[SCSI] Merge tag 'fcoe-02-19-13' into for-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
76
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
80
81 unsigned long num_physpages;
82 /*
83  * A number of key systems in x86 including ioremap() rely on the assumption
84  * that high_memory defines the upper bound on direct map memory, then end
85  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
86  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87  * and ZONE_HIGHMEM.
88  */
89 void * high_memory;
90
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
93
94 /*
95  * Randomize the address space (stacks, mmaps, brk, etc.).
96  *
97  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98  *   as ancient (libc5 based) binaries can segfault. )
99  */
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
102                                         1;
103 #else
104                                         2;
105 #endif
106
107 static int __init disable_randmaps(char *s)
108 {
109         randomize_va_space = 0;
110         return 1;
111 }
112 __setup("norandmaps", disable_randmaps);
113
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
116
117 /*
118  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
119  */
120 static int __init init_zero_pfn(void)
121 {
122         zero_pfn = page_to_pfn(ZERO_PAGE(0));
123         return 0;
124 }
125 core_initcall(init_zero_pfn);
126
127
128 #if defined(SPLIT_RSS_COUNTING)
129
130 void sync_mm_rss(struct mm_struct *mm)
131 {
132         int i;
133
134         for (i = 0; i < NR_MM_COUNTERS; i++) {
135                 if (current->rss_stat.count[i]) {
136                         add_mm_counter(mm, i, current->rss_stat.count[i]);
137                         current->rss_stat.count[i] = 0;
138                 }
139         }
140         current->rss_stat.events = 0;
141 }
142
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
144 {
145         struct task_struct *task = current;
146
147         if (likely(task->mm == mm))
148                 task->rss_stat.count[member] += val;
149         else
150                 add_mm_counter(mm, member, val);
151 }
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
154
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH  (64)
157 static void check_sync_rss_stat(struct task_struct *task)
158 {
159         if (unlikely(task != current))
160                 return;
161         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162                 sync_mm_rss(task->mm);
163 }
164 #else /* SPLIT_RSS_COUNTING */
165
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
168
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171 }
172
173 #endif /* SPLIT_RSS_COUNTING */
174
175 #ifdef HAVE_GENERIC_MMU_GATHER
176
177 static int tlb_next_batch(struct mmu_gather *tlb)
178 {
179         struct mmu_gather_batch *batch;
180
181         batch = tlb->active;
182         if (batch->next) {
183                 tlb->active = batch->next;
184                 return 1;
185         }
186
187         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
188                 return 0;
189
190         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
191         if (!batch)
192                 return 0;
193
194         tlb->batch_count++;
195         batch->next = NULL;
196         batch->nr   = 0;
197         batch->max  = MAX_GATHER_BATCH;
198
199         tlb->active->next = batch;
200         tlb->active = batch;
201
202         return 1;
203 }
204
205 /* tlb_gather_mmu
206  *      Called to initialize an (on-stack) mmu_gather structure for page-table
207  *      tear-down from @mm. The @fullmm argument is used when @mm is without
208  *      users and we're going to destroy the full address space (exit/execve).
209  */
210 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
211 {
212         tlb->mm = mm;
213
214         tlb->fullmm     = fullmm;
215         tlb->start      = -1UL;
216         tlb->end        = 0;
217         tlb->need_flush = 0;
218         tlb->fast_mode  = (num_possible_cpus() == 1);
219         tlb->local.next = NULL;
220         tlb->local.nr   = 0;
221         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
222         tlb->active     = &tlb->local;
223         tlb->batch_count = 0;
224
225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
226         tlb->batch = NULL;
227 #endif
228 }
229
230 void tlb_flush_mmu(struct mmu_gather *tlb)
231 {
232         struct mmu_gather_batch *batch;
233
234         if (!tlb->need_flush)
235                 return;
236         tlb->need_flush = 0;
237         tlb_flush(tlb);
238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239         tlb_table_flush(tlb);
240 #endif
241
242         if (tlb_fast_mode(tlb))
243                 return;
244
245         for (batch = &tlb->local; batch; batch = batch->next) {
246                 free_pages_and_swap_cache(batch->pages, batch->nr);
247                 batch->nr = 0;
248         }
249         tlb->active = &tlb->local;
250 }
251
252 /* tlb_finish_mmu
253  *      Called at the end of the shootdown operation to free up any resources
254  *      that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258         struct mmu_gather_batch *batch, *next;
259
260         tlb->start = start;
261         tlb->end   = end;
262         tlb_flush_mmu(tlb);
263
264         /* keep the page table cache within bounds */
265         check_pgt_cache();
266
267         for (batch = tlb->local.next; batch; batch = next) {
268                 next = batch->next;
269                 free_pages((unsigned long)batch, 0);
270         }
271         tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *      handling the additional races in SMP caused by other CPUs caching valid
277  *      mappings in their TLBs. Returns the number of free page slots left.
278  *      When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282         struct mmu_gather_batch *batch;
283
284         VM_BUG_ON(!tlb->need_flush);
285
286         if (tlb_fast_mode(tlb)) {
287                 free_page_and_swap_cache(page);
288                 return 1; /* avoid calling tlb_flush_mmu() */
289         }
290
291         batch = tlb->active;
292         batch->pages[batch->nr++] = page;
293         if (batch->nr == batch->max) {
294                 if (!tlb_next_batch(tlb))
295                         return 0;
296                 batch = tlb->active;
297         }
298         VM_BUG_ON(batch->nr > batch->max);
299
300         return batch->max - batch->nr;
301 }
302
303 #endif /* HAVE_GENERIC_MMU_GATHER */
304
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
306
307 /*
308  * See the comment near struct mmu_table_batch.
309  */
310
311 static void tlb_remove_table_smp_sync(void *arg)
312 {
313         /* Simply deliver the interrupt */
314 }
315
316 static void tlb_remove_table_one(void *table)
317 {
318         /*
319          * This isn't an RCU grace period and hence the page-tables cannot be
320          * assumed to be actually RCU-freed.
321          *
322          * It is however sufficient for software page-table walkers that rely on
323          * IRQ disabling. See the comment near struct mmu_table_batch.
324          */
325         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326         __tlb_remove_table(table);
327 }
328
329 static void tlb_remove_table_rcu(struct rcu_head *head)
330 {
331         struct mmu_table_batch *batch;
332         int i;
333
334         batch = container_of(head, struct mmu_table_batch, rcu);
335
336         for (i = 0; i < batch->nr; i++)
337                 __tlb_remove_table(batch->tables[i]);
338
339         free_page((unsigned long)batch);
340 }
341
342 void tlb_table_flush(struct mmu_gather *tlb)
343 {
344         struct mmu_table_batch **batch = &tlb->batch;
345
346         if (*batch) {
347                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348                 *batch = NULL;
349         }
350 }
351
352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
353 {
354         struct mmu_table_batch **batch = &tlb->batch;
355
356         tlb->need_flush = 1;
357
358         /*
359          * When there's less then two users of this mm there cannot be a
360          * concurrent page-table walk.
361          */
362         if (atomic_read(&tlb->mm->mm_users) < 2) {
363                 __tlb_remove_table(table);
364                 return;
365         }
366
367         if (*batch == NULL) {
368                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369                 if (*batch == NULL) {
370                         tlb_remove_table_one(table);
371                         return;
372                 }
373                 (*batch)->nr = 0;
374         }
375         (*batch)->tables[(*batch)->nr++] = table;
376         if ((*batch)->nr == MAX_TABLE_BATCH)
377                 tlb_table_flush(tlb);
378 }
379
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
381
382 /*
383  * If a p?d_bad entry is found while walking page tables, report
384  * the error, before resetting entry to p?d_none.  Usually (but
385  * very seldom) called out from the p?d_none_or_clear_bad macros.
386  */
387
388 void pgd_clear_bad(pgd_t *pgd)
389 {
390         pgd_ERROR(*pgd);
391         pgd_clear(pgd);
392 }
393
394 void pud_clear_bad(pud_t *pud)
395 {
396         pud_ERROR(*pud);
397         pud_clear(pud);
398 }
399
400 void pmd_clear_bad(pmd_t *pmd)
401 {
402         pmd_ERROR(*pmd);
403         pmd_clear(pmd);
404 }
405
406 /*
407  * Note: this doesn't free the actual pages themselves. That
408  * has been handled earlier when unmapping all the memory regions.
409  */
410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411                            unsigned long addr)
412 {
413         pgtable_t token = pmd_pgtable(*pmd);
414         pmd_clear(pmd);
415         pte_free_tlb(tlb, token, addr);
416         tlb->mm->nr_ptes--;
417 }
418
419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420                                 unsigned long addr, unsigned long end,
421                                 unsigned long floor, unsigned long ceiling)
422 {
423         pmd_t *pmd;
424         unsigned long next;
425         unsigned long start;
426
427         start = addr;
428         pmd = pmd_offset(pud, addr);
429         do {
430                 next = pmd_addr_end(addr, end);
431                 if (pmd_none_or_clear_bad(pmd))
432                         continue;
433                 free_pte_range(tlb, pmd, addr);
434         } while (pmd++, addr = next, addr != end);
435
436         start &= PUD_MASK;
437         if (start < floor)
438                 return;
439         if (ceiling) {
440                 ceiling &= PUD_MASK;
441                 if (!ceiling)
442                         return;
443         }
444         if (end - 1 > ceiling - 1)
445                 return;
446
447         pmd = pmd_offset(pud, start);
448         pud_clear(pud);
449         pmd_free_tlb(tlb, pmd, start);
450 }
451
452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453                                 unsigned long addr, unsigned long end,
454                                 unsigned long floor, unsigned long ceiling)
455 {
456         pud_t *pud;
457         unsigned long next;
458         unsigned long start;
459
460         start = addr;
461         pud = pud_offset(pgd, addr);
462         do {
463                 next = pud_addr_end(addr, end);
464                 if (pud_none_or_clear_bad(pud))
465                         continue;
466                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467         } while (pud++, addr = next, addr != end);
468
469         start &= PGDIR_MASK;
470         if (start < floor)
471                 return;
472         if (ceiling) {
473                 ceiling &= PGDIR_MASK;
474                 if (!ceiling)
475                         return;
476         }
477         if (end - 1 > ceiling - 1)
478                 return;
479
480         pud = pud_offset(pgd, start);
481         pgd_clear(pgd);
482         pud_free_tlb(tlb, pud, start);
483 }
484
485 /*
486  * This function frees user-level page tables of a process.
487  *
488  * Must be called with pagetable lock held.
489  */
490 void free_pgd_range(struct mmu_gather *tlb,
491                         unsigned long addr, unsigned long end,
492                         unsigned long floor, unsigned long ceiling)
493 {
494         pgd_t *pgd;
495         unsigned long next;
496
497         /*
498          * The next few lines have given us lots of grief...
499          *
500          * Why are we testing PMD* at this top level?  Because often
501          * there will be no work to do at all, and we'd prefer not to
502          * go all the way down to the bottom just to discover that.
503          *
504          * Why all these "- 1"s?  Because 0 represents both the bottom
505          * of the address space and the top of it (using -1 for the
506          * top wouldn't help much: the masks would do the wrong thing).
507          * The rule is that addr 0 and floor 0 refer to the bottom of
508          * the address space, but end 0 and ceiling 0 refer to the top
509          * Comparisons need to use "end - 1" and "ceiling - 1" (though
510          * that end 0 case should be mythical).
511          *
512          * Wherever addr is brought up or ceiling brought down, we must
513          * be careful to reject "the opposite 0" before it confuses the
514          * subsequent tests.  But what about where end is brought down
515          * by PMD_SIZE below? no, end can't go down to 0 there.
516          *
517          * Whereas we round start (addr) and ceiling down, by different
518          * masks at different levels, in order to test whether a table
519          * now has no other vmas using it, so can be freed, we don't
520          * bother to round floor or end up - the tests don't need that.
521          */
522
523         addr &= PMD_MASK;
524         if (addr < floor) {
525                 addr += PMD_SIZE;
526                 if (!addr)
527                         return;
528         }
529         if (ceiling) {
530                 ceiling &= PMD_MASK;
531                 if (!ceiling)
532                         return;
533         }
534         if (end - 1 > ceiling - 1)
535                 end -= PMD_SIZE;
536         if (addr > end - 1)
537                 return;
538
539         pgd = pgd_offset(tlb->mm, addr);
540         do {
541                 next = pgd_addr_end(addr, end);
542                 if (pgd_none_or_clear_bad(pgd))
543                         continue;
544                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545         } while (pgd++, addr = next, addr != end);
546 }
547
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549                 unsigned long floor, unsigned long ceiling)
550 {
551         while (vma) {
552                 struct vm_area_struct *next = vma->vm_next;
553                 unsigned long addr = vma->vm_start;
554
555                 /*
556                  * Hide vma from rmap and truncate_pagecache before freeing
557                  * pgtables
558                  */
559                 unlink_anon_vmas(vma);
560                 unlink_file_vma(vma);
561
562                 if (is_vm_hugetlb_page(vma)) {
563                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564                                 floor, next? next->vm_start: ceiling);
565                 } else {
566                         /*
567                          * Optimization: gather nearby vmas into one call down
568                          */
569                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570                                && !is_vm_hugetlb_page(next)) {
571                                 vma = next;
572                                 next = vma->vm_next;
573                                 unlink_anon_vmas(vma);
574                                 unlink_file_vma(vma);
575                         }
576                         free_pgd_range(tlb, addr, vma->vm_end,
577                                 floor, next? next->vm_start: ceiling);
578                 }
579                 vma = next;
580         }
581 }
582
583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584                 pmd_t *pmd, unsigned long address)
585 {
586         pgtable_t new = pte_alloc_one(mm, address);
587         int wait_split_huge_page;
588         if (!new)
589                 return -ENOMEM;
590
591         /*
592          * Ensure all pte setup (eg. pte page lock and page clearing) are
593          * visible before the pte is made visible to other CPUs by being
594          * put into page tables.
595          *
596          * The other side of the story is the pointer chasing in the page
597          * table walking code (when walking the page table without locking;
598          * ie. most of the time). Fortunately, these data accesses consist
599          * of a chain of data-dependent loads, meaning most CPUs (alpha
600          * being the notable exception) will already guarantee loads are
601          * seen in-order. See the alpha page table accessors for the
602          * smp_read_barrier_depends() barriers in page table walking code.
603          */
604         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
605
606         spin_lock(&mm->page_table_lock);
607         wait_split_huge_page = 0;
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 mm->nr_ptes++;
610                 pmd_populate(mm, pmd, new);
611                 new = NULL;
612         } else if (unlikely(pmd_trans_splitting(*pmd)))
613                 wait_split_huge_page = 1;
614         spin_unlock(&mm->page_table_lock);
615         if (new)
616                 pte_free(mm, new);
617         if (wait_split_huge_page)
618                 wait_split_huge_page(vma->anon_vma, pmd);
619         return 0;
620 }
621
622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
623 {
624         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625         if (!new)
626                 return -ENOMEM;
627
628         smp_wmb(); /* See comment in __pte_alloc */
629
630         spin_lock(&init_mm.page_table_lock);
631         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
632                 pmd_populate_kernel(&init_mm, pmd, new);
633                 new = NULL;
634         } else
635                 VM_BUG_ON(pmd_trans_splitting(*pmd));
636         spin_unlock(&init_mm.page_table_lock);
637         if (new)
638                 pte_free_kernel(&init_mm, new);
639         return 0;
640 }
641
642 static inline void init_rss_vec(int *rss)
643 {
644         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
645 }
646
647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
648 {
649         int i;
650
651         if (current->mm == mm)
652                 sync_mm_rss(mm);
653         for (i = 0; i < NR_MM_COUNTERS; i++)
654                 if (rss[i])
655                         add_mm_counter(mm, i, rss[i]);
656 }
657
658 /*
659  * This function is called to print an error when a bad pte
660  * is found. For example, we might have a PFN-mapped pte in
661  * a region that doesn't allow it.
662  *
663  * The calling function must still handle the error.
664  */
665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666                           pte_t pte, struct page *page)
667 {
668         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669         pud_t *pud = pud_offset(pgd, addr);
670         pmd_t *pmd = pmd_offset(pud, addr);
671         struct address_space *mapping;
672         pgoff_t index;
673         static unsigned long resume;
674         static unsigned long nr_shown;
675         static unsigned long nr_unshown;
676
677         /*
678          * Allow a burst of 60 reports, then keep quiet for that minute;
679          * or allow a steady drip of one report per second.
