment in pmd_install() */
456                 pmd_populate_kernel(&init_mm, pmd, new);
457                 new = NULL;
458         }
459         spin_unlock(&init_mm.page_table_lock);
460         if (new)
461                 pte_free_kernel(&init_mm, new);
462         return 0;
463 }
464
465 static inline void init_rss_vec(int *rss)
466 {
467         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472         int i;
473
474         if (current->mm == mm)
475                 sync_mm_rss(mm);
476         for (i = 0; i < NR_MM_COUNTERS; i++)
477                 if (rss[i])
478                         add_mm_counter(mm, i, rss[i]);
479 }
480
481 /*
482  * This function is called to print an error when a bad pte
483  * is found. For example, we might have a PFN-mapped pte in
484  * a region that doesn't allow it.
485  *
486  * The calling function must still handle the error.
487  */
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489                           pte_t pte, struct page *page)
490 {
491         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492         p4d_t *p4d = p4d_offset(pgd, addr);
493         pud_t *pud = pud_offset(p4d, addr);
494         pmd_t *pmd = pmd_offset(pud, addr);
495         struct address_space *mapping;
496         pgoff_t index;
497         static unsigned long resume;
498         static unsigned long nr_shown;
499         static unsigned long nr_unshown;
500
501         /*
502          * Allow a burst of 60 reports, then keep quiet for that minute;
503          * or allow a steady drip of one report per second.
504          */
505         if (nr_shown == 60) {
506                 if (time_before(jiffies, resume)) {
507                         nr_unshown++;
508                         return;
509                 }
510                 if (nr_unshown) {
511                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512                                  nr_unshown);
513                         nr_unshown = 0;
514                 }
515                 nr_shown = 0;
516         }
517         if (nr_shown++ == 0)
518                 resume = jiffies + 60 * HZ;
519
520         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521         index = linear_page_index(vma, addr);
522
523         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
524                  current->comm,
525                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
526         if (page)
527                 dump_page(page, "bad pte");
528         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531                  vma->vm_file,
532                  vma->vm_ops ? vma->vm_ops->fault : NULL,
533                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534                  mapping ? mapping->a_ops->read_folio : NULL);
535         dump_stack();
536         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538
539 /*
540  * vm_normal_page -- This function gets the "struct page" associated with a pte.
541  *
542  * "Special" mappings do not wish to be associated with a "struct page" (either
543  * it doesn't exist, or it exists but they don't want to touch it). In this
544  * case, NULL is returned here. "Normal" mappings do have a struct page.
545  *
546  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547  * pte bit, in which case this function is trivial. Secondly, an architecture
548  * may not have a spare pte bit, which requires a more complicated scheme,
549  * described below.
550  *
551  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552  * special mapping (even if there are underlying and valid "struct pages").
553  * COWed pages of a VM_PFNMAP are always normal.
554  *
555  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558  * mapping will always honor the rule
559  *
560  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561  *
562  * And for normal mappings this is false.
563  *
564  * This restricts such mappings to be a linear translation from virtual address
565  * to pfn. To get around this restriction, we allow arbitrary mappings so long
566  * as the vma is not a COW mapping; in that case, we know that all ptes are
567  * special (because none can have been COWed).
568  *
569  *
570  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571  *
572  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573  * page" backing, however the difference is that _all_ pages with a struct
574  * page (that is, those where pfn_valid is true) are refcounted and considered
575  * normal pages by the VM. The disadvantage is that pages are refcounted
576  * (which can be slower and simply not an option for some PFNMAP users). The
577  * advantage is that we don't have to follow the strict linearity rule of
578  * PFNMAP mappings in order to support COWable mappings.
579  *
580  */
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582                             pte_t pte)
583 {
584         unsigned long pfn = pte_pfn(pte);
585
586         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587                 if (likely(!pte_special(pte)))
588                         goto check_pfn;
589                 if (vma->vm_ops && vma->vm_ops->find_special_page)
590                         return vma->vm_ops->find_special_page(vma, addr);
591                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592                         return NULL;
593                 if (is_zero_pfn(pfn))
594                         return NULL;
595                 if (pte_devmap(pte))
596                 /*
597                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598                  * and will have refcounts incremented on their struct pages
599                  * when they are inserted into PTEs, thus they are safe to
600                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601                  * do not have refcounts. Example of legacy ZONE_DEVICE is
602                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603                  */
604                         return NULL;
605
606                 print_bad_pte(vma, addr, pte, NULL);
607                 return NULL;
608         }
609
610         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611
612         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613                 if (vma->vm_flags & VM_MIXEDMAP) {
614                         if (!pfn_valid(pfn))
615                                 return NULL;
616                         goto out;
617                 } else {
618                         unsigned long off;
619                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
620                         if (pfn == vma->vm_pgoff + off)
621                                 return NULL;
622                         if (!is_cow_mapping(vma->vm_flags))
623                                 return NULL;
624                 }
625         }
626
627         if (is_zero_pfn(pfn))
628                 return NULL;
629
630 check_pfn:
631         if (unlikely(pfn > highest_memmap_pfn)) {
632                 print_bad_pte(vma, addr, pte, NULL);
633                 return NULL;
634         }
635
636         /*
637          * NOTE! We still have PageReserved() pages in the page tables.
638          * eg. VDSO mappings can cause them to exist.
639          */
640 out:
641         return pfn_to_page(pfn);
642 }
643
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645                             pte_t pte)
646 {
647         struct page *page = vm_normal_page(vma, addr, pte);
648
649         if (page)
650                 return page_folio(page);
651         return NULL;
652 }
653
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656                                 pmd_t pmd)
657 {
658         unsigned long pfn = pmd_pfn(pmd);
659
660         /*
661          * There is no pmd_special() but there may be special pmds, e.g.
662          * in a direct-access (dax) mapping, so let's just replicate the
663          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664          */
665         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666                 if (vma->vm_flags & VM_MIXEDMAP) {
667                         if (!pfn_valid(pfn))
668                                 return NULL;
669                         goto out;
670                 } else {
671                         unsigned long off;
672                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
673                         if (pfn == vma->vm_pgoff + off)
674                                 return NULL;
675                         if (!is_cow_mapping(vma->vm_flags))
676                                 return NULL;
677                 }
678         }
679
680         if (pmd_devmap(pmd))
681                 return NULL;
682         if (is_huge_zero_pmd(pmd))
683                 return NULL;
684         if (unlikely(pfn > highest_memmap_pfn))
685                 return NULL;
686
687         /*
688          * NOTE! We still have PageReserved() pages in the page tables.
689          * eg. VDSO mappings can cause them to exist.
690          */
691 out:
692         return pfn_to_page(pfn);
693 }
694 #endif
695
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697                                   struct page *page, unsigned long address,
698                                   pte_t *ptep)
699 {
700         pte_t orig_pte;
701         pte_t pte;
702         swp_entry_t entry;
703
704         orig_pte = ptep_get(ptep);
705         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706         if (pte_swp_soft_dirty(orig_pte))
707                 pte = pte_mksoft_dirty(pte);
708
709         entry = pte_to_swp_entry(orig_pte);
710         if (pte_swp_uffd_wp(orig_pte))
711                 pte = pte_mkuffd_wp(pte);
712         else if (is_writable_device_exclusive_entry(entry))
713                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717         /*
718          * No need to take a page reference as one was already
719          * created when the swap entry was made.
720          */
721         if (PageAnon(page))
722                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723         else
724                 /*
725                  * Currently device exclusive access only supports anonymous
726                  * memory so the entry shouldn't point to a filebacked page.
727                  */
728                 WARN_ON_ONCE(1);
729
730         set_pte_at(vma->vm_mm, address, ptep, pte);
731
732         /*
733          * No need to invalidate - it was non-present before. However
734          * secondary CPUs may have mappings that need invalidating.
735          */
736         update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745                         unsigned long addr)
746 {
747         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748         struct page *page = pfn_swap_entry_to_page(entry);
749
750         if (trylock_page(page)) {
751                 restore_exclusive_pte(vma, page, addr, src_pte);
752                 unlock_page(page);
753                 return 0;
754         }
755
756         return -EBUSY;
757 }
758
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770         unsigned long vm_flags = dst_vma->vm_flags;
771         pte_t orig_pte = ptep_get(src_pte);
772         pte_t pte = orig_pte;
773         struct page *page;
774         swp_entry_t entry = pte_to_swp_entry(orig_pte);
775
776         if (likely(!non_swap_entry(entry))) {
777                 if (swap_duplicate(entry) < 0)
778                         return -EIO;
779
780                 /* make sure dst_mm is on swapoff's mmlist. */
781                 if (unlikely(list_empty(&dst_mm->mmlist))) {
782                         spin_lock(&mmlist_lock);
783                         if (list_empty(&dst_mm->mmlist))
784                                 list_add(&dst_mm->mmlist,
785                                                 &src_mm->mmlist);
786                         spin_unlock(&mmlist_lock);
787                 }
788                 /* Mark the swap entry as shared. */
789                 if (pte_swp_exclusive(orig_pte)) {
790                         pte = pte_swp_clear_exclusive(orig_pte);
791                         set_pte_at(src_mm, addr, src_pte, pte);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (!is_readable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both parent and child
803                          * to be set to read. A previously exclusive entry is
804                          * now shared.
805                          */
806                         entry = make_readable_migration_entry(
807                                                         swp_offset(entry));
808                         pte = swp_entry_to_pte(entry);
809                         if (pte_swp_soft_dirty(orig_pte))
810                                 pte = pte_swp_mksoft_dirty(pte);
811                         if (pte_swp_uffd_wp(orig_pte))
812                                 pte = pte_swp_mkuffd_wp(pte);
813                         set_pte_at(src_mm, addr, src_pte, pte);
814                 }
815         } else if (is_device_private_entry(entry)) {
816                 page = pfn_swap_entry_to_page(entry);
817
818                 /*
819                  * Update rss count even for unaddressable pages, as
820                  * they should treated just like normal pages in this
821                  * respect.
822                  *
823                  * We will likely want to have some new rss counters
824                  * for unaddressable pages, at some point. But for now
825                  * keep things as they are.
826                  */
827                 get_page(page);
828                 rss[mm_counter(page)]++;
829                 /* Cannot fail as these pages cannot get pinned. */
830                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831
832                 /*
833                  * We do not preserve soft-dirty information, because so
834                  * far, checkpoint/restore is the only feature that
835                  * requires that. And checkpoint/restore does not work
836                  * when a device driver is involved (you cannot easily
837                  * save and restore device driver state).
838                  */
839                 if (is_writable_device_private_entry(entry) &&
840                     is_cow_mapping(vm_flags)) {
841                         entry = make_readable_device_private_entry(
842                                                         swp_offset(entry));
843                         pte = swp_entry_to_pte(entry);
844                         if (pte_swp_uffd_wp(orig_pte))
845                                 pte = pte_swp_mkuffd_wp(pte);
846                         set_pte_at(src_mm, addr, src_pte, pte);
847                 }
848         } else if (is_device_exclusive_entry(entry)) {
849                 /*
850                  * Make device exclusive entries present by restoring the
851                  * original entry then copying as for a present pte. Device
852                  * exclusive entries currently only support private writable
853                  * (ie. COW) mappings.
854                  */
855                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857                         return -EBUSY;
858                 return -ENOENT;
859         } else if (is_pte_marker_entry(entry)) {
860                 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862                 if (marker)
863                         set_pte_at(dst_mm, addr, dst_pte,
864                                    make_pte_marker(marker));
865                 return 0;
866         }
867         if (!userfaultfd_wp(dst_vma))
868                 pte = pte_swp_clear_uffd_wp(pte);
869         set_pte_at(dst_mm, addr, dst_pte, pte);
870         return 0;
871 }
872
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888                   struct folio **prealloc, struct page *page)
889 {
890         struct folio *new_folio;
891         pte_t pte;
892
893         new_folio = *prealloc;
894         if (!new_folio)
895                 return -EAGAIN;
896
897         /*
898          * We have a prealloc page, all good!  Take it
899          * over and copy the page & arm it.
900          */
901         *prealloc = NULL;
902         copy_user_highpage(&new_folio->page, page, addr, src_vma);
903         __folio_mark_uptodate(new_folio);
904         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905         folio_add_lru_vma(new_folio, dst_vma);
906         rss[MM_ANONPAGES]++;
907
908         /* All done, just insert the new page copy in the child */
909         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912                 /* Uffd-wp needs to be delivered to dest pte as well */
913                 pte = pte_mkuffd_wp(pte);
914         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915         return 0;
916 }
917
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925                  struct folio **prealloc)
926 {
927         struct mm_struct *src_mm = src_vma->vm_mm;
928         unsigned long vm_flags = src_vma->vm_flags;
929         pte_t pte = ptep_get(src_pte);
930         struct page *page;
931         struct folio *folio;
932
933         page = vm_normal_page(src_vma, addr, pte);
934         if (page)
935                 folio = page_folio(page);
936         if (page && folio_test_anon(folio)) {
937                 /*
938                  * If this page may have been pinned by the parent process,
939                  * copy the page immediately for the child so that we'll always
940                  * guarantee the pinned page won't be randomly replaced in the
941                  * future.
942                  */
943                 folio_get(folio);
944                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945                         /* Page may be pinned, we have to copy. */
946                         folio_put(folio);
947                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948                                                  addr, rss, prealloc, page);
949                 }
950                 rss[MM_ANONPAGES]++;
951         } else if (page) {
952                 folio_get(folio);
953                 page_dup_file_rmap(page, false);
954                 rss[mm_counter_file(page)]++;
955         }
956
957         /*
958          * If it's a COW mapping, write protect it both
959          * in the parent and the child
960          */
961         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962                 ptep_set_wrprotect(src_mm, addr, src_pte);
963                 pte = pte_wrprotect(pte);
964         }
965         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967         /*
968          * If it's a shared mapping, mark it clean in
969          * the child
970          */
971         if (vm_flags & VM_SHARED)
972                 pte = pte_mkclean(pte);
973         pte = pte_mkold(pte);
974
975         if (!userfaultfd_wp(dst_vma))
976                 pte = pte_clear_uffd_wp(pte);
977
978         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979         return 0;
980 }
981
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983                 struct vm_area_struct *vma, unsigned long addr)
984 {
985         struct folio *new_folio;
986
987         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988         if (!new_folio)
989                 return NULL;
990
991         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992                 folio_put(new_folio);
993                 return NULL;
994         }
995         folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997         return new_folio;
998 }
999
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003                unsigned long end)
1004 {
1005         struct mm_struct *dst_mm = dst_vma->vm_mm;
1006         struct mm_struct *src_mm = src_vma->vm_mm;
1007         pte_t *orig_src_pte, *orig_dst_pte;
1008         pte_t *src_pte, *dst_pte;
1009         pte_t ptent;
1010         spinlock_t *src_ptl, *dst_ptl;
1011         int progress, ret = 0;
1012         int rss[NR_MM_COUNTERS];
1013         swp_entry_t entry = (swp_entry_t){0};
1014         struct folio *prealloc = NULL;
1015
1016 again:
1017         progress = 0;
1018         init_rss_vec(rss);
1019
1020         /*
1021          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022          * error handling here, assume that exclusive mmap_lock on dst and src
1023          * protects anon from unexpected THP transitions; with shmem and file
1024          * protected by mmap_lock-less collapse skipping areas with anon_vma
1025          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026          * can remove such assumptions later, but this is good enough for now.
1027          */
1028         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029         if (!dst_pte) {
1030                 ret = -ENOMEM;
1031                 goto out;
1032         }
1033         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034         if (!src_pte) {
1035                 pte_unmap_unlock(dst_pte, dst_ptl);
1036                 /* ret == 0 */
1037                 goto out;
1038         }
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 ptent = ptep_get(src_pte);
1056                 if (pte_none(ptent)) {
1057                         progress++;
1058                         continue;
1059                 }
1060                 if (unlikely(!pte_present(ptent))) {
1061                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1062                                                   dst_pte, src_pte,
1063                                                   dst_vma, src_vma,
1064                                                   addr, rss);
1065                         if (ret == -EIO) {
1066                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1067                                 break;
1068                         } else if (ret == -EBUSY) {
1069                                 break;
1070                         } else if (!ret) {
1071                                 progress += 8;
1072                                 continue;
1073                         }
1074
1075                         /*
1076                          * Device exclusive entry restored, continue by copying
1077                          * the now present pte.
1078                          */
1079                         WARN_ON_ONCE(ret != -ENOENT);
1080                 }
1081                 /* copy_present_pte() will clear `*prealloc' if consumed */
1082                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083                                        addr, rss, &prealloc);
1084                 /*
1085                  * If we need a pre-allocated page for this pte, drop the
1086                  * locks, allocate, and try again.
1087                  */
1088                 if (unlikely(ret == -EAGAIN))
1089                         break;
1090                 if (unlikely(prealloc)) {
1091                         /*
1092                          * pre-alloc page cannot be reused by next time so as
1093                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1094                          * will allocate page according to address).  This
1095                          * could only happen if one pinned pte changed.
1096                          */
1097                         folio_put(prealloc);
1098                         prealloc = NULL;
1099                 }
1100                 progress += 8;
1101         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103         arch_leave_lazy_mmu_mode();
1104         pte_unmap_unlock(orig_src_pte, src_ptl);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 folio_put(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 vma_assert_write_locked(src_vma);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         untrack_pfn_clear(dst_vma);
1329                         ret = -ENOMEM;
1330                         break;
1331                 }
1332         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334         if (is_cow) {
1335                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336                 mmu_notifier_invalidate_range_end(&range);
1337         }
1338         return ret;
1339 }
1340
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344         /* By default, zap all pages */
1345         if (!details)
1346                 return true;
1347
1348         /* Or, we zap COWed pages only if the caller wants to */
1349         return details->even_cows;
1350 }
1351
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355         /* If we can make a decision without *page.. */
1356         if (should_zap_cows(details))
1357                 return true;
1358
1359         /* E.g. the caller passes NULL for the case of a zero page */
1360         if (!page)
1361                 return true;
1362
1363         /* Otherwise we should only zap non-anon pages */
1364         return !PageAnon(page);
1365 }
1366
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369         if (!details)
1370                 return false;
1371
1372         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381                               unsigned long addr, pte_t *pte,
1382                               struct zap_details *details, pte_t pteval)
1383 {
1384         /* Zap on anonymous always means dropping everything */
1385         if (vma_is_anonymous(vma))
1386                 return;
1387
1388         if (zap_drop_file_uffd_wp(details))
1389                 return;
1390
1391         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pmd_t *pmd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         struct mm_struct *mm = tlb->mm;
1400         int force_flush = 0;
1401         int rss[NR_MM_COUNTERS];
1402         spinlock_t *ptl;
1403         pte_t *start_pte;
1404         pte_t *pte;
1405         swp_entry_t entry;
1406
1407         tlb_change_page_size(tlb, PAGE_SIZE);
1408         init_rss_vec(rss);
1409         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410         if (!pte)
1411                 return addr;
1412
1413         flush_tlb_batched_pending(mm);
1414         arch_enter_lazy_mmu_mode();
1415         do {
1416                 pte_t ptent = ptep_get(pte);
1417                 struct page *page;
1418
1419                 if (pte_none(ptent))
1420                         continue;
1421
1422                 if (need_resched())
1423                         break;
1424
1425                 if (pte_present(ptent)) {
1426                         unsigned int delay_rmap;
1427
1428                         page = vm_normal_page(vma, addr, ptent);
1429                         if (unlikely(!should_zap_page(details, page)))
1430                                 continue;
1431                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1432                                                         tlb->fullmm);
1433                         arch_check_zapped_pte(vma, ptent);
1434                         tlb_remove_tlb_entry(tlb, pte, addr);
1435                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1436                                                       ptent);
1437                         if (unlikely(!page)) {
1438                                 ksm_might_unmap_zero_page(mm, ptent);
1439                                 continue;
1440                         }
1441
1442                         delay_rmap = 0;
1443                         if (!PageAnon(page)) {
1444                                 if (pte_dirty(ptent)) {
1445                                         set_page_dirty(page);
1446                                         if (tlb_delay_rmap(tlb)) {
1447                                                 delay_rmap = 1;
1448                                                 force_flush = 1;
1449                                         }
1450                                 }
1451                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1452                                         mark_page_accessed(page);
1453                         }
1454                         rss[mm_counter(page)]--;
1455                         if (!delay_rmap) {
1456                                 page_remove_rmap(page, vma, false);
1457                                 if (unlikely(page_mapcount(page) < 0))
1458                                         print_bad_pte(vma, addr, ptent, page);
1459                         }
1460                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1461                                 force_flush = 1;
1462                                 addr += PAGE_SIZE;
1463                                 break;
1464                         }
1465                         continue;
1466                 }
1467
1468                 entry = pte_to_swp_entry(ptent);
1469                 if (is_device_private_entry(entry) ||
1470                     is_device_exclusive_entry(entry)) {
1471                         page = pfn_swap_entry_to_page(entry);
1472                         if (unlikely(!should_zap_page(details, page)))
1473                                 continue;
1474                         /*
1475                          * Both device private/exclusive mappings should only
1476                          * work with anonymous page so far, so we don't need to
1477                          * consider uffd-wp bit when zap. For more information,
1478                          * see zap_install_uffd_wp_if_needed().
