tizen 2.3.1 release
[kernel/linux-3.0.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180 EXPORT_SYMBOL(get_mm_counter);
181
182 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 {
184         __sync_task_rss_stat(task, mm);
185 }
186 #else /* SPLIT_RSS_COUNTING */
187
188 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
189 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 }
194
195 #endif /* SPLIT_RSS_COUNTING */
196
197 #ifdef HAVE_GENERIC_MMU_GATHER
198
199 static int tlb_next_batch(struct mmu_gather *tlb)
200 {
201         struct mmu_gather_batch *batch;
202
203         batch = tlb->active;
204         if (batch->next) {
205                 tlb->active = batch->next;
206                 return 1;
207         }
208
209         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
210                 return 0;
211
212         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
213         if (!batch)
214                 return 0;
215
216         tlb->batch_count++;
217         batch->next = NULL;
218         batch->nr   = 0;
219         batch->max  = MAX_GATHER_BATCH;
220
221         tlb->active->next = batch;
222         tlb->active = batch;
223
224         return 1;
225 }
226
227 /* tlb_gather_mmu
228  *      Called to initialize an (on-stack) mmu_gather structure for page-table
229  *      tear-down from @mm. The @fullmm argument is used when @mm is without
230  *      users and we're going to destroy the full address space (exit/execve).
231  */
232 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
233 {
234         tlb->mm = mm;
235
236         tlb->fullmm     = fullmm;
237         tlb->need_flush = 0;
238         tlb->fast_mode  = (num_possible_cpus() == 1);
239         tlb->local.next = NULL;
240         tlb->local.nr   = 0;
241         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
242         tlb->active     = &tlb->local;
243         tlb->batch_count = 0;
244
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb->batch = NULL;
247 #endif
248 }
249
250 void tlb_flush_mmu(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         if (!tlb->need_flush)
255                 return;
256         tlb->need_flush = 0;
257         tlb_flush(tlb);
258 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
259         tlb_table_flush(tlb);
260 #endif
261
262         if (tlb_fast_mode(tlb))
263                 return;
264
265         for (batch = &tlb->local; batch; batch = batch->next) {
266                 free_pages_and_swap_cache(batch->pages, batch->nr);
267                 batch->nr = 0;
268         }
269         tlb->active = &tlb->local;
270 }
271
272 /* tlb_finish_mmu
273  *      Called at the end of the shootdown operation to free up any resources
274  *      that were required.
275  */
276 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         tlb_flush_mmu(tlb);
281
282         /* keep the page table cache within bounds */
283         check_pgt_cache();
284
285         for (batch = tlb->local.next; batch; batch = next) {
286                 next = batch->next;
287                 free_pages((unsigned long)batch, 0);
288         }
289         tlb->local.next = NULL;
290 }
291
292 /* __tlb_remove_page
293  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
294  *      handling the additional races in SMP caused by other CPUs caching valid
295  *      mappings in their TLBs. Returns the number of free page slots left.
296  *      When out of page slots we must call tlb_flush_mmu().
297  */
298 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
299 {
300         struct mmu_gather_batch *batch;
301
302         tlb->need_flush = 1;
303
304         if (tlb_fast_mode(tlb)) {
305                 free_page_and_swap_cache(page);
306                 return 1; /* avoid calling tlb_flush_mmu() */
307         }
308
309         batch = tlb->active;
310         batch->pages[batch->nr++] = page;
311         if (batch->nr == batch->max) {
312                 if (!tlb_next_batch(tlb))
313                         return 0;
314                 batch = tlb->active;
315         }
316         VM_BUG_ON(batch->nr > batch->max);
317
318         return batch->max - batch->nr;
319 }
320
321 #endif /* HAVE_GENERIC_MMU_GATHER */
322
323 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
324
325 /*
326  * See the comment near struct mmu_table_batch.
327  */
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331         /* Simply deliver the interrupt */
332 }
333
334 static void tlb_remove_table_one(void *table)
335 {
336         /*
337          * This isn't an RCU grace period and hence the page-tables cannot be
338          * assumed to be actually RCU-freed.
339          *
340          * It is however sufficient for software page-table walkers that rely on
341          * IRQ disabling. See the comment near struct mmu_table_batch.
342          */
343         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
344         __tlb_remove_table(table);
345 }
346
347 static void tlb_remove_table_rcu(struct rcu_head *head)
348 {
349         struct mmu_table_batch *batch;
350         int i;
351
352         batch = container_of(head, struct mmu_table_batch, rcu);
353
354         for (i = 0; i < batch->nr; i++)
355                 __tlb_remove_table(batch->tables[i]);
356
357         free_page((unsigned long)batch);
358 }
359
360 void tlb_table_flush(struct mmu_gather *tlb)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         if (*batch) {
365                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
366                 *batch = NULL;
367         }
368 }
369
370 void tlb_remove_table(struct mmu_gather *tlb, void *table)
371 {
372         struct mmu_table_batch **batch = &tlb->batch;
373
374         tlb->need_flush = 1;
375
376         /*
377          * When there's less then two users of this mm there cannot be a
378          * concurrent page-table walk.
379          */
380         if (atomic_read(&tlb->mm->mm_users) < 2) {
381                 __tlb_remove_table(table);
382                 return;
383         }
384
385         if (*batch == NULL) {
386                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
387                 if (*batch == NULL) {
388                         tlb_remove_table_one(table);
389                         return;
390                 }
391                 (*batch)->nr = 0;
392         }
393         (*batch)->tables[(*batch)->nr++] = table;
394         if ((*batch)->nr == MAX_TABLE_BATCH)
395                 tlb_table_flush(tlb);
396 }
397
398 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
399
400 /*
401  * If a p?d_bad entry is found while walking page tables, report
402  * the error, before resetting entry to p?d_none.  Usually (but
403  * very seldom) called out from the p?d_none_or_clear_bad macros.
404  */
405
406 void pgd_clear_bad(pgd_t *pgd)
407 {
408         pgd_ERROR(*pgd);
409         pgd_clear(pgd);
410 }
411
412 void pud_clear_bad(pud_t *pud)
413 {
414         pud_ERROR(*pud);
415         pud_clear(pud);
416 }
417
418 void pmd_clear_bad(pmd_t *pmd)
419 {
420         pmd_ERROR(*pmd);
421         pmd_clear(pmd);
422 }
423
424 /*
425  * Note: this doesn't free the actual pages themselves. That
426  * has been handled earlier when unmapping all the memory regions.
427  */
428 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
429                            unsigned long addr)
430 {
431         pgtable_t token = pmd_pgtable(*pmd);
432         pmd_clear(pmd);
433         pte_free_tlb(tlb, token, addr);
434         tlb->mm->nr_ptes--;
435 }
436
437 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
438                                 unsigned long addr, unsigned long end,
439                                 unsigned long floor, unsigned long ceiling)
440 {
441         pmd_t *pmd;
442         unsigned long next;
443         unsigned long start;
444
445         start = addr;
446         pmd = pmd_offset(pud, addr);
447         do {
448                 next = pmd_addr_end(addr, end);
449                 if (pmd_none_or_clear_bad(pmd))
450                         continue;
451                 free_pte_range(tlb, pmd, addr);
452         } while (pmd++, addr = next, addr != end);
453
454         start &= PUD_MASK;
455         if (start < floor)
456                 return;
457         if (ceiling) {
458                 ceiling &= PUD_MASK;
459                 if (!ceiling)
460                         return;
461         }
462         if (end - 1 > ceiling - 1)
463                 return;
464
465         pmd = pmd_offset(pud, start);
466         pud_clear(pud);
467         pmd_free_tlb(tlb, pmd, start);
468 }
469
470 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
471                                 unsigned long addr, unsigned long end,
472                                 unsigned long floor, unsigned long ceiling)
473 {
474         pud_t *pud;
475         unsigned long next;
476         unsigned long start;
477
478         start = addr;
479         pud = pud_offset(pgd, addr);
480         do {
481                 next = pud_addr_end(addr, end);
482                 if (pud_none_or_clear_bad(pud))
483                         continue;
484                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
485         } while (pud++, addr = next, addr != end);
486
487         start &= PGDIR_MASK;
488         if (start < floor)
489                 return;
490         if (ceiling) {
491                 ceiling &= PGDIR_MASK;
492                 if (!ceiling)
493                         return;
494         }
495         if (end - 1 > ceiling - 1)
496                 return;
497
498         pud = pud_offset(pgd, start);
499         pgd_clear(pgd);
500         pud_free_tlb(tlb, pud, start);
501 }
502
503 /*
504  * This function frees user-level page tables of a process.
505  *
506  * Must be called with pagetable lock held.
507  */
508 void free_pgd_range(struct mmu_gather *tlb,
509                         unsigned long addr, unsigned long end,
510                         unsigned long floor, unsigned long ceiling)
511 {
512         pgd_t *pgd;
513         unsigned long next;
514
515         /*
516          * The next few lines have given us lots of grief...
517          *
518          * Why are we testing PMD* at this top level?  Because often
519          * there will be no work to do at all, and we'd prefer not to
520          * go all the way down to the bottom just to discover that.
521          *
522          * Why all these "- 1"s?  Because 0 represents both the bottom
523          * of the address space and the top of it (using -1 for the
524          * top wouldn't help much: the masks would do the wrong thing).
525          * The rule is that addr 0 and floor 0 refer to the bottom of
526          * the address space, but end 0 and ceiling 0 refer to the top
527          * Comparisons need to use "end - 1" and "ceiling - 1" (though
528          * that end 0 case should be mythical).
529          *
530          * Wherever addr is brought up or ceiling brought down, we must
531          * be careful to reject "the opposite 0" before it confuses the
532          * subsequent tests.  But what about where end is brought down
533          * by PMD_SIZE below? no, end can't go down to 0 there.
534          *
535          * Whereas we round start (addr) and ceiling down, by different
536          * masks at different levels, in order to test whether a table
537          * now has no other vmas using it, so can be freed, we don't
538          * bother to round floor or end up - the tests don't need that.
539          */
540
541         addr &= PMD_MASK;
542         if (addr < floor) {
543                 addr += PMD_SIZE;
544                 if (!addr)
545                         return;
546         }
547         if (ceiling) {
548                 ceiling &= PMD_MASK;
549                 if (!ceiling)
550                         return;
551         }
552         if (end - 1 > ceiling - 1)
553                 end -= PMD_SIZE;
554         if (addr > end - 1)
555                 return;
556
557         pgd = pgd_offset(tlb->mm, addr);
558         do {
559                 next = pgd_addr_end(addr, end);
560                 if (pgd_none_or_clear_bad(pgd))
561                         continue;
562                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
563         } while (pgd++, addr = next, addr != end);
564 }
565
566 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
567                 unsigned long floor, unsigned long ceiling)
568 {
569         while (vma) {
570                 struct vm_area_struct *next = vma->vm_next;
571                 unsigned long addr = vma->vm_start;
572
573                 /*
574                  * Hide vma from rmap and truncate_pagecache before freeing
575                  * pgtables
576                  */
577                 unlink_anon_vmas(vma);
578                 unlink_file_vma(vma);
579
580                 if (is_vm_hugetlb_page(vma)) {
581                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
582                                 floor, next? next->vm_start: ceiling);
583                 } else {
584                         /*
585                          * Optimization: gather nearby vmas into one call down
586                          */
587                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
588                                && !is_vm_hugetlb_page(next)) {
589                                 vma = next;
590                                 next = vma->vm_next;
591                                 unlink_anon_vmas(vma);
592                                 unlink_file_vma(vma);
593                         }
594                         free_pgd_range(tlb, addr, vma->vm_end,
595                                 floor, next? next->vm_start: ceiling);
596                 }
597                 vma = next;
598         }
599 }
600
601 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
602                 pmd_t *pmd, unsigned long address)
603 {
604         pgtable_t new = pte_alloc_one(mm, address);
605         int wait_split_huge_page;
606         if (!new)
607                 return -ENOMEM;
608
609         /*
610          * Ensure all pte setup (eg. pte page lock and page clearing) are
611          * visible before the pte is made visible to other CPUs by being
612          * put into page tables.
613          *
614          * The other side of the story is the pointer chasing in the page
615          * table walking code (when walking the page table without locking;
616          * ie. most of the time). Fortunately, these data accesses consist
617          * of a chain of data-dependent loads, meaning most CPUs (alpha
618          * being the notable exception) will already guarantee loads are
619          * seen in-order. See the alpha page table accessors for the
620          * smp_read_barrier_depends() barriers in page table walking code.
621          */
622         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
623
624         spin_lock(&mm->page_table_lock);
625         wait_split_huge_page = 0;
626         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
627                 mm->nr_ptes++;
628                 pmd_populate(mm, pmd, new);
629                 new = NULL;
630         } else if (unlikely(pmd_trans_splitting(*pmd)))
631                 wait_split_huge_page = 1;
632         spin_unlock(&mm->page_table_lock);
633         if (new)
634                 pte_free(mm, new);
635         if (wait_split_huge_page)
636                 wait_split_huge_page(vma->anon_vma, pmd);
637         return 0;
638 }
639
640 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
641 {
642         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
643         if (!new)
644                 return -ENOMEM;
645
646         smp_wmb(); /* See comment in __pte_alloc */
647
648         spin_lock(&init_mm.page_table_lock);
649         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
650                 pmd_populate_kernel(&init_mm, pmd, new);
651                 new = NULL;
652         } else
653                 VM_BUG_ON(pmd_trans_splitting(*pmd));
654         spin_unlock(&init_mm.page_table_lock);
655         if (new)
656                 pte_free_kernel(&init_mm, new);
657         return 0;
658 }
659
660 static inline void init_rss_vec(int *rss)
661 {
662         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
663 }
664
665 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
666 {
667         int i;
668
669         if (current->mm == mm)
670                 sync_mm_rss(current, mm);
671         for (i = 0; i < NR_MM_COUNTERS; i++)
672                 if (rss[i])
673                         add_mm_counter(mm, i, rss[i]);
674 }
675
676 /*
677  * This function is called to print an error when a bad pte
678  * is found. For example, we might have a PFN-mapped pte in
679  * a region that doesn't allow it.
680  *
681  * The calling function must still handle the error.
682  */
683 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
684                           pte_t pte, struct page *page)
685 {
686         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
687         pud_t *pud = pud_offset(pgd, addr);
688         pmd_t *pmd = pmd_offset(pud, addr);
689         struct address_space *mapping;
690         pgoff_t index;
691         static unsigned long resume;
692         static unsigned long nr_shown;
693         static unsigned long nr_unshown;
694
695         /*
696          * Allow a burst of 60 reports, then keep quiet for that minute;
697          * or allow a steady drip of one report per second.
698          */
699         if (nr_shown == 60) {
700                 if (time_before(jiffies, resume)) {
701                         nr_unshown++;
702                         return;
703                 }
704                 if (nr_unshown) {
705                         printk(KERN_ALERT
706                                 "BUG: Bad page map: %lu messages suppressed\n",
707                                 nr_unshown);
708                         nr_unshown = 0;
709                 }
710                 nr_shown = 0;
711         }
712         if (nr_shown++ == 0)
713                 resume = jiffies + 60 * HZ;
714
715         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
716         index = linear_page_index(vma, addr);
717
718         printk(KERN_ALERT
719                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
720                 current->comm,
721                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
722         if (page)
723                 dump_page(page);
724         printk(KERN_ALERT
725                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
726                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
727         /*
728          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
729          */
730         if (vma->vm_ops)
731                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
732                                 (unsigned long)vma->vm_ops->fault);
733         if (vma->vm_file && vma->vm_file->f_op)
734                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
735                                 (unsigned long)vma->vm_file->f_op->mmap);
736         dump_stack();
737         add_taint(TAINT_BAD_PAGE);
738 }
739
740 static inline int is_cow_mapping(vm_flags_t flags)
741 {
742         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
743 }
744
745 #ifndef is_zero_pfn
746 static inline int is_zero_pfn(unsigned long pfn)
747 {
748         return pfn == zero_pfn;
749 }
750 #endif
751
752 #ifndef my_zero_pfn
753 static inline unsigned long my_zero_pfn(unsigned long addr)
754 {
755         return zero_pfn;
756 }
757 #endif
758
759 /*
760  * vm_normal_page -- This function gets the "struct page" associated with a pte.