680          */
681         if (nr_shown == 60) {
682                 if (time_before(jiffies, resume)) {
683                         nr_unshown++;
684                         return;
685                 }
686                 if (nr_unshown) {
687                         printk(KERN_ALERT
688                                 "BUG: Bad page map: %lu messages suppressed\n",
689                                 nr_unshown);
690                         nr_unshown = 0;
691                 }
692                 nr_shown = 0;
693         }
694         if (nr_shown++ == 0)
695                 resume = jiffies + 60 * HZ;
696
697         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698         index = linear_page_index(vma, addr);
699
700         printk(KERN_ALERT
701                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
702                 current->comm,
703                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
704         if (page)
705                 dump_page(page);
706         printk(KERN_ALERT
707                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
709         /*
710          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
711          */
712         if (vma->vm_ops)
713                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
714                                 (unsigned long)vma->vm_ops->fault);
715         if (vma->vm_file && vma->vm_file->f_op)
716                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
717                                 (unsigned long)vma->vm_file->f_op->mmap);
718         dump_stack();
719         add_taint(TAINT_BAD_PAGE);
720 }
721
722 static inline bool is_cow_mapping(vm_flags_t flags)
723 {
724         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
725 }
726
727 /*
728  * vm_normal_page -- This function gets the "struct page" associated with a pte.
729  *
730  * "Special" mappings do not wish to be associated with a "struct page" (either
731  * it doesn't exist, or it exists but they don't want to touch it). In this
732  * case, NULL is returned here. "Normal" mappings do have a struct page.
733  *
734  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
735  * pte bit, in which case this function is trivial. Secondly, an architecture
736  * may not have a spare pte bit, which requires a more complicated scheme,
737  * described below.
738  *
739  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
740  * special mapping (even if there are underlying and valid "struct pages").
741  * COWed pages of a VM_PFNMAP are always normal.
742  *
743  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
744  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
745  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
746  * mapping will always honor the rule
747  *
748  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
749  *
750  * And for normal mappings this is false.
751  *
752  * This restricts such mappings to be a linear translation from virtual address
753  * to pfn. To get around this restriction, we allow arbitrary mappings so long
754  * as the vma is not a COW mapping; in that case, we know that all ptes are
755  * special (because none can have been COWed).
756  *
757  *
758  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
759  *
760  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
761  * page" backing, however the difference is that _all_ pages with a struct
762  * page (that is, those where pfn_valid is true) are refcounted and considered
763  * normal pages by the VM. The disadvantage is that pages are refcounted
764  * (which can be slower and simply not an option for some PFNMAP users). The
765  * advantage is that we don't have to follow the strict linearity rule of
766  * PFNMAP mappings in order to support COWable mappings.
767  *
768  */
769 #ifdef __HAVE_ARCH_PTE_SPECIAL
770 # define HAVE_PTE_SPECIAL 1
771 #else
772 # define HAVE_PTE_SPECIAL 0
773 #endif
774 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
775                                 pte_t pte)
776 {
777         unsigned long pfn = pte_pfn(pte);
778
779         if (HAVE_PTE_SPECIAL) {
780                 if (likely(!pte_special(pte)))
781                         goto check_pfn;
782                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
783                         return NULL;
784                 if (!is_zero_pfn(pfn))
785                         print_bad_pte(vma, addr, pte, NULL);
786                 return NULL;
787         }
788
789         /* !HAVE_PTE_SPECIAL case follows: */
790
791         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
792                 if (vma->vm_flags & VM_MIXEDMAP) {
793                         if (!pfn_valid(pfn))
794                                 return NULL;
795                         goto out;
796                 } else {
797                         unsigned long off;
798                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
799                         if (pfn == vma->vm_pgoff + off)
800                                 return NULL;
801                         if (!is_cow_mapping(vma->vm_flags))
802                                 return NULL;
803                 }
804         }
805
806         if (is_zero_pfn(pfn))
807                 return NULL;
808 check_pfn:
809         if (unlikely(pfn > highest_memmap_pfn)) {
810                 print_bad_pte(vma, addr, pte, NULL);
811                 return NULL;
812         }
813
814         /*
815          * NOTE! We still have PageReserved() pages in the page tables.
816          * eg. VDSO mappings can cause them to exist.
817          */
818 out:
819         return pfn_to_page(pfn);
820 }
821
822 /*
823  * copy one vm_area from one task to the other. Assumes the page tables
824  * already present in the new task to be cleared in the whole range
825  * covered by this vma.
826  */
827
828 static inline unsigned long
829 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
831                 unsigned long addr, int *rss)
832 {
833         unsigned long vm_flags = vma->vm_flags;
834         pte_t pte = *src_pte;
835         struct page *page;
836
837         /* pte contains position in swap or file, so copy. */
838         if (unlikely(!pte_present(pte))) {
839                 if (!pte_file(pte)) {
840                         swp_entry_t entry = pte_to_swp_entry(pte);
841
842                         if (swap_duplicate(entry) < 0)
843                                 return entry.val;
844
845                         /* make sure dst_mm is on swapoff's mmlist. */
846                         if (unlikely(list_empty(&dst_mm->mmlist))) {
847                                 spin_lock(&mmlist_lock);
848                                 if (list_empty(&dst_mm->mmlist))
849                                         list_add(&dst_mm->mmlist,
850                                                  &src_mm->mmlist);
851                                 spin_unlock(&mmlist_lock);
852                         }
853                         if (likely(!non_swap_entry(entry)))
854                                 rss[MM_SWAPENTS]++;
855                         else if (is_migration_entry(entry)) {
856                                 page = migration_entry_to_page(entry);
857
858                                 if (PageAnon(page))
859                                         rss[MM_ANONPAGES]++;
860                                 else
861                                         rss[MM_FILEPAGES]++;
862
863                                 if (is_write_migration_entry(entry) &&
864                                     is_cow_mapping(vm_flags)) {
865                                         /*
866                                          * COW mappings require pages in both
867                                          * parent and child to be set to read.
868                                          */
869                                         make_migration_entry_read(&entry);
870                                         pte = swp_entry_to_pte(entry);
871                                         set_pte_at(src_mm, addr, src_pte, pte);
872                                 }
873                         }
874                 }
875                 goto out_set_pte;
876         }
877
878         /*
879          * If it's a COW mapping, write protect it both
880          * in the parent and the child
881          */
882         if (is_cow_mapping(vm_flags)) {
883                 ptep_set_wrprotect(src_mm, addr, src_pte);
884                 pte = pte_wrprotect(pte);
885         }
886
887         /*
888          * If it's a shared mapping, mark it clean in
889          * the child
890          */
891         if (vm_flags & VM_SHARED)
892                 pte = pte_mkclean(pte);
893         pte = pte_mkold(pte);
894
895         page = vm_normal_page(vma, addr, pte);
896         if (page) {
897                 get_page(page);
898                 page_dup_rmap(page);
899                 if (PageAnon(page))
900                         rss[MM_ANONPAGES]++;
901                 else
902                         rss[MM_FILEPAGES]++;
903         }
904
905 out_set_pte:
906         set_pte_at(dst_mm, addr, dst_pte, pte);
907         return 0;
908 }
909
910 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
912                    unsigned long addr, unsigned long end)
913 {
914         pte_t *orig_src_pte, *orig_dst_pte;
915         pte_t *src_pte, *dst_pte;
916         spinlock_t *src_ptl, *dst_ptl;
917         int progress = 0;
918         int rss[NR_MM_COUNTERS];
919         swp_entry_t entry = (swp_entry_t){0};
920
921 again:
922         init_rss_vec(rss);
923
924         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
925         if (!dst_pte)
926                 return -ENOMEM;
927         src_pte = pte_offset_map(src_pmd, addr);
928         src_ptl = pte_lockptr(src_mm, src_pmd);
929         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
930         orig_src_pte = src_pte;
931         orig_dst_pte = dst_pte;
932         arch_enter_lazy_mmu_mode();
933
934         do {
935                 /*
936                  * We are holding two locks at this point - either of them
937                  * could generate latencies in another task on another CPU.
938                  */
939                 if (progress >= 32) {
940                         progress = 0;
941                         if (need_resched() ||
942                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
943                                 break;
944                 }
945                 if (pte_none(*src_pte)) {
946                         progress++;
947                         continue;
948                 }
949                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
950                                                         vma, addr, rss);
951                 if (entry.val)
952                         break;
953                 progress += 8;
954         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
955
956         arch_leave_lazy_mmu_mode();
957         spin_unlock(src_ptl);
958         pte_unmap(orig_src_pte);
959         add_mm_rss_vec(dst_mm, rss);
960         pte_unmap_unlock(orig_dst_pte, dst_ptl);
961         cond_resched();
962
963         if (entry.val) {
964                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
965                         return -ENOMEM;
966                 progress = 0;
967         }
968         if (addr != end)
969                 goto again;
970         return 0;
971 }
972
973 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
975                 unsigned long addr, unsigned long end)
976 {
977         pmd_t *src_pmd, *dst_pmd;
978         unsigned long next;
979
980         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
981         if (!dst_pmd)
982                 return -ENOMEM;
983         src_pmd = pmd_offset(src_pud, addr);
984         do {
985                 next = pmd_addr_end(addr, end);
986                 if (pmd_trans_huge(*src_pmd)) {
987                         int err;
988                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
989                         err = copy_huge_pmd(dst_mm, src_mm,
990                                             dst_pmd, src_pmd, addr, vma);
991                         if (err == -ENOMEM)
992                                 return -ENOMEM;
993                         if (!err)
994                                 continue;
995                         /* fall through */
996                 }
997                 if (pmd_none_or_clear_bad(src_pmd))
998                         continue;
999                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1000                                                 vma, addr, next))
1001                         return -ENOMEM;
1002         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1003         return 0;
1004 }
1005
1006 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1008                 unsigned long addr, unsigned long end)
1009 {
1010         pud_t *src_pud, *dst_pud;
1011         unsigned long next;
1012
1013         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1014         if (!dst_pud)
1015                 return -ENOMEM;
1016         src_pud = pud_offset(src_pgd, addr);
1017         do {
1018                 next = pud_addr_end(addr, end);
1019                 if (pud_none_or_clear_bad(src_pud))
1020                         continue;
1021                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1022                                                 vma, addr, next))
1023                         return -ENOMEM;
1024         } while (dst_pud++, src_pud++, addr = next, addr != end);
1025         return 0;
1026 }
1027
1028 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029                 struct vm_area_struct *vma)
1030 {
1031         pgd_t *src_pgd, *dst_pgd;
1032         unsigned long next;
1033         unsigned long addr = vma->vm_start;
1034         unsigned long end = vma->vm_end;
1035         unsigned long mmun_start;       /* For mmu_notifiers */
1036         unsigned long mmun_end;         /* For mmu_notifiers */
1037         bool is_cow;
1038         int ret;
1039
1040         /*
1041          * Don't copy ptes where a page fault will fill them correctly.
1042          * Fork becomes much lighter when there are big shared or private
1043          * readonly mappings. The tradeoff is that copy_page_range is more
1044          * efficient than faulting.
1045          */
1046         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1047                                VM_PFNMAP | VM_MIXEDMAP))) {
1048                 if (!vma->anon_vma)
1049                         return 0;
1050         }
1051
1052         if (is_vm_hugetlb_page(vma))
1053                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1054
1055         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1056                 /*
1057                  * We do not free on error cases below as remove_vma
1058                  * gets called on error from higher level routine
1059                  */
1060                 ret = track_pfn_copy(vma);
1061                 if (ret)
1062                         return ret;
1063         }
1064
1065         /*
1066          * We need to invalidate the secondary MMU mappings only when
1067          * there could be a permission downgrade on the ptes of the
1068          * parent mm. And a permission downgrade will only happen if
1069          * is_cow_mapping() returns true.
1070          */
1071         is_cow = is_cow_mapping(vma->vm_flags);
1072         mmun_start = addr;
1073         mmun_end   = end;
1074         if (is_cow)
1075                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1076                                                     mmun_end);
1077
1078         ret = 0;
1079         dst_pgd = pgd_offset(dst_mm, addr);
1080         src_pgd = pgd_offset(src_mm, addr);
1081         do {
1082                 next = pgd_addr_end(addr, end);
1083                 if (pgd_none_or_clear_bad(src_pgd))
1084                         continue;
1085                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086                                             vma, addr, next))) {
1087                         ret = -ENOMEM;
1088                         break;
1089                 }
1090         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091
1092         if (is_cow)
1093                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1094         return ret;
1095 }
1096
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098                                 struct vm_area_struct *vma, pmd_t *pmd,
1099                                 unsigned long addr, unsigned long end,
1100                                 struct zap_details *details)
1101 {
1102         struct mm_struct *mm = tlb->mm;
1103         int force_flush = 0;
1104         int rss[NR_MM_COUNTERS];
1105         spinlock_t *ptl;
1106         pte_t *start_pte;
1107         pte_t *pte;
1108
1109 again:
1110         init_rss_vec(rss);
1111         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112         pte = start_pte;
1113         arch_enter_lazy_mmu_mode();
1114         do {
1115                 pte_t ptent = *pte;
1116                 if (pte_none(ptent)) {
1117                         continue;
1118                 }
1119
1120                 if (pte_present(ptent)) {
1121                         struct page *page;
1122
1123                         page = vm_normal_page(vma, addr, ptent);
1124                         if (unlikely(details) && page) {
1125                                 /*
1126                                  * unmap_shared_mapping_pages() wants to
1127                                  * invalidate cache without truncating:
1128                                  * unmap shared but keep private pages.
1129                                  */
1130                                 if (details->check_mapping &&
1131                                     details->check_mapping != page->mapping)
1132                                         continue;
1133                                 /*
1134                                  * Each page->index must be checked when
1135                                  * invalidating or truncating nonlinear.
1136                                  */
1137                                 if (details->nonlinear_vma &&
1138                                     (page->index < details->first_index ||
1139                                      page->index > details->last_index))
1140                                         continue;
1141                         }
1142                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1143                                                         tlb->fullmm);
1144                         tlb_remove_tlb_entry(tlb, pte, addr);
1145                         if (unlikely(!page))
1146                                 continue;
1147                         if (unlikely(details) && details->nonlinear_vma
1148                             && linear_page_index(details->nonlinear_vma,
1149                                                 addr) != page->index)
1150                                 set_pte_at(mm, addr, pte,
1151                                            pgoff_to_pte(page->index));
1152                         if (PageAnon(page))
1153                                 rss[MM_ANONPAGES]--;
1154                         else {
1155                                 if (pte_dirty(ptent))
1156                                         set_page_dirty(page);
1157                                 if (pte_young(ptent) &&
1158                                     likely(!VM_SequentialReadHint(vma)))
1159                                         mark_page_accessed(page);
1160                                 rss[MM_FILEPAGES]--;
1161                         }
1162                         page_remove_rmap(page);
1163                         if (unlikely(page_mapcount(page) < 0))
1164                                 print_bad_pte(vma, addr, ptent, page);
1165                         force_flush = !__tlb_remove_page(tlb, page);
1166                         if (force_flush)
1167                                 break;
1168                         continue;
1169                 }
1170                 /*
1171                  * If details->check_mapping, we leave swap entries;
1172                  * if details->nonlinear_vma, we leave file entries.
1173                  */
1174                 if (unlikely(details))
1175                         continue;
1176                 if (pte_file(ptent)) {
1177                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178                                 print_bad_pte(vma, addr, ptent, NULL);
1179                 } else {
1180                         swp_entry_t entry = pte_to_swp_entry(ptent);
1181
1182                         if (!non_swap_entry(entry))
1183                                 rss[MM_SWAPENTS]--;
1184                         else if (is_migration_entry(entry)) {
1185                                 struct page *page;
1186
1187                                 page = migration_entry_to_page(entry);
1188
1189                                 if (PageAnon(page))
1190                                         rss[MM_ANONPAGES]--;
1191                                 else
1192                                         rss[MM_FILEPAGES]--;
1193                         }
1194                         if (unlikely(!free_swap_and_cache(entry)))
1195                                 print_bad_pte(vma, addr, ptent, NULL);
1196                 }
1197                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198         } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200         add_mm_rss_vec(mm, rss);
1201         arch_leave_lazy_mmu_mode();
1202         pte_unmap_unlock(start_pte, ptl);
1203
1204         /*
1205          * mmu_gather ran out of room to batch pages, we break out of
1206          * the PTE lock to avoid doing the potential expensive TLB invalidate
1207          * and page-free while holding it.
1208          */
1209         if (force_flush) {
1210                 force_flush = 0;
1211
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1213                 tlb->start = addr;
1214                 tlb->end = end;
1215 #endif
1216                 tlb_flush_mmu(tlb);
1217                 if (addr != end)
1218                         goto again;
1219         }
1220
1221         return addr;
1222 }
1223
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225                                 struct vm_area_struct *vma, pud_t *pud,
1226                                 unsigned long addr, unsigned long end,
1227                                 struct zap_details *details)
1228 {
1229         pmd_t *pmd;
1230         unsigned long next;
1231
1232         pmd = pmd_offset(pud, addr);
1233         do {
1234                 next = pmd_addr_end(addr, end);
1235                 if (pmd_trans_huge(*pmd)) {
1236                         if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240                                                 __func__, addr, end,
1241                                                 vma->vm_start,
1242                                                 vma->vm_end);
1243                                         BUG();
1244                                 }
1245 #endif
1246                                 split_huge_page_pmd(vma, addr, pmd);
1247                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248                                 goto next;
1249                         /* fall through */
1250                 }
1251                 /*
1252                  * Here there can be other concurrent MADV_DONTNEED or
1253                  * trans huge page faults running, and if the pmd is
1254                  * none or trans huge it can change under us. This is
1255                  * because MADV_DONTNEED holds the mmap_sem in read
1256                  * mode.
1257                  */
1258                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259                         goto next;
1260                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262                 cond_resched();
1263         } while (pmd++, addr = next, addr != end);
1264
1265         return addr;
1266 }
1267
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269                                 struct vm_area_struct *vma, pgd_t *pgd,
1270                                 unsigned long addr, unsigned long end,
1271                                 struct zap_details *details)
1272 {
1273         pud_t *pud;
1274         unsigned long next;
1275
1276         pud = pud_offset(pgd, addr);
1277         do {
1278                 next = pud_addr_end(addr, end);
1279                 if (pud_none_or_clear_bad(pud))
1280                         continue;
1281                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282         } while (pud++, addr = next, addr != end);
1283
1284         return addr;
1285 }
1286
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288                              struct vm_area_struct *vma,
1289                              unsigned long addr, unsigned long end,
1290                              struct zap_details *details)
1291 {
1292         pgd_t *pgd;
1293         unsigned long next;
1294
1295         if (details && !details->check_mapping && !details->nonlinear_vma)
1296                 details = NULL;
1297
1298         BUG_ON(addr >= end);
1299         mem_cgroup_uncharge_start();
1300         tlb_start_vma(tlb, vma);
1301         pgd = pgd_offset(vma->vm_mm, addr);
1302         do {
1303                 next = pgd_addr_end(addr, end);
1304                 if (pgd_none_or_clear_bad(pgd))
1305                         continue;
1306                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307         } while (pgd++, addr = next, addr != end);
1308         tlb_end_vma(tlb, vma);
1309         mem_cgroup_uncharge_end();
1310 }
1311
1312
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314                 struct vm_area_struct *vma, unsigned long start_addr,
1315                 unsigned long end_addr,
1316                 struct zap_details *details)
1317 {
1318         unsigned long start = max(vma->vm_start, start_addr);
1319         unsigned long end;
1320
1321         if (start >= vma->vm_end)
1322                 return;
1323         end = min(vma->vm_end, end_addr);
1324         if (end <= vma->vm_start)
1325                 return;
1326
1327         if (vma->vm_file)
1328                 uprobe_munmap(vma, start, end);
1329
1330         if (unlikely(vma->vm_flags & VM_PFNMAP))
1331                 untrack_pfn(vma, 0, 0);
1332
1333         if (start != end) {
1334                 if (unlikely(is_vm_hugetlb_page(vma))) {
1335                         /*
1336                          * It is undesirable to test vma->vm_file as it
1337                          * should be non-null for valid hugetlb area.
1338                          * However, vm_file will be NULL in the error
1339                          * cleanup path of do_mmap_pgoff. When
1340                          * hugetlbfs ->mmap method fails,
1341                          * do_mmap_pgoff() nullifies vma->vm_file
1342                          * before calling this function to clean up.
1343                          * Since no pte has actually been setup, it is
1344                          * safe to do nothing in this case.
1345                          */
1346                         if (vma->vm_file) {
1347                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350                         }
1351                 } else
1352                         unmap_page_range(tlb, vma, start, end, details);
1353         }
1354 }
1355
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375                 struct vm_area_struct *vma, unsigned long start_addr,
1376                 unsigned long end_addr)
1377 {
1378         struct mm_struct *mm = vma->vm_mm;
1379
1380         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of nonlinear truncation or shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396                 unsigned long size, struct zap_details *details)
1397 {
1398         struct mm_struct *mm = vma->vm_mm;
1399         struct mmu_gather tlb;
1400         unsigned long end = start + size;
1401
1402         lru_add_drain();
1403         tlb_gather_mmu(&tlb, mm, 0);
1404         update_hiwater_rss(mm);
1405         mmu_notifier_invalidate_range_start(mm, start, end);
1406         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407                 unmap_single_vma(&tlb, vma, start, end, details);
1408         mmu_notifier_invalidate_range_end(mm, start, end);
1409         tlb_finish_mmu(&tlb, start, end);
1410 }
1411
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of nonlinear truncation or shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422                 unsigned long size, struct zap_details *details)
1423 {
1424         struct mm_struct *mm = vma->vm_mm;
1425         struct mmu_gather tlb;
1426         unsigned long end = address + size;
1427
1428         lru_add_drain();
1429         tlb_gather_mmu(&tlb, mm, 0);
1430         update_hiwater_rss(mm);
1431         mmu_notifier_invalidate_range_start(mm, address, end);
1432         unmap_single_vma(&tlb, vma, address, end, details);
1433         mmu_notifier_invalidate_range_end(mm, address, end);
1434         tlb_finish_mmu(&tlb, address, end);
1435 }
1436
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450                 unsigned long size)
1451 {
1452         if (address < vma->vm_start || address + size > vma->vm_end ||
1453                         !(vma->vm_flags & VM_PFNMAP))
1454                 return -1;
1455         zap_page_range_single(vma, address, size, NULL);
1456         return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460 /**
1461  * follow_page - look up a page descriptor from a user-virtual address
1462  * @vma: vm_area_struct mapping @address
1463  * @address: virtual address to look up
1464  * @flags: flags modifying lookup behaviour
1465  *
1466  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467  *
1468  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469  * an error pointer if there is a mapping to something not represented
1470  * by a page descriptor (see also vm_normal_page()).
1471  */
1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1473                         unsigned int flags)
1474 {
1475         pgd_t *pgd;
1476         pud_t *pud;
1477         pmd_t *pmd;
1478         pte_t *ptep, pte;
1479         spinlock_t *ptl;
1480         struct page *page;
1481         struct mm_struct *mm = vma->vm_mm;
1482
1483         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484         if (!IS_ERR(page)) {
1485                 BUG_ON(flags & FOLL_GET);
1486                 goto out;
1487         }
1488
1489         page = NULL;
1490         pgd = pgd_offset(mm, address);
1491         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492                 goto no_page_table;
1493
1494         pud = pud_offset(pgd, address);
1495         if (pud_none(*pud))
1496                 goto no_page_table;
1497         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498                 BUG_ON(flags & FOLL_GET);
1499                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500                 goto out;
1501         }
1502         if (unlikely(pud_bad(*pud)))
1503                 goto no_page_table;
1504
1505         pmd = pmd_offset(pud, address);
1506         if (pmd_none(*pmd))
1507                 goto no_page_table;
1508         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509                 BUG_ON(flags & FOLL_GET);
1510                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511                 goto out;
1512         }
1513         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514                 goto no_page_table;
1515         if (pmd_trans_huge(*pmd)) {
1516                 if (flags & FOLL_SPLIT) {
1517                         split_huge_page_pmd(vma, address, pmd);
1518                         goto split_fallthrough;
1519                 }
1520                 spin_lock(&mm->page_table_lock);
1521                 if (likely(pmd_trans_huge(*pmd))) {
1522                         if (unlikely(pmd_trans_splitting(*pmd))) {
1523                                 spin_unlock(&mm->page_table_lock);
1524                                 wait_split_huge_page(vma->anon_vma, pmd);
1525                         } else {
1526                                 page = follow_trans_huge_pmd(vma, address,
1527                                                              pmd, flags);
1528                                 spin_unlock(&mm->page_table_lock);
1529                                 goto out;
1530                         }
1531                 } else
1532                         spin_unlock(&mm->page_table_lock);
1533                 /* fall through */
1534         }
1535 split_fallthrough:
1536         if (unlikely(pmd_bad(*pmd)))
1537                 goto no_page_table;
1538
1539         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1540
1541         pte = *ptep;
1542         if (!pte_present(pte))
1543                 goto no_page;
1544         if ((flags & FOLL_NUMA) && pte_numa(pte))
1545                 goto no_page;
1546         if ((flags & FOLL_WRITE) && !pte_write(pte))
1547                 goto unlock;
1548
1549         page = vm_normal_page(vma, address, pte);
1550         if (unlikely(!page)) {
1551                 if ((flags & FOLL_DUMP) ||
1552                     !is_zero_pfn(pte_pfn(pte)))
1553                         goto bad_page;
1554                 page = pte_page(pte);
1555         }
1556
1557         if (flags & FOLL_GET)
1558                 get_page_foll(page);
1559         if (flags & FOLL_TOUCH) {
1560                 if ((flags & FOLL_WRITE) &&
1561                     !pte_dirty(pte) && !PageDirty(page))
1562                         set_page_dirty(page);
1563                 /*
1564                  * pte_mkyoung() would be more correct here, but atomic care
1565                  * is needed to avoid losing the dirty bit: it is easier to use
1566                  * mark_page_accessed().
1567                  */
1568                 mark_page_accessed(page);
1569         }
1570         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1571                 /*
1572                  * The preliminary mapping check is mainly to avoid the
1573                  * pointless overhead of lock_page on the ZERO_PAGE
1574                  * which might bounce very badly if there is contention.
1575                  *
1576                  * If the page is already locked, we don't need to
1577                  * handle it now - vmscan will handle it later if and
1578                  * when it attempts to reclaim the page.
1579                  */
1580                 if (page->mapping && trylock_page(page)) {
1581                         lru_add_drain();  /* push cached pages to LRU */
1582                         /*
1583                          * Because we lock page here, and migration is
1584                          * blocked by the pte's page reference, and we
1585                          * know the page is still mapped, we don't even
1586                          * need to check for file-cache page truncation.
1587                          */
1588                         mlock_vma_page(page);
1589                         unlock_page(page);
1590                 }
1591         }
1592 unlock:
1593         pte_unmap_unlock(ptep, ptl);
1594 out:
1595         return page;
1596
1597 bad_page:
1598         pte_unmap_unlock(ptep, ptl);
1599         return ERR_PTR(-EFAULT);
1600
1601 no_page:
1602         pte_unmap_unlock(ptep, ptl);
1603         if (!pte_none(pte))
1604                 return page;
1605
1606 no_page_table:
1607         /*
1608          * When core dumping an enormous anonymous area that nobody
1609          * has touched so far, we don't want to allocate unnecessary pages or
1610          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1611          * then get_dump_page() will return NULL to leave a hole in the dump.
1612          * But we can only make this optimization where a hole would surely
1613          * be zero-filled if handle_mm_fault() actually did handle it.
1614          */
1615         if ((flags & FOLL_DUMP) &&
1616             (!vma->vm_ops || !vma->vm_ops->fault))
1617                 return ERR_PTR(-EFAULT);
1618         return page;
1619 }
1620
1621 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1622 {
1623         return stack_guard_page_start(vma, addr) ||
1624                stack_guard_page_end(vma, addr+PAGE_SIZE);
1625 }
1626
1627 /**
1628  * __get_user_pages() - pin user pages in memory
1629  * @tsk:        task_struct of target task
1630  * @mm:         mm_struct of target mm
1631  * @start:      starting user address
1632  * @nr_pages:   number of pages from start to pin
1633  * @gup_flags:  flags modifying pin behaviour
1634  * @pages:      array that receives pointers to the pages pinned.
1635  *              Should be at least nr_pages long. Or NULL, if caller
1636  *              only intends to ensure the pages are faulted in.
1637  * @vmas:       array of pointers to vmas corresponding to each page.
1638  *              Or NULL if the caller does not require them.
1639  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1640  *
1641  * Returns number of pages pinned. This may be fewer than the number
1642  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1643  * were pinned, returns -errno. Each page returned must be released
1644  * with a put_page() call when it is finished with. vmas will only
1645  * remain valid while mmap_sem is held.
1646  *
1647  * Must be called with mmap_sem held for read or write.
1648  *
1649  * __get_user_pages walks a process's page tables and takes a reference to
1650  * each struct page that each user address corresponds to at a given
1651  * instant. That is, it takes the page that would be accessed if a user
1652  * thread accesses the given user virtual address at that instant.
1653  *
1654  * This does not guarantee that the page exists in the user mappings when
1655  * __get_user_pages returns, and there may even be a completely different
1656  * page there in some cases (eg. if mmapped pagecache has been invalidated
1657  * and subsequently re faulted). However it does guarantee that the page
1658  * won't be freed completely. And mostly callers simply care that the page
1659  * contains data that was valid *at some point in time*. Typically, an IO
1660  * or similar operation cannot guarantee anything stronger anyway because
1661  * locks can't be held over the syscall boundary.
1662  *
1663  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1664  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1665  * appropriate) must be called after the page is finished with, and
1666  * before put_page is called.
1667  *
1668  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1669  * or mmap_sem contention, and if waiting is needed to pin all pages,
1670  * *@nonblocking will be set to 0.
1671  *
1672  * In most cases, get_user_pages or get_user_pages_fast should be used
1673  * instead of __get_user_pages. __get_user_pages should be used only if
1674  * you need some special @gup_flags.
1675  */
1676 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1677                      unsigned long start, int nr_pages, unsigned int gup_flags,
1678                      struct page **pages, struct vm_area_struct **vmas,
1679                      int *nonblocking)
1680 {
1681         int i;
1682         unsigned long vm_flags;
1683
1684         if (nr_pages <= 0)
1685                 return 0;
1686
1687         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1688
1689         /* 
1690          * Require read or write permissions.
1691          * If FOLL_FORCE is set, we only require the "MAY" flags.
1692          */
1693         vm_flags  = (gup_flags & FOLL_WRITE) ?
1694                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1695         vm_flags &= (gup_flags & FOLL_FORCE) ?
1696                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1697
1698         /*
1699          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1700          * would be called on PROT_NONE ranges. We must never invoke
1701          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1702          * page faults would unprotect the PROT_NONE ranges if
1703          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1704          * bitflag. So to avoid that, don't set FOLL_NUMA if
1705          * FOLL_FORCE is set.
1706          */
1707         if (!(gup_flags & FOLL_FORCE))
1708                 gup_flags |= FOLL_NUMA;
1709
1710         i = 0;
1711
1712         do {
1713                 struct vm_area_struct *vma;
1714
1715                 vma = find_extend_vma(mm, start);
1716                 if (!vma && in_gate_area(mm, start)) {
1717                         unsigned long pg = start & PAGE_MASK;
1718                         pgd_t *pgd;
1719                         pud_t *pud;
1720                         pmd_t *pmd;
1721                         pte_t *pte;
1722
1723                         /* user gate pages are read-only */
1724                         if (gup_flags & FOLL_WRITE)
1725                                 return i ? : -EFAULT;
1726                         if (pg > TASK_SIZE)
1727                                 pgd = pgd_offset_k(pg);
1728                         else
1729                                 pgd = pgd_offset_gate(mm, pg);
1730                         BUG_ON(pgd_none(*pgd));
1731                         pud = pud_offset(pgd, pg);
1732                         BUG_ON(pud_none(*pud));
1733                         pmd = pmd_offset(pud, pg);
1734                         if (pmd_none(*pmd))
1735                                 return i ? : -EFAULT;
1736                         VM_BUG_ON(pmd_trans_huge(*pmd));
1737                         pte = pte_offset_map(pmd, pg);
1738                         if (pte_none(*pte)) {
1739                                 pte_unmap(pte);
1740                                 return i ? : -EFAULT;
1741                         }
1742                         vma = get_gate_vma(mm);
1743                         if (pages) {
1744                                 struct page *page;
1745
1746                                 page = vm_normal_page(vma, start, *pte);
1747                                 if (!page) {
1748                                         if (!(gup_flags & FOLL_DUMP) &&
1749                                              is_zero_pfn(pte_pfn(*pte)))
1750                                                 page = pte_page(*pte);
1751                                         else {
1752                                                 pte_unmap(pte);
1753                                                 return i ? : -EFAULT;
1754                                         }
1755                                 }
1756                                 pages[i] = page;
1757                                 get_page(page);
1758                         }
1759                         pte_unmap(pte);
1760                         goto next_page;
1761                 }
1762
1763                 if (!vma ||
1764                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1765                     !(vm_flags & vma->vm_flags))
1766                         return i ? : -EFAULT;
1767
1768                 if (is_vm_hugetlb_page(vma)) {
1769                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1770                                         &start, &nr_pages, i, gup_flags);
1771                         continue;
1772                 }
1773
1774                 do {
1775                         struct page *page;
1776                         unsigned int foll_flags = gup_flags;
1777
1778                         /*
1779                          * If we have a pending SIGKILL, don't keep faulting
1780                          * pages and potentially allocating memory.
1781                          */
1782                         if (unlikely(fatal_signal_pending(current)))
1783                                 return i ? i : -ERESTARTSYS;
1784
1785                         cond_resched();
1786                         while (!(page = follow_page(vma, start, foll_flags))) {
1787                                 int ret;
1788                                 unsigned int fault_flags = 0;
1789
1790                                 /* For mlock, just skip the stack guard page. */
1791                                 if (foll_flags & FOLL_MLOCK) {
1792                                         if (stack_guard_page(vma, start))
1793                                                 goto next_page;
1794                                 }
1795                                 if (foll_flags & FOLL_WRITE)
1796                                         fault_flags |= FAULT_FLAG_WRITE;
1797                                 if (nonblocking)
1798                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1799                                 if (foll_flags & FOLL_NOWAIT)
1800                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1801
1802                                 ret = handle_mm_fault(mm, vma, start,
1803                                                         fault_flags);
1804
1805                                 if (ret & VM_FAULT_ERROR) {
1806                                         if (ret & VM_FAULT_OOM)
1807                                                 return i ? i : -ENOMEM;
1808                                         if (ret & (VM_FAULT_HWPOISON |
1809                                                    VM_FAULT_HWPOISON_LARGE)) {
1810                                                 if (i)
1811                                                         return i;
1812                                                 else if (gup_flags & FOLL_HWPOISON)
1813                                                         return -EHWPOISON;
1814                                                 else
1815                                                         return -EFAULT;
1816                                         }
1817                                         if (ret & VM_FAULT_SIGBUS)
1818                                                 return i ? i : -EFAULT;
1819                                         BUG();
1820                                 }
1821
1822                                 if (tsk) {
1823                                         if (ret & VM_FAULT_MAJOR)
1824                                                 tsk->maj_flt++;
1825                                         else
1826                                                 tsk->min_flt++;
1827                                 }
1828
1829                                 if (ret & VM_FAULT_RETRY) {
1830                                         if (nonblocking)
1831                                                 *nonblocking = 0;
1832                                         return i;
1833                                 }
1834
1835                                 /*
1836                                  * The VM_FAULT_WRITE bit tells us that
1837                                  * do_wp_page has broken COW when necessary,
1838                                  * even if maybe_mkwrite decided not to set
1839                                  * pte_write. We can thus safely do subsequent
1840                                  * page lookups as if they were reads. But only
1841                                  * do so when looping for pte_write is futile:
1842                                  * in some cases userspace may also be wanting
1843                                  * to write to the gotten user page, which a
1844                                  * read fault here might prevent (a readonly
1845                                  * page might get reCOWed by userspace write).
1846                                  */
1847                                 if ((ret & VM_FAULT_WRITE) &&
1848                                     !(vma->vm_flags & VM_WRITE))
1849                                         foll_flags &= ~FOLL_WRITE;
1850
1851                                 cond_resched();
1852                         }
1853                         if (IS_ERR(page))
1854                                 return i ? i : PTR_ERR(page);
1855                         if (pages) {
1856                                 pages[i] = page;
1857
1858                                 flush_anon_page(vma, page, start);
1859                                 flush_dcache_page(page);
1860                         }
1861 next_page:
1862                         if (vmas)
1863                                 vmas[i] = vma;
1864                         i++;
1865                         start += PAGE_SIZE;
1866                         nr_pages--;
1867                 } while (nr_pages && start < vma->vm_end);
1868         } while (nr_pages);
1869         return i;
1870 }
1871 EXPORT_SYMBOL(__get_user_pages);
1872
1873 /*
1874  * fixup_user_fault() - manually resolve a user page fault
1875  * @tsk:        the task_struct to use for page fault accounting, or
1876  *              NULL if faults are not to be recorded.
1877  * @mm:         mm_struct of target mm
1878  * @address:    user address
1879  * @fault_flags:flags to pass down to handle_mm_fault()
1880  *
1881  * This is meant to be called in the specific scenario where for locking reasons
1882  * we try to access user memory in atomic context (within a pagefault_disable()
1883  * section), this returns -EFAULT, and we want to resolve the user fault before
1884  * trying again.
1885  *
1886  * Typically this is meant to be used by the futex code.
1887  *
1888  * The main difference with get_user_pages() is that this function will
1889  * unconditionally call handle_mm_fault() which will in turn perform all the
1890  * necessary SW fixup of the dirty and young bits in the PTE, while
1891  * handle_mm_fault() only guarantees to update these in the struct page.
1892  *
1893  * This is important for some architectures where those bits also gate the
1894  * access permission to the page because they are maintained in software.  On
1895  * such architectures, gup() will not be enough to make a subsequent access
1896  * succeed.
1897  *
1898  * This should be called with the mm_sem held for read.
1899  */
1900 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1901                      unsigned long address, unsigned int fault_flags)
1902 {
1903         struct vm_area_struct *vma;
1904         int ret;
1905
1906         vma = find_extend_vma(mm, address);
1907         if (!vma || address < vma->vm_start)
1908                 return -EFAULT;
1909
1910         ret = handle_mm_fault(mm, vma, address, fault_flags);
1911         if (ret & VM_FAULT_ERROR) {
1912                 if (ret & VM_FAULT_OOM)
1913                         return -ENOMEM;
1914                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1915                         return -EHWPOISON;
1916                 if (ret & VM_FAULT_SIGBUS)
1917                         return -EFAULT;
1918                 BUG();
1919         }
1920         if (tsk) {
1921                 if (ret & VM_FAULT_MAJOR)
1922                         tsk->maj_flt++;
1923                 else
1924                         tsk->min_flt++;
1925         }
1926         return 0;
1927 }
1928
1929 /*
1930  * get_user_pages() - pin user pages in memory
1931  * @tsk:        the task_struct to use for page fault accounting, or
1932  *              NULL if faults are not to be recorded.
1933  * @mm:         mm_struct of target mm
1934  * @start:      starting user address
1935  * @nr_pages:   number of pages from start to pin
1936  * @write:      whether pages will be written to by the caller
1937  * @force:      whether to force write access even if user mapping is
1938  *              readonly. This will result in the page being COWed even
1939  *              in MAP_SHARED mappings. You do not want this.
1940  * @pages:      array that receives pointers to the pages pinned.
1941  *              Should be at least nr_pages long. Or NULL, if caller
1942  *              only intends to ensure the pages are faulted in.
1943  * @vmas:       array of pointers to vmas corresponding to each page.
1944  *              Or NULL if the caller does not require them.
1945  *
1946  * Returns number of pages pinned. This may be fewer than the number
1947  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1948  * were pinned, returns -errno. Each page returned must be released
1949  * with a put_page() call when it is finished with. vmas will only
1950  * remain valid while mmap_sem is held.
1951  *
1952  * Must be called with mmap_sem held for read or write.
1953  *
1954  * get_user_pages walks a process's page tables and takes a reference to
1955  * each struct page that each user address corresponds to at a given
1956  * instant. That is, it takes the page that would be accessed if a user
1957  * thread accesses the given user virtual address at that instant.
1958  *
1959  * This does not guarantee that the page exists in the user mappings when
1960  * get_user_pages returns, and there may even be a completely different
1961  * page there in some cases (eg. if mmapped pagecache has been invalidated
1962  * and subsequently re faulted). However it does guarantee that the page
1963  * won't be freed completely. And mostly callers simply care that the page
1964  * contains data that was valid *at some point in time*. Typically, an IO
1965  * or similar operation cannot guarantee anything stronger anyway because
1966  * locks can't be held over the syscall boundary.
1967  *
1968  * If write=0, the page must not be written to. If the page is written to,
1969  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1970  * after the page is finished with, and before put_page is called.
1971  *
1972  * get_user_pages is typically used for fewer-copy IO operations, to get a
1973  * handle on the memory by some means other than accesses via the user virtual
1974  * addresses. The pages may be submitted for DMA to devices or accessed via
1975  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1976  * use the correct cache flushing APIs.
1977  *
1978  * See also get_user_pages_fast, for performance critical applications.
1979  */
1980 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1981                 unsigned long start, int nr_pages, int write, int force,
1982                 struct page **pages, struct vm_area_struct **vmas)
1983 {
1984         int flags = FOLL_TOUCH;
1985
1986         if (pages)
1987                 flags |= FOLL_GET;
1988         if (write)
1989                 flags |= FOLL_WRITE;
1990         if (force)
1991                 flags |= FOLL_FORCE;
1992
1993         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1994                                 NULL);
1995 }
1996 EXPORT_SYMBOL(get_user_pages);
1997
1998 /**
1999  * get_dump_page() - pin user page in memory while writing it to core dump
2000  * @addr: user address
2001  *
2002  * Returns struct page pointer of user page pinned for dump,
2003  * to be freed afterwards by page_cache_release() or put_page().
2004  *
2005  * Returns NULL on any kind of failure - a hole must then be inserted into
2006  * the corefile, to preserve alignment with its headers; and also returns
2007  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2008  * allowing a hole to be left in the corefile to save diskspace.
2009  *
2010  * Called without mmap_sem, but after all other threads have been killed.
2011  */
2012 #ifdef CONFIG_ELF_CORE
2013 struct page *get_dump_page(unsigned long addr)
2014 {
2015         struct vm_area_struct *vma;
2016         struct page *page;
2017
2018         if (__get_user_pages(current, current->mm, addr, 1,
2019                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2020                              NULL) < 1)
2021                 return NULL;
2022         flush_cache_page(vma, addr, page_to_pfn(page));
2023         return page;
2024 }
2025 #endif /* CONFIG_ELF_CORE */
2026
2027 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2028                         spinlock_t **ptl)
2029 {
2030         pgd_t * pgd = pgd_offset(mm, addr);
2031         pud_t * pud = pud_alloc(mm, pgd, addr);
2032         if (pud) {
2033                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2034                 if (pmd) {
2035                         VM_BUG_ON(pmd_trans_huge(*pmd));
2036                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2037                 }
2038         }
2039         return NULL;
2040 }
2041
2042 /*
2043  * This is the old fallback for page remapping.
2044  *
2045  * For historical reasons, it only allows reserved pages. Only
2046  * old drivers should use this, and they needed to mark their
2047  * pages reserved for the old functions anyway.
2048  */
2049 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2050                         struct page *page, pgprot_t prot)
2051 {
2052         struct mm_struct *mm = vma->vm_mm;
2053         int retval;
2054         pte_t *pte;
2055         spinlock_t *ptl;
2056
2057         retval = -EINVAL;
2058         if (PageAnon(page))
2059                 goto out;
2060         retval = -ENOMEM;
2061         flush_dcache_page(page);
2062         pte = get_locked_pte(mm, addr, &ptl);
2063         if (!pte)
2064                 goto out;
2065         retval = -EBUSY;
2066         if (!pte_none(*pte))
2067                 goto out_unlock;
2068
2069         /* Ok, finally just insert the thing.. */
2070         get_page(page);
2071         inc_mm_counter_fast(mm, MM_FILEPAGES);
2072         page_add_file_rmap(page);
2073         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2074
2075         retval = 0;
2076         pte_unmap_unlock(pte, ptl);
2077         return retval;
2078 out_unlock:
2079         pte_unmap_unlock(pte, ptl);
2080 out:
2081         return retval;
2082 }
2083
2084 /**
2085  * vm_insert_page - insert single page into user vma
2086  * @vma: user vma to map to
2087  * @addr: target user address of this page
2088  * @page: source kernel page
2089  *
2090  * This allows drivers to insert individual pages they've allocated
2091  * into a user vma.
2092  *
2093  * The page has to be a nice clean _individual_ kernel allocation.
2094  * If you allocate a compound page, you need to have marked it as
2095  * such (__GFP_COMP), or manually just split the page up yourself
2096  * (see split_page()).
2097  *
2098  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2099  * took an arbitrary page protection parameter. This doesn't allow
2100  * that. Your vma protection will have to be set up correctly, which
2101  * means that if you want a shared writable mapping, you'd better
2102  * ask for a shared writable mapping!
2103  *
2104  * The page does not need to be reserved.
2105  *
2106  * Usually this function is called from f_op->mmap() handler
2107  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2108  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2109  * function from other places, for example from page-fault handler.
2110  */
2111 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2112                         struct page *page)
2113 {
2114         if (addr < vma->vm_start || addr >= vma->vm_end)
2115                 return -EFAULT;
2116         if (!page_count(page))
2117                 return -EINVAL;
2118         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2119                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2120                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2121                 vma->vm_flags |= VM_MIXEDMAP;
2122         }
2123         return insert_page(vma, addr, page, vma->vm_page_prot);
2124 }
2125 EXPORT_SYMBOL(vm_insert_page);
2126
2127 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2128                         unsigned long pfn, pgprot_t prot)
2129 {
2130         struct mm_struct *mm = vma->vm_mm;
2131         int retval;
2132         pte_t *pte, entry;
2133         spinlock_t *ptl;
2134
2135         retval = -ENOMEM;
2136         pte = get_locked_pte(mm, addr, &ptl);
2137         if (!pte)
2138                 goto out;
2139         retval = -EBUSY;
2140         if (!pte_none(*pte))
2141                 goto out_unlock;
2142
2143         /* Ok, finally just insert the thing.. */
2144         entry = pte_mkspecial(pfn_pte(pfn, prot));
2145         set_pte_at(mm, addr, pte, entry);
2146         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2147
2148         retval = 0;
2149 out_unlock:
2150         pte_unmap_unlock(pte, ptl);
2151 out:
2152         return retval;
2153 }
2154
2155 /**
2156  * vm_insert_pfn - insert single pfn into user vma
2157  * @vma: user vma to map to
2158  * @addr: target user address of this page
2159  * @pfn: source kernel pfn
2160  *
2161  * Similar to vm_insert_page, this allows drivers to insert individual pages
2162  * they've allocated into a user vma. Same comments apply.
2163  *
2164  * This function should only be called from a vm_ops->fault handler, and
2165  * in that case the handler should return NULL.
2166  *
2167  * vma cannot be a COW mapping.
2168  *
2169  * As this is called only for pages that do not currently exist, we
2170  * do not need to flush old virtual caches or the TLB.
2171  */
2172 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2173                         unsigned long pfn)
2174 {
2175         int ret;
2176         pgprot_t pgprot = vma->vm_page_prot;
2177         /*
2178          * Technically, architectures with pte_special can avoid all these
2179          * restrictions (same for remap_pfn_range).  However we would like
2180          * consistency in testing and feature parity among all, so we should
2181          * try to keep these invariants in place for everybody.
2182          */
2183         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2184         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2185                                                 (VM_PFNMAP|VM_MIXEDMAP));
2186         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2187         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2188
2189         if (addr < vma->vm_start || addr >= vma->vm_end)
2190                 return -EFAULT;
2191         if (track_pfn_insert(vma, &pgprot, pfn))
2192                 return -EINVAL;
2193
2194         ret = insert_pfn(vma, addr, pfn, pgprot);
2195
2196         return ret;
2197 }
2198 EXPORT_SYMBOL(vm_insert_pfn);
2199
2200 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2201                         unsigned long pfn)
2202 {
2203         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2204
2205         if (addr < vma->vm_start || addr >= vma->vm_end)
2206                 return -EFAULT;
2207
2208         /*
2209          * If we don't have pte special, then we have to use the pfn_valid()
2210          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2211          * refcount the page if pfn_valid is true (hence insert_page rather
2212          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2213          * without pte special, it would there be refcounted as a normal page.
2214          */
2215         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2216                 struct page *page;
2217
2218                 page = pfn_to_page(pfn);
2219                 return insert_page(vma, addr, page, vma->vm_page_prot);
2220         }
2221         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2222 }
2223 EXPORT_SYMBOL(vm_insert_mixed);
2224
2225 /*
2226  * maps a range of physical memory into the requested pages. the old
2227  * mappings are removed. any references to nonexistent pages results
2228  * in null mappings (currently treated as "copy-on-access")
2229  */
2230 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2231                         unsigned long addr, unsigned long end,
2232                         unsigned long pfn, pgprot_t prot)
2233 {
2234         pte_t *pte;
2235         spinlock_t *ptl;
2236
2237         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2238         if (!pte)
2239                 return -ENOMEM;
2240         arch_enter_lazy_mmu_mode();
2241         do {
2242                 BUG_ON(!pte_none(*pte));
2243                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2244                 pfn++;
2245         } while (pte++, addr += PAGE_SIZE, addr != end);
2246         arch_leave_lazy_mmu_mode();
2247         pte_unmap_unlock(pte - 1, ptl);
2248         return 0;
2249 }
2250
2251 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2252                         unsigned long addr, unsigned long end,
2253                         unsigned long pfn, pgprot_t prot)
2254 {
2255         pmd_t *pmd;
2256         unsigned long next;
2257
2258         pfn -= addr >> PAGE_SHIFT;
2259         pmd = pmd_alloc(mm, pud, addr);
2260         if (!pmd)
2261                 return -ENOMEM;
2262         VM_BUG_ON(pmd_trans_huge(*pmd));
2263         do {
2264                 next = pmd_addr_end(addr, end);
2265                 if (remap_pte_range(mm, pmd, addr, next,
2266                                 pfn + (addr >> PAGE_SHIFT), prot))
2267                         return -ENOMEM;
2268         } while (pmd++, addr = next, addr != end);
2269         return 0;
2270 }
2271
2272 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2273                         unsigned long addr, unsigned long end,
2274                         unsigned long pfn, pgprot_t prot)
2275 {
2276         pud_t *pud;
2277         unsigned long next;
2278
2279         pfn -= addr >> PAGE_SHIFT;
2280         pud = pud_alloc(mm, pgd, addr);
2281         if (!pud)
2282                 return -ENOMEM;
2283         do {
2284                 next = pud_addr_end(addr, end);
2285                 if (remap_pmd_range(mm, pud, addr, next,
2286                                 pfn + (addr >> PAGE_SHIFT), prot))
2287                         return -ENOMEM;
2288         } while (pud++, addr = next, addr != end);
2289         return 0;
2290 }
2291
2292 /**
2293  * remap_pfn_range - remap kernel memory to userspace
2294  * @vma: user vma to map to
2295  * @addr: target user address to start at
2296  * @pfn: physical address of kernel memory
2297  * @size: size of map area
2298  * @prot: page protection flags for this mapping
2299  *
2300  *  Note: this is only safe if the mm semaphore is held when called.
2301  */
2302 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2303                     unsigned long pfn, unsigned long size, pgprot_t prot)
2304 {
2305         pgd_t *pgd;
2306         unsigned long next;
2307         unsigned long end = addr + PAGE_ALIGN(size);
2308         struct mm_struct *mm = vma->vm_mm;
2309         int err;
2310
2311         /*
2312          * Physically remapped pages are special. Tell the
2313          * rest of the world about it:
2314          *   VM_IO tells people not to look at these pages
2315          *      (accesses can have side effects).
2316          *   VM_PFNMAP tells the core MM that the base pages are just
2317          *      raw PFN mappings, and do not have a "struct page" associated
2318          *      with them.
2319          *   VM_DONTEXPAND
2320          *      Disable vma merging and expanding with mremap().
2321          *   VM_DONTDUMP
2322          *      Omit vma from core dump, even when VM_IO turned off.
2323          *
2324          * There's a horrible special case to handle copy-on-write
2325          * behaviour that some programs depend on. We mark the "original"
2326          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2327          * See vm_normal_page() for details.
2328          */
2329         if (is_cow_mapping(vma->vm_flags)) {
2330                 if (addr != vma->vm_start || end != vma->vm_end)
2331                         return -EINVAL;
2332                 vma->vm_pgoff = pfn;
2333         }
2334
2335         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2336         if (err)
2337                 return -EINVAL;
2338
2339         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2340
2341         BUG_ON(addr >= end);
2342         pfn -= addr >> PAGE_SHIFT;
2343         pgd = pgd_offset(mm, addr);
2344         flush_cache_range(vma, addr, end);
2345         do {
2346                 next = pgd_addr_end(addr, end);
2347                 err = remap_pud_range(mm, pgd, addr, next,
2348                                 pfn + (addr >> PAGE_SHIFT), prot);
2349                 if (err)
2350                         break;
2351         } while (pgd++, addr = next, addr != end);
2352
2353         if (err)
2354                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2355
2356         return err;
2357 }
2358 EXPORT_SYMBOL(remap_pfn_range);
2359
2360 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2361                                      unsigned long addr, unsigned long end,
2362                                      pte_fn_t fn, void *data)
2363 {
2364         pte_t *pte;
2365         int err;
2366         pgtable_t token;
2367         spinlock_t *uninitialized_var(ptl);
2368
2369         pte = (mm == &init_mm) ?
2370                 pte_alloc_kernel(pmd, addr) :
2371                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2372         if (!pte)
2373                 return -ENOMEM;
2374
2375         BUG_ON(pmd_huge(*pmd));
2376
2377         arch_enter_lazy_mmu_mode();
2378
2379         token = pmd_pgtable(*pmd);
2380
2381         do {
2382                 err = fn(pte++, token, addr, data);
2383                 if (err)
2384                         break;
2385         } while (addr += PAGE_SIZE, addr != end);
2386
2387         arch_leave_lazy_mmu_mode();
2388
2389         if (mm != &init_mm)
2390                 pte_unmap_unlock(pte-1, ptl);
2391         return err;
2392 }
2393
2394 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2395                                      unsigned long addr, unsigned long end,
2396                                      pte_fn_t fn, void *data)
2397 {
2398         pmd_t *pmd;
2399         unsigned long next;
2400         int err;
2401
2402         BUG_ON(pud_huge(*pud));
2403
2404         pmd = pmd_alloc(mm, pud, addr);
2405         if (!pmd)
2406                 return -ENOMEM;
2407         do {
2408                 next = pmd_addr_end(addr, end);
2409                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2410                 if (err)
2411                         break;
2412         } while (pmd++, addr = next, addr != end);
2413         return err;
2414 }
2415
2416 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2417                                      unsigned long addr, unsigned long end,
2418                                      pte_fn_t fn, void *data)
2419 {
2420         pud_t *pud;
2421         unsigned long next;
2422         int err;
2423
2424         pud = pud_alloc(mm, pgd, addr);
2425         if (!pud)
2426                 return -ENOMEM;
2427         do {
2428                 next = pud_addr_end(addr, end);
2429                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2430                 if (err)
2431                         break;
2432         } while (pud++, addr = next, addr != end);
2433         return err;
2434 }
2435
2436 /*
2437  * Scan a region of virtual memory, filling in page tables as necessary
2438  * and calling a provided function on each leaf page table.
2439  */
2440 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2441                         unsigned long size, pte_fn_t fn, void *data)
2442 {
2443         pgd_t *pgd;
2444         unsigned long next;
2445         unsigned long end = addr + size;
2446         int err;
2447
2448         BUG_ON(addr >= end);
2449         pgd = pgd_offset(mm, addr);
2450         do {
2451                 next = pgd_addr_end(addr, end);
2452                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2453                 if (err)
2454                         break;
2455         } while (pgd++, addr = next, addr != end);
2456
2457         return err;
2458 }
2459 EXPORT_SYMBOL_GPL(apply_to_page_range);
2460
2461 /*
2462  * handle_pte_fault chooses page fault handler according to an entry
2463  * which was read non-atomically.  Before making any commitment, on
2464  * those architectures or configurations (e.g. i386 with PAE) which
2465  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2466  * must check under lock before unmapping the pte and proceeding
2467  * (but do_wp_page is only called after already making such a check;
2468  * and do_anonymous_page can safely check later on).
2469  */
2470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2471                                 pte_t *page_table, pte_t orig_pte)
2472 {
2473         int same = 1;
2474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2475         if (sizeof(pte_t) > sizeof(unsigned long)) {
2476                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2477                 spin_lock(ptl);
2478                 same = pte_same(*page_table, orig_pte);
2479                 spin_unlock(ptl);
2480         }
2481 #endif
2482         pte_unmap(page_table);
2483         return same;
2484 }
2485
2486 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2487 {
2488         /*
2489          * If the source page was a PFN mapping, we don't have
2490          * a "struct page" for it. We do a best-effort copy by
2491          * just copying from the original user address. If that
2492          * fails, we just zero-fill it. Live with it.
2493          */
2494         if (unlikely(!src)) {
2495                 void *kaddr = kmap_atomic(dst);
2496                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2497
2498                 /*
2499                  * This really shouldn't fail, because the page is there
2500                  * in the page tables. But it might just be unreadable,
2501                  * in which case we just give up and fill the result with
2502                  * zeroes.
2503                  */
2504                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2505                         clear_page(kaddr);
2506                 kunmap_atomic(kaddr);
2507                 flush_dcache_page(dst);
2508         } else
2509                 copy_user_highpage(dst, src, va, vma);
2510 }
2511
2512 /*
2513  * This routine handles present pages, when users try to write
2514  * to a shared page. It is done by copying the page to a new address
2515  * and decrementing the shared-page counter for the old page.
2516  *
2517  * Note that this routine assumes that the protection checks have been
2518  * done by the caller (the low-level page fault routine in most cases).
2519  * Thus we can safely just mark it writable once we've done any necessary
2520  * COW.
2521  *
2522  * We also mark the page dirty at this point even though the page will
2523  * change only once the write actually happens. This avoids a few races,
2524  * and potentially makes it more efficient.
2525  *
2526  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527  * but allow concurrent faults), with pte both mapped and locked.
2528  * We return with mmap_sem still held, but pte unmapped and unlocked.
2529  */
2530 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2531                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2532                 spinlock_t *ptl, pte_t orig_pte)
2533         __releases(ptl)
2534 {
2535         struct page *old_page, *new_page = NULL;
2536         pte_t entry;
2537         int ret = 0;
2538         int page_mkwrite = 0;
2539         struct page *dirty_page = NULL;
2540         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2541         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2542
2543         old_page = vm_normal_page(vma, address, orig_pte);
2544         if (!old_page) {
2545                 /*
2546                  * VM_MIXEDMAP !pfn_valid() case
2547                  *
2548                  * We should not cow pages in a shared writeable mapping.
2549                  * Just mark the pages writable as we can't do any dirty
2550                  * accounting on raw pfn maps.
2551                  */
2552                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553                                      (VM_WRITE|VM_SHARED))
2554                         goto reuse;
2555                 goto gotten;
2556         }
2557
2558         /*
2559          * Take out anonymous pages first, anonymous shared vmas are
2560          * not dirty accountable.
2561          */
2562         if (PageAnon(old_page) && !PageKsm(old_page)) {
2563                 if (!trylock_page(old_page)) {
2564                         page_cache_get(old_page);
2565                         pte_unmap_unlock(page_table, ptl);
2566                         lock_page(old_page);
2567                         page_table = pte_offset_map_lock(mm, pmd, address,
2568                                                          &ptl);
2569                         if (!pte_same(*page_table, orig_pte)) {
2570                                 unlock_page(old_page);
2571                                 goto unlock;
2572                         }
2573                         page_cache_release(old_page);
2574                 }
2575                 if (reuse_swap_page(old_page)) {
2576                         /*
2577                          * The page is all ours.  Move it to our anon_vma so
2578                          * the rmap code will not search our parent or siblings.
2579                          * Protected against the rmap code by the page lock.
2580                          */
2581                         page_move_anon_rmap(old_page, vma, address);
2582                         unlock_page(old_page);
2583                         goto reuse;
2584                 }
2585                 unlock_page(old_page);
2586         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2587                                         (VM_WRITE|VM_SHARED))) {
2588                 /*
2589                  * Only catch write-faults on shared writable pages,
2590                  * read-only shared pages can get COWed by
2591                  * get_user_pages(.write=1, .force=1).
2592                  */
2593                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2594                         struct vm_fault vmf;
2595                         int tmp;
2596
2597                         vmf.virtual_address = (void __user *)(address &
2598                                                                 PAGE_MASK);
2599                         vmf.pgoff = old_page->index;
2600                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2601                         vmf.page = old_page;
2602
2603                         /*
2604                          * Notify the address space that the page is about to
2605                          * become writable so that it can prohibit this or wait
2606                          * for the page to get into an appropriate state.
2607                          *
2608                          * We do this without the lock held, so that it can
2609                          * sleep if it needs to.
2610                          */
2611                         page_cache_get(old_page);
2612                         pte_unmap_unlock(page_table, ptl);
2613
2614                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2615                         if (unlikely(tmp &
2616                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2617                                 ret = tmp;
2618                                 goto unwritable_page;
2619                         }
2620                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2621                                 lock_page(old_page);
2622                                 if (!old_page->mapping) {
2623                                         ret = 0; /* retry the fault */
2624                                         unlock_page(old_page);
2625                                         goto unwritable_page;
2626                                 }
2627                         } else
2628                                 VM_BUG_ON(!PageLocked(old_page));
2629
2630                         /*
2631                          * Since we dropped the lock we need to revalidate
2632                          * the PTE as someone else may have changed it.  If
2633                          * they did, we just return, as we can count on the
2634                          * MMU to tell us if they didn't also make it writable.
2635                          */
2636                         page_table = pte_offset_map_lock(mm, pmd, address,
2637                                                          &ptl);
2638                         if (!pte_same(*page_table, orig_pte)) {
2639                                 unlock_page(old_page);
2640                                 goto unlock;
2641                         }
2642
2643                         page_mkwrite = 1;
2644                 }
2645                 dirty_page = old_page;
2646                 get_page(dirty_page);
2647
2648 reuse:
2649                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2650                 entry = pte_mkyoung(orig_pte);
2651                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2652                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2653                         update_mmu_cache(vma, address, page_table);
2654                 pte_unmap_unlock(page_table, ptl);
2655                 ret |= VM_FAULT_WRITE;
2656
2657                 if (!dirty_page)
2658                         return ret;
2659
2660                 /*
2661                  * Yes, Virginia, this is actually required to prevent a race
2662                  * with clear_page_dirty_for_io() from clearing the page dirty
2663                  * bit after it clear all dirty ptes, but before a racing
2664                  * do_wp_page installs a dirty pte.
2665                  *
2666                  * __do_fault is protected similarly.
2667                  */
2668                 if (!page_mkwrite) {
2669                         wait_on_page_locked(dirty_page);
2670                         set_page_dirty_balance(dirty_page, page_mkwrite);
2671                         /* file_update_time outside page_lock */
2672                         if (vma->vm_file)
2673                                 file_update_time(vma->vm_file);
2674                 }
2675                 put_page(dirty_page);
2676                 if (page_mkwrite) {
2677                         struct address_space *mapping = dirty_page->mapping;
2678
2679                         set_page_dirty(dirty_page);
2680                         unlock_page(dirty_page);
2681                         page_cache_release(dirty_page);
2682                         if (mapping)    {
2683                                 /*
2684                                  * Some device drivers do not set page.mapping
2685                                  * but still dirty their pages
2686                                  */
2687                                 balance_dirty_pages_ratelimited(mapping);
2688                         }
2689                 }
2690
2691                 return ret;
2692         }
2693
2694         /*
2695          * Ok, we need to copy. Oh, well..
2696          */
2697         page_cache_get(old_page);
2698 gotten:
2699         pte_unmap_unlock(page_table, ptl);
2700
2701         if (unlikely(anon_vma_prepare(vma)))
2702                 goto oom;
2703
2704         if (is_zero_pfn(pte_pfn(orig_pte))) {
2705                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2706                 if (!new_page)
2707                         goto oom;
2708         } else {
2709                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2710                 if (!new_page)
2711                         goto oom;
2712                 cow_user_page(new_page, old_page, address, vma);
2713         }
2714         __SetPageUptodate(new_page);
2715
2716         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2717                 goto oom_free_new;
2718
2719         mmun_start  = address & PAGE_MASK;
2720         mmun_end    = mmun_start + PAGE_SIZE;
2721         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2722
2723         /*
2724          * Re-check the pte - we dropped the lock
2725          */
2726         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2727         if (likely(pte_same(*page_table, orig_pte))) {
2728                 if (old_page) {
2729                         if (!PageAnon(old_page)) {
2730                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2731                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2732                         }
2733                 } else
2734                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2735                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2736                 entry = mk_pte(new_page, vma->vm_page_prot);
2737                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2738                 /*
2739                  * Clear the pte entry and flush it first, before updating the
2740                  * pte with the new entry. This will avoid a race condition
2741                  * seen in the presence of one thread doing SMC and another
2742                  * thread doing COW.
2743                  */
2744                 ptep_clear_flush(vma, address, page_table);
2745                 page_add_new_anon_rmap(new_page, vma, address);
2746                 /*
2747                  * We call the notify macro here because, when using secondary
2748                  * mmu page tables (such as kvm shadow page tables), we want the
2749                  * new page to be mapped directly into the secondary page table.
2750                  */
2751                 set_pte_at_notify(mm, address, page_table, entry);
2752                 update_mmu_cache(vma, address, page_table);
2753                 if (old_page) {
2754                         /*
2755                          * Only after switching the pte to the new page may
2756                          * we remove the mapcount here. Otherwise another
2757                          * process may come and find the rmap count decremented
2758                          * before the pte is switched to the new page, and
2759                          * "reuse" the old page writing into it while our pte
2760                          * here still points into it and can be read by other
2761                          * threads.
2762                          *
2763                          * The critical issue is to order this
2764                          * page_remove_rmap with the ptp_clear_flush above.
2765                          * Those stores are ordered by (if nothing else,)
2766                          * the barrier present in the atomic_add_negative
2767                          * in page_remove_rmap.
2768                          *
2769                          * Then the TLB flush in ptep_clear_flush ensures that
2770                          * no process can access the old page before the
2771                          * decremented mapcount is visible. And the old page
2772                          * cannot be reused until after the decremented
2773                          * mapcount is visible. So transitively, TLBs to
2774                          * old page will be flushed before it can be reused.
2775                          */
2776                         page_remove_rmap(old_page);
2777                 }
2778
2779                 /* Free the old page.. */
2780                 new_page = old_page;
2781                 ret |= VM_FAULT_WRITE;
2782         } else
2783                 mem_cgroup_uncharge_page(new_page);
2784
2785         if (new_page)
2786                 page_cache_release(new_page);
2787 unlock:
2788         pte_unmap_unlock(page_table, ptl);
2789         if (mmun_end > mmun_start)
2790                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2791         if (old_page) {
2792                 /*
2793                  * Don't let another task, with possibly unlocked vma,
2794                  * keep the mlocked page.
2795                  */
2796                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2797                         lock_page(old_page);    /* LRU manipulation */
2798                         munlock_vma_page(old_page);
2799                         unlock_page(old_page);
2800                 }
2801                 page_cache_release(old_page);
2802         }
2803         return ret;
2804 oom_free_new:
2805         page_cache_release(new_page);
2806 oom:
2807         if (old_page)
2808                 page_cache_release(old_page);
2809         return VM_FAULT_OOM;
2810
2811 unwritable_page:
2812         page_cache_release(old_page);
2813         return ret;
2814 }
2815
2816 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2817                 unsigned long start_addr, unsigned long end_addr,
2818                 struct zap_details *details)
2819 {
2820         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2821 }
2822
2823 static inline void unmap_mapping_range_tree(struct rb_root *root,
2824                                             struct zap_details *details)
2825 {
2826         struct vm_area_struct *vma;
2827         pgoff_t vba, vea, zba, zea;
2828
2829         vma_interval_tree_foreach(vma, root,
2830                         details->first_index, details->last_index) {
2831
2832                 vba = vma->vm_pgoff;
2833                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2834                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2835                 zba = details->first_index;
2836                 if (zba < vba)
2837                         zba = vba;
2838                 zea = details->last_index;
2839                 if (zea > vea)
2840                         zea = vea;
2841
2842                 unmap_mapping_range_vma(vma,
2843                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2844                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2845                                 details);
2846         }
2847 }
2848
2849 static inline void unmap_mapping_range_list(struct list_head *head,
2850                                             struct zap_details *details)
2851 {
2852         struct vm_area_struct *vma;
2853
2854         /*
2855          * In nonlinear VMAs there is no correspondence between virtual address
2856          * offset and file offset.  So we must perform an exhaustive search
2857          * across *all* the pages in each nonlinear VMA, not just the pages
2858          * whose virtual address lies outside the file truncation point.
2859          */
2860         list_for_each_entry(vma, head, shared.nonlinear) {
2861                 details->nonlinear_vma = vma;
2862                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2863         }
2864 }
2865
2866 /**
2867  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2868  * @mapping: the address space containing mmaps to be unmapped.
2869  * @holebegin: byte in first page to unmap, relative to the start of
2870  * the underlying file.  This will be rounded down to a PAGE_SIZE
2871  * boundary.  Note that this is different from truncate_pagecache(), which
2872  * must keep the partial page.  In contrast, we must get rid of
2873  * partial pages.
2874  * @holelen: size of prospective hole in bytes.  This will be rounded
2875  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2876  * end of the file.
2877  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2878  * but 0 when invalidating pagecache, don't throw away private data.
2879  */
2880 void unmap_mapping_range(struct address_space *mapping,
2881                 loff_t const holebegin, loff_t const holelen, int even_cows)
2882 {
2883         struct zap_details details;
2884         pgoff_t hba = holebegin >> PAGE_SHIFT;
2885         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886
2887         /* Check for overflow. */
2888         if (sizeof(holelen) > sizeof(hlen)) {
2889                 long long holeend =
2890                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2891                 if (holeend & ~(long long)ULONG_MAX)
2892                         hlen = ULONG_MAX - hba + 1;
2893         }
2894
2895         details.check_mapping = even_cows? NULL: mapping;
2896         details.nonlinear_vma = NULL;
2897         details.first_index = hba;
2898         details.last_index = hba + hlen - 1;
2899         if (details.last_index < details.first_index)
2900                 details.last_index = ULONG_MAX;
2901
2902
2903         mutex_lock(&mapping->i_mmap_mutex);
2904         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2905                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2906         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2907                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2908         mutex_unlock(&mapping->i_mmap_mutex);
2909 }
2910 EXPORT_SYMBOL(unmap_mapping_range);
2911
2912 /*
2913  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2914  * but allow concurrent faults), and pte mapped but not yet locked.
2915  * We return with mmap_sem still held, but pte unmapped and unlocked.
2916  */
2917 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2918                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2919                 unsigned int flags, pte_t orig_pte)
2920 {
2921         spinlock_t *ptl;
2922         struct page *page, *swapcache = NULL;
2923         swp_entry_t entry;
2924         pte_t pte;
2925         int locked;
2926         struct mem_cgroup *ptr;
2927         int exclusive = 0;
2928         int ret = 0;
2929
2930         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2931                 goto out;
2932
2933         entry = pte_to_swp_entry(orig_pte);
2934         if (unlikely(non_swap_entry(entry))) {
2935                 if (is_migration_entry(entry)) {
2936                         migration_entry_wait(mm, pmd, address);
2937                 } else if (is_hwpoison_entry(entry)) {
2938                         ret = VM_FAULT_HWPOISON;
2939                 } else {
2940                         print_bad_pte(vma, address, orig_pte, NULL);
2941                         ret = VM_FAULT_SIGBUS;
2942                 }
2943                 goto out;
2944         }
2945         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2946         page = lookup_swap_cache(entry);
2947         if (!page) {
2948                 page = swapin_readahead(entry,
2949                                         GFP_HIGHUSER_MOVABLE, vma, address);
2950                 if (!page) {
2951                         /*
2952                          * Back out if somebody else faulted in this pte
2953                          * while we released the pte lock.
2954                          */
2955                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2956                         if (likely(pte_same(*page_table, orig_pte)))
2957                                 ret = VM_FAULT_OOM;
2958                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2959                         goto unlock;
2960                 }
2961
2962                 /* Had to read the page from swap area: Major fault */
2963                 ret = VM_FAULT_MAJOR;
2964                 count_vm_event(PGMAJFAULT);
2965                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2966         } else if (PageHWPoison(page)) {
2967                 /*
2968                  * hwpoisoned dirty swapcache pages are kept for killing
2969                  * owner processes (which may be unknown at hwpoison time)
2970                  */
2971                 ret = VM_FAULT_HWPOISON;
2972                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973                 goto out_release;
2974         }
2975
2976         locked = lock_page_or_retry(page, mm, flags);
2977
2978         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979         if (!locked) {
2980                 ret |= VM_FAULT_RETRY;
2981                 goto out_release;
2982         }
2983
2984         /*
2985          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2986          * release the swapcache from under us.  The page pin, and pte_same
2987          * test below, are not enough to exclude that.  Even if it is still
2988          * swapcache, we need to check that the page's swap has not changed.
2989          */
2990         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2991                 goto out_page;
2992
2993         if (ksm_might_need_to_copy(page, vma, address)) {
2994                 swapcache = page;
2995                 page = ksm_does_need_to_copy(page, vma, address);
2996
2997                 if (unlikely(!page)) {
2998                         ret = VM_FAULT_OOM;
2999                         page = swapcache;
3000                         swapcache = NULL;
3001                         goto out_page;
3002                 }
3003         }
3004
3005         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3006                 ret = VM_FAULT_OOM;
3007                 goto out_page;
3008         }
3009
3010         /*
3011          * Back out if somebody else already faulted in this pte.
3012          */
3013         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3014         if (unlikely(!pte_same(*page_table, orig_pte)))
3015                 goto out_nomap;
3016
3017         if (unlikely(!PageUptodate(page))) {
3018                 ret = VM_FAULT_SIGBUS;
3019                 goto out_nomap;
3020         }
3021
3022         /*
3023          * The page isn't present yet, go ahead with the fault.
3024          *
3025          * Be careful about the sequence of operations here.
3026          * To get its accounting right, reuse_swap_page() must be called
3027          * while the page is counted on swap but not yet in mapcount i.e.
3028          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3029          * must be called after the swap_free(), or it will never succeed.
3030          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3031          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3032          * in page->private. In this case, a record in swap_cgroup  is silently
3033          * discarded at swap_free().
3034          */
3035
3036         inc_mm_counter_fast(mm, MM_ANONPAGES);
3037         dec_mm_counter_fast(mm, MM_SWAPENTS);
3038         pte = mk_pte(page, vma->vm_page_prot);
3039         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3040                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3041                 flags &= ~FAULT_FLAG_WRITE;
3042                 ret |= VM_FAULT_WRITE;
3043                 exclusive = 1;
3044         }
3045         flush_icache_page(vma, page);
3046         set_pte_at(mm, address, page_table, pte);
3047         do_page_add_anon_rmap(page, vma, address, exclusive);
3048         /* It's better to call commit-charge after rmap is established */
3049         mem_cgroup_commit_charge_swapin(page, ptr);
3050
3051         swap_free(entry);
3052         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3053                 try_to_free_swap(page);
3054         unlock_page(page);
3055         if (swapcache) {
3056                 /*
3057                  * Hold the lock to avoid the swap entry to be reused
3058                  * until we take the PT lock for the pte_same() check
3059                  * (to avoid false positives from pte_same). For
3060                  * further safety release the lock after the swap_free
3061                  * so that the swap count won't change under a
3062                  * parallel locked swapcache.
3063                  */
3064                 unlock_page(swapcache);
3065                 page_cache_release(swapcache);
3066         }
3067
3068         if (flags & FAULT_FLAG_WRITE) {
3069                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3070                 if (ret & VM_FAULT_ERROR)
3071                         ret &= VM_FAULT_ERROR;
3072                 goto out;
3073         }
3074
3075         /* No need to invalidate - it was non-present before */
3076         update_mmu_cache(vma, address, page_table);
3077 unlock:
3078         pte_unmap_unlock(page_table, ptl);
3079 out:
3080         return ret;
3081 out_nomap:
3082         mem_cgroup_cancel_charge_swapin(ptr);
3083         pte_unmap_unlock(page_table, ptl);
3084 out_page:
3085         unlock_page(page);
3086 out_release:
3087         page_cache_release(page);
3088         if (swapcache) {
3089                 unlock_page(swapcache);
3090                 page_cache_release(swapcache);
3091         }
3092         return ret;
3093 }
3094
3095 /*
3096  * This is like a special single-page "expand_{down|up}wards()",
3097  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3098  * doesn't hit another vma.
3099  */
3100 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3101 {
3102         address &= PAGE_MASK;
3103         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3104                 struct vm_area_struct *prev = vma->vm_prev;
3105
3106                 /*
3107                  * Is there a mapping abutting this one below?
3108                  *
3109                  * That's only ok if it's the same stack mapping
3110                  * that has gotten split..
3111                  */
3112                 if (prev && prev->vm_end == address)
3113                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3114
3115                 expand_downwards(vma, address - PAGE_SIZE);
3116         }
3117         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3118                 struct vm_area_struct *next = vma->vm_next;
3119
3120                 /* As VM_GROWSDOWN but s/below/above/ */
3121                 if (next && next->vm_start == address + PAGE_SIZE)
3122                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3123
3124                 expand_upwards(vma, address + PAGE_SIZE);
3125         }
3126         return 0;
3127 }
3128
3129 /*
3130  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3131  * but allow concurrent faults), and pte mapped but not yet locked.
3132  * We return with mmap_sem still held, but pte unmapped and unlocked.
3133  */
3134 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3135                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3136                 unsigned int flags)
3137 {
3138         struct page *page;
3139         spinlock_t *ptl;
3140         pte_t entry;
3141
3142         pte_unmap(page_table);
3143
3144         /* Check if we need to add a guard page to the stack */
3145         if (check_stack_guard_page(vma, address) < 0)
3146                 return VM_FAULT_SIGBUS;
3147
3148         /* Use the zero-page for reads */
3149         if (!(flags & FAULT_FLAG_WRITE)) {
3150                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3151                                                 vma->vm_page_prot));
3152                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3153                 if (!pte_none(*page_table))
3154                         goto unlock;
3155                 goto setpte;
3156         }
3157
3158         /* Allocate our own private page. */
3159         if (unlikely(anon_vma_prepare(vma)))
3160                 goto oom;
3161         page = alloc_zeroed_user_highpage_movable(vma, address);
3162         if (!page)
3163                 goto oom;
3164         __SetPageUptodate(page);
3165
3166         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3167                 goto oom_free_page;
3168
3169         entry = mk_pte(page, vma->vm_page_prot);
3170         if (vma->vm_flags & VM_WRITE)
3171                 entry = pte_mkwrite(pte_mkdirty(entry));
3172
3173         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3174         if (!pte_none(*page_table))
3175                 goto release;
3176
3177         inc_mm_counter_fast(mm, MM_ANONPAGES);
3178         page_add_new_anon_rmap(page, vma, address);
3179 setpte:
3180         set_pte_at(mm, address, page_table, entry);
3181
3182         /* No need to invalidate - it was non-present before */
3183         update_mmu_cache(vma, address, page_table);
3184 unlock:
3185         pte_unmap_unlock(page_table, ptl);
3186         return 0;
3187 release:
3188         mem_cgroup_uncharge_page(page);
3189         page_cache_release(page);
3190         goto unlock;
3191 oom_free_page:
3192         page_cache_release(page);
3193 oom:
3194         return VM_FAULT_OOM;
3195 }
3196
3197 /*
3198  * __do_fault() tries to create a new page mapping. It aggressively
3199  * tries to share with existing pages, but makes a separate copy if
3200  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3201  * the next page fault.
3202  *
3203  * As this is called only for pages that do not currently exist, we
3204  * do not need to flush old virtual caches or the TLB.
3205  *
3206  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3207  * but allow concurrent faults), and pte neither mapped nor locked.
3208  * We return with mmap_sem still held, but pte unmapped and unlocked.
3209  */
3210 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3211                 unsigned long address, pmd_t *pmd,
3212                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3213 {
3214         pte_t *page_table;
3215         spinlock_t *ptl;
3216         struct page *page;
3217         struct page *cow_page;
3218         pte_t entry;
3219         int anon = 0;
3220         struct page *dirty_page = NULL;
3221         struct vm_fault vmf;
3222         int ret;
3223         int page_mkwrite = 0;
3224
3225         /*
3226          * If we do COW later, allocate page befor taking lock_page()
3227          * on the file cache page. This will reduce lock holding time.
3228          */
3229         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3230
3231                 if (unlikely(anon_vma_prepare(vma)))
3232                         return VM_FAULT_OOM;
3233
3234                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3235                 if (!cow_page)
3236                         return VM_FAULT_OOM;
3237
3238                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3239                         page_cache_release(cow_page);
3240                         return VM_FAULT_OOM;
3241                 }
3242         } else
3243                 cow_page = NULL;
3244
3245         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3246         vmf.pgoff = pgoff;
3247         vmf.flags = flags;
3248         vmf.page = NULL;
3249
3250         ret = vma->vm_ops->fault(vma, &vmf);
3251         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3252                             VM_FAULT_RETRY)))
3253                 goto uncharge_out;
3254
3255         if (unlikely(PageHWPoison(vmf.page))) {
3256                 if (ret & VM_FAULT_LOCKED)
3257                         unlock_page(vmf.page);
3258                 ret = VM_FAULT_HWPOISON;
3259                 goto uncharge_out;
3260         }
3261
3262         /*
3263          * For consistency in subsequent calls, make the faulted page always
3264          * locked.
3265          */
3266         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3267                 lock_page(vmf.page);
3268         else
3269                 VM_BUG_ON(!PageLocked(vmf.page));
3270
3271         /*
3272          * Should we do an early C-O-W break?
3273          */
3274         page = vmf.page;
3275         if (flags & FAULT_FLAG_WRITE) {
3276                 if (!(vma->vm_flags & VM_SHARED)) {
3277                         page = cow_page;
3278                         anon = 1;
3279                         copy_user_highpage(page, vmf.page, address, vma);
3280                         __SetPageUptodate(page);
3281                 } else {
3282                         /*
3283                          * If the page will be shareable, see if the backing
3284                          * address space wants to know that the page is about
3285                          * to become writable
3286                          */
3287                         if (vma->vm_ops->page_mkwrite) {
3288                                 int tmp;
3289
3290                                 unlock_page(page);
3291                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3292                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3293                                 if (unlikely(tmp &
3294                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3295                                         ret = tmp;
3296                                         goto unwritable_page;
3297                                 }
3298                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3299                                         lock_page(page);
3300                                         if (!page->mapping) {
3301                                                 ret = 0; /* retry the fault */
3302                                                 unlock_page(page);
3303                                                 goto unwritable_page;
3304                                         }
3305                                 } else
3306                                         VM_BUG_ON(!PageLocked(page));
3307                                 page_mkwrite = 1;
3308                         }
3309                 }
3310
3311         }
3312
3313         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3314
3315         /*
3316          * This silly early PAGE_DIRTY setting removes a race
3317          * due to the bad i386 page protection. But it's valid
3318          * for other architectures too.
3319          *
3320          * Note that if FAULT_FLAG_WRITE is set, we either now have
3321          * an exclusive copy of the page, or this is a shared mapping,
3322          * so we can make it writable and dirty to avoid having to
3323          * handle that later.
3324          */
3325         /* Only go through if we didn't race with anybody else... */
3326         if (likely(pte_same(*page_table, orig_pte))) {
3327                 flush_icache_page(vma, page);
3328                 entry = mk_pte(page, vma->vm_page_prot);
3329                 if (flags & FAULT_FLAG_WRITE)
3330                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3331                 if (anon) {
3332                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3333                         page_add_new_anon_rmap(page, vma, address);
3334                 } else {
3335                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3336                         page_add_file_rmap(page);
3337                         if (flags & FAULT_FLAG_WRITE) {
3338                                 dirty_page = page;
3339                                 get_page(dirty_page);
3340                         }
3341                 }
3342                 set_pte_at(mm, address, page_table, entry);
3343
3344                 /* no need to invalidate: a not-present page won't be cached */
3345                 update_mmu_cache(vma, address, page_table);
3346         } else {
3347                 if (cow_page)
3348                         mem_cgroup_uncharge_page(cow_page);
3349                 if (anon)
3350                         page_cache_release(page);
3351                 else
3352                         anon = 1; /* no anon but release faulted_page */
3353         }
3354
3355         pte_unmap_unlock(page_table, ptl);
3356
3357         if (dirty_page) {
3358                 struct address_space *mapping = page->mapping;
3359                 int dirtied = 0;
3360
3361                 if (set_page_dirty(dirty_page))
3362                         dirtied = 1;
3363                 unlock_page(dirty_page);
3364                 put_page(dirty_page);
3365                 if ((dirtied || page_mkwrite) && mapping) {
3366                         /*
3367                          * Some device drivers do not set page.mapping but still
3368                          * dirty their pages
3369                          */
3370                         balance_dirty_pages_ratelimited(mapping);
3371                 }
3372
3373                 /* file_update_time outside page_lock */
3374                 if (vma->vm_file && !page_mkwrite)
3375                         file_update_time(vma->vm_file);
3376         } else {
3377                 unlock_page(vmf.page);
3378                 if (anon)
3379                         page_cache_release(vmf.page);
3380         }
3381
3382         return ret;
3383
3384 unwritable_page:
3385         page_cache_release(page);
3386         return ret;
3387 uncharge_out:
3388         /* fs's fault handler get error */
3389         if (cow_page) {
3390                 mem_cgroup_uncharge_page(cow_page);
3391                 page_cache_release(cow_page);
3392         }
3393         return ret;
3394 }
3395
3396 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3397                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3398                 unsigned int flags, pte_t orig_pte)
3399 {
3400         pgoff_t pgoff = (((address & PAGE_MASK)
3401                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3402
3403         pte_unmap(page_table);
3404         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3405 }
3406
3407 /*
3408  * Fault of a previously existing named mapping. Repopulate the pte
3409  * from the encoded file_pte if possible. This enables swappable
3410  * nonlinear vmas.
3411  *
3412  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3413  * but allow concurrent faults), and pte mapped but not yet locked.
3414  * We return with mmap_sem still held, but pte unmapped and unlocked.
3415  */
3416 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3417                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3418                 unsigned int flags, pte_t orig_pte)
3419 {
3420         pgoff_t pgoff;
3421
3422         flags |= FAULT_FLAG_NONLINEAR;
3423
3424         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3425                 return 0;
3426
3427         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3428                 /*
3429                  * Page table corrupted: show pte and kill process.
3430                  */
3431                 print_bad_pte(vma, address, orig_pte, NULL);
3432                 return VM_FAULT_SIGBUS;
3433         }
3434
3435         pgoff = pte_to_pgoff(orig_pte);
3436         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3437 }
3438
3439 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3440                                 unsigned long addr, int current_nid)
3441 {
3442         get_page(page);
3443
3444         count_vm_numa_event(NUMA_HINT_FAULTS);
3445         if (current_nid == numa_node_id())
3446                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3447
3448         return mpol_misplaced(page, vma, addr);
3449 }
3450
3451 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3452                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3453 {
3454         struct page *page = NULL;
3455         spinlock_t *ptl;
3456         int current_nid = -1;
3457         int target_nid;
3458         bool migrated = false;
3459
3460         /*
3461         * The "pte" at this point cannot be used safely without
3462         * validation through pte_unmap_same(). It's of NUMA type but
3463         * the pfn may be screwed if the read is non atomic.
3464         *
3465         * ptep_modify_prot_start is not called as this is clearing
3466         * the _PAGE_NUMA bit and it is not really expected that there
3467         * would be concurrent hardware modifications to the PTE.
3468         */
3469         ptl = pte_lockptr(mm, pmd);
3470         spin_lock(ptl);
3471         if (unlikely(!pte_same(*ptep, pte))) {
3472                 pte_unmap_unlock(ptep, ptl);
3473                 goto out;
3474         }
3475
3476         pte = pte_mknonnuma(pte);
3477         set_pte_at(mm, addr, ptep, pte);
3478         update_mmu_cache(vma, addr, ptep);
3479
3480         page = vm_normal_page(vma, addr, pte);
3481         if (!page) {
3482                 pte_unmap_unlock(ptep, ptl);
3483                 return 0;
3484         }
3485
3486         current_nid = page_to_nid(page);
3487         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3488         pte_unmap_unlock(ptep, ptl);
3489         if (target_nid == -1) {
3490                 /*
3491                  * Account for the fault against the current node if it not
3492                  * being replaced regardless of where the page is located.
3493                  */
3494                 current_nid = numa_node_id();
3495                 put_page(page);
3496                 goto out;
3497         }
3498
3499         /* Migrate to the requested node */
3500         migrated = migrate_misplaced_page(page, target_nid);
3501         if (migrated)
3502                 current_nid = target_nid;
3503
3504 out:
3505         if (current_nid != -1)
3506                 task_numa_fault(current_nid, 1, migrated);
3507         return 0;
3508 }
3509
3510 /* NUMA hinting page fault entry point for regular pmds */
3511 #ifdef CONFIG_NUMA_BALANCING
3512 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3513                      unsigned long addr, pmd_t *pmdp)
3514 {
3515         pmd_t pmd;
3516         pte_t *pte, *orig_pte;
3517         unsigned long _addr = addr & PMD_MASK;
3518         unsigned long offset;
3519         spinlock_t *ptl;
3520         bool numa = false;
3521         int local_nid = numa_node_id();
3522
3523         spin_lock(&mm->page_table_lock);
3524         pmd = *pmdp;
3525         if (pmd_numa(pmd)) {
3526                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3527                 numa = true;
3528         }
3529         spin_unlock(&mm->page_table_lock);
3530
3531         if (!numa)
3532                 return 0;
3533
3534         /* we're in a page fault so some vma must be in the range */
3535         BUG_ON(!vma);
3536         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3537         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3538         VM_BUG_ON(offset >= PMD_SIZE);
3539         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3540         pte += offset >> PAGE_SHIFT;
3541         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3542                 pte_t pteval = *pte;
3543                 struct page *page;
3544                 int curr_nid = local_nid;
3545                 int target_nid;
3546                 bool migrated;
3547                 if (!pte_present(pteval))
3548                         continue;
3549                 if (!pte_numa(pteval))
3550                         continue;
3551                 if (addr >= vma->vm_end) {
3552                         vma = find_vma(mm, addr);
3553                         /* there's a pte present so there must be a vma */
3554                         BUG_ON(!vma);
3555                         BUG_ON(addr < vma->vm_start);
3556                 }
3557                 if (pte_numa(pteval)) {
3558                         pteval = pte_mknonnuma(pteval);
3559                         set_pte_at(mm, addr, pte, pteval);
3560                 }
3561                 page = vm_normal_page(vma, addr, pteval);
3562                 if (unlikely(!page))
3563                         continue;
3564                 /* only check non-shared pages */
3565                 if (unlikely(page_mapcount(page) != 1))
3566                         continue;
3567
3568                 /*
3569                  * Note that the NUMA fault is later accounted to either
3570                  * the node that is currently running or where the page is
3571                  * migrated to.
3572                  */
3573                 curr_nid = local_nid;
3574                 target_nid = numa_migrate_prep(page, vma, addr,
3575                                                page_to_nid(page));
3576                 if (target_nid == -1) {
3577                         put_page(page);
3578                         continue;
3579                 }
3580
3581                 /* Migrate to the requested node */
3582                 pte_unmap_unlock(pte, ptl);
3583                 migrated = migrate_misplaced_page(page, target_nid);
3584                 if (migrated)
3585                         curr_nid = target_nid;
3586                 task_numa_fault(curr_nid, 1, migrated);
3587
3588                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3589         }
3590         pte_unmap_unlock(orig_pte, ptl);
3591
3592         return 0;
3593 }
3594 #else
3595 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3596                      unsigned long addr, pmd_t *pmdp)
3597 {
3598         BUG();
3599         return 0;
3600 }
3601 #endif /* CONFIG_NUMA_BALANCING */
3602
3603 /*
3604  * These routines also need to handle stuff like marking pages dirty
3605  * and/or accessed for architectures that don't do it in hardware (most
3606  * RISC architectures).  The early dirtying is also good on the i386.
3607  *
3608  * There is also a hook called "update_mmu_cache()" that architectures
3609  * with external mmu caches can use to update those (ie the Sparc or
3610  * PowerPC hashed page tables that act as extended TLBs).
3611  *
3612  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3613  * but allow concurrent faults), and pte mapped but not yet locked.
3614  * We return with mmap_sem still held, but pte unmapped and unlocked.
3615  */
3616 int handle_pte_fault(struct mm_struct *mm,
3617                      struct vm_area_struct *vma, unsigned long address,
3618                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3619 {
3620         pte_t entry;
3621         spinlock_t *ptl;
3622
3623         entry = *pte;
3624         if (!pte_present(entry)) {
3625                 if (pte_none(entry)) {
3626                         if (vma->vm_ops) {
3627                                 if (likely(vma->vm_ops->fault))
3628                                         return do_linear_fault(mm, vma, address,
3629                                                 pte, pmd, flags, entry);
3630                         }
3631                         return do_anonymous_page(mm, vma, address,
3632                                                  pte, pmd, flags);
3633                 }
3634                 if (pte_file(entry))
3635                         return do_nonlinear_fault(mm, vma, address,
3636                                         pte, pmd, flags, entry);
3637                 return do_swap_page(mm, vma, address,
3638                                         pte, pmd, flags, entry);
3639         }
3640
3641         if (pte_numa(entry))
3642                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3643
3644         ptl = pte_lockptr(mm, pmd);
3645         spin_lock(ptl);
3646         if (unlikely(!pte_same(*pte, entry)))
3647                 goto unlock;
3648         if (flags & FAULT_FLAG_WRITE) {
3649                 if (!pte_write(entry))
3650                         return do_wp_page(mm, vma, address,
3651                                         pte, pmd, ptl, entry);
3652                 entry = pte_mkdirty(entry);
3653         }
3654         entry = pte_mkyoung(entry);
3655         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3656                 update_mmu_cache(vma, address, pte);
3657         } else {
3658                 /*
3659                  * This is needed only for protection faults but the arch code
3660                  * is not yet telling us if this is a protection fault or not.
3661                  * This still avoids useless tlb flushes for .text page faults
3662                  * with threads.
3663                  */
3664                 if (flags & FAULT_FLAG_WRITE)
3665                         flush_tlb_fix_spurious_fault(vma, address);
3666         }
3667 unlock:
3668         pte_unmap_unlock(pte, ptl);
3669         return 0;
3670 }
3671
3672 /*
3673  * By the time we get here, we already hold the mm semaphore
3674  */
3675 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3676                 unsigned long address, unsigned int flags)
3677 {
3678         pgd_t *pgd;
3679         pud_t *pud;
3680         pmd_t *pmd;
3681         pte_t *pte;
3682
3683         __set_current_state(TASK_RUNNING);
3684
3685         count_vm_event(PGFAULT);
3686         mem_cgroup_count_vm_event(mm, PGFAULT);
3687
3688         /* do counter updates before entering really critical section. */
3689         check_sync_rss_stat(current);
3690
3691         if (unlikely(is_vm_hugetlb_page(vma)))
3692                 return hugetlb_fault(mm, vma, address, flags);
3693
3694 retry:
3695         pgd = pgd_offset(mm, address);
3696         pud = pud_alloc(mm, pgd, address);
3697         if (!pud)
3698                 return VM_FAULT_OOM;
3699         pmd = pmd_alloc(mm, pud, address);
3700         if (!pmd)
3701                 return VM_FAULT_OOM;
3702         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3703                 if (!vma->vm_ops)
3704                         return do_huge_pmd_anonymous_page(mm, vma, address,
3705                                                           pmd, flags);
3706         } else {
3707                 pmd_t orig_pmd = *pmd;
3708                 int ret;
3709
3710                 barrier();
3711                 if (pmd_trans_huge(orig_pmd)) {
3712                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3713
3714                         /*
3715                          * If the pmd is splitting, return and retry the
3716                          * the fault.  Alternative: wait until the split
3717                          * is done, and goto retry.
3718                          */
3719                         if (pmd_trans_splitting(orig_pmd))
3720                                 return 0;
3721
3722                         if (pmd_numa(orig_pmd))
3723                                 return do_huge_pmd_numa_page(mm, vma, address,
3724                                                              orig_pmd, pmd);
3725
3726                         if (dirty && !pmd_write(orig_pmd)) {
3727                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3728                                                           orig_pmd);
3729                                 /*
3730                                  * If COW results in an oom, the huge pmd will
3731                                  * have been split, so retry the fault on the
3732                                  * pte for a smaller charge.
3733                                  */
3734                                 if (unlikely(ret & VM_FAULT_OOM))
3735                                         goto retry;
3736                                 return ret;
3737                         } else {
3738                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3739                                                       orig_pmd, dirty);
3740                         }
3741
3742                         return 0;
3743                 }
3744         }
3745
3746         if (pmd_numa(*pmd))
3747                 return do_pmd_numa_page(mm, vma, address, pmd);
3748
3749         /*
3750          * Use __pte_alloc instead of pte_alloc_map, because we can't
3751          * run pte_offset_map on the pmd, if an huge pmd could
3752          * materialize from under us from a different thread.
3753          */
3754         if (unlikely(pmd_none(*pmd)) &&
3755             unlikely(__pte_alloc(mm, vma, pmd, address)))
3756                 return VM_FAULT_OOM;
3757         /* if an huge pmd materialized from under us just retry later */
3758         if (unlikely(pmd_trans_huge(*pmd)))
3759                 return 0;
3760         /*
3761          * A regular pmd is established and it can't morph into a huge pmd
3762          * from under us anymore at this point because we hold the mmap_sem
3763          * read mode and khugepaged takes it in write mode. So now it's
3764          * safe to run pte_offset_map().
3765          */
3766         pte = pte_offset_map(pmd, address);
3767
3768         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3769 }
3770
3771 #ifndef __PAGETABLE_PUD_FOLDED
3772 /*
3773  * Allocate page upper directory.
3774  * We've already handled the fast-path in-line.
3775  */
3776 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3777 {
3778         pud_t *new = pud_alloc_one(mm, address);
3779         if (!new)
3780                 return -ENOMEM;
3781
3782         smp_wmb(); /* See comment in __pte_alloc */
3783
3784         spin_lock(&mm->page_table_lock);
3785         if (pgd_present(*pgd))          /* Another has populated it */
3786                 pud_free(mm, new);
3787         else
3788                 pgd_populate(mm, pgd, new);
3789         spin_unlock(&mm->page_table_lock);
3790         return 0;
3791 }
3792 #endif /* __PAGETABLE_PUD_FOLDED */
3793
3794 #ifndef __PAGETABLE_PMD_FOLDED
3795 /*
3796  * Allocate page middle directory.
3797  * We've already handled the fast-path in-line.
3798  */
3799 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3800 {
3801         pmd_t *new = pmd_alloc_one(mm, address);
3802         if (!new)
3803                 return -ENOMEM;
3804
3805         smp_wmb(); /* See comment in __pte_alloc */
3806
3807         spin_lock(&mm->page_table_lock);
3808 #ifndef __ARCH_HAS_4LEVEL_HACK
3809         if (pud_present(*pud))          /* Another has populated it */
3810                 pmd_free(mm, new);
3811         else
3812                 pud_populate(mm, pud, new);
3813 #else
3814         if (pgd_present(*pud))          /* Another has populated it */
3815                 pmd_free(mm, new);
3816         else
3817                 pgd_populate(mm, pud, new);
3818 #endif /* __ARCH_HAS_4LEVEL_HACK */
3819         spin_unlock(&mm->page_table_lock);
3820         return 0;
3821 }
3822 #endif /* __PAGETABLE_PMD_FOLDED */
3823
3824 int make_pages_present(unsigned long addr, unsigned long end)
3825 {
3826         int ret, len, write;
3827         struct vm_area_struct * vma;
3828
3829         vma = find_vma(current->mm, addr);
3830         if (!vma)
3831                 return -ENOMEM;
3832         /*
3833          * We want to touch writable mappings with a write fault in order
3834          * to break COW, except for shared mappings because these don't COW
3835          * and we would not want to dirty them for nothing.
3836          */
3837         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3838         BUG_ON(addr >= end);
3839         BUG_ON(end > vma->vm_end);
3840         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3841         ret = get_user_pages(current, current->mm, addr,
3842                         len, write, 0, NULL, NULL);
3843         if (ret < 0)
3844                 return ret;
3845         return ret == len ? 0 : -EFAULT;
3846 }
3847
3848 #if !defined(__HAVE_ARCH_GATE_AREA)
3849
3850 #if defined(AT_SYSINFO_EHDR)
3851 static struct vm_area_struct gate_vma;
3852
3853 static int __init gate_vma_init(void)
3854 {
3855         gate_vma.vm_mm = NULL;
3856         gate_vma.vm_start = FIXADDR_USER_START;
3857         gate_vma.vm_end = FIXADDR_USER_END;
3858         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3859         gate_vma.vm_page_prot = __P101;
3860
3861         return 0;
3862 }
3863 __initcall(gate_vma_init);
3864 #endif
3865
3866 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3867 {
3868 #ifdef AT_SYSINFO_EHDR
3869         return &gate_vma;
3870 #else
3871         return NULL;
3872 #endif
3873 }
3874
3875 int in_gate_area_no_mm(unsigned long addr)
3876 {
3877 #ifdef AT_SYSINFO_EHDR
3878         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3879                 return 1;
3880 #endif
3881         return 0;
3882 }
3883
3884 #endif  /* __HAVE_ARCH_GATE_AREA */
3885
3886 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3887                 pte_t **ptepp, spinlock_t **ptlp)
3888 {
3889         pgd_t *pgd;
3890         pud_t *pud;
3891         pmd_t *pmd;
3892         pte_t *ptep;
3893
3894         pgd = pgd_offset(mm, address);
3895         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3896                 goto out;
3897
3898         pud = pud_offset(pgd, address);
3899         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3900                 goto out;
3901
3902         pmd = pmd_offset(pud, address);
3903         VM_BUG_ON(pmd_trans_huge(*pmd));
3904         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3905                 goto out;
3906
3907         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3908         if (pmd_huge(*pmd))
3909                 goto out;
3910
3911         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3912         if (!ptep)
3913                 goto out;
3914         if (!pte_present(*ptep))
3915                 goto unlock;
3916         *ptepp = ptep;
3917         return 0;
3918 unlock:
3919         pte_unmap_unlock(ptep, *ptlp);
3920 out:
3921         return -EINVAL;
3922 }
3923
3924 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3925                              pte_t **ptepp, spinlock_t **ptlp)
3926 {
3927         int res;
3928
3929         /* (void) is needed to make gcc happy */
3930         (void) __cond_lock(*ptlp,
3931                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3932         return res;
3933 }
3934
3935 /**
3936  * follow_pfn - look up PFN at a user virtual address
3937  * @vma: memory mapping
3938  * @address: user virtual address
3939  * @pfn: location to store found PFN
3940  *
3941  * Only IO mappings and raw PFN mappings are allowed.
3942  *
3943  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3944  */
3945 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3946         unsigned long *pfn)
3947 {
3948         int ret = -EINVAL;
3949         spinlock_t *ptl;
3950         pte_t *ptep;
3951
3952         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3953                 return ret;
3954
3955         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3956         if (ret)
3957                 return ret;
3958         *pfn = pte_pfn(*ptep);
3959         pte_unmap_unlock(ptep, ptl);
3960         return 0;
3961 }
3962 EXPORT_SYMBOL(follow_pfn);
3963
3964 #ifdef CONFIG_HAVE_IOREMAP_PROT
3965 int follow_phys(struct vm_area_struct *vma,
3966                 unsigned long address, unsigned int flags,
3967                 unsigned long *prot, resource_size_t *phys)
3968 {
3969         int ret = -EINVAL;
3970         pte_t *ptep, pte;
3971         spinlock_t *ptl;
3972
3973         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3974                 goto out;
3975
3976         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3977                 goto out;
3978         pte = *ptep;
3979
3980         if ((flags & FOLL_WRITE) && !pte_write(pte))
3981                 goto unlock;
3982
3983         *prot = pgprot_val(pte_pgprot(pte));
3984         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3985
3986         ret = 0;
3987 unlock:
3988         pte_unmap_unlock(ptep, ptl);
3989 out:
3990         return ret;
3991 }
3992
3993 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3994                         void *buf, int len, int write)
3995 {
3996         resource_size_t phys_addr;
3997         unsigned long prot = 0;
3998         void __iomem *maddr;
3999         int offset = addr & (PAGE_SIZE-1);
4000
4001         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4002                 return -EINVAL;
4003
4004         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4005         if (write)
4006                 memcpy_toio(maddr + offset, buf, len);
4007         else
4008                 memcpy_fromio(buf, maddr + offset, len);
4009         iounmap(maddr);
4010
4011         return len;
4012 }
4013 #endif
4014
4015 /*
4016  * Access another process' address space as given in mm.  If non-NULL, use the
4017  * given task for page fault accounting.
4018  */
4019 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4020                 unsigned long addr, void *buf, int len, int write)
4021 {
4022         struct vm_area_struct *vma;
4023         void *old_buf = buf;
4024
4025         down_read(&mm->mmap_sem);
4026         /* ignore errors, just check how much was successfully transferred */
4027         while (len) {
4028                 int bytes, ret, offset;
4029                 void *maddr;
4030                 struct page *page = NULL;
4031
4032                 ret = get_user_pages(tsk, mm, addr, 1,
4033                                 write, 1, &page, &vma);
4034                 if (ret <= 0) {
4035                         /*
4036                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4037                          * we can access using slightly different code.
4038                          */
4039 #ifdef CONFIG_HAVE_IOREMAP_PROT
4040                         vma = find_vma(mm, addr);
4041                         if (!vma || vma->vm_start > addr)
4042                                 break;
4043                         if (vma->vm_ops && vma->vm_ops->access)
4044                                 ret = vma->vm_ops->access(vma, addr, buf,
4045                                                           len, write);
4046                         if (ret <= 0)
4047 #endif
4048                                 break;
4049                         bytes = ret;
4050                 } else {
4051                         bytes = len;
4052                         offset = addr & (PAGE_SIZE-1);
4053                         if (bytes > PAGE_SIZE-offset)
4054                                 bytes = PAGE_SIZE-offset;
4055
4056                         maddr = kmap(page);
4057                         if (write) {
4058                                 copy_to_user_page(vma, page, addr,
4059                                                   maddr + offset, buf, bytes);
4060                                 set_page_dirty_lock(page);
4061                         } else {
4062                                 copy_from_user_page(vma, page, addr,
4063                                                     buf, maddr + offset, bytes);
4064                         }
4065                         kunmap(page);
4066                         page_cache_release(page);
4067                 }
4068                 len -= bytes;
4069                 buf += bytes;
4070                 addr += bytes;
4071         }
4072         up_read(&mm->mmap_sem);
4073
4074         return buf - old_buf;
4075 }
4076
4077 /**
4078  * access_remote_vm - access another process' address space
4079  * @mm:         the mm_struct of the target address space
4080  * @addr:       start address to access
4081  * @buf:        source or destination buffer
4082  * @len:        number of bytes to transfer
4083  * @write:      whether the access is a write
4084  *
4085  * The caller must hold a reference on @mm.
4086  */
4087 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4088                 void *buf, int len, int write)
4089 {
4090         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4091 }
4092
4093 /*
4094  * Access another process' address space.
4095  * Source/target buffer must be kernel space,
4096  * Do not walk the page table directly, use get_user_pages
4097  */
4098 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4099                 void *buf, int len, int write)
4100 {
4101         struct mm_struct *mm;
4102         int ret;
4103
4104         mm = get_task_mm(tsk);
4105         if (!mm)
4106                 return 0;
4107
4108         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4109         mmput(mm);
4110
4111         return ret;
4112 }
4113
4114 /*
4115  * Print the name of a VMA.
4116  */
4117 void print_vma_addr(char *prefix, unsigned long ip)
4118 {
4119         struct mm_struct *mm = current->mm;
4120         struct vm_area_struct *vma;
4121
4122         /*
4123          * Do not print if we are in atomic
4124          * contexts (in exception stacks, etc.):
4125          */
4126         if (preempt_count())
4127                 return;
4128
4129         down_read(&mm->mmap_sem);
4130         vma = find_vma(mm, ip);
4131         if (vma && vma->vm_file) {
4132                 struct file *f = vma->vm_file;
4133                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4134                 if (buf) {
4135                         char *p;
4136
4137                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4138                         if (IS_ERR(p))
4139                                 p = "?";
4140                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4141                                         vma->vm_start,
4142                                         vma->vm_end - vma->vm_start);
4143                         free_page((unsigned long)buf);
4144                 }
4145         }
4146         up_read(&mm->mmap_sem);
4147 }
4148
4149 #ifdef CONFIG_PROVE_LOCKING
4150 void might_fault(void)
4151 {
4152         /*
4153          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4154          * holding the mmap_sem, this is safe because kernel memory doesn't
4155          * get paged out, therefore we'll never actually fault, and the
4156          * below annotations will generate false positives.
4157          */
4158         if (segment_eq(get_fs(), KERNEL_DS))
4159                 return;
4160
4161         might_sleep();
4162         /*
4163          * it would be nicer only to annotate paths which are not under
4164          * pagefault_disable, however that requires a larger audit and
4165          * providing helpers like get_user_atomic.
4166          */
4167         if (!in_atomic() && current->mm)
4168                 might_lock_read(&current->mm->mmap_sem);
4169 }
4170 EXPORT_SYMBOL(might_fault);
4171 #endif
4172
4173 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4174 static void clear_gigantic_page(struct page *page,
4175                                 unsigned long addr,
4176                                 unsigned int pages_per_huge_page)
4177 {
4178         int i;
4179         struct page *p = page;
4180
4181         might_sleep();
4182         for (i = 0; i < pages_per_huge_page;
4183              i++, p = mem_map_next(p, page, i)) {
4184                 cond_resched();
4185                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4186         }
4187 }
4188 void clear_huge_page(struct page *page,
4189                      unsigned long addr, unsigned int pages_per_huge_page)
4190 {
4191         int i;
4192
4193         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4194                 clear_gigantic_page(page, addr, pages_per_huge_page);
4195                 return;
4196         }
4197
4198         might_sleep();
4199         for (i = 0; i < pages_per_huge_page; i++) {
4200                 cond_resched();
4201                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4202         }
4203 }
4204
4205 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4206                                     unsigned long addr,
4207                                     struct vm_area_struct *vma,
4208                                     unsigned int pages_per_huge_page)
4209 {
4210         int i;
4211         struct page *dst_base = dst;
4212         struct page *src_base = src;
4213
4214         for (i = 0; i < pages_per_huge_page; ) {
4215                 cond_resched();
4216                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4217
4218                 i++;
4219                 dst = mem_map_next(dst, dst_base, i);
4220                 src = mem_map_next(src, src_base, i);
4221         }
4222 }
4223
4224 void copy_user_huge_page(struct page *dst, struct page *src,
4225                          unsigned long addr, struct vm_area_struct *vma,
4226                          unsigned int pages_per_huge_page)
4227 {
4228         int i;
4229
4230         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4231                 copy_user_gigantic_page(dst, src, addr, vma,
4232                                         pages_per_huge_page);
4233                 return;
4234         }
4235
4236         might_sleep();
4237         for (i = 0; i < pages_per_huge_page; i++) {
4238                 cond_resched();
4239                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4240         }
4241 }
4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */