Merge tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg...
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117                 return false;
118
119         return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140                                         1;
141 #else
142                                         2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148         /*
149          * Transitioning a PTE from 'old' to 'young' can be expensive on
150          * some architectures, even if it's performed in hardware. By
151          * default, "false" means prefaulted entries will be 'young'.
152          */
153         return false;
154 }
155 #endif
156
157 static int __init disable_randmaps(char *s)
158 {
159         randomize_va_space = 0;
160         return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174         zero_pfn = page_to_pfn(ZERO_PAGE(0));
175         return 0;
176 }
177 early_initcall(init_zero_pfn);
178
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181         trace_rss_stat(mm, member);
182 }
183
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189                            unsigned long addr)
190 {
191         pgtable_t token = pmd_pgtable(*pmd);
192         pmd_clear(pmd);
193         pte_free_tlb(tlb, token, addr);
194         mm_dec_nr_ptes(tlb->mm);
195 }
196
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198                                 unsigned long addr, unsigned long end,
199                                 unsigned long floor, unsigned long ceiling)
200 {
201         pmd_t *pmd;
202         unsigned long next;
203         unsigned long start;
204
205         start = addr;
206         pmd = pmd_offset(pud, addr);
207         do {
208                 next = pmd_addr_end(addr, end);
209                 if (pmd_none_or_clear_bad(pmd))
210                         continue;
211                 free_pte_range(tlb, pmd, addr);
212         } while (pmd++, addr = next, addr != end);
213
214         start &= PUD_MASK;
215         if (start < floor)
216                 return;
217         if (ceiling) {
218                 ceiling &= PUD_MASK;
219                 if (!ceiling)
220                         return;
221         }
222         if (end - 1 > ceiling - 1)
223                 return;
224
225         pmd = pmd_offset(pud, start);
226         pud_clear(pud);
227         pmd_free_tlb(tlb, pmd, start);
228         mm_dec_nr_pmds(tlb->mm);
229 }
230
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232                                 unsigned long addr, unsigned long end,
233                                 unsigned long floor, unsigned long ceiling)
234 {
235         pud_t *pud;
236         unsigned long next;
237         unsigned long start;
238
239         start = addr;
240         pud = pud_offset(p4d, addr);
241         do {
242                 next = pud_addr_end(addr, end);
243                 if (pud_none_or_clear_bad(pud))
244                         continue;
245                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246         } while (pud++, addr = next, addr != end);
247
248         start &= P4D_MASK;
249         if (start < floor)
250                 return;
251         if (ceiling) {
252                 ceiling &= P4D_MASK;
253                 if (!ceiling)
254                         return;
255         }
256         if (end - 1 > ceiling - 1)
257                 return;
258
259         pud = pud_offset(p4d, start);
260         p4d_clear(p4d);
261         pud_free_tlb(tlb, pud, start);
262         mm_dec_nr_puds(tlb->mm);
263 }
264
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266                                 unsigned long addr, unsigned long end,
267                                 unsigned long floor, unsigned long ceiling)
268 {
269         p4d_t *p4d;
270         unsigned long next;
271         unsigned long start;
272
273         start = addr;
274         p4d = p4d_offset(pgd, addr);
275         do {
276                 next = p4d_addr_end(addr, end);
277                 if (p4d_none_or_clear_bad(p4d))
278                         continue;
279                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280         } while (p4d++, addr = next, addr != end);
281
282         start &= PGDIR_MASK;
283         if (start < floor)
284                 return;
285         if (ceiling) {
286                 ceiling &= PGDIR_MASK;
287                 if (!ceiling)
288                         return;
289         }
290         if (end - 1 > ceiling - 1)
291                 return;
292
293         p4d = p4d_offset(pgd, start);
294         pgd_clear(pgd);
295         p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302                         unsigned long addr, unsigned long end,
303                         unsigned long floor, unsigned long ceiling)
304 {
305         pgd_t *pgd;
306         unsigned long next;
307
308         /*
309          * The next few lines have given us lots of grief...
310          *
311          * Why are we testing PMD* at this top level?  Because often
312          * there will be no work to do at all, and we'd prefer not to
313          * go all the way down to the bottom just to discover that.
314          *
315          * Why all these "- 1"s?  Because 0 represents both the bottom
316          * of the address space and the top of it (using -1 for the
317          * top wouldn't help much: the masks would do the wrong thing).
318          * The rule is that addr 0 and floor 0 refer to the bottom of
319          * the address space, but end 0 and ceiling 0 refer to the top
320          * Comparisons need to use "end - 1" and "ceiling - 1" (though
321          * that end 0 case should be mythical).
322          *
323          * Wherever addr is brought up or ceiling brought down, we must
324          * be careful to reject "the opposite 0" before it confuses the
325          * subsequent tests.  But what about where end is brought down
326          * by PMD_SIZE below? no, end can't go down to 0 there.
327          *
328          * Whereas we round start (addr) and ceiling down, by different
329          * masks at different levels, in order to test whether a table
330          * now has no other vmas using it, so can be freed, we don't
331          * bother to round floor or end up - the tests don't need that.
332          */
333
334         addr &= PMD_MASK;
335         if (addr < floor) {
336                 addr += PMD_SIZE;
337                 if (!addr)
338                         return;
339         }
340         if (ceiling) {
341                 ceiling &= PMD_MASK;
342                 if (!ceiling)
343                         return;
344         }
345         if (end - 1 > ceiling - 1)
346                 end -= PMD_SIZE;
347         if (addr > end - 1)
348                 return;
349         /*
350          * We add page table cache pages with PAGE_SIZE,
351          * (see pte_free_tlb()), flush the tlb if we need
352          */
353         tlb_change_page_size(tlb, PAGE_SIZE);
354         pgd = pgd_offset(tlb->mm, addr);
355         do {
356                 next = pgd_addr_end(addr, end);
357                 if (pgd_none_or_clear_bad(pgd))
358                         continue;
359                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360         } while (pgd++, addr = next, addr != end);
361 }
362
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364                    struct vm_area_struct *vma, unsigned long floor,
365                    unsigned long ceiling, bool mm_wr_locked)
366 {
367         do {
368                 unsigned long addr = vma->vm_start;
369                 struct vm_area_struct *next;
370
371                 /*
372                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373                  * be 0.  This will underflow and is okay.
374                  */
375                 next = mas_find(mas, ceiling - 1);
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 if (mm_wr_locked)
382                         vma_start_write(vma);
383                 unlink_anon_vmas(vma);
384                 unlink_file_vma(vma);
385
386                 if (is_vm_hugetlb_page(vma)) {
387                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388                                 floor, next ? next->vm_start : ceiling);
389                 } else {
390                         /*
391                          * Optimization: gather nearby vmas into one call down
392                          */
393                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394                                && !is_vm_hugetlb_page(next)) {
395                                 vma = next;
396                                 next = mas_find(mas, ceiling - 1);
397                                 if (mm_wr_locked)
398                                         vma_start_write(vma);
399                                 unlink_anon_vmas(vma);
400                                 unlink_file_vma(vma);
401                         }
402                         free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 }
405                 vma = next;
406         } while (vma);
407 }
408
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411         spinlock_t *ptl = pmd_lock(mm, pmd);
412
413         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
414                 mm_inc_nr_ptes(mm);
415                 /*
416                  * Ensure all pte setup (eg. pte page lock and page clearing) are
417                  * visible before the pte is made visible to other CPUs by being
418                  * put into page tables.
419                  *
420                  * The other side of the story is the pointer chasing in the page
421                  * table walking code (when walking the page table without locking;
422                  * ie. most of the time). Fortunately, these data accesses consist
423                  * of a chain of data-dependent loads, meaning most CPUs (alpha
424                  * being the notable exception) will already guarantee loads are
425                  * seen in-order. See the alpha page table accessors for the
426                  * smp_rmb() barriers in page table walking code.
427                  */
428                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429                 pmd_populate(mm, pmd, *pte);
430                 *pte = NULL;
431         }
432         spin_unlock(ptl);
433 }
434
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437         pgtable_t new = pte_alloc_one(mm);
438         if (!new)
439                 return -ENOMEM;
440
441         pmd_install(mm, pmd, &new);
442         if (new)
443                 pte_free(mm, new);
444         return 0;
445 }
446
447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449         pte_t *new = pte_alloc_one_kernel(&init_mm);
450         if (!new)
451                 return -ENOMEM;
452
453         spin_lock(&init_mm.page_table_lock);
454         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
455                 smp_wmb(); /* See comment in pmd_install() */
456                 pmd_populate_kernel(&init_mm, pmd, new);
457                 new = NULL;
458         }
459         spin_unlock(&init_mm.page_table_lock);
460         if (new)
461                 pte_free_kernel(&init_mm, new);
462         return 0;
463 }
464
465 static inline void init_rss_vec(int *rss)
466 {
467         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472         int i;
473
474         if (current->mm == mm)
475                 sync_mm_rss(mm);
476         for (i = 0; i < NR_MM_COUNTERS; i++)
477                 if (rss[i])
478                         add_mm_counter(mm, i, rss[i]);
479 }
480
481 /*
482  * This function is called to print an error when a bad pte
483  * is found. For example, we might have a PFN-mapped pte in
484  * a region that doesn't allow it.
485  *
486  * The calling function must still handle the error.
487  */
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489                           pte_t pte, struct page *page)
490 {
491         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492         p4d_t *p4d = p4d_offset(pgd, addr);
493         pud_t *pud = pud_offset(p4d, addr);
494         pmd_t *pmd = pmd_offset(pud, addr);
495         struct address_space *mapping;
496         pgoff_t index;
497         static unsigned long resume;
498         static unsigned long nr_shown;
499         static unsigned long nr_unshown;
500
501         /*
502          * Allow a burst of 60 reports, then keep quiet for that minute;
503          * or allow a steady drip of one report per second.
504          */
505         if (nr_shown == 60) {
506                 if (time_before(jiffies, resume)) {
507                         nr_unshown++;
508                         return;
509                 }
510                 if (nr_unshown) {
511                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512                                  nr_unshown);
513                         nr_unshown = 0;
514                 }
515                 nr_shown = 0;
516         }
517         if (nr_shown++ == 0)
518                 resume = jiffies + 60 * HZ;
519
520         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521         index = linear_page_index(vma, addr);
522
523         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
524                  current->comm,
525                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
526         if (page)
527                 dump_page(page, "bad pte");
528         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531                  vma->vm_file,
532                  vma->vm_ops ? vma->vm_ops->fault : NULL,
533                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534                  mapping ? mapping->a_ops->read_folio : NULL);
535         dump_stack();
536         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538
539 /*
540  * vm_normal_page -- This function gets the "struct page" associated with a pte.
541  *
542  * "Special" mappings do not wish to be associated with a "struct page" (either
543  * it doesn't exist, or it exists but they don't want to touch it). In this
544  * case, NULL is returned here. "Normal" mappings do have a struct page.
545  *
546  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547  * pte bit, in which case this function is trivial. Secondly, an architecture
548  * may not have a spare pte bit, which requires a more complicated scheme,
549  * described below.
550  *
551  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552  * special mapping (even if there are underlying and valid "struct pages").
553  * COWed pages of a VM_PFNMAP are always normal.
554  *
555  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558  * mapping will always honor the rule
559  *
560  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561  *
562  * And for normal mappings this is false.
563  *
564  * This restricts such mappings to be a linear translation from virtual address
565  * to pfn. To get around this restriction, we allow arbitrary mappings so long
566  * as the vma is not a COW mapping; in that case, we know that all ptes are
567  * special (because none can have been COWed).
568  *
569  *
570  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571  *
572  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573  * page" backing, however the difference is that _all_ pages with a struct
574  * page (that is, those where pfn_valid is true) are refcounted and considered
575  * normal pages by the VM. The disadvantage is that pages are refcounted
576  * (which can be slower and simply not an option for some PFNMAP users). The
577  * advantage is that we don't have to follow the strict linearity rule of
578  * PFNMAP mappings in order to support COWable mappings.
579  *
580  */
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582                             pte_t pte)
583 {
584         unsigned long pfn = pte_pfn(pte);
585
586         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587                 if (likely(!pte_special(pte)))
588                         goto check_pfn;
589                 if (vma->vm_ops && vma->vm_ops->find_special_page)
590                         return vma->vm_ops->find_special_page(vma, addr);
591                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592                         return NULL;
593                 if (is_zero_pfn(pfn))
594                         return NULL;
595                 if (pte_devmap(pte))
596                 /*
597                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598                  * and will have refcounts incremented on their struct pages
599                  * when they are inserted into PTEs, thus they are safe to
600                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601                  * do not have refcounts. Example of legacy ZONE_DEVICE is
602                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603                  */
604                         return NULL;
605
606                 print_bad_pte(vma, addr, pte, NULL);
607                 return NULL;
608         }
609
610         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611
612         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613                 if (vma->vm_flags & VM_MIXEDMAP) {
614                         if (!pfn_valid(pfn))
615                                 return NULL;
616                         goto out;
617                 } else {
618                         unsigned long off;
619                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
620                         if (pfn == vma->vm_pgoff + off)
621                                 return NULL;
622                         if (!is_cow_mapping(vma->vm_flags))
623                                 return NULL;
624                 }
625         }
626
627         if (is_zero_pfn(pfn))
628                 return NULL;
629
630 check_pfn:
631         if (unlikely(pfn > highest_memmap_pfn)) {
632                 print_bad_pte(vma, addr, pte, NULL);
633                 return NULL;
634         }
635
636         /*
637          * NOTE! We still have PageReserved() pages in the page tables.
638          * eg. VDSO mappings can cause them to exist.
639          */
640 out:
641         return pfn_to_page(pfn);
642 }
643
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645                             pte_t pte)
646 {
647         struct page *page = vm_normal_page(vma, addr, pte);
648
649         if (page)
650                 return page_folio(page);
651         return NULL;
652 }
653
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656                                 pmd_t pmd)
657 {
658         unsigned long pfn = pmd_pfn(pmd);
659
660         /*
661          * There is no pmd_special() but there may be special pmds, e.g.
662          * in a direct-access (dax) mapping, so let's just replicate the
663          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664          */
665         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666                 if (vma->vm_flags & VM_MIXEDMAP) {
667                         if (!pfn_valid(pfn))
668                                 return NULL;
669                         goto out;
670                 } else {
671                         unsigned long off;
672                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
673                         if (pfn == vma->vm_pgoff + off)
674                                 return NULL;
675                         if (!is_cow_mapping(vma->vm_flags))
676                                 return NULL;
677                 }
678         }
679
680         if (pmd_devmap(pmd))
681                 return NULL;
682         if (is_huge_zero_pmd(pmd))
683                 return NULL;
684         if (unlikely(pfn > highest_memmap_pfn))
685                 return NULL;
686
687         /*
688          * NOTE! We still have PageReserved() pages in the page tables.
689          * eg. VDSO mappings can cause them to exist.
690          */
691 out:
692         return pfn_to_page(pfn);
693 }
694 #endif
695
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697                                   struct page *page, unsigned long address,
698                                   pte_t *ptep)
699 {
700         pte_t orig_pte;
701         pte_t pte;
702         swp_entry_t entry;
703
704         orig_pte = ptep_get(ptep);
705         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706         if (pte_swp_soft_dirty(orig_pte))
707                 pte = pte_mksoft_dirty(pte);
708
709         entry = pte_to_swp_entry(orig_pte);
710         if (pte_swp_uffd_wp(orig_pte))
711                 pte = pte_mkuffd_wp(pte);
712         else if (is_writable_device_exclusive_entry(entry))
713                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717         /*
718          * No need to take a page reference as one was already
719          * created when the swap entry was made.
720          */
721         if (PageAnon(page))
722                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723         else
724                 /*
725                  * Currently device exclusive access only supports anonymous
726                  * memory so the entry shouldn't point to a filebacked page.
727                  */
728                 WARN_ON_ONCE(1);
729
730         set_pte_at(vma->vm_mm, address, ptep, pte);
731
732         /*
733          * No need to invalidate - it was non-present before. However
734          * secondary CPUs may have mappings that need invalidating.
735          */
736         update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745                         unsigned long addr)
746 {
747         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748         struct page *page = pfn_swap_entry_to_page(entry);
749
750         if (trylock_page(page)) {
751                 restore_exclusive_pte(vma, page, addr, src_pte);
752                 unlock_page(page);
753                 return 0;
754         }
755
756         return -EBUSY;
757 }
758
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770         unsigned long vm_flags = dst_vma->vm_flags;
771         pte_t orig_pte = ptep_get(src_pte);
772         pte_t pte = orig_pte;
773         struct page *page;
774         swp_entry_t entry = pte_to_swp_entry(orig_pte);
775
776         if (likely(!non_swap_entry(entry))) {
777                 if (swap_duplicate(entry) < 0)
778                         return -EIO;
779
780                 /* make sure dst_mm is on swapoff's mmlist. */
781                 if (unlikely(list_empty(&dst_mm->mmlist))) {
782                         spin_lock(&mmlist_lock);
783                         if (list_empty(&dst_mm->mmlist))
784                                 list_add(&dst_mm->mmlist,
785                                                 &src_mm->mmlist);
786                         spin_unlock(&mmlist_lock);
787                 }
788                 /* Mark the swap entry as shared. */
789                 if (pte_swp_exclusive(orig_pte)) {
790                         pte = pte_swp_clear_exclusive(orig_pte);
791                         set_pte_at(src_mm, addr, src_pte, pte);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (!is_readable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both parent and child
803                          * to be set to read. A previously exclusive entry is
804                          * now shared.
805                          */
806                         entry = make_readable_migration_entry(
807                                                         swp_offset(entry));
808                         pte = swp_entry_to_pte(entry);
809                         if (pte_swp_soft_dirty(orig_pte))
810                                 pte = pte_swp_mksoft_dirty(pte);
811                         if (pte_swp_uffd_wp(orig_pte))
812                                 pte = pte_swp_mkuffd_wp(pte);
813                         set_pte_at(src_mm, addr, src_pte, pte);
814                 }
815         } else if (is_device_private_entry(entry)) {
816                 page = pfn_swap_entry_to_page(entry);
817
818                 /*
819                  * Update rss count even for unaddressable pages, as
820                  * they should treated just like normal pages in this
821                  * respect.
822                  *
823                  * We will likely want to have some new rss counters
824                  * for unaddressable pages, at some point. But for now
825                  * keep things as they are.
826                  */
827                 get_page(page);
828                 rss[mm_counter(page)]++;
829                 /* Cannot fail as these pages cannot get pinned. */
830                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831
832                 /*
833                  * We do not preserve soft-dirty information, because so
834                  * far, checkpoint/restore is the only feature that
835                  * requires that. And checkpoint/restore does not work
836                  * when a device driver is involved (you cannot easily
837                  * save and restore device driver state).
838                  */
839                 if (is_writable_device_private_entry(entry) &&
840                     is_cow_mapping(vm_flags)) {
841                         entry = make_readable_device_private_entry(
842                                                         swp_offset(entry));
843                         pte = swp_entry_to_pte(entry);
844                         if (pte_swp_uffd_wp(orig_pte))
845                                 pte = pte_swp_mkuffd_wp(pte);
846                         set_pte_at(src_mm, addr, src_pte, pte);
847                 }
848         } else if (is_device_exclusive_entry(entry)) {
849                 /*
850                  * Make device exclusive entries present by restoring the
851                  * original entry then copying as for a present pte. Device
852                  * exclusive entries currently only support private writable
853                  * (ie. COW) mappings.
854                  */
855                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857                         return -EBUSY;
858                 return -ENOENT;
859         } else if (is_pte_marker_entry(entry)) {
860                 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862                 if (marker)
863                         set_pte_at(dst_mm, addr, dst_pte,
864                                    make_pte_marker(marker));
865                 return 0;
866         }
867         if (!userfaultfd_wp(dst_vma))
868                 pte = pte_swp_clear_uffd_wp(pte);
869         set_pte_at(dst_mm, addr, dst_pte, pte);
870         return 0;
871 }
872
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888                   struct folio **prealloc, struct page *page)
889 {
890         struct folio *new_folio;
891         pte_t pte;
892
893         new_folio = *prealloc;
894         if (!new_folio)
895                 return -EAGAIN;
896
897         /*
898          * We have a prealloc page, all good!  Take it
899          * over and copy the page & arm it.
900          */
901         *prealloc = NULL;
902         copy_user_highpage(&new_folio->page, page, addr, src_vma);
903         __folio_mark_uptodate(new_folio);
904         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905         folio_add_lru_vma(new_folio, dst_vma);
906         rss[MM_ANONPAGES]++;
907
908         /* All done, just insert the new page copy in the child */
909         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912                 /* Uffd-wp needs to be delivered to dest pte as well */
913                 pte = pte_mkuffd_wp(pte);
914         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915         return 0;
916 }
917
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925                  struct folio **prealloc)
926 {
927         struct mm_struct *src_mm = src_vma->vm_mm;
928         unsigned long vm_flags = src_vma->vm_flags;
929         pte_t pte = ptep_get(src_pte);
930         struct page *page;
931         struct folio *folio;
932
933         page = vm_normal_page(src_vma, addr, pte);
934         if (page)
935                 folio = page_folio(page);
936         if (page && folio_test_anon(folio)) {
937                 /*
938                  * If this page may have been pinned by the parent process,
939                  * copy the page immediately for the child so that we'll always
940                  * guarantee the pinned page won't be randomly replaced in the
941                  * future.