761  *
762  * "Special" mappings do not wish to be associated with a "struct page" (either
763  * it doesn't exist, or it exists but they don't want to touch it). In this
764  * case, NULL is returned here. "Normal" mappings do have a struct page.
765  *
766  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
767  * pte bit, in which case this function is trivial. Secondly, an architecture
768  * may not have a spare pte bit, which requires a more complicated scheme,
769  * described below.
770  *
771  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
772  * special mapping (even if there are underlying and valid "struct pages").
773  * COWed pages of a VM_PFNMAP are always normal.
774  *
775  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
776  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
777  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
778  * mapping will always honor the rule
779  *
780  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
781  *
782  * And for normal mappings this is false.
783  *
784  * This restricts such mappings to be a linear translation from virtual address
785  * to pfn. To get around this restriction, we allow arbitrary mappings so long
786  * as the vma is not a COW mapping; in that case, we know that all ptes are
787  * special (because none can have been COWed).
788  *
789  *
790  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
791  *
792  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
793  * page" backing, however the difference is that _all_ pages with a struct
794  * page (that is, those where pfn_valid is true) are refcounted and considered
795  * normal pages by the VM. The disadvantage is that pages are refcounted
796  * (which can be slower and simply not an option for some PFNMAP users). The
797  * advantage is that we don't have to follow the strict linearity rule of
798  * PFNMAP mappings in order to support COWable mappings.
799  *
800  */
801 #ifdef __HAVE_ARCH_PTE_SPECIAL
802 # define HAVE_PTE_SPECIAL 1
803 #else
804 # define HAVE_PTE_SPECIAL 0
805 #endif
806 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
807                                 pte_t pte)
808 {
809         unsigned long pfn = pte_pfn(pte);
810
811         if (HAVE_PTE_SPECIAL) {
812                 if (likely(!pte_special(pte)))
813                         goto check_pfn;
814                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
815                         return NULL;
816                 if (!is_zero_pfn(pfn))
817                         print_bad_pte(vma, addr, pte, NULL);
818                 return NULL;
819         }
820
821         /* !HAVE_PTE_SPECIAL case follows: */
822
823         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
824                 if (vma->vm_flags & VM_MIXEDMAP) {
825                         if (!pfn_valid(pfn))
826                                 return NULL;
827                         goto out;
828                 } else {
829                         unsigned long off;
830                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
831                         if (pfn == vma->vm_pgoff + off)
832                                 return NULL;
833                         if (!is_cow_mapping(vma->vm_flags))
834                                 return NULL;
835                 }
836         }
837
838         if (is_zero_pfn(pfn))
839                 return NULL;
840 check_pfn:
841         if (unlikely(pfn > highest_memmap_pfn)) {
842                 print_bad_pte(vma, addr, pte, NULL);
843                 return NULL;
844         }
845
846         /*
847          * NOTE! We still have PageReserved() pages in the page tables.
848          * eg. VDSO mappings can cause them to exist.
849          */
850 out:
851         return pfn_to_page(pfn);
852 }
853
854 /*
855  * copy one vm_area from one task to the other. Assumes the page tables
856  * already present in the new task to be cleared in the whole range
857  * covered by this vma.
858  */
859
860 static inline unsigned long
861 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
862                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
863                 unsigned long addr, int *rss)
864 {
865         unsigned long vm_flags = vma->vm_flags;
866         pte_t pte = *src_pte;
867         struct page *page;
868
869         /* pte contains position in swap or file, so copy. */
870         if (unlikely(!pte_present(pte))) {
871                 if (!pte_file(pte)) {
872                         swp_entry_t entry = pte_to_swp_entry(pte);
873
874                         if (swap_duplicate(entry) < 0)
875                                 return entry.val;
876
877                         /* make sure dst_mm is on swapoff's mmlist. */
878                         if (unlikely(list_empty(&dst_mm->mmlist))) {
879                                 spin_lock(&mmlist_lock);
880                                 if (list_empty(&dst_mm->mmlist))
881                                         list_add(&dst_mm->mmlist,
882                                                  &src_mm->mmlist);
883                                 spin_unlock(&mmlist_lock);
884                         }
885                         if (likely(!non_swap_entry(entry)))
886                                 rss[MM_SWAPENTS]++;
887                         else if (is_write_migration_entry(entry) &&
888                                         is_cow_mapping(vm_flags)) {
889                                 /*
890                                  * COW mappings require pages in both parent
891                                  * and child to be set to read.
892                                  */
893                                 make_migration_entry_read(&entry);
894                                 pte = swp_entry_to_pte(entry);
895                                 set_pte_at(src_mm, addr, src_pte, pte);
896                         }
897                 }
898                 goto out_set_pte;
899         }
900
901         /*
902          * If it's a COW mapping, write protect it both
903          * in the parent and the child
904          */
905         if (is_cow_mapping(vm_flags)) {
906                 ptep_set_wrprotect(src_mm, addr, src_pte);
907                 pte = pte_wrprotect(pte);
908         }
909
910         /*
911          * If it's a shared mapping, mark it clean in
912          * the child
913          */
914         if (vm_flags & VM_SHARED)
915                 pte = pte_mkclean(pte);
916         pte = pte_mkold(pte);
917
918         page = vm_normal_page(vma, addr, pte);
919         if (page) {
920                 get_page(page);
921                 page_dup_rmap(page);
922                 if (PageAnon(page))
923                         rss[MM_ANONPAGES]++;
924                 else
925                         rss[MM_FILEPAGES]++;
926         }
927
928 out_set_pte:
929         set_pte_at(dst_mm, addr, dst_pte, pte);
930         return 0;
931 }
932
933 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
935                    unsigned long addr, unsigned long end)
936 {
937         pte_t *orig_src_pte, *orig_dst_pte;
938         pte_t *src_pte, *dst_pte;
939         spinlock_t *src_ptl, *dst_ptl;
940         int progress = 0;
941         int rss[NR_MM_COUNTERS];
942         swp_entry_t entry = (swp_entry_t){0};
943
944 again:
945         init_rss_vec(rss);
946
947         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
948         if (!dst_pte)
949                 return -ENOMEM;
950         src_pte = pte_offset_map(src_pmd, addr);
951         src_ptl = pte_lockptr(src_mm, src_pmd);
952         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
953         orig_src_pte = src_pte;
954         orig_dst_pte = dst_pte;
955         arch_enter_lazy_mmu_mode();
956
957         do {
958                 /*
959                  * We are holding two locks at this point - either of them
960                  * could generate latencies in another task on another CPU.
961                  */
962                 if (progress >= 32) {
963                         progress = 0;
964                         if (need_resched() ||
965                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
966                                 break;
967                 }
968                 if (pte_none(*src_pte)) {
969                         progress++;
970                         continue;
971                 }
972                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
973                                                         vma, addr, rss);
974                 if (entry.val)
975                         break;
976                 progress += 8;
977         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
978
979         arch_leave_lazy_mmu_mode();
980         spin_unlock(src_ptl);
981         pte_unmap(orig_src_pte);
982         add_mm_rss_vec(dst_mm, rss);
983         pte_unmap_unlock(orig_dst_pte, dst_ptl);
984         cond_resched();
985
986         if (entry.val) {
987                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
988                         return -ENOMEM;
989                 progress = 0;
990         }
991         if (addr != end)
992                 goto again;
993         return 0;
994 }
995
996 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
997                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
998                 unsigned long addr, unsigned long end)
999 {
1000         pmd_t *src_pmd, *dst_pmd;
1001         unsigned long next;
1002
1003         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1004         if (!dst_pmd)
1005                 return -ENOMEM;
1006         src_pmd = pmd_offset(src_pud, addr);
1007         do {
1008                 next = pmd_addr_end(addr, end);
1009                 if (pmd_trans_huge(*src_pmd)) {
1010                         int err;
1011                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1012                         err = copy_huge_pmd(dst_mm, src_mm,
1013                                             dst_pmd, src_pmd, addr, vma);
1014                         if (err == -ENOMEM)
1015                                 return -ENOMEM;
1016                         if (!err)
1017                                 continue;
1018                         /* fall through */
1019                 }
1020                 if (pmd_none_or_clear_bad(src_pmd))
1021                         continue;
1022                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1023                                                 vma, addr, next))
1024                         return -ENOMEM;
1025         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1026         return 0;
1027 }
1028
1029 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1030                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1031                 unsigned long addr, unsigned long end)
1032 {
1033         pud_t *src_pud, *dst_pud;
1034         unsigned long next;
1035
1036         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1037         if (!dst_pud)
1038                 return -ENOMEM;
1039         src_pud = pud_offset(src_pgd, addr);
1040         do {
1041                 next = pud_addr_end(addr, end);
1042                 if (pud_none_or_clear_bad(src_pud))
1043                         continue;
1044                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1045                                                 vma, addr, next))
1046                         return -ENOMEM;
1047         } while (dst_pud++, src_pud++, addr = next, addr != end);
1048         return 0;
1049 }
1050
1051 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1052                 struct vm_area_struct *vma)
1053 {
1054         pgd_t *src_pgd, *dst_pgd;
1055         unsigned long next;
1056         unsigned long addr = vma->vm_start;
1057         unsigned long end = vma->vm_end;
1058         int ret;
1059
1060         /*
1061          * Don't copy ptes where a page fault will fill them correctly.
1062          * Fork becomes much lighter when there are big shared or private
1063          * readonly mappings. The tradeoff is that copy_page_range is more
1064          * efficient than faulting.
1065          */
1066         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1067                 if (!vma->anon_vma)
1068                         return 0;
1069         }
1070
1071         if (is_vm_hugetlb_page(vma))
1072                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1073
1074         if (unlikely(is_pfn_mapping(vma))) {
1075                 /*
1076                  * We do not free on error cases below as remove_vma
1077                  * gets called on error from higher level routine
1078                  */
1079                 ret = track_pfn_vma_copy(vma);
1080                 if (ret)
1081                         return ret;
1082         }
1083
1084         /*
1085          * We need to invalidate the secondary MMU mappings only when
1086          * there could be a permission downgrade on the ptes of the
1087          * parent mm. And a permission downgrade will only happen if
1088          * is_cow_mapping() returns true.
1089          */
1090         if (is_cow_mapping(vma->vm_flags))
1091                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1092
1093         ret = 0;
1094         dst_pgd = pgd_offset(dst_mm, addr);
1095         src_pgd = pgd_offset(src_mm, addr);
1096         do {
1097                 next = pgd_addr_end(addr, end);
1098                 if (pgd_none_or_clear_bad(src_pgd))
1099                         continue;
1100                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1101                                             vma, addr, next))) {
1102                         ret = -ENOMEM;
1103                         break;
1104                 }
1105         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1106
1107         if (is_cow_mapping(vma->vm_flags))
1108                 mmu_notifier_invalidate_range_end(src_mm,
1109                                                   vma->vm_start, end);
1110         return ret;
1111 }
1112
1113 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1114                                 struct vm_area_struct *vma, pmd_t *pmd,
1115                                 unsigned long addr, unsigned long end,
1116                                 struct zap_details *details)
1117 {
1118         struct mm_struct *mm = tlb->mm;
1119         int force_flush = 0;
1120         int rss[NR_MM_COUNTERS];
1121         spinlock_t *ptl;
1122         pte_t *start_pte;
1123         pte_t *pte;
1124
1125 again:
1126         init_rss_vec(rss);
1127         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128         pte = start_pte;
1129         arch_enter_lazy_mmu_mode();
1130         do {
1131                 pte_t ptent = *pte;
1132                 if (pte_none(ptent)) {
1133                         continue;
1134                 }
1135
1136                 if (pte_present(ptent)) {
1137                         struct page *page;
1138
1139                         page = vm_normal_page(vma, addr, ptent);
1140                         if (unlikely(details) && page) {
1141                                 /*
1142                                  * unmap_shared_mapping_pages() wants to
1143                                  * invalidate cache without truncating:
1144                                  * unmap shared but keep private pages.
1145                                  */
1146                                 if (details->check_mapping &&
1147                                     details->check_mapping != page->mapping)
1148                                         continue;
1149                                 /*
1150                                  * Each page->index must be checked when
1151                                  * invalidating or truncating nonlinear.
1152                                  */
1153                                 if (details->nonlinear_vma &&
1154                                     (page->index < details->first_index ||
1155                                      page->index > details->last_index))
1156                                         continue;
1157                         }
1158                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1159                                                         tlb->fullmm);
1160                         tlb_remove_tlb_entry(tlb, pte, addr);
1161                         if (unlikely(!page))
1162                                 continue;
1163                         if (unlikely(details) && details->nonlinear_vma
1164                             && linear_page_index(details->nonlinear_vma,
1165                                                 addr) != page->index)
1166                                 set_pte_at(mm, addr, pte,
1167                                            pgoff_to_pte(page->index));
1168                         if (PageAnon(page))
1169                                 rss[MM_ANONPAGES]--;
1170                         else {
1171                                 if (pte_dirty(ptent))
1172                                         set_page_dirty(page);
1173                                 if (pte_young(ptent) &&
1174                                     likely(!VM_SequentialReadHint(vma)))
1175                                         mark_page_accessed(page);
1176                                 rss[MM_FILEPAGES]--;
1177                         }
1178                         page_remove_rmap(page);
1179                         if (unlikely(page_mapcount(page) < 0))
1180                                 print_bad_pte(vma, addr, ptent, page);
1181                         force_flush = !__tlb_remove_page(tlb, page);
1182                         if (force_flush)
1183                                 break;
1184                         continue;
1185                 }
1186                 /*
1187                  * If details->check_mapping, we leave swap entries;
1188                  * if details->nonlinear_vma, we leave file entries.
1189                  */
1190                 if (unlikely(details))
1191                         continue;
1192                 if (pte_file(ptent)) {
1193                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1194                                 print_bad_pte(vma, addr, ptent, NULL);
1195                 } else {
1196                         swp_entry_t entry = pte_to_swp_entry(ptent);
1197
1198                         if (!non_swap_entry(entry))
1199                                 rss[MM_SWAPENTS]--;
1200                         if (unlikely(!free_swap_and_cache(entry)))
1201                                 print_bad_pte(vma, addr, ptent, NULL);
1202                 }
1203                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1204         } while (pte++, addr += PAGE_SIZE, addr != end);
1205
1206         add_mm_rss_vec(mm, rss);
1207         arch_leave_lazy_mmu_mode();
1208         pte_unmap_unlock(start_pte, ptl);
1209
1210         /*
1211          * mmu_gather ran out of room to batch pages, we break out of
1212          * the PTE lock to avoid doing the potential expensive TLB invalidate
1213          * and page-free while holding it.