1479                          */
1480                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1481                         rss[mm_counter(page)]--;
1482                         if (is_device_private_entry(entry))
1483                                 page_remove_rmap(page, vma, false);
1484                         put_page(page);
1485                 } else if (!non_swap_entry(entry)) {
1486                         /* Genuine swap entry, hence a private anon page */
1487                         if (!should_zap_cows(details))
1488                                 continue;
1489                         rss[MM_SWAPENTS]--;
1490                         if (unlikely(!free_swap_and_cache(entry)))
1491                                 print_bad_pte(vma, addr, ptent, NULL);
1492                 } else if (is_migration_entry(entry)) {
1493                         page = pfn_swap_entry_to_page(entry);
1494                         if (!should_zap_page(details, page))
1495                                 continue;
1496                         rss[mm_counter(page)]--;
1497                 } else if (pte_marker_entry_uffd_wp(entry)) {
1498                         /*
1499                          * For anon: always drop the marker; for file: only
1500                          * drop the marker if explicitly requested.
1501                          */
1502                         if (!vma_is_anonymous(vma) &&
1503                             !zap_drop_file_uffd_wp(details))
1504                                 continue;
1505                 } else if (is_hwpoison_entry(entry) ||
1506                            is_poisoned_swp_entry(entry)) {
1507                         if (!should_zap_cows(details))
1508                                 continue;
1509                 } else {
1510                         /* We should have covered all the swap entry types */
1511                         WARN_ON_ONCE(1);
1512                 }
1513                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1514                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1515         } while (pte++, addr += PAGE_SIZE, addr != end);
1516
1517         add_mm_rss_vec(mm, rss);
1518         arch_leave_lazy_mmu_mode();
1519
1520         /* Do the actual TLB flush before dropping ptl */
1521         if (force_flush) {
1522                 tlb_flush_mmu_tlbonly(tlb);
1523                 tlb_flush_rmaps(tlb, vma);
1524         }
1525         pte_unmap_unlock(start_pte, ptl);
1526
1527         /*
1528          * If we forced a TLB flush (either due to running out of
1529          * batch buffers or because we needed to flush dirty TLB
1530          * entries before releasing the ptl), free the batched
1531          * memory too. Come back again if we didn't do everything.
1532          */
1533         if (force_flush)
1534                 tlb_flush_mmu(tlb);
1535
1536         return addr;
1537 }
1538
1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1540                                 struct vm_area_struct *vma, pud_t *pud,
1541                                 unsigned long addr, unsigned long end,
1542                                 struct zap_details *details)
1543 {
1544         pmd_t *pmd;
1545         unsigned long next;
1546
1547         pmd = pmd_offset(pud, addr);
1548         do {
1549                 next = pmd_addr_end(addr, end);
1550                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1551                         if (next - addr != HPAGE_PMD_SIZE)
1552                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1553                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1554                                 addr = next;
1555                                 continue;
1556                         }
1557                         /* fall through */
1558                 } else if (details && details->single_folio &&
1559                            folio_test_pmd_mappable(details->single_folio) &&
1560                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1561                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1562                         /*
1563                          * Take and drop THP pmd lock so that we cannot return
1564                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1565                          * but not yet decremented compound_mapcount().
1566                          */
1567                         spin_unlock(ptl);
1568                 }
1569                 if (pmd_none(*pmd)) {
1570                         addr = next;
1571                         continue;
1572                 }
1573                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1574                 if (addr != next)
1575                         pmd--;
1576         } while (pmd++, cond_resched(), addr != end);
1577
1578         return addr;
1579 }
1580
1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1582                                 struct vm_area_struct *vma, p4d_t *p4d,
1583                                 unsigned long addr, unsigned long end,
1584                                 struct zap_details *details)
1585 {
1586         pud_t *pud;
1587         unsigned long next;
1588
1589         pud = pud_offset(p4d, addr);
1590         do {
1591                 next = pud_addr_end(addr, end);
1592                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1593                         if (next - addr != HPAGE_PUD_SIZE) {
1594                                 mmap_assert_locked(tlb->mm);
1595                                 split_huge_pud(vma, pud, addr);
1596                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1597                                 goto next;
1598                         /* fall through */
1599                 }
1600                 if (pud_none_or_clear_bad(pud))
1601                         continue;
1602                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1603 next:
1604                 cond_resched();
1605         } while (pud++, addr = next, addr != end);
1606
1607         return addr;
1608 }
1609
1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1611                                 struct vm_area_struct *vma, pgd_t *pgd,
1612                                 unsigned long addr, unsigned long end,
1613                                 struct zap_details *details)
1614 {
1615         p4d_t *p4d;
1616         unsigned long next;
1617
1618         p4d = p4d_offset(pgd, addr);
1619         do {
1620                 next = p4d_addr_end(addr, end);
1621                 if (p4d_none_or_clear_bad(p4d))
1622                         continue;
1623                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1624         } while (p4d++, addr = next, addr != end);
1625
1626         return addr;
1627 }
1628
1629 void unmap_page_range(struct mmu_gather *tlb,
1630                              struct vm_area_struct *vma,
1631                              unsigned long addr, unsigned long end,
1632                              struct zap_details *details)
1633 {
1634         pgd_t *pgd;
1635         unsigned long next;
1636
1637         BUG_ON(addr >= end);
1638         tlb_start_vma(tlb, vma);
1639         pgd = pgd_offset(vma->vm_mm, addr);
1640         do {
1641                 next = pgd_addr_end(addr, end);
1642                 if (pgd_none_or_clear_bad(pgd))
1643                         continue;
1644                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1645         } while (pgd++, addr = next, addr != end);
1646         tlb_end_vma(tlb, vma);
1647 }
1648
1649
1650 static void unmap_single_vma(struct mmu_gather *tlb,
1651                 struct vm_area_struct *vma, unsigned long start_addr,
1652                 unsigned long end_addr,
1653                 struct zap_details *details, bool mm_wr_locked)
1654 {
1655         unsigned long start = max(vma->vm_start, start_addr);
1656         unsigned long end;
1657
1658         if (start >= vma->vm_end)
1659                 return;
1660         end = min(vma->vm_end, end_addr);
1661         if (end <= vma->vm_start)
1662                 return;
1663
1664         if (vma->vm_file)
1665                 uprobe_munmap(vma, start, end);
1666
1667         if (unlikely(vma->vm_flags & VM_PFNMAP))
1668                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1669
1670         if (start != end) {
1671                 if (unlikely(is_vm_hugetlb_page(vma))) {
1672                         /*
1673                          * It is undesirable to test vma->vm_file as it
1674                          * should be non-null for valid hugetlb area.
1675                          * However, vm_file will be NULL in the error
1676                          * cleanup path of mmap_region. When
1677                          * hugetlbfs ->mmap method fails,
1678                          * mmap_region() nullifies vma->vm_file
1679                          * before calling this function to clean up.
1680                          * Since no pte has actually been setup, it is
1681                          * safe to do nothing in this case.
1682                          */
1683                         if (vma->vm_file) {
1684                                 zap_flags_t zap_flags = details ?
1685                                     details->zap_flags : 0;
1686                                 __unmap_hugepage_range(tlb, vma, start, end,
1687                                                              NULL, zap_flags);
1688                         }
1689                 } else
1690                         unmap_page_range(tlb, vma, start, end, details);
1691         }
1692 }
1693
1694 /**
1695  * unmap_vmas - unmap a range of memory covered by a list of vma's
1696  * @tlb: address of the caller's struct mmu_gather
1697  * @mas: the maple state
1698  * @vma: the starting vma
1699  * @start_addr: virtual address at which to start unmapping
1700  * @end_addr: virtual address at which to end unmapping
1701  * @tree_end: The maximum index to check
1702  * @mm_wr_locked: lock flag
1703  *
1704  * Unmap all pages in the vma list.
1705  *
1706  * Only addresses between `start' and `end' will be unmapped.
1707  *
1708  * The VMA list must be sorted in ascending virtual address order.
1709  *
1710  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1711  * range after unmap_vmas() returns.  So the only responsibility here is to
1712  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1713  * drops the lock and schedules.
1714  */
1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1716                 struct vm_area_struct *vma, unsigned long start_addr,
1717                 unsigned long end_addr, unsigned long tree_end,
1718                 bool mm_wr_locked)
1719 {
1720         struct mmu_notifier_range range;
1721         struct zap_details details = {
1722                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1723                 /* Careful - we need to zap private pages too! */
1724                 .even_cows = true,
1725         };
1726
1727         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1728                                 start_addr, end_addr);
1729         mmu_notifier_invalidate_range_start(&range);
1730         do {
1731                 unsigned long start = start_addr;
1732                 unsigned long end = end_addr;
1733                 hugetlb_zap_begin(vma, &start, &end);
1734                 unmap_single_vma(tlb, vma, start, end, &details,
1735                                  mm_wr_locked);
1736                 hugetlb_zap_end(vma, &details);
1737         } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1738         mmu_notifier_invalidate_range_end(&range);
1739 }
1740
1741 /**
1742  * zap_page_range_single - remove user pages in a given range
1743  * @vma: vm_area_struct holding the applicable pages
1744  * @address: starting address of pages to zap
1745  * @size: number of bytes to zap
1746  * @details: details of shared cache invalidation
1747  *
1748  * The range must fit into one VMA.
1749  */
1750 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1751                 unsigned long size, struct zap_details *details)
1752 {
1753         const unsigned long end = address + size;
1754         struct mmu_notifier_range range;
1755         struct mmu_gather tlb;
1756
1757         lru_add_drain();
1758         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1759                                 address, end);
1760         hugetlb_zap_begin(vma, &range.start, &range.end);
1761         tlb_gather_mmu(&tlb, vma->vm_mm);
1762         update_hiwater_rss(vma->vm_mm);
1763         mmu_notifier_invalidate_range_start(&range);
1764         /*
1765          * unmap 'address-end' not 'range.start-range.end' as range
1766          * could have been expanded for hugetlb pmd sharing.
1767          */
1768         unmap_single_vma(&tlb, vma, address, end, details, false);
1769         mmu_notifier_invalidate_range_end(&range);
1770         tlb_finish_mmu(&tlb);
1771         hugetlb_zap_end(vma, details);
1772 }
1773
1774 /**
1775  * zap_vma_ptes - remove ptes mapping the vma
1776  * @vma: vm_area_struct holding ptes to be zapped
1777  * @address: starting address of pages to zap
1778  * @size: number of bytes to zap
1779  *
1780  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1781  *
1782  * The entire address range must be fully contained within the vma.
1783  *
1784  */
1785 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1786                 unsigned long size)
1787 {
1788         if (!range_in_vma(vma, address, address + size) ||
1789                         !(vma->vm_flags & VM_PFNMAP))
1790                 return;
1791
1792         zap_page_range_single(vma, address, size, NULL);
1793 }
1794 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1795
1796 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1797 {
1798         pgd_t *pgd;
1799         p4d_t *p4d;
1800         pud_t *pud;
1801         pmd_t *pmd;
1802
1803         pgd = pgd_offset(mm, addr);
1804         p4d = p4d_alloc(mm, pgd, addr);
1805         if (!p4d)
1806                 return NULL;
1807         pud = pud_alloc(mm, p4d, addr);
1808         if (!pud)
1809                 return NULL;
1810         pmd = pmd_alloc(mm, pud, addr);
1811         if (!pmd)
1812                 return NULL;
1813
1814         VM_BUG_ON(pmd_trans_huge(*pmd));
1815         return pmd;
1816 }
1817
1818 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1819                         spinlock_t **ptl)
1820 {
1821         pmd_t *pmd = walk_to_pmd(mm, addr);
1822
1823         if (!pmd)
1824                 return NULL;
1825         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1826 }
1827
1828 static int validate_page_before_insert(struct page *page)
1829 {
1830         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1831                 return -EINVAL;
1832         flush_dcache_page(page);
1833         return 0;
1834 }
1835
1836 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1837                         unsigned long addr, struct page *page, pgprot_t prot)
1838 {
1839         if (!pte_none(ptep_get(pte)))
1840                 return -EBUSY;
1841         /* Ok, finally just insert the thing.. */
1842         get_page(page);
1843         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1844         page_add_file_rmap(page, vma, false);
1845         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1846         return 0;
1847 }
1848
1849 /*
1850  * This is the old fallback for page remapping.
1851  *
1852  * For historical reasons, it only allows reserved pages. Only
1853  * old drivers should use this, and they needed to mark their
1854  * pages reserved for the old functions anyway.
1855  */
1856 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1857                         struct page *page, pgprot_t prot)
1858 {
1859         int retval;
1860         pte_t *pte;
1861         spinlock_t *ptl;
1862
1863         retval = validate_page_before_insert(page);
1864         if (retval)
1865                 goto out;
1866         retval = -ENOMEM;
1867         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1868         if (!pte)
1869                 goto out;
1870         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1871         pte_unmap_unlock(pte, ptl);
1872 out:
1873         return retval;
1874 }
1875
1876 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1877                         unsigned long addr, struct page *page, pgprot_t prot)
1878 {
1879         int err;
1880
1881         if (!page_count(page))
1882                 return -EINVAL;
1883         err = validate_page_before_insert(page);
1884         if (err)
1885                 return err;
1886         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1887 }
1888
1889 /* insert_pages() amortizes the cost of spinlock operations
1890  * when inserting pages in a loop.
1891  */
1892 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1893                         struct page **pages, unsigned long *num, pgprot_t prot)
1894 {
1895         pmd_t *pmd = NULL;
1896         pte_t *start_pte, *pte;
1897         spinlock_t *pte_lock;
1898         struct mm_struct *const mm = vma->vm_mm;
1899         unsigned long curr_page_idx = 0;
1900         unsigned long remaining_pages_total = *num;
1901         unsigned long pages_to_write_in_pmd;
1902         int ret;
1903 more:
1904         ret = -EFAULT;
1905         pmd = walk_to_pmd(mm, addr);
1906         if (!pmd)
1907                 goto out;
1908
1909         pages_to_write_in_pmd = min_t(unsigned long,
1910                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1911
1912         /* Allocate the PTE if necessary; takes PMD lock once only. */
1913         ret = -ENOMEM;
1914         if (pte_alloc(mm, pmd))
1915                 goto out;
1916
1917         while (pages_to_write_in_pmd) {
1918                 int pte_idx = 0;
1919                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1920
1921                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1922                 if (!start_pte) {
1923                         ret = -EFAULT;
1924                         goto out;
1925                 }
1926                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1927                         int err = insert_page_in_batch_locked(vma, pte,
1928                                 addr, pages[curr_page_idx], prot);
1929                         if (unlikely(err)) {
1930                                 pte_unmap_unlock(start_pte, pte_lock);
1931                                 ret = err;
1932                                 remaining_pages_total -= pte_idx;
1933                                 goto out;
1934                         }
1935                         addr += PAGE_SIZE;
1936                         ++curr_page_idx;
1937                 }
1938                 pte_unmap_unlock(start_pte, pte_lock);
1939                 pages_to_write_in_pmd -= batch_size;
1940                 remaining_pages_total -= batch_size;
1941         }
1942         if (remaining_pages_total)
1943                 goto more;
1944         ret = 0;
1945 out:
1946         *num = remaining_pages_total;
1947         return ret;
1948 }
1949
1950 /**
1951  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1952  * @vma: user vma to map to
1953  * @addr: target start user address of these pages
1954  * @pages: source kernel pages
1955  * @num: in: number of pages to map. out: number of pages that were *not*
1956  * mapped. (0 means all pages were successfully mapped).
1957  *
1958  * Preferred over vm_insert_page() when inserting multiple pages.
1959  *
1960  * In case of error, we may have mapped a subset of the provided
1961  * pages. It is the caller's responsibility to account for this case.
1962  *
1963  * The same restrictions apply as in vm_insert_page().
1964  */
1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1966                         struct page **pages, unsigned long *num)
1967 {
1968         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1969
1970         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1971                 return -EFAULT;
1972         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1973                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1974                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1975                 vm_flags_set(vma, VM_MIXEDMAP);
1976         }
1977         /* Defer page refcount checking till we're about to map that page. */
1978         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1979 }
1980 EXPORT_SYMBOL(vm_insert_pages);
1981
1982 /**
1983  * vm_insert_page - insert single page into user vma
1984  * @vma: user vma to map to
1985  * @addr: target user address of this page
1986  * @page: source kernel page
1987  *
1988  * This allows drivers to insert individual pages they've allocated
1989  * into a user vma.
1990  *
1991  * The page has to be a nice clean _individual_ kernel allocation.
1992  * If you allocate a compound page, you need to have marked it as
1993  * such (__GFP_COMP), or manually just split the page up yourself
1994  * (see split_page()).
1995  *
1996  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1997  * took an arbitrary page protection parameter. This doesn't allow
1998  * that. Your vma protection will have to be set up correctly, which
1999  * means that if you want a shared writable mapping, you'd better
2000  * ask for a shared writable mapping!
2001  *
2002  * The page does not need to be reserved.
2003  *
2004  * Usually this function is called from f_op->mmap() handler
2005  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2006  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2007  * function from other places, for example from page-fault handler.
2008  *
2009  * Return: %0 on success, negative error code otherwise.
2010  */
2011 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2012                         struct page *page)
2013 {
2014         if (addr < vma->vm_start || addr >= vma->vm_end)
2015                 return -EFAULT;
2016         if (!page_count(page))
2017                 return -EINVAL;
2018         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2019                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2020                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2021                 vm_flags_set(vma, VM_MIXEDMAP);
2022         }
2023         return insert_page(vma, addr, page, vma->vm_page_prot);
2024 }
2025 EXPORT_SYMBOL(vm_insert_page);
2026
2027 /*
2028  * __vm_map_pages - maps range of kernel pages into user vma
2029  * @vma: user vma to map to
2030  * @pages: pointer to array of source kernel pages
2031  * @num: number of pages in page array
2032  * @offset: user's requested vm_pgoff
2033  *
2034  * This allows drivers to map range of kernel pages into a user vma.
2035  *
2036  * Return: 0 on success and error code otherwise.
2037  */
2038 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2039                                 unsigned long num, unsigned long offset)
2040 {
2041         unsigned long count = vma_pages(vma);
2042         unsigned long uaddr = vma->vm_start;
2043         int ret, i;
2044
2045         /* Fail if the user requested offset is beyond the end of the object */
2046         if (offset >= num)
2047                 return -ENXIO;
2048
2049         /* Fail if the user requested size exceeds available object size */
2050         if (count > num - offset)
2051                 return -ENXIO;
2052
2053         for (i = 0; i < count; i++) {
2054                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2055                 if (ret < 0)
2056                         return ret;
2057                 uaddr += PAGE_SIZE;
2058         }
2059
2060         return 0;
2061 }
2062
2063 /**
2064  * vm_map_pages - maps range of kernel pages starts with non zero offset
2065  * @vma: user vma to map to
2066  * @pages: pointer to array of source kernel pages
2067  * @num: number of pages in page array
2068  *
2069  * Maps an object consisting of @num pages, catering for the user's
2070  * requested vm_pgoff
2071  *
2072  * If we fail to insert any page into the vma, the function will return
2073  * immediately leaving any previously inserted pages present.  Callers
2074  * from the mmap handler may immediately return the error as their caller
2075  * will destroy the vma, removing any successfully inserted pages. Other
2076  * callers should make their own arrangements for calling unmap_region().
2077  *
2078  * Context: Process context. Called by mmap handlers.
2079  * Return: 0 on success and error code otherwise.
2080  */
2081 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2082                                 unsigned long num)
2083 {
2084         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2085 }
2086 EXPORT_SYMBOL(vm_map_pages);
2087
2088 /**
2089  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2090  * @vma: user vma to map to
2091  * @pages: pointer to array of source kernel pages
2092  * @num: number of pages in page array
2093  *
2094  * Similar to vm_map_pages(), except that it explicitly sets the offset
2095  * to 0. This function is intended for the drivers that did not consider
2096  * vm_pgoff.
2097  *
2098  * Context: Process context. Called by mmap handlers.
2099  * Return: 0 on success and error code otherwise.
2100  */
2101 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2102                                 unsigned long num)
2103 {
2104         return __vm_map_pages(vma, pages, num, 0);
2105 }
2106 EXPORT_SYMBOL(vm_map_pages_zero);
2107
2108 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2109                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2110 {
2111         struct mm_struct *mm = vma->vm_mm;
2112         pte_t *pte, entry;
2113         spinlock_t *ptl;
2114
2115         pte = get_locked_pte(mm, addr, &ptl);
2116         if (!pte)
2117                 return VM_FAULT_OOM;
2118         entry = ptep_get(pte);
2119         if (!pte_none(entry)) {
2120                 if (mkwrite) {
2121                         /*
2122                          * For read faults on private mappings the PFN passed
2123                          * in may not match the PFN we have mapped if the
2124                          * mapped PFN is a writeable COW page.  In the mkwrite
2125                          * case we are creating a writable PTE for a shared
2126                          * mapping and we expect the PFNs to match. If they
2127                          * don't match, we are likely racing with block
2128                          * allocation and mapping invalidation so just skip the
2129                          * update.
2130                          */
2131                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2132                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2133                                 goto out_unlock;
2134                         }
2135                         entry = pte_mkyoung(entry);
2136                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2138                                 update_mmu_cache(vma, addr, pte);
2139                 }
2140                 goto out_unlock;
2141         }
2142
2143         /* Ok, finally just insert the thing.. */
2144         if (pfn_t_devmap(pfn))
2145                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2146         else
2147                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2148
2149         if (mkwrite) {
2150                 entry = pte_mkyoung(entry);
2151                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152         }
2153
2154         set_pte_at(mm, addr, pte, entry);
2155         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2156
2157 out_unlock:
2158         pte_unmap_unlock(pte, ptl);
2159         return VM_FAULT_NOPAGE;
2160 }
2161
2162 /**
2163  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2164  * @vma: user vma to map to
2165  * @addr: target user address of this page
2166  * @pfn: source kernel pfn
2167  * @pgprot: pgprot flags for the inserted page
2168  *
2169  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2170  * to override pgprot on a per-page basis.
2171  *
2172  * This only makes sense for IO mappings, and it makes no sense for
2173  * COW mappings.  In general, using multiple vmas is preferable;
2174  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2175  * impractical.
2176  *
2177  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2178  * caching- and encryption bits different than those of @vma->vm_page_prot,
2179  * because the caching- or encryption mode may not be known at mmap() time.
2180  *
2181  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2182  * to set caching and encryption bits for those vmas (except for COW pages).
2183  * This is ensured by core vm only modifying these page table entries using
2184  * functions that don't touch caching- or encryption bits, using pte_modify()
2185  * if needed. (See for example mprotect()).
2186  *
2187  * Also when new page-table entries are created, this is only done using the
2188  * fault() callback, and never using the value of vma->vm_page_prot,
2189  * except for page-table entries that point to anonymous pages as the result
2190  * of COW.
2191  *
2192  * Context: Process context.  May allocate using %GFP_KERNEL.
2193  * Return: vm_fault_t value.
2194  */
2195 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2196                         unsigned long pfn, pgprot_t pgprot)
2197 {
2198         /*
2199          * Technically, architectures with pte_special can avoid all these
2200          * restrictions (same for remap_pfn_range).  However we would like
2201          * consistency in testing and feature parity among all, so we should
2202          * try to keep these invariants in place for everybody.
2203          */
2204         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2205         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2206                                                 (VM_PFNMAP|VM_MIXEDMAP));
2207         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2208         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2209
2210         if (addr < vma->vm_start || addr >= vma->vm_end)
2211                 return VM_FAULT_SIGBUS;
2212
2213         if (!pfn_modify_allowed(pfn, pgprot))
2214                 return VM_FAULT_SIGBUS;
2215
2216         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2217
2218         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2219                         false);
2220 }
2221 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2222
2223 /**
2224  * vmf_insert_pfn - insert single pfn into user vma
2225  * @vma: user vma to map to
2226  * @addr: target user address of this page
2227  * @pfn: source kernel pfn
2228  *
2229  * Similar to vm_insert_page, this allows drivers to insert individual pages
2230  * they've allocated into a user vma. Same comments apply.
2231  *
2232  * This function should only be called from a vm_ops->fault handler, and
2233  * in that case the handler should return the result of this function.
2234  *
2235  * vma cannot be a COW mapping.
2236  *
2237  * As this is called only for pages that do not currently exist, we
2238  * do not need to flush old virtual caches or the TLB.
2239  *
2240  * Context: Process context.  May allocate using %GFP_KERNEL.
2241  * Return: vm_fault_t value.
2242  */
2243 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2244                         unsigned long pfn)
2245 {
2246         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2247 }
2248 EXPORT_SYMBOL(vmf_insert_pfn);
2249
2250 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2251 {
2252         /* these checks mirror the abort conditions in vm_normal_page */
2253         if (vma->vm_flags & VM_MIXEDMAP)
2254                 return true;
2255         if (pfn_t_devmap(pfn))
2256                 return true;
2257         if (pfn_t_special(pfn))
2258                 return true;
2259         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2260                 return true;
2261         return false;
2262 }
2263
2264 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2265                 unsigned long addr, pfn_t pfn, bool mkwrite)
2266 {
2267         pgprot_t pgprot = vma->vm_page_prot;
2268         int err;
2269
2270         BUG_ON(!vm_mixed_ok(vma, pfn));
2271
2272         if (addr < vma->vm_start || addr >= vma->vm_end)
2273                 return VM_FAULT_SIGBUS;
2274
2275         track_pfn_insert(vma, &pgprot, pfn);
2276
2277         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2278                 return VM_FAULT_SIGBUS;
2279
2280         /*
2281          * If we don't have pte special, then we have to use the pfn_valid()
2282          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2283          * refcount the page if pfn_valid is true (hence insert_page rather
2284          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2285          * without pte special, it would there be refcounted as a normal page.
2286          */
2287         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2288             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2289                 struct page *page;
2290
2291                 /*
2292                  * At this point we are committed to insert_page()
2293                  * regardless of whether the caller specified flags that
2294                  * result in pfn_t_has_page() == false.
2295                  */
2296                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2297                 err = insert_page(vma, addr, page, pgprot);
2298         } else {
2299                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2300         }
2301
2302         if (err == -ENOMEM)
2303                 return VM_FAULT_OOM;
2304         if (err < 0 && err != -EBUSY)
2305                 return VM_FAULT_SIGBUS;
2306
2307         return VM_FAULT_NOPAGE;
2308 }
2309
2310 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2311                 pfn_t pfn)
2312 {
2313         return __vm_insert_mixed(vma, addr, pfn, false);
2314 }
2315 EXPORT_SYMBOL(vmf_insert_mixed);
2316
2317 /*
2318  *  If the insertion of PTE failed because someone else already added a
2319  *  different entry in the mean time, we treat that as success as we assume
2320  *  the same entry was actually inserted.
2321  */
2322 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2323                 unsigned long addr, pfn_t pfn)
2324 {
2325         return __vm_insert_mixed(vma, addr, pfn, true);
2326 }
2327 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2328
2329 /*
2330  * maps a range of physical memory into the requested pages. the old
2331  * mappings are removed. any references to nonexistent pages results
2332  * in null mappings (currently treated as "copy-on-access")
2333  */
2334 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2335                         unsigned long addr, unsigned long end,
2336                         unsigned long pfn, pgprot_t prot)
2337 {
2338         pte_t *pte, *mapped_pte;
2339         spinlock_t *ptl;
2340         int err = 0;
2341
2342         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2343         if (!pte)
2344                 return -ENOMEM;
2345         arch_enter_lazy_mmu_mode();
2346         do {
2347                 BUG_ON(!pte_none(ptep_get(pte)));
2348                 if (!pfn_modify_allowed(pfn, prot)) {
2349                         err = -EACCES;
2350                         break;
2351                 }
2352                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2353                 pfn++;
2354         } while (pte++, addr += PAGE_SIZE, addr != end);
2355         arch_leave_lazy_mmu_mode();
2356         pte_unmap_unlock(mapped_pte, ptl);
2357         return err;
2358 }
2359
2360 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2361                         unsigned long addr, unsigned long end,
2362                         unsigned long pfn, pgprot_t prot)
2363 {
2364         pmd_t *pmd;
2365         unsigned long next;
2366         int err;
2367
2368         pfn -= addr >> PAGE_SHIFT;
2369         pmd = pmd_alloc(mm, pud, addr);
2370         if (!pmd)
2371                 return -ENOMEM;
2372         VM_BUG_ON(pmd_trans_huge(*pmd));
2373         do {
2374                 next = pmd_addr_end(addr, end);
2375                 err = remap_pte_range(mm, pmd, addr, next,
2376                                 pfn + (addr >> PAGE_SHIFT), prot);
2377                 if (err)
2378                         return err;
2379         } while (pmd++, addr = next, addr != end);
2380         return 0;
2381 }
2382
2383 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2384                         unsigned long addr, unsigned long end,
2385                         unsigned long pfn, pgprot_t prot)
2386 {
2387         pud_t *pud;
2388         unsigned long next;
2389         int err;
2390
2391         pfn -= addr >> PAGE_SHIFT;
2392         pud = pud_alloc(mm, p4d, addr);
2393         if (!pud)
2394                 return -ENOMEM;
2395         do {
2396                 next = pud_addr_end(addr, end);
2397                 err = remap_pmd_range(mm, pud, addr, next,
2398                                 pfn + (addr >> PAGE_SHIFT), prot);
2399                 if (err)
2400                         return err;
2401         } while (pud++, addr = next, addr != end);
2402         return 0;
2403 }
2404
2405 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2406                         unsigned long addr, unsigned long end,
2407                         unsigned long pfn, pgprot_t prot)
2408 {
2409         p4d_t *p4d;
2410         unsigned long next;
2411         int err;
2412
2413         pfn -= addr >> PAGE_SHIFT;
2414         p4d = p4d_alloc(mm, pgd, addr);
2415         if (!p4d)
2416                 return -ENOMEM;
2417         do {
2418                 next = p4d_addr_end(addr, end);
2419                 err = remap_pud_range(mm, p4d, addr, next,
2420                                 pfn + (addr >> PAGE_SHIFT), prot);
2421                 if (err)
2422                         return err;
2423         } while (p4d++, addr = next, addr != end);
2424         return 0;
2425 }
2426
2427 /*
2428  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2429  * must have pre-validated the caching bits of the pgprot_t.
2430  */
2431 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2432                 unsigned long pfn, unsigned long size, pgprot_t prot)
2433 {
2434         pgd_t *pgd;
2435         unsigned long next;
2436         unsigned long end = addr + PAGE_ALIGN(size);
2437         struct mm_struct *mm = vma->vm_mm;
2438         int err;
2439
2440         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2441                 return -EINVAL;
2442
2443         /*
2444          * Physically remapped pages are special. Tell the
2445          * rest of the world about it:
2446          *   VM_IO tells people not to look at these pages
2447          *      (accesses can have side effects).
2448          *   VM_PFNMAP tells the core MM that the base pages are just
2449          *      raw PFN mappings, and do not have a "struct page" associated
2450          *      with them.
2451          *   VM_DONTEXPAND
2452          *      Disable vma merging and expanding with mremap().
2453          *   VM_DONTDUMP
2454          *      Omit vma from core dump, even when VM_IO turned off.
2455          *
2456          * There's a horrible special case to handle copy-on-write
2457          * behaviour that some programs depend on. We mark the "original"
2458          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2459          * See vm_normal_page() for details.
2460          */
2461         if (is_cow_mapping(vma->vm_flags)) {
2462                 if (addr != vma->vm_start || end != vma->vm_end)
2463                         return -EINVAL;
2464                 vma->vm_pgoff = pfn;
2465         }
2466
2467         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2468
2469         BUG_ON(addr >= end);
2470         pfn -= addr >> PAGE_SHIFT;
2471         pgd = pgd_offset(mm, addr);
2472         flush_cache_range(vma, addr, end);
2473         do {
2474                 next = pgd_addr_end(addr, end);
2475                 err = remap_p4d_range(mm, pgd, addr, next,
2476                                 pfn + (addr >> PAGE_SHIFT), prot);
2477                 if (err)
2478                         return err;
2479         } while (pgd++, addr = next, addr != end);
2480
2481         return 0;
2482 }
2483
2484 /**
2485  * remap_pfn_range - remap kernel memory to userspace
2486  * @vma: user vma to map to
2487  * @addr: target page aligned user address to start at
2488  * @pfn: page frame number of kernel physical memory address
2489  * @size: size of mapping area
2490  * @prot: page protection flags for this mapping
2491  *
2492  * Note: this is only safe if the mm semaphore is held when called.
2493  *
2494  * Return: %0 on success, negative error code otherwise.
2495  */
2496 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2497                     unsigned long pfn, unsigned long size, pgprot_t prot)
2498 {
2499         int err;
2500
2501         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2502         if (err)
2503                 return -EINVAL;
2504
2505         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2506         if (err)
2507                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2508         return err;
2509 }
2510 EXPORT_SYMBOL(remap_pfn_range);
2511
2512 /**
2513  * vm_iomap_memory - remap memory to userspace
2514  * @vma: user vma to map to
2515  * @start: start of the physical memory to be mapped
2516  * @len: size of area
2517  *
2518  * This is a simplified io_remap_pfn_range() for common driver use. The
2519  * driver just needs to give us the physical memory range to be mapped,
2520  * we'll figure out the rest from the vma information.
2521  *
2522  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2523  * whatever write-combining details or similar.
2524  *
2525  * Return: %0 on success, negative error code otherwise.
2526  */
2527 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2528 {
2529         unsigned long vm_len, pfn, pages;
2530
2531         /* Check that the physical memory area passed in looks valid */
2532         if (start + len < start)
2533                 return -EINVAL;
2534         /*
2535          * You *really* shouldn't map things that aren't page-aligned,
2536          * but we've historically allowed it because IO memory might
2537          * just have smaller alignment.
2538          */
2539         len += start & ~PAGE_MASK;
2540         pfn = start >> PAGE_SHIFT;
2541         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2542         if (pfn + pages < pfn)
2543                 return -EINVAL;
2544
2545         /* We start the mapping 'vm_pgoff' pages into the area */
2546         if (vma->vm_pgoff > pages)
2547                 return -EINVAL;
2548         pfn += vma->vm_pgoff;
2549         pages -= vma->vm_pgoff;
2550
2551         /* Can we fit all of the mapping? */
2552         vm_len = vma->vm_end - vma->vm_start;
2553         if (vm_len >> PAGE_SHIFT > pages)
2554                 return -EINVAL;
2555
2556         /* Ok, let it rip */
2557         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2558 }
2559 EXPORT_SYMBOL(vm_iomap_memory);
2560
2561 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2562                                      unsigned long addr, unsigned long end,
2563                                      pte_fn_t fn, void *data, bool create,
2564                                      pgtbl_mod_mask *mask)
2565 {
2566         pte_t *pte, *mapped_pte;
2567         int err = 0;
2568         spinlock_t *ptl;
2569
2570         if (create) {
2571                 mapped_pte = pte = (mm == &init_mm) ?
2572                         pte_alloc_kernel_track(pmd, addr, mask) :
2573                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2574                 if (!pte)
2575                         return -ENOMEM;
2576         } else {
2577                 mapped_pte = pte = (mm == &init_mm) ?
2578                         pte_offset_kernel(pmd, addr) :
2579                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2580                 if (!pte)
2581                         return -EINVAL;
2582         }
2583
2584         arch_enter_lazy_mmu_mode();
2585
2586         if (fn) {
2587                 do {
2588                         if (create || !pte_none(ptep_get(pte))) {
2589                                 err = fn(pte++, addr, data);
2590                                 if (err)
2591                                         break;
2592                         }
2593                 } while (addr += PAGE_SIZE, addr != end);
2594         }
2595         *mask |= PGTBL_PTE_MODIFIED;
2596
2597         arch_leave_lazy_mmu_mode();
2598
2599         if (mm != &init_mm)
2600                 pte_unmap_unlock(mapped_pte, ptl);
2601         return err;
2602 }
2603
2604 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2605                                      unsigned long addr, unsigned long end,
2606                                      pte_fn_t fn, void *data, bool create,
2607                                      pgtbl_mod_mask *mask)
2608 {
2609         pmd_t *pmd;
2610         unsigned long next;
2611         int err = 0;
2612
2613         BUG_ON(pud_huge(*pud));
2614
2615         if (create) {
2616                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2617                 if (!pmd)
2618                         return -ENOMEM;
2619         } else {
2620                 pmd = pmd_offset(pud, addr);
2621         }
2622         do {
2623                 next = pmd_addr_end(addr, end);
2624                 if (pmd_none(*pmd) && !create)
2625                         continue;
2626                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2627                         return -EINVAL;
2628                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2629                         if (!create)
2630                                 continue;
2631                         pmd_clear_bad(pmd);
2632                 }
2633                 err = apply_to_pte_range(mm, pmd, addr, next,
2634                                          fn, data, create, mask);
2635                 if (err)
2636                         break;
2637         } while (pmd++, addr = next, addr != end);
2638
2639         return err;
2640 }
2641
2642 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2643                                      unsigned long addr, unsigned long end,
2644                                      pte_fn_t fn, void *data, bool create,
2645                                      pgtbl_mod_mask *mask)
2646 {
2647         pud_t *pud;
2648         unsigned long next;
2649         int err = 0;
2650
2651         if (create) {
2652                 pud = pud_alloc_track(mm, p4d, addr, mask);
2653                 if (!pud)
2654                         return -ENOMEM;
2655         } else {
2656                 pud = pud_offset(p4d, addr);
2657         }
2658         do {
2659                 next = pud_addr_end(addr, end);
2660                 if (pud_none(*pud) && !create)
2661                         continue;
2662                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2663                         return -EINVAL;
2664                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2665                         if (!create)
2666                                 continue;
2667                         pud_clear_bad(pud);
2668                 }
2669                 err = apply_to_pmd_range(mm, pud, addr, next,
2670                                          fn, data, create, mask);
2671                 if (err)
2672                         break;
2673         } while (pud++, addr = next, addr != end);
2674
2675         return err;
2676 }
2677
2678 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2679                                      unsigned long addr, unsigned long end,
2680                                      pte_fn_t fn, void *data, bool create,
2681                                      pgtbl_mod_mask *mask)
2682 {
2683         p4d_t *p4d;
2684         unsigned long next;
2685         int err = 0;
2686
2687         if (create) {
2688                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2689                 if (!p4d)
2690                         return -ENOMEM;
2691         } else {
2692                 p4d = p4d_offset(pgd, addr);
2693         }
2694         do {
2695                 next = p4d_addr_end(addr, end);
2696                 if (p4d_none(*p4d) && !create)
2697                         continue;
2698                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2699                         return -EINVAL;
2700                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2701                         if (!create)
2702                                 continue;
2703                         p4d_clear_bad(p4d);
2704                 }
2705                 err = apply_to_pud_range(mm, p4d, addr, next,
2706                                          fn, data, create, mask);
2707                 if (err)
2708                         break;
2709         } while (p4d++, addr = next, addr != end);
2710
2711         return err;
2712 }
2713
2714 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2715                                  unsigned long size, pte_fn_t fn,
2716                                  void *data, bool create)
2717 {
2718         pgd_t *pgd;
2719         unsigned long start = addr, next;
2720         unsigned long end = addr + size;
2721         pgtbl_mod_mask mask = 0;
2722         int err = 0;
2723
2724         if (WARN_ON(addr >= end))
2725                 return -EINVAL;
2726
2727         pgd = pgd_offset(mm, addr);
2728         do {
2729                 next = pgd_addr_end(addr, end);
2730                 if (pgd_none(*pgd) && !create)
2731                         continue;
2732                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2733                         return -EINVAL;
2734                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2735                         if (!create)
2736                                 continue;
2737                         pgd_clear_bad(pgd);
2738                 }
2739                 err = apply_to_p4d_range(mm, pgd, addr, next,
2740                                          fn, data, create, &mask);
2741                 if (err)
2742                         break;
2743         } while (pgd++, addr = next, addr != end);
2744
2745         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2746                 arch_sync_kernel_mappings(start, start + size);
2747
2748         return err;
2749 }
2750
2751 /*
2752  * Scan a region of virtual memory, filling in page tables as necessary
2753  * and calling a provided function on each leaf page table.
2754  */
2755 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2756                         unsigned long size, pte_fn_t fn, void *data)
2757 {
2758         return __apply_to_page_range(mm, addr, size, fn, data, true);
2759 }
2760 EXPORT_SYMBOL_GPL(apply_to_page_range);
2761
2762 /*
2763  * Scan a region of virtual memory, calling a provided function on
2764  * each leaf page table where it exists.
2765  *
2766  * Unlike apply_to_page_range, this does _not_ fill in page tables
2767  * where they are absent.
2768  */
2769 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2770                                  unsigned long size, pte_fn_t fn, void *data)
2771 {
2772         return __apply_to_page_range(mm, addr, size, fn, data, false);
2773 }
2774 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2775
2776 /*
2777  * handle_pte_fault chooses page fault handler according to an entry which was
2778  * read non-atomically.  Before making any commitment, on those architectures
2779  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2780  * parts, do_swap_page must check under lock before unmapping the pte and
2781  * proceeding (but do_wp_page is only called after already making such a check;
2782  * and do_anonymous_page can safely check later on).
2783  */
2784 static inline int pte_unmap_same(struct vm_fault *vmf)
2785 {
2786         int same = 1;
2787 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2788         if (sizeof(pte_t) > sizeof(unsigned long)) {
2789                 spin_lock(vmf->ptl);
2790                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2791                 spin_unlock(vmf->ptl);
2792         }
2793 #endif
2794         pte_unmap(vmf->pte);
2795         vmf->pte = NULL;
2796         return same;
2797 }
2798
2799 /*
2800  * Return:
2801  *      0:              copied succeeded
2802  *      -EHWPOISON:     copy failed due to hwpoison in source page
2803  *      -EAGAIN:        copied failed (some other reason)
2804  */
2805 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2806                                       struct vm_fault *vmf)
2807 {
2808         int ret;
2809         void *kaddr;
2810         void __user *uaddr;
2811         struct vm_area_struct *vma = vmf->vma;
2812         struct mm_struct *mm = vma->vm_mm;
2813         unsigned long addr = vmf->address;
2814
2815         if (likely(src)) {
2816                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2817                         memory_failure_queue(page_to_pfn(src), 0);
2818                         return -EHWPOISON;
2819                 }
2820                 return 0;
2821         }
2822
2823         /*
2824          * If the source page was a PFN mapping, we don't have
2825          * a "struct page" for it. We do a best-effort copy by
2826          * just copying from the original user address. If that
2827          * fails, we just zero-fill it. Live with it.
2828          */
2829         kaddr = kmap_atomic(dst);
2830         uaddr = (void __user *)(addr & PAGE_MASK);
2831
2832         /*
2833          * On architectures with software "accessed" bits, we would
2834          * take a double page fault, so mark it accessed here.
2835          */
2836         vmf->pte = NULL;
2837         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2838                 pte_t entry;
2839
2840                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2841                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2842                         /*
2843                          * Other thread has already handled the fault
2844                          * and update local tlb only
2845                          */
2846                         if (vmf->pte)
2847                                 update_mmu_tlb(vma, addr, vmf->pte);
2848                         ret = -EAGAIN;
2849                         goto pte_unlock;
2850                 }
2851
2852                 entry = pte_mkyoung(vmf->orig_pte);
2853                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2854                         update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2855         }
2856
2857         /*
2858          * This really shouldn't fail, because the page is there
2859          * in the page tables. But it might just be unreadable,
2860          * in which case we just give up and fill the result with
2861          * zeroes.
2862          */
2863         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2864                 if (vmf->pte)
2865                         goto warn;
2866
2867                 /* Re-validate under PTL if the page is still mapped */
2868                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2869                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2870                         /* The PTE changed under us, update local tlb */
2871                         if (vmf->pte)
2872                                 update_mmu_tlb(vma, addr, vmf->pte);
2873                         ret = -EAGAIN;
2874                         goto pte_unlock;
2875                 }
2876
2877                 /*
2878                  * The same page can be mapped back since last copy attempt.
2879                  * Try to copy again under PTL.
2880                  */
2881                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2882                         /*
2883                          * Give a warn in case there can be some obscure
2884                          * use-case
2885                          */
2886 warn:
2887                         WARN_ON_ONCE(1);
2888                         clear_page(kaddr);
2889                 }
2890         }
2891
2892         ret = 0;
2893
2894 pte_unlock:
2895         if (vmf->pte)
2896                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2897         kunmap_atomic(kaddr);
2898         flush_dcache_page(dst);
2899
2900         return ret;
2901 }
2902
2903 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2904 {
2905         struct file *vm_file = vma->vm_file;
2906
2907         if (vm_file)
2908                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2909
2910         /*
2911          * Special mappings (e.g. VDSO) do not have any file so fake
2912          * a default GFP_KERNEL for them.
2913          */
2914         return GFP_KERNEL;
2915 }
2916
2917 /*
2918  * Notify the address space that the page is about to become writable so that
2919  * it can prohibit this or wait for the page to get into an appropriate state.
2920  *
2921  * We do this without the lock held, so that it can sleep if it needs to.
2922  */
2923 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2924 {
2925         vm_fault_t ret;
2926         unsigned int old_flags = vmf->flags;
2927
2928         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2929
2930         if (vmf->vma->vm_file &&
2931             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2932                 return VM_FAULT_SIGBUS;
2933
2934         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2935         /* Restore original flags so that caller is not surprised */
2936         vmf->flags = old_flags;
2937         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2938                 return ret;
2939         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2940                 folio_lock(folio);
2941                 if (!folio->mapping) {
2942                         folio_unlock(folio);
2943                         return 0; /* retry */
2944                 }
2945                 ret |= VM_FAULT_LOCKED;
2946         } else
2947                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2948         return ret;
2949 }
2950
2951 /*
2952  * Handle dirtying of a page in shared file mapping on a write fault.
2953  *
2954  * The function expects the page to be locked and unlocks it.
2955  */
2956 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2957 {
2958         struct vm_area_struct *vma = vmf->vma;
2959         struct address_space *mapping;
2960         struct folio *folio = page_folio(vmf->page);
2961         bool dirtied;
2962         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2963
2964         dirtied = folio_mark_dirty(folio);
2965         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2966         /*
2967          * Take a local copy of the address_space - folio.mapping may be zeroed
2968          * by truncate after folio_unlock().   The address_space itself remains
2969          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2970          * release semantics to prevent the compiler from undoing this copying.
2971          */
2972         mapping = folio_raw_mapping(folio);
2973         folio_unlock(folio);
2974
2975         if (!page_mkwrite)
2976                 file_update_time(vma->vm_file);
2977
2978         /*
2979          * Throttle page dirtying rate down to writeback speed.
2980          *
2981          * mapping may be NULL here because some device drivers do not
2982          * set page.mapping but still dirty their pages
2983          *
2984          * Drop the mmap_lock before waiting on IO, if we can. The file
2985          * is pinning the mapping, as per above.
2986          */
2987         if ((dirtied || page_mkwrite) && mapping) {
2988                 struct file *fpin;
2989
2990                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2991                 balance_dirty_pages_ratelimited(mapping);
2992                 if (fpin) {
2993                         fput(fpin);
2994                         return VM_FAULT_COMPLETED;
2995                 }
2996         }
2997
2998         return 0;
2999 }
3000
3001 /*
3002  * Handle write page faults for pages that can be reused in the current vma
3003  *
3004  * This can happen either due to the mapping being with the VM_SHARED flag,
3005  * or due to us being the last reference standing to the page. In either
3006  * case, all we need to do here is to mark the page as writable and update
3007  * any related book-keeping.
3008  */
3009 static inline void wp_page_reuse(struct vm_fault *vmf)
3010         __releases(vmf->ptl)
3011 {
3012         struct vm_area_struct *vma = vmf->vma;
3013         struct page *page = vmf->page;
3014         pte_t entry;
3015
3016         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3017         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3018
3019         /*
3020          * Clear the pages cpupid information as the existing
3021          * information potentially belongs to a now completely
3022          * unrelated process.
3023          */
3024         if (page)
3025                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3026
3027         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3028         entry = pte_mkyoung(vmf->orig_pte);
3029         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3030         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3031                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3032         pte_unmap_unlock(vmf->pte, vmf->ptl);
3033         count_vm_event(PGREUSE);
3034 }
3035
3036 /*
3037  * Handle the case of a page which we actually need to copy to a new page,
3038  * either due to COW or unsharing.
3039  *
3040  * Called with mmap_lock locked and the old page referenced, but
3041  * without the ptl held.
3042  *
3043  * High level logic flow:
3044  *
3045  * - Allocate a page, copy the content of the old page to the new one.
3046  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3047  * - Take the PTL. If the pte changed, bail out and release the allocated page
3048  * - If the pte is still the way we remember it, update the page table and all
3049  *   relevant references. This includes dropping the reference the page-table
3050  *   held to the old page, as well as updating the rmap.
3051  * - In any case, unlock the PTL and drop the reference we took to the old page.
3052  */
3053 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3054 {
3055         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3056         struct vm_area_struct *vma = vmf->vma;
3057         struct mm_struct *mm = vma->vm_mm;
3058         struct folio *old_folio = NULL;
3059         struct folio *new_folio = NULL;
3060         pte_t entry;
3061         int page_copied = 0;
3062         struct mmu_notifier_range range;
3063         int ret;
3064
3065         delayacct_wpcopy_start();
3066
3067         if (vmf->page)
3068                 old_folio = page_folio(vmf->page);
3069         if (unlikely(anon_vma_prepare(vma)))
3070                 goto oom;
3071
3072         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3073                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3074                 if (!new_folio)
3075                         goto oom;
3076         } else {
3077                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3078                                 vmf->address, false);
3079                 if (!new_folio)
3080                         goto oom;
3081
3082                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3083                 if (ret) {
3084                         /*
3085                          * COW failed, if the fault was solved by other,
3086                          * it's fine. If not, userspace would re-fault on
3087                          * the same address and we will handle the fault
3088                          * from the second attempt.
3089                          * The -EHWPOISON case will not be retried.
3090                          */
3091                         folio_put(new_folio);
3092                         if (old_folio)
3093                                 folio_put(old_folio);
3094
3095                         delayacct_wpcopy_end();
3096                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3097                 }
3098                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3099         }
3100
3101         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3102                 goto oom_free_new;
3103         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3104
3105         __folio_mark_uptodate(new_folio);
3106
3107         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3108                                 vmf->address & PAGE_MASK,
3109                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3110         mmu_notifier_invalidate_range_start(&range);
3111
3112         /*
3113          * Re-check the pte - we dropped the lock
3114          */
3115         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3116         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3117                 if (old_folio) {
3118                         if (!folio_test_anon(old_folio)) {
3119                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3120                                 inc_mm_counter(mm, MM_ANONPAGES);
3121                         }
3122                 } else {
3123                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3124                         inc_mm_counter(mm, MM_ANONPAGES);
3125                 }
3126                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3127                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3128                 entry = pte_sw_mkyoung(entry);
3129                 if (unlikely(unshare)) {
3130                         if (pte_soft_dirty(vmf->orig_pte))
3131                                 entry = pte_mksoft_dirty(entry);
3132                         if (pte_uffd_wp(vmf->orig_pte))
3133                                 entry = pte_mkuffd_wp(entry);
3134                 } else {
3135                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3136                 }
3137
3138                 /*
3139                  * Clear the pte entry and flush it first, before updating the
3140                  * pte with the new entry, to keep TLBs on different CPUs in
3141                  * sync. This code used to set the new PTE then flush TLBs, but
3142                  * that left a window where the new PTE could be loaded into
3143                  * some TLBs while the old PTE remains in others.
3144                  */
3145                 ptep_clear_flush(vma, vmf->address, vmf->pte);
3146                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3147                 folio_add_lru_vma(new_folio, vma);
3148                 /*
3149                  * We call the notify macro here because, when using secondary
3150                  * mmu page tables (such as kvm shadow page tables), we want the
3151                  * new page to be mapped directly into the secondary page table.
3152                  */
3153                 BUG_ON(unshare && pte_write(entry));
3154                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3155                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3156                 if (old_folio) {
3157                         /*
3158                          * Only after switching the pte to the new page may
3159                          * we remove the mapcount here. Otherwise another
3160                          * process may come and find the rmap count decremented
3161                          * before the pte is switched to the new page, and
3162                          * "reuse" the old page writing into it while our pte
3163                          * here still points into it and can be read by other
3164                          * threads.
3165                          *
3166                          * The critical issue is to order this
3167                          * page_remove_rmap with the ptp_clear_flush above.
3168                          * Those stores are ordered by (if nothing else,)
3169                          * the barrier present in the atomic_add_negative
3170                          * in page_remove_rmap.
3171                          *
3172                          * Then the TLB flush in ptep_clear_flush ensures that
3173                          * no process can access the old page before the
3174                          * decremented mapcount is visible. And the old page
3175                          * cannot be reused until after the decremented
3176                          * mapcount is visible. So transitively, TLBs to
3177                          * old page will be flushed before it can be reused.
3178                          */
3179                         page_remove_rmap(vmf->page, vma, false);
3180                 }
3181
3182                 /* Free the old page.. */
3183                 new_folio = old_folio;
3184                 page_copied = 1;
3185                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3186         } else if (vmf->pte) {
3187                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3188                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189         }
3190
3191         mmu_notifier_invalidate_range_end(&range);
3192
3193         if (new_folio)
3194                 folio_put(new_folio);
3195         if (old_folio) {
3196                 if (page_copied)
3197                         free_swap_cache(&old_folio->page);
3198                 folio_put(old_folio);
3199         }
3200
3201         delayacct_wpcopy_end();
3202         return 0;
3203 oom_free_new:
3204         folio_put(new_folio);
3205 oom:
3206         if (old_folio)
3207                 folio_put(old_folio);
3208
3209         delayacct_wpcopy_end();
3210         return VM_FAULT_OOM;
3211 }
3212
3213 /**
3214  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3215  *                        writeable once the page is prepared
3216  *
3217  * @vmf: structure describing the fault
3218  *
3219  * This function handles all that is needed to finish a write page fault in a
3220  * shared mapping due to PTE being read-only once the mapped page is prepared.
3221  * It handles locking of PTE and modifying it.
3222  *
3223  * The function expects the page to be locked or other protection against
3224  * concurrent faults / writeback (such as DAX radix tree locks).
3225  *
3226  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3227  * we acquired PTE lock.
3228  */
3229 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3230 {
3231         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3232         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3233                                        &vmf->ptl);
3234         if (!vmf->pte)
3235                 return VM_FAULT_NOPAGE;
3236         /*
3237          * We might have raced with another page fault while we released the
3238          * pte_offset_map_lock.
3239          */
3240         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3241                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3242                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3243                 return VM_FAULT_NOPAGE;
3244         }
3245         wp_page_reuse(vmf);
3246         return 0;
3247 }
3248
3249 /*
3250  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3251  * mapping
3252  */
3253 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3254 {
3255         struct vm_area_struct *vma = vmf->vma;
3256
3257         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3258                 vm_fault_t ret;
3259
3260                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3261                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3262                         vma_end_read(vmf->vma);
3263                         return VM_FAULT_RETRY;
3264                 }
3265
3266                 vmf->flags |= FAULT_FLAG_MKWRITE;
3267                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3268                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3269                         return ret;
3270                 return finish_mkwrite_fault(vmf);
3271         }
3272         wp_page_reuse(vmf);
3273         return 0;
3274 }
3275
3276 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3277         __releases(vmf->ptl)
3278 {
3279         struct vm_area_struct *vma = vmf->vma;
3280         vm_fault_t ret = 0;
3281
3282         folio_get(folio);
3283
3284         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3285                 vm_fault_t tmp;
3286
3287                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3288                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3289                         folio_put(folio);
3290                         vma_end_read(vmf->vma);
3291                         return VM_FAULT_RETRY;
3292                 }
3293
3294                 tmp = do_page_mkwrite(vmf, folio);
3295                 if (unlikely(!tmp || (tmp &
3296                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297                         folio_put(folio);
3298                         return tmp;
3299                 }
3300                 tmp = finish_mkwrite_fault(vmf);
3301                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3302                         folio_unlock(folio);
3303                         folio_put(folio);
3304                         return tmp;
3305                 }
3306         } else {
3307                 wp_page_reuse(vmf);
3308                 folio_lock(folio);
3309         }
3310         ret |= fault_dirty_shared_page(vmf);
3311         folio_put(folio);
3312
3313         return ret;
3314 }
3315
3316 /*
3317  * This routine handles present pages, when
3318  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3319  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3320  *   (FAULT_FLAG_UNSHARE)
3321  *
3322  * It is done by copying the page to a new address and decrementing the
3323  * shared-page counter for the old page.
3324  *
3325  * Note that this routine assumes that the protection checks have been
3326  * done by the caller (the low-level page fault routine in most cases).
3327  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3328  * done any necessary COW.
3329  *
3330  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3331  * though the page will change only once the write actually happens. This
3332  * avoids a few races, and potentially makes it more efficient.
3333  *
3334  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3335  * but allow concurrent faults), with pte both mapped and locked.
3336  * We return with mmap_lock still held, but pte unmapped and unlocked.
3337  */
3338 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3339         __releases(vmf->ptl)
3340 {
3341         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3342         struct vm_area_struct *vma = vmf->vma;
3343         struct folio *folio = NULL;
3344
3345         if (likely(!unshare)) {
3346                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3347                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3348                         return handle_userfault(vmf, VM_UFFD_WP);
3349                 }
3350
3351                 /*
3352                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3353                  * is flushed in this case before copying.
3354                  */
3355                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3356                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3357                         flush_tlb_page(vmf->vma, vmf->address);
3358         }
3359
3360         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3361
3362         if (vmf->page)
3363                 folio = page_folio(vmf->page);
3364
3365         /*
3366          * Shared mapping: we are guaranteed to have VM_WRITE and
3367          * FAULT_FLAG_WRITE set at this point.
3368          */
3369         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3370                 /*
3371                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3372                  * VM_PFNMAP VMA.
3373                  *
3374                  * We should not cow pages in a shared writeable mapping.
3375                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3376                  */
3377                 if (!vmf->page)
3378                         return wp_pfn_shared(vmf);
3379                 return wp_page_shared(vmf, folio);
3380         }
3381
3382         /*
3383          * Private mapping: create an exclusive anonymous page copy if reuse
3384          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3385          */
3386         if (folio && folio_test_anon(folio)) {
3387                 /*
3388                  * If the page is exclusive to this process we must reuse the
3389                  * page without further checks.
3390                  */
3391                 if (PageAnonExclusive(vmf->page))
3392                         goto reuse;
3393
3394                 /*
3395                  * We have to verify under folio lock: these early checks are
3396                  * just an optimization to avoid locking the folio and freeing
3397                  * the swapcache if there is little hope that we can reuse.
3398                  *
3399                  * KSM doesn't necessarily raise the folio refcount.
3400                  */
3401                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3402                         goto copy;
3403                 if (!folio_test_lru(folio))
3404                         /*
3405                          * We cannot easily detect+handle references from
3406                          * remote LRU caches or references to LRU folios.
3407                          */
3408                         lru_add_drain();
3409                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3410                         goto copy;
3411                 if (!folio_trylock(folio))
3412                         goto copy;
3413                 if (folio_test_swapcache(folio))
3414                         folio_free_swap(folio);
3415                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3416                         folio_unlock(folio);
3417                         goto copy;
3418                 }
3419                 /*
3420                  * Ok, we've got the only folio reference from our mapping
3421                  * and the folio is locked, it's dark out, and we're wearing
3422                  * sunglasses. Hit it.
3423                  */
3424                 page_move_anon_rmap(vmf->page, vma);
3425                 folio_unlock(folio);
3426 reuse:
3427                 if (unlikely(unshare)) {
3428                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3429                         return 0;
3430                 }
3431                 wp_page_reuse(vmf);
3432                 return 0;
3433         }
3434 copy:
3435         if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3436                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3437                 vma_end_read(vmf->vma);
3438                 return VM_FAULT_RETRY;
3439         }
3440
3441         /*
3442          * Ok, we need to copy. Oh, well..
3443          */
3444         if (folio)
3445                 folio_get(folio);
3446
3447         pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 #ifdef CONFIG_KSM
3449         if (folio && folio_test_ksm(folio))
3450                 count_vm_event(COW_KSM);
3451 #endif
3452         return wp_page_copy(vmf);
3453 }
3454
3455 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3456                 unsigned long start_addr, unsigned long end_addr,
3457                 struct zap_details *details)
3458 {
3459         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3460 }
3461
3462 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3463                                             pgoff_t first_index,
3464                                             pgoff_t last_index,
3465                                             struct zap_details *details)
3466 {
3467         struct vm_area_struct *vma;
3468         pgoff_t vba, vea, zba, zea;
3469
3470         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3471                 vba = vma->vm_pgoff;
3472                 vea = vba + vma_pages(vma) - 1;
3473                 zba = max(first_index, vba);
3474                 zea = min(last_index, vea);
3475
3476                 unmap_mapping_range_vma(vma,
3477                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3478                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3479                                 details);
3480         }
3481 }
3482
3483 /**
3484  * unmap_mapping_folio() - Unmap single folio from processes.
3485  * @folio: The locked folio to be unmapped.
3486  *
3487  * Unmap this folio from any userspace process which still has it mmaped.
3488  * Typically, for efficiency, the range of nearby pages has already been
3489  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3490  * truncation or invalidation holds the lock on a folio, it may find that
3491  * the page has been remapped again: and then uses unmap_mapping_folio()
3492  * to unmap it finally.
3493  */
3494 void unmap_mapping_folio(struct folio *folio)
3495 {
3496         struct address_space *mapping = folio->mapping;
3497         struct zap_details details = { };
3498         pgoff_t first_index;
3499         pgoff_t last_index;
3500
3501         VM_BUG_ON(!folio_test_locked(folio));
3502
3503         first_index = folio->index;
3504         last_index = folio_next_index(folio) - 1;
3505
3506         details.even_cows = false;
3507         details.single_folio = folio;
3508         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3509
3510         i_mmap_lock_read(mapping);
3511         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3512                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3513                                          last_index, &details);
3514         i_mmap_unlock_read(mapping);
3515 }
3516
3517 /**
3518  * unmap_mapping_pages() - Unmap pages from processes.
3519  * @mapping: The address space containing pages to be unmapped.
3520  * @start: Index of first page to be unmapped.
3521  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3522  * @even_cows: Whether to unmap even private COWed pages.
3523  *
3524  * Unmap the pages in this address space from any userspace process which
3525  * has them mmaped.  Generally, you want to remove COWed pages as well when
3526  * a file is being truncated, but not when invalidating pages from the page
3527  * cache.
3528  */
3529 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3530                 pgoff_t nr, bool even_cows)
3531 {
3532         struct zap_details details = { };
3533         pgoff_t first_index = start;
3534         pgoff_t last_index = start + nr - 1;
3535
3536         details.even_cows = even_cows;
3537         if (last_index < first_index)
3538                 last_index = ULONG_MAX;
3539
3540         i_mmap_lock_read(mapping);
3541         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3542                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3543                                          last_index, &details);
3544         i_mmap_unlock_read(mapping);
3545 }
3546 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3547
3548 /**
3549  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3550  * address_space corresponding to the specified byte range in the underlying
3551  * file.
3552  *
3553  * @mapping: the address space containing mmaps to be unmapped.
3554  * @holebegin: byte in first page to unmap, relative to the start of
3555  * the underlying file.  This will be rounded down to a PAGE_SIZE
3556  * boundary.  Note that this is different from truncate_pagecache(), which
3557  * must keep the partial page.  In contrast, we must get rid of
3558  * partial pages.
3559  * @holelen: size of prospective hole in bytes.  This will be rounded
3560  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3561  * end of the file.
3562  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3563  * but 0 when invalidating pagecache, don't throw away private data.
3564  */
3565 void unmap_mapping_range(struct address_space *mapping,
3566                 loff_t const holebegin, loff_t const holelen, int even_cows)
3567 {
3568         pgoff_t hba = holebegin >> PAGE_SHIFT;
3569         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3570
3571         /* Check for overflow. */
3572         if (sizeof(holelen) > sizeof(hlen)) {
3573                 long long holeend =
3574                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3575                 if (holeend & ~(long long)ULONG_MAX)
3576                         hlen = ULONG_MAX - hba + 1;
3577         }
3578
3579         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3580 }
3581 EXPORT_SYMBOL(unmap_mapping_range);
3582
3583 /*
3584  * Restore a potential device exclusive pte to a working pte entry
3585  */
3586 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3587 {
3588         struct folio *folio = page_folio(vmf->page);
3589         struct vm_area_struct *vma = vmf->vma;
3590         struct mmu_notifier_range range;
3591         vm_fault_t ret;
3592
3593         /*
3594          * We need a reference to lock the folio because we don't hold
3595          * the PTL so a racing thread can remove the device-exclusive
3596          * entry and unmap it. If the folio is free the entry must
3597          * have been removed already. If it happens to have already
3598          * been re-allocated after being freed all we do is lock and
3599          * unlock it.
3600          */
3601         if (!folio_try_get(folio))
3602                 return 0;
3603
3604         ret = folio_lock_or_retry(folio, vmf);
3605         if (ret) {
3606                 folio_put(folio);
3607                 return ret;
3608         }
3609         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3610                                 vma->vm_mm, vmf->address & PAGE_MASK,
3611                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3612         mmu_notifier_invalidate_range_start(&range);
3613
3614         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3615                                 &vmf->ptl);
3616         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3617                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3618
3619         if (vmf->pte)
3620                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3621         folio_unlock(folio);
3622         folio_put(folio);
3623
3624         mmu_notifier_invalidate_range_end(&range);
3625         return 0;
3626 }
3627
3628 static inline bool should_try_to_free_swap(struct folio *folio,
3629                                            struct vm_area_struct *vma,
3630                                            unsigned int fault_flags)
3631 {
3632         if (!folio_test_swapcache(folio))
3633                 return false;
3634         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3635             folio_test_mlocked(folio))
3636                 return true;
3637         /*
3638          * If we want to map a page that's in the swapcache writable, we
3639          * have to detect via the refcount if we're really the exclusive
3640          * user. Try freeing the swapcache to get rid of the swapcache
3641          * reference only in case it's likely that we'll be the exlusive user.
3642          */
3643         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3644                 folio_ref_count(folio) == 2;
3645 }
3646
3647 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3648 {
3649         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3650                                        vmf->address, &vmf->ptl);
3651         if (!vmf->pte)
3652                 return 0;
3653         /*
3654          * Be careful so that we will only recover a special uffd-wp pte into a
3655          * none pte.  Otherwise it means the pte could have changed, so retry.
3656          *
3657          * This should also cover the case where e.g. the pte changed
3658          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3659          * So is_pte_marker() check is not enough to safely drop the pte.
3660          */
3661         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3662                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3663         pte_unmap_unlock(vmf->pte, vmf->ptl);
3664         return 0;
3665 }
3666
3667 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3668 {
3669         if (vma_is_anonymous(vmf->vma))
3670                 return do_anonymous_page(vmf);
3671         else
3672                 return do_fault(vmf);
3673 }
3674
3675 /*
3676  * This is actually a page-missing access, but with uffd-wp special pte
3677  * installed.  It means this pte was wr-protected before being unmapped.
3678  */
3679 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3680 {
3681         /*
3682          * Just in case there're leftover special ptes even after the region
3683          * got unregistered - we can simply clear them.
3684          */
3685         if (unlikely(!userfaultfd_wp(vmf->vma)))
3686                 return pte_marker_clear(vmf);
3687
3688         return do_pte_missing(vmf);
3689 }
3690
3691 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3692 {
3693         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3694         unsigned long marker = pte_marker_get(entry);
3695
3696         /*
3697          * PTE markers should never be empty.  If anything weird happened,
3698          * the best thing to do is to kill the process along with its mm.
3699          */
3700         if (WARN_ON_ONCE(!marker))
3701                 return VM_FAULT_SIGBUS;
3702
3703         /* Higher priority than uffd-wp when data corrupted */
3704         if (marker & PTE_MARKER_POISONED)
3705                 return VM_FAULT_HWPOISON;
3706
3707         if (pte_marker_entry_uffd_wp(entry))
3708                 return pte_marker_handle_uffd_wp(vmf);
3709
3710         /* This is an unknown pte marker */
3711         return VM_FAULT_SIGBUS;
3712 }
3713
3714 /*
3715  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3716  * but allow concurrent faults), and pte mapped but not yet locked.
3717  * We return with pte unmapped and unlocked.
3718  *
3719  * We return with the mmap_lock locked or unlocked in the same cases
3720  * as does filemap_fault().
3721  */
3722 vm_fault_t do_swap_page(struct vm_fault *vmf)
3723 {
3724         struct vm_area_struct *vma = vmf->vma;
3725         struct folio *swapcache, *folio = NULL;
3726         struct page *page;
3727         struct swap_info_struct *si = NULL;
3728         rmap_t rmap_flags = RMAP_NONE;
3729         bool exclusive = false;
3730         swp_entry_t entry;
3731         pte_t pte;
3732         vm_fault_t ret = 0;
3733         void *shadow = NULL;
3734
3735         if (!pte_unmap_same(vmf))
3736                 goto out;
3737
3738         entry = pte_to_swp_entry(vmf->orig_pte);
3739         if (unlikely(non_swap_entry(entry))) {
3740                 if (is_migration_entry(entry)) {
3741                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3742                                              vmf->address);
3743                 } else if (is_device_exclusive_entry(entry)) {
3744                         vmf->page = pfn_swap_entry_to_page(entry);
3745                         ret = remove_device_exclusive_entry(vmf);
3746                 } else if (is_device_private_entry(entry)) {
3747                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3748                                 /*
3749                                  * migrate_to_ram is not yet ready to operate
3750                                  * under VMA lock.
3751                                  */
3752                                 vma_end_read(vma);
3753                                 ret = VM_FAULT_RETRY;
3754                                 goto out;
3755                         }
3756
3757                         vmf->page = pfn_swap_entry_to_page(entry);
3758                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3759                                         vmf->address, &vmf->ptl);
3760                         if (unlikely(!vmf->pte ||
3761                                      !pte_same(ptep_get(vmf->pte),
3762                                                         vmf->orig_pte)))
3763                                 goto unlock;
3764
3765                         /*
3766                          * Get a page reference while we know the page can't be
3767                          * freed.
3768                          */
3769                         get_page(vmf->page);
3770                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3771                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3772                         put_page(vmf->page);
3773                 } else if (is_hwpoison_entry(entry)) {
3774                         ret = VM_FAULT_HWPOISON;
3775                 } else if (is_pte_marker_entry(entry)) {
3776                         ret = handle_pte_marker(vmf);
3777                 } else {
3778                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3779                         ret = VM_FAULT_SIGBUS;
3780                 }
3781                 goto out;
3782         }
3783
3784         /* Prevent swapoff from happening to us. */
3785         si = get_swap_device(entry);
3786         if (unlikely(!si))
3787                 goto out;
3788
3789         folio = swap_cache_get_folio(entry, vma, vmf->address);
3790         if (folio)
3791                 page = folio_file_page(folio, swp_offset(entry));
3792         swapcache = folio;
3793
3794         if (!folio) {
3795                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3796                     __swap_count(entry) == 1) {
3797                         /* skip swapcache */
3798                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3799                                                 vma, vmf->address, false);
3800                         page = &folio->page;
3801                         if (folio) {
3802                                 __folio_set_locked(folio);
3803                                 __folio_set_swapbacked(folio);
3804
3805                                 if (mem_cgroup_swapin_charge_folio(folio,
3806                                                         vma->vm_mm, GFP_KERNEL,
3807                                                         entry)) {
3808                                         ret = VM_FAULT_OOM;
3809                                         goto out_page;
3810                                 }
3811                                 mem_cgroup_swapin_uncharge_swap(entry);
3812
3813                                 shadow = get_shadow_from_swap_cache(entry);
3814                                 if (shadow)
3815                                         workingset_refault(folio, shadow);
3816
3817                                 folio_add_lru(folio);
3818
3819                                 /* To provide entry to swap_readpage() */
3820                                 folio->swap = entry;
3821                                 swap_readpage(page, true, NULL);
3822                                 folio->private = NULL;
3823                         }
3824                 } else {
3825                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3826                                                 vmf);
3827                         if (page)
3828                                 folio = page_folio(page);
3829                         swapcache = folio;
3830                 }
3831
3832                 if (!folio) {
3833                         /*
3834                          * Back out if somebody else faulted in this pte
3835                          * while we released the pte lock.
3836                          */
3837                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3838                                         vmf->address, &vmf->ptl);
3839                         if (likely(vmf->pte &&
3840                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3841                                 ret = VM_FAULT_OOM;
3842                         goto unlock;
3843                 }
3844
3845                 /* Had to read the page from swap area: Major fault */
3846                 ret = VM_FAULT_MAJOR;
3847                 count_vm_event(PGMAJFAULT);
3848                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3849         } else if (PageHWPoison(page)) {
3850                 /*
3851                  * hwpoisoned dirty swapcache pages are kept for killing
3852                  * owner processes (which may be unknown at hwpoison time)
3853                  */
3854                 ret = VM_FAULT_HWPOISON;
3855                 goto out_release;
3856         }
3857
3858         ret |= folio_lock_or_retry(folio, vmf);
3859         if (ret & VM_FAULT_RETRY)
3860                 goto out_release;
3861
3862         if (swapcache) {
3863                 /*
3864                  * Make sure folio_free_swap() or swapoff did not release the
3865                  * swapcache from under us.  The page pin, and pte_same test
3866                  * below, are not enough to exclude that.  Even if it is still
3867                  * swapcache, we need to check that the page's swap has not
3868                  * changed.
3869                  */
3870                 if (unlikely(!folio_test_swapcache(folio) ||
3871                              page_swap_entry(page).val != entry.val))
3872                         goto out_page;
3873
3874                 /*
3875                  * KSM sometimes has to copy on read faults, for example, if
3876                  * page->index of !PageKSM() pages would be nonlinear inside the
3877                  * anon VMA -- PageKSM() is lost on actual swapout.
3878                  */
3879                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3880                 if (unlikely(!page)) {
3881                         ret = VM_FAULT_OOM;
3882                         goto out_page;
3883                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3884                         ret = VM_FAULT_HWPOISON;
3885                         goto out_page;
3886                 }
3887                 folio = page_folio(page);
3888
3889                 /*
3890                  * If we want to map a page that's in the swapcache writable, we
3891                  * have to detect via the refcount if we're really the exclusive
3892                  * owner. Try removing the extra reference from the local LRU
3893                  * caches if required.
3894                  */
3895                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3896                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3897                         lru_add_drain();
3898         }
3899
3900         folio_throttle_swaprate(folio, GFP_KERNEL);
3901
3902         /*
3903          * Back out if somebody else already faulted in this pte.
3904          */
3905         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3906                         &vmf->ptl);
3907         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3908                 goto out_nomap;
3909
3910         if (unlikely(!folio_test_uptodate(folio))) {
3911                 ret = VM_FAULT_SIGBUS;
3912                 goto out_nomap;
3913         }
3914
3915         /*
3916          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3917          * must never point at an anonymous page in the swapcache that is
3918          * PG_anon_exclusive. Sanity check that this holds and especially, that
3919          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3920          * check after taking the PT lock and making sure that nobody
3921          * concurrently faulted in this page and set PG_anon_exclusive.
3922          */
3923         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3924         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3925
3926         /*
3927          * Check under PT lock (to protect against concurrent fork() sharing
3928          * the swap entry concurrently) for certainly exclusive pages.
3929          */
3930         if (!folio_test_ksm(folio)) {
3931                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3932                 if (folio != swapcache) {
3933                         /*
3934                          * We have a fresh page that is not exposed to the
3935                          * swapcache -> certainly exclusive.
3936                          */
3937                         exclusive = true;
3938                 } else if (exclusive && folio_test_writeback(folio) &&
3939                           data_race(si->flags & SWP_STABLE_WRITES)) {
3940                         /*
3941                          * This is tricky: not all swap backends support
3942                          * concurrent page modifications while under writeback.
3943                          *
3944                          * So if we stumble over such a page in the swapcache
3945                          * we must not set the page exclusive, otherwise we can
3946                          * map it writable without further checks and modify it
3947                          * while still under writeback.
3948                          *
3949                          * For these problematic swap backends, simply drop the
3950                          * exclusive marker: this is perfectly fine as we start
3951                          * writeback only if we fully unmapped the page and
3952                          * there are no unexpected references on the page after
3953                          * unmapping succeeded. After fully unmapped, no
3954                          * further GUP references (FOLL_GET and FOLL_PIN) can
3955                          * appear, so dropping the exclusive marker and mapping
3956                          * it only R/O is fine.
3957                          */
3958                         exclusive = false;
3959                 }
3960         }
3961
3962         /*
3963          * Some architectures may have to restore extra metadata to the page
3964          * when reading from swap. This metadata may be indexed by swap entry
3965          * so this must be called before swap_free().
3966          */
3967         arch_swap_restore(entry, folio);
3968
3969         /*
3970          * Remove the swap entry and conditionally try to free up the swapcache.
3971          * We're already holding a reference on the page but haven't mapped it
3972          * yet.
3973          */
3974         swap_free(entry);
3975         if (should_try_to_free_swap(folio, vma, vmf->flags))
3976                 folio_free_swap(folio);
3977
3978         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3979         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3980         pte = mk_pte(page, vma->vm_page_prot);
3981
3982         /*
3983          * Same logic as in do_wp_page(); however, optimize for pages that are
3984          * certainly not shared either because we just allocated them without
3985          * exposing them to the swapcache or because the swap entry indicates
3986          * exclusivity.
3987          */
3988         if (!folio_test_ksm(folio) &&
3989             (exclusive || folio_ref_count(folio) == 1)) {
3990                 if (vmf->flags & FAULT_FLAG_WRITE) {
3991                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3992                         vmf->flags &= ~FAULT_FLAG_WRITE;
3993                 }
3994                 rmap_flags |= RMAP_EXCLUSIVE;
3995         }
3996         flush_icache_page(vma, page);
3997         if (pte_swp_soft_dirty(vmf->orig_pte))
3998                 pte = pte_mksoft_dirty(pte);
3999         if (pte_swp_uffd_wp(vmf->orig_pte))
4000                 pte = pte_mkuffd_wp(pte);
4001         vmf->orig_pte = pte;
4002
4003         /* ksm created a completely new copy */
4004         if (unlikely(folio != swapcache && swapcache)) {
4005                 page_add_new_anon_rmap(page, vma, vmf->address);
4006                 folio_add_lru_vma(folio, vma);
4007         } else {
4008                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4009         }
4010
4011         VM_BUG_ON(!folio_test_anon(folio) ||
4012                         (pte_write(pte) && !PageAnonExclusive(page)));
4013         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4014         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4015
4016         folio_unlock(folio);
4017         if (folio != swapcache && swapcache) {
4018                 /*
4019                  * Hold the lock to avoid the swap entry to be reused
4020                  * until we take the PT lock for the pte_same() check
4021                  * (to avoid false positives from pte_same). For
4022                  * further safety release the lock after the swap_free
4023                  * so that the swap count won't change under a
4024                  * parallel locked swapcache.
4025                  */
4026                 folio_unlock(swapcache);
4027                 folio_put(swapcache);
4028         }
4029
4030         if (vmf->flags & FAULT_FLAG_WRITE) {
4031                 ret |= do_wp_page(vmf);
4032                 if (ret & VM_FAULT_ERROR)
4033                         ret &= VM_FAULT_ERROR;
4034                 goto out;
4035         }
4036
4037         /* No need to invalidate - it was non-present before */
4038         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4039 unlock:
4040         if (vmf->pte)
4041                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4042 out:
4043         if (si)
4044                 put_swap_device(si);
4045         return ret;
4046 out_nomap:
4047         if (vmf->pte)
4048                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4049 out_page:
4050         folio_unlock(folio);
4051 out_release:
4052         folio_put(folio);
4053         if (folio != swapcache && swapcache) {
4054                 folio_unlock(swapcache);
4055                 folio_put(swapcache);
4056         }
4057         if (si)
4058                 put_swap_device(si);
4059         return ret;
4060 }
4061
4062 /*
4063  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4064  * but allow concurrent faults), and pte mapped but not yet locked.
4065  * We return with mmap_lock still held, but pte unmapped and unlocked.
4066  */
4067 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4068 {
4069         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4070         struct vm_area_struct *vma = vmf->vma;
4071         struct folio *folio;
4072         vm_fault_t ret = 0;
4073         pte_t entry;
4074
4075         /* File mapping without ->vm_ops ? */
4076         if (vma->vm_flags & VM_SHARED)
4077                 return VM_FAULT_SIGBUS;
4078
4079         /*
4080          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4081          * be distinguished from a transient failure of pte_offset_map().
4082          */
4083         if (pte_alloc(vma->vm_mm, vmf->pmd))
4084                 return VM_FAULT_OOM;
4085
4086         /* Use the zero-page for reads */
4087         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4088                         !mm_forbids_zeropage(vma->vm_mm)) {
4089                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4090                                                 vma->vm_page_prot));
4091                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4092                                 vmf->address, &vmf->ptl);
4093                 if (!vmf->pte)
4094                         goto unlock;
4095                 if (vmf_pte_changed(vmf)) {
4096                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4097                         goto unlock;
4098                 }
4099                 ret = check_stable_address_space(vma->vm_mm);
4100                 if (ret)
4101                         goto unlock;
4102                 /* Deliver the page fault to userland, check inside PT lock */
4103                 if (userfaultfd_missing(vma)) {
4104                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4105                         return handle_userfault(vmf, VM_UFFD_MISSING);
4106                 }
4107                 goto setpte;
4108         }
4109
4110         /* Allocate our own private page. */
4111         if (unlikely(anon_vma_prepare(vma)))
4112                 goto oom;
4113         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4114         if (!folio)
4115                 goto oom;
4116
4117         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4118                 goto oom_free_page;
4119         folio_throttle_swaprate(folio, GFP_KERNEL);
4120
4121         /*
4122          * The memory barrier inside __folio_mark_uptodate makes sure that
4123          * preceding stores to the page contents become visible before
4124          * the set_pte_at() write.
4125          */
4126         __folio_mark_uptodate(folio);
4127
4128         entry = mk_pte(&folio->page, vma->vm_page_prot);
4129         entry = pte_sw_mkyoung(entry);
4130         if (vma->vm_flags & VM_WRITE)
4131                 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4132
4133         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4134                         &vmf->ptl);
4135         if (!vmf->pte)
4136                 goto release;
4137         if (vmf_pte_changed(vmf)) {
4138                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4139                 goto release;
4140         }
4141
4142         ret = check_stable_address_space(vma->vm_mm);
4143         if (ret)
4144                 goto release;
4145
4146         /* Deliver the page fault to userland, check inside PT lock */
4147         if (userfaultfd_missing(vma)) {
4148                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4149                 folio_put(folio);
4150                 return handle_userfault(vmf, VM_UFFD_MISSING);
4151         }
4152
4153         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4154         folio_add_new_anon_rmap(folio, vma, vmf->address);
4155         folio_add_lru_vma(folio, vma);
4156 setpte:
4157         if (uffd_wp)
4158                 entry = pte_mkuffd_wp(entry);
4159         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4160
4161         /* No need to invalidate - it was non-present before */
4162         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4163 unlock:
4164         if (vmf->pte)
4165                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4166         return ret;
4167 release:
4168         folio_put(folio);
4169         goto unlock;
4170 oom_free_page:
4171         folio_put(folio);
4172 oom:
4173         return VM_FAULT_OOM;
4174 }
4175
4176 /*
4177  * The mmap_lock must have been held on entry, and may have been
4178  * released depending on flags and vma->vm_ops->fault() return value.
4179  * See filemap_fault() and __lock_page_retry().
4180  */
4181 static vm_fault_t __do_fault(struct vm_fault *vmf)
4182 {
4183         struct vm_area_struct *vma = vmf->vma;
4184         vm_fault_t ret;
4185
4186         /*
4187          * Preallocate pte before we take page_lock because this might lead to
4188          * deadlocks for memcg reclaim which waits for pages under writeback:
4189          *                              lock_page(A)
4190          *                              SetPageWriteback(A)
4191          *                              unlock_page(A)
4192          * lock_page(B)
4193          *                              lock_page(B)
4194          * pte_alloc_one
4195          *   shrink_page_list
4196          *     wait_on_page_writeback(A)
4197          *                              SetPageWriteback(B)
4198          *                              unlock_page(B)
4199          *                              # flush A, B to clear the writeback
4200          */
4201         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4202                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4203                 if (!vmf->prealloc_pte)
4204                         return VM_FAULT_OOM;
4205         }
4206
4207         ret = vma->vm_ops->fault(vmf);
4208         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4209                             VM_FAULT_DONE_COW)))
4210                 return ret;
4211
4212         if (unlikely(PageHWPoison(vmf->page))) {
4213                 struct page *page = vmf->page;
4214                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4215                 if (ret & VM_FAULT_LOCKED) {
4216                         if (page_mapped(page))
4217                                 unmap_mapping_pages(page_mapping(page),
4218                                                     page->index, 1, false);
4219                         /* Retry if a clean page was removed from the cache. */
4220                         if (invalidate_inode_page(page))
4221                                 poisonret = VM_FAULT_NOPAGE;
4222                         unlock_page(page);
4223                 }
4224                 put_page(page);
4225                 vmf->page = NULL;
4226                 return poisonret;
4227         }
4228
4229         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4230                 lock_page(vmf->page);
4231         else
4232                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4233
4234         return ret;
4235 }
4236
4237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4238 static void deposit_prealloc_pte(struct vm_fault *vmf)
4239 {
4240         struct vm_area_struct *vma = vmf->vma;
4241
4242         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4243         /*
4244          * We are going to consume the prealloc table,
4245          * count that as nr_ptes.
4246          */
4247         mm_inc_nr_ptes(vma->vm_mm);
4248         vmf->prealloc_pte = NULL;
4249 }
4250
4251 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4252 {
4253         struct vm_area_struct *vma = vmf->vma;
4254         bool write = vmf->flags & FAULT_FLAG_WRITE;
4255         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4256         pmd_t entry;
4257         vm_fault_t ret = VM_FAULT_FALLBACK;
4258
4259         if (!transhuge_vma_suitable(vma, haddr))
4260                 return ret;
4261
4262         page = compound_head(page);
4263         if (compound_order(page) != HPAGE_PMD_ORDER)
4264                 return ret;
4265
4266         /*
4267          * Just backoff if any subpage of a THP is corrupted otherwise
4268          * the corrupted page may mapped by PMD silently to escape the
4269          * check.  This kind of THP just can be PTE mapped.  Access to
4270          * the corrupted subpage should trigger SIGBUS as expected.
4271          */
4272         if (unlikely(PageHasHWPoisoned(page)))
4273                 return ret;
4274
4275         /*
4276          * Archs like ppc64 need additional space to store information
4277          * related to pte entry. Use the preallocated table for that.
4278          */
4279         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4280                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4281                 if (!vmf->prealloc_pte)
4282                         return VM_FAULT_OOM;
4283         }
4284
4285         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4286         if (unlikely(!pmd_none(*vmf->pmd)))
4287                 goto out;
4288
4289         flush_icache_pages(vma, page, HPAGE_PMD_NR);
4290
4291         entry = mk_huge_pmd(page, vma->vm_page_prot);
4292         if (write)
4293                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4294
4295         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4296         page_add_file_rmap(page, vma, true);
4297
4298         /*
4299          * deposit and withdraw with pmd lock held
4300          */
4301         if (arch_needs_pgtable_deposit())
4302                 deposit_prealloc_pte(vmf);
4303
4304         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4305
4306         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4307
4308         /* fault is handled */
4309         ret = 0;
4310         count_vm_event(THP_FILE_MAPPED);
4311 out:
4312         spin_unlock(vmf->ptl);
4313         return ret;
4314 }
4315 #else
4316 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4317 {
4318         return VM_FAULT_FALLBACK;
4319 }
4320 #endif
4321
4322 /**
4323  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4324  * @vmf: Fault decription.
4325  * @folio: The folio that contains @page.
4326  * @page: The first page to create a PTE for.
4327  * @nr: The number of PTEs to create.
4328  * @addr: The first address to create a PTE for.
4329  */
4330 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4331                 struct page *page, unsigned int nr, unsigned long addr)
4332 {
4333         struct vm_area_struct *vma = vmf->vma;
4334         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4335         bool write = vmf->flags & FAULT_FLAG_WRITE;
4336         bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4337         pte_t entry;
4338
4339         flush_icache_pages(vma, page, nr);
4340         entry = mk_pte(page, vma->vm_page_prot);
4341
4342         if (prefault && arch_wants_old_prefaulted_pte())
4343                 entry = pte_mkold(entry);
4344         else
4345                 entry = pte_sw_mkyoung(entry);
4346
4347         if (write)
4348                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4349         if (unlikely(uffd_wp))
4350                 entry = pte_mkuffd_wp(entry);
4351         /* copy-on-write page */
4352         if (write && !(vma->vm_flags & VM_SHARED)) {
4353                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4354                 VM_BUG_ON_FOLIO(nr != 1, folio);
4355                 folio_add_new_anon_rmap(folio, vma, addr);
4356                 folio_add_lru_vma(folio, vma);
4357         } else {
4358                 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4359                 folio_add_file_rmap_range(folio, page, nr, vma, false);
4360         }
4361         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4362
4363         /* no need to invalidate: a not-present page won't be cached */
4364         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4365 }
4366
4367 static bool vmf_pte_changed(struct vm_fault *vmf)
4368 {
4369         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4370                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4371
4372         return !pte_none(ptep_get(vmf->pte));
4373 }
4374
4375 /**
4376  * finish_fault - finish page fault once we have prepared the page to fault
4377  *
4378  * @vmf: structure describing the fault
4379  *
4380  * This function handles all that is needed to finish a page fault once the
4381  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4382  * given page, adds reverse page mapping, handles memcg charges and LRU
4383  * addition.
4384  *
4385  * The function expects the page to be locked and on success it consumes a
4386  * reference of a page being mapped (for the PTE which maps it).
4387  *
4388  * Return: %0 on success, %VM_FAULT_ code in case of error.
4389  */
4390 vm_fault_t finish_fault(struct vm_fault *vmf)
4391 {
4392         struct vm_area_struct *vma = vmf->vma;
4393         struct page *page;
4394         vm_fault_t ret;
4395
4396         /* Did we COW the page? */
4397         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4398                 page = vmf->cow_page;
4399         else
4400                 page = vmf->page;
4401
4402         /*
4403          * check even for read faults because we might have lost our CoWed
4404          * page
4405          */
4406         if (!(vma->vm_flags & VM_SHARED)) {
4407                 ret = check_stable_address_space(vma->vm_mm);
4408                 if (ret)
4409                         return ret;
4410         }
4411
4412         if (pmd_none(*vmf->pmd)) {
4413                 if (PageTransCompound(page)) {
4414                         ret = do_set_pmd(vmf, page);
4415                         if (ret != VM_FAULT_FALLBACK)
4416                                 return ret;
4417                 }
4418
4419                 if (vmf->prealloc_pte)
4420                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4421                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4422                         return VM_FAULT_OOM;
4423         }
4424
4425         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4426                                       vmf->address, &vmf->ptl);
4427         if (!vmf->pte)
4428                 return VM_FAULT_NOPAGE;
4429
4430         /* Re-check under ptl */
4431         if (likely(!vmf_pte_changed(vmf))) {
4432                 struct folio *folio = page_folio(page);
4433
4434                 set_pte_range(vmf, folio, page, 1, vmf->address);
4435                 ret = 0;
4436         } else {
4437                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4438                 ret = VM_FAULT_NOPAGE;
4439         }
4440
4441         pte_unmap_unlock(vmf->pte, vmf->ptl);
4442         return ret;
4443 }
4444
4445 static unsigned long fault_around_pages __read_mostly =
4446         65536 >> PAGE_SHIFT;
4447
4448 #ifdef CONFIG_DEBUG_FS
4449 static int fault_around_bytes_get(void *data, u64 *val)
4450 {
4451         *val = fault_around_pages << PAGE_SHIFT;
4452         return 0;
4453 }
4454
4455 /*
4456  * fault_around_bytes must be rounded down to the nearest page order as it's
4457  * what do_fault_around() expects to see.
4458  */
4459 static int fault_around_bytes_set(void *data, u64 val)
4460 {
4461         if (val / PAGE_SIZE > PTRS_PER_PTE)
4462                 return -EINVAL;
4463
4464         /*
4465          * The minimum value is 1 page, however this results in no fault-around
4466          * at all. See should_fault_around().
4467          */
4468         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4469
4470         return 0;
4471 }
4472 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4473                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4474
4475 static int __init fault_around_debugfs(void)
4476 {
4477         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4478                                    &fault_around_bytes_fops);
4479         return 0;
4480 }
4481 late_initcall(fault_around_debugfs);
4482 #endif
4483
4484 /*
4485  * do_fault_around() tries to map few pages around the fault address. The hope
4486  * is that the pages will be needed soon and this will lower the number of
4487  * faults to handle.
4488  *
4489  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4490  * not ready to be mapped: not up-to-date, locked, etc.
4491  *
4492  * This function doesn't cross VMA or page table boundaries, in order to call
4493  * map_pages() and acquire a PTE lock only once.
4494  *
4495  * fault_around_pages defines how many pages we'll try to map.
4496  * do_fault_around() expects it to be set to a power of two less than or equal
4497  * to PTRS_PER_PTE.
4498  *
4499  * The virtual address of the area that we map is naturally aligned to
4500  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4501  * (and therefore to page order).  This way it's easier to guarantee
4502  * that we don't cross page table boundaries.
4503  */
4504 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4505 {
4506         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4507         pgoff_t pte_off = pte_index(vmf->address);
4508         /* The page offset of vmf->address within the VMA. */
4509         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4510         pgoff_t from_pte, to_pte;
4511         vm_fault_t ret;
4512
4513         /* The PTE offset of the start address, clamped to the VMA. */
4514         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4515                        pte_off - min(pte_off, vma_off));
4516
4517         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4518         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4519                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4520
4521         if (pmd_none(*vmf->pmd)) {
4522                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4523                 if (!vmf->prealloc_pte)
4524                         return VM_FAULT_OOM;
4525         }
4526
4527         rcu_read_lock();
4528         ret = vmf->vma->vm_ops->map_pages(vmf,
4529                         vmf->pgoff + from_pte - pte_off,
4530                         vmf->pgoff + to_pte - pte_off);
4531         rcu_read_unlock();
4532
4533         return ret;
4534 }
4535
4536 /* Return true if we should do read fault-around, false otherwise */
4537 static inline bool should_fault_around(struct vm_fault *vmf)
4538 {
4539         /* No ->map_pages?  No way to fault around... */
4540         if (!vmf->vma->vm_ops->map_pages)
4541                 return false;
4542
4543         if (uffd_disable_fault_around(vmf->vma))
4544                 return false;
4545
4546         /* A single page implies no faulting 'around' at all. */
4547         return fault_around_pages > 1;
4548 }
4549
4550 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4551 {
4552         vm_fault_t ret = 0;
4553         struct folio *folio;
4554
4555         /*
4556          * Let's call ->map_pages() first and use ->fault() as fallback
4557          * if page by the offset is not ready to be mapped (cold cache or
4558          * something).
4559          */
4560         if (should_fault_around(vmf)) {
4561                 ret = do_fault_around(vmf);
4562                 if (ret)
4563                         return ret;
4564         }
4565
4566         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4567                 vma_end_read(vmf->vma);
4568                 return VM_FAULT_RETRY;
4569         }
4570
4571         ret = __do_fault(vmf);
4572         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4573                 return ret;
4574
4575         ret |= finish_fault(vmf);
4576         folio = page_folio(vmf->page);
4577         folio_unlock(folio);
4578         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4579                 folio_put(folio);
4580         return ret;
4581 }
4582
4583 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4584 {
4585         struct vm_area_struct *vma = vmf->vma;
4586         vm_fault_t ret;
4587
4588         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4589                 vma_end_read(vma);
4590                 return VM_FAULT_RETRY;
4591         }
4592
4593         if (unlikely(anon_vma_prepare(vma)))
4594                 return VM_FAULT_OOM;
4595
4596         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4597         if (!vmf->cow_page)
4598                 return VM_FAULT_OOM;
4599
4600         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4601                                 GFP_KERNEL)) {
4602                 put_page(vmf->cow_page);
4603                 return VM_FAULT_OOM;
4604         }
4605         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4606
4607         ret = __do_fault(vmf);
4608         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4609                 goto uncharge_out;
4610         if (ret & VM_FAULT_DONE_COW)
4611                 return ret;
4612
4613         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4614         __SetPageUptodate(vmf->cow_page);
4615
4616         ret |= finish_fault(vmf);
4617         unlock_page(vmf->page);
4618         put_page(vmf->page);
4619         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4620                 goto uncharge_out;
4621         return ret;
4622 uncharge_out:
4623         put_page(vmf->cow_page);
4624         return ret;
4625 }
4626
4627 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4628 {
4629         struct vm_area_struct *vma = vmf->vma;
4630         vm_fault_t ret, tmp;
4631         struct folio *folio;
4632
4633         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4634                 vma_end_read(vma);
4635                 return VM_FAULT_RETRY;
4636         }
4637
4638         ret = __do_fault(vmf);
4639         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4640                 return ret;
4641
4642         folio = page_folio(vmf->page);
4643
4644         /*
4645          * Check if the backing address space wants to know that the page is
4646          * about to become writable
4647          */
4648         if (vma->vm_ops->page_mkwrite) {
4649                 folio_unlock(folio);
4650                 tmp = do_page_mkwrite(vmf, folio);
4651                 if (unlikely(!tmp ||
4652                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4653                         folio_put(folio);
4654                         return tmp;
4655                 }
4656         }
4657
4658         ret |= finish_fault(vmf);
4659         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4660                                         VM_FAULT_RETRY))) {
4661                 folio_unlock(folio);
4662                 folio_put(folio);
4663                 return ret;
4664         }
4665
4666         ret |= fault_dirty_shared_page(vmf);
4667         return ret;
4668 }
4669
4670 /*
4671  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4672  * but allow concurrent faults).
4673  * The mmap_lock may have been released depending on flags and our
4674  * return value.  See filemap_fault() and __folio_lock_or_retry().
4675  * If mmap_lock is released, vma may become invalid (for example
4676  * by other thread calling munmap()).
4677  */
4678 static vm_fault_t do_fault(struct vm_fault *vmf)
4679 {
4680         struct vm_area_struct *vma = vmf->vma;
4681         struct mm_struct *vm_mm = vma->vm_mm;
4682         vm_fault_t ret;
4683
4684         /*
4685          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4686          */
4687         if (!vma->vm_ops->fault) {
4688                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4689                                                vmf->address, &vmf->ptl);
4690                 if (unlikely(!vmf->pte))
4691                         ret = VM_FAULT_SIGBUS;
4692                 else {
4693                         /*
4694                          * Make sure this is not a temporary clearing of pte
4695                          * by holding ptl and checking again. A R/M/W update
4696                          * of pte involves: take ptl, clearing the pte so that
4697                          * we don't have concurrent modification by hardware
4698                          * followed by an update.
4699                          */
4700                         if (unlikely(pte_none(ptep_get(vmf->pte))))
4701                                 ret = VM_FAULT_SIGBUS;
4702                         else
4703                                 ret = VM_FAULT_NOPAGE;
4704
4705                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4706                 }
4707         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4708                 ret = do_read_fault(vmf);
4709         else if (!(vma->vm_flags & VM_SHARED))
4710                 ret = do_cow_fault(vmf);
4711         else
4712                 ret = do_shared_fault(vmf);
4713
4714         /* preallocated pagetable is unused: free it */
4715         if (vmf->prealloc_pte) {
4716                 pte_free(vm_mm, vmf->prealloc_pte);
4717                 vmf->prealloc_pte = NULL;
4718         }
4719         return ret;
4720 }
4721
4722 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4723                       unsigned long addr, int page_nid, int *flags)
4724 {
4725         get_page(page);
4726
4727         /* Record the current PID acceesing VMA */
4728         vma_set_access_pid_bit(vma);
4729
4730         count_vm_numa_event(NUMA_HINT_FAULTS);
4731         if (page_nid == numa_node_id()) {
4732                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4733                 *flags |= TNF_FAULT_LOCAL;
4734         }
4735
4736         return mpol_misplaced(page, vma, addr);
4737 }
4738
4739 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4740 {
4741         struct vm_area_struct *vma = vmf->vma;
4742         struct page *page = NULL;
4743         int page_nid = NUMA_NO_NODE;
4744         bool writable = false;
4745         int last_cpupid;
4746         int target_nid;
4747         pte_t pte, old_pte;
4748         int flags = 0;
4749
4750         /*
4751          * The "pte" at this point cannot be used safely without
4752          * validation through pte_unmap_same(). It's of NUMA type but
4753          * the pfn may be screwed if the read is non atomic.
4754          */
4755         spin_lock(vmf->ptl);
4756         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4757                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4758                 goto out;
4759         }
4760
4761         /* Get the normal PTE  */
4762         old_pte = ptep_get(vmf->pte);
4763         pte = pte_modify(old_pte, vma->vm_page_prot);
4764
4765         /*
4766          * Detect now whether the PTE could be writable; this information
4767          * is only valid while holding the PT lock.
4768          */
4769         writable = pte_write(pte);
4770         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4771             can_change_pte_writable(vma, vmf->address, pte))
4772                 writable = true;
4773
4774         page = vm_normal_page(vma, vmf->address, pte);
4775         if (!page || is_zone_device_page(page))
4776                 goto out_map;
4777
4778         /* TODO: handle PTE-mapped THP */
4779         if (PageCompound(page))
4780                 goto out_map;
4781
4782         /*
4783          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4784          * much anyway since they can be in shared cache state. This misses
4785          * the case where a mapping is writable but the process never writes
4786          * to it but pte_write gets cleared during protection updates and
4787          * pte_dirty has unpredictable behaviour between PTE scan updates,
4788          * background writeback, dirty balancing and application behaviour.
4789          */
4790         if (!writable)
4791                 flags |= TNF_NO_GROUP;
4792
4793         /*
4794          * Flag if the page is shared between multiple address spaces. This
4795          * is later used when determining whether to group tasks together
4796          */
4797         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4798                 flags |= TNF_SHARED;
4799
4800         page_nid = page_to_nid(page);
4801         /*
4802          * For memory tiering mode, cpupid of slow memory page is used
4803          * to record page access time.  So use default value.
4804          */
4805         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4806             !node_is_toptier(page_nid))
4807                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4808         else
4809                 last_cpupid = page_cpupid_last(page);
4810         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4811                         &flags);
4812         if (target_nid == NUMA_NO_NODE) {
4813                 put_page(page);
4814                 goto out_map;
4815         }
4816         pte_unmap_unlock(vmf->pte, vmf->ptl);
4817         writable = false;
4818
4819         /* Migrate to the requested node */
4820         if (migrate_misplaced_page(page, vma, target_nid)) {
4821                 page_nid = target_nid;
4822                 flags |= TNF_MIGRATED;
4823         } else {
4824                 flags |= TNF_MIGRATE_FAIL;
4825                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4826                                                vmf->address, &vmf->ptl);
4827                 if (unlikely(!vmf->pte))
4828                         goto out;
4829                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4830                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4831                         goto out;
4832                 }
4833                 goto out_map;
4834         }
4835
4836 out:
4837         if (page_nid != NUMA_NO_NODE)
4838                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4839         return 0;
4840 out_map:
4841         /*
4842          * Make it present again, depending on how arch implements
4843          * non-accessible ptes, some can allow access by kernel mode.
4844          */
4845         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4846         pte = pte_modify(old_pte, vma->vm_page_prot);
4847         pte = pte_mkyoung(pte);
4848         if (writable)
4849                 pte = pte_mkwrite(pte, vma);
4850         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4851         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4852         pte_unmap_unlock(vmf->pte, vmf->ptl);
4853         goto out;
4854 }
4855
4856 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4857 {
4858         struct vm_area_struct *vma = vmf->vma;
4859         if (vma_is_anonymous(vma))
4860                 return do_huge_pmd_anonymous_page(vmf);
4861         if (vma->vm_ops->huge_fault)
4862                 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4863         return VM_FAULT_FALLBACK;
4864 }
4865
4866 /* `inline' is required to avoid gcc 4.1.2 build error */
4867 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4868 {
4869         struct vm_area_struct *vma = vmf->vma;
4870         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4871         vm_fault_t ret;
4872
4873         if (vma_is_anonymous(vma)) {
4874                 if (likely(!unshare) &&
4875                     userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4876                         return handle_userfault(vmf, VM_UFFD_WP);
4877                 return do_huge_pmd_wp_page(vmf);
4878         }
4879
4880         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4881                 if (vma->vm_ops->huge_fault) {
4882                         ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4883                         if (!(ret & VM_FAULT_FALLBACK))
4884                                 return ret;
4885                 }
4886         }
4887
4888         /* COW or write-notify handled on pte level: split pmd. */
4889         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4890
4891         return VM_FAULT_FALLBACK;
4892 }
4893
4894 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4895 {
4896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4897         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4898         struct vm_area_struct *vma = vmf->vma;
4899         /* No support for anonymous transparent PUD pages yet */
4900         if (vma_is_anonymous(vma))
4901                 return VM_FAULT_FALLBACK;
4902         if (vma->vm_ops->huge_fault)
4903                 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4904 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4905         return VM_FAULT_FALLBACK;
4906 }
4907
4908 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4909 {
4910 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4911         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4912         struct vm_area_struct *vma = vmf->vma;
4913         vm_fault_t ret;
4914
4915         /* No support for anonymous transparent PUD pages yet */
4916         if (vma_is_anonymous(vma))
4917                 goto split;
4918         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4919                 if (vma->vm_ops->huge_fault) {
4920                         ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4921                         if (!(ret & VM_FAULT_FALLBACK))
4922                                 return ret;
4923                 }
4924         }
4925 split:
4926         /* COW or write-notify not handled on PUD level: split pud.*/
4927         __split_huge_pud(vma, vmf->pud, vmf->address);
4928 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4929         return VM_FAULT_FALLBACK;
4930 }
4931
4932 /*
4933  * These routines also need to handle stuff like marking pages dirty
4934  * and/or accessed for architectures that don't do it in hardware (most
4935  * RISC architectures).  The early dirtying is also good on the i386.
4936  *
4937  * There is also a hook called "update_mmu_cache()" that architectures
4938  * with external mmu caches can use to update those (ie the Sparc or
4939  * PowerPC hashed page tables that act as extended TLBs).
4940  *
4941  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4942  * concurrent faults).
4943  *
4944  * The mmap_lock may have been released depending on flags and our return value.
4945  * See filemap_fault() and __folio_lock_or_retry().
4946  */
4947 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4948 {
4949         pte_t entry;
4950
4951         if (unlikely(pmd_none(*vmf->pmd))) {
4952                 /*
4953                  * Leave __pte_alloc() until later: because vm_ops->fault may
4954                  * want to allocate huge page, and if we expose page table
4955                  * for an instant, it will be difficult to retract from
4956                  * concurrent faults and from rmap lookups.
4957                  */
4958                 vmf->pte = NULL;
4959                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4960         } else {
4961                 /*
4962                  * A regular pmd is established and it can't morph into a huge
4963                  * pmd by anon khugepaged, since that takes mmap_lock in write
4964                  * mode; but shmem or file collapse to THP could still morph
4965                  * it into a huge pmd: just retry later if so.
4966                  */
4967                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4968                                                  vmf->address, &vmf->ptl);
4969                 if (unlikely(!vmf->pte))
4970                         return 0;
4971                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4972                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4973
4974                 if (pte_none(vmf->orig_pte)) {
4975                         pte_unmap(vmf->pte);
4976                         vmf->pte = NULL;
4977                 }
4978         }
4979
4980         if (!vmf->pte)
4981                 return do_pte_missing(vmf);
4982
4983         if (!pte_present(vmf->orig_pte))
4984                 return do_swap_page(vmf);
4985
4986         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4987                 return do_numa_page(vmf);
4988
4989         spin_lock(vmf->ptl);
4990         entry = vmf->orig_pte;
4991         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4992                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4993                 goto unlock;
4994         }
4995         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4996                 if (!pte_write(entry))
4997                         return do_wp_page(vmf);
4998                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4999                         entry = pte_mkdirty(entry);
5000         }
5001         entry = pte_mkyoung(entry);
5002         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5003                                 vmf->flags & FAULT_FLAG_WRITE)) {
5004                 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5005                                 vmf->pte, 1);
5006         } else {
5007                 /* Skip spurious TLB flush for retried page fault */
5008                 if (vmf->flags & FAULT_FLAG_TRIED)
5009                         goto unlock;
5010                 /*
5011                  * This is needed only for protection faults but the arch code
5012                  * is not yet telling us if this is a protection fault or not.
5013                  * This still avoids useless tlb flushes for .text page faults
5014                  * with threads.
5015                  */
5016                 if (vmf->flags & FAULT_FLAG_WRITE)
5017                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5018                                                      vmf->pte);
5019         }
5020 unlock:
5021         pte_unmap_unlock(vmf->pte, vmf->ptl);
5022         return 0;
5023 }
5024
5025 /*
5026  * On entry, we hold either the VMA lock or the mmap_lock
5027  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5028  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5029  * and __folio_lock_or_retry().
5030  */
5031 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5032                 unsigned long address, unsigned int flags)
5033 {
5034         struct vm_fault vmf = {
5035                 .vma = vma,
5036                 .address = address & PAGE_MASK,
5037                 .real_address = address,
5038                 .flags = flags,
5039                 .pgoff = linear_page_index(vma, address),
5040                 .gfp_mask = __get_fault_gfp_mask(vma),
5041         };
5042         struct mm_struct *mm = vma->vm_mm;
5043         unsigned long vm_flags = vma->vm_flags;
5044         pgd_t *pgd;
5045         p4d_t *p4d;
5046         vm_fault_t ret;
5047
5048         pgd = pgd_offset(mm, address);
5049         p4d = p4d_alloc(mm, pgd, address);
5050         if (!p4d)
5051                 return VM_FAULT_OOM;
5052
5053         vmf.pud = pud_alloc(mm, p4d, address);
5054         if (!vmf.pud)
5055                 return VM_FAULT_OOM;
5056 retry_pud:
5057         if (pud_none(*vmf.pud) &&
5058             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5059                 ret = create_huge_pud(&vmf);
5060                 if (!(ret & VM_FAULT_FALLBACK))
5061                         return ret;
5062         } else {
5063                 pud_t orig_pud = *vmf.pud;
5064
5065                 barrier();
5066                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5067
5068                         /*
5069                          * TODO once we support anonymous PUDs: NUMA case and
5070                          * FAULT_FLAG_UNSHARE handling.
5071                          */
5072                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5073                                 ret = wp_huge_pud(&vmf, orig_pud);
5074                                 if (!(ret & VM_FAULT_FALLBACK))
5075                                         return ret;
5076                         } else {
5077                                 huge_pud_set_accessed(&vmf, orig_pud);
5078                                 return 0;
5079                         }
5080                 }
5081         }
5082
5083         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5084         if (!vmf.pmd)
5085                 return VM_FAULT_OOM;
5086
5087         /* Huge pud page fault raced with pmd_alloc? */
5088         if (pud_trans_unstable(vmf.pud))
5089                 goto retry_pud;
5090
5091         if (pmd_none(*vmf.pmd) &&
5092             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5093                 ret = create_huge_pmd(&vmf);
5094                 if (!(ret & VM_FAULT_FALLBACK))
5095                         return ret;
5096         } else {
5097                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5098
5099                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5100                         VM_BUG_ON(thp_migration_supported() &&
5101                                           !is_pmd_migration_entry(vmf.orig_pmd));
5102                         if (is_pmd_migration_entry(vmf.orig_pmd))
5103                                 pmd_migration_entry_wait(mm, vmf.pmd);
5104                         return 0;
5105                 }
5106                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5107                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5108                                 return do_huge_pmd_numa_page(&vmf);
5109
5110                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5111                             !pmd_write(vmf.orig_pmd)) {
5112                                 ret = wp_huge_pmd(&vmf);
5113                                 if (!(ret & VM_FAULT_FALLBACK))
5114                                         return ret;
5115                         } else {
5116                                 huge_pmd_set_accessed(&vmf);
5117                                 return 0;
5118                         }
5119                 }
5120         }
5121
5122         return handle_pte_fault(&vmf);
5123 }
5124
5125 /**
5126  * mm_account_fault - Do page fault accounting
5127  * @mm: mm from which memcg should be extracted. It can be NULL.
5128  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5129  *        of perf event counters, but we'll still do the per-task accounting to
5130  *        the task who triggered this page fault.
5131  * @address: the faulted address.
5132  * @flags: the fault flags.
5133  * @ret: the fault retcode.
5134  *
5135  * This will take care of most of the page fault accounting.  Meanwhile, it
5136  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5137  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5138  * still be in per-arch page fault handlers at the entry of page fault.
5139  */
5140 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5141                                     unsigned long address, unsigned int flags,
5142                                     vm_fault_t ret)
5143 {
5144         bool major;
5145
5146         /* Incomplete faults will be accounted upon completion. */
5147         if (ret & VM_FAULT_RETRY)
5148                 return;
5149
5150         /*
5151          * To preserve the behavior of older kernels, PGFAULT counters record
5152          * both successful and failed faults, as opposed to perf counters,
5153          * which ignore failed cases.
5154          */
5155         count_vm_event(PGFAULT);
5156         count_memcg_event_mm(mm, PGFAULT);
5157
5158         /*
5159          * Do not account for unsuccessful faults (e.g. when the address wasn't
5160          * valid).  That includes arch_vma_access_permitted() failing before
5161          * reaching here. So this is not a "this many hardware page faults"
5162          * counter.  We should use the hw profiling for that.
5163          */
5164         if (ret & VM_FAULT_ERROR)
5165                 return;
5166
5167         /*
5168          * We define the fault as a major fault when the final successful fault
5169          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5170          * handle it immediately previously).
5171          */
5172         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5173
5174         if (major)
5175                 current->maj_flt++;
5176         else
5177                 current->min_flt++;
5178
5179         /*
5180          * If the fault is done for GUP, regs will be NULL.  We only do the
5181          * accounting for the per thread fault counters who triggered the
5182          * fault, and we skip the perf event updates.
5183          */
5184         if (!regs)
5185                 return;
5186
5187         if (major)
5188                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5189         else
5190                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5191 }
5192
5193 #ifdef CONFIG_LRU_GEN
5194 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5195 {
5196         /* the LRU algorithm only applies to accesses with recency */
5197         current->in_lru_fault = vma_has_recency(vma);
5198 }
5199
5200 static void lru_gen_exit_fault(void)
5201 {
5202         current->in_lru_fault = false;
5203 }
5204 #else
5205 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5206 {
5207 }
5208
5209 static void lru_gen_exit_fault(void)
5210 {
5211 }
5212 #endif /* CONFIG_LRU_GEN */
5213
5214 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5215                                        unsigned int *flags)
5216 {
5217         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5218                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5219                         return VM_FAULT_SIGSEGV;
5220                 /*
5221                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5222                  * just treat it like an ordinary read-fault otherwise.
5223                  */
5224                 if (!is_cow_mapping(vma->vm_flags))
5225                         *flags &= ~FAULT_FLAG_UNSHARE;
5226         } else if (*flags & FAULT_FLAG_WRITE) {
5227                 /* Write faults on read-only mappings are impossible ... */
5228                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5229                         return VM_FAULT_SIGSEGV;
5230                 /* ... and FOLL_FORCE only applies to COW mappings. */
5231                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5232                                  !is_cow_mapping(vma->vm_flags)))
5233                         return VM_FAULT_SIGSEGV;
5234         }
5235 #ifdef CONFIG_PER_VMA_LOCK
5236         /*
5237          * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5238          * the assumption that lock is dropped on VM_FAULT_RETRY.
5239          */
5240         if (WARN_ON_ONCE((*flags &
5241                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5242                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5243                 return VM_FAULT_SIGSEGV;
5244 #endif
5245
5246         return 0;
5247 }
5248
5249 /*
5250  * By the time we get here, we already hold the mm semaphore
5251  *
5252  * The mmap_lock may have been released depending on flags and our
5253  * return value.  See filemap_fault() and __folio_lock_or_retry().
5254  */
5255 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5256                            unsigned int flags, struct pt_regs *regs)
5257 {
5258         /* If the fault handler drops the mmap_lock, vma may be freed */
5259         struct mm_struct *mm = vma->vm_mm;
5260         vm_fault_t ret;
5261
5262         __set_current_state(TASK_RUNNING);
5263
5264         ret = sanitize_fault_flags(vma, &flags);
5265         if (ret)
5266                 goto out;
5267
5268         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5269                                             flags & FAULT_FLAG_INSTRUCTION,
5270                                             flags & FAULT_FLAG_REMOTE)) {
5271                 ret = VM_FAULT_SIGSEGV;
5272                 goto out;
5273         }
5274
5275         /*
5276          * Enable the memcg OOM handling for faults triggered in user
5277          * space.  Kernel faults are handled more gracefully.
5278          */
5279         if (flags & FAULT_FLAG_USER)
5280                 mem_cgroup_enter_user_fault();
5281
5282         lru_gen_enter_fault(vma);
5283
5284         if (unlikely(is_vm_hugetlb_page(vma)))
5285                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5286         else
5287                 ret = __handle_mm_fault(vma, address, flags);
5288
5289         lru_gen_exit_fault();
5290
5291         if (flags & FAULT_FLAG_USER) {
5292                 mem_cgroup_exit_user_fault();
5293                 /*
5294                  * The task may have entered a memcg OOM situation but
5295                  * if the allocation error was handled gracefully (no
5296                  * VM_FAULT_OOM), there is no need to kill anything.
5297                  * Just clean up the OOM state peacefully.
5298                  */
5299                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5300                         mem_cgroup_oom_synchronize(false);
5301         }
5302 out:
5303         mm_account_fault(mm, regs, address, flags, ret);
5304
5305         return ret;
5306 }
5307 EXPORT_SYMBOL_GPL(handle_mm_fault);
5308
5309 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5310 #include <linux/extable.h>
5311
5312 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5313 {
5314         if (likely(mmap_read_trylock(mm)))
5315                 return true;
5316
5317         if (regs && !user_mode(regs)) {
5318                 unsigned long ip = instruction_pointer(regs);
5319                 if (!search_exception_tables(ip))
5320                         return false;
5321         }
5322
5323         return !mmap_read_lock_killable(mm);
5324 }
5325
5326 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5327 {
5328         /*
5329          * We don't have this operation yet.
5330          *
5331          * It should be easy enough to do: it's basically a
5332          *    atomic_long_try_cmpxchg_acquire()
5333          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5334          * it also needs the proper lockdep magic etc.
5335          */
5336         return false;
5337 }
5338
5339 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5340 {
5341         mmap_read_unlock(mm);
5342         if (regs && !user_mode(regs)) {
5343                 unsigned long ip = instruction_pointer(regs);
5344                 if (!search_exception_tables(ip))
5345                         return false;
5346         }
5347         return !mmap_write_lock_killable(mm);
5348 }
5349
5350 /*
5351  * Helper for page fault handling.
5352  *
5353  * This is kind of equivalend to "mmap_read_lock()" followed
5354  * by "find_extend_vma()", except it's a lot more careful about
5355  * the locking (and will drop the lock on failure).
5356  *
5357  * For example, if we have a kernel bug that causes a page
5358  * fault, we don't want to just use mmap_read_lock() to get
5359  * the mm lock, because that would deadlock if the bug were
5360  * to happen while we're holding the mm lock for writing.
5361  *
5362  * So this checks the exception tables on kernel faults in
5363  * order to only do this all for instructions that are actually
5364  * expected to fault.
5365  *
5366  * We can also actually take the mm lock for writing if we
5367  * need to extend the vma, which helps the VM layer a lot.
5368  */
5369 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5370                         unsigned long addr, struct pt_regs *regs)
5371 {
5372         struct vm_area_struct *vma;
5373
5374         if (!get_mmap_lock_carefully(mm, regs))
5375                 return NULL;
5376
5377         vma = find_vma(mm, addr);
5378         if (likely(vma && (vma->vm_start <= addr)))
5379                 return vma;
5380
5381         /*
5382          * Well, dang. We might still be successful, but only
5383          * if we can extend a vma to do so.
5384          */
5385         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5386                 mmap_read_unlock(mm);
5387                 return NULL;
5388         }
5389
5390         /*
5391          * We can try to upgrade the mmap lock atomically,
5392          * in which case we can continue to use the vma
5393          * we already looked up.
5394          *
5395          * Otherwise we'll have to drop the mmap lock and
5396          * re-take it, and also look up the vma again,
5397          * re-checking it.
5398          */
5399         if (!mmap_upgrade_trylock(mm)) {
5400                 if (!upgrade_mmap_lock_carefully(mm, regs))
5401                         return NULL;
5402
5403                 vma = find_vma(mm, addr);
5404                 if (!vma)
5405                         goto fail;
5406                 if (vma->vm_start <= addr)
5407                         goto success;
5408                 if (!(vma->vm_flags & VM_GROWSDOWN))
5409                         goto fail;
5410         }
5411
5412         if (expand_stack_locked(vma, addr))
5413                 goto fail;
5414
5415 success:
5416         mmap_write_downgrade(mm);
5417         return vma;
5418
5419 fail:
5420         mmap_write_unlock(mm);
5421         return NULL;
5422 }
5423 #endif
5424
5425 #ifdef CONFIG_PER_VMA_LOCK
5426 /*
5427  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5428  * stable and not isolated. If the VMA is not found or is being modified the
5429  * function returns NULL.
5430  */
5431 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5432                                           unsigned long address)
5433 {
5434         MA_STATE(mas, &mm->mm_mt, address, address);
5435         struct vm_area_struct *vma;
5436
5437         rcu_read_lock();
5438 retry:
5439         vma = mas_walk(&mas);
5440         if (!vma)
5441                 goto inval;
5442
5443         if (!vma_start_read(vma))
5444                 goto inval;
5445
5446         /*
5447          * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5448          * This check must happen after vma_start_read(); otherwise, a
5449          * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5450          * from its anon_vma.
5451          */
5452         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5453                 goto inval_end_read;
5454
5455         /* Check since vm_start/vm_end might change before we lock the VMA */
5456         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5457                 goto inval_end_read;
5458
5459         /* Check if the VMA got isolated after we found it */
5460         if (vma->detached) {
5461                 vma_end_read(vma);
5462                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5463                 /* The area was replaced with another one */
5464                 goto retry;
5465         }
5466
5467         rcu_read_unlock();
5468         return vma;
5469
5470 inval_end_read:
5471         vma_end_read(vma);
5472 inval:
5473         rcu_read_unlock();
5474         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5475         return NULL;
5476 }
5477 #endif /* CONFIG_PER_VMA_LOCK */
5478
5479 #ifndef __PAGETABLE_P4D_FOLDED
5480 /*
5481  * Allocate p4d page table.
5482  * We've already handled the fast-path in-line.
5483  */
5484 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5485 {
5486         p4d_t *new = p4d_alloc_one(mm, address);
5487         if (!new)
5488                 return -ENOMEM;
5489
5490         spin_lock(&mm->page_table_lock);
5491         if (pgd_present(*pgd)) {        /* Another has populated it */
5492                 p4d_free(mm, new);
5493         } else {
5494                 smp_wmb(); /* See comment in pmd_install() */
5495                 pgd_populate(mm, pgd, new);
5496         }
5497         spin_unlock(&mm->page_table_lock);
5498         return 0;
5499 }
5500 #endif /* __PAGETABLE_P4D_FOLDED */
5501
5502 #ifndef __PAGETABLE_PUD_FOLDED
5503 /*
5504  * Allocate page upper directory.
5505  * We've already handled the fast-path in-line.
5506  */
5507 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5508 {
5509         pud_t *new = pud_alloc_one(mm, address);
5510         if (!new)
5511                 return -ENOMEM;
5512
5513         spin_lock(&mm->page_table_lock);
5514         if (!p4d_present(*p4d)) {
5515                 mm_inc_nr_puds(mm);
5516                 smp_wmb(); /* See comment in pmd_install() */
5517                 p4d_populate(mm, p4d, new);
5518         } else  /* Another has populated it */
5519                 pud_free(mm, new);
5520         spin_unlock(&mm->page_table_lock);
5521         return 0;
5522 }
5523 #endif /* __PAGETABLE_PUD_FOLDED */
5524
5525 #ifndef __PAGETABLE_PMD_FOLDED
5526 /*
5527  * Allocate page middle directory.
5528  * We've already handled the fast-path in-line.
5529  */
5530 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5531 {
5532         spinlock_t *ptl;
5533         pmd_t *new = pmd_alloc_one(mm, address);
5534         if (!new)
5535                 return -ENOMEM;
5536
5537         ptl = pud_lock(mm, pud);
5538         if (!pud_present(*pud)) {
5539                 mm_inc_nr_pmds(mm);
5540                 smp_wmb(); /* See comment in pmd_install() */
5541                 pud_populate(mm, pud, new);
5542         } else {        /* Another has populated it */
5543                 pmd_free(mm, new);
5544         }
5545         spin_unlock(ptl);
5546         return 0;
5547 }
5548 #endif /* __PAGETABLE_PMD_FOLDED */
5549
5550 /**
5551  * follow_pte - look up PTE at a user virtual address
5552  * @mm: the mm_struct of the target address space
5553  * @address: user virtual address
5554  * @ptepp: location to store found PTE
5555  * @ptlp: location to store the lock for the PTE
5556  *
5557  * On a successful return, the pointer to the PTE is stored in @ptepp;
5558  * the corresponding lock is taken and its location is stored in @ptlp.
5559  * The contents of the PTE are only stable until @ptlp is released;
5560  * any further use, if any, must be protected against invalidation
5561  * with MMU notifiers.
5562  *
5563  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5564  * should be taken for read.
5565  *
5566  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5567  * it is not a good general-purpose API.
5568  *
5569  * Return: zero on success, -ve otherwise.
5570  */
5571 int follow_pte(struct mm_struct *mm, unsigned long address,
5572                pte_t **ptepp, spinlock_t **ptlp)
5573 {
5574         pgd_t *pgd;
5575         p4d_t *p4d;
5576         pud_t *pud;
5577         pmd_t *pmd;
5578         pte_t *ptep;
5579
5580         pgd = pgd_offset(mm, address);
5581         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5582                 goto out;
5583
5584         p4d = p4d_offset(pgd, address);
5585         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5586                 goto out;
5587
5588         pud = pud_offset(p4d, address);
5589         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5590                 goto out;
5591
5592         pmd = pmd_offset(pud, address);
5593         VM_BUG_ON(pmd_trans_huge(*pmd));
5594
5595         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5596         if (!ptep)
5597                 goto out;
5598         if (!pte_present(ptep_get(ptep)))
5599                 goto unlock;
5600         *ptepp = ptep;
5601         return 0;
5602 unlock:
5603         pte_unmap_unlock(ptep, *ptlp);
5604 out:
5605         return -EINVAL;
5606 }
5607 EXPORT_SYMBOL_GPL(follow_pte);
5608
5609 /**
5610  * follow_pfn - look up PFN at a user virtual address
5611  * @vma: memory mapping
5612  * @address: user virtual address
5613  * @pfn: location to store found PFN
5614  *
5615  * Only IO mappings and raw PFN mappings are allowed.
5616  *
5617  * This function does not allow the caller to read the permissions
5618  * of the PTE.  Do not use it.
5619  *
5620  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5621  */
5622 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5623         unsigned long *pfn)
5624 {
5625         int ret = -EINVAL;
5626         spinlock_t *ptl;
5627         pte_t *ptep;
5628
5629         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5630                 return ret;
5631
5632         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5633         if (ret)
5634                 return ret;
5635         *pfn = pte_pfn(ptep_get(ptep));
5636         pte_unmap_unlock(ptep, ptl);
5637         return 0;
5638 }
5639 EXPORT_SYMBOL(follow_pfn);
5640
5641 #ifdef CONFIG_HAVE_IOREMAP_PROT
5642 int follow_phys(struct vm_area_struct *vma,
5643                 unsigned long address, unsigned int flags,
5644                 unsigned long *prot, resource_size_t *phys)
5645 {
5646         int ret = -EINVAL;
5647         pte_t *ptep, pte;
5648         spinlock_t *ptl;
5649
5650         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5651                 goto out;
5652
5653         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5654                 goto out;
5655         pte = ptep_get(ptep);
5656
5657         if ((flags & FOLL_WRITE) && !pte_write(pte))
5658                 goto unlock;
5659
5660         *prot = pgprot_val(pte_pgprot(pte));
5661         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5662
5663         ret = 0;
5664 unlock:
5665         pte_unmap_unlock(ptep, ptl);
5666 out:
5667         return ret;
5668 }
5669
5670 /**
5671  * generic_access_phys - generic implementation for iomem mmap access
5672  * @vma: the vma to access
5673  * @addr: userspace address, not relative offset within @vma
5674  * @buf: buffer to read/write
5675  * @len: length of transfer
5676  * @write: set to FOLL_WRITE when writing, otherwise reading
5677  *
5678  * This is a generic implementation for &vm_operations_struct.access for an
5679  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5680  * not page based.
5681  */
5682 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5683                         void *buf, int len, int write)
5684 {
5685         resource_size_t phys_addr;
5686         unsigned long prot = 0;
5687         void __iomem *maddr;
5688         pte_t *ptep, pte;
5689         spinlock_t *ptl;
5690         int offset = offset_in_page(addr);
5691         int ret = -EINVAL;
5692
5693         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5694                 return -EINVAL;
5695
5696 retry:
5697         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5698                 return -EINVAL;
5699         pte = ptep_get(ptep);
5700         pte_unmap_unlock(ptep, ptl);
5701
5702         prot = pgprot_val(pte_pgprot(pte));
5703         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5704
5705         if ((write & FOLL_WRITE) && !pte_write(pte))
5706                 return -EINVAL;
5707
5708         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5709         if (!maddr)
5710                 return -ENOMEM;
5711
5712         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5713                 goto out_unmap;
5714
5715         if (!pte_same(pte, ptep_get(ptep))) {
5716                 pte_unmap_unlock(ptep, ptl);
5717                 iounmap(maddr);
5718
5719                 goto retry;
5720         }
5721
5722         if (write)
5723                 memcpy_toio(maddr + offset, buf, len);
5724         else
5725                 memcpy_fromio(buf, maddr + offset, len);
5726         ret = len;
5727         pte_unmap_unlock(ptep, ptl);
5728 out_unmap:
5729         iounmap(maddr);
5730
5731         return ret;
5732 }
5733 EXPORT_SYMBOL_GPL(generic_access_phys);
5734 #endif
5735
5736 /*
5737  * Access another process' address space as given in mm.
5738  */
5739 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5740                        int len, unsigned int gup_flags)
5741 {
5742         void *old_buf = buf;
5743         int write = gup_flags & FOLL_WRITE;
5744
5745         if (mmap_read_lock_killable(mm))
5746                 return 0;
5747
5748         /* Untag the address before looking up the VMA */
5749         addr = untagged_addr_remote(mm, addr);
5750
5751         /* Avoid triggering the temporary warning in __get_user_pages */
5752         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5753                 return 0;
5754
5755         /* ignore errors, just check how much was successfully transferred */
5756         while (len) {
5757                 int bytes, offset;
5758                 void *maddr;
5759                 struct vm_area_struct *vma = NULL;
5760                 struct page *page = get_user_page_vma_remote(mm, addr,
5761                                                              gup_flags, &vma);
5762
5763                 if (IS_ERR_OR_NULL(page)) {
5764                         /* We might need to expand the stack to access it */
5765                         vma = vma_lookup(mm, addr);
5766                         if (!vma) {
5767                                 vma = expand_stack(mm, addr);
5768
5769                                 /* mmap_lock was dropped on failure */
5770                                 if (!vma)
5771                                         return buf - old_buf;
5772
5773                                 /* Try again if stack expansion worked */
5774                                 continue;
5775                         }
5776
5777
5778                         /*
5779                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5780                          * we can access using slightly different code.
5781                          */
5782                         bytes = 0;
5783 #ifdef CONFIG_HAVE_IOREMAP_PROT
5784                         if (vma->vm_ops && vma->vm_ops->access)
5785                                 bytes = vma->vm_ops->access(vma, addr, buf,
5786                                                             len, write);
5787 #endif
5788                         if (bytes <= 0)
5789                                 break;
5790                 } else {
5791                         bytes = len;
5792                         offset = addr & (PAGE_SIZE-1);
5793                         if (bytes > PAGE_SIZE-offset)
5794                                 bytes = PAGE_SIZE-offset;
5795
5796                         maddr = kmap(page);
5797                         if (write) {
5798                                 copy_to_user_page(vma, page, addr,
5799                                                   maddr + offset, buf, bytes);
5800                                 set_page_dirty_lock(page);
5801                         } else {
5802                                 copy_from_user_page(vma, page, addr,
5803                                                     buf, maddr + offset, bytes);
5804                         }
5805                         kunmap(page);
5806                         put_page(page);
5807                 }
5808                 len -= bytes;
5809                 buf += bytes;
5810                 addr += bytes;
5811         }
5812         mmap_read_unlock(mm);
5813
5814         return buf - old_buf;
5815 }
5816
5817 /**
5818  * access_remote_vm - access another process' address space
5819  * @mm:         the mm_struct of the target address space
5820  * @addr:       start address to access
5821  * @buf:        source or destination buffer
5822  * @len:        number of bytes to transfer
5823  * @gup_flags:  flags modifying lookup behaviour
5824  *
5825  * The caller must hold a reference on @mm.
5826  *
5827  * Return: number of bytes copied from source to destination.
5828  */
5829 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5830                 void *buf, int len, unsigned int gup_flags)
5831 {
5832         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5833 }
5834
5835 /*
5836  * Access another process' address space.
5837  * Source/target buffer must be kernel space,
5838  * Do not walk the page table directly, use get_user_pages
5839  */
5840 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5841                 void *buf, int len, unsigned int gup_flags)
5842 {
5843         struct mm_struct *mm;
5844         int ret;
5845
5846         mm = get_task_mm(tsk);
5847         if (!mm)
5848                 return 0;
5849
5850         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5851
5852         mmput(mm);
5853
5854         return ret;
5855 }
5856 EXPORT_SYMBOL_GPL(access_process_vm);
5857
5858 /*
5859  * Print the name of a VMA.
5860  */
5861 void print_vma_addr(char *prefix, unsigned long ip)
5862 {
5863         struct mm_struct *mm = current->mm;
5864         struct vm_area_struct *vma;
5865
5866         /*
5867          * we might be running from an atomic context so we cannot sleep
5868          */
5869         if (!mmap_read_trylock(mm))
5870                 return;
5871
5872         vma = find_vma(mm, ip);
5873         if (vma && vma->vm_file) {
5874                 struct file *f = vma->vm_file;
5875                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5876                 if (buf) {
5877                         char *p;
5878
5879                         p = file_path(f, buf, PAGE_SIZE);
5880                         if (IS_ERR(p))
5881                                 p = "?";
5882                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5883                                         vma->vm_start,
5884                                         vma->vm_end - vma->vm_start);
5885                         free_page((unsigned long)buf);
5886                 }
5887         }
5888         mmap_read_unlock(mm);
5889 }
5890
5891 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5892 void __might_fault(const char *file, int line)
5893 {
5894         if (pagefault_disabled())
5895                 return;
5896         __might_sleep(file, line);
5897 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5898         if (current->mm)
5899                 might_lock_read(&current->mm->mmap_lock);
5900 #endif
5901 }
5902 EXPORT_SYMBOL(__might_fault);
5903 #endif
5904
5905 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5906 /*
5907  * Process all subpages of the specified huge page with the specified
5908  * operation.  The target subpage will be processed last to keep its
5909  * cache lines hot.
5910  */
5911 static inline int process_huge_page(
5912         unsigned long addr_hint, unsigned int pages_per_huge_page,
5913         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5914         void *arg)
5915 {
5916         int i, n, base, l, ret;
5917         unsigned long addr = addr_hint &
5918                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5919
5920         /* Process target subpage last to keep its cache lines hot */
5921         might_sleep();
5922         n = (addr_hint - addr) / PAGE_SIZE;
5923         if (2 * n <= pages_per_huge_page) {
5924                 /* If target subpage in first half of huge page */
5925                 base = 0;
5926                 l = n;
5927                 /* Process subpages at the end of huge page */
5928                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5929                         cond_resched();
5930                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5931                         if (ret)
5932                                 return ret;
5933                 }
5934         } else {
5935                 /* If target subpage in second half of huge page */
5936                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5937                 l = pages_per_huge_page - n;
5938                 /* Process subpages at the begin of huge page */
5939                 for (i = 0; i < base; i++) {
5940                         cond_resched();
5941                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5942                         if (ret)
5943                                 return ret;
5944                 }
5945         }
5946         /*
5947          * Process remaining subpages in left-right-left-right pattern
5948          * towards the target subpage
5949          */
5950         for (i = 0; i < l; i++) {
5951                 int left_idx = base + i;
5952                 int right_idx = base + 2 * l - 1 - i;
5953
5954                 cond_resched();
5955                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5956                 if (ret)
5957                         return ret;
5958                 cond_resched();
5959                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5960                 if (ret)
5961                         return ret;
5962         }
5963         return 0;
5964 }
5965
5966 static void clear_gigantic_page(struct page *page,
5967                                 unsigned long addr,
5968                                 unsigned int pages_per_huge_page)
5969 {
5970         int i;
5971         struct page *p;
5972
5973         might_sleep();
5974         for (i = 0; i < pages_per_huge_page; i++) {
5975                 p = nth_page(page, i);
5976                 cond_resched();
5977                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5978         }
5979 }
5980
5981 static int clear_subpage(unsigned long addr, int idx, void *arg)
5982 {
5983         struct page *page = arg;
5984
5985         clear_user_highpage(page + idx, addr);
5986         return 0;
5987 }
5988
5989 void clear_huge_page(struct page *page,
5990                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5991 {
5992         unsigned long addr = addr_hint &
5993                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5994
5995         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5996                 clear_gigantic_page(page, addr, pages_per_huge_page);
5997                 return;
5998         }
5999
6000         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6001 }
6002
6003 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6004                                      unsigned long addr,
6005                                      struct vm_area_struct *vma,
6006                                      unsigned int pages_per_huge_page)
6007 {
6008         int i;
6009         struct page *dst_page;
6010         struct page *src_page;
6011
6012         for (i = 0; i < pages_per_huge_page; i++) {
6013                 dst_page = folio_page(dst, i);
6014                 src_page = folio_page(src, i);
6015
6016                 cond_resched();
6017                 if (copy_mc_user_highpage(dst_page, src_page,
6018                                           addr + i*PAGE_SIZE, vma)) {
6019                         memory_failure_queue(page_to_pfn(src_page), 0);
6020                         return -EHWPOISON;
6021                 }
6022         }
6023         return 0;
6024 }
6025
6026 struct copy_subpage_arg {
6027         struct page *dst;
6028         struct page *src;
6029         struct vm_area_struct *vma;
6030 };
6031
6032 static int copy_subpage(unsigned long addr, int idx, void *arg)
6033 {
6034         struct copy_subpage_arg *copy_arg = arg;
6035
6036         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6037                                   addr, copy_arg->vma)) {
6038                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6039                 return -EHWPOISON;
6040         }
6041         return 0;
6042 }
6043
6044 int copy_user_large_folio(struct folio *dst, struct folio *src,
6045                           unsigned long addr_hint, struct vm_area_struct *vma)
6046 {
6047         unsigned int pages_per_huge_page = folio_nr_pages(dst);
6048         unsigned long addr = addr_hint &
6049                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6050         struct copy_subpage_arg arg = {
6051                 .dst = &dst->page,
6052                 .src = &src->page,
6053                 .vma = vma,
6054         };
6055
6056         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6057                 return copy_user_gigantic_page(dst, src, addr, vma,
6058                                                pages_per_huge_page);
6059
6060         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6061 }
6062
6063 long copy_folio_from_user(struct folio *dst_folio,
6064                            const void __user *usr_src,
6065                            bool allow_pagefault)
6066 {
6067         void *kaddr;
6068         unsigned long i, rc = 0;
6069         unsigned int nr_pages = folio_nr_pages(dst_folio);
6070         unsigned long ret_val = nr_pages * PAGE_SIZE;
6071         struct page *subpage;
6072
6073         for (i = 0; i < nr_pages; i++) {
6074                 subpage = folio_page(dst_folio, i);
6075                 kaddr = kmap_local_page(subpage);
6076                 if (!allow_pagefault)
6077                         pagefault_disable();
6078                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6079                 if (!allow_pagefault)
6080                         pagefault_enable();
6081                 kunmap_local(kaddr);
6082
6083                 ret_val -= (PAGE_SIZE - rc);
6084                 if (rc)
6085                         break;
6086
6087                 flush_dcache_page(subpage);
6088
6089                 cond_resched();
6090         }
6091         return ret_val;
6092 }
6093 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6094
6095 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6096
6097 static struct kmem_cache *page_ptl_cachep;
6098
6099 void __init ptlock_cache_init(void)
6100 {
6101         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6102                         SLAB_PANIC, NULL);
6103 }
6104
6105 bool ptlock_alloc(struct ptdesc *ptdesc)
6106 {
6107         spinlock_t *ptl;
6108
6109         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6110         if (!ptl)
6111                 return false;
6112         ptdesc->ptl = ptl;
6113         return true;
6114 }
6115
6116 void ptlock_free(struct ptdesc *ptdesc)
6117 {
6118         kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6119 }
6120 #endif