942                  */
943                 folio_get(folio);
944                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945                         /* Page may be pinned, we have to copy. */
946                         folio_put(folio);
947                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948                                                  addr, rss, prealloc, page);
949                 }
950                 rss[MM_ANONPAGES]++;
951         } else if (page) {
952                 folio_get(folio);
953                 page_dup_file_rmap(page, false);
954                 rss[mm_counter_file(page)]++;
955         }
956
957         /*
958          * If it's a COW mapping, write protect it both
959          * in the parent and the child
960          */
961         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962                 ptep_set_wrprotect(src_mm, addr, src_pte);
963                 pte = pte_wrprotect(pte);
964         }
965         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967         /*
968          * If it's a shared mapping, mark it clean in
969          * the child
970          */
971         if (vm_flags & VM_SHARED)
972                 pte = pte_mkclean(pte);
973         pte = pte_mkold(pte);
974
975         if (!userfaultfd_wp(dst_vma))
976                 pte = pte_clear_uffd_wp(pte);
977
978         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979         return 0;
980 }
981
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983                 struct vm_area_struct *vma, unsigned long addr)
984 {
985         struct folio *new_folio;
986
987         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988         if (!new_folio)
989                 return NULL;
990
991         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992                 folio_put(new_folio);
993                 return NULL;
994         }
995         folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997         return new_folio;
998 }
999
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003                unsigned long end)
1004 {
1005         struct mm_struct *dst_mm = dst_vma->vm_mm;
1006         struct mm_struct *src_mm = src_vma->vm_mm;
1007         pte_t *orig_src_pte, *orig_dst_pte;
1008         pte_t *src_pte, *dst_pte;
1009         pte_t ptent;
1010         spinlock_t *src_ptl, *dst_ptl;
1011         int progress, ret = 0;
1012         int rss[NR_MM_COUNTERS];
1013         swp_entry_t entry = (swp_entry_t){0};
1014         struct folio *prealloc = NULL;
1015
1016 again:
1017         progress = 0;
1018         init_rss_vec(rss);
1019
1020         /*
1021          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022          * error handling here, assume that exclusive mmap_lock on dst and src
1023          * protects anon from unexpected THP transitions; with shmem and file
1024          * protected by mmap_lock-less collapse skipping areas with anon_vma
1025          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026          * can remove such assumptions later, but this is good enough for now.
1027          */
1028         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029         if (!dst_pte) {
1030                 ret = -ENOMEM;
1031                 goto out;
1032         }
1033         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034         if (!src_pte) {
1035                 pte_unmap_unlock(dst_pte, dst_ptl);
1036                 /* ret == 0 */
1037                 goto out;
1038         }
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 ptent = ptep_get(src_pte);
1056                 if (pte_none(ptent)) {
1057                         progress++;
1058                         continue;
1059                 }
1060                 if (unlikely(!pte_present(ptent))) {
1061                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1062                                                   dst_pte, src_pte,
1063                                                   dst_vma, src_vma,
1064                                                   addr, rss);
1065                         if (ret == -EIO) {
1066                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1067                                 break;
1068                         } else if (ret == -EBUSY) {
1069                                 break;
1070                         } else if (!ret) {
1071                                 progress += 8;
1072                                 continue;
1073                         }
1074
1075                         /*
1076                          * Device exclusive entry restored, continue by copying
1077                          * the now present pte.
1078                          */
1079                         WARN_ON_ONCE(ret != -ENOENT);
1080                 }
1081                 /* copy_present_pte() will clear `*prealloc' if consumed */
1082                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083                                        addr, rss, &prealloc);
1084                 /*
1085                  * If we need a pre-allocated page for this pte, drop the
1086                  * locks, allocate, and try again.
1087                  */
1088                 if (unlikely(ret == -EAGAIN))
1089                         break;
1090                 if (unlikely(prealloc)) {
1091                         /*
1092                          * pre-alloc page cannot be reused by next time so as
1093                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1094                          * will allocate page according to address).  This
1095                          * could only happen if one pinned pte changed.
1096                          */
1097                         folio_put(prealloc);
1098                         prealloc = NULL;
1099                 }
1100                 progress += 8;
1101         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103         arch_leave_lazy_mmu_mode();
1104         pte_unmap_unlock(orig_src_pte, src_ptl);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 folio_put(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 vma_assert_write_locked(src_vma);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         untrack_pfn_clear(dst_vma);
1329                         ret = -ENOMEM;
1330                         break;
1331                 }
1332         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334         if (is_cow) {
1335                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336                 mmu_notifier_invalidate_range_end(&range);
1337         }
1338         return ret;
1339 }
1340
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344         /* By default, zap all pages */
1345         if (!details)
1346                 return true;
1347
1348         /* Or, we zap COWed pages only if the caller wants to */
1349         return details->even_cows;
1350 }
1351
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355         /* If we can make a decision without *page.. */
1356         if (should_zap_cows(details))
1357                 return true;
1358
1359         /* E.g. the caller passes NULL for the case of a zero page */
1360         if (!page)
1361                 return true;
1362
1363         /* Otherwise we should only zap non-anon pages */
1364         return !PageAnon(page);
1365 }
1366
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369         if (!details)
1370                 return false;
1371
1372         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381                               unsigned long addr, pte_t *pte,
1382                               struct zap_details *details, pte_t pteval)
1383 {
1384         /* Zap on anonymous always means dropping everything */
1385         if (vma_is_anonymous(vma))
1386                 return;
1387
1388         if (zap_drop_file_uffd_wp(details))
1389                 return;
1390
1391         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pmd_t *pmd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         struct mm_struct *mm = tlb->mm;
1400         int force_flush = 0;
1401         int rss[NR_MM_COUNTERS];
1402         spinlock_t *ptl;
1403         pte_t *start_pte;
1404         pte_t *pte;
1405         swp_entry_t entry;
1406
1407         tlb_change_page_size(tlb, PAGE_SIZE);
1408         init_rss_vec(rss);
1409         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410         if (!pte)
1411                 return addr;
1412
1413         flush_tlb_batched_pending(mm);
1414         arch_enter_lazy_mmu_mode();
1415         do {
1416                 pte_t ptent = ptep_get(pte);
1417                 struct page *page;
1418
1419                 if (pte_none(ptent))
1420                         continue;
1421
1422                 if (need_resched())
1423                         break;
1424
1425                 if (pte_present(ptent)) {
1426                         unsigned int delay_rmap;
1427
1428                         page = vm_normal_page(vma, addr, ptent);
1429                         if (unlikely(!should_zap_page(details, page)))
1430                                 continue;
1431                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1432                                                         tlb->fullmm);
1433                         tlb_remove_tlb_entry(tlb, pte, addr);
1434                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435                                                       ptent);
1436                         if (unlikely(!page)) {
1437                                 ksm_might_unmap_zero_page(mm, ptent);
1438                                 continue;
1439                         }
1440
1441                         delay_rmap = 0;
1442                         if (!PageAnon(page)) {
1443                                 if (pte_dirty(ptent)) {
1444                                         set_page_dirty(page);
1445                                         if (tlb_delay_rmap(tlb)) {
1446                                                 delay_rmap = 1;
1447                                                 force_flush = 1;
1448                                         }
1449                                 }
1450                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1451                                         mark_page_accessed(page);
1452                         }
1453                         rss[mm_counter(page)]--;
1454                         if (!delay_rmap) {
1455                                 page_remove_rmap(page, vma, false);
1456                                 if (unlikely(page_mapcount(page) < 0))
1457                                         print_bad_pte(vma, addr, ptent, page);
1458                         }
1459                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1460                                 force_flush = 1;
1461                                 addr += PAGE_SIZE;
1462                                 break;
1463                         }
1464                         continue;
1465                 }
1466
1467                 entry = pte_to_swp_entry(ptent);
1468                 if (is_device_private_entry(entry) ||
1469                     is_device_exclusive_entry(entry)) {
1470                         page = pfn_swap_entry_to_page(entry);
1471                         if (unlikely(!should_zap_page(details, page)))
1472                                 continue;
1473                         /*
1474                          * Both device private/exclusive mappings should only
1475                          * work with anonymous page so far, so we don't need to
1476                          * consider uffd-wp bit when zap. For more information,
1477                          * see zap_install_uffd_wp_if_needed().
1478                          */
1479                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1480                         rss[mm_counter(page)]--;
1481                         if (is_device_private_entry(entry))
1482                                 page_remove_rmap(page, vma, false);
1483                         put_page(page);
1484                 } else if (!non_swap_entry(entry)) {
1485                         /* Genuine swap entry, hence a private anon page */
1486                         if (!should_zap_cows(details))
1487                                 continue;
1488                         rss[MM_SWAPENTS]--;
1489                         if (unlikely(!free_swap_and_cache(entry)))
1490                                 print_bad_pte(vma, addr, ptent, NULL);
1491                 } else if (is_migration_entry(entry)) {
1492                         page = pfn_swap_entry_to_page(entry);
1493                         if (!should_zap_page(details, page))
1494                                 continue;
1495                         rss[mm_counter(page)]--;
1496                 } else if (pte_marker_entry_uffd_wp(entry)) {
1497                         /*
1498                          * For anon: always drop the marker; for file: only
1499                          * drop the marker if explicitly requested.
1500                          */
1501                         if (!vma_is_anonymous(vma) &&
1502                             !zap_drop_file_uffd_wp(details))
1503                                 continue;
1504                 } else if (is_hwpoison_entry(entry) ||
1505                            is_poisoned_swp_entry(entry)) {
1506                         if (!should_zap_cows(details))
1507                                 continue;
1508                 } else {
1509                         /* We should have covered all the swap entry types */
1510                         WARN_ON_ONCE(1);
1511                 }
1512                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1513                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1514         } while (pte++, addr += PAGE_SIZE, addr != end);
1515
1516         add_mm_rss_vec(mm, rss);
1517         arch_leave_lazy_mmu_mode();
1518
1519         /* Do the actual TLB flush before dropping ptl */
1520         if (force_flush) {
1521                 tlb_flush_mmu_tlbonly(tlb);
1522                 tlb_flush_rmaps(tlb, vma);
1523         }
1524         pte_unmap_unlock(start_pte, ptl);
1525
1526         /*
1527          * If we forced a TLB flush (either due to running out of
1528          * batch buffers or because we needed to flush dirty TLB
1529          * entries before releasing the ptl), free the batched
1530          * memory too. Come back again if we didn't do everything.
1531          */
1532         if (force_flush)
1533                 tlb_flush_mmu(tlb);
1534
1535         return addr;
1536 }
1537
1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1539                                 struct vm_area_struct *vma, pud_t *pud,
1540                                 unsigned long addr, unsigned long end,
1541                                 struct zap_details *details)
1542 {
1543         pmd_t *pmd;
1544         unsigned long next;
1545
1546         pmd = pmd_offset(pud, addr);
1547         do {
1548                 next = pmd_addr_end(addr, end);
1549                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1550                         if (next - addr != HPAGE_PMD_SIZE)
1551                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1552                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1553                                 addr = next;
1554                                 continue;
1555                         }
1556                         /* fall through */
1557                 } else if (details && details->single_folio &&
1558                            folio_test_pmd_mappable(details->single_folio) &&
1559                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1561                         /*
1562                          * Take and drop THP pmd lock so that we cannot return
1563                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1564                          * but not yet decremented compound_mapcount().
1565                          */
1566                         spin_unlock(ptl);
1567                 }
1568                 if (pmd_none(*pmd)) {
1569                         addr = next;
1570                         continue;
1571                 }
1572                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573                 if (addr != next)
1574                         pmd--;
1575         } while (pmd++, cond_resched(), addr != end);
1576
1577         return addr;
1578 }
1579
1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1581                                 struct vm_area_struct *vma, p4d_t *p4d,
1582                                 unsigned long addr, unsigned long end,
1583                                 struct zap_details *details)
1584 {
1585         pud_t *pud;
1586         unsigned long next;
1587
1588         pud = pud_offset(p4d, addr);
1589         do {
1590                 next = pud_addr_end(addr, end);
1591                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592                         if (next - addr != HPAGE_PUD_SIZE) {
1593                                 mmap_assert_locked(tlb->mm);
1594                                 split_huge_pud(vma, pud, addr);
1595                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1596                                 goto next;
1597                         /* fall through */
1598                 }
1599                 if (pud_none_or_clear_bad(pud))
1600                         continue;
1601                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1602 next:
1603                 cond_resched();
1604         } while (pud++, addr = next, addr != end);
1605
1606         return addr;
1607 }
1608
1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610                                 struct vm_area_struct *vma, pgd_t *pgd,
1611                                 unsigned long addr, unsigned long end,
1612                                 struct zap_details *details)
1613 {
1614         p4d_t *p4d;
1615         unsigned long next;
1616
1617         p4d = p4d_offset(pgd, addr);
1618         do {
1619                 next = p4d_addr_end(addr, end);
1620                 if (p4d_none_or_clear_bad(p4d))
1621                         continue;
1622                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623         } while (p4d++, addr = next, addr != end);
1624
1625         return addr;
1626 }
1627
1628 void unmap_page_range(struct mmu_gather *tlb,
1629                              struct vm_area_struct *vma,
1630                              unsigned long addr, unsigned long end,
1631                              struct zap_details *details)
1632 {
1633         pgd_t *pgd;
1634         unsigned long next;
1635
1636         BUG_ON(addr >= end);
1637         tlb_start_vma(tlb, vma);
1638         pgd = pgd_offset(vma->vm_mm, addr);
1639         do {
1640                 next = pgd_addr_end(addr, end);
1641                 if (pgd_none_or_clear_bad(pgd))
1642                         continue;
1643                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1644         } while (pgd++, addr = next, addr != end);
1645         tlb_end_vma(tlb, vma);
1646 }
1647
1648
1649 static void unmap_single_vma(struct mmu_gather *tlb,
1650                 struct vm_area_struct *vma, unsigned long start_addr,
1651                 unsigned long end_addr,
1652                 struct zap_details *details, bool mm_wr_locked)
1653 {
1654         unsigned long start = max(vma->vm_start, start_addr);
1655         unsigned long end;
1656
1657         if (start >= vma->vm_end)
1658                 return;
1659         end = min(vma->vm_end, end_addr);
1660         if (end <= vma->vm_start)
1661                 return;
1662
1663         if (vma->vm_file)
1664                 uprobe_munmap(vma, start, end);
1665
1666         if (unlikely(vma->vm_flags & VM_PFNMAP))
1667                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1668
1669         if (start != end) {
1670                 if (unlikely(is_vm_hugetlb_page(vma))) {
1671                         /*
1672                          * It is undesirable to test vma->vm_file as it
1673                          * should be non-null for valid hugetlb area.
1674                          * However, vm_file will be NULL in the error
1675                          * cleanup path of mmap_region. When
1676                          * hugetlbfs ->mmap method fails,
1677                          * mmap_region() nullifies vma->vm_file
1678                          * before calling this function to clean up.
1679                          * Since no pte has actually been setup, it is
1680                          * safe to do nothing in this case.
1681                          */
1682                         if (vma->vm_file) {
1683                                 zap_flags_t zap_flags = details ?
1684                                     details->zap_flags : 0;
1685                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1686                                                              NULL, zap_flags);
1687                         }
1688                 } else
1689                         unmap_page_range(tlb, vma, start, end, details);
1690         }
1691 }
1692
1693 /**
1694  * unmap_vmas - unmap a range of memory covered by a list of vma's
1695  * @tlb: address of the caller's struct mmu_gather
1696  * @mas: the maple state
1697  * @vma: the starting vma
1698  * @start_addr: virtual address at which to start unmapping
1699  * @end_addr: virtual address at which to end unmapping
1700  * @tree_end: The maximum index to check
1701  * @mm_wr_locked: lock flag
1702  *
1703  * Unmap all pages in the vma list.
1704  *
1705  * Only addresses between `start' and `end' will be unmapped.
1706  *
1707  * The VMA list must be sorted in ascending virtual address order.
1708  *
1709  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1710  * range after unmap_vmas() returns.  So the only responsibility here is to
1711  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1712  * drops the lock and schedules.
1713  */
1714 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1715                 struct vm_area_struct *vma, unsigned long start_addr,
1716                 unsigned long end_addr, unsigned long tree_end,
1717                 bool mm_wr_locked)
1718 {
1719         struct mmu_notifier_range range;
1720         struct zap_details details = {
1721                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1722                 /* Careful - we need to zap private pages too! */
1723                 .even_cows = true,
1724         };
1725
1726         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1727                                 start_addr, end_addr);
1728         mmu_notifier_invalidate_range_start(&range);
1729         do {
1730                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1731                                  mm_wr_locked);
1732         } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1733         mmu_notifier_invalidate_range_end(&range);
1734 }
1735
1736 /**
1737  * zap_page_range_single - remove user pages in a given range
1738  * @vma: vm_area_struct holding the applicable pages
1739  * @address: starting address of pages to zap
1740  * @size: number of bytes to zap
1741  * @details: details of shared cache invalidation
1742  *
1743  * The range must fit into one VMA.
1744  */
1745 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1746                 unsigned long size, struct zap_details *details)
1747 {
1748         const unsigned long end = address + size;
1749         struct mmu_notifier_range range;
1750         struct mmu_gather tlb;
1751
1752         lru_add_drain();
1753         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1754                                 address, end);
1755         if (is_vm_hugetlb_page(vma))
1756                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1757                                                      &range.end);
1758         tlb_gather_mmu(&tlb, vma->vm_mm);
1759         update_hiwater_rss(vma->vm_mm);
1760         mmu_notifier_invalidate_range_start(&range);
1761         /*
1762          * unmap 'address-end' not 'range.start-range.end' as range
1763          * could have been expanded for hugetlb pmd sharing.
1764          */
1765         unmap_single_vma(&tlb, vma, address, end, details, false);
1766         mmu_notifier_invalidate_range_end(&range);
1767         tlb_finish_mmu(&tlb);
1768 }
1769
1770 /**
1771  * zap_vma_ptes - remove ptes mapping the vma
1772  * @vma: vm_area_struct holding ptes to be zapped
1773  * @address: starting address of pages to zap
1774  * @size: number of bytes to zap
1775  *
1776  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1777  *
1778  * The entire address range must be fully contained within the vma.
1779  *
1780  */
1781 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1782                 unsigned long size)
1783 {
1784         if (!range_in_vma(vma, address, address + size) ||
1785                         !(vma->vm_flags & VM_PFNMAP))
1786                 return;
1787
1788         zap_page_range_single(vma, address, size, NULL);
1789 }
1790 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1791
1792 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1793 {
1794         pgd_t *pgd;
1795         p4d_t *p4d;
1796         pud_t *pud;
1797         pmd_t *pmd;
1798
1799         pgd = pgd_offset(mm, addr);
1800         p4d = p4d_alloc(mm, pgd, addr);
1801         if (!p4d)
1802                 return NULL;
1803         pud = pud_alloc(mm, p4d, addr);
1804         if (!pud)
1805                 return NULL;
1806         pmd = pmd_alloc(mm, pud, addr);
1807         if (!pmd)
1808                 return NULL;
1809
1810         VM_BUG_ON(pmd_trans_huge(*pmd));
1811         return pmd;
1812 }
1813
1814 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1815                         spinlock_t **ptl)
1816 {
1817         pmd_t *pmd = walk_to_pmd(mm, addr);
1818
1819         if (!pmd)
1820                 return NULL;
1821         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1822 }
1823
1824 static int validate_page_before_insert(struct page *page)
1825 {
1826         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1827                 return -EINVAL;
1828         flush_dcache_page(page);
1829         return 0;
1830 }
1831
1832 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1833                         unsigned long addr, struct page *page, pgprot_t prot)
1834 {
1835         if (!pte_none(ptep_get(pte)))
1836                 return -EBUSY;
1837         /* Ok, finally just insert the thing.. */
1838         get_page(page);
1839         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1840         page_add_file_rmap(page, vma, false);
1841         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1842         return 0;
1843 }
1844
1845 /*
1846  * This is the old fallback for page remapping.
1847  *
1848  * For historical reasons, it only allows reserved pages. Only
1849  * old drivers should use this, and they needed to mark their
1850  * pages reserved for the old functions anyway.
1851  */
1852 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1853                         struct page *page, pgprot_t prot)
1854 {
1855         int retval;
1856         pte_t *pte;
1857         spinlock_t *ptl;
1858
1859         retval = validate_page_before_insert(page);
1860         if (retval)
1861                 goto out;
1862         retval = -ENOMEM;
1863         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1864         if (!pte)
1865                 goto out;
1866         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1867         pte_unmap_unlock(pte, ptl);
1868 out:
1869         return retval;
1870 }
1871
1872 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1873                         unsigned long addr, struct page *page, pgprot_t prot)
1874 {
1875         int err;
1876
1877         if (!page_count(page))
1878                 return -EINVAL;
1879         err = validate_page_before_insert(page);
1880         if (err)
1881                 return err;
1882         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1883 }
1884
1885 /* insert_pages() amortizes the cost of spinlock operations
1886  * when inserting pages in a loop.
1887  */
1888 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1889                         struct page **pages, unsigned long *num, pgprot_t prot)
1890 {
1891         pmd_t *pmd = NULL;
1892         pte_t *start_pte, *pte;
1893         spinlock_t *pte_lock;
1894         struct mm_struct *const mm = vma->vm_mm;
1895         unsigned long curr_page_idx = 0;
1896         unsigned long remaining_pages_total = *num;
1897         unsigned long pages_to_write_in_pmd;
1898         int ret;
1899 more:
1900         ret = -EFAULT;
1901         pmd = walk_to_pmd(mm, addr);
1902         if (!pmd)
1903                 goto out;
1904
1905         pages_to_write_in_pmd = min_t(unsigned long,
1906                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1907
1908         /* Allocate the PTE if necessary; takes PMD lock once only. */
1909         ret = -ENOMEM;
1910         if (pte_alloc(mm, pmd))
1911                 goto out;
1912
1913         while (pages_to_write_in_pmd) {
1914                 int pte_idx = 0;
1915                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1916
1917                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1918                 if (!start_pte) {
1919                         ret = -EFAULT;
1920                         goto out;
1921                 }
1922                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1923                         int err = insert_page_in_batch_locked(vma, pte,
1924                                 addr, pages[curr_page_idx], prot);
1925                         if (unlikely(err)) {
1926                                 pte_unmap_unlock(start_pte, pte_lock);
1927                                 ret = err;
1928                                 remaining_pages_total -= pte_idx;
1929                                 goto out;
1930                         }
1931                         addr += PAGE_SIZE;
1932                         ++curr_page_idx;
1933                 }
1934                 pte_unmap_unlock(start_pte, pte_lock);
1935                 pages_to_write_in_pmd -= batch_size;
1936                 remaining_pages_total -= batch_size;
1937         }
1938         if (remaining_pages_total)
1939                 goto more;
1940         ret = 0;
1941 out:
1942         *num = remaining_pages_total;
1943         return ret;
1944 }
1945
1946 /**
1947  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1948  * @vma: user vma to map to
1949  * @addr: target start user address of these pages
1950  * @pages: source kernel pages
1951  * @num: in: number of pages to map. out: number of pages that were *not*
1952  * mapped. (0 means all pages were successfully mapped).
1953  *
1954  * Preferred over vm_insert_page() when inserting multiple pages.
1955  *
1956  * In case of error, we may have mapped a subset of the provided
1957  * pages. It is the caller's responsibility to account for this case.
1958  *
1959  * The same restrictions apply as in vm_insert_page().
1960  */
1961 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1962                         struct page **pages, unsigned long *num)
1963 {
1964         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1965
1966         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1967                 return -EFAULT;
1968         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1969                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1970                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1971                 vm_flags_set(vma, VM_MIXEDMAP);
1972         }
1973         /* Defer page refcount checking till we're about to map that page. */
1974         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1975 }
1976 EXPORT_SYMBOL(vm_insert_pages);
1977
1978 /**
1979  * vm_insert_page - insert single page into user vma
1980  * @vma: user vma to map to
1981  * @addr: target user address of this page
1982  * @page: source kernel page
1983  *
1984  * This allows drivers to insert individual pages they've allocated
1985  * into a user vma.
1986  *
1987  * The page has to be a nice clean _individual_ kernel allocation.
1988  * If you allocate a compound page, you need to have marked it as
1989  * such (__GFP_COMP), or manually just split the page up yourself
1990  * (see split_page()).
1991  *
1992  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993  * took an arbitrary page protection parameter. This doesn't allow
1994  * that. Your vma protection will have to be set up correctly, which
1995  * means that if you want a shared writable mapping, you'd better
1996  * ask for a shared writable mapping!
1997  *
1998  * The page does not need to be reserved.
1999  *
2000  * Usually this function is called from f_op->mmap() handler
2001  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2002  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003  * function from other places, for example from page-fault handler.
2004  *
2005  * Return: %0 on success, negative error code otherwise.
2006  */
2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2008                         struct page *page)
2009 {
2010         if (addr < vma->vm_start || addr >= vma->vm_end)
2011                 return -EFAULT;
2012         if (!page_count(page))
2013                 return -EINVAL;
2014         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2015                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2016                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2017                 vm_flags_set(vma, VM_MIXEDMAP);
2018         }
2019         return insert_page(vma, addr, page, vma->vm_page_prot);
2020 }
2021 EXPORT_SYMBOL(vm_insert_page);
2022
2023 /*
2024  * __vm_map_pages - maps range of kernel pages into user vma
2025  * @vma: user vma to map to
2026  * @pages: pointer to array of source kernel pages
2027  * @num: number of pages in page array
2028  * @offset: user's requested vm_pgoff
2029  *
2030  * This allows drivers to map range of kernel pages into a user vma.
2031  *
2032  * Return: 0 on success and error code otherwise.
2033  */
2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035                                 unsigned long num, unsigned long offset)
2036 {
2037         unsigned long count = vma_pages(vma);
2038         unsigned long uaddr = vma->vm_start;
2039         int ret, i;
2040
2041         /* Fail if the user requested offset is beyond the end of the object */
2042         if (offset >= num)
2043                 return -ENXIO;
2044
2045         /* Fail if the user requested size exceeds available object size */
2046         if (count > num - offset)
2047                 return -ENXIO;
2048
2049         for (i = 0; i < count; i++) {
2050                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2051                 if (ret < 0)
2052                         return ret;
2053                 uaddr += PAGE_SIZE;
2054         }
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * vm_map_pages - maps range of kernel pages starts with non zero offset
2061  * @vma: user vma to map to
2062  * @pages: pointer to array of source kernel pages
2063  * @num: number of pages in page array
2064  *
2065  * Maps an object consisting of @num pages, catering for the user's
2066  * requested vm_pgoff
2067  *
2068  * If we fail to insert any page into the vma, the function will return
2069  * immediately leaving any previously inserted pages present.  Callers
2070  * from the mmap handler may immediately return the error as their caller
2071  * will destroy the vma, removing any successfully inserted pages. Other
2072  * callers should make their own arrangements for calling unmap_region().
2073  *
2074  * Context: Process context. Called by mmap handlers.
2075  * Return: 0 on success and error code otherwise.
2076  */
2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2078                                 unsigned long num)
2079 {
2080         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2081 }
2082 EXPORT_SYMBOL(vm_map_pages);
2083
2084 /**
2085  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086  * @vma: user vma to map to
2087  * @pages: pointer to array of source kernel pages
2088  * @num: number of pages in page array
2089  *
2090  * Similar to vm_map_pages(), except that it explicitly sets the offset
2091  * to 0. This function is intended for the drivers that did not consider
2092  * vm_pgoff.
2093  *
2094  * Context: Process context. Called by mmap handlers.
2095  * Return: 0 on success and error code otherwise.
2096  */
2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2098                                 unsigned long num)
2099 {
2100         return __vm_map_pages(vma, pages, num, 0);
2101 }
2102 EXPORT_SYMBOL(vm_map_pages_zero);
2103
2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2105                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2106 {
2107         struct mm_struct *mm = vma->vm_mm;
2108         pte_t *pte, entry;
2109         spinlock_t *ptl;
2110
2111         pte = get_locked_pte(mm, addr, &ptl);
2112         if (!pte)
2113                 return VM_FAULT_OOM;
2114         entry = ptep_get(pte);
2115         if (!pte_none(entry)) {
2116                 if (mkwrite) {
2117                         /*
2118                          * For read faults on private mappings the PFN passed
2119                          * in may not match the PFN we have mapped if the
2120                          * mapped PFN is a writeable COW page.  In the mkwrite
2121                          * case we are creating a writable PTE for a shared
2122                          * mapping and we expect the PFNs to match. If they
2123                          * don't match, we are likely racing with block
2124                          * allocation and mapping invalidation so just skip the
2125                          * update.
2126                          */
2127                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2128                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2129                                 goto out_unlock;
2130                         }
2131                         entry = pte_mkyoung(entry);
2132                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2133                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2134                                 update_mmu_cache(vma, addr, pte);
2135                 }
2136                 goto out_unlock;
2137         }
2138
2139         /* Ok, finally just insert the thing.. */
2140         if (pfn_t_devmap(pfn))
2141                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2142         else
2143                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2144
2145         if (mkwrite) {
2146                 entry = pte_mkyoung(entry);
2147                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2148         }
2149
2150         set_pte_at(mm, addr, pte, entry);
2151         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2152
2153 out_unlock:
2154         pte_unmap_unlock(pte, ptl);
2155         return VM_FAULT_NOPAGE;
2156 }
2157
2158 /**
2159  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2160  * @vma: user vma to map to
2161  * @addr: target user address of this page
2162  * @pfn: source kernel pfn
2163  * @pgprot: pgprot flags for the inserted page
2164  *
2165  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2166  * to override pgprot on a per-page basis.
2167  *
2168  * This only makes sense for IO mappings, and it makes no sense for
2169  * COW mappings.  In general, using multiple vmas is preferable;
2170  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2171  * impractical.
2172  *
2173  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2174  * caching- and encryption bits different than those of @vma->vm_page_prot,
2175  * because the caching- or encryption mode may not be known at mmap() time.
2176  *
2177  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2178  * to set caching and encryption bits for those vmas (except for COW pages).
2179  * This is ensured by core vm only modifying these page table entries using
2180  * functions that don't touch caching- or encryption bits, using pte_modify()
2181  * if needed. (See for example mprotect()).
2182  *
2183  * Also when new page-table entries are created, this is only done using the
2184  * fault() callback, and never using the value of vma->vm_page_prot,
2185  * except for page-table entries that point to anonymous pages as the result
2186  * of COW.
2187  *
2188  * Context: Process context.  May allocate using %GFP_KERNEL.
2189  * Return: vm_fault_t value.
2190  */
2191 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2192                         unsigned long pfn, pgprot_t pgprot)
2193 {
2194         /*
2195          * Technically, architectures with pte_special can avoid all these
2196          * restrictions (same for remap_pfn_range).  However we would like
2197          * consistency in testing and feature parity among all, so we should
2198          * try to keep these invariants in place for everybody.
2199          */
2200         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2201         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2202                                                 (VM_PFNMAP|VM_MIXEDMAP));
2203         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2204         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2205
2206         if (addr < vma->vm_start || addr >= vma->vm_end)
2207                 return VM_FAULT_SIGBUS;
2208
2209         if (!pfn_modify_allowed(pfn, pgprot))
2210                 return VM_FAULT_SIGBUS;
2211
2212         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2213
2214         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2215                         false);
2216 }
2217 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2218
2219 /**
2220  * vmf_insert_pfn - insert single pfn into user vma
2221  * @vma: user vma to map to
2222  * @addr: target user address of this page
2223  * @pfn: source kernel pfn
2224  *
2225  * Similar to vm_insert_page, this allows drivers to insert individual pages
2226  * they've allocated into a user vma. Same comments apply.
2227  *
2228  * This function should only be called from a vm_ops->fault handler, and
2229  * in that case the handler should return the result of this function.
2230  *
2231  * vma cannot be a COW mapping.
2232  *
2233  * As this is called only for pages that do not currently exist, we
2234  * do not need to flush old virtual caches or the TLB.
2235  *
2236  * Context: Process context.  May allocate using %GFP_KERNEL.
2237  * Return: vm_fault_t value.
2238  */
2239 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2240                         unsigned long pfn)
2241 {
2242         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2243 }
2244 EXPORT_SYMBOL(vmf_insert_pfn);
2245
2246 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2247 {
2248         /* these checks mirror the abort conditions in vm_normal_page */
2249         if (vma->vm_flags & VM_MIXEDMAP)
2250                 return true;
2251         if (pfn_t_devmap(pfn))
2252                 return true;
2253         if (pfn_t_special(pfn))
2254                 return true;
2255         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2256                 return true;
2257         return false;
2258 }
2259
2260 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2261                 unsigned long addr, pfn_t pfn, bool mkwrite)
2262 {
2263         pgprot_t pgprot = vma->vm_page_prot;
2264         int err;
2265
2266         BUG_ON(!vm_mixed_ok(vma, pfn));
2267
2268         if (addr < vma->vm_start || addr >= vma->vm_end)
2269                 return VM_FAULT_SIGBUS;
2270
2271         track_pfn_insert(vma, &pgprot, pfn);
2272
2273         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2274                 return VM_FAULT_SIGBUS;
2275
2276         /*
2277          * If we don't have pte special, then we have to use the pfn_valid()
2278          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2279          * refcount the page if pfn_valid is true (hence insert_page rather
2280          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2281          * without pte special, it would there be refcounted as a normal page.
2282          */
2283         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2284             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2285                 struct page *page;
2286
2287                 /*
2288                  * At this point we are committed to insert_page()
2289                  * regardless of whether the caller specified flags that
2290                  * result in pfn_t_has_page() == false.
2291                  */
2292                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2293                 err = insert_page(vma, addr, page, pgprot);
2294         } else {
2295                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2296         }
2297
2298         if (err == -ENOMEM)
2299                 return VM_FAULT_OOM;
2300         if (err < 0 && err != -EBUSY)
2301                 return VM_FAULT_SIGBUS;
2302
2303         return VM_FAULT_NOPAGE;
2304 }
2305
2306 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2307                 pfn_t pfn)
2308 {
2309         return __vm_insert_mixed(vma, addr, pfn, false);
2310 }
2311 EXPORT_SYMBOL(vmf_insert_mixed);
2312
2313 /*
2314  *  If the insertion of PTE failed because someone else already added a
2315  *  different entry in the mean time, we treat that as success as we assume
2316  *  the same entry was actually inserted.
2317  */
2318 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2319                 unsigned long addr, pfn_t pfn)
2320 {
2321         return __vm_insert_mixed(vma, addr, pfn, true);
2322 }
2323 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2324
2325 /*
2326  * maps a range of physical memory into the requested pages. the old
2327  * mappings are removed. any references to nonexistent pages results
2328  * in null mappings (currently treated as "copy-on-access")
2329  */
2330 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2331                         unsigned long addr, unsigned long end,
2332                         unsigned long pfn, pgprot_t prot)
2333 {
2334         pte_t *pte, *mapped_pte;
2335         spinlock_t *ptl;
2336         int err = 0;
2337
2338         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2339         if (!pte)
2340                 return -ENOMEM;
2341         arch_enter_lazy_mmu_mode();
2342         do {
2343                 BUG_ON(!pte_none(ptep_get(pte)));
2344                 if (!pfn_modify_allowed(pfn, prot)) {
2345                         err = -EACCES;
2346                         break;
2347                 }
2348                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2349                 pfn++;
2350         } while (pte++, addr += PAGE_SIZE, addr != end);
2351         arch_leave_lazy_mmu_mode();
2352         pte_unmap_unlock(mapped_pte, ptl);
2353         return err;
2354 }
2355
2356 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2357                         unsigned long addr, unsigned long end,
2358                         unsigned long pfn, pgprot_t prot)
2359 {
2360         pmd_t *pmd;
2361         unsigned long next;
2362         int err;
2363
2364         pfn -= addr >> PAGE_SHIFT;
2365         pmd = pmd_alloc(mm, pud, addr);
2366         if (!pmd)
2367                 return -ENOMEM;
2368         VM_BUG_ON(pmd_trans_huge(*pmd));
2369         do {
2370                 next = pmd_addr_end(addr, end);
2371                 err = remap_pte_range(mm, pmd, addr, next,
2372                                 pfn + (addr >> PAGE_SHIFT), prot);
2373                 if (err)
2374                         return err;
2375         } while (pmd++, addr = next, addr != end);
2376         return 0;
2377 }
2378
2379 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2380                         unsigned long addr, unsigned long end,
2381                         unsigned long pfn, pgprot_t prot)
2382 {
2383         pud_t *pud;
2384         unsigned long next;
2385         int err;
2386
2387         pfn -= addr >> PAGE_SHIFT;
2388         pud = pud_alloc(mm, p4d, addr);
2389         if (!pud)
2390                 return -ENOMEM;
2391         do {
2392                 next = pud_addr_end(addr, end);
2393                 err = remap_pmd_range(mm, pud, addr, next,
2394                                 pfn + (addr >> PAGE_SHIFT), prot);
2395                 if (err)
2396                         return err;
2397         } while (pud++, addr = next, addr != end);
2398         return 0;
2399 }
2400
2401 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2402                         unsigned long addr, unsigned long end,
2403                         unsigned long pfn, pgprot_t prot)
2404 {
2405         p4d_t *p4d;
2406         unsigned long next;
2407         int err;
2408
2409         pfn -= addr >> PAGE_SHIFT;
2410         p4d = p4d_alloc(mm, pgd, addr);
2411         if (!p4d)
2412                 return -ENOMEM;
2413         do {
2414                 next = p4d_addr_end(addr, end);
2415                 err = remap_pud_range(mm, p4d, addr, next,
2416                                 pfn + (addr >> PAGE_SHIFT), prot);
2417                 if (err)
2418                         return err;
2419         } while (p4d++, addr = next, addr != end);
2420         return 0;
2421 }
2422
2423 /*
2424  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2425  * must have pre-validated the caching bits of the pgprot_t.
2426  */
2427 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2428                 unsigned long pfn, unsigned long size, pgprot_t prot)
2429 {
2430         pgd_t *pgd;
2431         unsigned long next;
2432         unsigned long end = addr + PAGE_ALIGN(size);
2433         struct mm_struct *mm = vma->vm_mm;
2434         int err;
2435
2436         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2437                 return -EINVAL;
2438
2439         /*
2440          * Physically remapped pages are special. Tell the
2441          * rest of the world about it:
2442          *   VM_IO tells people not to look at these pages
2443          *      (accesses can have side effects).
2444          *   VM_PFNMAP tells the core MM that the base pages are just
2445          *      raw PFN mappings, and do not have a "struct page" associated
2446          *      with them.
2447          *   VM_DONTEXPAND
2448          *      Disable vma merging and expanding with mremap().
2449          *   VM_DONTDUMP
2450          *      Omit vma from core dump, even when VM_IO turned off.
2451          *
2452          * There's a horrible special case to handle copy-on-write
2453          * behaviour that some programs depend on. We mark the "original"
2454          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2455          * See vm_normal_page() for details.
2456          */
2457         if (is_cow_mapping(vma->vm_flags)) {
2458                 if (addr != vma->vm_start || end != vma->vm_end)
2459                         return -EINVAL;
2460                 vma->vm_pgoff = pfn;
2461         }
2462
2463         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2464
2465         BUG_ON(addr >= end);
2466         pfn -= addr >> PAGE_SHIFT;
2467         pgd = pgd_offset(mm, addr);
2468         flush_cache_range(vma, addr, end);
2469         do {
2470                 next = pgd_addr_end(addr, end);
2471                 err = remap_p4d_range(mm, pgd, addr, next,
2472                                 pfn + (addr >> PAGE_SHIFT), prot);
2473                 if (err)
2474                         return err;
2475         } while (pgd++, addr = next, addr != end);
2476
2477         return 0;
2478 }
2479
2480 /**
2481  * remap_pfn_range - remap kernel memory to userspace
2482  * @vma: user vma to map to
2483  * @addr: target page aligned user address to start at
2484  * @pfn: page frame number of kernel physical memory address
2485  * @size: size of mapping area
2486  * @prot: page protection flags for this mapping
2487  *
2488  * Note: this is only safe if the mm semaphore is held when called.
2489  *
2490  * Return: %0 on success, negative error code otherwise.
2491  */
2492 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2493                     unsigned long pfn, unsigned long size, pgprot_t prot)
2494 {
2495         int err;
2496
2497         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2498         if (err)
2499                 return -EINVAL;
2500
2501         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2502         if (err)
2503                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2504         return err;
2505 }
2506 EXPORT_SYMBOL(remap_pfn_range);
2507
2508 /**
2509  * vm_iomap_memory - remap memory to userspace
2510  * @vma: user vma to map to
2511  * @start: start of the physical memory to be mapped
2512  * @len: size of area
2513  *
2514  * This is a simplified io_remap_pfn_range() for common driver use. The
2515  * driver just needs to give us the physical memory range to be mapped,
2516  * we'll figure out the rest from the vma information.
2517  *
2518  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2519  * whatever write-combining details or similar.
2520  *
2521  * Return: %0 on success, negative error code otherwise.
2522  */
2523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2524 {
2525         unsigned long vm_len, pfn, pages;
2526
2527         /* Check that the physical memory area passed in looks valid */
2528         if (start + len < start)
2529                 return -EINVAL;
2530         /*
2531          * You *really* shouldn't map things that aren't page-aligned,
2532          * but we've historically allowed it because IO memory might
2533          * just have smaller alignment.
2534          */
2535         len += start & ~PAGE_MASK;
2536         pfn = start >> PAGE_SHIFT;
2537         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2538         if (pfn + pages < pfn)
2539                 return -EINVAL;
2540
2541         /* We start the mapping 'vm_pgoff' pages into the area */
2542         if (vma->vm_pgoff > pages)
2543                 return -EINVAL;
2544         pfn += vma->vm_pgoff;
2545         pages -= vma->vm_pgoff;
2546
2547         /* Can we fit all of the mapping? */
2548         vm_len = vma->vm_end - vma->vm_start;
2549         if (vm_len >> PAGE_SHIFT > pages)
2550                 return -EINVAL;
2551
2552         /* Ok, let it rip */
2553         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2554 }
2555 EXPORT_SYMBOL(vm_iomap_memory);
2556
2557 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2558                                      unsigned long addr, unsigned long end,
2559                                      pte_fn_t fn, void *data, bool create,
2560                                      pgtbl_mod_mask *mask)
2561 {
2562         pte_t *pte, *mapped_pte;
2563         int err = 0;
2564         spinlock_t *ptl;
2565
2566         if (create) {
2567                 mapped_pte = pte = (mm == &init_mm) ?
2568                         pte_alloc_kernel_track(pmd, addr, mask) :
2569                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2570                 if (!pte)
2571                         return -ENOMEM;
2572         } else {
2573                 mapped_pte = pte = (mm == &init_mm) ?
2574                         pte_offset_kernel(pmd, addr) :
2575                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2576                 if (!pte)
2577                         return -EINVAL;
2578         }
2579
2580         arch_enter_lazy_mmu_mode();
2581
2582         if (fn) {
2583                 do {
2584                         if (create || !pte_none(ptep_get(pte))) {
2585                                 err = fn(pte++, addr, data);
2586                                 if (err)
2587                                         break;
2588                         }
2589                 } while (addr += PAGE_SIZE, addr != end);
2590         }
2591         *mask |= PGTBL_PTE_MODIFIED;
2592
2593         arch_leave_lazy_mmu_mode();
2594
2595         if (mm != &init_mm)
2596                 pte_unmap_unlock(mapped_pte, ptl);
2597         return err;
2598 }
2599
2600 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2601                                      unsigned long addr, unsigned long end,
2602                                      pte_fn_t fn, void *data, bool create,
2603                                      pgtbl_mod_mask *mask)
2604 {
2605         pmd_t *pmd;
2606         unsigned long next;
2607         int err = 0;
2608
2609         BUG_ON(pud_huge(*pud));
2610
2611         if (create) {
2612                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2613                 if (!pmd)
2614                         return -ENOMEM;
2615         } else {
2616                 pmd = pmd_offset(pud, addr);
2617         }
2618         do {
2619                 next = pmd_addr_end(addr, end);
2620                 if (pmd_none(*pmd) && !create)
2621                         continue;
2622                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2623                         return -EINVAL;
2624                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2625                         if (!create)
2626                                 continue;
2627                         pmd_clear_bad(pmd);
2628                 }
2629                 err = apply_to_pte_range(mm, pmd, addr, next,
2630                                          fn, data, create, mask);
2631                 if (err)
2632                         break;
2633         } while (pmd++, addr = next, addr != end);
2634
2635         return err;
2636 }
2637
2638 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2639                                      unsigned long addr, unsigned long end,
2640                                      pte_fn_t fn, void *data, bool create,
2641                                      pgtbl_mod_mask *mask)
2642 {
2643         pud_t *pud;
2644         unsigned long next;
2645         int err = 0;
2646
2647         if (create) {
2648                 pud = pud_alloc_track(mm, p4d, addr, mask);
2649                 if (!pud)
2650                         return -ENOMEM;
2651         } else {
2652                 pud = pud_offset(p4d, addr);
2653         }
2654         do {
2655                 next = pud_addr_end(addr, end);
2656                 if (pud_none(*pud) && !create)
2657                         continue;
2658                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2659                         return -EINVAL;
2660                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2661                         if (!create)
2662                                 continue;
2663                         pud_clear_bad(pud);
2664                 }
2665                 err = apply_to_pmd_range(mm, pud, addr, next,
2666                                          fn, data, create, mask);
2667                 if (err)
2668                         break;
2669         } while (pud++, addr = next, addr != end);
2670
2671         return err;
2672 }
2673
2674 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2675                                      unsigned long addr, unsigned long end,
2676                                      pte_fn_t fn, void *data, bool create,
2677                                      pgtbl_mod_mask *mask)
2678 {
2679         p4d_t *p4d;
2680         unsigned long next;
2681         int err = 0;
2682
2683         if (create) {
2684                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2685                 if (!p4d)
2686                         return -ENOMEM;
2687         } else {
2688                 p4d = p4d_offset(pgd, addr);
2689         }
2690         do {
2691                 next = p4d_addr_end(addr, end);
2692                 if (p4d_none(*p4d) && !create)
2693                         continue;
2694                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2695                         return -EINVAL;
2696                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2697                         if (!create)
2698                                 continue;
2699                         p4d_clear_bad(p4d);
2700                 }
2701                 err = apply_to_pud_range(mm, p4d, addr, next,
2702                                          fn, data, create, mask);
2703                 if (err)
2704                         break;
2705         } while (p4d++, addr = next, addr != end);
2706
2707         return err;
2708 }
2709
2710 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2711                                  unsigned long size, pte_fn_t fn,
2712                                  void *data, bool create)
2713 {
2714         pgd_t *pgd;
2715         unsigned long start = addr, next;
2716         unsigned long end = addr + size;
2717         pgtbl_mod_mask mask = 0;
2718         int err = 0;
2719
2720         if (WARN_ON(addr >= end))
2721                 return -EINVAL;
2722
2723         pgd = pgd_offset(mm, addr);
2724         do {
2725                 next = pgd_addr_end(addr, end);
2726                 if (pgd_none(*pgd) && !create)
2727                         continue;
2728                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2729                         return -EINVAL;
2730                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2731                         if (!create)
2732                                 continue;
2733                         pgd_clear_bad(pgd);
2734                 }
2735                 err = apply_to_p4d_range(mm, pgd, addr, next,
2736                                          fn, data, create, &mask);
2737                 if (err)
2738                         break;
2739         } while (pgd++, addr = next, addr != end);
2740
2741         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2742                 arch_sync_kernel_mappings(start, start + size);
2743
2744         return err;
2745 }
2746
2747 /*
2748  * Scan a region of virtual memory, filling in page tables as necessary
2749  * and calling a provided function on each leaf page table.
2750  */
2751 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2752                         unsigned long size, pte_fn_t fn, void *data)
2753 {
2754         return __apply_to_page_range(mm, addr, size, fn, data, true);
2755 }
2756 EXPORT_SYMBOL_GPL(apply_to_page_range);
2757
2758 /*
2759  * Scan a region of virtual memory, calling a provided function on
2760  * each leaf page table where it exists.
2761  *
2762  * Unlike apply_to_page_range, this does _not_ fill in page tables
2763  * where they are absent.
2764  */
2765 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2766                                  unsigned long size, pte_fn_t fn, void *data)
2767 {
2768         return __apply_to_page_range(mm, addr, size, fn, data, false);
2769 }
2770 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2771
2772 /*
2773  * handle_pte_fault chooses page fault handler according to an entry which was
2774  * read non-atomically.  Before making any commitment, on those architectures
2775  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2776  * parts, do_swap_page must check under lock before unmapping the pte and
2777  * proceeding (but do_wp_page is only called after already making such a check;
2778  * and do_anonymous_page can safely check later on).
2779  */
2780 static inline int pte_unmap_same(struct vm_fault *vmf)
2781 {
2782         int same = 1;
2783 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2784         if (sizeof(pte_t) > sizeof(unsigned long)) {
2785                 spin_lock(vmf->ptl);
2786                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2787                 spin_unlock(vmf->ptl);
2788         }
2789 #endif
2790         pte_unmap(vmf->pte);
2791         vmf->pte = NULL;
2792         return same;
2793 }
2794
2795 /*
2796  * Return:
2797  *      0:              copied succeeded
2798  *      -EHWPOISON:     copy failed due to hwpoison in source page
2799  *      -EAGAIN:        copied failed (some other reason)
2800  */
2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802                                       struct vm_fault *vmf)
2803 {
2804         int ret;
2805         void *kaddr;
2806         void __user *uaddr;
2807         struct vm_area_struct *vma = vmf->vma;
2808         struct mm_struct *mm = vma->vm_mm;
2809         unsigned long addr = vmf->address;
2810
2811         if (likely(src)) {
2812                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2813                         memory_failure_queue(page_to_pfn(src), 0);
2814                         return -EHWPOISON;
2815                 }
2816                 return 0;
2817         }
2818
2819         /*
2820          * If the source page was a PFN mapping, we don't have
2821          * a "struct page" for it. We do a best-effort copy by
2822          * just copying from the original user address. If that
2823          * fails, we just zero-fill it. Live with it.
2824          */
2825         kaddr = kmap_atomic(dst);
2826         uaddr = (void __user *)(addr & PAGE_MASK);
2827
2828         /*
2829          * On architectures with software "accessed" bits, we would
2830          * take a double page fault, so mark it accessed here.
2831          */
2832         vmf->pte = NULL;
2833         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2834                 pte_t entry;
2835
2836                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2837                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2838                         /*
2839                          * Other thread has already handled the fault
2840                          * and update local tlb only
2841                          */
2842                         if (vmf->pte)
2843                                 update_mmu_tlb(vma, addr, vmf->pte);
2844                         ret = -EAGAIN;
2845                         goto pte_unlock;
2846                 }
2847
2848                 entry = pte_mkyoung(vmf->orig_pte);
2849                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850                         update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2851         }
2852
2853         /*
2854          * This really shouldn't fail, because the page is there
2855          * in the page tables. But it might just be unreadable,
2856          * in which case we just give up and fill the result with
2857          * zeroes.
2858          */
2859         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2860                 if (vmf->pte)
2861                         goto warn;
2862
2863                 /* Re-validate under PTL if the page is still mapped */
2864                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2865                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2866                         /* The PTE changed under us, update local tlb */
2867                         if (vmf->pte)
2868                                 update_mmu_tlb(vma, addr, vmf->pte);
2869                         ret = -EAGAIN;
2870                         goto pte_unlock;
2871                 }
2872
2873                 /*
2874                  * The same page can be mapped back since last copy attempt.
2875                  * Try to copy again under PTL.
2876                  */
2877                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2878                         /*
2879                          * Give a warn in case there can be some obscure
2880                          * use-case
2881                          */
2882 warn:
2883                         WARN_ON_ONCE(1);
2884                         clear_page(kaddr);
2885                 }
2886         }
2887
2888         ret = 0;
2889
2890 pte_unlock:
2891         if (vmf->pte)
2892                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2893         kunmap_atomic(kaddr);
2894         flush_dcache_page(dst);
2895
2896         return ret;
2897 }
2898
2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2900 {
2901         struct file *vm_file = vma->vm_file;
2902
2903         if (vm_file)
2904                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2905
2906         /*
2907          * Special mappings (e.g. VDSO) do not have any file so fake
2908          * a default GFP_KERNEL for them.
2909          */
2910         return GFP_KERNEL;
2911 }
2912
2913 /*
2914  * Notify the address space that the page is about to become writable so that
2915  * it can prohibit this or wait for the page to get into an appropriate state.
2916  *
2917  * We do this without the lock held, so that it can sleep if it needs to.
2918  */
2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2920 {
2921         vm_fault_t ret;
2922         unsigned int old_flags = vmf->flags;
2923
2924         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2925
2926         if (vmf->vma->vm_file &&
2927             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2928                 return VM_FAULT_SIGBUS;
2929
2930         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2931         /* Restore original flags so that caller is not surprised */
2932         vmf->flags = old_flags;
2933         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2934                 return ret;
2935         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2936                 folio_lock(folio);
2937                 if (!folio->mapping) {
2938                         folio_unlock(folio);
2939                         return 0; /* retry */
2940                 }
2941                 ret |= VM_FAULT_LOCKED;
2942         } else
2943                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2944         return ret;
2945 }
2946
2947 /*
2948  * Handle dirtying of a page in shared file mapping on a write fault.
2949  *
2950  * The function expects the page to be locked and unlocks it.
2951  */
2952 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2953 {
2954         struct vm_area_struct *vma = vmf->vma;
2955         struct address_space *mapping;
2956         struct folio *folio = page_folio(vmf->page);
2957         bool dirtied;
2958         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2959
2960         dirtied = folio_mark_dirty(folio);
2961         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2962         /*
2963          * Take a local copy of the address_space - folio.mapping may be zeroed
2964          * by truncate after folio_unlock().   The address_space itself remains
2965          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2966          * release semantics to prevent the compiler from undoing this copying.
2967          */
2968         mapping = folio_raw_mapping(folio);
2969         folio_unlock(folio);
2970
2971         if (!page_mkwrite)
2972                 file_update_time(vma->vm_file);
2973
2974         /*
2975          * Throttle page dirtying rate down to writeback speed.
2976          *
2977          * mapping may be NULL here because some device drivers do not
2978          * set page.mapping but still dirty their pages
2979          *
2980          * Drop the mmap_lock before waiting on IO, if we can. The file
2981          * is pinning the mapping, as per above.
2982          */
2983         if ((dirtied || page_mkwrite) && mapping) {
2984                 struct file *fpin;
2985
2986                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2987                 balance_dirty_pages_ratelimited(mapping);
2988                 if (fpin) {
2989                         fput(fpin);
2990                         return VM_FAULT_COMPLETED;
2991                 }
2992         }
2993
2994         return 0;
2995 }
2996
2997 /*
2998  * Handle write page faults for pages that can be reused in the current vma
2999  *
3000  * This can happen either due to the mapping being with the VM_SHARED flag,
3001  * or due to us being the last reference standing to the page. In either
3002  * case, all we need to do here is to mark the page as writable and update
3003  * any related book-keeping.
3004  */
3005 static inline void wp_page_reuse(struct vm_fault *vmf)
3006         __releases(vmf->ptl)
3007 {
3008         struct vm_area_struct *vma = vmf->vma;
3009         struct page *page = vmf->page;
3010         pte_t entry;
3011
3012         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3013         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3014
3015         /*
3016          * Clear the pages cpupid information as the existing
3017          * information potentially belongs to a now completely
3018          * unrelated process.
3019          */
3020         if (page)
3021                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3022
3023         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3024         entry = pte_mkyoung(vmf->orig_pte);
3025         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3026         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3027                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3028         pte_unmap_unlock(vmf->pte, vmf->ptl);
3029         count_vm_event(PGREUSE);
3030 }
3031
3032 /*
3033  * Handle the case of a page which we actually need to copy to a new page,
3034  * either due to COW or unsharing.
3035  *
3036  * Called with mmap_lock locked and the old page referenced, but
3037  * without the ptl held.
3038  *
3039  * High level logic flow:
3040  *
3041  * - Allocate a page, copy the content of the old page to the new one.
3042  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3043  * - Take the PTL. If the pte changed, bail out and release the allocated page
3044  * - If the pte is still the way we remember it, update the page table and all
3045  *   relevant references. This includes dropping the reference the page-table
3046  *   held to the old page, as well as updating the rmap.
3047  * - In any case, unlock the PTL and drop the reference we took to the old page.
3048  */
3049 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3050 {
3051         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3052         struct vm_area_struct *vma = vmf->vma;
3053         struct mm_struct *mm = vma->vm_mm;
3054         struct folio *old_folio = NULL;
3055         struct folio *new_folio = NULL;
3056         pte_t entry;
3057         int page_copied = 0;
3058         struct mmu_notifier_range range;
3059         int ret;
3060
3061         delayacct_wpcopy_start();
3062
3063         if (vmf->page)
3064                 old_folio = page_folio(vmf->page);
3065         if (unlikely(anon_vma_prepare(vma)))
3066                 goto oom;
3067
3068         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3069                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3070                 if (!new_folio)
3071                         goto oom;
3072         } else {
3073                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3074                                 vmf->address, false);
3075                 if (!new_folio)
3076                         goto oom;
3077
3078                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3079                 if (ret) {
3080                         /*
3081                          * COW failed, if the fault was solved by other,
3082                          * it's fine. If not, userspace would re-fault on
3083                          * the same address and we will handle the fault
3084                          * from the second attempt.
3085                          * The -EHWPOISON case will not be retried.
3086                          */
3087                         folio_put(new_folio);
3088                         if (old_folio)
3089                                 folio_put(old_folio);
3090
3091                         delayacct_wpcopy_end();
3092                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3093                 }
3094                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3095         }
3096
3097         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3098                 goto oom_free_new;
3099         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3100
3101         __folio_mark_uptodate(new_folio);
3102
3103         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3104                                 vmf->address & PAGE_MASK,
3105                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3106         mmu_notifier_invalidate_range_start(&range);
3107
3108         /*
3109          * Re-check the pte - we dropped the lock
3110          */
3111         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3112         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3113                 if (old_folio) {
3114                         if (!folio_test_anon(old_folio)) {
3115                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3116                                 inc_mm_counter(mm, MM_ANONPAGES);
3117                         }
3118                 } else {
3119                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3120                         inc_mm_counter(mm, MM_ANONPAGES);
3121                 }
3122                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3123                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3124                 entry = pte_sw_mkyoung(entry);
3125                 if (unlikely(unshare)) {
3126                         if (pte_soft_dirty(vmf->orig_pte))
3127                                 entry = pte_mksoft_dirty(entry);
3128                         if (pte_uffd_wp(vmf->orig_pte))
3129                                 entry = pte_mkuffd_wp(entry);
3130                 } else {
3131                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3132                 }
3133
3134                 /*
3135                  * Clear the pte entry and flush it first, before updating the
3136                  * pte with the new entry, to keep TLBs on different CPUs in
3137                  * sync. This code used to set the new PTE then flush TLBs, but
3138                  * that left a window where the new PTE could be loaded into
3139                  * some TLBs while the old PTE remains in others.
3140                  */
3141                 ptep_clear_flush(vma, vmf->address, vmf->pte);
3142                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143                 folio_add_lru_vma(new_folio, vma);
3144                 /*
3145                  * We call the notify macro here because, when using secondary
3146                  * mmu page tables (such as kvm shadow page tables), we want the
3147                  * new page to be mapped directly into the secondary page table.
3148                  */
3149                 BUG_ON(unshare && pte_write(entry));
3150                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3152                 if (old_folio) {
3153                         /*
3154                          * Only after switching the pte to the new page may
3155                          * we remove the mapcount here. Otherwise another
3156                          * process may come and find the rmap count decremented
3157                          * before the pte is switched to the new page, and
3158                          * "reuse" the old page writing into it while our pte
3159                          * here still points into it and can be read by other
3160                          * threads.
3161                          *
3162                          * The critical issue is to order this
3163                          * page_remove_rmap with the ptp_clear_flush above.
3164                          * Those stores are ordered by (if nothing else,)
3165                          * the barrier present in the atomic_add_negative
3166                          * in page_remove_rmap.
3167                          *
3168                          * Then the TLB flush in ptep_clear_flush ensures that
3169                          * no process can access the old page before the
3170                          * decremented mapcount is visible. And the old page
3171                          * cannot be reused until after the decremented
3172                          * mapcount is visible. So transitively, TLBs to
3173                          * old page will be flushed before it can be reused.
3174                          */
3175                         page_remove_rmap(vmf->page, vma, false);
3176                 }
3177
3178                 /* Free the old page.. */
3179                 new_folio = old_folio;
3180                 page_copied = 1;
3181                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3182         } else if (vmf->pte) {
3183                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3184                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3185         }
3186
3187         mmu_notifier_invalidate_range_end(&range);
3188
3189         if (new_folio)
3190                 folio_put(new_folio);
3191         if (old_folio) {
3192                 if (page_copied)
3193                         free_swap_cache(&old_folio->page);
3194                 folio_put(old_folio);
3195         }
3196
3197         delayacct_wpcopy_end();
3198         return 0;
3199 oom_free_new:
3200         folio_put(new_folio);
3201 oom:
3202         if (old_folio)
3203                 folio_put(old_folio);
3204
3205         delayacct_wpcopy_end();
3206         return VM_FAULT_OOM;
3207 }
3208
3209 /**
3210  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3211  *                        writeable once the page is prepared
3212  *
3213  * @vmf: structure describing the fault
3214  *
3215  * This function handles all that is needed to finish a write page fault in a
3216  * shared mapping due to PTE being read-only once the mapped page is prepared.
3217  * It handles locking of PTE and modifying it.
3218  *
3219  * The function expects the page to be locked or other protection against
3220  * concurrent faults / writeback (such as DAX radix tree locks).
3221  *
3222  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3223  * we acquired PTE lock.
3224  */
3225 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3226 {
3227         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3228         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3229                                        &vmf->ptl);
3230         if (!vmf->pte)
3231                 return VM_FAULT_NOPAGE;
3232         /*
3233          * We might have raced with another page fault while we released the
3234          * pte_offset_map_lock.
3235          */
3236         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3237                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3238                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3239                 return VM_FAULT_NOPAGE;
3240         }
3241         wp_page_reuse(vmf);
3242         return 0;
3243 }
3244
3245 /*
3246  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3247  * mapping
3248  */
3249 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3250 {
3251         struct vm_area_struct *vma = vmf->vma;
3252
3253         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3254                 vm_fault_t ret;
3255
3256                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3257                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3258                         vma_end_read(vmf->vma);
3259                         return VM_FAULT_RETRY;
3260                 }
3261
3262                 vmf->flags |= FAULT_FLAG_MKWRITE;
3263                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3264                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3265                         return ret;
3266                 return finish_mkwrite_fault(vmf);
3267         }
3268         wp_page_reuse(vmf);
3269         return 0;
3270 }
3271
3272 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3273         __releases(vmf->ptl)
3274 {
3275         struct vm_area_struct *vma = vmf->vma;
3276         vm_fault_t ret = 0;
3277
3278         folio_get(folio);
3279
3280         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3281                 vm_fault_t tmp;
3282
3283                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3284                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3285                         folio_put(folio);
3286                         vma_end_read(vmf->vma);
3287                         return VM_FAULT_RETRY;
3288                 }
3289
3290                 tmp = do_page_mkwrite(vmf, folio);
3291                 if (unlikely(!tmp || (tmp &
3292                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3293                         folio_put(folio);
3294                         return tmp;
3295                 }
3296                 tmp = finish_mkwrite_fault(vmf);
3297                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3298                         folio_unlock(folio);
3299                         folio_put(folio);
3300                         return tmp;
3301                 }
3302         } else {
3303                 wp_page_reuse(vmf);
3304                 folio_lock(folio);
3305         }
3306         ret |= fault_dirty_shared_page(vmf);
3307         folio_put(folio);
3308
3309         return ret;
3310 }
3311
3312 /*
3313  * This routine handles present pages, when
3314  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3315  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3316  *   (FAULT_FLAG_UNSHARE)
3317  *
3318  * It is done by copying the page to a new address and decrementing the
3319  * shared-page counter for the old page.
3320  *
3321  * Note that this routine assumes that the protection checks have been
3322  * done by the caller (the low-level page fault routine in most cases).
3323  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3324  * done any necessary COW.
3325  *
3326  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3327  * though the page will change only once the write actually happens. This
3328  * avoids a few races, and potentially makes it more efficient.
3329  *
3330  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3331  * but allow concurrent faults), with pte both mapped and locked.
3332  * We return with mmap_lock still held, but pte unmapped and unlocked.
3333  */
3334 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3335         __releases(vmf->ptl)
3336 {
3337         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3338         struct vm_area_struct *vma = vmf->vma;
3339         struct folio *folio = NULL;
3340
3341         if (likely(!unshare)) {
3342                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3343                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3344                         return handle_userfault(vmf, VM_UFFD_WP);
3345                 }
3346
3347                 /*
3348                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3349                  * is flushed in this case before copying.
3350                  */
3351                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3352                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3353                         flush_tlb_page(vmf->vma, vmf->address);
3354         }
3355
3356         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3357
3358         if (vmf->page)
3359                 folio = page_folio(vmf->page);
3360
3361         /*
3362          * Shared mapping: we are guaranteed to have VM_WRITE and
3363          * FAULT_FLAG_WRITE set at this point.
3364          */
3365         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3366                 /*
3367                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3368                  * VM_PFNMAP VMA.
3369                  *
3370                  * We should not cow pages in a shared writeable mapping.
3371                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3372                  */
3373                 if (!vmf->page)
3374                         return wp_pfn_shared(vmf);
3375                 return wp_page_shared(vmf, folio);
3376         }
3377
3378         /*
3379          * Private mapping: create an exclusive anonymous page copy if reuse
3380          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3381          */
3382         if (folio && folio_test_anon(folio)) {
3383                 /*
3384                  * If the page is exclusive to this process we must reuse the
3385                  * page without further checks.
3386                  */
3387                 if (PageAnonExclusive(vmf->page))
3388                         goto reuse;
3389
3390                 /*
3391                  * We have to verify under folio lock: these early checks are
3392                  * just an optimization to avoid locking the folio and freeing
3393                  * the swapcache if there is little hope that we can reuse.
3394                  *
3395                  * KSM doesn't necessarily raise the folio refcount.
3396                  */
3397                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3398                         goto copy;
3399                 if (!folio_test_lru(folio))
3400                         /*
3401                          * We cannot easily detect+handle references from
3402                          * remote LRU caches or references to LRU folios.
3403                          */
3404                         lru_add_drain();
3405                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3406                         goto copy;
3407                 if (!folio_trylock(folio))
3408                         goto copy;
3409                 if (folio_test_swapcache(folio))
3410                         folio_free_swap(folio);
3411                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3412                         folio_unlock(folio);
3413                         goto copy;
3414                 }
3415                 /*
3416                  * Ok, we've got the only folio reference from our mapping
3417                  * and the folio is locked, it's dark out, and we're wearing
3418                  * sunglasses. Hit it.
3419                  */
3420                 page_move_anon_rmap(vmf->page, vma);
3421                 folio_unlock(folio);
3422 reuse:
3423                 if (unlikely(unshare)) {
3424                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3425                         return 0;
3426                 }
3427                 wp_page_reuse(vmf);
3428                 return 0;
3429         }
3430 copy:
3431         if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3432                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3433                 vma_end_read(vmf->vma);
3434                 return VM_FAULT_RETRY;
3435         }
3436
3437         /*
3438          * Ok, we need to copy. Oh, well..
3439          */
3440         if (folio)
3441                 folio_get(folio);
3442
3443         pte_unmap_unlock(vmf->pte, vmf->ptl);
3444 #ifdef CONFIG_KSM
3445         if (folio && folio_test_ksm(folio))
3446                 count_vm_event(COW_KSM);
3447 #endif
3448         return wp_page_copy(vmf);
3449 }
3450
3451 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3452                 unsigned long start_addr, unsigned long end_addr,
3453                 struct zap_details *details)
3454 {
3455         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3456 }
3457
3458 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3459                                             pgoff_t first_index,
3460                                             pgoff_t last_index,
3461                                             struct zap_details *details)
3462 {
3463         struct vm_area_struct *vma;
3464         pgoff_t vba, vea, zba, zea;
3465
3466         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3467                 vba = vma->vm_pgoff;
3468                 vea = vba + vma_pages(vma) - 1;
3469                 zba = max(first_index, vba);
3470                 zea = min(last_index, vea);
3471
3472                 unmap_mapping_range_vma(vma,
3473                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3474                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3475                                 details);
3476         }
3477 }
3478
3479 /**
3480  * unmap_mapping_folio() - Unmap single folio from processes.
3481  * @folio: The locked folio to be unmapped.
3482  *
3483  * Unmap this folio from any userspace process which still has it mmaped.
3484  * Typically, for efficiency, the range of nearby pages has already been
3485  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3486  * truncation or invalidation holds the lock on a folio, it may find that
3487  * the page has been remapped again: and then uses unmap_mapping_folio()
3488  * to unmap it finally.
3489  */
3490 void unmap_mapping_folio(struct folio *folio)
3491 {
3492         struct address_space *mapping = folio->mapping;
3493         struct zap_details details = { };
3494         pgoff_t first_index;
3495         pgoff_t last_index;
3496
3497         VM_BUG_ON(!folio_test_locked(folio));
3498
3499         first_index = folio->index;
3500         last_index = folio_next_index(folio) - 1;
3501
3502         details.even_cows = false;
3503         details.single_folio = folio;
3504         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3505
3506         i_mmap_lock_read(mapping);
3507         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3508                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3509                                          last_index, &details);
3510         i_mmap_unlock_read(mapping);
3511 }
3512
3513 /**
3514  * unmap_mapping_pages() - Unmap pages from processes.
3515  * @mapping: The address space containing pages to be unmapped.
3516  * @start: Index of first page to be unmapped.
3517  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3518  * @even_cows: Whether to unmap even private COWed pages.
3519  *
3520  * Unmap the pages in this address space from any userspace process which
3521  * has them mmaped.  Generally, you want to remove COWed pages as well when
3522  * a file is being truncated, but not when invalidating pages from the page
3523  * cache.
3524  */
3525 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3526                 pgoff_t nr, bool even_cows)
3527 {
3528         struct zap_details details = { };
3529         pgoff_t first_index = start;
3530         pgoff_t last_index = start + nr - 1;
3531
3532         details.even_cows = even_cows;
3533         if (last_index < first_index)
3534                 last_index = ULONG_MAX;
3535
3536         i_mmap_lock_read(mapping);
3537         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3538                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3539                                          last_index, &details);
3540         i_mmap_unlock_read(mapping);
3541 }
3542 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3543
3544 /**
3545  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3546  * address_space corresponding to the specified byte range in the underlying
3547  * file.
3548  *
3549  * @mapping: the address space containing mmaps to be unmapped.
3550  * @holebegin: byte in first page to unmap, relative to the start of
3551  * the underlying file.  This will be rounded down to a PAGE_SIZE
3552  * boundary.  Note that this is different from truncate_pagecache(), which
3553  * must keep the partial page.  In contrast, we must get rid of
3554  * partial pages.
3555  * @holelen: size of prospective hole in bytes.  This will be rounded
3556  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3557  * end of the file.
3558  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3559  * but 0 when invalidating pagecache, don't throw away private data.
3560  */
3561 void unmap_mapping_range(struct address_space *mapping,
3562                 loff_t const holebegin, loff_t const holelen, int even_cows)
3563 {
3564         pgoff_t hba = holebegin >> PAGE_SHIFT;
3565         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3566
3567         /* Check for overflow. */
3568         if (sizeof(holelen) > sizeof(hlen)) {
3569                 long long holeend =
3570                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3571                 if (holeend & ~(long long)ULONG_MAX)
3572                         hlen = ULONG_MAX - hba + 1;
3573         }
3574
3575         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3576 }
3577 EXPORT_SYMBOL(unmap_mapping_range);
3578
3579 /*
3580  * Restore a potential device exclusive pte to a working pte entry
3581  */
3582 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3583 {
3584         struct folio *folio = page_folio(vmf->page);
3585         struct vm_area_struct *vma = vmf->vma;
3586         struct mmu_notifier_range range;
3587         vm_fault_t ret;
3588
3589         /*
3590          * We need a reference to lock the folio because we don't hold
3591          * the PTL so a racing thread can remove the device-exclusive
3592          * entry and unmap it. If the folio is free the entry must
3593          * have been removed already. If it happens to have already
3594          * been re-allocated after being freed all we do is lock and
3595          * unlock it.
3596          */
3597         if (!folio_try_get(folio))
3598                 return 0;
3599
3600         ret = folio_lock_or_retry(folio, vmf);
3601         if (ret) {
3602                 folio_put(folio);
3603                 return ret;
3604         }
3605         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3606                                 vma->vm_mm, vmf->address & PAGE_MASK,
3607                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3608         mmu_notifier_invalidate_range_start(&range);
3609
3610         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3611                                 &vmf->ptl);
3612         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3613                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3614
3615         if (vmf->pte)
3616                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3617         folio_unlock(folio);
3618         folio_put(folio);
3619
3620         mmu_notifier_invalidate_range_end(&range);
3621         return 0;
3622 }
3623
3624 static inline bool should_try_to_free_swap(struct folio *folio,
3625                                            struct vm_area_struct *vma,
3626                                            unsigned int fault_flags)
3627 {
3628         if (!folio_test_swapcache(folio))
3629                 return false;
3630         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3631             folio_test_mlocked(folio))
3632                 return true;
3633         /*
3634          * If we want to map a page that's in the swapcache writable, we
3635          * have to detect via the refcount if we're really the exclusive
3636          * user. Try freeing the swapcache to get rid of the swapcache
3637          * reference only in case it's likely that we'll be the exlusive user.
3638          */
3639         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3640                 folio_ref_count(folio) == 2;
3641 }
3642
3643 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3644 {
3645         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3646                                        vmf->address, &vmf->ptl);
3647         if (!vmf->pte)
3648                 return 0;
3649         /*
3650          * Be careful so that we will only recover a special uffd-wp pte into a
3651          * none pte.  Otherwise it means the pte could have changed, so retry.
3652          *
3653          * This should also cover the case where e.g. the pte changed
3654          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3655          * So is_pte_marker() check is not enough to safely drop the pte.
3656          */
3657         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3658                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3659         pte_unmap_unlock(vmf->pte, vmf->ptl);
3660         return 0;
3661 }
3662
3663 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3664 {
3665         if (vma_is_anonymous(vmf->vma))
3666                 return do_anonymous_page(vmf);
3667         else
3668                 return do_fault(vmf);
3669 }
3670
3671 /*
3672  * This is actually a page-missing access, but with uffd-wp special pte
3673  * installed.  It means this pte was wr-protected before being unmapped.
3674  */
3675 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3676 {
3677         /*
3678          * Just in case there're leftover special ptes even after the region
3679          * got unregistered - we can simply clear them.
3680          */
3681         if (unlikely(!userfaultfd_wp(vmf->vma)))
3682                 return pte_marker_clear(vmf);
3683
3684         return do_pte_missing(vmf);
3685 }
3686
3687 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3688 {
3689         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3690         unsigned long marker = pte_marker_get(entry);
3691
3692         /*
3693          * PTE markers should never be empty.  If anything weird happened,
3694          * the best thing to do is to kill the process along with its mm.
3695          */
3696         if (WARN_ON_ONCE(!marker))
3697                 return VM_FAULT_SIGBUS;
3698
3699         /* Higher priority than uffd-wp when data corrupted */
3700         if (marker & PTE_MARKER_POISONED)
3701                 return VM_FAULT_HWPOISON;
3702
3703         if (pte_marker_entry_uffd_wp(entry))
3704                 return pte_marker_handle_uffd_wp(vmf);
3705
3706         /* This is an unknown pte marker */
3707         return VM_FAULT_SIGBUS;
3708 }
3709
3710 /*
3711  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3712  * but allow concurrent faults), and pte mapped but not yet locked.
3713  * We return with pte unmapped and unlocked.
3714  *
3715  * We return with the mmap_lock locked or unlocked in the same cases
3716  * as does filemap_fault().
3717  */
3718 vm_fault_t do_swap_page(struct vm_fault *vmf)
3719 {
3720         struct vm_area_struct *vma = vmf->vma;
3721         struct folio *swapcache, *folio = NULL;
3722         struct page *page;
3723         struct swap_info_struct *si = NULL;
3724         rmap_t rmap_flags = RMAP_NONE;
3725         bool exclusive = false;
3726         swp_entry_t entry;
3727         pte_t pte;
3728         vm_fault_t ret = 0;
3729         void *shadow = NULL;
3730
3731         if (!pte_unmap_same(vmf))
3732                 goto out;
3733
3734         entry = pte_to_swp_entry(vmf->orig_pte);
3735         if (unlikely(non_swap_entry(entry))) {
3736                 if (is_migration_entry(entry)) {
3737                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3738                                              vmf->address);
3739                 } else if (is_device_exclusive_entry(entry)) {
3740                         vmf->page = pfn_swap_entry_to_page(entry);
3741                         ret = remove_device_exclusive_entry(vmf);
3742                 } else if (is_device_private_entry(entry)) {
3743                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3744                                 /*
3745                                  * migrate_to_ram is not yet ready to operate
3746                                  * under VMA lock.
3747                                  */
3748                                 vma_end_read(vma);
3749                                 ret = VM_FAULT_RETRY;
3750                                 goto out;
3751                         }
3752
3753                         vmf->page = pfn_swap_entry_to_page(entry);
3754                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3755                                         vmf->address, &vmf->ptl);
3756                         if (unlikely(!vmf->pte ||
3757                                      !pte_same(ptep_get(vmf->pte),
3758                                                         vmf->orig_pte)))
3759                                 goto unlock;
3760
3761                         /*
3762                          * Get a page reference while we know the page can't be
3763                          * freed.
3764                          */
3765                         get_page(vmf->page);
3766                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3767                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3768                         put_page(vmf->page);
3769                 } else if (is_hwpoison_entry(entry)) {
3770                         ret = VM_FAULT_HWPOISON;
3771                 } else if (is_pte_marker_entry(entry)) {
3772                         ret = handle_pte_marker(vmf);
3773                 } else {
3774                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3775                         ret = VM_FAULT_SIGBUS;
3776                 }
3777                 goto out;
3778         }
3779
3780         /* Prevent swapoff from happening to us. */
3781         si = get_swap_device(entry);
3782         if (unlikely(!si))
3783                 goto out;
3784
3785         folio = swap_cache_get_folio(entry, vma, vmf->address);
3786         if (folio)
3787                 page = folio_file_page(folio, swp_offset(entry));
3788         swapcache = folio;
3789
3790         if (!folio) {
3791                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3792                     __swap_count(entry) == 1) {
3793                         /* skip swapcache */
3794                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3795                                                 vma, vmf->address, false);
3796                         page = &folio->page;
3797                         if (folio) {
3798                                 __folio_set_locked(folio);
3799                                 __folio_set_swapbacked(folio);
3800
3801                                 if (mem_cgroup_swapin_charge_folio(folio,
3802                                                         vma->vm_mm, GFP_KERNEL,
3803                                                         entry)) {
3804                                         ret = VM_FAULT_OOM;
3805                                         goto out_page;
3806                                 }
3807                                 mem_cgroup_swapin_uncharge_swap(entry);
3808
3809                                 shadow = get_shadow_from_swap_cache(entry);
3810                                 if (shadow)
3811                                         workingset_refault(folio, shadow);
3812
3813                                 folio_add_lru(folio);
3814
3815                                 /* To provide entry to swap_readpage() */
3816                                 folio->swap = entry;
3817                                 swap_readpage(page, true, NULL);
3818                                 folio->private = NULL;
3819                         }
3820                 } else {
3821                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3822                                                 vmf);
3823                         if (page)
3824                                 folio = page_folio(page);
3825                         swapcache = folio;
3826                 }
3827
3828                 if (!folio) {
3829                         /*
3830                          * Back out if somebody else faulted in this pte
3831                          * while we released the pte lock.
3832                          */
3833                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3834                                         vmf->address, &vmf->ptl);
3835                         if (likely(vmf->pte &&
3836                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3837                                 ret = VM_FAULT_OOM;
3838                         goto unlock;
3839                 }
3840
3841                 /* Had to read the page from swap area: Major fault */
3842                 ret = VM_FAULT_MAJOR;
3843                 count_vm_event(PGMAJFAULT);
3844                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3845         } else if (PageHWPoison(page)) {
3846                 /*
3847                  * hwpoisoned dirty swapcache pages are kept for killing
3848                  * owner processes (which may be unknown at hwpoison time)
3849                  */
3850                 ret = VM_FAULT_HWPOISON;
3851                 goto out_release;
3852         }
3853
3854         ret |= folio_lock_or_retry(folio, vmf);
3855         if (ret & VM_FAULT_RETRY)
3856                 goto out_release;
3857
3858         if (swapcache) {
3859                 /*
3860                  * Make sure folio_free_swap() or swapoff did not release the
3861                  * swapcache from under us.  The page pin, and pte_same test
3862                  * below, are not enough to exclude that.  Even if it is still
3863                  * swapcache, we need to check that the page's swap has not
3864                  * changed.
3865                  */
3866                 if (unlikely(!folio_test_swapcache(folio) ||
3867                              page_swap_entry(page).val != entry.val))
3868                         goto out_page;
3869
3870                 /*
3871                  * KSM sometimes has to copy on read faults, for example, if
3872                  * page->index of !PageKSM() pages would be nonlinear inside the
3873                  * anon VMA -- PageKSM() is lost on actual swapout.
3874                  */
3875                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3876                 if (unlikely(!page)) {
3877                         ret = VM_FAULT_OOM;
3878                         goto out_page;
3879                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3880                         ret = VM_FAULT_HWPOISON;
3881                         goto out_page;
3882                 }
3883                 folio = page_folio(page);
3884
3885                 /*
3886                  * If we want to map a page that's in the swapcache writable, we
3887                  * have to detect via the refcount if we're really the exclusive
3888                  * owner. Try removing the extra reference from the local LRU
3889                  * caches if required.
3890                  */
3891                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3892                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3893                         lru_add_drain();
3894         }
3895
3896         folio_throttle_swaprate(folio, GFP_KERNEL);
3897
3898         /*
3899          * Back out if somebody else already faulted in this pte.
3900          */
3901         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3902                         &vmf->ptl);
3903         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3904                 goto out_nomap;
3905
3906         if (unlikely(!folio_test_uptodate(folio))) {
3907                 ret = VM_FAULT_SIGBUS;
3908                 goto out_nomap;
3909         }
3910
3911         /*
3912          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3913          * must never point at an anonymous page in the swapcache that is
3914          * PG_anon_exclusive. Sanity check that this holds and especially, that
3915          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3916          * check after taking the PT lock and making sure that nobody
3917          * concurrently faulted in this page and set PG_anon_exclusive.
3918          */
3919         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3920         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3921
3922         /*
3923          * Check under PT lock (to protect against concurrent fork() sharing
3924          * the swap entry concurrently) for certainly exclusive pages.
3925          */
3926         if (!folio_test_ksm(folio)) {
3927                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3928                 if (folio != swapcache) {
3929                         /*
3930                          * We have a fresh page that is not exposed to the
3931                          * swapcache -> certainly exclusive.
3932                          */
3933                         exclusive = true;
3934                 } else if (exclusive && folio_test_writeback(folio) &&
3935                           data_race(si->flags & SWP_STABLE_WRITES)) {
3936                         /*
3937                          * This is tricky: not all swap backends support
3938                          * concurrent page modifications while under writeback.
3939                          *
3940                          * So if we stumble over such a page in the swapcache
3941                          * we must not set the page exclusive, otherwise we can
3942                          * map it writable without further checks and modify it
3943                          * while still under writeback.
3944                          *
3945                          * For these problematic swap backends, simply drop the
3946                          * exclusive marker: this is perfectly fine as we start
3947                          * writeback only if we fully unmapped the page and
3948                          * there are no unexpected references on the page after
3949                          * unmapping succeeded. After fully unmapped, no
3950                          * further GUP references (FOLL_GET and FOLL_PIN) can
3951                          * appear, so dropping the exclusive marker and mapping
3952                          * it only R/O is fine.
3953                          */
3954                         exclusive = false;
3955                 }
3956         }
3957
3958         /*
3959          * Some architectures may have to restore extra metadata to the page
3960          * when reading from swap. This metadata may be indexed by swap entry
3961          * so this must be called before swap_free().
3962          */
3963         arch_swap_restore(entry, folio);
3964
3965         /*
3966          * Remove the swap entry and conditionally try to free up the swapcache.
3967          * We're already holding a reference on the page but haven't mapped it
3968          * yet.
3969          */
3970         swap_free(entry);
3971         if (should_try_to_free_swap(folio, vma, vmf->flags))
3972                 folio_free_swap(folio);
3973
3974         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3975         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3976         pte = mk_pte(page, vma->vm_page_prot);
3977
3978         /*
3979          * Same logic as in do_wp_page(); however, optimize for pages that are
3980          * certainly not shared either because we just allocated them without
3981          * exposing them to the swapcache or because the swap entry indicates
3982          * exclusivity.
3983          */
3984         if (!folio_test_ksm(folio) &&
3985             (exclusive || folio_ref_count(folio) == 1)) {
3986                 if (vmf->flags & FAULT_FLAG_WRITE) {
3987                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3988                         vmf->flags &= ~FAULT_FLAG_WRITE;
3989                 }
3990                 rmap_flags |= RMAP_EXCLUSIVE;
3991         }
3992         flush_icache_page(vma, page);
3993         if (pte_swp_soft_dirty(vmf->orig_pte))
3994                 pte = pte_mksoft_dirty(pte);
3995         if (pte_swp_uffd_wp(vmf->orig_pte))
3996                 pte = pte_mkuffd_wp(pte);
3997         vmf->orig_pte = pte;
3998
3999         /* ksm created a completely new copy */
4000         if (unlikely(folio != swapcache && swapcache)) {
4001                 page_add_new_anon_rmap(page, vma, vmf->address);
4002                 folio_add_lru_vma(folio, vma);
4003         } else {
4004                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4005         }
4006
4007         VM_BUG_ON(!folio_test_anon(folio) ||
4008                         (pte_write(pte) && !PageAnonExclusive(page)));
4009         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4010         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4011
4012         folio_unlock(folio);
4013         if (folio != swapcache && swapcache) {
4014                 /*
4015                  * Hold the lock to avoid the swap entry to be reused
4016                  * until we take the PT lock for the pte_same() check
4017                  * (to avoid false positives from pte_same). For
4018                  * further safety release the lock after the swap_free
4019                  * so that the swap count won't change under a
4020                  * parallel locked swapcache.
4021                  */
4022                 folio_unlock(swapcache);
4023                 folio_put(swapcache);
4024         }
4025
4026         if (vmf->flags & FAULT_FLAG_WRITE) {
4027                 ret |= do_wp_page(vmf);
4028                 if (ret & VM_FAULT_ERROR)
4029                         ret &= VM_FAULT_ERROR;
4030                 goto out;
4031         }
4032
4033         /* No need to invalidate - it was non-present before */
4034         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4035 unlock:
4036         if (vmf->pte)
4037                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4038 out:
4039         if (si)
4040                 put_swap_device(si);
4041         return ret;
4042 out_nomap:
4043         if (vmf->pte)
4044                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045 out_page:
4046         folio_unlock(folio);
4047 out_release:
4048         folio_put(folio);
4049         if (folio != swapcache && swapcache) {
4050                 folio_unlock(swapcache);
4051                 folio_put(swapcache);
4052         }
4053         if (si)
4054                 put_swap_device(si);
4055         return ret;
4056 }
4057
4058 /*
4059  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4060  * but allow concurrent faults), and pte mapped but not yet locked.
4061  * We return with mmap_lock still held, but pte unmapped and unlocked.
4062  */
4063 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4064 {
4065         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4066         struct vm_area_struct *vma = vmf->vma;
4067         struct folio *folio;
4068         vm_fault_t ret = 0;
4069         pte_t entry;
4070
4071         /* File mapping without ->vm_ops ? */
4072         if (vma->vm_flags & VM_SHARED)
4073                 return VM_FAULT_SIGBUS;
4074
4075         /*
4076          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4077          * be distinguished from a transient failure of pte_offset_map().
4078          */
4079         if (pte_alloc(vma->vm_mm, vmf->pmd))
4080                 return VM_FAULT_OOM;
4081
4082         /* Use the zero-page for reads */
4083         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4084                         !mm_forbids_zeropage(vma->vm_mm)) {
4085                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4086                                                 vma->vm_page_prot));
4087                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4088                                 vmf->address, &vmf->ptl);
4089                 if (!vmf->pte)
4090                         goto unlock;
4091                 if (vmf_pte_changed(vmf)) {
4092                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4093                         goto unlock;
4094                 }
4095                 ret = check_stable_address_space(vma->vm_mm);
4096                 if (ret)
4097                         goto unlock;
4098                 /* Deliver the page fault to userland, check inside PT lock */
4099                 if (userfaultfd_missing(vma)) {
4100                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4101                         return handle_userfault(vmf, VM_UFFD_MISSING);
4102                 }
4103                 goto setpte;
4104         }
4105
4106         /* Allocate our own private page. */
4107         if (unlikely(anon_vma_prepare(vma)))
4108                 goto oom;
4109         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4110         if (!folio)
4111                 goto oom;
4112
4113         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4114                 goto oom_free_page;
4115         folio_throttle_swaprate(folio, GFP_KERNEL);
4116
4117         /*
4118          * The memory barrier inside __folio_mark_uptodate makes sure that
4119          * preceding stores to the page contents become visible before
4120          * the set_pte_at() write.
4121          */
4122         __folio_mark_uptodate(folio);
4123
4124         entry = mk_pte(&folio->page, vma->vm_page_prot);
4125         entry = pte_sw_mkyoung(entry);
4126         if (vma->vm_flags & VM_WRITE)
4127                 entry = pte_mkwrite(pte_mkdirty(entry));
4128
4129         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4130                         &vmf->ptl);
4131         if (!vmf->pte)
4132                 goto release;
4133         if (vmf_pte_changed(vmf)) {
4134                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4135                 goto release;
4136         }
4137
4138         ret = check_stable_address_space(vma->vm_mm);
4139         if (ret)
4140                 goto release;
4141
4142         /* Deliver the page fault to userland, check inside PT lock */
4143         if (userfaultfd_missing(vma)) {
4144                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4145                 folio_put(folio);
4146                 return handle_userfault(vmf, VM_UFFD_MISSING);
4147         }
4148
4149         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4150         folio_add_new_anon_rmap(folio, vma, vmf->address);
4151         folio_add_lru_vma(folio, vma);
4152 setpte:
4153         if (uffd_wp)
4154                 entry = pte_mkuffd_wp(entry);
4155         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4156
4157         /* No need to invalidate - it was non-present before */
4158         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4159 unlock:
4160         if (vmf->pte)
4161                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4162         return ret;
4163 release:
4164         folio_put(folio);
4165         goto unlock;
4166 oom_free_page:
4167         folio_put(folio);
4168 oom:
4169         return VM_FAULT_OOM;
4170 }
4171
4172 /*
4173  * The mmap_lock must have been held on entry, and may have been
4174  * released depending on flags and vma->vm_ops->fault() return value.
4175  * See filemap_fault() and __lock_page_retry().
4176  */
4177 static vm_fault_t __do_fault(struct vm_fault *vmf)
4178 {
4179         struct vm_area_struct *vma = vmf->vma;
4180         vm_fault_t ret;
4181
4182         /*
4183          * Preallocate pte before we take page_lock because this might lead to
4184          * deadlocks for memcg reclaim which waits for pages under writeback:
4185          *                              lock_page(A)
4186          *                              SetPageWriteback(A)
4187          *                              unlock_page(A)
4188          * lock_page(B)
4189          *                              lock_page(B)
4190          * pte_alloc_one
4191          *   shrink_page_list
4192          *     wait_on_page_writeback(A)
4193          *                              SetPageWriteback(B)
4194          *                              unlock_page(B)
4195          *                              # flush A, B to clear the writeback
4196          */
4197         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4198                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4199                 if (!vmf->prealloc_pte)
4200                         return VM_FAULT_OOM;
4201         }
4202
4203         ret = vma->vm_ops->fault(vmf);
4204         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4205                             VM_FAULT_DONE_COW)))
4206                 return ret;
4207
4208         if (unlikely(PageHWPoison(vmf->page))) {
4209                 struct page *page = vmf->page;
4210                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4211                 if (ret & VM_FAULT_LOCKED) {
4212                         if (page_mapped(page))
4213                                 unmap_mapping_pages(page_mapping(page),
4214                                                     page->index, 1, false);
4215                         /* Retry if a clean page was removed from the cache. */
4216                         if (invalidate_inode_page(page))
4217                                 poisonret = VM_FAULT_NOPAGE;
4218                         unlock_page(page);
4219                 }
4220                 put_page(page);
4221                 vmf->page = NULL;
4222                 return poisonret;
4223         }
4224
4225         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4226                 lock_page(vmf->page);
4227         else
4228                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4229
4230         return ret;
4231 }
4232
4233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4234 static void deposit_prealloc_pte(struct vm_fault *vmf)
4235 {
4236         struct vm_area_struct *vma = vmf->vma;
4237
4238         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4239         /*
4240          * We are going to consume the prealloc table,
4241          * count that as nr_ptes.
4242          */
4243         mm_inc_nr_ptes(vma->vm_mm);
4244         vmf->prealloc_pte = NULL;
4245 }
4246
4247 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4248 {
4249         struct vm_area_struct *vma = vmf->vma;
4250         bool write = vmf->flags & FAULT_FLAG_WRITE;
4251         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4252         pmd_t entry;
4253         vm_fault_t ret = VM_FAULT_FALLBACK;
4254
4255         if (!transhuge_vma_suitable(vma, haddr))
4256                 return ret;
4257
4258         page = compound_head(page);
4259         if (compound_order(page) != HPAGE_PMD_ORDER)
4260                 return ret;
4261
4262         /*
4263          * Just backoff if any subpage of a THP is corrupted otherwise
4264          * the corrupted page may mapped by PMD silently to escape the
4265          * check.  This kind of THP just can be PTE mapped.  Access to
4266          * the corrupted subpage should trigger SIGBUS as expected.
4267          */
4268         if (unlikely(PageHasHWPoisoned(page)))
4269                 return ret;
4270
4271         /*
4272          * Archs like ppc64 need additional space to store information
4273          * related to pte entry. Use the preallocated table for that.
4274          */
4275         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4276                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4277                 if (!vmf->prealloc_pte)
4278                         return VM_FAULT_OOM;
4279         }
4280
4281         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4282         if (unlikely(!pmd_none(*vmf->pmd)))
4283                 goto out;
4284
4285         flush_icache_pages(vma, page, HPAGE_PMD_NR);
4286
4287         entry = mk_huge_pmd(page, vma->vm_page_prot);
4288         if (write)
4289                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4290
4291         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4292         page_add_file_rmap(page, vma, true);
4293
4294         /*
4295          * deposit and withdraw with pmd lock held
4296          */
4297         if (arch_needs_pgtable_deposit())
4298                 deposit_prealloc_pte(vmf);
4299
4300         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4301
4302         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4303
4304         /* fault is handled */
4305         ret = 0;
4306         count_vm_event(THP_FILE_MAPPED);
4307 out:
4308         spin_unlock(vmf->ptl);
4309         return ret;
4310 }
4311 #else
4312 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4313 {
4314         return VM_FAULT_FALLBACK;
4315 }
4316 #endif
4317
4318 /**
4319  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4320  * @vmf: Fault decription.
4321  * @folio: The folio that contains @page.
4322  * @page: The first page to create a PTE for.
4323  * @nr: The number of PTEs to create.
4324  * @addr: The first address to create a PTE for.
4325  */
4326 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4327                 struct page *page, unsigned int nr, unsigned long addr)
4328 {
4329         struct vm_area_struct *vma = vmf->vma;
4330         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4331         bool write = vmf->flags & FAULT_FLAG_WRITE;
4332         bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4333         pte_t entry;
4334
4335         flush_icache_pages(vma, page, nr);
4336         entry = mk_pte(page, vma->vm_page_prot);
4337
4338         if (prefault && arch_wants_old_prefaulted_pte())
4339                 entry = pte_mkold(entry);
4340         else
4341                 entry = pte_sw_mkyoung(entry);
4342
4343         if (write)
4344                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4345         if (unlikely(uffd_wp))
4346                 entry = pte_mkuffd_wp(entry);
4347         /* copy-on-write page */
4348         if (write && !(vma->vm_flags & VM_SHARED)) {
4349                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4350                 VM_BUG_ON_FOLIO(nr != 1, folio);
4351                 folio_add_new_anon_rmap(folio, vma, addr);
4352                 folio_add_lru_vma(folio, vma);
4353         } else {
4354                 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4355                 folio_add_file_rmap_range(folio, page, nr, vma, false);
4356         }
4357         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4358
4359         /* no need to invalidate: a not-present page won't be cached */
4360         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4361 }
4362
4363 static bool vmf_pte_changed(struct vm_fault *vmf)
4364 {
4365         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4366                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4367
4368         return !pte_none(ptep_get(vmf->pte));
4369 }
4370
4371 /**
4372  * finish_fault - finish page fault once we have prepared the page to fault
4373  *
4374  * @vmf: structure describing the fault
4375  *
4376  * This function handles all that is needed to finish a page fault once the
4377  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4378  * given page, adds reverse page mapping, handles memcg charges and LRU
4379  * addition.
4380  *
4381  * The function expects the page to be locked and on success it consumes a
4382  * reference of a page being mapped (for the PTE which maps it).
4383  *
4384  * Return: %0 on success, %VM_FAULT_ code in case of error.
4385  */
4386 vm_fault_t finish_fault(struct vm_fault *vmf)
4387 {
4388         struct vm_area_struct *vma = vmf->vma;
4389         struct page *page;
4390         vm_fault_t ret;
4391
4392         /* Did we COW the page? */
4393         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4394                 page = vmf->cow_page;
4395         else
4396                 page = vmf->page;
4397
4398         /*
4399          * check even for read faults because we might have lost our CoWed
4400          * page
4401          */
4402         if (!(vma->vm_flags & VM_SHARED)) {
4403                 ret = check_stable_address_space(vma->vm_mm);
4404                 if (ret)
4405                         return ret;
4406         }
4407
4408         if (pmd_none(*vmf->pmd)) {
4409                 if (PageTransCompound(page)) {
4410                         ret = do_set_pmd(vmf, page);
4411                         if (ret != VM_FAULT_FALLBACK)
4412                                 return ret;
4413                 }
4414
4415                 if (vmf->prealloc_pte)
4416                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4417                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4418                         return VM_FAULT_OOM;
4419         }
4420
4421         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4422                                       vmf->address, &vmf->ptl);
4423         if (!vmf->pte)
4424                 return VM_FAULT_NOPAGE;
4425
4426         /* Re-check under ptl */
4427         if (likely(!vmf_pte_changed(vmf))) {
4428                 struct folio *folio = page_folio(page);
4429
4430                 set_pte_range(vmf, folio, page, 1, vmf->address);
4431                 ret = 0;
4432         } else {
4433                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4434                 ret = VM_FAULT_NOPAGE;
4435         }
4436
4437         pte_unmap_unlock(vmf->pte, vmf->ptl);
4438         return ret;
4439 }
4440
4441 static unsigned long fault_around_pages __read_mostly =
4442         65536 >> PAGE_SHIFT;
4443
4444 #ifdef CONFIG_DEBUG_FS
4445 static int fault_around_bytes_get(void *data, u64 *val)
4446 {
4447         *val = fault_around_pages << PAGE_SHIFT;
4448         return 0;
4449 }
4450
4451 /*
4452  * fault_around_bytes must be rounded down to the nearest page order as it's
4453  * what do_fault_around() expects to see.
4454  */
4455 static int fault_around_bytes_set(void *data, u64 val)
4456 {
4457         if (val / PAGE_SIZE > PTRS_PER_PTE)
4458                 return -EINVAL;
4459
4460         /*
4461          * The minimum value is 1 page, however this results in no fault-around
4462          * at all. See should_fault_around().
4463          */
4464         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4465
4466         return 0;
4467 }
4468 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4469                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4470
4471 static int __init fault_around_debugfs(void)
4472 {
4473         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4474                                    &fault_around_bytes_fops);
4475         return 0;
4476 }
4477 late_initcall(fault_around_debugfs);
4478 #endif
4479
4480 /*
4481  * do_fault_around() tries to map few pages around the fault address. The hope
4482  * is that the pages will be needed soon and this will lower the number of
4483  * faults to handle.
4484  *
4485  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4486  * not ready to be mapped: not up-to-date, locked, etc.
4487  *
4488  * This function doesn't cross VMA or page table boundaries, in order to call
4489  * map_pages() and acquire a PTE lock only once.
4490  *
4491  * fault_around_pages defines how many pages we'll try to map.
4492  * do_fault_around() expects it to be set to a power of two less than or equal
4493  * to PTRS_PER_PTE.
4494  *
4495  * The virtual address of the area that we map is naturally aligned to
4496  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4497  * (and therefore to page order).  This way it's easier to guarantee
4498  * that we don't cross page table boundaries.
4499  */
4500 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4501 {
4502         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4503         pgoff_t pte_off = pte_index(vmf->address);
4504         /* The page offset of vmf->address within the VMA. */
4505         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4506         pgoff_t from_pte, to_pte;
4507         vm_fault_t ret;
4508
4509         /* The PTE offset of the start address, clamped to the VMA. */
4510         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4511                        pte_off - min(pte_off, vma_off));
4512
4513         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4514         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4515                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4516
4517         if (pmd_none(*vmf->pmd)) {
4518                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4519                 if (!vmf->prealloc_pte)
4520                         return VM_FAULT_OOM;
4521         }
4522
4523         rcu_read_lock();
4524         ret = vmf->vma->vm_ops->map_pages(vmf,
4525                         vmf->pgoff + from_pte - pte_off,
4526                         vmf->pgoff + to_pte - pte_off);
4527         rcu_read_unlock();
4528
4529         return ret;
4530 }
4531
4532 /* Return true if we should do read fault-around, false otherwise */
4533 static inline bool should_fault_around(struct vm_fault *vmf)
4534 {
4535         /* No ->map_pages?  No way to fault around... */
4536         if (!vmf->vma->vm_ops->map_pages)
4537                 return false;
4538
4539         if (uffd_disable_fault_around(vmf->vma))
4540                 return false;
4541
4542         /* A single page implies no faulting 'around' at all. */
4543         return fault_around_pages > 1;
4544 }
4545
4546 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4547 {
4548         vm_fault_t ret = 0;
4549         struct folio *folio;
4550
4551         /*
4552          * Let's call ->map_pages() first and use ->fault() as fallback
4553          * if page by the offset is not ready to be mapped (cold cache or
4554          * something).
4555          */
4556         if (should_fault_around(vmf)) {
4557                 ret = do_fault_around(vmf);
4558                 if (ret)
4559                         return ret;
4560         }
4561
4562         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4563                 vma_end_read(vmf->vma);
4564                 return VM_FAULT_RETRY;
4565         }
4566
4567         ret = __do_fault(vmf);
4568         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4569                 return ret;
4570
4571         ret |= finish_fault(vmf);
4572         folio = page_folio(vmf->page);
4573         folio_unlock(folio);
4574         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4575                 folio_put(folio);
4576         return ret;
4577 }
4578
4579 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4580 {
4581         struct vm_area_struct *vma = vmf->vma;
4582         vm_fault_t ret;
4583
4584         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4585                 vma_end_read(vma);
4586                 return VM_FAULT_RETRY;
4587         }
4588
4589         if (unlikely(anon_vma_prepare(vma)))
4590                 return VM_FAULT_OOM;
4591
4592         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4593         if (!vmf->cow_page)
4594                 return VM_FAULT_OOM;
4595
4596         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4597                                 GFP_KERNEL)) {
4598                 put_page(vmf->cow_page);
4599                 return VM_FAULT_OOM;
4600         }
4601         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4602
4603         ret = __do_fault(vmf);
4604         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4605                 goto uncharge_out;
4606         if (ret & VM_FAULT_DONE_COW)
4607                 return ret;
4608
4609         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4610         __SetPageUptodate(vmf->cow_page);
4611
4612         ret |= finish_fault(vmf);
4613         unlock_page(vmf->page);
4614         put_page(vmf->page);
4615         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4616                 goto uncharge_out;
4617         return ret;
4618 uncharge_out:
4619         put_page(vmf->cow_page);
4620         return ret;
4621 }
4622
4623 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4624 {
4625         struct vm_area_struct *vma = vmf->vma;
4626         vm_fault_t ret, tmp;
4627         struct folio *folio;
4628
4629         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4630                 vma_end_read(vma);
4631                 return VM_FAULT_RETRY;
4632         }
4633
4634         ret = __do_fault(vmf);
4635         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4636                 return ret;
4637
4638         folio = page_folio(vmf->page);
4639
4640         /*
4641          * Check if the backing address space wants to know that the page is
4642          * about to become writable
4643          */
4644         if (vma->vm_ops->page_mkwrite) {
4645                 folio_unlock(folio);
4646                 tmp = do_page_mkwrite(vmf, folio);
4647                 if (unlikely(!tmp ||
4648                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4649                         folio_put(folio);
4650                         return tmp;
4651                 }
4652         }
4653
4654         ret |= finish_fault(vmf);
4655         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4656                                         VM_FAULT_RETRY))) {
4657                 folio_unlock(folio);
4658                 folio_put(folio);
4659                 return ret;
4660         }
4661
4662         ret |= fault_dirty_shared_page(vmf);
4663         return ret;
4664 }
4665
4666 /*
4667  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4668  * but allow concurrent faults).
4669  * The mmap_lock may have been released depending on flags and our
4670  * return value.  See filemap_fault() and __folio_lock_or_retry().
4671  * If mmap_lock is released, vma may become invalid (for example
4672  * by other thread calling munmap()).
4673  */
4674 static vm_fault_t do_fault(struct vm_fault *vmf)
4675 {
4676         struct vm_area_struct *vma = vmf->vma;
4677         struct mm_struct *vm_mm = vma->vm_mm;
4678         vm_fault_t ret;
4679
4680         /*
4681          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4682          */
4683         if (!vma->vm_ops->fault) {
4684                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4685                                                vmf->address, &vmf->ptl);
4686                 if (unlikely(!vmf->pte))
4687                         ret = VM_FAULT_SIGBUS;
4688                 else {
4689                         /*
4690                          * Make sure this is not a temporary clearing of pte
4691                          * by holding ptl and checking again. A R/M/W update
4692                          * of pte involves: take ptl, clearing the pte so that
4693                          * we don't have concurrent modification by hardware
4694                          * followed by an update.
4695                          */
4696                         if (unlikely(pte_none(ptep_get(vmf->pte))))
4697                                 ret = VM_FAULT_SIGBUS;
4698                         else
4699                                 ret = VM_FAULT_NOPAGE;
4700
4701                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4702                 }
4703         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4704                 ret = do_read_fault(vmf);
4705         else if (!(vma->vm_flags & VM_SHARED))
4706                 ret = do_cow_fault(vmf);
4707         else
4708                 ret = do_shared_fault(vmf);
4709
4710         /* preallocated pagetable is unused: free it */
4711         if (vmf->prealloc_pte) {
4712                 pte_free(vm_mm, vmf->prealloc_pte);
4713                 vmf->prealloc_pte = NULL;
4714         }
4715         return ret;
4716 }
4717
4718 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4719                       unsigned long addr, int page_nid, int *flags)
4720 {
4721         get_page(page);
4722
4723         /* Record the current PID acceesing VMA */
4724         vma_set_access_pid_bit(vma);
4725
4726         count_vm_numa_event(NUMA_HINT_FAULTS);
4727         if (page_nid == numa_node_id()) {
4728                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4729                 *flags |= TNF_FAULT_LOCAL;
4730         }
4731
4732         return mpol_misplaced(page, vma, addr);
4733 }
4734
4735 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4736 {
4737         struct vm_area_struct *vma = vmf->vma;
4738         struct page *page = NULL;
4739         int page_nid = NUMA_NO_NODE;
4740         bool writable = false;
4741         int last_cpupid;
4742         int target_nid;
4743         pte_t pte, old_pte;
4744         int flags = 0;
4745
4746         /*
4747          * The "pte" at this point cannot be used safely without
4748          * validation through pte_unmap_same(). It's of NUMA type but
4749          * the pfn may be screwed if the read is non atomic.
4750          */
4751         spin_lock(vmf->ptl);
4752         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4753                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4754                 goto out;
4755         }
4756
4757         /* Get the normal PTE  */
4758         old_pte = ptep_get(vmf->pte);
4759         pte = pte_modify(old_pte, vma->vm_page_prot);
4760
4761         /*
4762          * Detect now whether the PTE could be writable; this information
4763          * is only valid while holding the PT lock.
4764          */
4765         writable = pte_write(pte);
4766         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4767             can_change_pte_writable(vma, vmf->address, pte))
4768                 writable = true;
4769
4770         page = vm_normal_page(vma, vmf->address, pte);
4771         if (!page || is_zone_device_page(page))
4772                 goto out_map;
4773
4774         /* TODO: handle PTE-mapped THP */
4775         if (PageCompound(page))
4776                 goto out_map;
4777
4778         /*
4779          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4780          * much anyway since they can be in shared cache state. This misses
4781          * the case where a mapping is writable but the process never writes
4782          * to it but pte_write gets cleared during protection updates and
4783          * pte_dirty has unpredictable behaviour between PTE scan updates,
4784          * background writeback, dirty balancing and application behaviour.
4785          */
4786         if (!writable)
4787                 flags |= TNF_NO_GROUP;
4788
4789         /*
4790          * Flag if the page is shared between multiple address spaces. This
4791          * is later used when determining whether to group tasks together
4792          */
4793         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4794                 flags |= TNF_SHARED;
4795
4796         page_nid = page_to_nid(page);
4797         /*
4798          * For memory tiering mode, cpupid of slow memory page is used
4799          * to record page access time.  So use default value.
4800          */
4801         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4802             !node_is_toptier(page_nid))
4803                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4804         else
4805                 last_cpupid = page_cpupid_last(page);
4806         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4807                         &flags);
4808         if (target_nid == NUMA_NO_NODE) {
4809                 put_page(page);
4810                 goto out_map;
4811         }
4812         pte_unmap_unlock(vmf->pte, vmf->ptl);
4813         writable = false;
4814
4815         /* Migrate to the requested node */
4816         if (migrate_misplaced_page(page, vma, target_nid)) {
4817                 page_nid = target_nid;
4818                 flags |= TNF_MIGRATED;
4819         } else {
4820                 flags |= TNF_MIGRATE_FAIL;
4821                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4822                                                vmf->address, &vmf->ptl);
4823                 if (unlikely(!vmf->pte))
4824                         goto out;
4825                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4826                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4827                         goto out;
4828                 }
4829                 goto out_map;
4830         }
4831
4832 out:
4833         if (page_nid != NUMA_NO_NODE)
4834                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4835         return 0;
4836 out_map:
4837         /*
4838          * Make it present again, depending on how arch implements
4839          * non-accessible ptes, some can allow access by kernel mode.
4840          */
4841         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4842         pte = pte_modify(old_pte, vma->vm_page_prot);
4843         pte = pte_mkyoung(pte);
4844         if (writable)
4845                 pte = pte_mkwrite(pte);
4846         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4847         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4848         pte_unmap_unlock(vmf->pte, vmf->ptl);
4849         goto out;
4850 }
4851
4852 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4853 {
4854         struct vm_area_struct *vma = vmf->vma;
4855         if (vma_is_anonymous(vma))
4856                 return do_huge_pmd_anonymous_page(vmf);
4857         if (vma->vm_ops->huge_fault)
4858                 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4859         return VM_FAULT_FALLBACK;
4860 }
4861
4862 /* `inline' is required to avoid gcc 4.1.2 build error */
4863 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4864 {
4865         struct vm_area_struct *vma = vmf->vma;
4866         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4867         vm_fault_t ret;
4868
4869         if (vma_is_anonymous(vma)) {
4870                 if (likely(!unshare) &&
4871                     userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4872                         return handle_userfault(vmf, VM_UFFD_WP);
4873                 return do_huge_pmd_wp_page(vmf);
4874         }
4875
4876         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877                 if (vma->vm_ops->huge_fault) {
4878                         ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4879                         if (!(ret & VM_FAULT_FALLBACK))
4880                                 return ret;
4881                 }
4882         }
4883
4884         /* COW or write-notify handled on pte level: split pmd. */
4885         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4886
4887         return VM_FAULT_FALLBACK;
4888 }
4889
4890 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4891 {
4892 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4893         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4894         struct vm_area_struct *vma = vmf->vma;
4895         /* No support for anonymous transparent PUD pages yet */
4896         if (vma_is_anonymous(vma))
4897                 return VM_FAULT_FALLBACK;
4898         if (vma->vm_ops->huge_fault)
4899                 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4900 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4901         return VM_FAULT_FALLBACK;
4902 }
4903
4904 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4905 {
4906 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4907         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4908         struct vm_area_struct *vma = vmf->vma;
4909         vm_fault_t ret;
4910
4911         /* No support for anonymous transparent PUD pages yet */
4912         if (vma_is_anonymous(vma))
4913                 goto split;
4914         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4915                 if (vma->vm_ops->huge_fault) {
4916                         ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4917                         if (!(ret & VM_FAULT_FALLBACK))
4918                                 return ret;
4919                 }
4920         }
4921 split:
4922         /* COW or write-notify not handled on PUD level: split pud.*/
4923         __split_huge_pud(vma, vmf->pud, vmf->address);
4924 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4925         return VM_FAULT_FALLBACK;
4926 }
4927
4928 /*
4929  * These routines also need to handle stuff like marking pages dirty
4930  * and/or accessed for architectures that don't do it in hardware (most
4931  * RISC architectures).  The early dirtying is also good on the i386.
4932  *
4933  * There is also a hook called "update_mmu_cache()" that architectures
4934  * with external mmu caches can use to update those (ie the Sparc or
4935  * PowerPC hashed page tables that act as extended TLBs).
4936  *
4937  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4938  * concurrent faults).
4939  *
4940  * The mmap_lock may have been released depending on flags and our return value.
4941  * See filemap_fault() and __folio_lock_or_retry().
4942  */
4943 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4944 {
4945         pte_t entry;
4946
4947         if (unlikely(pmd_none(*vmf->pmd))) {
4948                 /*
4949                  * Leave __pte_alloc() until later: because vm_ops->fault may
4950                  * want to allocate huge page, and if we expose page table
4951                  * for an instant, it will be difficult to retract from
4952                  * concurrent faults and from rmap lookups.
4953                  */
4954                 vmf->pte = NULL;
4955                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4956         } else {
4957                 /*
4958                  * A regular pmd is established and it can't morph into a huge
4959                  * pmd by anon khugepaged, since that takes mmap_lock in write
4960                  * mode; but shmem or file collapse to THP could still morph
4961                  * it into a huge pmd: just retry later if so.
4962                  */
4963                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4964                                                  vmf->address, &vmf->ptl);
4965                 if (unlikely(!vmf->pte))
4966                         return 0;
4967                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4968                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4969
4970                 if (pte_none(vmf->orig_pte)) {
4971                         pte_unmap(vmf->pte);
4972                         vmf->pte = NULL;
4973                 }
4974         }
4975
4976         if (!vmf->pte)
4977                 return do_pte_missing(vmf);
4978
4979         if (!pte_present(vmf->orig_pte))
4980                 return do_swap_page(vmf);
4981
4982         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4983                 return do_numa_page(vmf);
4984
4985         spin_lock(vmf->ptl);
4986         entry = vmf->orig_pte;
4987         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4988                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4989                 goto unlock;
4990         }
4991         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4992                 if (!pte_write(entry))
4993                         return do_wp_page(vmf);
4994                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4995                         entry = pte_mkdirty(entry);
4996         }
4997         entry = pte_mkyoung(entry);
4998         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4999                                 vmf->flags & FAULT_FLAG_WRITE)) {
5000                 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5001                                 vmf->pte, 1);
5002         } else {
5003                 /* Skip spurious TLB flush for retried page fault */
5004                 if (vmf->flags & FAULT_FLAG_TRIED)
5005                         goto unlock;
5006                 /*
5007                  * This is needed only for protection faults but the arch code
5008                  * is not yet telling us if this is a protection fault or not.
5009                  * This still avoids useless tlb flushes for .text page faults
5010                  * with threads.
5011                  */
5012                 if (vmf->flags & FAULT_FLAG_WRITE)
5013                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5014                                                      vmf->pte);
5015         }
5016 unlock:
5017         pte_unmap_unlock(vmf->pte, vmf->ptl);
5018         return 0;
5019 }
5020
5021 /*
5022  * On entry, we hold either the VMA lock or the mmap_lock
5023  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5024  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5025  * and __folio_lock_or_retry().
5026  */
5027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5028                 unsigned long address, unsigned int flags)
5029 {
5030         struct vm_fault vmf = {
5031                 .vma = vma,
5032                 .address = address & PAGE_MASK,
5033                 .real_address = address,
5034                 .flags = flags,
5035                 .pgoff = linear_page_index(vma, address),
5036                 .gfp_mask = __get_fault_gfp_mask(vma),
5037         };
5038         struct mm_struct *mm = vma->vm_mm;
5039         unsigned long vm_flags = vma->vm_flags;
5040         pgd_t *pgd;
5041         p4d_t *p4d;
5042         vm_fault_t ret;
5043
5044         pgd = pgd_offset(mm, address);
5045         p4d = p4d_alloc(mm, pgd, address);
5046         if (!p4d)
5047                 return VM_FAULT_OOM;
5048
5049         vmf.pud = pud_alloc(mm, p4d, address);
5050         if (!vmf.pud)
5051                 return VM_FAULT_OOM;
5052 retry_pud:
5053         if (pud_none(*vmf.pud) &&
5054             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5055                 ret = create_huge_pud(&vmf);
5056                 if (!(ret & VM_FAULT_FALLBACK))
5057                         return ret;
5058         } else {
5059                 pud_t orig_pud = *vmf.pud;
5060
5061                 barrier();
5062                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5063
5064                         /*
5065                          * TODO once we support anonymous PUDs: NUMA case and
5066                          * FAULT_FLAG_UNSHARE handling.
5067                          */
5068                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5069                                 ret = wp_huge_pud(&vmf, orig_pud);
5070                                 if (!(ret & VM_FAULT_FALLBACK))
5071                                         return ret;
5072                         } else {
5073                                 huge_pud_set_accessed(&vmf, orig_pud);
5074                                 return 0;
5075                         }
5076                 }
5077         }
5078
5079         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5080         if (!vmf.pmd)
5081                 return VM_FAULT_OOM;
5082
5083         /* Huge pud page fault raced with pmd_alloc? */
5084         if (pud_trans_unstable(vmf.pud))
5085                 goto retry_pud;
5086
5087         if (pmd_none(*vmf.pmd) &&
5088             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5089                 ret = create_huge_pmd(&vmf);
5090                 if (!(ret & VM_FAULT_FALLBACK))
5091                         return ret;
5092         } else {
5093                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5094
5095                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5096                         VM_BUG_ON(thp_migration_supported() &&
5097                                           !is_pmd_migration_entry(vmf.orig_pmd));
5098                         if (is_pmd_migration_entry(vmf.orig_pmd))
5099                                 pmd_migration_entry_wait(mm, vmf.pmd);
5100                         return 0;
5101                 }
5102                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5103                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5104                                 return do_huge_pmd_numa_page(&vmf);
5105
5106                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5107                             !pmd_write(vmf.orig_pmd)) {
5108                                 ret = wp_huge_pmd(&vmf);
5109                                 if (!(ret & VM_FAULT_FALLBACK))
5110                                         return ret;
5111                         } else {
5112                                 huge_pmd_set_accessed(&vmf);
5113                                 return 0;
5114                         }
5115                 }
5116         }
5117
5118         return handle_pte_fault(&vmf);
5119 }
5120
5121 /**
5122  * mm_account_fault - Do page fault accounting
5123  * @mm: mm from which memcg should be extracted. It can be NULL.
5124  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5125  *        of perf event counters, but we'll still do the per-task accounting to
5126  *        the task who triggered this page fault.
5127  * @address: the faulted address.
5128  * @flags: the fault flags.
5129  * @ret: the fault retcode.
5130  *
5131  * This will take care of most of the page fault accounting.  Meanwhile, it
5132  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5133  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5134  * still be in per-arch page fault handlers at the entry of page fault.
5135  */
5136 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5137                                     unsigned long address, unsigned int flags,
5138                                     vm_fault_t ret)
5139 {
5140         bool major;
5141
5142         /* Incomplete faults will be accounted upon completion. */
5143         if (ret & VM_FAULT_RETRY)
5144                 return;
5145
5146         /*
5147          * To preserve the behavior of older kernels, PGFAULT counters record
5148          * both successful and failed faults, as opposed to perf counters,
5149          * which ignore failed cases.
5150          */
5151         count_vm_event(PGFAULT);
5152         count_memcg_event_mm(mm, PGFAULT);
5153
5154         /*
5155          * Do not account for unsuccessful faults (e.g. when the address wasn't
5156          * valid).  That includes arch_vma_access_permitted() failing before
5157          * reaching here. So this is not a "this many hardware page faults"
5158          * counter.  We should use the hw profiling for that.
5159          */
5160         if (ret & VM_FAULT_ERROR)
5161                 return;
5162
5163         /*
5164          * We define the fault as a major fault when the final successful fault
5165          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5166          * handle it immediately previously).
5167          */
5168         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5169
5170         if (major)
5171                 current->maj_flt++;
5172         else
5173                 current->min_flt++;
5174
5175         /*
5176          * If the fault is done for GUP, regs will be NULL.  We only do the
5177          * accounting for the per thread fault counters who triggered the
5178          * fault, and we skip the perf event updates.
5179          */
5180         if (!regs)
5181                 return;
5182
5183         if (major)
5184                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5185         else
5186                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5187 }
5188
5189 #ifdef CONFIG_LRU_GEN
5190 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5191 {
5192         /* the LRU algorithm only applies to accesses with recency */
5193         current->in_lru_fault = vma_has_recency(vma);
5194 }
5195
5196 static void lru_gen_exit_fault(void)
5197 {
5198         current->in_lru_fault = false;
5199 }
5200 #else
5201 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5202 {
5203 }
5204
5205 static void lru_gen_exit_fault(void)
5206 {
5207 }
5208 #endif /* CONFIG_LRU_GEN */
5209
5210 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5211                                        unsigned int *flags)
5212 {
5213         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5214                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5215                         return VM_FAULT_SIGSEGV;
5216                 /*
5217                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5218                  * just treat it like an ordinary read-fault otherwise.
5219                  */
5220                 if (!is_cow_mapping(vma->vm_flags))
5221                         *flags &= ~FAULT_FLAG_UNSHARE;
5222         } else if (*flags & FAULT_FLAG_WRITE) {
5223                 /* Write faults on read-only mappings are impossible ... */
5224                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5225                         return VM_FAULT_SIGSEGV;
5226                 /* ... and FOLL_FORCE only applies to COW mappings. */
5227                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5228                                  !is_cow_mapping(vma->vm_flags)))
5229                         return VM_FAULT_SIGSEGV;
5230         }
5231 #ifdef CONFIG_PER_VMA_LOCK
5232         /*
5233          * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5234          * the assumption that lock is dropped on VM_FAULT_RETRY.
5235          */
5236         if (WARN_ON_ONCE((*flags &
5237                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5238                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5239                 return VM_FAULT_SIGSEGV;
5240 #endif
5241
5242         return 0;
5243 }
5244
5245 /*
5246  * By the time we get here, we already hold the mm semaphore
5247  *
5248  * The mmap_lock may have been released depending on flags and our
5249  * return value.  See filemap_fault() and __folio_lock_or_retry().
5250  */
5251 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5252                            unsigned int flags, struct pt_regs *regs)
5253 {
5254         /* If the fault handler drops the mmap_lock, vma may be freed */
5255         struct mm_struct *mm = vma->vm_mm;
5256         vm_fault_t ret;
5257
5258         __set_current_state(TASK_RUNNING);
5259
5260         ret = sanitize_fault_flags(vma, &flags);
5261         if (ret)
5262                 goto out;
5263
5264         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5265                                             flags & FAULT_FLAG_INSTRUCTION,
5266                                             flags & FAULT_FLAG_REMOTE)) {
5267                 ret = VM_FAULT_SIGSEGV;
5268                 goto out;
5269         }
5270
5271         /*
5272          * Enable the memcg OOM handling for faults triggered in user
5273          * space.  Kernel faults are handled more gracefully.
5274          */
5275         if (flags & FAULT_FLAG_USER)
5276                 mem_cgroup_enter_user_fault();
5277
5278         lru_gen_enter_fault(vma);
5279
5280         if (unlikely(is_vm_hugetlb_page(vma)))
5281                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5282         else
5283                 ret = __handle_mm_fault(vma, address, flags);
5284
5285         lru_gen_exit_fault();
5286
5287         if (flags & FAULT_FLAG_USER) {
5288                 mem_cgroup_exit_user_fault();
5289                 /*
5290                  * The task may have entered a memcg OOM situation but
5291                  * if the allocation error was handled gracefully (no
5292                  * VM_FAULT_OOM), there is no need to kill anything.
5293                  * Just clean up the OOM state peacefully.
5294                  */
5295                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5296                         mem_cgroup_oom_synchronize(false);
5297         }
5298 out:
5299         mm_account_fault(mm, regs, address, flags, ret);
5300
5301         return ret;
5302 }
5303 EXPORT_SYMBOL_GPL(handle_mm_fault);
5304
5305 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5306 #include <linux/extable.h>
5307
5308 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5309 {
5310         if (likely(mmap_read_trylock(mm)))
5311                 return true;
5312
5313         if (regs && !user_mode(regs)) {
5314                 unsigned long ip = instruction_pointer(regs);
5315                 if (!search_exception_tables(ip))
5316                         return false;
5317         }
5318
5319         return !mmap_read_lock_killable(mm);
5320 }
5321
5322 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5323 {
5324         /*
5325          * We don't have this operation yet.
5326          *
5327          * It should be easy enough to do: it's basically a
5328          *    atomic_long_try_cmpxchg_acquire()
5329          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5330          * it also needs the proper lockdep magic etc.
5331          */
5332         return false;
5333 }
5334
5335 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5336 {
5337         mmap_read_unlock(mm);
5338         if (regs && !user_mode(regs)) {
5339                 unsigned long ip = instruction_pointer(regs);
5340                 if (!search_exception_tables(ip))
5341                         return false;
5342         }
5343         return !mmap_write_lock_killable(mm);
5344 }
5345
5346 /*
5347  * Helper for page fault handling.
5348  *
5349  * This is kind of equivalend to "mmap_read_lock()" followed
5350  * by "find_extend_vma()", except it's a lot more careful about
5351  * the locking (and will drop the lock on failure).
5352  *
5353  * For example, if we have a kernel bug that causes a page
5354  * fault, we don't want to just use mmap_read_lock() to get
5355  * the mm lock, because that would deadlock if the bug were
5356  * to happen while we're holding the mm lock for writing.
5357  *
5358  * So this checks the exception tables on kernel faults in
5359  * order to only do this all for instructions that are actually
5360  * expected to fault.
5361  *
5362  * We can also actually take the mm lock for writing if we
5363  * need to extend the vma, which helps the VM layer a lot.
5364  */
5365 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5366                         unsigned long addr, struct pt_regs *regs)
5367 {
5368         struct vm_area_struct *vma;
5369
5370         if (!get_mmap_lock_carefully(mm, regs))
5371                 return NULL;
5372
5373         vma = find_vma(mm, addr);
5374         if (likely(vma && (vma->vm_start <= addr)))
5375                 return vma;
5376
5377         /*
5378          * Well, dang. We might still be successful, but only
5379          * if we can extend a vma to do so.
5380          */
5381         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5382                 mmap_read_unlock(mm);
5383                 return NULL;
5384         }
5385
5386         /*
5387          * We can try to upgrade the mmap lock atomically,
5388          * in which case we can continue to use the vma
5389          * we already looked up.
5390          *
5391          * Otherwise we'll have to drop the mmap lock and
5392          * re-take it, and also look up the vma again,
5393          * re-checking it.
5394          */
5395         if (!mmap_upgrade_trylock(mm)) {
5396                 if (!upgrade_mmap_lock_carefully(mm, regs))
5397                         return NULL;
5398
5399                 vma = find_vma(mm, addr);
5400                 if (!vma)
5401                         goto fail;
5402                 if (vma->vm_start <= addr)
5403                         goto success;
5404                 if (!(vma->vm_flags & VM_GROWSDOWN))
5405                         goto fail;
5406         }
5407
5408         if (expand_stack_locked(vma, addr))
5409                 goto fail;
5410
5411 success:
5412         mmap_write_downgrade(mm);
5413         return vma;
5414
5415 fail:
5416         mmap_write_unlock(mm);
5417         return NULL;
5418 }
5419 #endif
5420
5421 #ifdef CONFIG_PER_VMA_LOCK
5422 /*
5423  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5424  * stable and not isolated. If the VMA is not found or is being modified the
5425  * function returns NULL.
5426  */
5427 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5428                                           unsigned long address)
5429 {
5430         MA_STATE(mas, &mm->mm_mt, address, address);
5431         struct vm_area_struct *vma;
5432
5433         rcu_read_lock();
5434 retry:
5435         vma = mas_walk(&mas);
5436         if (!vma)
5437                 goto inval;
5438
5439         if (!vma_start_read(vma))
5440                 goto inval;
5441
5442         /*
5443          * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5444          * This check must happen after vma_start_read(); otherwise, a
5445          * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5446          * from its anon_vma.
5447          */
5448         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5449                 goto inval_end_read;
5450
5451         /* Check since vm_start/vm_end might change before we lock the VMA */
5452         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5453                 goto inval_end_read;
5454
5455         /* Check if the VMA got isolated after we found it */
5456         if (vma->detached) {
5457                 vma_end_read(vma);
5458                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5459                 /* The area was replaced with another one */
5460                 goto retry;
5461         }
5462
5463         rcu_read_unlock();
5464         return vma;
5465
5466 inval_end_read:
5467         vma_end_read(vma);
5468 inval:
5469         rcu_read_unlock();
5470         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5471         return NULL;
5472 }
5473 #endif /* CONFIG_PER_VMA_LOCK */
5474
5475 #ifndef __PAGETABLE_P4D_FOLDED
5476 /*
5477  * Allocate p4d page table.
5478  * We've already handled the fast-path in-line.
5479  */
5480 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5481 {
5482         p4d_t *new = p4d_alloc_one(mm, address);
5483         if (!new)
5484                 return -ENOMEM;
5485
5486         spin_lock(&mm->page_table_lock);
5487         if (pgd_present(*pgd)) {        /* Another has populated it */
5488                 p4d_free(mm, new);
5489         } else {
5490                 smp_wmb(); /* See comment in pmd_install() */
5491                 pgd_populate(mm, pgd, new);
5492         }
5493         spin_unlock(&mm->page_table_lock);
5494         return 0;
5495 }
5496 #endif /* __PAGETABLE_P4D_FOLDED */
5497
5498 #ifndef __PAGETABLE_PUD_FOLDED
5499 /*
5500  * Allocate page upper directory.
5501  * We've already handled the fast-path in-line.
5502  */
5503 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5504 {
5505         pud_t *new = pud_alloc_one(mm, address);
5506         if (!new)
5507                 return -ENOMEM;
5508
5509         spin_lock(&mm->page_table_lock);
5510         if (!p4d_present(*p4d)) {
5511                 mm_inc_nr_puds(mm);
5512                 smp_wmb(); /* See comment in pmd_install() */
5513                 p4d_populate(mm, p4d, new);
5514         } else  /* Another has populated it */
5515                 pud_free(mm, new);
5516         spin_unlock(&mm->page_table_lock);
5517         return 0;
5518 }
5519 #endif /* __PAGETABLE_PUD_FOLDED */
5520
5521 #ifndef __PAGETABLE_PMD_FOLDED
5522 /*
5523  * Allocate page middle directory.
5524  * We've already handled the fast-path in-line.
5525  */
5526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5527 {
5528         spinlock_t *ptl;
5529         pmd_t *new = pmd_alloc_one(mm, address);
5530         if (!new)
5531                 return -ENOMEM;
5532
5533         ptl = pud_lock(mm, pud);
5534         if (!pud_present(*pud)) {
5535                 mm_inc_nr_pmds(mm);
5536                 smp_wmb(); /* See comment in pmd_install() */
5537                 pud_populate(mm, pud, new);
5538         } else {        /* Another has populated it */
5539                 pmd_free(mm, new);
5540         }
5541         spin_unlock(ptl);
5542         return 0;
5543 }
5544 #endif /* __PAGETABLE_PMD_FOLDED */
5545
5546 /**
5547  * follow_pte - look up PTE at a user virtual address
5548  * @mm: the mm_struct of the target address space
5549  * @address: user virtual address
5550  * @ptepp: location to store found PTE
5551  * @ptlp: location to store the lock for the PTE
5552  *
5553  * On a successful return, the pointer to the PTE is stored in @ptepp;
5554  * the corresponding lock is taken and its location is stored in @ptlp.
5555  * The contents of the PTE are only stable until @ptlp is released;
5556  * any further use, if any, must be protected against invalidation
5557  * with MMU notifiers.
5558  *
5559  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5560  * should be taken for read.
5561  *
5562  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5563  * it is not a good general-purpose API.
5564  *
5565  * Return: zero on success, -ve otherwise.
5566  */
5567 int follow_pte(struct mm_struct *mm, unsigned long address,
5568                pte_t **ptepp, spinlock_t **ptlp)
5569 {
5570         pgd_t *pgd;
5571         p4d_t *p4d;
5572         pud_t *pud;
5573         pmd_t *pmd;
5574         pte_t *ptep;
5575
5576         pgd = pgd_offset(mm, address);
5577         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5578                 goto out;
5579
5580         p4d = p4d_offset(pgd, address);
5581         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5582                 goto out;
5583
5584         pud = pud_offset(p4d, address);
5585         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5586                 goto out;
5587
5588         pmd = pmd_offset(pud, address);
5589         VM_BUG_ON(pmd_trans_huge(*pmd));
5590
5591         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5592         if (!ptep)
5593                 goto out;
5594         if (!pte_present(ptep_get(ptep)))
5595                 goto unlock;
5596         *ptepp = ptep;
5597         return 0;
5598 unlock:
5599         pte_unmap_unlock(ptep, *ptlp);
5600 out:
5601         return -EINVAL;
5602 }
5603 EXPORT_SYMBOL_GPL(follow_pte);
5604
5605 /**
5606  * follow_pfn - look up PFN at a user virtual address
5607  * @vma: memory mapping
5608  * @address: user virtual address
5609  * @pfn: location to store found PFN
5610  *
5611  * Only IO mappings and raw PFN mappings are allowed.
5612  *
5613  * This function does not allow the caller to read the permissions
5614  * of the PTE.  Do not use it.
5615  *
5616  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5617  */
5618 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5619         unsigned long *pfn)
5620 {
5621         int ret = -EINVAL;
5622         spinlock_t *ptl;
5623         pte_t *ptep;
5624
5625         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5626                 return ret;
5627
5628         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5629         if (ret)
5630                 return ret;
5631         *pfn = pte_pfn(ptep_get(ptep));
5632         pte_unmap_unlock(ptep, ptl);
5633         return 0;
5634 }
5635 EXPORT_SYMBOL(follow_pfn);
5636
5637 #ifdef CONFIG_HAVE_IOREMAP_PROT
5638 int follow_phys(struct vm_area_struct *vma,
5639                 unsigned long address, unsigned int flags,
5640                 unsigned long *prot, resource_size_t *phys)
5641 {
5642         int ret = -EINVAL;
5643         pte_t *ptep, pte;
5644         spinlock_t *ptl;
5645
5646         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5647                 goto out;
5648
5649         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5650                 goto out;
5651         pte = ptep_get(ptep);
5652
5653         if ((flags & FOLL_WRITE) && !pte_write(pte))
5654                 goto unlock;
5655
5656         *prot = pgprot_val(pte_pgprot(pte));
5657         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5658
5659         ret = 0;
5660 unlock:
5661         pte_unmap_unlock(ptep, ptl);
5662 out:
5663         return ret;
5664 }
5665
5666 /**
5667  * generic_access_phys - generic implementation for iomem mmap access
5668  * @vma: the vma to access
5669  * @addr: userspace address, not relative offset within @vma
5670  * @buf: buffer to read/write
5671  * @len: length of transfer
5672  * @write: set to FOLL_WRITE when writing, otherwise reading
5673  *
5674  * This is a generic implementation for &vm_operations_struct.access for an
5675  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5676  * not page based.
5677  */
5678 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5679                         void *buf, int len, int write)
5680 {
5681         resource_size_t phys_addr;
5682         unsigned long prot = 0;
5683         void __iomem *maddr;
5684         pte_t *ptep, pte;
5685         spinlock_t *ptl;
5686         int offset = offset_in_page(addr);
5687         int ret = -EINVAL;
5688
5689         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5690                 return -EINVAL;
5691
5692 retry:
5693         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5694                 return -EINVAL;
5695         pte = ptep_get(ptep);
5696         pte_unmap_unlock(ptep, ptl);
5697
5698         prot = pgprot_val(pte_pgprot(pte));
5699         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5700
5701         if ((write & FOLL_WRITE) && !pte_write(pte))
5702                 return -EINVAL;
5703
5704         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5705         if (!maddr)
5706                 return -ENOMEM;
5707
5708         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5709                 goto out_unmap;
5710
5711         if (!pte_same(pte, ptep_get(ptep))) {
5712                 pte_unmap_unlock(ptep, ptl);
5713                 iounmap(maddr);
5714
5715                 goto retry;
5716         }
5717
5718         if (write)
5719                 memcpy_toio(maddr + offset, buf, len);
5720         else
5721                 memcpy_fromio(buf, maddr + offset, len);
5722         ret = len;
5723         pte_unmap_unlock(ptep, ptl);
5724 out_unmap:
5725         iounmap(maddr);
5726
5727         return ret;
5728 }
5729 EXPORT_SYMBOL_GPL(generic_access_phys);
5730 #endif
5731
5732 /*
5733  * Access another process' address space as given in mm.
5734  */
5735 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5736                        int len, unsigned int gup_flags)
5737 {
5738         void *old_buf = buf;
5739         int write = gup_flags & FOLL_WRITE;
5740
5741         if (mmap_read_lock_killable(mm))
5742                 return 0;
5743
5744         /* Untag the address before looking up the VMA */
5745         addr = untagged_addr_remote(mm, addr);
5746
5747         /* Avoid triggering the temporary warning in __get_user_pages */
5748         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5749                 return 0;
5750
5751         /* ignore errors, just check how much was successfully transferred */
5752         while (len) {
5753                 int bytes, offset;
5754                 void *maddr;
5755                 struct vm_area_struct *vma = NULL;
5756                 struct page *page = get_user_page_vma_remote(mm, addr,
5757                                                              gup_flags, &vma);
5758
5759                 if (IS_ERR_OR_NULL(page)) {
5760                         /* We might need to expand the stack to access it */
5761                         vma = vma_lookup(mm, addr);
5762                         if (!vma) {
5763                                 vma = expand_stack(mm, addr);
5764
5765                                 /* mmap_lock was dropped on failure */
5766                                 if (!vma)
5767                                         return buf - old_buf;
5768
5769                                 /* Try again if stack expansion worked */
5770                                 continue;
5771                         }
5772
5773
5774                         /*
5775                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5776                          * we can access using slightly different code.
5777                          */
5778                         bytes = 0;
5779 #ifdef CONFIG_HAVE_IOREMAP_PROT
5780                         if (vma->vm_ops && vma->vm_ops->access)
5781                                 bytes = vma->vm_ops->access(vma, addr, buf,
5782                                                             len, write);
5783 #endif
5784                         if (bytes <= 0)
5785                                 break;
5786                 } else {
5787                         bytes = len;
5788                         offset = addr & (PAGE_SIZE-1);
5789                         if (bytes > PAGE_SIZE-offset)
5790                                 bytes = PAGE_SIZE-offset;
5791
5792                         maddr = kmap(page);
5793                         if (write) {
5794                                 copy_to_user_page(vma, page, addr,
5795                                                   maddr + offset, buf, bytes);
5796                                 set_page_dirty_lock(page);
5797                         } else {
5798                                 copy_from_user_page(vma, page, addr,
5799                                                     buf, maddr + offset, bytes);
5800                         }
5801                         kunmap(page);
5802                         put_page(page);
5803                 }
5804                 len -= bytes;
5805                 buf += bytes;
5806                 addr += bytes;
5807         }
5808         mmap_read_unlock(mm);
5809
5810         return buf - old_buf;
5811 }
5812
5813 /**
5814  * access_remote_vm - access another process' address space
5815  * @mm:         the mm_struct of the target address space
5816  * @addr:       start address to access
5817  * @buf:        source or destination buffer
5818  * @len:        number of bytes to transfer
5819  * @gup_flags:  flags modifying lookup behaviour
5820  *
5821  * The caller must hold a reference on @mm.
5822  *
5823  * Return: number of bytes copied from source to destination.
5824  */
5825 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5826                 void *buf, int len, unsigned int gup_flags)
5827 {
5828         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5829 }
5830
5831 /*
5832  * Access another process' address space.
5833  * Source/target buffer must be kernel space,
5834  * Do not walk the page table directly, use get_user_pages
5835  */
5836 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5837                 void *buf, int len, unsigned int gup_flags)
5838 {
5839         struct mm_struct *mm;
5840         int ret;
5841
5842         mm = get_task_mm(tsk);
5843         if (!mm)
5844                 return 0;
5845
5846         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5847
5848         mmput(mm);
5849
5850         return ret;
5851 }
5852 EXPORT_SYMBOL_GPL(access_process_vm);
5853
5854 /*
5855  * Print the name of a VMA.
5856  */
5857 void print_vma_addr(char *prefix, unsigned long ip)
5858 {
5859         struct mm_struct *mm = current->mm;
5860         struct vm_area_struct *vma;
5861
5862         /*
5863          * we might be running from an atomic context so we cannot sleep
5864          */
5865         if (!mmap_read_trylock(mm))
5866                 return;
5867
5868         vma = find_vma(mm, ip);
5869         if (vma && vma->vm_file) {
5870                 struct file *f = vma->vm_file;
5871                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5872                 if (buf) {
5873                         char *p;
5874
5875                         p = file_path(f, buf, PAGE_SIZE);
5876                         if (IS_ERR(p))
5877                                 p = "?";
5878                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5879                                         vma->vm_start,
5880                                         vma->vm_end - vma->vm_start);
5881                         free_page((unsigned long)buf);
5882                 }
5883         }
5884         mmap_read_unlock(mm);
5885 }
5886
5887 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5888 void __might_fault(const char *file, int line)
5889 {
5890         if (pagefault_disabled())
5891                 return;
5892         __might_sleep(file, line);
5893 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5894         if (current->mm)
5895                 might_lock_read(&current->mm->mmap_lock);
5896 #endif
5897 }
5898 EXPORT_SYMBOL(__might_fault);
5899 #endif
5900
5901 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5902 /*
5903  * Process all subpages of the specified huge page with the specified
5904  * operation.  The target subpage will be processed last to keep its
5905  * cache lines hot.
5906  */
5907 static inline int process_huge_page(
5908         unsigned long addr_hint, unsigned int pages_per_huge_page,
5909         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5910         void *arg)
5911 {
5912         int i, n, base, l, ret;
5913         unsigned long addr = addr_hint &
5914                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5915
5916         /* Process target subpage last to keep its cache lines hot */
5917         might_sleep();
5918         n = (addr_hint - addr) / PAGE_SIZE;
5919         if (2 * n <= pages_per_huge_page) {
5920                 /* If target subpage in first half of huge page */
5921                 base = 0;
5922                 l = n;
5923                 /* Process subpages at the end of huge page */
5924                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5925                         cond_resched();
5926                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5927                         if (ret)
5928                                 return ret;
5929                 }
5930         } else {
5931                 /* If target subpage in second half of huge page */
5932                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5933                 l = pages_per_huge_page - n;
5934                 /* Process subpages at the begin of huge page */
5935                 for (i = 0; i < base; i++) {
5936                         cond_resched();
5937                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5938                         if (ret)
5939                                 return ret;
5940                 }
5941         }
5942         /*
5943          * Process remaining subpages in left-right-left-right pattern
5944          * towards the target subpage
5945          */
5946         for (i = 0; i < l; i++) {
5947                 int left_idx = base + i;
5948                 int right_idx = base + 2 * l - 1 - i;
5949
5950                 cond_resched();
5951                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5952                 if (ret)
5953                         return ret;
5954                 cond_resched();
5955                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5956                 if (ret)
5957                         return ret;
5958         }
5959         return 0;
5960 }
5961
5962 static void clear_gigantic_page(struct page *page,
5963                                 unsigned long addr,
5964                                 unsigned int pages_per_huge_page)
5965 {
5966         int i;
5967         struct page *p;
5968
5969         might_sleep();
5970         for (i = 0; i < pages_per_huge_page; i++) {
5971                 p = nth_page(page, i);
5972                 cond_resched();
5973                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5974         }
5975 }
5976
5977 static int clear_subpage(unsigned long addr, int idx, void *arg)
5978 {
5979         struct page *page = arg;
5980
5981         clear_user_highpage(page + idx, addr);
5982         return 0;
5983 }
5984
5985 void clear_huge_page(struct page *page,
5986                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5987 {
5988         unsigned long addr = addr_hint &
5989                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5990
5991         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5992                 clear_gigantic_page(page, addr, pages_per_huge_page);
5993                 return;
5994         }
5995
5996         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5997 }
5998
5999 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6000                                      unsigned long addr,
6001                                      struct vm_area_struct *vma,
6002                                      unsigned int pages_per_huge_page)
6003 {
6004         int i;
6005         struct page *dst_page;
6006         struct page *src_page;
6007
6008         for (i = 0; i < pages_per_huge_page; i++) {
6009                 dst_page = folio_page(dst, i);
6010                 src_page = folio_page(src, i);
6011
6012                 cond_resched();
6013                 if (copy_mc_user_highpage(dst_page, src_page,
6014                                           addr + i*PAGE_SIZE, vma)) {
6015                         memory_failure_queue(page_to_pfn(src_page), 0);
6016                         return -EHWPOISON;
6017                 }
6018         }
6019         return 0;
6020 }
6021
6022 struct copy_subpage_arg {
6023         struct page *dst;
6024         struct page *src;
6025         struct vm_area_struct *vma;
6026 };
6027
6028 static int copy_subpage(unsigned long addr, int idx, void *arg)
6029 {
6030         struct copy_subpage_arg *copy_arg = arg;
6031
6032         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6033                                   addr, copy_arg->vma)) {
6034                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6035                 return -EHWPOISON;
6036         }
6037         return 0;
6038 }
6039
6040 int copy_user_large_folio(struct folio *dst, struct folio *src,
6041                           unsigned long addr_hint, struct vm_area_struct *vma)
6042 {
6043         unsigned int pages_per_huge_page = folio_nr_pages(dst);
6044         unsigned long addr = addr_hint &
6045                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6046         struct copy_subpage_arg arg = {
6047                 .dst = &dst->page,
6048                 .src = &src->page,
6049                 .vma = vma,
6050         };
6051
6052         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6053                 return copy_user_gigantic_page(dst, src, addr, vma,
6054                                                pages_per_huge_page);
6055
6056         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6057 }
6058
6059 long copy_folio_from_user(struct folio *dst_folio,
6060                            const void __user *usr_src,
6061                            bool allow_pagefault)
6062 {
6063         void *kaddr;
6064         unsigned long i, rc = 0;
6065         unsigned int nr_pages = folio_nr_pages(dst_folio);
6066         unsigned long ret_val = nr_pages * PAGE_SIZE;
6067         struct page *subpage;
6068
6069         for (i = 0; i < nr_pages; i++) {
6070                 subpage = folio_page(dst_folio, i);
6071                 kaddr = kmap_local_page(subpage);
6072                 if (!allow_pagefault)
6073                         pagefault_disable();
6074                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6075                 if (!allow_pagefault)
6076                         pagefault_enable();
6077                 kunmap_local(kaddr);
6078
6079                 ret_val -= (PAGE_SIZE - rc);
6080                 if (rc)
6081                         break;
6082
6083                 flush_dcache_page(subpage);
6084
6085                 cond_resched();
6086         }
6087         return ret_val;
6088 }
6089 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6090
6091 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6092
6093 static struct kmem_cache *page_ptl_cachep;
6094
6095 void __init ptlock_cache_init(void)
6096 {
6097         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6098                         SLAB_PANIC, NULL);
6099 }
6100
6101 bool ptlock_alloc(struct ptdesc *ptdesc)
6102 {
6103         spinlock_t *ptl;
6104
6105         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6106         if (!ptl)
6107                 return false;
6108         ptdesc->ptl = ptl;
6109         return true;
6110 }
6111
6112 void ptlock_free(struct ptdesc *ptdesc)
6113 {
6114         kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6115 }
6116 #endif