1214          */
1215         if (force_flush) {
1216                 force_flush = 0;
1217                 tlb_flush_mmu(tlb);
1218                 if (addr != end)
1219                         goto again;
1220         }
1221
1222         return addr;
1223 }
1224
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226                                 struct vm_area_struct *vma, pud_t *pud,
1227                                 unsigned long addr, unsigned long end,
1228                                 struct zap_details *details)
1229 {
1230         pmd_t *pmd;
1231         unsigned long next;
1232
1233         pmd = pmd_offset(pud, addr);
1234         do {
1235                 next = pmd_addr_end(addr, end);
1236                 if (pmd_trans_huge(*pmd)) {
1237                         if (next - addr != HPAGE_PMD_SIZE) {
1238                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1239                                 split_huge_page_pmd(vma->vm_mm, pmd);
1240                         } else if (zap_huge_pmd(tlb, vma, pmd))
1241                                 goto next;
1242                         /* fall through */
1243                 }
1244                 /*
1245                  * Here there can be other concurrent MADV_DONTNEED or
1246                  * trans huge page faults running, and if the pmd is
1247                  * none or trans huge it can change under us. This is
1248                  * because MADV_DONTNEED holds the mmap_sem in read
1249                  * mode.
1250                  */
1251                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252                         goto next;
1253
1254                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1255 next:
1256                 cond_resched();
1257         } while (pmd++, addr = next, addr != end);
1258
1259         return addr;
1260 }
1261
1262 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1263                                 struct vm_area_struct *vma, pgd_t *pgd,
1264                                 unsigned long addr, unsigned long end,
1265                                 struct zap_details *details)
1266 {
1267         pud_t *pud;
1268         unsigned long next;
1269
1270         pud = pud_offset(pgd, addr);
1271         do {
1272                 next = pud_addr_end(addr, end);
1273                 if (pud_none_or_clear_bad(pud))
1274                         continue;
1275                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1276         } while (pud++, addr = next, addr != end);
1277
1278         return addr;
1279 }
1280
1281 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1282                                 struct vm_area_struct *vma,
1283                                 unsigned long addr, unsigned long end,
1284                                 struct zap_details *details)
1285 {
1286         pgd_t *pgd;
1287         unsigned long next;
1288
1289         if (details && !details->check_mapping && !details->nonlinear_vma)
1290                 details = NULL;
1291
1292         BUG_ON(addr >= end);
1293         mem_cgroup_uncharge_start();
1294         tlb_start_vma(tlb, vma);
1295         pgd = pgd_offset(vma->vm_mm, addr);
1296         do {
1297                 next = pgd_addr_end(addr, end);
1298                 if (pgd_none_or_clear_bad(pgd))
1299                         continue;
1300                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301         } while (pgd++, addr = next, addr != end);
1302         tlb_end_vma(tlb, vma);
1303         mem_cgroup_uncharge_end();
1304
1305         return addr;
1306 }
1307
1308 #ifdef CONFIG_PREEMPT
1309 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1310 #else
1311 /* No preempt: go for improved straight-line efficiency */
1312 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1313 #endif
1314
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1322  * @details: details of nonlinear truncation or shared cache invalidation
1323  *
1324  * Returns the end address of the unmapping (restart addr if interrupted).
1325  *
1326  * Unmap all pages in the vma list.
1327  *
1328  * We aim to not hold locks for too long (for scheduling latency reasons).
1329  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1330  * return the ending mmu_gather to the caller.
1331  *
1332  * Only addresses between `start' and `end' will be unmapped.
1333  *
1334  * The VMA list must be sorted in ascending virtual address order.
1335  *
1336  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1337  * range after unmap_vmas() returns.  So the only responsibility here is to
1338  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1339  * drops the lock and schedules.
1340  */
1341 unsigned long unmap_vmas(struct mmu_gather *tlb,
1342                 struct vm_area_struct *vma, unsigned long start_addr,
1343                 unsigned long end_addr, unsigned long *nr_accounted,
1344                 struct zap_details *details)
1345 {
1346         unsigned long start = start_addr;
1347         struct mm_struct *mm = vma->vm_mm;
1348
1349         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1350         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1351                 unsigned long end;
1352
1353                 start = max(vma->vm_start, start_addr);
1354                 if (start >= vma->vm_end)
1355                         continue;
1356                 end = min(vma->vm_end, end_addr);
1357                 if (end <= vma->vm_start)
1358                         continue;
1359
1360                 if (vma->vm_flags & VM_ACCOUNT)
1361                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1362
1363                 if (unlikely(is_pfn_mapping(vma)))
1364                         untrack_pfn_vma(vma, 0, 0);
1365
1366                 while (start != end) {
1367                         if (unlikely(is_vm_hugetlb_page(vma))) {
1368                                 /*
1369                                  * It is undesirable to test vma->vm_file as it
1370                                  * should be non-null for valid hugetlb area.
1371                                  * However, vm_file will be NULL in the error
1372                                  * cleanup path of do_mmap_pgoff. When
1373                                  * hugetlbfs ->mmap method fails,
1374                                  * do_mmap_pgoff() nullifies vma->vm_file
1375                                  * before calling this function to clean up.
1376                                  * Since no pte has actually been setup, it is
1377                                  * safe to do nothing in this case.
1378                                  */
1379                                 if (vma->vm_file)
1380                                         unmap_hugepage_range(vma, start, end, NULL);
1381
1382                                 start = end;
1383                         } else
1384                                 start = unmap_page_range(tlb, vma, start, end, details);
1385                 }
1386         }
1387
1388         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389         return start;   /* which is now the end (or restart) address */
1390 }
1391
1392 /**
1393  * zap_page_range - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @address: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  * @details: details of nonlinear truncation or shared cache invalidation
1398  */
1399 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1400                 unsigned long size, struct zap_details *details)
1401 {
1402         struct mm_struct *mm = vma->vm_mm;
1403         struct mmu_gather tlb;
1404         unsigned long end = address + size;
1405         unsigned long nr_accounted = 0;
1406
1407         lru_add_drain();
1408         tlb_gather_mmu(&tlb, mm, 0);
1409         update_hiwater_rss(mm);
1410         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1411         tlb_finish_mmu(&tlb, address, end);
1412         return end;
1413 }
1414
1415 /**
1416  * zap_vma_ptes - remove ptes mapping the vma
1417  * @vma: vm_area_struct holding ptes to be zapped
1418  * @address: starting address of pages to zap
1419  * @size: number of bytes to zap
1420  *
1421  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1422  *
1423  * The entire address range must be fully contained within the vma.
1424  *
1425  * Returns 0 if successful.
1426  */
1427 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1428                 unsigned long size)
1429 {
1430         if (address < vma->vm_start || address + size > vma->vm_end ||
1431                         !(vma->vm_flags & VM_PFNMAP))
1432                 return -1;
1433         zap_page_range(vma, address, size, NULL);
1434         return 0;
1435 }
1436 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1437
1438 /**
1439  * follow_page - look up a page descriptor from a user-virtual address
1440  * @vma: vm_area_struct mapping @address
1441  * @address: virtual address to look up
1442  * @flags: flags modifying lookup behaviour
1443  *
1444  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1445  *
1446  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1447  * an error pointer if there is a mapping to something not represented
1448  * by a page descriptor (see also vm_normal_page()).
1449  */
1450 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1451                         unsigned int flags)
1452 {
1453         pgd_t *pgd;
1454         pud_t *pud;
1455         pmd_t *pmd;
1456         pte_t *ptep, pte;
1457         spinlock_t *ptl;
1458         struct page *page;
1459         struct mm_struct *mm = vma->vm_mm;
1460
1461         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1462         if (!IS_ERR(page)) {
1463                 BUG_ON(flags & FOLL_GET);
1464                 goto out;
1465         }
1466
1467         page = NULL;
1468         pgd = pgd_offset(mm, address);
1469         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1470                 goto no_page_table;
1471
1472         pud = pud_offset(pgd, address);
1473         if (pud_none(*pud))
1474                 goto no_page_table;
1475         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1476                 BUG_ON(flags & FOLL_GET);
1477                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1478                 goto out;
1479         }
1480         if (unlikely(pud_bad(*pud)))
1481                 goto no_page_table;
1482
1483         pmd = pmd_offset(pud, address);
1484         if (pmd_none(*pmd))
1485                 goto no_page_table;
1486         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1487                 BUG_ON(flags & FOLL_GET);
1488                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1489                 goto out;
1490         }
1491         if (pmd_trans_huge(*pmd)) {
1492                 if (flags & FOLL_SPLIT) {
1493                         split_huge_page_pmd(mm, pmd);
1494                         goto split_fallthrough;
1495                 }
1496                 spin_lock(&mm->page_table_lock);
1497                 if (likely(pmd_trans_huge(*pmd))) {
1498                         if (unlikely(pmd_trans_splitting(*pmd))) {
1499                                 spin_unlock(&mm->page_table_lock);
1500                                 wait_split_huge_page(vma->anon_vma, pmd);
1501                         } else {
1502                                 page = follow_trans_huge_pmd(mm, address,
1503                                                              pmd, flags);
1504                                 spin_unlock(&mm->page_table_lock);
1505                                 goto out;
1506                         }
1507                 } else
1508                         spin_unlock(&mm->page_table_lock);
1509                 /* fall through */
1510         }
1511 split_fallthrough:
1512         if (unlikely(pmd_bad(*pmd)))
1513                 goto no_page_table;
1514
1515         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1516
1517         pte = *ptep;
1518         if (!pte_present(pte))
1519                 goto no_page;
1520         if ((flags & FOLL_WRITE) && !pte_write(pte))
1521                 goto unlock;
1522
1523         page = vm_normal_page(vma, address, pte);
1524         if (unlikely(!page)) {
1525                 if ((flags & FOLL_DUMP) ||
1526                     !is_zero_pfn(pte_pfn(pte)))
1527                         goto bad_page;
1528                 page = pte_page(pte);
1529         }
1530
1531         if (flags & FOLL_GET)
1532                 get_page_foll(page);
1533         if (flags & FOLL_TOUCH) {
1534                 if ((flags & FOLL_WRITE) &&
1535                     !pte_dirty(pte) && !PageDirty(page))
1536                         set_page_dirty(page);
1537                 /*
1538                  * pte_mkyoung() would be more correct here, but atomic care
1539                  * is needed to avoid losing the dirty bit: it is easier to use
1540                  * mark_page_accessed().
1541                  */
1542                 mark_page_accessed(page);
1543         }
1544         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1545                 /*
1546                  * The preliminary mapping check is mainly to avoid the
1547                  * pointless overhead of lock_page on the ZERO_PAGE
1548                  * which might bounce very badly if there is contention.
1549                  *
1550                  * If the page is already locked, we don't need to
1551                  * handle it now - vmscan will handle it later if and
1552                  * when it attempts to reclaim the page.
1553                  */
1554                 if (page->mapping && trylock_page(page)) {
1555                         lru_add_drain();  /* push cached pages to LRU */
1556                         /*
1557                          * Because we lock page here and migration is
1558                          * blocked by the pte's page reference, we need
1559                          * only check for file-cache page truncation.
1560                          */
1561                         if (page->mapping)
1562                                 mlock_vma_page(page);
1563                         unlock_page(page);
1564                 }
1565         }
1566 unlock:
1567         pte_unmap_unlock(ptep, ptl);
1568 out:
1569         return page;
1570
1571 bad_page:
1572         pte_unmap_unlock(ptep, ptl);
1573         return ERR_PTR(-EFAULT);
1574
1575 no_page:
1576         pte_unmap_unlock(ptep, ptl);
1577         if (!pte_none(pte))
1578                 return page;
1579
1580 no_page_table:
1581         /*
1582          * When core dumping an enormous anonymous area that nobody
1583          * has touched so far, we don't want to allocate unnecessary pages or
1584          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1585          * then get_dump_page() will return NULL to leave a hole in the dump.
1586          * But we can only make this optimization where a hole would surely
1587          * be zero-filled if handle_mm_fault() actually did handle it.
1588          */
1589         if ((flags & FOLL_DUMP) &&
1590             (!vma->vm_ops || !vma->vm_ops->fault))
1591                 return ERR_PTR(-EFAULT);
1592         return page;
1593 }
1594
1595 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1596 {
1597         return stack_guard_page_start(vma, addr) ||
1598                stack_guard_page_end(vma, addr+PAGE_SIZE);
1599 }
1600
1601 /**
1602  * __get_user_pages() - pin user pages in memory
1603  * @tsk:        task_struct of target task
1604  * @mm:         mm_struct of target mm
1605  * @start:      starting user address
1606  * @nr_pages:   number of pages from start to pin
1607  * @gup_flags:  flags modifying pin behaviour
1608  * @pages:      array that receives pointers to the pages pinned.
1609  *              Should be at least nr_pages long. Or NULL, if caller
1610  *              only intends to ensure the pages are faulted in.
1611  * @vmas:       array of pointers to vmas corresponding to each page.
1612  *              Or NULL if the caller does not require them.
1613  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1614  *
1615  * Returns number of pages pinned. This may be fewer than the number
1616  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1617  * were pinned, returns -errno. Each page returned must be released
1618  * with a put_page() call when it is finished with. vmas will only
1619  * remain valid while mmap_sem is held.
1620  *
1621  * Must be called with mmap_sem held for read or write.
1622  *
1623  * __get_user_pages walks a process's page tables and takes a reference to
1624  * each struct page that each user address corresponds to at a given
1625  * instant. That is, it takes the page that would be accessed if a user
1626  * thread accesses the given user virtual address at that instant.
1627  *
1628  * This does not guarantee that the page exists in the user mappings when
1629  * __get_user_pages returns, and there may even be a completely different
1630  * page there in some cases (eg. if mmapped pagecache has been invalidated
1631  * and subsequently re faulted). However it does guarantee that the page
1632  * won't be freed completely. And mostly callers simply care that the page
1633  * contains data that was valid *at some point in time*. Typically, an IO
1634  * or similar operation cannot guarantee anything stronger anyway because
1635  * locks can't be held over the syscall boundary.
1636  *
1637  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1638  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1639  * appropriate) must be called after the page is finished with, and
1640  * before put_page is called.
1641  *
1642  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1643  * or mmap_sem contention, and if waiting is needed to pin all pages,
1644  * *@nonblocking will be set to 0.
1645  *
1646  * In most cases, get_user_pages or get_user_pages_fast should be used
1647  * instead of __get_user_pages. __get_user_pages should be used only if
1648  * you need some special @gup_flags.
1649  */
1650 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1651                      unsigned long start, int nr_pages, unsigned int gup_flags,
1652                      struct page **pages, struct vm_area_struct **vmas,
1653                      int *nonblocking)
1654 {
1655         int i;
1656         unsigned long vm_flags;
1657
1658         if (nr_pages <= 0)
1659                 return 0;
1660
1661         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1662
1663         /* 
1664          * Require read or write permissions.
1665          * If FOLL_FORCE is set, we only require the "MAY" flags.
1666          */
1667         vm_flags  = (gup_flags & FOLL_WRITE) ?
1668                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1669         vm_flags &= (gup_flags & FOLL_FORCE) ?
1670                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1671         i = 0;
1672
1673         do {
1674                 struct vm_area_struct *vma;
1675
1676                 vma = find_extend_vma(mm, start);
1677                 if (!vma && in_gate_area(mm, start)) {
1678                         unsigned long pg = start & PAGE_MASK;
1679                         pgd_t *pgd;
1680                         pud_t *pud;
1681                         pmd_t *pmd;
1682                         pte_t *pte;
1683
1684                         /* user gate pages are read-only */
1685                         if (gup_flags & FOLL_WRITE)
1686                                 return i ? : -EFAULT;
1687                         if (pg > TASK_SIZE)
1688                                 pgd = pgd_offset_k(pg);
1689                         else
1690                                 pgd = pgd_offset_gate(mm, pg);
1691                         BUG_ON(pgd_none(*pgd));
1692                         pud = pud_offset(pgd, pg);
1693                         BUG_ON(pud_none(*pud));
1694                         pmd = pmd_offset(pud, pg);
1695                         if (pmd_none(*pmd))
1696                                 return i ? : -EFAULT;
1697                         VM_BUG_ON(pmd_trans_huge(*pmd));
1698                         pte = pte_offset_map(pmd, pg);
1699                         if (pte_none(*pte)) {
1700                                 pte_unmap(pte);
1701                                 return i ? : -EFAULT;
1702                         }
1703                         vma = get_gate_vma(mm);
1704                         if (pages) {
1705                                 struct page *page;
1706
1707                                 page = vm_normal_page(vma, start, *pte);
1708                                 if (!page) {
1709                                         if (!(gup_flags & FOLL_DUMP) &&
1710                                              is_zero_pfn(pte_pfn(*pte)))
1711                                                 page = pte_page(*pte);
1712                                         else {
1713                                                 pte_unmap(pte);
1714                                                 return i ? : -EFAULT;
1715                                         }
1716                                 }
1717                                 pages[i] = page;
1718                                 get_page(page);
1719                         }
1720                         pte_unmap(pte);
1721                         goto next_page;
1722                 }
1723
1724                 if (!vma ||
1725                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1726                     !(vm_flags & vma->vm_flags))
1727                         return i ? : -EFAULT;
1728
1729                 if (is_vm_hugetlb_page(vma)) {
1730                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1731                                         &start, &nr_pages, i, gup_flags);
1732                         continue;
1733                 }
1734
1735                 do {
1736                         struct page *page;
1737                         unsigned int foll_flags = gup_flags;
1738
1739                         /*
1740                          * If we have a pending SIGKILL, don't keep faulting
1741                          * pages and potentially allocating memory.
1742                          */
1743                         if (unlikely(fatal_signal_pending(current)))
1744                                 return i ? i : -ERESTARTSYS;
1745
1746                         cond_resched();
1747                         while (!(page = follow_page(vma, start, foll_flags))) {
1748                                 int ret;
1749                                 unsigned int fault_flags = 0;
1750
1751                                 /* For mlock, just skip the stack guard page. */
1752                                 if (foll_flags & FOLL_MLOCK) {
1753                                         if (stack_guard_page(vma, start))
1754                                                 goto next_page;
1755                                 }
1756                                 if (foll_flags & FOLL_WRITE)
1757                                         fault_flags |= FAULT_FLAG_WRITE;
1758                                 if (nonblocking)
1759                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1760                                 if (foll_flags & FOLL_NOWAIT)
1761                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1762
1763                                 ret = handle_mm_fault(mm, vma, start,
1764                                                         fault_flags);
1765
1766                                 if (ret & VM_FAULT_ERROR) {
1767                                         if (ret & VM_FAULT_OOM)
1768                                                 return i ? i : -ENOMEM;
1769                                         if (ret & (VM_FAULT_HWPOISON |
1770                                                    VM_FAULT_HWPOISON_LARGE)) {
1771                                                 if (i)
1772                                                         return i;
1773                                                 else if (gup_flags & FOLL_HWPOISON)
1774                                                         return -EHWPOISON;
1775                                                 else
1776                                                         return -EFAULT;
1777                                         }
1778                                         if (ret & VM_FAULT_SIGBUS)
1779                                                 return i ? i : -EFAULT;
1780                                         BUG();
1781                                 }
1782
1783                                 if (tsk) {
1784                                         if (ret & VM_FAULT_MAJOR)
1785                                                 tsk->maj_flt++;
1786                                         else
1787                                                 tsk->min_flt++;
1788                                 }
1789
1790                                 if (ret & VM_FAULT_RETRY) {
1791                                         if (nonblocking)
1792                                                 *nonblocking = 0;
1793                                         return i;
1794                                 }
1795
1796                                 /*
1797                                  * The VM_FAULT_WRITE bit tells us that
1798                                  * do_wp_page has broken COW when necessary,
1799                                  * even if maybe_mkwrite decided not to set
1800                                  * pte_write. We can thus safely do subsequent
1801                                  * page lookups as if they were reads. But only
1802                                  * do so when looping for pte_write is futile:
1803                                  * in some cases userspace may also be wanting
1804                                  * to write to the gotten user page, which a
1805                                  * read fault here might prevent (a readonly
1806                                  * page might get reCOWed by userspace write).
1807                                  */
1808                                 if ((ret & VM_FAULT_WRITE) &&
1809                                     !(vma->vm_flags & VM_WRITE))
1810                                         foll_flags &= ~FOLL_WRITE;
1811
1812                                 cond_resched();
1813                         }
1814                         if (IS_ERR(page))
1815                                 return i ? i : PTR_ERR(page);
1816                         if (pages) {
1817                                 pages[i] = page;
1818
1819                                 flush_anon_page(vma, page, start);
1820                                 flush_dcache_page(page);
1821                         }
1822 next_page:
1823                         if (vmas)
1824                                 vmas[i] = vma;
1825                         i++;
1826                         start += PAGE_SIZE;
1827                         nr_pages--;
1828                 } while (nr_pages && start < vma->vm_end);
1829         } while (nr_pages);
1830         return i;
1831 }
1832 EXPORT_SYMBOL(__get_user_pages);
1833
1834 /*
1835  * fixup_user_fault() - manually resolve a user page fault
1836  * @tsk:        the task_struct to use for page fault accounting, or
1837  *              NULL if faults are not to be recorded.
1838  * @mm:         mm_struct of target mm
1839  * @address:    user address
1840  * @fault_flags:flags to pass down to handle_mm_fault()
1841  *
1842  * This is meant to be called in the specific scenario where for locking reasons
1843  * we try to access user memory in atomic context (within a pagefault_disable()
1844  * section), this returns -EFAULT, and we want to resolve the user fault before
1845  * trying again.
1846  *
1847  * Typically this is meant to be used by the futex code.
1848  *
1849  * The main difference with get_user_pages() is that this function will
1850  * unconditionally call handle_mm_fault() which will in turn perform all the
1851  * necessary SW fixup of the dirty and young bits in the PTE, while
1852  * handle_mm_fault() only guarantees to update these in the struct page.
1853  *
1854  * This is important for some architectures where those bits also gate the
1855  * access permission to the page because they are maintained in software.  On
1856  * such architectures, gup() will not be enough to make a subsequent access
1857  * succeed.
1858  *
1859  * This should be called with the mm_sem held for read.
1860  */
1861 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1862                      unsigned long address, unsigned int fault_flags)
1863 {
1864         struct vm_area_struct *vma;
1865         int ret;
1866
1867         vma = find_extend_vma(mm, address);
1868         if (!vma || address < vma->vm_start)
1869                 return -EFAULT;
1870
1871         ret = handle_mm_fault(mm, vma, address, fault_flags);
1872         if (ret & VM_FAULT_ERROR) {
1873                 if (ret & VM_FAULT_OOM)
1874                         return -ENOMEM;
1875                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1876                         return -EHWPOISON;
1877                 if (ret & VM_FAULT_SIGBUS)
1878                         return -EFAULT;
1879                 BUG();
1880         }
1881         if (tsk) {
1882                 if (ret & VM_FAULT_MAJOR)
1883                         tsk->maj_flt++;
1884                 else
1885                         tsk->min_flt++;
1886         }
1887         return 0;
1888 }
1889
1890 /*
1891  * get_user_pages() - pin user pages in memory
1892  * @tsk:        the task_struct to use for page fault accounting, or
1893  *              NULL if faults are not to be recorded.
1894  * @mm:         mm_struct of target mm
1895  * @start:      starting user address
1896  * @nr_pages:   number of pages from start to pin
1897  * @write:      whether pages will be written to by the caller
1898  * @force:      whether to force write access even if user mapping is
1899  *              readonly. This will result in the page being COWed even
1900  *              in MAP_SHARED mappings. You do not want this.
1901  * @pages:      array that receives pointers to the pages pinned.
1902  *              Should be at least nr_pages long. Or NULL, if caller
1903  *              only intends to ensure the pages are faulted in.
1904  * @vmas:       array of pointers to vmas corresponding to each page.
1905  *              Or NULL if the caller does not require them.
1906  *
1907  * Returns number of pages pinned. This may be fewer than the number
1908  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1909  * were pinned, returns -errno. Each page returned must be released
1910  * with a put_page() call when it is finished with. vmas will only
1911  * remain valid while mmap_sem is held.
1912  *
1913  * Must be called with mmap_sem held for read or write.
1914  *
1915  * get_user_pages walks a process's page tables and takes a reference to
1916  * each struct page that each user address corresponds to at a given
1917  * instant. That is, it takes the page that would be accessed if a user
1918  * thread accesses the given user virtual address at that instant.
1919  *
1920  * This does not guarantee that the page exists in the user mappings when
1921  * get_user_pages returns, and there may even be a completely different
1922  * page there in some cases (eg. if mmapped pagecache has been invalidated
1923  * and subsequently re faulted). However it does guarantee that the page
1924  * won't be freed completely. And mostly callers simply care that the page
1925  * contains data that was valid *at some point in time*. Typically, an IO
1926  * or similar operation cannot guarantee anything stronger anyway because
1927  * locks can't be held over the syscall boundary.
1928  *
1929  * If write=0, the page must not be written to. If the page is written to,
1930  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1931  * after the page is finished with, and before put_page is called.
1932  *
1933  * get_user_pages is typically used for fewer-copy IO operations, to get a
1934  * handle on the memory by some means other than accesses via the user virtual
1935  * addresses. The pages may be submitted for DMA to devices or accessed via
1936  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1937  * use the correct cache flushing APIs.
1938  *
1939  * See also get_user_pages_fast, for performance critical applications.
1940  */
1941 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1942                 unsigned long start, int nr_pages, int write, int force,
1943                 struct page **pages, struct vm_area_struct **vmas)
1944 {
1945         int flags = FOLL_TOUCH;
1946
1947         if (pages)
1948                 flags |= FOLL_GET;
1949         if (write)
1950                 flags |= FOLL_WRITE;
1951         if (force)
1952                 flags |= FOLL_FORCE;
1953
1954         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1955                                 NULL);
1956 }
1957 EXPORT_SYMBOL(get_user_pages);
1958
1959 /**
1960  * get_dump_page() - pin user page in memory while writing it to core dump
1961  * @addr: user address
1962  *
1963  * Returns struct page pointer of user page pinned for dump,
1964  * to be freed afterwards by page_cache_release() or put_page().
1965  *
1966  * Returns NULL on any kind of failure - a hole must then be inserted into
1967  * the corefile, to preserve alignment with its headers; and also returns
1968  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1969  * allowing a hole to be left in the corefile to save diskspace.
1970  *
1971  * Called without mmap_sem, but after all other threads have been killed.
1972  */
1973 #ifdef CONFIG_ELF_CORE
1974 struct page *get_dump_page(unsigned long addr)
1975 {
1976         struct vm_area_struct *vma;
1977         struct page *page;
1978
1979         if (__get_user_pages(current, current->mm, addr, 1,
1980                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1981                              NULL) < 1)
1982                 return NULL;
1983         flush_cache_page(vma, addr, page_to_pfn(page));
1984         return page;
1985 }
1986 #endif /* CONFIG_ELF_CORE */
1987
1988 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1989                         spinlock_t **ptl)
1990 {
1991         pgd_t * pgd = pgd_offset(mm, addr);
1992         pud_t * pud = pud_alloc(mm, pgd, addr);
1993         if (pud) {
1994                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1995                 if (pmd) {
1996                         VM_BUG_ON(pmd_trans_huge(*pmd));
1997                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1998                 }
1999         }
2000         return NULL;
2001 }
2002
2003 /*
2004  * This is the old fallback for page remapping.
2005  *
2006  * For historical reasons, it only allows reserved pages. Only
2007  * old drivers should use this, and they needed to mark their
2008  * pages reserved for the old functions anyway.
2009  */
2010 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2011                         struct page *page, pgprot_t prot)
2012 {
2013         struct mm_struct *mm = vma->vm_mm;
2014         int retval;
2015         pte_t *pte;
2016         spinlock_t *ptl;
2017
2018         retval = -EINVAL;
2019         if (PageAnon(page))
2020                 goto out;
2021         retval = -ENOMEM;
2022         flush_dcache_page(page);
2023         pte = get_locked_pte(mm, addr, &ptl);
2024         if (!pte)
2025                 goto out;
2026         retval = -EBUSY;
2027         if (!pte_none(*pte))
2028                 goto out_unlock;
2029
2030         /* Ok, finally just insert the thing.. */
2031         get_page(page);
2032         inc_mm_counter_fast(mm, MM_FILEPAGES);
2033         page_add_file_rmap(page);
2034         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2035
2036         retval = 0;
2037         pte_unmap_unlock(pte, ptl);
2038         return retval;
2039 out_unlock:
2040         pte_unmap_unlock(pte, ptl);
2041 out:
2042         return retval;
2043 }
2044
2045 /**
2046  * vm_insert_page - insert single page into user vma
2047  * @vma: user vma to map to
2048  * @addr: target user address of this page
2049  * @page: source kernel page
2050  *
2051  * This allows drivers to insert individual pages they've allocated
2052  * into a user vma.
2053  *
2054  * The page has to be a nice clean _individual_ kernel allocation.
2055  * If you allocate a compound page, you need to have marked it as
2056  * such (__GFP_COMP), or manually just split the page up yourself
2057  * (see split_page()).
2058  *
2059  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2060  * took an arbitrary page protection parameter. This doesn't allow
2061  * that. Your vma protection will have to be set up correctly, which
2062  * means that if you want a shared writable mapping, you'd better
2063  * ask for a shared writable mapping!
2064  *
2065  * The page does not need to be reserved.
2066  */
2067 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2068                         struct page *page)
2069 {
2070         if (addr < vma->vm_start || addr >= vma->vm_end)
2071                 return -EFAULT;
2072         if (!page_count(page))
2073                 return -EINVAL;
2074         vma->vm_flags |= VM_INSERTPAGE;
2075         return insert_page(vma, addr, page, vma->vm_page_prot);
2076 }
2077 EXPORT_SYMBOL(vm_insert_page);
2078
2079 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2080                         unsigned long pfn, pgprot_t prot)
2081 {
2082         struct mm_struct *mm = vma->vm_mm;
2083         int retval;
2084         pte_t *pte, entry;
2085         spinlock_t *ptl;
2086
2087         retval = -ENOMEM;
2088         pte = get_locked_pte(mm, addr, &ptl);
2089         if (!pte)
2090                 goto out;
2091         retval = -EBUSY;
2092         if (!pte_none(*pte))
2093                 goto out_unlock;
2094
2095         /* Ok, finally just insert the thing.. */
2096         entry = pte_mkspecial(pfn_pte(pfn, prot));
2097         set_pte_at(mm, addr, pte, entry);
2098         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2099
2100         retval = 0;
2101 out_unlock:
2102         pte_unmap_unlock(pte, ptl);
2103 out:
2104         return retval;
2105 }
2106
2107 /**
2108  * vm_insert_pfn - insert single pfn into user vma
2109  * @vma: user vma to map to
2110  * @addr: target user address of this page
2111  * @pfn: source kernel pfn
2112  *
2113  * Similar to vm_inert_page, this allows drivers to insert individual pages
2114  * they've allocated into a user vma. Same comments apply.
2115  *
2116  * This function should only be called from a vm_ops->fault handler, and
2117  * in that case the handler should return NULL.
2118  *
2119  * vma cannot be a COW mapping.
2120  *
2121  * As this is called only for pages that do not currently exist, we
2122  * do not need to flush old virtual caches or the TLB.
2123  */
2124 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2125                         unsigned long pfn)
2126 {
2127         int ret;
2128         pgprot_t pgprot = vma->vm_page_prot;
2129         /*
2130          * Technically, architectures with pte_special can avoid all these
2131          * restrictions (same for remap_pfn_range).  However we would like
2132          * consistency in testing and feature parity among all, so we should
2133          * try to keep these invariants in place for everybody.
2134          */
2135         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2136         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2137                                                 (VM_PFNMAP|VM_MIXEDMAP));
2138         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2139         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2140
2141         if (addr < vma->vm_start || addr >= vma->vm_end)
2142                 return -EFAULT;
2143         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2144                 return -EINVAL;
2145
2146         ret = insert_pfn(vma, addr, pfn, pgprot);
2147
2148         if (ret)
2149                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2150
2151         return ret;
2152 }
2153 EXPORT_SYMBOL(vm_insert_pfn);
2154
2155 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2156                         unsigned long pfn)
2157 {
2158         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2159
2160         if (addr < vma->vm_start || addr >= vma->vm_end)
2161                 return -EFAULT;
2162
2163         /*
2164          * If we don't have pte special, then we have to use the pfn_valid()
2165          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2166          * refcount the page if pfn_valid is true (hence insert_page rather
2167          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2168          * without pte special, it would there be refcounted as a normal page.
2169          */
2170         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2171                 struct page *page;
2172
2173                 page = pfn_to_page(pfn);
2174                 return insert_page(vma, addr, page, vma->vm_page_prot);
2175         }
2176         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2177 }
2178 EXPORT_SYMBOL(vm_insert_mixed);
2179
2180 /*
2181  * maps a range of physical memory into the requested pages. the old
2182  * mappings are removed. any references to nonexistent pages results
2183  * in null mappings (currently treated as "copy-on-access")
2184  */
2185 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2186                         unsigned long addr, unsigned long end,
2187                         unsigned long pfn, pgprot_t prot)
2188 {
2189         pte_t *pte;
2190         spinlock_t *ptl;
2191
2192         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2193         if (!pte)
2194                 return -ENOMEM;
2195         arch_enter_lazy_mmu_mode();
2196         do {
2197                 BUG_ON(!pte_none(*pte));
2198                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2199                 pfn++;
2200         } while (pte++, addr += PAGE_SIZE, addr != end);
2201         arch_leave_lazy_mmu_mode();
2202         pte_unmap_unlock(pte - 1, ptl);
2203         return 0;
2204 }
2205
2206 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2207                         unsigned long addr, unsigned long end,
2208                         unsigned long pfn, pgprot_t prot)
2209 {
2210         pmd_t *pmd;
2211         unsigned long next;
2212
2213         pfn -= addr >> PAGE_SHIFT;
2214         pmd = pmd_alloc(mm, pud, addr);
2215         if (!pmd)
2216                 return -ENOMEM;
2217         VM_BUG_ON(pmd_trans_huge(*pmd));
2218         do {
2219                 next = pmd_addr_end(addr, end);
2220                 if (remap_pte_range(mm, pmd, addr, next,
2221                                 pfn + (addr >> PAGE_SHIFT), prot))
2222                         return -ENOMEM;
2223         } while (pmd++, addr = next, addr != end);
2224         return 0;
2225 }
2226
2227 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2228                         unsigned long addr, unsigned long end,
2229                         unsigned long pfn, pgprot_t prot)
2230 {
2231         pud_t *pud;
2232         unsigned long next;
2233
2234         pfn -= addr >> PAGE_SHIFT;
2235         pud = pud_alloc(mm, pgd, addr);
2236         if (!pud)
2237                 return -ENOMEM;
2238         do {
2239                 next = pud_addr_end(addr, end);
2240                 if (remap_pmd_range(mm, pud, addr, next,
2241                                 pfn + (addr >> PAGE_SHIFT), prot))
2242                         return -ENOMEM;
2243         } while (pud++, addr = next, addr != end);
2244         return 0;
2245 }
2246
2247 /**
2248  * remap_pfn_range - remap kernel memory to userspace
2249  * @vma: user vma to map to
2250  * @addr: target user address to start at
2251  * @pfn: physical address of kernel memory
2252  * @size: size of map area
2253  * @prot: page protection flags for this mapping
2254  *
2255  *  Note: this is only safe if the mm semaphore is held when called.
2256  */
2257 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2258                     unsigned long pfn, unsigned long size, pgprot_t prot)
2259 {
2260         pgd_t *pgd;
2261         unsigned long next;
2262         unsigned long end = addr + PAGE_ALIGN(size);
2263         struct mm_struct *mm = vma->vm_mm;
2264         int err;
2265
2266         /*
2267          * Physically remapped pages are special. Tell the
2268          * rest of the world about it:
2269          *   VM_IO tells people not to look at these pages
2270          *      (accesses can have side effects).
2271          *   VM_RESERVED is specified all over the place, because
2272          *      in 2.4 it kept swapout's vma scan off this vma; but
2273          *      in 2.6 the LRU scan won't even find its pages, so this
2274          *      flag means no more than count its pages in reserved_vm,
2275          *      and omit it from core dump, even when VM_IO turned off.
2276          *   VM_PFNMAP tells the core MM that the base pages are just
2277          *      raw PFN mappings, and do not have a "struct page" associated
2278          *      with them.
2279          *
2280          * There's a horrible special case to handle copy-on-write
2281          * behaviour that some programs depend on. We mark the "original"
2282          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2283          */
2284         if (addr == vma->vm_start && end == vma->vm_end) {
2285                 vma->vm_pgoff = pfn;
2286                 vma->vm_flags |= VM_PFN_AT_MMAP;
2287         } else if (is_cow_mapping(vma->vm_flags))
2288                 return -EINVAL;
2289
2290         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2291
2292         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2293         if (err) {
2294                 /*
2295                  * To indicate that track_pfn related cleanup is not
2296                  * needed from higher level routine calling unmap_vmas
2297                  */
2298                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2299                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2300                 return -EINVAL;
2301         }
2302
2303         BUG_ON(addr >= end);
2304         pfn -= addr >> PAGE_SHIFT;
2305         pgd = pgd_offset(mm, addr);
2306         flush_cache_range(vma, addr, end);
2307         do {
2308                 next = pgd_addr_end(addr, end);
2309                 err = remap_pud_range(mm, pgd, addr, next,
2310                                 pfn + (addr >> PAGE_SHIFT), prot);
2311                 if (err)
2312                         break;
2313         } while (pgd++, addr = next, addr != end);
2314
2315         if (err)
2316                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2317
2318         return err;
2319 }
2320 EXPORT_SYMBOL(remap_pfn_range);
2321
2322 /**
2323  * vm_iomap_memory - remap memory to userspace
2324  * @vma: user vma to map to
2325  * @start: start of area
2326  * @len: size of area
2327  *
2328  * This is a simplified io_remap_pfn_range() for common driver use. The
2329  * driver just needs to give us the physical memory range to be mapped,
2330  * we'll figure out the rest from the vma information.
2331  *
2332  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2333  * whatever write-combining details or similar.
2334  */
2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336 {
2337         unsigned long vm_len, pfn, pages;
2338
2339         /* Check that the physical memory area passed in looks valid */
2340         if (start + len < start)
2341                 return -EINVAL;
2342         /*
2343          * You *really* shouldn't map things that aren't page-aligned,
2344          * but we've historically allowed it because IO memory might
2345          * just have smaller alignment.
2346          */
2347         len += start & ~PAGE_MASK;
2348         pfn = start >> PAGE_SHIFT;
2349         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350         if (pfn + pages < pfn)
2351                 return -EINVAL;
2352
2353         /* We start the mapping 'vm_pgoff' pages into the area */
2354         if (vma->vm_pgoff > pages)
2355                 return -EINVAL;
2356         pfn += vma->vm_pgoff;
2357         pages -= vma->vm_pgoff;
2358
2359         /* Can we fit all of the mapping? */
2360         vm_len = vma->vm_end - vma->vm_start;
2361         if (vm_len >> PAGE_SHIFT > pages)
2362                 return -EINVAL;
2363
2364         /* Ok, let it rip */
2365         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366 }
2367 EXPORT_SYMBOL(vm_iomap_memory);
2368
2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370                                      unsigned long addr, unsigned long end,
2371                                      pte_fn_t fn, void *data)
2372 {
2373         pte_t *pte;
2374         int err;
2375         pgtable_t token;
2376         spinlock_t *uninitialized_var(ptl);
2377
2378         pte = (mm == &init_mm) ?
2379                 pte_alloc_kernel(pmd, addr) :
2380                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2381         if (!pte)
2382                 return -ENOMEM;
2383
2384         BUG_ON(pmd_huge(*pmd));
2385
2386         arch_enter_lazy_mmu_mode();
2387
2388         token = pmd_pgtable(*pmd);
2389
2390         do {
2391                 err = fn(pte++, token, addr, data);
2392                 if (err)
2393                         break;
2394         } while (addr += PAGE_SIZE, addr != end);
2395
2396         arch_leave_lazy_mmu_mode();
2397
2398         if (mm != &init_mm)
2399                 pte_unmap_unlock(pte-1, ptl);
2400         return err;
2401 }
2402
2403 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2404                                      unsigned long addr, unsigned long end,
2405                                      pte_fn_t fn, void *data)
2406 {
2407         pmd_t *pmd;
2408         unsigned long next;
2409         int err;
2410
2411         BUG_ON(pud_huge(*pud));
2412
2413         pmd = pmd_alloc(mm, pud, addr);
2414         if (!pmd)
2415                 return -ENOMEM;
2416         do {
2417                 next = pmd_addr_end(addr, end);
2418                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2419                 if (err)
2420                         break;
2421         } while (pmd++, addr = next, addr != end);
2422         return err;
2423 }
2424
2425 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2426                                      unsigned long addr, unsigned long end,
2427                                      pte_fn_t fn, void *data)
2428 {
2429         pud_t *pud;
2430         unsigned long next;
2431         int err;
2432
2433         pud = pud_alloc(mm, pgd, addr);
2434         if (!pud)
2435                 return -ENOMEM;
2436         do {
2437                 next = pud_addr_end(addr, end);
2438                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2439                 if (err)
2440                         break;
2441         } while (pud++, addr = next, addr != end);
2442         return err;
2443 }
2444
2445 /*
2446  * Scan a region of virtual memory, filling in page tables as necessary
2447  * and calling a provided function on each leaf page table.
2448  */
2449 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2450                         unsigned long size, pte_fn_t fn, void *data)
2451 {
2452         pgd_t *pgd;
2453         unsigned long next;
2454         unsigned long end = addr + size;
2455         int err;
2456
2457         BUG_ON(addr >= end);
2458         pgd = pgd_offset(mm, addr);
2459         do {
2460                 next = pgd_addr_end(addr, end);
2461                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2462                 if (err)
2463                         break;
2464         } while (pgd++, addr = next, addr != end);
2465
2466         return err;
2467 }
2468 EXPORT_SYMBOL_GPL(apply_to_page_range);
2469
2470 /*
2471  * handle_pte_fault chooses page fault handler according to an entry
2472  * which was read non-atomically.  Before making any commitment, on
2473  * those architectures or configurations (e.g. i386 with PAE) which
2474  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2475  * must check under lock before unmapping the pte and proceeding
2476  * (but do_wp_page is only called after already making such a check;
2477  * and do_anonymous_page can safely check later on).
2478  */
2479 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2480                                 pte_t *page_table, pte_t orig_pte)
2481 {
2482         int same = 1;
2483 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2484         if (sizeof(pte_t) > sizeof(unsigned long)) {
2485                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2486                 spin_lock(ptl);
2487                 same = pte_same(*page_table, orig_pte);
2488                 spin_unlock(ptl);
2489         }
2490 #endif
2491         pte_unmap(page_table);
2492         return same;
2493 }
2494
2495 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2496 {
2497         /*
2498          * If the source page was a PFN mapping, we don't have
2499          * a "struct page" for it. We do a best-effort copy by
2500          * just copying from the original user address. If that
2501          * fails, we just zero-fill it. Live with it.
2502          */
2503         if (unlikely(!src)) {
2504                 void *kaddr = kmap_atomic(dst, KM_USER0);
2505                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2506
2507                 /*
2508                  * This really shouldn't fail, because the page is there
2509                  * in the page tables. But it might just be unreadable,
2510                  * in which case we just give up and fill the result with
2511                  * zeroes.
2512                  */
2513                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2514                         clear_page(kaddr);
2515                 kunmap_atomic(kaddr, KM_USER0);
2516                 flush_dcache_page(dst);
2517         } else
2518                 copy_user_highpage(dst, src, va, vma);
2519 }
2520
2521 /*
2522  * This routine handles present pages, when users try to write
2523  * to a shared page. It is done by copying the page to a new address
2524  * and decrementing the shared-page counter for the old page.
2525  *
2526  * Note that this routine assumes that the protection checks have been
2527  * done by the caller (the low-level page fault routine in most cases).
2528  * Thus we can safely just mark it writable once we've done any necessary
2529  * COW.
2530  *
2531  * We also mark the page dirty at this point even though the page will
2532  * change only once the write actually happens. This avoids a few races,
2533  * and potentially makes it more efficient.
2534  *
2535  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2536  * but allow concurrent faults), with pte both mapped and locked.
2537  * We return with mmap_sem still held, but pte unmapped and unlocked.
2538  */
2539 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2540                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2541                 spinlock_t *ptl, pte_t orig_pte)
2542         __releases(ptl)
2543 {
2544         struct page *old_page, *new_page;
2545         pte_t entry;
2546         int ret = 0;
2547         int page_mkwrite = 0;
2548         struct page *dirty_page = NULL;
2549
2550         old_page = vm_normal_page(vma, address, orig_pte);
2551         if (!old_page) {
2552                 /*
2553                  * VM_MIXEDMAP !pfn_valid() case
2554                  *
2555                  * We should not cow pages in a shared writeable mapping.
2556                  * Just mark the pages writable as we can't do any dirty
2557                  * accounting on raw pfn maps.
2558                  */
2559                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2560                                      (VM_WRITE|VM_SHARED))
2561                         goto reuse;
2562                 goto gotten;
2563         }
2564
2565         /*
2566          * Take out anonymous pages first, anonymous shared vmas are
2567          * not dirty accountable.
2568          */
2569         if (PageAnon(old_page) && !PageKsm(old_page)) {
2570                 if (!trylock_page(old_page)) {
2571                         page_cache_get(old_page);
2572                         pte_unmap_unlock(page_table, ptl);
2573                         lock_page(old_page);
2574                         page_table = pte_offset_map_lock(mm, pmd, address,
2575                                                          &ptl);
2576                         if (!pte_same(*page_table, orig_pte)) {
2577                                 unlock_page(old_page);
2578                                 goto unlock;
2579                         }
2580                         page_cache_release(old_page);
2581                 }
2582                 if (reuse_swap_page(old_page)) {
2583                         /*
2584                          * The page is all ours.  Move it to our anon_vma so
2585                          * the rmap code will not search our parent or siblings.
2586                          * Protected against the rmap code by the page lock.
2587                          */
2588                         page_move_anon_rmap(old_page, vma, address);
2589                         unlock_page(old_page);
2590                         goto reuse;
2591                 }
2592                 unlock_page(old_page);
2593         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2594                                         (VM_WRITE|VM_SHARED))) {
2595                 /*
2596                  * Only catch write-faults on shared writable pages,
2597                  * read-only shared pages can get COWed by
2598                  * get_user_pages(.write=1, .force=1).
2599                  */
2600                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2601                         struct vm_fault vmf;
2602                         int tmp;
2603
2604                         vmf.virtual_address = (void __user *)(address &
2605                                                                 PAGE_MASK);
2606                         vmf.pgoff = old_page->index;
2607                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2608                         vmf.page = old_page;
2609
2610                         /*
2611                          * Notify the address space that the page is about to
2612                          * become writable so that it can prohibit this or wait
2613                          * for the page to get into an appropriate state.
2614                          *
2615                          * We do this without the lock held, so that it can
2616                          * sleep if it needs to.
2617                          */
2618                         page_cache_get(old_page);
2619                         pte_unmap_unlock(page_table, ptl);
2620
2621                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2622                         if (unlikely(tmp &
2623                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2624                                 ret = tmp;
2625                                 goto unwritable_page;
2626                         }
2627                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2628                                 lock_page(old_page);
2629                                 if (!old_page->mapping) {
2630                                         ret = 0; /* retry the fault */
2631                                         unlock_page(old_page);
2632                                         goto unwritable_page;
2633                                 }
2634                         } else
2635                                 VM_BUG_ON(!PageLocked(old_page));
2636
2637                         /*
2638                          * Since we dropped the lock we need to revalidate
2639                          * the PTE as someone else may have changed it.  If
2640                          * they did, we just return, as we can count on the
2641                          * MMU to tell us if they didn't also make it writable.
2642                          */
2643                         page_table = pte_offset_map_lock(mm, pmd, address,
2644                                                          &ptl);
2645                         if (!pte_same(*page_table, orig_pte)) {
2646                                 unlock_page(old_page);
2647                                 goto unlock;
2648                         }
2649
2650                         page_mkwrite = 1;
2651                 }
2652                 dirty_page = old_page;
2653                 get_page(dirty_page);
2654
2655 reuse:
2656                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2657                 entry = pte_mkyoung(orig_pte);
2658                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2659                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2660                         update_mmu_cache(vma, address, page_table);
2661                 pte_unmap_unlock(page_table, ptl);
2662                 ret |= VM_FAULT_WRITE;
2663
2664                 if (!dirty_page)
2665                         return ret;
2666
2667                 /*
2668                  * Yes, Virginia, this is actually required to prevent a race
2669                  * with clear_page_dirty_for_io() from clearing the page dirty
2670                  * bit after it clear all dirty ptes, but before a racing
2671                  * do_wp_page installs a dirty pte.
2672                  *
2673                  * __do_fault is protected similarly.
2674                  */
2675                 if (!page_mkwrite) {
2676                         wait_on_page_locked(dirty_page);
2677                         set_page_dirty_balance(dirty_page, page_mkwrite);
2678                 }
2679                 put_page(dirty_page);
2680                 if (page_mkwrite) {
2681                         struct address_space *mapping = dirty_page->mapping;
2682
2683                         set_page_dirty(dirty_page);
2684                         unlock_page(dirty_page);
2685                         page_cache_release(dirty_page);
2686                         if (mapping)    {
2687                                 /*
2688                                  * Some device drivers do not set page.mapping
2689                                  * but still dirty their pages
2690                                  */
2691                                 balance_dirty_pages_ratelimited(mapping);
2692                         }
2693                 }
2694
2695                 /* file_update_time outside page_lock */
2696                 if (vma->vm_file)
2697                         file_update_time(vma->vm_file);
2698
2699                 return ret;
2700         }
2701
2702         /*
2703          * Ok, we need to copy. Oh, well..
2704          */
2705         page_cache_get(old_page);
2706 gotten:
2707         pte_unmap_unlock(page_table, ptl);
2708
2709         if (unlikely(anon_vma_prepare(vma)))
2710                 goto oom;
2711
2712         if (is_zero_pfn(pte_pfn(orig_pte))) {
2713                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2714                 if (!new_page)
2715                         goto oom;
2716         } else {
2717                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2718                 if (!new_page)
2719                         goto oom;
2720                 cow_user_page(new_page, old_page, address, vma);
2721         }
2722         __SetPageUptodate(new_page);
2723
2724         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2725                 goto oom_free_new;
2726
2727         /*
2728          * Re-check the pte - we dropped the lock
2729          */
2730         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2731         if (likely(pte_same(*page_table, orig_pte))) {
2732                 if (old_page) {
2733                         if (!PageAnon(old_page)) {
2734                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2735                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2736                         }
2737                 } else
2738                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2739                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2740                 entry = mk_pte(new_page, vma->vm_page_prot);
2741                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2742                 /*
2743                  * Clear the pte entry and flush it first, before updating the
2744                  * pte with the new entry. This will avoid a race condition
2745                  * seen in the presence of one thread doing SMC and another
2746                  * thread doing COW.
2747                  */
2748                 ptep_clear_flush(vma, address, page_table);
2749                 page_add_new_anon_rmap(new_page, vma, address);
2750                 /*
2751                  * We call the notify macro here because, when using secondary
2752                  * mmu page tables (such as kvm shadow page tables), we want the
2753                  * new page to be mapped directly into the secondary page table.
2754                  */
2755                 set_pte_at_notify(mm, address, page_table, entry);
2756                 update_mmu_cache(vma, address, page_table);
2757                 if (old_page) {
2758                         /*
2759                          * Only after switching the pte to the new page may
2760                          * we remove the mapcount here. Otherwise another
2761                          * process may come and find the rmap count decremented
2762                          * before the pte is switched to the new page, and
2763                          * "reuse" the old page writing into it while our pte
2764                          * here still points into it and can be read by other
2765                          * threads.
2766                          *
2767                          * The critical issue is to order this
2768                          * page_remove_rmap with the ptp_clear_flush above.
2769                          * Those stores are ordered by (if nothing else,)
2770                          * the barrier present in the atomic_add_negative
2771                          * in page_remove_rmap.
2772                          *
2773                          * Then the TLB flush in ptep_clear_flush ensures that
2774                          * no process can access the old page before the
2775                          * decremented mapcount is visible. And the old page
2776                          * cannot be reused until after the decremented
2777                          * mapcount is visible. So transitively, TLBs to
2778                          * old page will be flushed before it can be reused.
2779                          */
2780                         page_remove_rmap(old_page);
2781                 }
2782
2783                 /* Free the old page.. */
2784                 new_page = old_page;
2785                 ret |= VM_FAULT_WRITE;
2786         } else
2787                 mem_cgroup_uncharge_page(new_page);
2788
2789         if (new_page)
2790                 page_cache_release(new_page);
2791 unlock:
2792         pte_unmap_unlock(page_table, ptl);
2793         if (old_page) {
2794                 /*
2795                  * Don't let another task, with possibly unlocked vma,
2796                  * keep the mlocked page.
2797                  */
2798                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2799                         lock_page(old_page);    /* LRU manipulation */
2800                         munlock_vma_page(old_page);
2801                         unlock_page(old_page);
2802                 }
2803                 page_cache_release(old_page);
2804         }
2805         return ret;
2806 oom_free_new:
2807         page_cache_release(new_page);
2808 oom:
2809         if (old_page) {
2810                 if (page_mkwrite) {
2811                         unlock_page(old_page);
2812                         page_cache_release(old_page);
2813                 }
2814                 page_cache_release(old_page);
2815         }
2816         return VM_FAULT_OOM;
2817
2818 unwritable_page:
2819         page_cache_release(old_page);
2820         return ret;
2821 }
2822
2823 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2824                 unsigned long start_addr, unsigned long end_addr,
2825                 struct zap_details *details)
2826 {
2827         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2828 }
2829
2830 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2831                                             struct zap_details *details)
2832 {
2833         struct vm_area_struct *vma;
2834         struct prio_tree_iter iter;
2835         pgoff_t vba, vea, zba, zea;
2836
2837         vma_prio_tree_foreach(vma, &iter, root,
2838                         details->first_index, details->last_index) {
2839
2840                 vba = vma->vm_pgoff;
2841                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2842                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2843                 zba = details->first_index;
2844                 if (zba < vba)
2845                         zba = vba;
2846                 zea = details->last_index;
2847                 if (zea > vea)
2848                         zea = vea;
2849
2850                 unmap_mapping_range_vma(vma,
2851                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2852                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2853                                 details);
2854         }
2855 }
2856
2857 static inline void unmap_mapping_range_list(struct list_head *head,
2858                                             struct zap_details *details)
2859 {
2860         struct vm_area_struct *vma;
2861
2862         /*
2863          * In nonlinear VMAs there is no correspondence between virtual address
2864          * offset and file offset.  So we must perform an exhaustive search
2865          * across *all* the pages in each nonlinear VMA, not just the pages
2866          * whose virtual address lies outside the file truncation point.
2867          */
2868         list_for_each_entry(vma, head, shared.vm_set.list) {
2869                 details->nonlinear_vma = vma;
2870                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2871         }
2872 }
2873
2874 /**
2875  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2876  * @mapping: the address space containing mmaps to be unmapped.
2877  * @holebegin: byte in first page to unmap, relative to the start of
2878  * the underlying file.  This will be rounded down to a PAGE_SIZE
2879  * boundary.  Note that this is different from truncate_pagecache(), which
2880  * must keep the partial page.  In contrast, we must get rid of
2881  * partial pages.
2882  * @holelen: size of prospective hole in bytes.  This will be rounded
2883  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2884  * end of the file.
2885  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2886  * but 0 when invalidating pagecache, don't throw away private data.
2887  */
2888 void unmap_mapping_range(struct address_space *mapping,
2889                 loff_t const holebegin, loff_t const holelen, int even_cows)
2890 {
2891         struct zap_details details;
2892         pgoff_t hba = holebegin >> PAGE_SHIFT;
2893         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2894
2895         /* Check for overflow. */
2896         if (sizeof(holelen) > sizeof(hlen)) {
2897                 long long holeend =
2898                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2899                 if (holeend & ~(long long)ULONG_MAX)
2900                         hlen = ULONG_MAX - hba + 1;
2901         }
2902
2903         details.check_mapping = even_cows? NULL: mapping;
2904         details.nonlinear_vma = NULL;
2905         details.first_index = hba;
2906         details.last_index = hba + hlen - 1;
2907         if (details.last_index < details.first_index)
2908                 details.last_index = ULONG_MAX;
2909
2910
2911         mutex_lock(&mapping->i_mmap_mutex);
2912         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2913                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2914         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2915                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2916         mutex_unlock(&mapping->i_mmap_mutex);
2917 }
2918 EXPORT_SYMBOL(unmap_mapping_range);
2919
2920 /*
2921  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2922  * but allow concurrent faults), and pte mapped but not yet locked.
2923  * We return with mmap_sem still held, but pte unmapped and unlocked.
2924  */
2925 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2926                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2927                 unsigned int flags, pte_t orig_pte)
2928 {
2929         spinlock_t *ptl;
2930         struct page *page, *swapcache = NULL;
2931         swp_entry_t entry;
2932         pte_t pte;
2933         int locked;
2934         struct mem_cgroup *ptr;
2935         int exclusive = 0;
2936         int ret = 0;
2937
2938         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2939                 goto out;
2940
2941         entry = pte_to_swp_entry(orig_pte);
2942         if (unlikely(non_swap_entry(entry))) {
2943                 if (is_migration_entry(entry)) {
2944                         migration_entry_wait(mm, pmd, address);
2945                 } else if (is_hwpoison_entry(entry)) {
2946                         ret = VM_FAULT_HWPOISON;
2947                 } else {
2948                         print_bad_pte(vma, address, orig_pte, NULL);
2949                         ret = VM_FAULT_SIGBUS;
2950                 }
2951                 goto out;
2952         }
2953         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2954         page = lookup_swap_cache(entry);
2955         if (!page) {
2956                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2957                 page = swapin_readahead(entry,
2958                                         GFP_HIGHUSER_MOVABLE, vma, address);
2959                 if (!page) {
2960                         /*
2961                          * Back out if somebody else faulted in this pte
2962                          * while we released the pte lock.
2963                          */
2964                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2965                         if (likely(pte_same(*page_table, orig_pte)))
2966                                 ret = VM_FAULT_OOM;
2967                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968                         goto unlock;
2969                 }
2970
2971                 /* Had to read the page from swap area: Major fault */
2972                 ret = VM_FAULT_MAJOR;
2973                 count_vm_event(PGMAJFAULT);
2974                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2975         } else if (PageHWPoison(page)) {
2976                 /*
2977                  * hwpoisoned dirty swapcache pages are kept for killing
2978                  * owner processes (which may be unknown at hwpoison time)
2979                  */
2980                 ret = VM_FAULT_HWPOISON;
2981                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982                 goto out_release;
2983         }
2984
2985         locked = lock_page_or_retry(page, mm, flags);
2986         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2987         if (!locked) {
2988                 ret |= VM_FAULT_RETRY;
2989                 goto out_release;
2990         }
2991
2992         /*
2993          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2994          * release the swapcache from under us.  The page pin, and pte_same
2995          * test below, are not enough to exclude that.  Even if it is still
2996          * swapcache, we need to check that the page's swap has not changed.
2997          */
2998         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2999                 goto out_page;
3000
3001         if (ksm_might_need_to_copy(page, vma, address)) {
3002                 swapcache = page;
3003                 page = ksm_does_need_to_copy(page, vma, address);
3004
3005                 if (unlikely(!page)) {
3006                         ret = VM_FAULT_OOM;
3007                         page = swapcache;
3008                         swapcache = NULL;
3009                         goto out_page;
3010                 }
3011         }
3012
3013         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3014                 ret = VM_FAULT_OOM;
3015                 goto out_page;
3016         }
3017
3018         /*
3019          * Back out if somebody else already faulted in this pte.
3020          */
3021         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3022         if (unlikely(!pte_same(*page_table, orig_pte)))
3023                 goto out_nomap;
3024
3025         if (unlikely(!PageUptodate(page))) {
3026                 ret = VM_FAULT_SIGBUS;
3027                 goto out_nomap;
3028         }
3029
3030         /*
3031          * The page isn't present yet, go ahead with the fault.
3032          *
3033          * Be careful about the sequence of operations here.
3034          * To get its accounting right, reuse_swap_page() must be called
3035          * while the page is counted on swap but not yet in mapcount i.e.
3036          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3037          * must be called after the swap_free(), or it will never succeed.
3038          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3039          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3040          * in page->private. In this case, a record in swap_cgroup  is silently
3041          * discarded at swap_free().
3042          */
3043
3044         inc_mm_counter_fast(mm, MM_ANONPAGES);
3045         dec_mm_counter_fast(mm, MM_SWAPENTS);
3046         pte = mk_pte(page, vma->vm_page_prot);
3047         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3048                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3049                 flags &= ~FAULT_FLAG_WRITE;
3050                 ret |= VM_FAULT_WRITE;
3051                 exclusive = 1;
3052         }
3053         flush_icache_page(vma, page);
3054         set_pte_at(mm, address, page_table, pte);
3055         do_page_add_anon_rmap(page, vma, address, exclusive);
3056         /* It's better to call commit-charge after rmap is established */
3057         mem_cgroup_commit_charge_swapin(page, ptr);
3058
3059         swap_free(entry);
3060         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3061                 try_to_free_swap(page);
3062         unlock_page(page);
3063         if (swapcache) {
3064                 /*
3065                  * Hold the lock to avoid the swap entry to be reused
3066                  * until we take the PT lock for the pte_same() check
3067                  * (to avoid false positives from pte_same). For
3068                  * further safety release the lock after the swap_free
3069                  * so that the swap count won't change under a
3070                  * parallel locked swapcache.
3071                  */
3072                 unlock_page(swapcache);
3073                 page_cache_release(swapcache);
3074         }
3075
3076         if (flags & FAULT_FLAG_WRITE) {
3077                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3078                 if (ret & VM_FAULT_ERROR)
3079                         ret &= VM_FAULT_ERROR;
3080                 goto out;
3081         }
3082
3083         /* No need to invalidate - it was non-present before */
3084         update_mmu_cache(vma, address, page_table);
3085 unlock:
3086         pte_unmap_unlock(page_table, ptl);
3087 out:
3088         return ret;
3089 out_nomap:
3090         mem_cgroup_cancel_charge_swapin(ptr);
3091         pte_unmap_unlock(page_table, ptl);
3092 out_page:
3093         unlock_page(page);
3094 out_release:
3095         page_cache_release(page);
3096         if (swapcache) {
3097                 unlock_page(swapcache);
3098                 page_cache_release(swapcache);
3099         }
3100         return ret;
3101 }
3102
3103 /*
3104  * This is like a special single-page "expand_{down|up}wards()",
3105  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3106  * doesn't hit another vma.
3107  */
3108 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3109 {
3110         address &= PAGE_MASK;
3111         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3112                 struct vm_area_struct *prev = vma->vm_prev;
3113
3114                 /*
3115                  * Is there a mapping abutting this one below?
3116                  *
3117                  * That's only ok if it's the same stack mapping
3118                  * that has gotten split..
3119                  */
3120                 if (prev && prev->vm_end == address)
3121                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3122
3123                 expand_downwards(vma, address - PAGE_SIZE);
3124         }
3125         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3126                 struct vm_area_struct *next = vma->vm_next;
3127
3128                 /* As VM_GROWSDOWN but s/below/above/ */
3129                 if (next && next->vm_start == address + PAGE_SIZE)
3130                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3131
3132                 expand_upwards(vma, address + PAGE_SIZE);
3133         }
3134         return 0;
3135 }
3136
3137 /*
3138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139  * but allow concurrent faults), and pte mapped but not yet locked.
3140  * We return with mmap_sem still held, but pte unmapped and unlocked.
3141  */
3142 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3143                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3144                 unsigned int flags)
3145 {
3146         struct page *page;
3147         spinlock_t *ptl;
3148         pte_t entry;
3149
3150         pte_unmap(page_table);
3151
3152         /* Check if we need to add a guard page to the stack */
3153         if (check_stack_guard_page(vma, address) < 0)
3154                 return VM_FAULT_SIGBUS;
3155
3156         /* Use the zero-page for reads */
3157         if (!(flags & FAULT_FLAG_WRITE)) {
3158                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3159                                                 vma->vm_page_prot));
3160                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3161                 if (!pte_none(*page_table))
3162                         goto unlock;
3163                 goto setpte;
3164         }
3165
3166         /* Allocate our own private page. */
3167         if (unlikely(anon_vma_prepare(vma)))
3168                 goto oom;
3169         page = alloc_zeroed_user_highpage_movable(vma, address);
3170         if (!page)
3171                 goto oom;
3172         __SetPageUptodate(page);
3173
3174         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3175                 goto oom_free_page;
3176
3177         entry = mk_pte(page, vma->vm_page_prot);
3178         if (vma->vm_flags & VM_WRITE)
3179                 entry = pte_mkwrite(pte_mkdirty(entry));
3180
3181         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3182         if (!pte_none(*page_table))
3183                 goto release;
3184
3185         inc_mm_counter_fast(mm, MM_ANONPAGES);
3186         page_add_new_anon_rmap(page, vma, address);
3187 setpte:
3188         set_pte_at(mm, address, page_table, entry);
3189
3190         /* No need to invalidate - it was non-present before */
3191         update_mmu_cache(vma, address, page_table);
3192 unlock:
3193         pte_unmap_unlock(page_table, ptl);
3194         return 0;
3195 release:
3196         mem_cgroup_uncharge_page(page);
3197         page_cache_release(page);
3198         goto unlock;
3199 oom_free_page:
3200         page_cache_release(page);
3201 oom:
3202         return VM_FAULT_OOM;
3203 }
3204
3205 /*
3206  * __do_fault() tries to create a new page mapping. It aggressively
3207  * tries to share with existing pages, but makes a separate copy if
3208  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3209  * the next page fault.
3210  *
3211  * As this is called only for pages that do not currently exist, we
3212  * do not need to flush old virtual caches or the TLB.
3213  *
3214  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3215  * but allow concurrent faults), and pte neither mapped nor locked.
3216  * We return with mmap_sem still held, but pte unmapped and unlocked.
3217  */
3218 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3219                 unsigned long address, pmd_t *pmd,
3220                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3221 {
3222         pte_t *page_table;
3223         spinlock_t *ptl;
3224         struct page *page;
3225         pte_t entry;
3226         int anon = 0;
3227         int charged = 0;
3228         struct page *dirty_page = NULL;
3229         struct vm_fault vmf;
3230         int ret;
3231         int page_mkwrite = 0;
3232
3233         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3234         vmf.pgoff = pgoff;
3235         vmf.flags = flags;
3236         vmf.page = NULL;
3237
3238         ret = vma->vm_ops->fault(vma, &vmf);
3239         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3240                             VM_FAULT_RETRY)))
3241                 return ret;
3242
3243         if (unlikely(PageHWPoison(vmf.page))) {
3244                 if (ret & VM_FAULT_LOCKED)
3245                         unlock_page(vmf.page);
3246                 return VM_FAULT_HWPOISON;
3247         }
3248
3249         /*
3250          * For consistency in subsequent calls, make the faulted page always
3251          * locked.
3252          */
3253         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254                 lock_page(vmf.page);
3255         else
3256                 VM_BUG_ON(!PageLocked(vmf.page));
3257
3258         /*
3259          * Should we do an early C-O-W break?
3260          */
3261         page = vmf.page;
3262         if (flags & FAULT_FLAG_WRITE) {
3263                 if (!(vma->vm_flags & VM_SHARED)) {
3264                         anon = 1;
3265                         if (unlikely(anon_vma_prepare(vma))) {
3266                                 ret = VM_FAULT_OOM;
3267                                 goto out;
3268                         }
3269                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3270                                                 vma, address);
3271                         if (!page) {
3272                                 ret = VM_FAULT_OOM;
3273                                 goto out;
3274                         }
3275                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3276                                 ret = VM_FAULT_OOM;
3277                                 page_cache_release(page);
3278                                 goto out;
3279                         }
3280                         charged = 1;
3281                         copy_user_highpage(page, vmf.page, address, vma);
3282                         __SetPageUptodate(page);
3283                 } else {
3284                         /*
3285                          * If the page will be shareable, see if the backing
3286                          * address space wants to know that the page is about
3287                          * to become writable
3288                          */
3289                         if (vma->vm_ops->page_mkwrite) {
3290                                 int tmp;
3291
3292                                 unlock_page(page);
3293                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3294                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3295                                 if (unlikely(tmp &
3296                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3297                                         ret = tmp;
3298                                         goto unwritable_page;
3299                                 }
3300                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3301                                         lock_page(page);
3302                                         if (!page->mapping) {
3303                                                 ret = 0; /* retry the fault */
3304                                                 unlock_page(page);
3305                                                 goto unwritable_page;
3306                                         }
3307                                 } else
3308                                         VM_BUG_ON(!PageLocked(page));
3309                                 page_mkwrite = 1;
3310                         }
3311                 }
3312
3313         }
3314
3315         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3316
3317         /*
3318          * This silly early PAGE_DIRTY setting removes a race
3319          * due to the bad i386 page protection. But it's valid
3320          * for other architectures too.
3321          *
3322          * Note that if FAULT_FLAG_WRITE is set, we either now have
3323          * an exclusive copy of the page, or this is a shared mapping,
3324          * so we can make it writable and dirty to avoid having to
3325          * handle that later.
3326          */
3327         /* Only go through if we didn't race with anybody else... */
3328         if (likely(pte_same(*page_table, orig_pte))) {
3329                 flush_icache_page(vma, page);
3330                 entry = mk_pte(page, vma->vm_page_prot);
3331                 if (flags & FAULT_FLAG_WRITE)
3332                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3333                 if (anon) {
3334                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3335                         page_add_new_anon_rmap(page, vma, address);
3336                 } else {
3337                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3338                         page_add_file_rmap(page);
3339                         if (flags & FAULT_FLAG_WRITE) {
3340                                 dirty_page = page;
3341                                 get_page(dirty_page);
3342                         }
3343                 }
3344                 set_pte_at(mm, address, page_table, entry);
3345
3346                 /* no need to invalidate: a not-present page won't be cached */
3347                 update_mmu_cache(vma, address, page_table);
3348         } else {
3349                 if (charged)
3350                         mem_cgroup_uncharge_page(page);
3351                 if (anon)
3352                         page_cache_release(page);
3353                 else
3354                         anon = 1; /* no anon but release faulted_page */
3355         }
3356
3357         pte_unmap_unlock(page_table, ptl);
3358
3359 out:
3360         if (dirty_page) {
3361                 struct address_space *mapping = page->mapping;
3362
3363                 if (set_page_dirty(dirty_page))
3364                         page_mkwrite = 1;
3365                 unlock_page(dirty_page);
3366                 put_page(dirty_page);
3367                 if (page_mkwrite && mapping) {
3368                         /*
3369                          * Some device drivers do not set page.mapping but still
3370                          * dirty their pages
3371                          */
3372                         balance_dirty_pages_ratelimited(mapping);
3373                 }
3374
3375                 /* file_update_time outside page_lock */
3376                 if (vma->vm_file)
3377                         file_update_time(vma->vm_file);
3378         } else {
3379                 unlock_page(vmf.page);
3380                 if (anon)
3381                         page_cache_release(vmf.page);
3382         }
3383
3384         return ret;
3385
3386 unwritable_page:
3387         page_cache_release(page);
3388         return ret;
3389 }
3390
3391 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3392                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3393                 unsigned int flags, pte_t orig_pte)
3394 {
3395         pgoff_t pgoff = (((address & PAGE_MASK)
3396                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3397
3398         pte_unmap(page_table);
3399         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3400 }
3401
3402 /*
3403  * Fault of a previously existing named mapping. Repopulate the pte
3404  * from the encoded file_pte if possible. This enables swappable
3405  * nonlinear vmas.
3406  *
3407  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3408  * but allow concurrent faults), and pte mapped but not yet locked.
3409  * We return with mmap_sem still held, but pte unmapped and unlocked.
3410  */
3411 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3412                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3413                 unsigned int flags, pte_t orig_pte)
3414 {
3415         pgoff_t pgoff;
3416
3417         flags |= FAULT_FLAG_NONLINEAR;
3418
3419         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3420                 return 0;
3421
3422         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3423                 /*
3424                  * Page table corrupted: show pte and kill process.
3425                  */
3426                 print_bad_pte(vma, address, orig_pte, NULL);
3427                 return VM_FAULT_SIGBUS;
3428         }
3429
3430         pgoff = pte_to_pgoff(orig_pte);
3431         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3432 }
3433
3434 /*
3435  * These routines also need to handle stuff like marking pages dirty
3436  * and/or accessed for architectures that don't do it in hardware (most
3437  * RISC architectures).  The early dirtying is also good on the i386.
3438  *
3439  * There is also a hook called "update_mmu_cache()" that architectures
3440  * with external mmu caches can use to update those (ie the Sparc or
3441  * PowerPC hashed page tables that act as extended TLBs).
3442  *
3443  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3444  * but allow concurrent faults), and pte mapped but not yet locked.
3445  * We return with mmap_sem still held, but pte unmapped and unlocked.
3446  */
3447 int handle_pte_fault(struct mm_struct *mm,
3448                      struct vm_area_struct *vma, unsigned long address,
3449                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3450 {
3451         pte_t entry;
3452         spinlock_t *ptl;
3453
3454         entry = *pte;
3455         if (!pte_present(entry)) {
3456                 if (pte_none(entry)) {
3457                         if (vma->vm_ops) {
3458                                 if (likely(vma->vm_ops->fault))
3459                                         return do_linear_fault(mm, vma, address,
3460                                                 pte, pmd, flags, entry);
3461                         }
3462                         return do_anonymous_page(mm, vma, address,
3463                                                  pte, pmd, flags);
3464                 }
3465                 if (pte_file(entry))
3466                         return do_nonlinear_fault(mm, vma, address,
3467                                         pte, pmd, flags, entry);
3468                 return do_swap_page(mm, vma, address,
3469                                         pte, pmd, flags, entry);
3470         }
3471
3472         ptl = pte_lockptr(mm, pmd);
3473         spin_lock(ptl);
3474         if (unlikely(!pte_same(*pte, entry)))
3475                 goto unlock;
3476         if (flags & FAULT_FLAG_WRITE) {
3477                 if (!pte_write(entry))
3478                         return do_wp_page(mm, vma, address,
3479                                         pte, pmd, ptl, entry);
3480                 entry = pte_mkdirty(entry);
3481         }
3482         entry = pte_mkyoung(entry);
3483         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3484                 update_mmu_cache(vma, address, pte);
3485         } else {
3486                 /*
3487                  * This is needed only for protection faults but the arch code
3488                  * is not yet telling us if this is a protection fault or not.
3489                  * This still avoids useless tlb flushes for .text page faults
3490                  * with threads.
3491                  */
3492                 if (flags & FAULT_FLAG_WRITE)
3493                         flush_tlb_fix_spurious_fault(vma, address);
3494         }
3495 unlock:
3496         pte_unmap_unlock(pte, ptl);
3497         return 0;
3498 }
3499
3500 /*
3501  * By the time we get here, we already hold the mm semaphore
3502  */
3503 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3504                 unsigned long address, unsigned int flags)
3505 {
3506         pgd_t *pgd;
3507         pud_t *pud;
3508         pmd_t *pmd;
3509         pte_t *pte;
3510
3511         __set_current_state(TASK_RUNNING);
3512
3513         count_vm_event(PGFAULT);
3514         mem_cgroup_count_vm_event(mm, PGFAULT);
3515
3516         /* do counter updates before entering really critical section. */
3517         check_sync_rss_stat(current);
3518
3519         if (unlikely(is_vm_hugetlb_page(vma)))
3520                 return hugetlb_fault(mm, vma, address, flags);
3521
3522 retry:
3523         pgd = pgd_offset(mm, address);
3524         pud = pud_alloc(mm, pgd, address);
3525         if (!pud)
3526                 return VM_FAULT_OOM;
3527         pmd = pmd_alloc(mm, pud, address);
3528         if (!pmd)
3529                 return VM_FAULT_OOM;
3530         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3531                 if (!vma->vm_ops)
3532                         return do_huge_pmd_anonymous_page(mm, vma, address,
3533                                                           pmd, flags);
3534         } else {
3535                 pmd_t orig_pmd = *pmd;
3536                 int ret;
3537
3538                 barrier();
3539                 if (pmd_trans_huge(orig_pmd)) {
3540                         if (flags & FAULT_FLAG_WRITE &&
3541                             !pmd_write(orig_pmd) &&
3542                             !pmd_trans_splitting(orig_pmd)) {
3543                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3544                                                           orig_pmd);
3545                                 /*
3546                                  * If COW results in an oom, the huge pmd will
3547                                  * have been split, so retry the fault on the
3548                                  * pte for a smaller charge.
3549                                  */
3550                                 if (unlikely(ret & VM_FAULT_OOM))
3551                                         goto retry;
3552                                 return ret;
3553                         }
3554                         return 0;
3555                 }
3556         }
3557
3558         /*
3559          * Use __pte_alloc instead of pte_alloc_map, because we can't
3560          * run pte_offset_map on the pmd, if an huge pmd could
3561          * materialize from under us from a different thread.
3562          */
3563         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3564                 return VM_FAULT_OOM;
3565         /* if an huge pmd materialized from under us just retry later */
3566         if (unlikely(pmd_trans_huge(*pmd)))
3567                 return 0;
3568         /*
3569          * A regular pmd is established and it can't morph into a huge pmd
3570          * from under us anymore at this point because we hold the mmap_sem
3571          * read mode and khugepaged takes it in write mode. So now it's
3572          * safe to run pte_offset_map().
3573          */
3574         pte = pte_offset_map(pmd, address);
3575
3576         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3577 }
3578
3579 #ifndef __PAGETABLE_PUD_FOLDED
3580 /*
3581  * Allocate page upper directory.
3582  * We've already handled the fast-path in-line.
3583  */
3584 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3585 {
3586         pud_t *new = pud_alloc_one(mm, address);
3587         if (!new)
3588                 return -ENOMEM;
3589
3590         smp_wmb(); /* See comment in __pte_alloc */
3591
3592         spin_lock(&mm->page_table_lock);
3593         if (pgd_present(*pgd))          /* Another has populated it */
3594                 pud_free(mm, new);
3595         else
3596                 pgd_populate(mm, pgd, new);
3597         spin_unlock(&mm->page_table_lock);
3598         return 0;
3599 }
3600 #endif /* __PAGETABLE_PUD_FOLDED */
3601
3602 #ifndef __PAGETABLE_PMD_FOLDED
3603 /*
3604  * Allocate page middle directory.
3605  * We've already handled the fast-path in-line.
3606  */
3607 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3608 {
3609         pmd_t *new = pmd_alloc_one(mm, address);
3610         if (!new)
3611                 return -ENOMEM;
3612
3613         smp_wmb(); /* See comment in __pte_alloc */
3614
3615         spin_lock(&mm->page_table_lock);
3616 #ifndef __ARCH_HAS_4LEVEL_HACK
3617         if (pud_present(*pud))          /* Another has populated it */
3618                 pmd_free(mm, new);
3619         else
3620                 pud_populate(mm, pud, new);
3621 #else
3622         if (pgd_present(*pud))          /* Another has populated it */
3623                 pmd_free(mm, new);
3624         else
3625                 pgd_populate(mm, pud, new);
3626 #endif /* __ARCH_HAS_4LEVEL_HACK */
3627         spin_unlock(&mm->page_table_lock);
3628         return 0;
3629 }
3630 #endif /* __PAGETABLE_PMD_FOLDED */
3631
3632 int make_pages_present(unsigned long addr, unsigned long end)
3633 {
3634         int ret, len, write;
3635         struct vm_area_struct * vma;
3636
3637         vma = find_vma(current->mm, addr);
3638         if (!vma)
3639                 return -ENOMEM;
3640         /*
3641          * We want to touch writable mappings with a write fault in order
3642          * to break COW, except for shared mappings because these don't COW
3643          * and we would not want to dirty them for nothing.
3644          */
3645         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3646         BUG_ON(addr >= end);
3647         BUG_ON(end > vma->vm_end);
3648         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3649         ret = get_user_pages(current, current->mm, addr,
3650                         len, write, 0, NULL, NULL);
3651         if (ret < 0)
3652                 return ret;
3653         return ret == len ? 0 : -EFAULT;
3654 }
3655
3656 #if !defined(__HAVE_ARCH_GATE_AREA)
3657
3658 #if defined(AT_SYSINFO_EHDR)
3659 static struct vm_area_struct gate_vma;
3660
3661 static int __init gate_vma_init(void)
3662 {
3663         gate_vma.vm_mm = NULL;
3664         gate_vma.vm_start = FIXADDR_USER_START;
3665         gate_vma.vm_end = FIXADDR_USER_END;
3666         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3667         gate_vma.vm_page_prot = __P101;
3668         /*
3669          * Make sure the vDSO gets into every core dump.
3670          * Dumping its contents makes post-mortem fully interpretable later
3671          * without matching up the same kernel and hardware config to see
3672          * what PC values meant.
3673          */
3674         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3675         return 0;
3676 }
3677 __initcall(gate_vma_init);
3678 #endif
3679
3680 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3681 {
3682 #ifdef AT_SYSINFO_EHDR
3683         return &gate_vma;
3684 #else
3685         return NULL;
3686 #endif
3687 }
3688
3689 int in_gate_area_no_mm(unsigned long addr)
3690 {
3691 #ifdef AT_SYSINFO_EHDR
3692         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3693                 return 1;
3694 #endif
3695         return 0;
3696 }
3697
3698 #endif  /* __HAVE_ARCH_GATE_AREA */
3699
3700 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3701                 pte_t **ptepp, spinlock_t **ptlp)
3702 {
3703         pgd_t *pgd;
3704         pud_t *pud;
3705         pmd_t *pmd;
3706         pte_t *ptep;
3707
3708         pgd = pgd_offset(mm, address);
3709         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3710                 goto out;
3711
3712         pud = pud_offset(pgd, address);
3713         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3714                 goto out;
3715
3716         pmd = pmd_offset(pud, address);
3717         VM_BUG_ON(pmd_trans_huge(*pmd));
3718         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3719                 goto out;
3720
3721         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3722         if (pmd_huge(*pmd))
3723                 goto out;
3724
3725         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3726         if (!ptep)
3727                 goto out;
3728         if (!pte_present(*ptep))
3729                 goto unlock;
3730         *ptepp = ptep;
3731         return 0;
3732 unlock:
3733         pte_unmap_unlock(ptep, *ptlp);
3734 out:
3735         return -EINVAL;
3736 }
3737
3738 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3739                              pte_t **ptepp, spinlock_t **ptlp)
3740 {
3741         int res;
3742
3743         /* (void) is needed to make gcc happy */
3744         (void) __cond_lock(*ptlp,
3745                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3746         return res;
3747 }
3748
3749 /**
3750  * follow_pfn - look up PFN at a user virtual address
3751  * @vma: memory mapping
3752  * @address: user virtual address
3753  * @pfn: location to store found PFN
3754  *
3755  * Only IO mappings and raw PFN mappings are allowed.
3756  *
3757  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3758  */
3759 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3760         unsigned long *pfn)
3761 {
3762         int ret = -EINVAL;
3763         spinlock_t *ptl;
3764         pte_t *ptep;
3765
3766         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3767                 return ret;
3768
3769         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3770         if (ret)
3771                 return ret;
3772         *pfn = pte_pfn(*ptep);
3773         pte_unmap_unlock(ptep, ptl);
3774         return 0;
3775 }
3776 EXPORT_SYMBOL(follow_pfn);
3777
3778 #ifdef CONFIG_HAVE_IOREMAP_PROT
3779 int follow_phys(struct vm_area_struct *vma,
3780                 unsigned long address, unsigned int flags,
3781                 unsigned long *prot, resource_size_t *phys)
3782 {
3783         int ret = -EINVAL;
3784         pte_t *ptep, pte;
3785         spinlock_t *ptl;
3786
3787         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3788                 goto out;
3789
3790         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3791                 goto out;
3792         pte = *ptep;
3793
3794         if ((flags & FOLL_WRITE) && !pte_write(pte))
3795                 goto unlock;
3796
3797         *prot = pgprot_val(pte_pgprot(pte));
3798         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3799
3800         ret = 0;
3801 unlock:
3802         pte_unmap_unlock(ptep, ptl);
3803 out:
3804         return ret;
3805 }
3806
3807 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3808                         void *buf, int len, int write)
3809 {
3810         resource_size_t phys_addr;
3811         unsigned long prot = 0;
3812         void __iomem *maddr;
3813         int offset = addr & (PAGE_SIZE-1);
3814
3815         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3816                 return -EINVAL;
3817
3818         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3819         if (write)
3820                 memcpy_toio(maddr + offset, buf, len);
3821         else
3822                 memcpy_fromio(buf, maddr + offset, len);
3823         iounmap(maddr);
3824
3825         return len;
3826 }
3827 #endif
3828
3829 /*
3830  * Access another process' address space as given in mm.  If non-NULL, use the
3831  * given task for page fault accounting.
3832  */
3833 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3834                 unsigned long addr, void *buf, int len, int write)
3835 {
3836         struct vm_area_struct *vma;
3837         void *old_buf = buf;
3838
3839         down_read(&mm->mmap_sem);
3840         /* ignore errors, just check how much was successfully transferred */
3841         while (len) {
3842                 int bytes, ret, offset;
3843                 void *maddr;
3844                 struct page *page = NULL;
3845
3846                 ret = get_user_pages(tsk, mm, addr, 1,
3847                                 write, 1, &page, &vma);
3848                 if (ret <= 0) {
3849                         /*
3850                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3851                          * we can access using slightly different code.
3852                          */
3853 #ifdef CONFIG_HAVE_IOREMAP_PROT
3854                         vma = find_vma(mm, addr);
3855                         if (!vma || vma->vm_start > addr)
3856                                 break;
3857                         if (vma->vm_ops && vma->vm_ops->access)
3858                                 ret = vma->vm_ops->access(vma, addr, buf,
3859                                                           len, write);
3860                         if (ret <= 0)
3861 #endif
3862                                 break;
3863                         bytes = ret;
3864                 } else {
3865                         bytes = len;
3866                         offset = addr & (PAGE_SIZE-1);
3867                         if (bytes > PAGE_SIZE-offset)
3868                                 bytes = PAGE_SIZE-offset;
3869
3870                         maddr = kmap(page);
3871                         if (write) {
3872                                 copy_to_user_page(vma, page, addr,
3873                                                   maddr + offset, buf, bytes);
3874                                 set_page_dirty_lock(page);
3875                         } else {
3876                                 copy_from_user_page(vma, page, addr,
3877                                                     buf, maddr + offset, bytes);
3878                         }
3879                         kunmap(page);
3880                         page_cache_release(page);
3881                 }
3882                 len -= bytes;
3883                 buf += bytes;
3884                 addr += bytes;
3885         }
3886         up_read(&mm->mmap_sem);
3887
3888         return buf - old_buf;
3889 }
3890
3891 /**
3892  * access_remote_vm - access another process' address space
3893  * @mm:         the mm_struct of the target address space
3894  * @addr:       start address to access
3895  * @buf:        source or destination buffer
3896  * @len:        number of bytes to transfer
3897  * @write:      whether the access is a write
3898  *
3899  * The caller must hold a reference on @mm.
3900  */
3901 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3902                 void *buf, int len, int write)
3903 {
3904         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3905 }
3906
3907 /*
3908  * Access another process' address space.
3909  * Source/target buffer must be kernel space,
3910  * Do not walk the page table directly, use get_user_pages
3911  */
3912 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3913                 void *buf, int len, int write)
3914 {
3915         struct mm_struct *mm;
3916         int ret;
3917
3918         mm = get_task_mm(tsk);
3919         if (!mm)
3920                 return 0;
3921
3922         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3923         mmput(mm);
3924
3925         return ret;
3926 }
3927
3928 /*
3929  * Print the name of a VMA.
3930  */
3931 void print_vma_addr(char *prefix, unsigned long ip)
3932 {
3933         struct mm_struct *mm = current->mm;
3934         struct vm_area_struct *vma;
3935
3936         /*
3937          * Do not print if we are in atomic
3938          * contexts (in exception stacks, etc.):
3939          */
3940         if (preempt_count())
3941                 return;
3942
3943         down_read(&mm->mmap_sem);
3944         vma = find_vma(mm, ip);
3945         if (vma && vma->vm_file) {
3946                 struct file *f = vma->vm_file;
3947                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3948                 if (buf) {
3949                         char *p, *s;
3950
3951                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3952                         if (IS_ERR(p))
3953                                 p = "?";
3954                         s = strrchr(p, '/');
3955                         if (s)
3956                                 p = s+1;
3957                         printk("%s%s[%lx+%lx]", prefix, p,
3958                                         vma->vm_start,
3959                                         vma->vm_end - vma->vm_start);
3960                         free_page((unsigned long)buf);
3961                 }
3962         }
3963         up_read(&current->mm->mmap_sem);
3964 }
3965
3966 #ifdef CONFIG_PROVE_LOCKING
3967 void might_fault(void)
3968 {
3969         /*
3970          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3971          * holding the mmap_sem, this is safe because kernel memory doesn't
3972          * get paged out, therefore we'll never actually fault, and the
3973          * below annotations will generate false positives.
3974          */
3975         if (segment_eq(get_fs(), KERNEL_DS))
3976                 return;
3977
3978         might_sleep();
3979         /*
3980          * it would be nicer only to annotate paths which are not under
3981          * pagefault_disable, however that requires a larger audit and
3982          * providing helpers like get_user_atomic.
3983          */
3984         if (!in_atomic() && current->mm)
3985                 might_lock_read(&current->mm->mmap_sem);
3986 }
3987 EXPORT_SYMBOL(might_fault);
3988 #endif
3989
3990 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3991 static void clear_gigantic_page(struct page *page,
3992                                 unsigned long addr,
3993                                 unsigned int pages_per_huge_page)
3994 {
3995         int i;
3996         struct page *p = page;
3997
3998         might_sleep();
3999         for (i = 0; i < pages_per_huge_page;
4000              i++, p = mem_map_next(p, page, i)) {
4001                 cond_resched();
4002                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4003         }
4004 }
4005 void clear_huge_page(struct page *page,
4006                      unsigned long addr, unsigned int pages_per_huge_page)
4007 {
4008         int i;
4009
4010         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4011                 clear_gigantic_page(page, addr, pages_per_huge_page);
4012                 return;
4013         }
4014
4015         might_sleep();
4016         for (i = 0; i < pages_per_huge_page; i++) {
4017                 cond_resched();
4018                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4019         }
4020 }
4021
4022 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4023                                     unsigned long addr,
4024                                     struct vm_area_struct *vma,
4025                                     unsigned int pages_per_huge_page)
4026 {
4027         int i;
4028         struct page *dst_base = dst;
4029         struct page *src_base = src;
4030
4031         for (i = 0; i < pages_per_huge_page; ) {
4032                 cond_resched();
4033                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4034
4035                 i++;
4036                 dst = mem_map_next(dst, dst_base, i);
4037                 src = mem_map_next(src, src_base, i);
4038         }
4039 }
4040
4041 void copy_user_huge_page(struct page *dst, struct page *src,
4042                          unsigned long addr, struct vm_area_struct *vma,
4043                          unsigned int pages_per_huge_page)
4044 {
4045         int i;
4046
4047         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4048                 copy_user_gigantic_page(dst, src, addr, vma,
4049                                         pages_per_huge_page);
4050                 return;
4051         }
4052
4053         might_sleep();
4054         for (i = 0; i < pages_per_huge_page; i++) {
4055                 cond_resched();
4056                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4057         }
4058 }
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */