Merge tag 'kvm-x86-selftests-6.6' of https://github.com/kvm-x86/linux into HEAD
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118                 return false;
119
120         return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141                                         1;
142 #else
143                                         2;
144 #endif
145
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149         /*
150          * Transitioning a PTE from 'old' to 'young' can be expensive on
151          * some architectures, even if it's performed in hardware. By
152          * default, "false" means prefaulted entries will be 'young'.
153          */
154         return false;
155 }
156 #endif
157
158 static int __init disable_randmaps(char *s)
159 {
160         randomize_va_space = 0;
161         return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167
168 unsigned long highest_memmap_pfn __read_mostly;
169
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175         zero_pfn = page_to_pfn(ZERO_PAGE(0));
176         return 0;
177 }
178 early_initcall(init_zero_pfn);
179
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182         trace_rss_stat(mm, member);
183 }
184
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190                            unsigned long addr)
191 {
192         pgtable_t token = pmd_pgtable(*pmd);
193         pmd_clear(pmd);
194         pte_free_tlb(tlb, token, addr);
195         mm_dec_nr_ptes(tlb->mm);
196 }
197
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199                                 unsigned long addr, unsigned long end,
200                                 unsigned long floor, unsigned long ceiling)
201 {
202         pmd_t *pmd;
203         unsigned long next;
204         unsigned long start;
205
206         start = addr;
207         pmd = pmd_offset(pud, addr);
208         do {
209                 next = pmd_addr_end(addr, end);
210                 if (pmd_none_or_clear_bad(pmd))
211                         continue;
212                 free_pte_range(tlb, pmd, addr);
213         } while (pmd++, addr = next, addr != end);
214
215         start &= PUD_MASK;
216         if (start < floor)
217                 return;
218         if (ceiling) {
219                 ceiling &= PUD_MASK;
220                 if (!ceiling)
221                         return;
222         }
223         if (end - 1 > ceiling - 1)
224                 return;
225
226         pmd = pmd_offset(pud, start);
227         pud_clear(pud);
228         pmd_free_tlb(tlb, pmd, start);
229         mm_dec_nr_pmds(tlb->mm);
230 }
231
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233                                 unsigned long addr, unsigned long end,
234                                 unsigned long floor, unsigned long ceiling)
235 {
236         pud_t *pud;
237         unsigned long next;
238         unsigned long start;
239
240         start = addr;
241         pud = pud_offset(p4d, addr);
242         do {
243                 next = pud_addr_end(addr, end);
244                 if (pud_none_or_clear_bad(pud))
245                         continue;
246                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247         } while (pud++, addr = next, addr != end);
248
249         start &= P4D_MASK;
250         if (start < floor)
251                 return;
252         if (ceiling) {
253                 ceiling &= P4D_MASK;
254                 if (!ceiling)
255                         return;
256         }
257         if (end - 1 > ceiling - 1)
258                 return;
259
260         pud = pud_offset(p4d, start);
261         p4d_clear(p4d);
262         pud_free_tlb(tlb, pud, start);
263         mm_dec_nr_puds(tlb->mm);
264 }
265
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267                                 unsigned long addr, unsigned long end,
268                                 unsigned long floor, unsigned long ceiling)
269 {
270         p4d_t *p4d;
271         unsigned long next;
272         unsigned long start;
273
274         start = addr;
275         p4d = p4d_offset(pgd, addr);
276         do {
277                 next = p4d_addr_end(addr, end);
278                 if (p4d_none_or_clear_bad(p4d))
279                         continue;
280                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281         } while (p4d++, addr = next, addr != end);
282
283         start &= PGDIR_MASK;
284         if (start < floor)
285                 return;
286         if (ceiling) {
287                 ceiling &= PGDIR_MASK;
288                 if (!ceiling)
289                         return;
290         }
291         if (end - 1 > ceiling - 1)
292                 return;
293
294         p4d = p4d_offset(pgd, start);
295         pgd_clear(pgd);
296         p4d_free_tlb(tlb, p4d, start);
297 }
298
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303                         unsigned long addr, unsigned long end,
304                         unsigned long floor, unsigned long ceiling)
305 {
306         pgd_t *pgd;
307         unsigned long next;
308
309         /*
310          * The next few lines have given us lots of grief...
311          *
312          * Why are we testing PMD* at this top level?  Because often
313          * there will be no work to do at all, and we'd prefer not to
314          * go all the way down to the bottom just to discover that.
315          *
316          * Why all these "- 1"s?  Because 0 represents both the bottom
317          * of the address space and the top of it (using -1 for the
318          * top wouldn't help much: the masks would do the wrong thing).
319          * The rule is that addr 0 and floor 0 refer to the bottom of
320          * the address space, but end 0 and ceiling 0 refer to the top
321          * Comparisons need to use "end - 1" and "ceiling - 1" (though
322          * that end 0 case should be mythical).
323          *
324          * Wherever addr is brought up or ceiling brought down, we must
325          * be careful to reject "the opposite 0" before it confuses the
326          * subsequent tests.  But what about where end is brought down
327          * by PMD_SIZE below? no, end can't go down to 0 there.
328          *
329          * Whereas we round start (addr) and ceiling down, by different
330          * masks at different levels, in order to test whether a table
331          * now has no other vmas using it, so can be freed, we don't
332          * bother to round floor or end up - the tests don't need that.
333          */
334
335         addr &= PMD_MASK;
336         if (addr < floor) {
337                 addr += PMD_SIZE;
338                 if (!addr)
339                         return;
340         }
341         if (ceiling) {
342                 ceiling &= PMD_MASK;
343                 if (!ceiling)
344                         return;
345         }
346         if (end - 1 > ceiling - 1)
347                 end -= PMD_SIZE;
348         if (addr > end - 1)
349                 return;
350         /*
351          * We add page table cache pages with PAGE_SIZE,
352          * (see pte_free_tlb()), flush the tlb if we need
353          */
354         tlb_change_page_size(tlb, PAGE_SIZE);
355         pgd = pgd_offset(tlb->mm, addr);
356         do {
357                 next = pgd_addr_end(addr, end);
358                 if (pgd_none_or_clear_bad(pgd))
359                         continue;
360                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361         } while (pgd++, addr = next, addr != end);
362 }
363
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365                    struct vm_area_struct *vma, unsigned long floor,
366                    unsigned long ceiling, bool mm_wr_locked)
367 {
368         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369
370         do {
371                 unsigned long addr = vma->vm_start;
372                 struct vm_area_struct *next;
373
374                 /*
375                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376                  * be 0.  This will underflow and is okay.
377                  */
378                 next = mas_find(&mas, ceiling - 1);
379
380                 /*
381                  * Hide vma from rmap and truncate_pagecache before freeing
382                  * pgtables
383                  */
384                 if (mm_wr_locked)
385                         vma_start_write(vma);
386                 unlink_anon_vmas(vma);
387                 unlink_file_vma(vma);
388
389                 if (is_vm_hugetlb_page(vma)) {
390                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391                                 floor, next ? next->vm_start : ceiling);
392                 } else {
393                         /*
394                          * Optimization: gather nearby vmas into one call down
395                          */
396                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397                                && !is_vm_hugetlb_page(next)) {
398                                 vma = next;
399                                 next = mas_find(&mas, ceiling - 1);
400                                 if (mm_wr_locked)
401                                         vma_start_write(vma);
402                                 unlink_anon_vmas(vma);
403                                 unlink_file_vma(vma);
404                         }
405                         free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 }
408                 vma = next;
409         } while (vma);
410 }
411
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414         spinlock_t *ptl = pmd_lock(mm, pmd);
415
416         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
417                 mm_inc_nr_ptes(mm);
418                 /*
419                  * Ensure all pte setup (eg. pte page lock and page clearing) are
420                  * visible before the pte is made visible to other CPUs by being
421                  * put into page tables.
422                  *
423                  * The other side of the story is the pointer chasing in the page
424                  * table walking code (when walking the page table without locking;
425                  * ie. most of the time). Fortunately, these data accesses consist
426                  * of a chain of data-dependent loads, meaning most CPUs (alpha
427                  * being the notable exception) will already guarantee loads are
428                  * seen in-order. See the alpha page table accessors for the
429                  * smp_rmb() barriers in page table walking code.
430                  */
431                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432                 pmd_populate(mm, pmd, *pte);
433                 *pte = NULL;
434         }
435         spin_unlock(ptl);
436 }
437
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440         pgtable_t new = pte_alloc_one(mm);
441         if (!new)
442                 return -ENOMEM;
443
444         pmd_install(mm, pmd, &new);
445         if (new)
446                 pte_free(mm, new);
447         return 0;
448 }
449
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452         pte_t *new = pte_alloc_one_kernel(&init_mm);
453         if (!new)
454                 return -ENOMEM;
455
456         spin_lock(&init_mm.page_table_lock);
457         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
458                 smp_wmb(); /* See comment in pmd_install() */
459                 pmd_populate_kernel(&init_mm, pmd, new);
460                 new = NULL;
461         }
462         spin_unlock(&init_mm.page_table_lock);
463         if (new)
464                 pte_free_kernel(&init_mm, new);
465         return 0;
466 }
467
468 static inline void init_rss_vec(int *rss)
469 {
470         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475         int i;
476
477         if (current->mm == mm)
478                 sync_mm_rss(mm);
479         for (i = 0; i < NR_MM_COUNTERS; i++)
480                 if (rss[i])
481                         add_mm_counter(mm, i, rss[i]);
482 }
483
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492                           pte_t pte, struct page *page)
493 {
494         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495         p4d_t *p4d = p4d_offset(pgd, addr);
496         pud_t *pud = pud_offset(p4d, addr);
497         pmd_t *pmd = pmd_offset(pud, addr);
498         struct address_space *mapping;
499         pgoff_t index;
500         static unsigned long resume;
501         static unsigned long nr_shown;
502         static unsigned long nr_unshown;
503
504         /*
505          * Allow a burst of 60 reports, then keep quiet for that minute;
506          * or allow a steady drip of one report per second.
507          */
508         if (nr_shown == 60) {
509                 if (time_before(jiffies, resume)) {
510                         nr_unshown++;
511                         return;
512                 }
513                 if (nr_unshown) {
514                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515                                  nr_unshown);
516                         nr_unshown = 0;
517                 }
518                 nr_shown = 0;
519         }
520         if (nr_shown++ == 0)
521                 resume = jiffies + 60 * HZ;
522
523         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524         index = linear_page_index(vma, addr);
525
526         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527                  current->comm,
528                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
529         if (page)
530                 dump_page(page, "bad pte");
531         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534                  vma->vm_file,
535                  vma->vm_ops ? vma->vm_ops->fault : NULL,
536                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537                  mapping ? mapping->a_ops->read_folio : NULL);
538         dump_stack();
539         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585                             pte_t pte)
586 {
587         unsigned long pfn = pte_pfn(pte);
588
589         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590                 if (likely(!pte_special(pte)))
591                         goto check_pfn;
592                 if (vma->vm_ops && vma->vm_ops->find_special_page)
593                         return vma->vm_ops->find_special_page(vma, addr);
594                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595                         return NULL;
596                 if (is_zero_pfn(pfn))
597                         return NULL;
598                 if (pte_devmap(pte))
599                 /*
600                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601                  * and will have refcounts incremented on their struct pages
602                  * when they are inserted into PTEs, thus they are safe to
603                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604                  * do not have refcounts. Example of legacy ZONE_DEVICE is
605                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606                  */
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648                             pte_t pte)
649 {
650         struct page *page = vm_normal_page(vma, addr, pte);
651
652         if (page)
653                 return page_folio(page);
654         return NULL;
655 }
656
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659                                 pmd_t pmd)
660 {
661         unsigned long pfn = pmd_pfn(pmd);
662
663         /*
664          * There is no pmd_special() but there may be special pmds, e.g.
665          * in a direct-access (dax) mapping, so let's just replicate the
666          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667          */
668         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669                 if (vma->vm_flags & VM_MIXEDMAP) {
670                         if (!pfn_valid(pfn))
671                                 return NULL;
672                         goto out;
673                 } else {
674                         unsigned long off;
675                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
676                         if (pfn == vma->vm_pgoff + off)
677                                 return NULL;
678                         if (!is_cow_mapping(vma->vm_flags))
679                                 return NULL;
680                 }
681         }
682
683         if (pmd_devmap(pmd))
684                 return NULL;
685         if (is_huge_zero_pmd(pmd))
686                 return NULL;
687         if (unlikely(pfn > highest_memmap_pfn))
688                 return NULL;
689
690         /*
691          * NOTE! We still have PageReserved() pages in the page tables.
692          * eg. VDSO mappings can cause them to exist.
693          */
694 out:
695         return pfn_to_page(pfn);
696 }
697 #endif
698
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700                                   struct page *page, unsigned long address,
701                                   pte_t *ptep)
702 {
703         pte_t orig_pte;
704         pte_t pte;
705         swp_entry_t entry;
706
707         orig_pte = ptep_get(ptep);
708         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709         if (pte_swp_soft_dirty(orig_pte))
710                 pte = pte_mksoft_dirty(pte);
711
712         entry = pte_to_swp_entry(orig_pte);
713         if (pte_swp_uffd_wp(orig_pte))
714                 pte = pte_mkuffd_wp(pte);
715         else if (is_writable_device_exclusive_entry(entry))
716                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717
718         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719
720         /*
721          * No need to take a page reference as one was already
722          * created when the swap entry was made.
723          */
724         if (PageAnon(page))
725                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
726         else
727                 /*
728                  * Currently device exclusive access only supports anonymous
729                  * memory so the entry shouldn't point to a filebacked page.
730                  */
731                 WARN_ON_ONCE(1);
732
733         set_pte_at(vma->vm_mm, address, ptep, pte);
734
735         /*
736          * No need to invalidate - it was non-present before. However
737          * secondary CPUs may have mappings that need invalidating.
738          */
739         update_mmu_cache(vma, address, ptep);
740 }
741
742 /*
743  * Tries to restore an exclusive pte if the page lock can be acquired without
744  * sleeping.
745  */
746 static int
747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748                         unsigned long addr)
749 {
750         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751         struct page *page = pfn_swap_entry_to_page(entry);
752
753         if (trylock_page(page)) {
754                 restore_exclusive_pte(vma, page, addr, src_pte);
755                 unlock_page(page);
756                 return 0;
757         }
758
759         return -EBUSY;
760 }
761
762 /*
763  * copy one vm_area from one task to the other. Assumes the page tables
764  * already present in the new task to be cleared in the whole range
765  * covered by this vma.
766  */
767
768 static unsigned long
769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772 {
773         unsigned long vm_flags = dst_vma->vm_flags;
774         pte_t orig_pte = ptep_get(src_pte);
775         pte_t pte = orig_pte;
776         struct page *page;
777         swp_entry_t entry = pte_to_swp_entry(orig_pte);
778
779         if (likely(!non_swap_entry(entry))) {
780                 if (swap_duplicate(entry) < 0)
781                         return -EIO;
782
783                 /* make sure dst_mm is on swapoff's mmlist. */
784                 if (unlikely(list_empty(&dst_mm->mmlist))) {
785                         spin_lock(&mmlist_lock);
786                         if (list_empty(&dst_mm->mmlist))
787                                 list_add(&dst_mm->mmlist,
788                                                 &src_mm->mmlist);
789                         spin_unlock(&mmlist_lock);
790                 }
791                 /* Mark the swap entry as shared. */
792                 if (pte_swp_exclusive(orig_pte)) {
793                         pte = pte_swp_clear_exclusive(orig_pte);
794                         set_pte_at(src_mm, addr, src_pte, pte);
795                 }
796                 rss[MM_SWAPENTS]++;
797         } else if (is_migration_entry(entry)) {
798                 page = pfn_swap_entry_to_page(entry);
799
800                 rss[mm_counter(page)]++;
801
802                 if (!is_readable_migration_entry(entry) &&
803                                 is_cow_mapping(vm_flags)) {
804                         /*
805                          * COW mappings require pages in both parent and child
806                          * to be set to read. A previously exclusive entry is
807                          * now shared.
808                          */
809                         entry = make_readable_migration_entry(
810                                                         swp_offset(entry));
811                         pte = swp_entry_to_pte(entry);
812                         if (pte_swp_soft_dirty(orig_pte))
813                                 pte = pte_swp_mksoft_dirty(pte);
814                         if (pte_swp_uffd_wp(orig_pte))
815                                 pte = pte_swp_mkuffd_wp(pte);
816                         set_pte_at(src_mm, addr, src_pte, pte);
817                 }
818         } else if (is_device_private_entry(entry)) {
819                 page = pfn_swap_entry_to_page(entry);
820
821                 /*
822                  * Update rss count even for unaddressable pages, as
823                  * they should treated just like normal pages in this
824                  * respect.
825                  *
826                  * We will likely want to have some new rss counters
827                  * for unaddressable pages, at some point. But for now
828                  * keep things as they are.
829                  */
830                 get_page(page);
831                 rss[mm_counter(page)]++;
832                 /* Cannot fail as these pages cannot get pinned. */
833                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834
835                 /*
836                  * We do not preserve soft-dirty information, because so
837                  * far, checkpoint/restore is the only feature that
838                  * requires that. And checkpoint/restore does not work
839                  * when a device driver is involved (you cannot easily
840                  * save and restore device driver state).
841                  */
842                 if (is_writable_device_private_entry(entry) &&
843                     is_cow_mapping(vm_flags)) {
844                         entry = make_readable_device_private_entry(
845                                                         swp_offset(entry));
846                         pte = swp_entry_to_pte(entry);
847                         if (pte_swp_uffd_wp(orig_pte))
848                                 pte = pte_swp_mkuffd_wp(pte);
849                         set_pte_at(src_mm, addr, src_pte, pte);
850                 }
851         } else if (is_device_exclusive_entry(entry)) {
852                 /*
853                  * Make device exclusive entries present by restoring the
854                  * original entry then copying as for a present pte. Device
855                  * exclusive entries currently only support private writable
856                  * (ie. COW) mappings.
857                  */
858                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860                         return -EBUSY;
861                 return -ENOENT;
862         } else if (is_pte_marker_entry(entry)) {
863                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
864                         set_pte_at(dst_mm, addr, dst_pte, pte);
865                 return 0;
866         }
867         if (!userfaultfd_wp(dst_vma))
868                 pte = pte_swp_clear_uffd_wp(pte);
869         set_pte_at(dst_mm, addr, dst_pte, pte);
870         return 0;
871 }
872
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888                   struct folio **prealloc, struct page *page)
889 {
890         struct folio *new_folio;
891         pte_t pte;
892
893         new_folio = *prealloc;
894         if (!new_folio)
895                 return -EAGAIN;
896
897         /*
898          * We have a prealloc page, all good!  Take it
899          * over and copy the page & arm it.
900          */
901         *prealloc = NULL;
902         copy_user_highpage(&new_folio->page, page, addr, src_vma);
903         __folio_mark_uptodate(new_folio);
904         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905         folio_add_lru_vma(new_folio, dst_vma);
906         rss[MM_ANONPAGES]++;
907
908         /* All done, just insert the new page copy in the child */
909         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912                 /* Uffd-wp needs to be delivered to dest pte as well */
913                 pte = pte_mkuffd_wp(pte);
914         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915         return 0;
916 }
917
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925                  struct folio **prealloc)
926 {
927         struct mm_struct *src_mm = src_vma->vm_mm;
928         unsigned long vm_flags = src_vma->vm_flags;
929         pte_t pte = ptep_get(src_pte);
930         struct page *page;
931         struct folio *folio;
932
933         page = vm_normal_page(src_vma, addr, pte);
934         if (page)
935                 folio = page_folio(page);
936         if (page && folio_test_anon(folio)) {
937                 /*
938                  * If this page may have been pinned by the parent process,
939                  * copy the page immediately for the child so that we'll always
940                  * guarantee the pinned page won't be randomly replaced in the
941                  * future.
942                  */
943                 folio_get(folio);
944                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945                         /* Page may be pinned, we have to copy. */
946                         folio_put(folio);
947                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948                                                  addr, rss, prealloc, page);
949                 }
950                 rss[MM_ANONPAGES]++;
951         } else if (page) {
952                 folio_get(folio);
953                 page_dup_file_rmap(page, false);
954                 rss[mm_counter_file(page)]++;
955         }
956
957         /*
958          * If it's a COW mapping, write protect it both
959          * in the parent and the child
960          */
961         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962                 ptep_set_wrprotect(src_mm, addr, src_pte);
963                 pte = pte_wrprotect(pte);
964         }
965         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967         /*
968          * If it's a shared mapping, mark it clean in
969          * the child
970          */
971         if (vm_flags & VM_SHARED)
972                 pte = pte_mkclean(pte);
973         pte = pte_mkold(pte);
974
975         if (!userfaultfd_wp(dst_vma))
976                 pte = pte_clear_uffd_wp(pte);
977
978         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979         return 0;
980 }
981
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983                 struct vm_area_struct *vma, unsigned long addr)
984 {
985         struct folio *new_folio;
986
987         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988         if (!new_folio)
989                 return NULL;
990
991         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992                 folio_put(new_folio);
993                 return NULL;
994         }
995         folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997         return new_folio;
998 }
999
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003                unsigned long end)
1004 {
1005         struct mm_struct *dst_mm = dst_vma->vm_mm;
1006         struct mm_struct *src_mm = src_vma->vm_mm;
1007         pte_t *orig_src_pte, *orig_dst_pte;
1008         pte_t *src_pte, *dst_pte;
1009         pte_t ptent;
1010         spinlock_t *src_ptl, *dst_ptl;
1011         int progress, ret = 0;
1012         int rss[NR_MM_COUNTERS];
1013         swp_entry_t entry = (swp_entry_t){0};
1014         struct folio *prealloc = NULL;
1015
1016 again:
1017         progress = 0;
1018         init_rss_vec(rss);
1019
1020         /*
1021          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022          * error handling here, assume that exclusive mmap_lock on dst and src
1023          * protects anon from unexpected THP transitions; with shmem and file
1024          * protected by mmap_lock-less collapse skipping areas with anon_vma
1025          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026          * can remove such assumptions later, but this is good enough for now.
1027          */
1028         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029         if (!dst_pte) {
1030                 ret = -ENOMEM;
1031                 goto out;
1032         }
1033         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034         if (!src_pte) {
1035                 pte_unmap_unlock(dst_pte, dst_ptl);
1036                 /* ret == 0 */
1037                 goto out;
1038         }
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 ptent = ptep_get(src_pte);
1056                 if (pte_none(ptent)) {
1057                         progress++;
1058                         continue;
1059                 }
1060                 if (unlikely(!pte_present(ptent))) {
1061                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1062                                                   dst_pte, src_pte,
1063                                                   dst_vma, src_vma,
1064                                                   addr, rss);
1065                         if (ret == -EIO) {
1066                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1067                                 break;
1068                         } else if (ret == -EBUSY) {
1069                                 break;
1070                         } else if (!ret) {
1071                                 progress += 8;
1072                                 continue;
1073                         }
1074
1075                         /*
1076                          * Device exclusive entry restored, continue by copying
1077                          * the now present pte.
1078                          */
1079                         WARN_ON_ONCE(ret != -ENOENT);
1080                 }
1081                 /* copy_present_pte() will clear `*prealloc' if consumed */
1082                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083                                        addr, rss, &prealloc);
1084                 /*
1085                  * If we need a pre-allocated page for this pte, drop the
1086                  * locks, allocate, and try again.
1087                  */
1088                 if (unlikely(ret == -EAGAIN))
1089                         break;
1090                 if (unlikely(prealloc)) {
1091                         /*
1092                          * pre-alloc page cannot be reused by next time so as
1093                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1094                          * will allocate page according to address).  This
1095                          * could only happen if one pinned pte changed.
1096                          */
1097                         folio_put(prealloc);
1098                         prealloc = NULL;
1099                 }
1100                 progress += 8;
1101         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103         arch_leave_lazy_mmu_mode();
1104         pte_unmap_unlock(orig_src_pte, src_ptl);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 folio_put(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 mmap_assert_write_locked(src_mm);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         untrack_pfn_clear(dst_vma);
1329                         ret = -ENOMEM;
1330                         break;
1331                 }
1332         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334         if (is_cow) {
1335                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336                 mmu_notifier_invalidate_range_end(&range);
1337         }
1338         return ret;
1339 }
1340
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344         /* By default, zap all pages */
1345         if (!details)
1346                 return true;
1347
1348         /* Or, we zap COWed pages only if the caller wants to */
1349         return details->even_cows;
1350 }
1351
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355         /* If we can make a decision without *page.. */
1356         if (should_zap_cows(details))
1357                 return true;
1358
1359         /* E.g. the caller passes NULL for the case of a zero page */
1360         if (!page)
1361                 return true;
1362
1363         /* Otherwise we should only zap non-anon pages */
1364         return !PageAnon(page);
1365 }
1366
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369         if (!details)
1370                 return false;
1371
1372         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381                               unsigned long addr, pte_t *pte,
1382                               struct zap_details *details, pte_t pteval)
1383 {
1384         /* Zap on anonymous always means dropping everything */
1385         if (vma_is_anonymous(vma))
1386                 return;
1387
1388         if (zap_drop_file_uffd_wp(details))
1389                 return;
1390
1391         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pmd_t *pmd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         struct mm_struct *mm = tlb->mm;
1400         int force_flush = 0;
1401         int rss[NR_MM_COUNTERS];
1402         spinlock_t *ptl;
1403         pte_t *start_pte;
1404         pte_t *pte;
1405         swp_entry_t entry;
1406
1407         tlb_change_page_size(tlb, PAGE_SIZE);
1408         init_rss_vec(rss);
1409         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410         if (!pte)
1411                 return addr;
1412
1413         flush_tlb_batched_pending(mm);
1414         arch_enter_lazy_mmu_mode();
1415         do {
1416                 pte_t ptent = ptep_get(pte);
1417                 struct page *page;
1418
1419                 if (pte_none(ptent))
1420                         continue;
1421
1422                 if (need_resched())
1423                         break;
1424
1425                 if (pte_present(ptent)) {
1426                         unsigned int delay_rmap;
1427
1428                         page = vm_normal_page(vma, addr, ptent);
1429                         if (unlikely(!should_zap_page(details, page)))
1430                                 continue;
1431                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1432                                                         tlb->fullmm);
1433                         tlb_remove_tlb_entry(tlb, pte, addr);
1434                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435                                                       ptent);
1436                         if (unlikely(!page))
1437                                 continue;
1438
1439                         delay_rmap = 0;
1440                         if (!PageAnon(page)) {
1441                                 if (pte_dirty(ptent)) {
1442                                         set_page_dirty(page);
1443                                         if (tlb_delay_rmap(tlb)) {
1444                                                 delay_rmap = 1;
1445                                                 force_flush = 1;
1446                                         }
1447                                 }
1448                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449                                         mark_page_accessed(page);
1450                         }
1451                         rss[mm_counter(page)]--;
1452                         if (!delay_rmap) {
1453                                 page_remove_rmap(page, vma, false);
1454                                 if (unlikely(page_mapcount(page) < 0))
1455                                         print_bad_pte(vma, addr, ptent, page);
1456                         }
1457                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1458                                 force_flush = 1;
1459                                 addr += PAGE_SIZE;
1460                                 break;
1461                         }
1462                         continue;
1463                 }
1464
1465                 entry = pte_to_swp_entry(ptent);
1466                 if (is_device_private_entry(entry) ||
1467                     is_device_exclusive_entry(entry)) {
1468                         page = pfn_swap_entry_to_page(entry);
1469                         if (unlikely(!should_zap_page(details, page)))
1470                                 continue;
1471                         /*
1472                          * Both device private/exclusive mappings should only
1473                          * work with anonymous page so far, so we don't need to
1474                          * consider uffd-wp bit when zap. For more information,
1475                          * see zap_install_uffd_wp_if_needed().
1476                          */
1477                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1478                         rss[mm_counter(page)]--;
1479                         if (is_device_private_entry(entry))
1480                                 page_remove_rmap(page, vma, false);
1481                         put_page(page);
1482                 } else if (!non_swap_entry(entry)) {
1483                         /* Genuine swap entry, hence a private anon page */
1484                         if (!should_zap_cows(details))
1485                                 continue;
1486                         rss[MM_SWAPENTS]--;
1487                         if (unlikely(!free_swap_and_cache(entry)))
1488                                 print_bad_pte(vma, addr, ptent, NULL);
1489                 } else if (is_migration_entry(entry)) {
1490                         page = pfn_swap_entry_to_page(entry);
1491                         if (!should_zap_page(details, page))
1492                                 continue;
1493                         rss[mm_counter(page)]--;
1494                 } else if (pte_marker_entry_uffd_wp(entry)) {
1495                         /*
1496                          * For anon: always drop the marker; for file: only
1497                          * drop the marker if explicitly requested.
1498                          */
1499                         if (!vma_is_anonymous(vma) &&
1500                             !zap_drop_file_uffd_wp(details))
1501                                 continue;
1502                 } else if (is_hwpoison_entry(entry) ||
1503                            is_swapin_error_entry(entry)) {
1504                         if (!should_zap_cows(details))
1505                                 continue;
1506                 } else {
1507                         /* We should have covered all the swap entry types */
1508                         WARN_ON_ONCE(1);
1509                 }
1510                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512         } while (pte++, addr += PAGE_SIZE, addr != end);
1513
1514         add_mm_rss_vec(mm, rss);
1515         arch_leave_lazy_mmu_mode();
1516
1517         /* Do the actual TLB flush before dropping ptl */
1518         if (force_flush) {
1519                 tlb_flush_mmu_tlbonly(tlb);
1520                 tlb_flush_rmaps(tlb, vma);
1521         }
1522         pte_unmap_unlock(start_pte, ptl);
1523
1524         /*
1525          * If we forced a TLB flush (either due to running out of
1526          * batch buffers or because we needed to flush dirty TLB
1527          * entries before releasing the ptl), free the batched
1528          * memory too. Come back again if we didn't do everything.
1529          */
1530         if (force_flush)
1531                 tlb_flush_mmu(tlb);
1532
1533         return addr;
1534 }
1535
1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537                                 struct vm_area_struct *vma, pud_t *pud,
1538                                 unsigned long addr, unsigned long end,
1539                                 struct zap_details *details)
1540 {
1541         pmd_t *pmd;
1542         unsigned long next;
1543
1544         pmd = pmd_offset(pud, addr);
1545         do {
1546                 next = pmd_addr_end(addr, end);
1547                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548                         if (next - addr != HPAGE_PMD_SIZE)
1549                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1550                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1551                                 addr = next;
1552                                 continue;
1553                         }
1554                         /* fall through */
1555                 } else if (details && details->single_folio &&
1556                            folio_test_pmd_mappable(details->single_folio) &&
1557                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1559                         /*
1560                          * Take and drop THP pmd lock so that we cannot return
1561                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1562                          * but not yet decremented compound_mapcount().
1563                          */
1564                         spin_unlock(ptl);
1565                 }
1566                 if (pmd_none(*pmd)) {
1567                         addr = next;
1568                         continue;
1569                 }
1570                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1571                 if (addr != next)
1572                         pmd--;
1573         } while (pmd++, cond_resched(), addr != end);
1574
1575         return addr;
1576 }
1577
1578 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579                                 struct vm_area_struct *vma, p4d_t *p4d,
1580                                 unsigned long addr, unsigned long end,
1581                                 struct zap_details *details)
1582 {
1583         pud_t *pud;
1584         unsigned long next;
1585
1586         pud = pud_offset(p4d, addr);
1587         do {
1588                 next = pud_addr_end(addr, end);
1589                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590                         if (next - addr != HPAGE_PUD_SIZE) {
1591                                 mmap_assert_locked(tlb->mm);
1592                                 split_huge_pud(vma, pud, addr);
1593                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1594                                 goto next;
1595                         /* fall through */
1596                 }
1597                 if (pud_none_or_clear_bad(pud))
1598                         continue;
1599                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1600 next:
1601                 cond_resched();
1602         } while (pud++, addr = next, addr != end);
1603
1604         return addr;
1605 }
1606
1607 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608                                 struct vm_area_struct *vma, pgd_t *pgd,
1609                                 unsigned long addr, unsigned long end,
1610                                 struct zap_details *details)
1611 {
1612         p4d_t *p4d;
1613         unsigned long next;
1614
1615         p4d = p4d_offset(pgd, addr);
1616         do {
1617                 next = p4d_addr_end(addr, end);
1618                 if (p4d_none_or_clear_bad(p4d))
1619                         continue;
1620                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621         } while (p4d++, addr = next, addr != end);
1622
1623         return addr;
1624 }
1625
1626 void unmap_page_range(struct mmu_gather *tlb,
1627                              struct vm_area_struct *vma,
1628                              unsigned long addr, unsigned long end,
1629                              struct zap_details *details)
1630 {
1631         pgd_t *pgd;
1632         unsigned long next;
1633
1634         BUG_ON(addr >= end);
1635         tlb_start_vma(tlb, vma);
1636         pgd = pgd_offset(vma->vm_mm, addr);
1637         do {
1638                 next = pgd_addr_end(addr, end);
1639                 if (pgd_none_or_clear_bad(pgd))
1640                         continue;
1641                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642         } while (pgd++, addr = next, addr != end);
1643         tlb_end_vma(tlb, vma);
1644 }
1645
1646
1647 static void unmap_single_vma(struct mmu_gather *tlb,
1648                 struct vm_area_struct *vma, unsigned long start_addr,
1649                 unsigned long end_addr,
1650                 struct zap_details *details, bool mm_wr_locked)
1651 {
1652         unsigned long start = max(vma->vm_start, start_addr);
1653         unsigned long end;
1654
1655         if (start >= vma->vm_end)
1656                 return;
1657         end = min(vma->vm_end, end_addr);
1658         if (end <= vma->vm_start)
1659                 return;
1660
1661         if (vma->vm_file)
1662                 uprobe_munmap(vma, start, end);
1663
1664         if (unlikely(vma->vm_flags & VM_PFNMAP))
1665                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1666
1667         if (start != end) {
1668                 if (unlikely(is_vm_hugetlb_page(vma))) {
1669                         /*
1670                          * It is undesirable to test vma->vm_file as it
1671                          * should be non-null for valid hugetlb area.
1672                          * However, vm_file will be NULL in the error
1673                          * cleanup path of mmap_region. When
1674                          * hugetlbfs ->mmap method fails,
1675                          * mmap_region() nullifies vma->vm_file
1676                          * before calling this function to clean up.
1677                          * Since no pte has actually been setup, it is
1678                          * safe to do nothing in this case.
1679                          */
1680                         if (vma->vm_file) {
1681                                 zap_flags_t zap_flags = details ?
1682                                     details->zap_flags : 0;
1683                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1684                                                              NULL, zap_flags);
1685                         }
1686                 } else
1687                         unmap_page_range(tlb, vma, start, end, details);
1688         }
1689 }
1690
1691 /**
1692  * unmap_vmas - unmap a range of memory covered by a list of vma's
1693  * @tlb: address of the caller's struct mmu_gather
1694  * @mt: the maple tree
1695  * @vma: the starting vma
1696  * @start_addr: virtual address at which to start unmapping
1697  * @end_addr: virtual address at which to end unmapping
1698  *
1699  * Unmap all pages in the vma list.
1700  *
1701  * Only addresses between `start' and `end' will be unmapped.
1702  *
1703  * The VMA list must be sorted in ascending virtual address order.
1704  *
1705  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1706  * range after unmap_vmas() returns.  So the only responsibility here is to
1707  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1708  * drops the lock and schedules.
1709  */
1710 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1711                 struct vm_area_struct *vma, unsigned long start_addr,
1712                 unsigned long end_addr, bool mm_wr_locked)
1713 {
1714         struct mmu_notifier_range range;
1715         struct zap_details details = {
1716                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1717                 /* Careful - we need to zap private pages too! */
1718                 .even_cows = true,
1719         };
1720         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1721
1722         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1723                                 start_addr, end_addr);
1724         mmu_notifier_invalidate_range_start(&range);
1725         do {
1726                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1727                                  mm_wr_locked);
1728         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1729         mmu_notifier_invalidate_range_end(&range);
1730 }
1731
1732 /**
1733  * zap_page_range_single - remove user pages in a given range
1734  * @vma: vm_area_struct holding the applicable pages
1735  * @address: starting address of pages to zap
1736  * @size: number of bytes to zap
1737  * @details: details of shared cache invalidation
1738  *
1739  * The range must fit into one VMA.
1740  */
1741 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1742                 unsigned long size, struct zap_details *details)
1743 {
1744         const unsigned long end = address + size;
1745         struct mmu_notifier_range range;
1746         struct mmu_gather tlb;
1747
1748         lru_add_drain();
1749         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1750                                 address, end);
1751         if (is_vm_hugetlb_page(vma))
1752                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1753                                                      &range.end);
1754         tlb_gather_mmu(&tlb, vma->vm_mm);
1755         update_hiwater_rss(vma->vm_mm);
1756         mmu_notifier_invalidate_range_start(&range);
1757         /*
1758          * unmap 'address-end' not 'range.start-range.end' as range
1759          * could have been expanded for hugetlb pmd sharing.
1760          */
1761         unmap_single_vma(&tlb, vma, address, end, details, false);
1762         mmu_notifier_invalidate_range_end(&range);
1763         tlb_finish_mmu(&tlb);
1764 }
1765
1766 /**
1767  * zap_vma_ptes - remove ptes mapping the vma
1768  * @vma: vm_area_struct holding ptes to be zapped
1769  * @address: starting address of pages to zap
1770  * @size: number of bytes to zap
1771  *
1772  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1773  *
1774  * The entire address range must be fully contained within the vma.
1775  *
1776  */
1777 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1778                 unsigned long size)
1779 {
1780         if (!range_in_vma(vma, address, address + size) ||
1781                         !(vma->vm_flags & VM_PFNMAP))
1782                 return;
1783
1784         zap_page_range_single(vma, address, size, NULL);
1785 }
1786 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1787
1788 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1789 {
1790         pgd_t *pgd;
1791         p4d_t *p4d;
1792         pud_t *pud;
1793         pmd_t *pmd;
1794
1795         pgd = pgd_offset(mm, addr);
1796         p4d = p4d_alloc(mm, pgd, addr);
1797         if (!p4d)
1798                 return NULL;
1799         pud = pud_alloc(mm, p4d, addr);
1800         if (!pud)
1801                 return NULL;
1802         pmd = pmd_alloc(mm, pud, addr);
1803         if (!pmd)
1804                 return NULL;
1805
1806         VM_BUG_ON(pmd_trans_huge(*pmd));
1807         return pmd;
1808 }
1809
1810 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1811                         spinlock_t **ptl)
1812 {
1813         pmd_t *pmd = walk_to_pmd(mm, addr);
1814
1815         if (!pmd)
1816                 return NULL;
1817         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1818 }
1819
1820 static int validate_page_before_insert(struct page *page)
1821 {
1822         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1823                 return -EINVAL;
1824         flush_dcache_page(page);
1825         return 0;
1826 }
1827
1828 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1829                         unsigned long addr, struct page *page, pgprot_t prot)
1830 {
1831         if (!pte_none(ptep_get(pte)))
1832                 return -EBUSY;
1833         /* Ok, finally just insert the thing.. */
1834         get_page(page);
1835         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1836         page_add_file_rmap(page, vma, false);
1837         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1838         return 0;
1839 }
1840
1841 /*
1842  * This is the old fallback for page remapping.
1843  *
1844  * For historical reasons, it only allows reserved pages. Only
1845  * old drivers should use this, and they needed to mark their
1846  * pages reserved for the old functions anyway.
1847  */
1848 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1849                         struct page *page, pgprot_t prot)
1850 {
1851         int retval;
1852         pte_t *pte;
1853         spinlock_t *ptl;
1854
1855         retval = validate_page_before_insert(page);
1856         if (retval)
1857                 goto out;
1858         retval = -ENOMEM;
1859         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1860         if (!pte)
1861                 goto out;
1862         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1863         pte_unmap_unlock(pte, ptl);
1864 out:
1865         return retval;
1866 }
1867
1868 #ifdef pte_index
1869 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1870                         unsigned long addr, struct page *page, pgprot_t prot)
1871 {
1872         int err;
1873
1874         if (!page_count(page))
1875                 return -EINVAL;
1876         err = validate_page_before_insert(page);
1877         if (err)
1878                 return err;
1879         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 }
1881
1882 /* insert_pages() amortizes the cost of spinlock operations
1883  * when inserting pages in a loop. Arch *must* define pte_index.
1884  */
1885 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1886                         struct page **pages, unsigned long *num, pgprot_t prot)
1887 {
1888         pmd_t *pmd = NULL;
1889         pte_t *start_pte, *pte;
1890         spinlock_t *pte_lock;
1891         struct mm_struct *const mm = vma->vm_mm;
1892         unsigned long curr_page_idx = 0;
1893         unsigned long remaining_pages_total = *num;
1894         unsigned long pages_to_write_in_pmd;
1895         int ret;
1896 more:
1897         ret = -EFAULT;
1898         pmd = walk_to_pmd(mm, addr);
1899         if (!pmd)
1900                 goto out;
1901
1902         pages_to_write_in_pmd = min_t(unsigned long,
1903                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1904
1905         /* Allocate the PTE if necessary; takes PMD lock once only. */
1906         ret = -ENOMEM;
1907         if (pte_alloc(mm, pmd))
1908                 goto out;
1909
1910         while (pages_to_write_in_pmd) {
1911                 int pte_idx = 0;
1912                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1913
1914                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1915                 if (!start_pte) {
1916                         ret = -EFAULT;
1917                         goto out;
1918                 }
1919                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1920                         int err = insert_page_in_batch_locked(vma, pte,
1921                                 addr, pages[curr_page_idx], prot);
1922                         if (unlikely(err)) {
1923                                 pte_unmap_unlock(start_pte, pte_lock);
1924                                 ret = err;
1925                                 remaining_pages_total -= pte_idx;
1926                                 goto out;
1927                         }
1928                         addr += PAGE_SIZE;
1929                         ++curr_page_idx;
1930                 }
1931                 pte_unmap_unlock(start_pte, pte_lock);
1932                 pages_to_write_in_pmd -= batch_size;
1933                 remaining_pages_total -= batch_size;
1934         }
1935         if (remaining_pages_total)
1936                 goto more;
1937         ret = 0;
1938 out:
1939         *num = remaining_pages_total;
1940         return ret;
1941 }
1942 #endif  /* ifdef pte_index */
1943
1944 /**
1945  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1946  * @vma: user vma to map to
1947  * @addr: target start user address of these pages
1948  * @pages: source kernel pages
1949  * @num: in: number of pages to map. out: number of pages that were *not*
1950  * mapped. (0 means all pages were successfully mapped).
1951  *
1952  * Preferred over vm_insert_page() when inserting multiple pages.
1953  *
1954  * In case of error, we may have mapped a subset of the provided
1955  * pages. It is the caller's responsibility to account for this case.
1956  *
1957  * The same restrictions apply as in vm_insert_page().
1958  */
1959 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1960                         struct page **pages, unsigned long *num)
1961 {
1962 #ifdef pte_index
1963         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1964
1965         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1966                 return -EFAULT;
1967         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1968                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1969                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1970                 vm_flags_set(vma, VM_MIXEDMAP);
1971         }
1972         /* Defer page refcount checking till we're about to map that page. */
1973         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1974 #else
1975         unsigned long idx = 0, pgcount = *num;
1976         int err = -EINVAL;
1977
1978         for (; idx < pgcount; ++idx) {
1979                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1980                 if (err)
1981                         break;
1982         }
1983         *num = pgcount - idx;
1984         return err;
1985 #endif  /* ifdef pte_index */
1986 }
1987 EXPORT_SYMBOL(vm_insert_pages);
1988
1989 /**
1990  * vm_insert_page - insert single page into user vma
1991  * @vma: user vma to map to
1992  * @addr: target user address of this page
1993  * @page: source kernel page
1994  *
1995  * This allows drivers to insert individual pages they've allocated
1996  * into a user vma.
1997  *
1998  * The page has to be a nice clean _individual_ kernel allocation.
1999  * If you allocate a compound page, you need to have marked it as
2000  * such (__GFP_COMP), or manually just split the page up yourself
2001  * (see split_page()).
2002  *
2003  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2004  * took an arbitrary page protection parameter. This doesn't allow
2005  * that. Your vma protection will have to be set up correctly, which
2006  * means that if you want a shared writable mapping, you'd better
2007  * ask for a shared writable mapping!
2008  *
2009  * The page does not need to be reserved.
2010  *
2011  * Usually this function is called from f_op->mmap() handler
2012  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2013  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2014  * function from other places, for example from page-fault handler.
2015  *
2016  * Return: %0 on success, negative error code otherwise.
2017  */
2018 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2019                         struct page *page)
2020 {
2021         if (addr < vma->vm_start || addr >= vma->vm_end)
2022                 return -EFAULT;
2023         if (!page_count(page))
2024                 return -EINVAL;
2025         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2026                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2027                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2028                 vm_flags_set(vma, VM_MIXEDMAP);
2029         }
2030         return insert_page(vma, addr, page, vma->vm_page_prot);
2031 }
2032 EXPORT_SYMBOL(vm_insert_page);
2033
2034 /*
2035  * __vm_map_pages - maps range of kernel pages into user vma
2036  * @vma: user vma to map to
2037  * @pages: pointer to array of source kernel pages
2038  * @num: number of pages in page array
2039  * @offset: user's requested vm_pgoff
2040  *
2041  * This allows drivers to map range of kernel pages into a user vma.
2042  *
2043  * Return: 0 on success and error code otherwise.
2044  */
2045 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2046                                 unsigned long num, unsigned long offset)
2047 {
2048         unsigned long count = vma_pages(vma);
2049         unsigned long uaddr = vma->vm_start;
2050         int ret, i;
2051
2052         /* Fail if the user requested offset is beyond the end of the object */
2053         if (offset >= num)
2054                 return -ENXIO;
2055
2056         /* Fail if the user requested size exceeds available object size */
2057         if (count > num - offset)
2058                 return -ENXIO;
2059
2060         for (i = 0; i < count; i++) {
2061                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2062                 if (ret < 0)
2063                         return ret;
2064                 uaddr += PAGE_SIZE;
2065         }
2066
2067         return 0;
2068 }
2069
2070 /**
2071  * vm_map_pages - maps range of kernel pages starts with non zero offset
2072  * @vma: user vma to map to
2073  * @pages: pointer to array of source kernel pages
2074  * @num: number of pages in page array
2075  *
2076  * Maps an object consisting of @num pages, catering for the user's
2077  * requested vm_pgoff
2078  *
2079  * If we fail to insert any page into the vma, the function will return
2080  * immediately leaving any previously inserted pages present.  Callers
2081  * from the mmap handler may immediately return the error as their caller
2082  * will destroy the vma, removing any successfully inserted pages. Other
2083  * callers should make their own arrangements for calling unmap_region().
2084  *
2085  * Context: Process context. Called by mmap handlers.
2086  * Return: 0 on success and error code otherwise.
2087  */
2088 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2089                                 unsigned long num)
2090 {
2091         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2092 }
2093 EXPORT_SYMBOL(vm_map_pages);
2094
2095 /**
2096  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2097  * @vma: user vma to map to
2098  * @pages: pointer to array of source kernel pages
2099  * @num: number of pages in page array
2100  *
2101  * Similar to vm_map_pages(), except that it explicitly sets the offset
2102  * to 0. This function is intended for the drivers that did not consider
2103  * vm_pgoff.
2104  *
2105  * Context: Process context. Called by mmap handlers.
2106  * Return: 0 on success and error code otherwise.
2107  */
2108 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2109                                 unsigned long num)
2110 {
2111         return __vm_map_pages(vma, pages, num, 0);
2112 }
2113 EXPORT_SYMBOL(vm_map_pages_zero);
2114
2115 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2116                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2117 {
2118         struct mm_struct *mm = vma->vm_mm;
2119         pte_t *pte, entry;
2120         spinlock_t *ptl;
2121
2122         pte = get_locked_pte(mm, addr, &ptl);
2123         if (!pte)
2124                 return VM_FAULT_OOM;
2125         entry = ptep_get(pte);
2126         if (!pte_none(entry)) {
2127                 if (mkwrite) {
2128                         /*
2129                          * For read faults on private mappings the PFN passed
2130                          * in may not match the PFN we have mapped if the
2131                          * mapped PFN is a writeable COW page.  In the mkwrite
2132                          * case we are creating a writable PTE for a shared
2133                          * mapping and we expect the PFNs to match. If they
2134                          * don't match, we are likely racing with block
2135                          * allocation and mapping invalidation so just skip the
2136                          * update.
2137                          */
2138                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2139                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2140                                 goto out_unlock;
2141                         }
2142                         entry = pte_mkyoung(entry);
2143                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2144                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2145                                 update_mmu_cache(vma, addr, pte);
2146                 }
2147                 goto out_unlock;
2148         }
2149
2150         /* Ok, finally just insert the thing.. */
2151         if (pfn_t_devmap(pfn))
2152                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2153         else
2154                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2155
2156         if (mkwrite) {
2157                 entry = pte_mkyoung(entry);
2158                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2159         }
2160
2161         set_pte_at(mm, addr, pte, entry);
2162         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2163
2164 out_unlock:
2165         pte_unmap_unlock(pte, ptl);
2166         return VM_FAULT_NOPAGE;
2167 }
2168
2169 /**
2170  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2171  * @vma: user vma to map to
2172  * @addr: target user address of this page
2173  * @pfn: source kernel pfn
2174  * @pgprot: pgprot flags for the inserted page
2175  *
2176  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2177  * to override pgprot on a per-page basis.
2178  *
2179  * This only makes sense for IO mappings, and it makes no sense for
2180  * COW mappings.  In general, using multiple vmas is preferable;
2181  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2182  * impractical.
2183  *
2184  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2185  * caching- and encryption bits different than those of @vma->vm_page_prot,
2186  * because the caching- or encryption mode may not be known at mmap() time.
2187  *
2188  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2189  * to set caching and encryption bits for those vmas (except for COW pages).
2190  * This is ensured by core vm only modifying these page table entries using
2191  * functions that don't touch caching- or encryption bits, using pte_modify()
2192  * if needed. (See for example mprotect()).
2193  *
2194  * Also when new page-table entries are created, this is only done using the
2195  * fault() callback, and never using the value of vma->vm_page_prot,
2196  * except for page-table entries that point to anonymous pages as the result
2197  * of COW.
2198  *
2199  * Context: Process context.  May allocate using %GFP_KERNEL.
2200  * Return: vm_fault_t value.
2201  */
2202 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2203                         unsigned long pfn, pgprot_t pgprot)
2204 {
2205         /*
2206          * Technically, architectures with pte_special can avoid all these
2207          * restrictions (same for remap_pfn_range).  However we would like
2208          * consistency in testing and feature parity among all, so we should
2209          * try to keep these invariants in place for everybody.
2210          */
2211         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213                                                 (VM_PFNMAP|VM_MIXEDMAP));
2214         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216
2217         if (addr < vma->vm_start || addr >= vma->vm_end)
2218                 return VM_FAULT_SIGBUS;
2219
2220         if (!pfn_modify_allowed(pfn, pgprot))
2221                 return VM_FAULT_SIGBUS;
2222
2223         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2224
2225         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2226                         false);
2227 }
2228 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2229
2230 /**
2231  * vmf_insert_pfn - insert single pfn into user vma
2232  * @vma: user vma to map to
2233  * @addr: target user address of this page
2234  * @pfn: source kernel pfn
2235  *
2236  * Similar to vm_insert_page, this allows drivers to insert individual pages
2237  * they've allocated into a user vma. Same comments apply.
2238  *
2239  * This function should only be called from a vm_ops->fault handler, and
2240  * in that case the handler should return the result of this function.
2241  *
2242  * vma cannot be a COW mapping.
2243  *
2244  * As this is called only for pages that do not currently exist, we
2245  * do not need to flush old virtual caches or the TLB.
2246  *
2247  * Context: Process context.  May allocate using %GFP_KERNEL.
2248  * Return: vm_fault_t value.
2249  */
2250 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2251                         unsigned long pfn)
2252 {
2253         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2254 }
2255 EXPORT_SYMBOL(vmf_insert_pfn);
2256
2257 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2258 {
2259         /* these checks mirror the abort conditions in vm_normal_page */
2260         if (vma->vm_flags & VM_MIXEDMAP)
2261                 return true;
2262         if (pfn_t_devmap(pfn))
2263                 return true;
2264         if (pfn_t_special(pfn))
2265                 return true;
2266         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2267                 return true;
2268         return false;
2269 }
2270
2271 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2272                 unsigned long addr, pfn_t pfn, bool mkwrite)
2273 {
2274         pgprot_t pgprot = vma->vm_page_prot;
2275         int err;
2276
2277         BUG_ON(!vm_mixed_ok(vma, pfn));
2278
2279         if (addr < vma->vm_start || addr >= vma->vm_end)
2280                 return VM_FAULT_SIGBUS;
2281
2282         track_pfn_insert(vma, &pgprot, pfn);
2283
2284         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2285                 return VM_FAULT_SIGBUS;
2286
2287         /*
2288          * If we don't have pte special, then we have to use the pfn_valid()
2289          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2290          * refcount the page if pfn_valid is true (hence insert_page rather
2291          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2292          * without pte special, it would there be refcounted as a normal page.
2293          */
2294         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2295             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2296                 struct page *page;
2297
2298                 /*
2299                  * At this point we are committed to insert_page()
2300                  * regardless of whether the caller specified flags that
2301                  * result in pfn_t_has_page() == false.
2302                  */
2303                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2304                 err = insert_page(vma, addr, page, pgprot);
2305         } else {
2306                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2307         }
2308
2309         if (err == -ENOMEM)
2310                 return VM_FAULT_OOM;
2311         if (err < 0 && err != -EBUSY)
2312                 return VM_FAULT_SIGBUS;
2313
2314         return VM_FAULT_NOPAGE;
2315 }
2316
2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2318                 pfn_t pfn)
2319 {
2320         return __vm_insert_mixed(vma, addr, pfn, false);
2321 }
2322 EXPORT_SYMBOL(vmf_insert_mixed);
2323
2324 /*
2325  *  If the insertion of PTE failed because someone else already added a
2326  *  different entry in the mean time, we treat that as success as we assume
2327  *  the same entry was actually inserted.
2328  */
2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330                 unsigned long addr, pfn_t pfn)
2331 {
2332         return __vm_insert_mixed(vma, addr, pfn, true);
2333 }
2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2335
2336 /*
2337  * maps a range of physical memory into the requested pages. the old
2338  * mappings are removed. any references to nonexistent pages results
2339  * in null mappings (currently treated as "copy-on-access")
2340  */
2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342                         unsigned long addr, unsigned long end,
2343                         unsigned long pfn, pgprot_t prot)
2344 {
2345         pte_t *pte, *mapped_pte;
2346         spinlock_t *ptl;
2347         int err = 0;
2348
2349         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2350         if (!pte)
2351                 return -ENOMEM;
2352         arch_enter_lazy_mmu_mode();
2353         do {
2354                 BUG_ON(!pte_none(ptep_get(pte)));
2355                 if (!pfn_modify_allowed(pfn, prot)) {
2356                         err = -EACCES;
2357                         break;
2358                 }
2359                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2360                 pfn++;
2361         } while (pte++, addr += PAGE_SIZE, addr != end);
2362         arch_leave_lazy_mmu_mode();
2363         pte_unmap_unlock(mapped_pte, ptl);
2364         return err;
2365 }
2366
2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368                         unsigned long addr, unsigned long end,
2369                         unsigned long pfn, pgprot_t prot)
2370 {
2371         pmd_t *pmd;
2372         unsigned long next;
2373         int err;
2374
2375         pfn -= addr >> PAGE_SHIFT;
2376         pmd = pmd_alloc(mm, pud, addr);
2377         if (!pmd)
2378                 return -ENOMEM;
2379         VM_BUG_ON(pmd_trans_huge(*pmd));
2380         do {
2381                 next = pmd_addr_end(addr, end);
2382                 err = remap_pte_range(mm, pmd, addr, next,
2383                                 pfn + (addr >> PAGE_SHIFT), prot);
2384                 if (err)
2385                         return err;
2386         } while (pmd++, addr = next, addr != end);
2387         return 0;
2388 }
2389
2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391                         unsigned long addr, unsigned long end,
2392                         unsigned long pfn, pgprot_t prot)
2393 {
2394         pud_t *pud;
2395         unsigned long next;
2396         int err;
2397
2398         pfn -= addr >> PAGE_SHIFT;
2399         pud = pud_alloc(mm, p4d, addr);
2400         if (!pud)
2401                 return -ENOMEM;
2402         do {
2403                 next = pud_addr_end(addr, end);
2404                 err = remap_pmd_range(mm, pud, addr, next,
2405                                 pfn + (addr >> PAGE_SHIFT), prot);
2406                 if (err)
2407                         return err;
2408         } while (pud++, addr = next, addr != end);
2409         return 0;
2410 }
2411
2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413                         unsigned long addr, unsigned long end,
2414                         unsigned long pfn, pgprot_t prot)
2415 {
2416         p4d_t *p4d;
2417         unsigned long next;
2418         int err;
2419
2420         pfn -= addr >> PAGE_SHIFT;
2421         p4d = p4d_alloc(mm, pgd, addr);
2422         if (!p4d)
2423                 return -ENOMEM;
2424         do {
2425                 next = p4d_addr_end(addr, end);
2426                 err = remap_pud_range(mm, p4d, addr, next,
2427                                 pfn + (addr >> PAGE_SHIFT), prot);
2428                 if (err)
2429                         return err;
2430         } while (p4d++, addr = next, addr != end);
2431         return 0;
2432 }
2433
2434 /*
2435  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2436  * must have pre-validated the caching bits of the pgprot_t.
2437  */
2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439                 unsigned long pfn, unsigned long size, pgprot_t prot)
2440 {
2441         pgd_t *pgd;
2442         unsigned long next;
2443         unsigned long end = addr + PAGE_ALIGN(size);
2444         struct mm_struct *mm = vma->vm_mm;
2445         int err;
2446
2447         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2448                 return -EINVAL;
2449
2450         /*
2451          * Physically remapped pages are special. Tell the
2452          * rest of the world about it:
2453          *   VM_IO tells people not to look at these pages
2454          *      (accesses can have side effects).
2455          *   VM_PFNMAP tells the core MM that the base pages are just
2456          *      raw PFN mappings, and do not have a "struct page" associated
2457          *      with them.
2458          *   VM_DONTEXPAND
2459          *      Disable vma merging and expanding with mremap().
2460          *   VM_DONTDUMP
2461          *      Omit vma from core dump, even when VM_IO turned off.
2462          *
2463          * There's a horrible special case to handle copy-on-write
2464          * behaviour that some programs depend on. We mark the "original"
2465          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466          * See vm_normal_page() for details.
2467          */
2468         if (is_cow_mapping(vma->vm_flags)) {
2469                 if (addr != vma->vm_start || end != vma->vm_end)
2470                         return -EINVAL;
2471                 vma->vm_pgoff = pfn;
2472         }
2473
2474         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2475
2476         BUG_ON(addr >= end);
2477         pfn -= addr >> PAGE_SHIFT;
2478         pgd = pgd_offset(mm, addr);
2479         flush_cache_range(vma, addr, end);
2480         do {
2481                 next = pgd_addr_end(addr, end);
2482                 err = remap_p4d_range(mm, pgd, addr, next,
2483                                 pfn + (addr >> PAGE_SHIFT), prot);
2484                 if (err)
2485                         return err;
2486         } while (pgd++, addr = next, addr != end);
2487
2488         return 0;
2489 }
2490
2491 /**
2492  * remap_pfn_range - remap kernel memory to userspace
2493  * @vma: user vma to map to
2494  * @addr: target page aligned user address to start at
2495  * @pfn: page frame number of kernel physical memory address
2496  * @size: size of mapping area
2497  * @prot: page protection flags for this mapping
2498  *
2499  * Note: this is only safe if the mm semaphore is held when called.
2500  *
2501  * Return: %0 on success, negative error code otherwise.
2502  */
2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504                     unsigned long pfn, unsigned long size, pgprot_t prot)
2505 {
2506         int err;
2507
2508         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2509         if (err)
2510                 return -EINVAL;
2511
2512         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2513         if (err)
2514                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2515         return err;
2516 }
2517 EXPORT_SYMBOL(remap_pfn_range);
2518
2519 /**
2520  * vm_iomap_memory - remap memory to userspace
2521  * @vma: user vma to map to
2522  * @start: start of the physical memory to be mapped
2523  * @len: size of area
2524  *
2525  * This is a simplified io_remap_pfn_range() for common driver use. The
2526  * driver just needs to give us the physical memory range to be mapped,
2527  * we'll figure out the rest from the vma information.
2528  *
2529  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530  * whatever write-combining details or similar.
2531  *
2532  * Return: %0 on success, negative error code otherwise.
2533  */
2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2535 {
2536         unsigned long vm_len, pfn, pages;
2537
2538         /* Check that the physical memory area passed in looks valid */
2539         if (start + len < start)
2540                 return -EINVAL;
2541         /*
2542          * You *really* shouldn't map things that aren't page-aligned,
2543          * but we've historically allowed it because IO memory might
2544          * just have smaller alignment.
2545          */
2546         len += start & ~PAGE_MASK;
2547         pfn = start >> PAGE_SHIFT;
2548         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549         if (pfn + pages < pfn)
2550                 return -EINVAL;
2551
2552         /* We start the mapping 'vm_pgoff' pages into the area */
2553         if (vma->vm_pgoff > pages)
2554                 return -EINVAL;
2555         pfn += vma->vm_pgoff;
2556         pages -= vma->vm_pgoff;
2557
2558         /* Can we fit all of the mapping? */
2559         vm_len = vma->vm_end - vma->vm_start;
2560         if (vm_len >> PAGE_SHIFT > pages)
2561                 return -EINVAL;
2562
2563         /* Ok, let it rip */
2564         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2565 }
2566 EXPORT_SYMBOL(vm_iomap_memory);
2567
2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569                                      unsigned long addr, unsigned long end,
2570                                      pte_fn_t fn, void *data, bool create,
2571                                      pgtbl_mod_mask *mask)
2572 {
2573         pte_t *pte, *mapped_pte;
2574         int err = 0;
2575         spinlock_t *ptl;
2576
2577         if (create) {
2578                 mapped_pte = pte = (mm == &init_mm) ?
2579                         pte_alloc_kernel_track(pmd, addr, mask) :
2580                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2581                 if (!pte)
2582                         return -ENOMEM;
2583         } else {
2584                 mapped_pte = pte = (mm == &init_mm) ?
2585                         pte_offset_kernel(pmd, addr) :
2586                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2587                 if (!pte)
2588                         return -EINVAL;
2589         }
2590
2591         arch_enter_lazy_mmu_mode();
2592
2593         if (fn) {
2594                 do {
2595                         if (create || !pte_none(ptep_get(pte))) {
2596                                 err = fn(pte++, addr, data);
2597                                 if (err)
2598                                         break;
2599                         }
2600                 } while (addr += PAGE_SIZE, addr != end);
2601         }
2602         *mask |= PGTBL_PTE_MODIFIED;
2603
2604         arch_leave_lazy_mmu_mode();
2605
2606         if (mm != &init_mm)
2607                 pte_unmap_unlock(mapped_pte, ptl);
2608         return err;
2609 }
2610
2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612                                      unsigned long addr, unsigned long end,
2613                                      pte_fn_t fn, void *data, bool create,
2614                                      pgtbl_mod_mask *mask)
2615 {
2616         pmd_t *pmd;
2617         unsigned long next;
2618         int err = 0;
2619
2620         BUG_ON(pud_huge(*pud));
2621
2622         if (create) {
2623                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2624                 if (!pmd)
2625                         return -ENOMEM;
2626         } else {
2627                 pmd = pmd_offset(pud, addr);
2628         }
2629         do {
2630                 next = pmd_addr_end(addr, end);
2631                 if (pmd_none(*pmd) && !create)
2632                         continue;
2633                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2634                         return -EINVAL;
2635                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2636                         if (!create)
2637                                 continue;
2638                         pmd_clear_bad(pmd);
2639                 }
2640                 err = apply_to_pte_range(mm, pmd, addr, next,
2641                                          fn, data, create, mask);
2642                 if (err)
2643                         break;
2644         } while (pmd++, addr = next, addr != end);
2645
2646         return err;
2647 }
2648
2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650                                      unsigned long addr, unsigned long end,
2651                                      pte_fn_t fn, void *data, bool create,
2652                                      pgtbl_mod_mask *mask)
2653 {
2654         pud_t *pud;
2655         unsigned long next;
2656         int err = 0;
2657
2658         if (create) {
2659                 pud = pud_alloc_track(mm, p4d, addr, mask);
2660                 if (!pud)
2661                         return -ENOMEM;
2662         } else {
2663                 pud = pud_offset(p4d, addr);
2664         }
2665         do {
2666                 next = pud_addr_end(addr, end);
2667                 if (pud_none(*pud) && !create)
2668                         continue;
2669                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2670                         return -EINVAL;
2671                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2672                         if (!create)
2673                                 continue;
2674                         pud_clear_bad(pud);
2675                 }
2676                 err = apply_to_pmd_range(mm, pud, addr, next,
2677                                          fn, data, create, mask);
2678                 if (err)
2679                         break;
2680         } while (pud++, addr = next, addr != end);
2681
2682         return err;
2683 }
2684
2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686                                      unsigned long addr, unsigned long end,
2687                                      pte_fn_t fn, void *data, bool create,
2688                                      pgtbl_mod_mask *mask)
2689 {
2690         p4d_t *p4d;
2691         unsigned long next;
2692         int err = 0;
2693
2694         if (create) {
2695                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2696                 if (!p4d)
2697                         return -ENOMEM;
2698         } else {
2699                 p4d = p4d_offset(pgd, addr);
2700         }
2701         do {
2702                 next = p4d_addr_end(addr, end);
2703                 if (p4d_none(*p4d) && !create)
2704                         continue;
2705                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2706                         return -EINVAL;
2707                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2708                         if (!create)
2709                                 continue;
2710                         p4d_clear_bad(p4d);
2711                 }
2712                 err = apply_to_pud_range(mm, p4d, addr, next,
2713                                          fn, data, create, mask);
2714                 if (err)
2715                         break;
2716         } while (p4d++, addr = next, addr != end);
2717
2718         return err;
2719 }
2720
2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722                                  unsigned long size, pte_fn_t fn,
2723                                  void *data, bool create)
2724 {
2725         pgd_t *pgd;
2726         unsigned long start = addr, next;
2727         unsigned long end = addr + size;
2728         pgtbl_mod_mask mask = 0;
2729         int err = 0;
2730
2731         if (WARN_ON(addr >= end))
2732                 return -EINVAL;
2733
2734         pgd = pgd_offset(mm, addr);
2735         do {
2736                 next = pgd_addr_end(addr, end);
2737                 if (pgd_none(*pgd) && !create)
2738                         continue;
2739                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2740                         return -EINVAL;
2741                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2742                         if (!create)
2743                                 continue;
2744                         pgd_clear_bad(pgd);
2745                 }
2746                 err = apply_to_p4d_range(mm, pgd, addr, next,
2747                                          fn, data, create, &mask);
2748                 if (err)
2749                         break;
2750         } while (pgd++, addr = next, addr != end);
2751
2752         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753                 arch_sync_kernel_mappings(start, start + size);
2754
2755         return err;
2756 }
2757
2758 /*
2759  * Scan a region of virtual memory, filling in page tables as necessary
2760  * and calling a provided function on each leaf page table.
2761  */
2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763                         unsigned long size, pte_fn_t fn, void *data)
2764 {
2765         return __apply_to_page_range(mm, addr, size, fn, data, true);
2766 }
2767 EXPORT_SYMBOL_GPL(apply_to_page_range);
2768
2769 /*
2770  * Scan a region of virtual memory, calling a provided function on
2771  * each leaf page table where it exists.
2772  *
2773  * Unlike apply_to_page_range, this does _not_ fill in page tables
2774  * where they are absent.
2775  */
2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777                                  unsigned long size, pte_fn_t fn, void *data)
2778 {
2779         return __apply_to_page_range(mm, addr, size, fn, data, false);
2780 }
2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2782
2783 /*
2784  * handle_pte_fault chooses page fault handler according to an entry which was
2785  * read non-atomically.  Before making any commitment, on those architectures
2786  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787  * parts, do_swap_page must check under lock before unmapping the pte and
2788  * proceeding (but do_wp_page is only called after already making such a check;
2789  * and do_anonymous_page can safely check later on).
2790  */
2791 static inline int pte_unmap_same(struct vm_fault *vmf)
2792 {
2793         int same = 1;
2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795         if (sizeof(pte_t) > sizeof(unsigned long)) {
2796                 spin_lock(vmf->ptl);
2797                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2798                 spin_unlock(vmf->ptl);
2799         }
2800 #endif
2801         pte_unmap(vmf->pte);
2802         vmf->pte = NULL;
2803         return same;
2804 }
2805
2806 /*
2807  * Return:
2808  *      0:              copied succeeded
2809  *      -EHWPOISON:     copy failed due to hwpoison in source page
2810  *      -EAGAIN:        copied failed (some other reason)
2811  */
2812 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2813                                       struct vm_fault *vmf)
2814 {
2815         int ret;
2816         void *kaddr;
2817         void __user *uaddr;
2818         struct vm_area_struct *vma = vmf->vma;
2819         struct mm_struct *mm = vma->vm_mm;
2820         unsigned long addr = vmf->address;
2821
2822         if (likely(src)) {
2823                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2824                         memory_failure_queue(page_to_pfn(src), 0);
2825                         return -EHWPOISON;
2826                 }
2827                 return 0;
2828         }
2829
2830         /*
2831          * If the source page was a PFN mapping, we don't have
2832          * a "struct page" for it. We do a best-effort copy by
2833          * just copying from the original user address. If that
2834          * fails, we just zero-fill it. Live with it.
2835          */
2836         kaddr = kmap_atomic(dst);
2837         uaddr = (void __user *)(addr & PAGE_MASK);
2838
2839         /*
2840          * On architectures with software "accessed" bits, we would
2841          * take a double page fault, so mark it accessed here.
2842          */
2843         vmf->pte = NULL;
2844         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2845                 pte_t entry;
2846
2847                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2848                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2849                         /*
2850                          * Other thread has already handled the fault
2851                          * and update local tlb only
2852                          */
2853                         if (vmf->pte)
2854                                 update_mmu_tlb(vma, addr, vmf->pte);
2855                         ret = -EAGAIN;
2856                         goto pte_unlock;
2857                 }
2858
2859                 entry = pte_mkyoung(vmf->orig_pte);
2860                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2861                         update_mmu_cache(vma, addr, vmf->pte);
2862         }
2863
2864         /*
2865          * This really shouldn't fail, because the page is there
2866          * in the page tables. But it might just be unreadable,
2867          * in which case we just give up and fill the result with
2868          * zeroes.
2869          */
2870         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2871                 if (vmf->pte)
2872                         goto warn;
2873
2874                 /* Re-validate under PTL if the page is still mapped */
2875                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2876                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2877                         /* The PTE changed under us, update local tlb */
2878                         if (vmf->pte)
2879                                 update_mmu_tlb(vma, addr, vmf->pte);
2880                         ret = -EAGAIN;
2881                         goto pte_unlock;
2882                 }
2883
2884                 /*
2885                  * The same page can be mapped back since last copy attempt.
2886                  * Try to copy again under PTL.
2887                  */
2888                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889                         /*
2890                          * Give a warn in case there can be some obscure
2891                          * use-case
2892                          */
2893 warn:
2894                         WARN_ON_ONCE(1);
2895                         clear_page(kaddr);
2896                 }
2897         }
2898
2899         ret = 0;
2900
2901 pte_unlock:
2902         if (vmf->pte)
2903                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2904         kunmap_atomic(kaddr);
2905         flush_dcache_page(dst);
2906
2907         return ret;
2908 }
2909
2910 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2911 {
2912         struct file *vm_file = vma->vm_file;
2913
2914         if (vm_file)
2915                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2916
2917         /*
2918          * Special mappings (e.g. VDSO) do not have any file so fake
2919          * a default GFP_KERNEL for them.
2920          */
2921         return GFP_KERNEL;
2922 }
2923
2924 /*
2925  * Notify the address space that the page is about to become writable so that
2926  * it can prohibit this or wait for the page to get into an appropriate state.
2927  *
2928  * We do this without the lock held, so that it can sleep if it needs to.
2929  */
2930 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2931 {
2932         vm_fault_t ret;
2933         struct page *page = vmf->page;
2934         unsigned int old_flags = vmf->flags;
2935
2936         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2937
2938         if (vmf->vma->vm_file &&
2939             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2940                 return VM_FAULT_SIGBUS;
2941
2942         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2943         /* Restore original flags so that caller is not surprised */
2944         vmf->flags = old_flags;
2945         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2946                 return ret;
2947         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2948                 lock_page(page);
2949                 if (!page->mapping) {
2950                         unlock_page(page);
2951                         return 0; /* retry */
2952                 }
2953                 ret |= VM_FAULT_LOCKED;
2954         } else
2955                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2956         return ret;
2957 }
2958
2959 /*
2960  * Handle dirtying of a page in shared file mapping on a write fault.
2961  *
2962  * The function expects the page to be locked and unlocks it.
2963  */
2964 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2965 {
2966         struct vm_area_struct *vma = vmf->vma;
2967         struct address_space *mapping;
2968         struct page *page = vmf->page;
2969         bool dirtied;
2970         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2971
2972         dirtied = set_page_dirty(page);
2973         VM_BUG_ON_PAGE(PageAnon(page), page);
2974         /*
2975          * Take a local copy of the address_space - page.mapping may be zeroed
2976          * by truncate after unlock_page().   The address_space itself remains
2977          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2978          * release semantics to prevent the compiler from undoing this copying.
2979          */
2980         mapping = page_rmapping(page);
2981         unlock_page(page);
2982
2983         if (!page_mkwrite)
2984                 file_update_time(vma->vm_file);
2985
2986         /*
2987          * Throttle page dirtying rate down to writeback speed.
2988          *
2989          * mapping may be NULL here because some device drivers do not
2990          * set page.mapping but still dirty their pages
2991          *
2992          * Drop the mmap_lock before waiting on IO, if we can. The file
2993          * is pinning the mapping, as per above.
2994          */
2995         if ((dirtied || page_mkwrite) && mapping) {
2996                 struct file *fpin;
2997
2998                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2999                 balance_dirty_pages_ratelimited(mapping);
3000                 if (fpin) {
3001                         fput(fpin);
3002                         return VM_FAULT_COMPLETED;
3003                 }
3004         }
3005
3006         return 0;
3007 }
3008
3009 /*
3010  * Handle write page faults for pages that can be reused in the current vma
3011  *
3012  * This can happen either due to the mapping being with the VM_SHARED flag,
3013  * or due to us being the last reference standing to the page. In either
3014  * case, all we need to do here is to mark the page as writable and update
3015  * any related book-keeping.
3016  */
3017 static inline void wp_page_reuse(struct vm_fault *vmf)
3018         __releases(vmf->ptl)
3019 {
3020         struct vm_area_struct *vma = vmf->vma;
3021         struct page *page = vmf->page;
3022         pte_t entry;
3023
3024         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3025         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3026
3027         /*
3028          * Clear the pages cpupid information as the existing
3029          * information potentially belongs to a now completely
3030          * unrelated process.
3031          */
3032         if (page)
3033                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3034
3035         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3036         entry = pte_mkyoung(vmf->orig_pte);
3037         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3038         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3039                 update_mmu_cache(vma, vmf->address, vmf->pte);
3040         pte_unmap_unlock(vmf->pte, vmf->ptl);
3041         count_vm_event(PGREUSE);
3042 }
3043
3044 /*
3045  * Handle the case of a page which we actually need to copy to a new page,
3046  * either due to COW or unsharing.
3047  *
3048  * Called with mmap_lock locked and the old page referenced, but
3049  * without the ptl held.
3050  *
3051  * High level logic flow:
3052  *
3053  * - Allocate a page, copy the content of the old page to the new one.
3054  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3055  * - Take the PTL. If the pte changed, bail out and release the allocated page
3056  * - If the pte is still the way we remember it, update the page table and all
3057  *   relevant references. This includes dropping the reference the page-table
3058  *   held to the old page, as well as updating the rmap.
3059  * - In any case, unlock the PTL and drop the reference we took to the old page.
3060  */
3061 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3062 {
3063         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3064         struct vm_area_struct *vma = vmf->vma;
3065         struct mm_struct *mm = vma->vm_mm;
3066         struct folio *old_folio = NULL;
3067         struct folio *new_folio = NULL;
3068         pte_t entry;
3069         int page_copied = 0;
3070         struct mmu_notifier_range range;
3071         int ret;
3072
3073         delayacct_wpcopy_start();
3074
3075         if (vmf->page)
3076                 old_folio = page_folio(vmf->page);
3077         if (unlikely(anon_vma_prepare(vma)))
3078                 goto oom;
3079
3080         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3081                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3082                 if (!new_folio)
3083                         goto oom;
3084         } else {
3085                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3086                                 vmf->address, false);
3087                 if (!new_folio)
3088                         goto oom;
3089
3090                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3091                 if (ret) {
3092                         /*
3093                          * COW failed, if the fault was solved by other,
3094                          * it's fine. If not, userspace would re-fault on
3095                          * the same address and we will handle the fault
3096                          * from the second attempt.
3097                          * The -EHWPOISON case will not be retried.
3098                          */
3099                         folio_put(new_folio);
3100                         if (old_folio)
3101                                 folio_put(old_folio);
3102
3103                         delayacct_wpcopy_end();
3104                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3105                 }
3106                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3107         }
3108
3109         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3110                 goto oom_free_new;
3111         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3112
3113         __folio_mark_uptodate(new_folio);
3114
3115         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3116                                 vmf->address & PAGE_MASK,
3117                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3118         mmu_notifier_invalidate_range_start(&range);
3119
3120         /*
3121          * Re-check the pte - we dropped the lock
3122          */
3123         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3125                 if (old_folio) {
3126                         if (!folio_test_anon(old_folio)) {
3127                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3128                                 inc_mm_counter(mm, MM_ANONPAGES);
3129                         }
3130                 } else {
3131                         inc_mm_counter(mm, MM_ANONPAGES);
3132                 }
3133                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3135                 entry = pte_sw_mkyoung(entry);
3136                 if (unlikely(unshare)) {
3137                         if (pte_soft_dirty(vmf->orig_pte))
3138                                 entry = pte_mksoft_dirty(entry);
3139                         if (pte_uffd_wp(vmf->orig_pte))
3140                                 entry = pte_mkuffd_wp(entry);
3141                 } else {
3142                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3143                 }
3144
3145                 /*
3146                  * Clear the pte entry and flush it first, before updating the
3147                  * pte with the new entry, to keep TLBs on different CPUs in
3148                  * sync. This code used to set the new PTE then flush TLBs, but
3149                  * that left a window where the new PTE could be loaded into
3150                  * some TLBs while the old PTE remains in others.
3151                  */
3152                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3154                 folio_add_lru_vma(new_folio, vma);
3155                 /*
3156                  * We call the notify macro here because, when using secondary
3157                  * mmu page tables (such as kvm shadow page tables), we want the
3158                  * new page to be mapped directly into the secondary page table.
3159                  */
3160                 BUG_ON(unshare && pte_write(entry));
3161                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162                 update_mmu_cache(vma, vmf->address, vmf->pte);
3163                 if (old_folio) {
3164                         /*
3165                          * Only after switching the pte to the new page may
3166                          * we remove the mapcount here. Otherwise another
3167                          * process may come and find the rmap count decremented
3168                          * before the pte is switched to the new page, and
3169                          * "reuse" the old page writing into it while our pte
3170                          * here still points into it and can be read by other
3171                          * threads.
3172                          *
3173                          * The critical issue is to order this
3174                          * page_remove_rmap with the ptp_clear_flush above.
3175                          * Those stores are ordered by (if nothing else,)
3176                          * the barrier present in the atomic_add_negative
3177                          * in page_remove_rmap.
3178                          *
3179                          * Then the TLB flush in ptep_clear_flush ensures that
3180                          * no process can access the old page before the
3181                          * decremented mapcount is visible. And the old page
3182                          * cannot be reused until after the decremented
3183                          * mapcount is visible. So transitively, TLBs to
3184                          * old page will be flushed before it can be reused.
3185                          */
3186                         page_remove_rmap(vmf->page, vma, false);
3187                 }
3188
3189                 /* Free the old page.. */
3190                 new_folio = old_folio;
3191                 page_copied = 1;
3192                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3193         } else if (vmf->pte) {
3194                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3195                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3196         }
3197
3198         /*
3199          * No need to double call mmu_notifier->invalidate_range() callback as
3200          * the above ptep_clear_flush_notify() did already call it.
3201          */
3202         mmu_notifier_invalidate_range_only_end(&range);
3203
3204         if (new_folio)
3205                 folio_put(new_folio);
3206         if (old_folio) {
3207                 if (page_copied)
3208                         free_swap_cache(&old_folio->page);
3209                 folio_put(old_folio);
3210         }
3211
3212         delayacct_wpcopy_end();
3213         return 0;
3214 oom_free_new:
3215         folio_put(new_folio);
3216 oom:
3217         if (old_folio)
3218                 folio_put(old_folio);
3219
3220         delayacct_wpcopy_end();
3221         return VM_FAULT_OOM;
3222 }
3223
3224 /**
3225  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226  *                        writeable once the page is prepared
3227  *
3228  * @vmf: structure describing the fault
3229  *
3230  * This function handles all that is needed to finish a write page fault in a
3231  * shared mapping due to PTE being read-only once the mapped page is prepared.
3232  * It handles locking of PTE and modifying it.
3233  *
3234  * The function expects the page to be locked or other protection against
3235  * concurrent faults / writeback (such as DAX radix tree locks).
3236  *
3237  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238  * we acquired PTE lock.
3239  */
3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241 {
3242         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244                                        &vmf->ptl);
3245         if (!vmf->pte)
3246                 return VM_FAULT_NOPAGE;
3247         /*
3248          * We might have raced with another page fault while we released the
3249          * pte_offset_map_lock.
3250          */
3251         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3254                 return VM_FAULT_NOPAGE;
3255         }
3256         wp_page_reuse(vmf);
3257         return 0;
3258 }
3259
3260 /*
3261  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262  * mapping
3263  */
3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3265 {
3266         struct vm_area_struct *vma = vmf->vma;
3267
3268         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3269                 vm_fault_t ret;
3270
3271                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3272                 vmf->flags |= FAULT_FLAG_MKWRITE;
3273                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3274                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3275                         return ret;
3276                 return finish_mkwrite_fault(vmf);
3277         }
3278         wp_page_reuse(vmf);
3279         return 0;
3280 }
3281
3282 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3283         __releases(vmf->ptl)
3284 {
3285         struct vm_area_struct *vma = vmf->vma;
3286         vm_fault_t ret = 0;
3287
3288         get_page(vmf->page);
3289
3290         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3291                 vm_fault_t tmp;
3292
3293                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294                 tmp = do_page_mkwrite(vmf);
3295                 if (unlikely(!tmp || (tmp &
3296                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297                         put_page(vmf->page);
3298                         return tmp;
3299                 }
3300                 tmp = finish_mkwrite_fault(vmf);
3301                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3302                         unlock_page(vmf->page);
3303                         put_page(vmf->page);
3304                         return tmp;
3305                 }
3306         } else {
3307                 wp_page_reuse(vmf);
3308                 lock_page(vmf->page);
3309         }
3310         ret |= fault_dirty_shared_page(vmf);
3311         put_page(vmf->page);
3312
3313         return ret;
3314 }
3315
3316 /*
3317  * This routine handles present pages, when
3318  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3319  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3320  *   (FAULT_FLAG_UNSHARE)
3321  *
3322  * It is done by copying the page to a new address and decrementing the
3323  * shared-page counter for the old page.
3324  *
3325  * Note that this routine assumes that the protection checks have been
3326  * done by the caller (the low-level page fault routine in most cases).
3327  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3328  * done any necessary COW.
3329  *
3330  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3331  * though the page will change only once the write actually happens. This
3332  * avoids a few races, and potentially makes it more efficient.
3333  *
3334  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3335  * but allow concurrent faults), with pte both mapped and locked.
3336  * We return with mmap_lock still held, but pte unmapped and unlocked.
3337  */
3338 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3339         __releases(vmf->ptl)
3340 {
3341         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3342         struct vm_area_struct *vma = vmf->vma;
3343         struct folio *folio = NULL;
3344
3345         if (likely(!unshare)) {
3346                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3347                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3348                         return handle_userfault(vmf, VM_UFFD_WP);
3349                 }
3350
3351                 /*
3352                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3353                  * is flushed in this case before copying.
3354                  */
3355                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3356                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3357                         flush_tlb_page(vmf->vma, vmf->address);
3358         }
3359
3360         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3361
3362         /*
3363          * Shared mapping: we are guaranteed to have VM_WRITE and
3364          * FAULT_FLAG_WRITE set at this point.
3365          */
3366         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3367                 /*
3368                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3369                  * VM_PFNMAP VMA.
3370                  *
3371                  * We should not cow pages in a shared writeable mapping.
3372                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3373                  */
3374                 if (!vmf->page)
3375                         return wp_pfn_shared(vmf);
3376                 return wp_page_shared(vmf);
3377         }
3378
3379         if (vmf->page)
3380                 folio = page_folio(vmf->page);
3381
3382         /*
3383          * Private mapping: create an exclusive anonymous page copy if reuse
3384          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3385          */
3386         if (folio && folio_test_anon(folio)) {
3387                 /*
3388                  * If the page is exclusive to this process we must reuse the
3389                  * page without further checks.
3390                  */
3391                 if (PageAnonExclusive(vmf->page))
3392                         goto reuse;
3393
3394                 /*
3395                  * We have to verify under folio lock: these early checks are
3396                  * just an optimization to avoid locking the folio and freeing
3397                  * the swapcache if there is little hope that we can reuse.
3398                  *
3399                  * KSM doesn't necessarily raise the folio refcount.
3400                  */
3401                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3402                         goto copy;
3403                 if (!folio_test_lru(folio))
3404                         /*
3405                          * We cannot easily detect+handle references from
3406                          * remote LRU caches or references to LRU folios.
3407                          */
3408                         lru_add_drain();
3409                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3410                         goto copy;
3411                 if (!folio_trylock(folio))
3412                         goto copy;
3413                 if (folio_test_swapcache(folio))
3414                         folio_free_swap(folio);
3415                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3416                         folio_unlock(folio);
3417                         goto copy;
3418                 }
3419                 /*
3420                  * Ok, we've got the only folio reference from our mapping
3421                  * and the folio is locked, it's dark out, and we're wearing
3422                  * sunglasses. Hit it.
3423                  */
3424                 page_move_anon_rmap(vmf->page, vma);
3425                 folio_unlock(folio);
3426 reuse:
3427                 if (unlikely(unshare)) {
3428                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3429                         return 0;
3430                 }
3431                 wp_page_reuse(vmf);
3432                 return 0;
3433         }
3434 copy:
3435         /*
3436          * Ok, we need to copy. Oh, well..
3437          */
3438         if (folio)
3439                 folio_get(folio);
3440
3441         pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 #ifdef CONFIG_KSM
3443         if (folio && folio_test_ksm(folio))
3444                 count_vm_event(COW_KSM);
3445 #endif
3446         return wp_page_copy(vmf);
3447 }
3448
3449 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3450                 unsigned long start_addr, unsigned long end_addr,
3451                 struct zap_details *details)
3452 {
3453         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3454 }
3455
3456 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3457                                             pgoff_t first_index,
3458                                             pgoff_t last_index,
3459                                             struct zap_details *details)
3460 {
3461         struct vm_area_struct *vma;
3462         pgoff_t vba, vea, zba, zea;
3463
3464         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3465                 vba = vma->vm_pgoff;
3466                 vea = vba + vma_pages(vma) - 1;
3467                 zba = max(first_index, vba);
3468                 zea = min(last_index, vea);
3469
3470                 unmap_mapping_range_vma(vma,
3471                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3472                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3473                                 details);
3474         }
3475 }
3476
3477 /**
3478  * unmap_mapping_folio() - Unmap single folio from processes.
3479  * @folio: The locked folio to be unmapped.
3480  *
3481  * Unmap this folio from any userspace process which still has it mmaped.
3482  * Typically, for efficiency, the range of nearby pages has already been
3483  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3484  * truncation or invalidation holds the lock on a folio, it may find that
3485  * the page has been remapped again: and then uses unmap_mapping_folio()
3486  * to unmap it finally.
3487  */
3488 void unmap_mapping_folio(struct folio *folio)
3489 {
3490         struct address_space *mapping = folio->mapping;
3491         struct zap_details details = { };
3492         pgoff_t first_index;
3493         pgoff_t last_index;
3494
3495         VM_BUG_ON(!folio_test_locked(folio));
3496
3497         first_index = folio->index;
3498         last_index = folio->index + folio_nr_pages(folio) - 1;
3499
3500         details.even_cows = false;
3501         details.single_folio = folio;
3502         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3503
3504         i_mmap_lock_read(mapping);
3505         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3506                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3507                                          last_index, &details);
3508         i_mmap_unlock_read(mapping);
3509 }
3510
3511 /**
3512  * unmap_mapping_pages() - Unmap pages from processes.
3513  * @mapping: The address space containing pages to be unmapped.
3514  * @start: Index of first page to be unmapped.
3515  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3516  * @even_cows: Whether to unmap even private COWed pages.
3517  *
3518  * Unmap the pages in this address space from any userspace process which
3519  * has them mmaped.  Generally, you want to remove COWed pages as well when
3520  * a file is being truncated, but not when invalidating pages from the page
3521  * cache.
3522  */
3523 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3524                 pgoff_t nr, bool even_cows)
3525 {
3526         struct zap_details details = { };
3527         pgoff_t first_index = start;
3528         pgoff_t last_index = start + nr - 1;
3529
3530         details.even_cows = even_cows;
3531         if (last_index < first_index)
3532                 last_index = ULONG_MAX;
3533
3534         i_mmap_lock_read(mapping);
3535         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3536                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3537                                          last_index, &details);
3538         i_mmap_unlock_read(mapping);
3539 }
3540 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3541
3542 /**
3543  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3544  * address_space corresponding to the specified byte range in the underlying
3545  * file.
3546  *
3547  * @mapping: the address space containing mmaps to be unmapped.
3548  * @holebegin: byte in first page to unmap, relative to the start of
3549  * the underlying file.  This will be rounded down to a PAGE_SIZE
3550  * boundary.  Note that this is different from truncate_pagecache(), which
3551  * must keep the partial page.  In contrast, we must get rid of
3552  * partial pages.
3553  * @holelen: size of prospective hole in bytes.  This will be rounded
3554  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3555  * end of the file.
3556  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3557  * but 0 when invalidating pagecache, don't throw away private data.
3558  */
3559 void unmap_mapping_range(struct address_space *mapping,
3560                 loff_t const holebegin, loff_t const holelen, int even_cows)
3561 {
3562         pgoff_t hba = holebegin >> PAGE_SHIFT;
3563         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3564
3565         /* Check for overflow. */
3566         if (sizeof(holelen) > sizeof(hlen)) {
3567                 long long holeend =
3568                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3569                 if (holeend & ~(long long)ULONG_MAX)
3570                         hlen = ULONG_MAX - hba + 1;
3571         }
3572
3573         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3574 }
3575 EXPORT_SYMBOL(unmap_mapping_range);
3576
3577 /*
3578  * Restore a potential device exclusive pte to a working pte entry
3579  */
3580 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3581 {
3582         struct folio *folio = page_folio(vmf->page);
3583         struct vm_area_struct *vma = vmf->vma;
3584         struct mmu_notifier_range range;
3585
3586         /*
3587          * We need a reference to lock the folio because we don't hold
3588          * the PTL so a racing thread can remove the device-exclusive
3589          * entry and unmap it. If the folio is free the entry must
3590          * have been removed already. If it happens to have already
3591          * been re-allocated after being freed all we do is lock and
3592          * unlock it.
3593          */
3594         if (!folio_try_get(folio))
3595                 return 0;
3596
3597         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3598                 folio_put(folio);
3599                 return VM_FAULT_RETRY;
3600         }
3601         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3602                                 vma->vm_mm, vmf->address & PAGE_MASK,
3603                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3604         mmu_notifier_invalidate_range_start(&range);
3605
3606         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3607                                 &vmf->ptl);
3608         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3609                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3610
3611         if (vmf->pte)
3612                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3613         folio_unlock(folio);
3614         folio_put(folio);
3615
3616         mmu_notifier_invalidate_range_end(&range);
3617         return 0;
3618 }
3619
3620 static inline bool should_try_to_free_swap(struct folio *folio,
3621                                            struct vm_area_struct *vma,
3622                                            unsigned int fault_flags)
3623 {
3624         if (!folio_test_swapcache(folio))
3625                 return false;
3626         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3627             folio_test_mlocked(folio))
3628                 return true;
3629         /*
3630          * If we want to map a page that's in the swapcache writable, we
3631          * have to detect via the refcount if we're really the exclusive
3632          * user. Try freeing the swapcache to get rid of the swapcache
3633          * reference only in case it's likely that we'll be the exlusive user.
3634          */
3635         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3636                 folio_ref_count(folio) == 2;
3637 }
3638
3639 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3640 {
3641         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3642                                        vmf->address, &vmf->ptl);
3643         if (!vmf->pte)
3644                 return 0;
3645         /*
3646          * Be careful so that we will only recover a special uffd-wp pte into a
3647          * none pte.  Otherwise it means the pte could have changed, so retry.
3648          *
3649          * This should also cover the case where e.g. the pte changed
3650          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3651          * So is_pte_marker() check is not enough to safely drop the pte.
3652          */
3653         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3654                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3655         pte_unmap_unlock(vmf->pte, vmf->ptl);
3656         return 0;
3657 }
3658
3659 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3660 {
3661         if (vma_is_anonymous(vmf->vma))
3662                 return do_anonymous_page(vmf);
3663         else
3664                 return do_fault(vmf);
3665 }
3666
3667 /*
3668  * This is actually a page-missing access, but with uffd-wp special pte
3669  * installed.  It means this pte was wr-protected before being unmapped.
3670  */
3671 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3672 {
3673         /*
3674          * Just in case there're leftover special ptes even after the region
3675          * got unregistered - we can simply clear them.
3676          */
3677         if (unlikely(!userfaultfd_wp(vmf->vma)))
3678                 return pte_marker_clear(vmf);
3679
3680         return do_pte_missing(vmf);
3681 }
3682
3683 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3684 {
3685         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3686         unsigned long marker = pte_marker_get(entry);
3687
3688         /*
3689          * PTE markers should never be empty.  If anything weird happened,
3690          * the best thing to do is to kill the process along with its mm.
3691          */
3692         if (WARN_ON_ONCE(!marker))
3693                 return VM_FAULT_SIGBUS;
3694
3695         /* Higher priority than uffd-wp when data corrupted */
3696         if (marker & PTE_MARKER_SWAPIN_ERROR)
3697                 return VM_FAULT_SIGBUS;
3698
3699         if (pte_marker_entry_uffd_wp(entry))
3700                 return pte_marker_handle_uffd_wp(vmf);
3701
3702         /* This is an unknown pte marker */
3703         return VM_FAULT_SIGBUS;
3704 }
3705
3706 /*
3707  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3708  * but allow concurrent faults), and pte mapped but not yet locked.
3709  * We return with pte unmapped and unlocked.
3710  *
3711  * We return with the mmap_lock locked or unlocked in the same cases
3712  * as does filemap_fault().
3713  */
3714 vm_fault_t do_swap_page(struct vm_fault *vmf)
3715 {
3716         struct vm_area_struct *vma = vmf->vma;
3717         struct folio *swapcache, *folio = NULL;
3718         struct page *page;
3719         struct swap_info_struct *si = NULL;
3720         rmap_t rmap_flags = RMAP_NONE;
3721         bool exclusive = false;
3722         swp_entry_t entry;
3723         pte_t pte;
3724         int locked;
3725         vm_fault_t ret = 0;
3726         void *shadow = NULL;
3727
3728         if (!pte_unmap_same(vmf))
3729                 goto out;
3730
3731         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3732                 ret = VM_FAULT_RETRY;
3733                 goto out;
3734         }
3735
3736         entry = pte_to_swp_entry(vmf->orig_pte);
3737         if (unlikely(non_swap_entry(entry))) {
3738                 if (is_migration_entry(entry)) {
3739                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3740                                              vmf->address);
3741                 } else if (is_device_exclusive_entry(entry)) {
3742                         vmf->page = pfn_swap_entry_to_page(entry);
3743                         ret = remove_device_exclusive_entry(vmf);
3744                 } else if (is_device_private_entry(entry)) {
3745                         vmf->page = pfn_swap_entry_to_page(entry);
3746                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3747                                         vmf->address, &vmf->ptl);
3748                         if (unlikely(!vmf->pte ||
3749                                      !pte_same(ptep_get(vmf->pte),
3750                                                         vmf->orig_pte)))
3751                                 goto unlock;
3752
3753                         /*
3754                          * Get a page reference while we know the page can't be
3755                          * freed.
3756                          */
3757                         get_page(vmf->page);
3758                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3759                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3760                         put_page(vmf->page);
3761                 } else if (is_hwpoison_entry(entry)) {
3762                         ret = VM_FAULT_HWPOISON;
3763                 } else if (is_pte_marker_entry(entry)) {
3764                         ret = handle_pte_marker(vmf);
3765                 } else {
3766                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3767                         ret = VM_FAULT_SIGBUS;
3768                 }
3769                 goto out;
3770         }
3771
3772         /* Prevent swapoff from happening to us. */
3773         si = get_swap_device(entry);
3774         if (unlikely(!si))
3775                 goto out;
3776
3777         folio = swap_cache_get_folio(entry, vma, vmf->address);
3778         if (folio)
3779                 page = folio_file_page(folio, swp_offset(entry));
3780         swapcache = folio;
3781
3782         if (!folio) {
3783                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3784                     __swap_count(entry) == 1) {
3785                         /* skip swapcache */
3786                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3787                                                 vma, vmf->address, false);
3788                         page = &folio->page;
3789                         if (folio) {
3790                                 __folio_set_locked(folio);
3791                                 __folio_set_swapbacked(folio);
3792
3793                                 if (mem_cgroup_swapin_charge_folio(folio,
3794                                                         vma->vm_mm, GFP_KERNEL,
3795                                                         entry)) {
3796                                         ret = VM_FAULT_OOM;
3797                                         goto out_page;
3798                                 }
3799                                 mem_cgroup_swapin_uncharge_swap(entry);
3800
3801                                 shadow = get_shadow_from_swap_cache(entry);
3802                                 if (shadow)
3803                                         workingset_refault(folio, shadow);
3804
3805                                 folio_add_lru(folio);
3806
3807                                 /* To provide entry to swap_readpage() */
3808                                 folio_set_swap_entry(folio, entry);
3809                                 swap_readpage(page, true, NULL);
3810                                 folio->private = NULL;
3811                         }
3812                 } else {
3813                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3814                                                 vmf);
3815                         if (page)
3816                                 folio = page_folio(page);
3817                         swapcache = folio;
3818                 }
3819
3820                 if (!folio) {
3821                         /*
3822                          * Back out if somebody else faulted in this pte
3823                          * while we released the pte lock.
3824                          */
3825                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3826                                         vmf->address, &vmf->ptl);
3827                         if (likely(vmf->pte &&
3828                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3829                                 ret = VM_FAULT_OOM;
3830                         goto unlock;
3831                 }
3832
3833                 /* Had to read the page from swap area: Major fault */
3834                 ret = VM_FAULT_MAJOR;
3835                 count_vm_event(PGMAJFAULT);
3836                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3837         } else if (PageHWPoison(page)) {
3838                 /*
3839                  * hwpoisoned dirty swapcache pages are kept for killing
3840                  * owner processes (which may be unknown at hwpoison time)
3841                  */
3842                 ret = VM_FAULT_HWPOISON;
3843                 goto out_release;
3844         }
3845
3846         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3847
3848         if (!locked) {
3849                 ret |= VM_FAULT_RETRY;
3850                 goto out_release;
3851         }
3852
3853         if (swapcache) {
3854                 /*
3855                  * Make sure folio_free_swap() or swapoff did not release the
3856                  * swapcache from under us.  The page pin, and pte_same test
3857                  * below, are not enough to exclude that.  Even if it is still
3858                  * swapcache, we need to check that the page's swap has not
3859                  * changed.
3860                  */
3861                 if (unlikely(!folio_test_swapcache(folio) ||
3862                              page_private(page) != entry.val))
3863                         goto out_page;
3864
3865                 /*
3866                  * KSM sometimes has to copy on read faults, for example, if
3867                  * page->index of !PageKSM() pages would be nonlinear inside the
3868                  * anon VMA -- PageKSM() is lost on actual swapout.
3869                  */
3870                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3871                 if (unlikely(!page)) {
3872                         ret = VM_FAULT_OOM;
3873                         goto out_page;
3874                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3875                         ret = VM_FAULT_HWPOISON;
3876                         goto out_page;
3877                 }
3878                 folio = page_folio(page);
3879
3880                 /*
3881                  * If we want to map a page that's in the swapcache writable, we
3882                  * have to detect via the refcount if we're really the exclusive
3883                  * owner. Try removing the extra reference from the local LRU
3884                  * caches if required.
3885                  */
3886                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3887                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3888                         lru_add_drain();
3889         }
3890
3891         folio_throttle_swaprate(folio, GFP_KERNEL);
3892
3893         /*
3894          * Back out if somebody else already faulted in this pte.
3895          */
3896         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3897                         &vmf->ptl);
3898         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3899                 goto out_nomap;
3900
3901         if (unlikely(!folio_test_uptodate(folio))) {
3902                 ret = VM_FAULT_SIGBUS;
3903                 goto out_nomap;
3904         }
3905
3906         /*
3907          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3908          * must never point at an anonymous page in the swapcache that is
3909          * PG_anon_exclusive. Sanity check that this holds and especially, that
3910          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3911          * check after taking the PT lock and making sure that nobody
3912          * concurrently faulted in this page and set PG_anon_exclusive.
3913          */
3914         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3915         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3916
3917         /*
3918          * Check under PT lock (to protect against concurrent fork() sharing
3919          * the swap entry concurrently) for certainly exclusive pages.
3920          */
3921         if (!folio_test_ksm(folio)) {
3922                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3923                 if (folio != swapcache) {
3924                         /*
3925                          * We have a fresh page that is not exposed to the
3926                          * swapcache -> certainly exclusive.
3927                          */
3928                         exclusive = true;
3929                 } else if (exclusive && folio_test_writeback(folio) &&
3930                           data_race(si->flags & SWP_STABLE_WRITES)) {
3931                         /*
3932                          * This is tricky: not all swap backends support
3933                          * concurrent page modifications while under writeback.
3934                          *
3935                          * So if we stumble over such a page in the swapcache
3936                          * we must not set the page exclusive, otherwise we can
3937                          * map it writable without further checks and modify it
3938                          * while still under writeback.
3939                          *
3940                          * For these problematic swap backends, simply drop the
3941                          * exclusive marker: this is perfectly fine as we start
3942                          * writeback only if we fully unmapped the page and
3943                          * there are no unexpected references on the page after
3944                          * unmapping succeeded. After fully unmapped, no
3945                          * further GUP references (FOLL_GET and FOLL_PIN) can
3946                          * appear, so dropping the exclusive marker and mapping
3947                          * it only R/O is fine.
3948                          */
3949                         exclusive = false;
3950                 }
3951         }
3952
3953         /*
3954          * Some architectures may have to restore extra metadata to the page
3955          * when reading from swap. This metadata may be indexed by swap entry
3956          * so this must be called before swap_free().
3957          */
3958         arch_swap_restore(entry, folio);
3959
3960         /*
3961          * Remove the swap entry and conditionally try to free up the swapcache.
3962          * We're already holding a reference on the page but haven't mapped it
3963          * yet.
3964          */
3965         swap_free(entry);
3966         if (should_try_to_free_swap(folio, vma, vmf->flags))
3967                 folio_free_swap(folio);
3968
3969         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3970         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3971         pte = mk_pte(page, vma->vm_page_prot);
3972
3973         /*
3974          * Same logic as in do_wp_page(); however, optimize for pages that are
3975          * certainly not shared either because we just allocated them without
3976          * exposing them to the swapcache or because the swap entry indicates
3977          * exclusivity.
3978          */
3979         if (!folio_test_ksm(folio) &&
3980             (exclusive || folio_ref_count(folio) == 1)) {
3981                 if (vmf->flags & FAULT_FLAG_WRITE) {
3982                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3983                         vmf->flags &= ~FAULT_FLAG_WRITE;
3984                 }
3985                 rmap_flags |= RMAP_EXCLUSIVE;
3986         }
3987         flush_icache_page(vma, page);
3988         if (pte_swp_soft_dirty(vmf->orig_pte))
3989                 pte = pte_mksoft_dirty(pte);
3990         if (pte_swp_uffd_wp(vmf->orig_pte))
3991                 pte = pte_mkuffd_wp(pte);
3992         vmf->orig_pte = pte;
3993
3994         /* ksm created a completely new copy */
3995         if (unlikely(folio != swapcache && swapcache)) {
3996                 page_add_new_anon_rmap(page, vma, vmf->address);
3997                 folio_add_lru_vma(folio, vma);
3998         } else {
3999                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4000         }
4001
4002         VM_BUG_ON(!folio_test_anon(folio) ||
4003                         (pte_write(pte) && !PageAnonExclusive(page)));
4004         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4005         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4006
4007         folio_unlock(folio);
4008         if (folio != swapcache && swapcache) {
4009                 /*
4010                  * Hold the lock to avoid the swap entry to be reused
4011                  * until we take the PT lock for the pte_same() check
4012                  * (to avoid false positives from pte_same). For
4013                  * further safety release the lock after the swap_free
4014                  * so that the swap count won't change under a
4015                  * parallel locked swapcache.
4016                  */
4017                 folio_unlock(swapcache);
4018                 folio_put(swapcache);
4019         }
4020
4021         if (vmf->flags & FAULT_FLAG_WRITE) {
4022                 ret |= do_wp_page(vmf);
4023                 if (ret & VM_FAULT_ERROR)
4024                         ret &= VM_FAULT_ERROR;
4025                 goto out;
4026         }
4027
4028         /* No need to invalidate - it was non-present before */
4029         update_mmu_cache(vma, vmf->address, vmf->pte);
4030 unlock:
4031         if (vmf->pte)
4032                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4033 out:
4034         if (si)
4035                 put_swap_device(si);
4036         return ret;
4037 out_nomap:
4038         if (vmf->pte)
4039                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4040 out_page:
4041         folio_unlock(folio);
4042 out_release:
4043         folio_put(folio);
4044         if (folio != swapcache && swapcache) {
4045                 folio_unlock(swapcache);
4046                 folio_put(swapcache);
4047         }
4048         if (si)
4049                 put_swap_device(si);
4050         return ret;
4051 }
4052
4053 /*
4054  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4055  * but allow concurrent faults), and pte mapped but not yet locked.
4056  * We return with mmap_lock still held, but pte unmapped and unlocked.
4057  */
4058 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4059 {
4060         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4061         struct vm_area_struct *vma = vmf->vma;
4062         struct folio *folio;
4063         vm_fault_t ret = 0;
4064         pte_t entry;
4065
4066         /* File mapping without ->vm_ops ? */
4067         if (vma->vm_flags & VM_SHARED)
4068                 return VM_FAULT_SIGBUS;
4069
4070         /*
4071          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4072          * be distinguished from a transient failure of pte_offset_map().
4073          */
4074         if (pte_alloc(vma->vm_mm, vmf->pmd))
4075                 return VM_FAULT_OOM;
4076
4077         /* Use the zero-page for reads */
4078         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4079                         !mm_forbids_zeropage(vma->vm_mm)) {
4080                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4081                                                 vma->vm_page_prot));
4082                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4083                                 vmf->address, &vmf->ptl);
4084                 if (!vmf->pte)
4085                         goto unlock;
4086                 if (vmf_pte_changed(vmf)) {
4087                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4088                         goto unlock;
4089                 }
4090                 ret = check_stable_address_space(vma->vm_mm);
4091                 if (ret)
4092                         goto unlock;
4093                 /* Deliver the page fault to userland, check inside PT lock */
4094                 if (userfaultfd_missing(vma)) {
4095                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4096                         return handle_userfault(vmf, VM_UFFD_MISSING);
4097                 }
4098                 goto setpte;
4099         }
4100
4101         /* Allocate our own private page. */
4102         if (unlikely(anon_vma_prepare(vma)))
4103                 goto oom;
4104         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4105         if (!folio)
4106                 goto oom;
4107
4108         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4109                 goto oom_free_page;
4110         folio_throttle_swaprate(folio, GFP_KERNEL);
4111
4112         /*
4113          * The memory barrier inside __folio_mark_uptodate makes sure that
4114          * preceding stores to the page contents become visible before
4115          * the set_pte_at() write.
4116          */
4117         __folio_mark_uptodate(folio);
4118
4119         entry = mk_pte(&folio->page, vma->vm_page_prot);
4120         entry = pte_sw_mkyoung(entry);
4121         if (vma->vm_flags & VM_WRITE)
4122                 entry = pte_mkwrite(pte_mkdirty(entry));
4123
4124         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4125                         &vmf->ptl);
4126         if (!vmf->pte)
4127                 goto release;
4128         if (vmf_pte_changed(vmf)) {
4129                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4130                 goto release;
4131         }
4132
4133         ret = check_stable_address_space(vma->vm_mm);
4134         if (ret)
4135                 goto release;
4136
4137         /* Deliver the page fault to userland, check inside PT lock */
4138         if (userfaultfd_missing(vma)) {
4139                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4140                 folio_put(folio);
4141                 return handle_userfault(vmf, VM_UFFD_MISSING);
4142         }
4143
4144         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4145         folio_add_new_anon_rmap(folio, vma, vmf->address);
4146         folio_add_lru_vma(folio, vma);
4147 setpte:
4148         if (uffd_wp)
4149                 entry = pte_mkuffd_wp(entry);
4150         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4151
4152         /* No need to invalidate - it was non-present before */
4153         update_mmu_cache(vma, vmf->address, vmf->pte);
4154 unlock:
4155         if (vmf->pte)
4156                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4157         return ret;
4158 release:
4159         folio_put(folio);
4160         goto unlock;
4161 oom_free_page:
4162         folio_put(folio);
4163 oom:
4164         return VM_FAULT_OOM;
4165 }
4166
4167 /*
4168  * The mmap_lock must have been held on entry, and may have been
4169  * released depending on flags and vma->vm_ops->fault() return value.
4170  * See filemap_fault() and __lock_page_retry().
4171  */
4172 static vm_fault_t __do_fault(struct vm_fault *vmf)
4173 {
4174         struct vm_area_struct *vma = vmf->vma;
4175         vm_fault_t ret;
4176
4177         /*
4178          * Preallocate pte before we take page_lock because this might lead to
4179          * deadlocks for memcg reclaim which waits for pages under writeback:
4180          *                              lock_page(A)
4181          *                              SetPageWriteback(A)
4182          *                              unlock_page(A)
4183          * lock_page(B)
4184          *                              lock_page(B)
4185          * pte_alloc_one
4186          *   shrink_page_list
4187          *     wait_on_page_writeback(A)
4188          *                              SetPageWriteback(B)
4189          *                              unlock_page(B)
4190          *                              # flush A, B to clear the writeback
4191          */
4192         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4193                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4194                 if (!vmf->prealloc_pte)
4195                         return VM_FAULT_OOM;
4196         }
4197
4198         ret = vma->vm_ops->fault(vmf);
4199         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4200                             VM_FAULT_DONE_COW)))
4201                 return ret;
4202
4203         if (unlikely(PageHWPoison(vmf->page))) {
4204                 struct page *page = vmf->page;
4205                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4206                 if (ret & VM_FAULT_LOCKED) {
4207                         if (page_mapped(page))
4208                                 unmap_mapping_pages(page_mapping(page),
4209                                                     page->index, 1, false);
4210                         /* Retry if a clean page was removed from the cache. */
4211                         if (invalidate_inode_page(page))
4212                                 poisonret = VM_FAULT_NOPAGE;
4213                         unlock_page(page);
4214                 }
4215                 put_page(page);
4216                 vmf->page = NULL;
4217                 return poisonret;
4218         }
4219
4220         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4221                 lock_page(vmf->page);
4222         else
4223                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4224
4225         return ret;
4226 }
4227
4228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 static void deposit_prealloc_pte(struct vm_fault *vmf)
4230 {
4231         struct vm_area_struct *vma = vmf->vma;
4232
4233         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4234         /*
4235          * We are going to consume the prealloc table,
4236          * count that as nr_ptes.
4237          */
4238         mm_inc_nr_ptes(vma->vm_mm);
4239         vmf->prealloc_pte = NULL;
4240 }
4241
4242 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4243 {
4244         struct vm_area_struct *vma = vmf->vma;
4245         bool write = vmf->flags & FAULT_FLAG_WRITE;
4246         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4247         pmd_t entry;
4248         int i;
4249         vm_fault_t ret = VM_FAULT_FALLBACK;
4250
4251         if (!transhuge_vma_suitable(vma, haddr))
4252                 return ret;
4253
4254         page = compound_head(page);
4255         if (compound_order(page) != HPAGE_PMD_ORDER)
4256                 return ret;
4257
4258         /*
4259          * Just backoff if any subpage of a THP is corrupted otherwise
4260          * the corrupted page may mapped by PMD silently to escape the
4261          * check.  This kind of THP just can be PTE mapped.  Access to
4262          * the corrupted subpage should trigger SIGBUS as expected.
4263          */
4264         if (unlikely(PageHasHWPoisoned(page)))
4265                 return ret;
4266
4267         /*
4268          * Archs like ppc64 need additional space to store information
4269          * related to pte entry. Use the preallocated table for that.
4270          */
4271         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4272                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4273                 if (!vmf->prealloc_pte)
4274                         return VM_FAULT_OOM;
4275         }
4276
4277         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4278         if (unlikely(!pmd_none(*vmf->pmd)))
4279                 goto out;
4280
4281         for (i = 0; i < HPAGE_PMD_NR; i++)
4282                 flush_icache_page(vma, page + i);
4283
4284         entry = mk_huge_pmd(page, vma->vm_page_prot);
4285         if (write)
4286                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4287
4288         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4289         page_add_file_rmap(page, vma, true);
4290
4291         /*
4292          * deposit and withdraw with pmd lock held
4293          */
4294         if (arch_needs_pgtable_deposit())
4295                 deposit_prealloc_pte(vmf);
4296
4297         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4298
4299         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4300
4301         /* fault is handled */
4302         ret = 0;
4303         count_vm_event(THP_FILE_MAPPED);
4304 out:
4305         spin_unlock(vmf->ptl);
4306         return ret;
4307 }
4308 #else
4309 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4310 {
4311         return VM_FAULT_FALLBACK;
4312 }
4313 #endif
4314
4315 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4316 {
4317         struct vm_area_struct *vma = vmf->vma;
4318         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4319         bool write = vmf->flags & FAULT_FLAG_WRITE;
4320         bool prefault = vmf->address != addr;
4321         pte_t entry;
4322
4323         flush_icache_page(vma, page);
4324         entry = mk_pte(page, vma->vm_page_prot);
4325
4326         if (prefault && arch_wants_old_prefaulted_pte())
4327                 entry = pte_mkold(entry);
4328         else
4329                 entry = pte_sw_mkyoung(entry);
4330
4331         if (write)
4332                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4333         if (unlikely(uffd_wp))
4334                 entry = pte_mkuffd_wp(entry);
4335         /* copy-on-write page */
4336         if (write && !(vma->vm_flags & VM_SHARED)) {
4337                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4338                 page_add_new_anon_rmap(page, vma, addr);
4339                 lru_cache_add_inactive_or_unevictable(page, vma);
4340         } else {
4341                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4342                 page_add_file_rmap(page, vma, false);
4343         }
4344         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4345 }
4346
4347 static bool vmf_pte_changed(struct vm_fault *vmf)
4348 {
4349         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4350                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4351
4352         return !pte_none(ptep_get(vmf->pte));
4353 }
4354
4355 /**
4356  * finish_fault - finish page fault once we have prepared the page to fault
4357  *
4358  * @vmf: structure describing the fault
4359  *
4360  * This function handles all that is needed to finish a page fault once the
4361  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4362  * given page, adds reverse page mapping, handles memcg charges and LRU
4363  * addition.
4364  *
4365  * The function expects the page to be locked and on success it consumes a
4366  * reference of a page being mapped (for the PTE which maps it).
4367  *
4368  * Return: %0 on success, %VM_FAULT_ code in case of error.
4369  */
4370 vm_fault_t finish_fault(struct vm_fault *vmf)
4371 {
4372         struct vm_area_struct *vma = vmf->vma;
4373         struct page *page;
4374         vm_fault_t ret;
4375
4376         /* Did we COW the page? */
4377         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4378                 page = vmf->cow_page;
4379         else
4380                 page = vmf->page;
4381
4382         /*
4383          * check even for read faults because we might have lost our CoWed
4384          * page
4385          */
4386         if (!(vma->vm_flags & VM_SHARED)) {
4387                 ret = check_stable_address_space(vma->vm_mm);
4388                 if (ret)
4389                         return ret;
4390         }
4391
4392         if (pmd_none(*vmf->pmd)) {
4393                 if (PageTransCompound(page)) {
4394                         ret = do_set_pmd(vmf, page);
4395                         if (ret != VM_FAULT_FALLBACK)
4396                                 return ret;
4397                 }
4398
4399                 if (vmf->prealloc_pte)
4400                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4401                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4402                         return VM_FAULT_OOM;
4403         }
4404
4405         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4406                                       vmf->address, &vmf->ptl);
4407         if (!vmf->pte)
4408                 return VM_FAULT_NOPAGE;
4409
4410         /* Re-check under ptl */
4411         if (likely(!vmf_pte_changed(vmf))) {
4412                 do_set_pte(vmf, page, vmf->address);
4413
4414                 /* no need to invalidate: a not-present page won't be cached */
4415                 update_mmu_cache(vma, vmf->address, vmf->pte);
4416
4417                 ret = 0;
4418         } else {
4419                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4420                 ret = VM_FAULT_NOPAGE;
4421         }
4422
4423         pte_unmap_unlock(vmf->pte, vmf->ptl);
4424         return ret;
4425 }
4426
4427 static unsigned long fault_around_pages __read_mostly =
4428         65536 >> PAGE_SHIFT;
4429
4430 #ifdef CONFIG_DEBUG_FS
4431 static int fault_around_bytes_get(void *data, u64 *val)
4432 {
4433         *val = fault_around_pages << PAGE_SHIFT;
4434         return 0;
4435 }
4436
4437 /*
4438  * fault_around_bytes must be rounded down to the nearest page order as it's
4439  * what do_fault_around() expects to see.
4440  */
4441 static int fault_around_bytes_set(void *data, u64 val)
4442 {
4443         if (val / PAGE_SIZE > PTRS_PER_PTE)
4444                 return -EINVAL;
4445
4446         /*
4447          * The minimum value is 1 page, however this results in no fault-around
4448          * at all. See should_fault_around().
4449          */
4450         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4451
4452         return 0;
4453 }
4454 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4455                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4456
4457 static int __init fault_around_debugfs(void)
4458 {
4459         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4460                                    &fault_around_bytes_fops);
4461         return 0;
4462 }
4463 late_initcall(fault_around_debugfs);
4464 #endif
4465
4466 /*
4467  * do_fault_around() tries to map few pages around the fault address. The hope
4468  * is that the pages will be needed soon and this will lower the number of
4469  * faults to handle.
4470  *
4471  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4472  * not ready to be mapped: not up-to-date, locked, etc.
4473  *
4474  * This function doesn't cross VMA or page table boundaries, in order to call
4475  * map_pages() and acquire a PTE lock only once.
4476  *
4477  * fault_around_pages defines how many pages we'll try to map.
4478  * do_fault_around() expects it to be set to a power of two less than or equal
4479  * to PTRS_PER_PTE.
4480  *
4481  * The virtual address of the area that we map is naturally aligned to
4482  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4483  * (and therefore to page order).  This way it's easier to guarantee
4484  * that we don't cross page table boundaries.
4485  */
4486 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4487 {
4488         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4489         pgoff_t pte_off = pte_index(vmf->address);
4490         /* The page offset of vmf->address within the VMA. */
4491         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4492         pgoff_t from_pte, to_pte;
4493         vm_fault_t ret;
4494
4495         /* The PTE offset of the start address, clamped to the VMA. */
4496         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4497                        pte_off - min(pte_off, vma_off));
4498
4499         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4500         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4501                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4502
4503         if (pmd_none(*vmf->pmd)) {
4504                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4505                 if (!vmf->prealloc_pte)
4506                         return VM_FAULT_OOM;
4507         }
4508
4509         rcu_read_lock();
4510         ret = vmf->vma->vm_ops->map_pages(vmf,
4511                         vmf->pgoff + from_pte - pte_off,
4512                         vmf->pgoff + to_pte - pte_off);
4513         rcu_read_unlock();
4514
4515         return ret;
4516 }
4517
4518 /* Return true if we should do read fault-around, false otherwise */
4519 static inline bool should_fault_around(struct vm_fault *vmf)
4520 {
4521         /* No ->map_pages?  No way to fault around... */
4522         if (!vmf->vma->vm_ops->map_pages)
4523                 return false;
4524
4525         if (uffd_disable_fault_around(vmf->vma))
4526                 return false;
4527
4528         /* A single page implies no faulting 'around' at all. */
4529         return fault_around_pages > 1;
4530 }
4531
4532 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4533 {
4534         vm_fault_t ret = 0;
4535
4536         /*
4537          * Let's call ->map_pages() first and use ->fault() as fallback
4538          * if page by the offset is not ready to be mapped (cold cache or
4539          * something).
4540          */
4541         if (should_fault_around(vmf)) {
4542                 ret = do_fault_around(vmf);
4543                 if (ret)
4544                         return ret;
4545         }
4546
4547         ret = __do_fault(vmf);
4548         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549                 return ret;
4550
4551         ret |= finish_fault(vmf);
4552         unlock_page(vmf->page);
4553         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554                 put_page(vmf->page);
4555         return ret;
4556 }
4557
4558 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4559 {
4560         struct vm_area_struct *vma = vmf->vma;
4561         vm_fault_t ret;
4562
4563         if (unlikely(anon_vma_prepare(vma)))
4564                 return VM_FAULT_OOM;
4565
4566         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4567         if (!vmf->cow_page)
4568                 return VM_FAULT_OOM;
4569
4570         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4571                                 GFP_KERNEL)) {
4572                 put_page(vmf->cow_page);
4573                 return VM_FAULT_OOM;
4574         }
4575         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4576
4577         ret = __do_fault(vmf);
4578         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4579                 goto uncharge_out;
4580         if (ret & VM_FAULT_DONE_COW)
4581                 return ret;
4582
4583         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4584         __SetPageUptodate(vmf->cow_page);
4585
4586         ret |= finish_fault(vmf);
4587         unlock_page(vmf->page);
4588         put_page(vmf->page);
4589         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4590                 goto uncharge_out;
4591         return ret;
4592 uncharge_out:
4593         put_page(vmf->cow_page);
4594         return ret;
4595 }
4596
4597 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4598 {
4599         struct vm_area_struct *vma = vmf->vma;
4600         vm_fault_t ret, tmp;
4601
4602         ret = __do_fault(vmf);
4603         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4604                 return ret;
4605
4606         /*
4607          * Check if the backing address space wants to know that the page is
4608          * about to become writable
4609          */
4610         if (vma->vm_ops->page_mkwrite) {
4611                 unlock_page(vmf->page);
4612                 tmp = do_page_mkwrite(vmf);
4613                 if (unlikely(!tmp ||
4614                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4615                         put_page(vmf->page);
4616                         return tmp;
4617                 }
4618         }
4619
4620         ret |= finish_fault(vmf);
4621         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4622                                         VM_FAULT_RETRY))) {
4623                 unlock_page(vmf->page);
4624                 put_page(vmf->page);
4625                 return ret;
4626         }
4627
4628         ret |= fault_dirty_shared_page(vmf);
4629         return ret;
4630 }
4631
4632 /*
4633  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4634  * but allow concurrent faults).
4635  * The mmap_lock may have been released depending on flags and our
4636  * return value.  See filemap_fault() and __folio_lock_or_retry().
4637  * If mmap_lock is released, vma may become invalid (for example
4638  * by other thread calling munmap()).
4639  */
4640 static vm_fault_t do_fault(struct vm_fault *vmf)
4641 {
4642         struct vm_area_struct *vma = vmf->vma;
4643         struct mm_struct *vm_mm = vma->vm_mm;
4644         vm_fault_t ret;
4645
4646         /*
4647          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4648          */
4649         if (!vma->vm_ops->fault) {
4650                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4651                                                vmf->address, &vmf->ptl);
4652                 if (unlikely(!vmf->pte))
4653                         ret = VM_FAULT_SIGBUS;
4654                 else {
4655                         /*
4656                          * Make sure this is not a temporary clearing of pte
4657                          * by holding ptl and checking again. A R/M/W update
4658                          * of pte involves: take ptl, clearing the pte so that
4659                          * we don't have concurrent modification by hardware
4660                          * followed by an update.
4661                          */
4662                         if (unlikely(pte_none(ptep_get(vmf->pte))))
4663                                 ret = VM_FAULT_SIGBUS;
4664                         else
4665                                 ret = VM_FAULT_NOPAGE;
4666
4667                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4668                 }
4669         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4670                 ret = do_read_fault(vmf);
4671         else if (!(vma->vm_flags & VM_SHARED))
4672                 ret = do_cow_fault(vmf);
4673         else
4674                 ret = do_shared_fault(vmf);
4675
4676         /* preallocated pagetable is unused: free it */
4677         if (vmf->prealloc_pte) {
4678                 pte_free(vm_mm, vmf->prealloc_pte);
4679                 vmf->prealloc_pte = NULL;
4680         }
4681         return ret;
4682 }
4683
4684 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4685                       unsigned long addr, int page_nid, int *flags)
4686 {
4687         get_page(page);
4688
4689         /* Record the current PID acceesing VMA */
4690         vma_set_access_pid_bit(vma);
4691
4692         count_vm_numa_event(NUMA_HINT_FAULTS);
4693         if (page_nid == numa_node_id()) {
4694                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4695                 *flags |= TNF_FAULT_LOCAL;
4696         }
4697
4698         return mpol_misplaced(page, vma, addr);
4699 }
4700
4701 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4702 {
4703         struct vm_area_struct *vma = vmf->vma;
4704         struct page *page = NULL;
4705         int page_nid = NUMA_NO_NODE;
4706         bool writable = false;
4707         int last_cpupid;
4708         int target_nid;
4709         pte_t pte, old_pte;
4710         int flags = 0;
4711
4712         /*
4713          * The "pte" at this point cannot be used safely without
4714          * validation through pte_unmap_same(). It's of NUMA type but
4715          * the pfn may be screwed if the read is non atomic.
4716          */
4717         spin_lock(vmf->ptl);
4718         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4719                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4720                 goto out;
4721         }
4722
4723         /* Get the normal PTE  */
4724         old_pte = ptep_get(vmf->pte);
4725         pte = pte_modify(old_pte, vma->vm_page_prot);
4726
4727         /*
4728          * Detect now whether the PTE could be writable; this information
4729          * is only valid while holding the PT lock.
4730          */
4731         writable = pte_write(pte);
4732         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4733             can_change_pte_writable(vma, vmf->address, pte))
4734                 writable = true;
4735
4736         page = vm_normal_page(vma, vmf->address, pte);
4737         if (!page || is_zone_device_page(page))
4738                 goto out_map;
4739
4740         /* TODO: handle PTE-mapped THP */
4741         if (PageCompound(page))
4742                 goto out_map;
4743
4744         /*
4745          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4746          * much anyway since they can be in shared cache state. This misses
4747          * the case where a mapping is writable but the process never writes
4748          * to it but pte_write gets cleared during protection updates and
4749          * pte_dirty has unpredictable behaviour between PTE scan updates,
4750          * background writeback, dirty balancing and application behaviour.
4751          */
4752         if (!writable)
4753                 flags |= TNF_NO_GROUP;
4754
4755         /*
4756          * Flag if the page is shared between multiple address spaces. This
4757          * is later used when determining whether to group tasks together
4758          */
4759         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4760                 flags |= TNF_SHARED;
4761
4762         page_nid = page_to_nid(page);
4763         /*
4764          * For memory tiering mode, cpupid of slow memory page is used
4765          * to record page access time.  So use default value.
4766          */
4767         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4768             !node_is_toptier(page_nid))
4769                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4770         else
4771                 last_cpupid = page_cpupid_last(page);
4772         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4773                         &flags);
4774         if (target_nid == NUMA_NO_NODE) {
4775                 put_page(page);
4776                 goto out_map;
4777         }
4778         pte_unmap_unlock(vmf->pte, vmf->ptl);
4779         writable = false;
4780
4781         /* Migrate to the requested node */
4782         if (migrate_misplaced_page(page, vma, target_nid)) {
4783                 page_nid = target_nid;
4784                 flags |= TNF_MIGRATED;
4785         } else {
4786                 flags |= TNF_MIGRATE_FAIL;
4787                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788                                                vmf->address, &vmf->ptl);
4789                 if (unlikely(!vmf->pte))
4790                         goto out;
4791                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4792                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4793                         goto out;
4794                 }
4795                 goto out_map;
4796         }
4797
4798 out:
4799         if (page_nid != NUMA_NO_NODE)
4800                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4801         return 0;
4802 out_map:
4803         /*
4804          * Make it present again, depending on how arch implements
4805          * non-accessible ptes, some can allow access by kernel mode.
4806          */
4807         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4808         pte = pte_modify(old_pte, vma->vm_page_prot);
4809         pte = pte_mkyoung(pte);
4810         if (writable)
4811                 pte = pte_mkwrite(pte);
4812         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4813         update_mmu_cache(vma, vmf->address, vmf->pte);
4814         pte_unmap_unlock(vmf->pte, vmf->ptl);
4815         goto out;
4816 }
4817
4818 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4819 {
4820         if (vma_is_anonymous(vmf->vma))
4821                 return do_huge_pmd_anonymous_page(vmf);
4822         if (vmf->vma->vm_ops->huge_fault)
4823                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4824         return VM_FAULT_FALLBACK;
4825 }
4826
4827 /* `inline' is required to avoid gcc 4.1.2 build error */
4828 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4829 {
4830         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4831         vm_fault_t ret;
4832
4833         if (vma_is_anonymous(vmf->vma)) {
4834                 if (likely(!unshare) &&
4835                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4836                         return handle_userfault(vmf, VM_UFFD_WP);
4837                 return do_huge_pmd_wp_page(vmf);
4838         }
4839
4840         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4841                 if (vmf->vma->vm_ops->huge_fault) {
4842                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4843                         if (!(ret & VM_FAULT_FALLBACK))
4844                                 return ret;
4845                 }
4846         }
4847
4848         /* COW or write-notify handled on pte level: split pmd. */
4849         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4850
4851         return VM_FAULT_FALLBACK;
4852 }
4853
4854 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4855 {
4856 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4857         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4858         /* No support for anonymous transparent PUD pages yet */
4859         if (vma_is_anonymous(vmf->vma))
4860                 return VM_FAULT_FALLBACK;
4861         if (vmf->vma->vm_ops->huge_fault)
4862                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4864         return VM_FAULT_FALLBACK;
4865 }
4866
4867 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4868 {
4869 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4870         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4871         vm_fault_t ret;
4872
4873         /* No support for anonymous transparent PUD pages yet */
4874         if (vma_is_anonymous(vmf->vma))
4875                 goto split;
4876         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877                 if (vmf->vma->vm_ops->huge_fault) {
4878                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4879                         if (!(ret & VM_FAULT_FALLBACK))
4880                                 return ret;
4881                 }
4882         }
4883 split:
4884         /* COW or write-notify not handled on PUD level: split pud.*/
4885         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4886 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4887         return VM_FAULT_FALLBACK;
4888 }
4889
4890 /*
4891  * These routines also need to handle stuff like marking pages dirty
4892  * and/or accessed for architectures that don't do it in hardware (most
4893  * RISC architectures).  The early dirtying is also good on the i386.
4894  *
4895  * There is also a hook called "update_mmu_cache()" that architectures
4896  * with external mmu caches can use to update those (ie the Sparc or
4897  * PowerPC hashed page tables that act as extended TLBs).
4898  *
4899  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4900  * concurrent faults).
4901  *
4902  * The mmap_lock may have been released depending on flags and our return value.
4903  * See filemap_fault() and __folio_lock_or_retry().
4904  */
4905 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4906 {
4907         pte_t entry;
4908
4909         if (unlikely(pmd_none(*vmf->pmd))) {
4910                 /*
4911                  * Leave __pte_alloc() until later: because vm_ops->fault may
4912                  * want to allocate huge page, and if we expose page table
4913                  * for an instant, it will be difficult to retract from
4914                  * concurrent faults and from rmap lookups.
4915                  */
4916                 vmf->pte = NULL;
4917                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4918         } else {
4919                 /*
4920                  * A regular pmd is established and it can't morph into a huge
4921                  * pmd by anon khugepaged, since that takes mmap_lock in write
4922                  * mode; but shmem or file collapse to THP could still morph
4923                  * it into a huge pmd: just retry later if so.
4924                  */
4925                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4926                                                  vmf->address, &vmf->ptl);
4927                 if (unlikely(!vmf->pte))
4928                         return 0;
4929                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4930                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4931
4932                 if (pte_none(vmf->orig_pte)) {
4933                         pte_unmap(vmf->pte);
4934                         vmf->pte = NULL;
4935                 }
4936         }
4937
4938         if (!vmf->pte)
4939                 return do_pte_missing(vmf);
4940
4941         if (!pte_present(vmf->orig_pte))
4942                 return do_swap_page(vmf);
4943
4944         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4945                 return do_numa_page(vmf);
4946
4947         spin_lock(vmf->ptl);
4948         entry = vmf->orig_pte;
4949         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4950                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4951                 goto unlock;
4952         }
4953         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4954                 if (!pte_write(entry))
4955                         return do_wp_page(vmf);
4956                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4957                         entry = pte_mkdirty(entry);
4958         }
4959         entry = pte_mkyoung(entry);
4960         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4961                                 vmf->flags & FAULT_FLAG_WRITE)) {
4962                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4963         } else {
4964                 /* Skip spurious TLB flush for retried page fault */
4965                 if (vmf->flags & FAULT_FLAG_TRIED)
4966                         goto unlock;
4967                 /*
4968                  * This is needed only for protection faults but the arch code
4969                  * is not yet telling us if this is a protection fault or not.
4970                  * This still avoids useless tlb flushes for .text page faults
4971                  * with threads.
4972                  */
4973                 if (vmf->flags & FAULT_FLAG_WRITE)
4974                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4975                                                      vmf->pte);
4976         }
4977 unlock:
4978         pte_unmap_unlock(vmf->pte, vmf->ptl);
4979         return 0;
4980 }
4981
4982 /*
4983  * By the time we get here, we already hold the mm semaphore
4984  *
4985  * The mmap_lock may have been released depending on flags and our
4986  * return value.  See filemap_fault() and __folio_lock_or_retry().
4987  */
4988 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4989                 unsigned long address, unsigned int flags)
4990 {
4991         struct vm_fault vmf = {
4992                 .vma = vma,
4993                 .address = address & PAGE_MASK,
4994                 .real_address = address,
4995                 .flags = flags,
4996                 .pgoff = linear_page_index(vma, address),
4997                 .gfp_mask = __get_fault_gfp_mask(vma),
4998         };
4999         struct mm_struct *mm = vma->vm_mm;
5000         unsigned long vm_flags = vma->vm_flags;
5001         pgd_t *pgd;
5002         p4d_t *p4d;
5003         vm_fault_t ret;
5004
5005         pgd = pgd_offset(mm, address);
5006         p4d = p4d_alloc(mm, pgd, address);
5007         if (!p4d)
5008                 return VM_FAULT_OOM;
5009
5010         vmf.pud = pud_alloc(mm, p4d, address);
5011         if (!vmf.pud)
5012                 return VM_FAULT_OOM;
5013 retry_pud:
5014         if (pud_none(*vmf.pud) &&
5015             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5016                 ret = create_huge_pud(&vmf);
5017                 if (!(ret & VM_FAULT_FALLBACK))
5018                         return ret;
5019         } else {
5020                 pud_t orig_pud = *vmf.pud;
5021
5022                 barrier();
5023                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5024
5025                         /*
5026                          * TODO once we support anonymous PUDs: NUMA case and
5027                          * FAULT_FLAG_UNSHARE handling.
5028                          */
5029                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5030                                 ret = wp_huge_pud(&vmf, orig_pud);
5031                                 if (!(ret & VM_FAULT_FALLBACK))
5032                                         return ret;
5033                         } else {
5034                                 huge_pud_set_accessed(&vmf, orig_pud);
5035                                 return 0;
5036                         }
5037                 }
5038         }
5039
5040         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5041         if (!vmf.pmd)
5042                 return VM_FAULT_OOM;
5043
5044         /* Huge pud page fault raced with pmd_alloc? */
5045         if (pud_trans_unstable(vmf.pud))
5046                 goto retry_pud;
5047
5048         if (pmd_none(*vmf.pmd) &&
5049             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5050                 ret = create_huge_pmd(&vmf);
5051                 if (!(ret & VM_FAULT_FALLBACK))
5052                         return ret;
5053         } else {
5054                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5055
5056                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5057                         VM_BUG_ON(thp_migration_supported() &&
5058                                           !is_pmd_migration_entry(vmf.orig_pmd));
5059                         if (is_pmd_migration_entry(vmf.orig_pmd))
5060                                 pmd_migration_entry_wait(mm, vmf.pmd);
5061                         return 0;
5062                 }
5063                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5064                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5065                                 return do_huge_pmd_numa_page(&vmf);
5066
5067                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5068                             !pmd_write(vmf.orig_pmd)) {
5069                                 ret = wp_huge_pmd(&vmf);
5070                                 if (!(ret & VM_FAULT_FALLBACK))
5071                                         return ret;
5072                         } else {
5073                                 huge_pmd_set_accessed(&vmf);
5074                                 return 0;
5075                         }
5076                 }
5077         }
5078
5079         return handle_pte_fault(&vmf);
5080 }
5081
5082 /**
5083  * mm_account_fault - Do page fault accounting
5084  *
5085  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5086  *        of perf event counters, but we'll still do the per-task accounting to
5087  *        the task who triggered this page fault.
5088  * @address: the faulted address.
5089  * @flags: the fault flags.
5090  * @ret: the fault retcode.
5091  *
5092  * This will take care of most of the page fault accounting.  Meanwhile, it
5093  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5094  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5095  * still be in per-arch page fault handlers at the entry of page fault.
5096  */
5097 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5098                                     unsigned long address, unsigned int flags,
5099                                     vm_fault_t ret)
5100 {
5101         bool major;
5102
5103         /* Incomplete faults will be accounted upon completion. */
5104         if (ret & VM_FAULT_RETRY)
5105                 return;
5106
5107         /*
5108          * To preserve the behavior of older kernels, PGFAULT counters record
5109          * both successful and failed faults, as opposed to perf counters,
5110          * which ignore failed cases.
5111          */
5112         count_vm_event(PGFAULT);
5113         count_memcg_event_mm(mm, PGFAULT);
5114
5115         /*
5116          * Do not account for unsuccessful faults (e.g. when the address wasn't
5117          * valid).  That includes arch_vma_access_permitted() failing before
5118          * reaching here. So this is not a "this many hardware page faults"
5119          * counter.  We should use the hw profiling for that.
5120          */
5121         if (ret & VM_FAULT_ERROR)
5122                 return;
5123
5124         /*
5125          * We define the fault as a major fault when the final successful fault
5126          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5127          * handle it immediately previously).
5128          */
5129         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5130
5131         if (major)
5132                 current->maj_flt++;
5133         else
5134                 current->min_flt++;
5135
5136         /*
5137          * If the fault is done for GUP, regs will be NULL.  We only do the
5138          * accounting for the per thread fault counters who triggered the
5139          * fault, and we skip the perf event updates.
5140          */
5141         if (!regs)
5142                 return;
5143
5144         if (major)
5145                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5146         else
5147                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5148 }
5149
5150 #ifdef CONFIG_LRU_GEN
5151 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5152 {
5153         /* the LRU algorithm only applies to accesses with recency */
5154         current->in_lru_fault = vma_has_recency(vma);
5155 }
5156
5157 static void lru_gen_exit_fault(void)
5158 {
5159         current->in_lru_fault = false;
5160 }
5161 #else
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164 }
5165
5166 static void lru_gen_exit_fault(void)
5167 {
5168 }
5169 #endif /* CONFIG_LRU_GEN */
5170
5171 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5172                                        unsigned int *flags)
5173 {
5174         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5175                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5176                         return VM_FAULT_SIGSEGV;
5177                 /*
5178                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5179                  * just treat it like an ordinary read-fault otherwise.
5180                  */
5181                 if (!is_cow_mapping(vma->vm_flags))
5182                         *flags &= ~FAULT_FLAG_UNSHARE;
5183         } else if (*flags & FAULT_FLAG_WRITE) {
5184                 /* Write faults on read-only mappings are impossible ... */
5185                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5186                         return VM_FAULT_SIGSEGV;
5187                 /* ... and FOLL_FORCE only applies to COW mappings. */
5188                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5189                                  !is_cow_mapping(vma->vm_flags)))
5190                         return VM_FAULT_SIGSEGV;
5191         }
5192         return 0;
5193 }
5194
5195 /*
5196  * By the time we get here, we already hold the mm semaphore
5197  *
5198  * The mmap_lock may have been released depending on flags and our
5199  * return value.  See filemap_fault() and __folio_lock_or_retry().
5200  */
5201 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5202                            unsigned int flags, struct pt_regs *regs)
5203 {
5204         /* If the fault handler drops the mmap_lock, vma may be freed */
5205         struct mm_struct *mm = vma->vm_mm;
5206         vm_fault_t ret;
5207
5208         __set_current_state(TASK_RUNNING);
5209
5210         ret = sanitize_fault_flags(vma, &flags);
5211         if (ret)
5212                 goto out;
5213
5214         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5215                                             flags & FAULT_FLAG_INSTRUCTION,
5216                                             flags & FAULT_FLAG_REMOTE)) {
5217                 ret = VM_FAULT_SIGSEGV;
5218                 goto out;
5219         }
5220
5221         /*
5222          * Enable the memcg OOM handling for faults triggered in user
5223          * space.  Kernel faults are handled more gracefully.
5224          */
5225         if (flags & FAULT_FLAG_USER)
5226                 mem_cgroup_enter_user_fault();
5227
5228         lru_gen_enter_fault(vma);
5229
5230         if (unlikely(is_vm_hugetlb_page(vma)))
5231                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5232         else
5233                 ret = __handle_mm_fault(vma, address, flags);
5234
5235         lru_gen_exit_fault();
5236
5237         if (flags & FAULT_FLAG_USER) {
5238                 mem_cgroup_exit_user_fault();
5239                 /*
5240                  * The task may have entered a memcg OOM situation but
5241                  * if the allocation error was handled gracefully (no
5242                  * VM_FAULT_OOM), there is no need to kill anything.
5243                  * Just clean up the OOM state peacefully.
5244                  */
5245                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5246                         mem_cgroup_oom_synchronize(false);
5247         }
5248 out:
5249         mm_account_fault(mm, regs, address, flags, ret);
5250
5251         return ret;
5252 }
5253 EXPORT_SYMBOL_GPL(handle_mm_fault);
5254
5255 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5256 #include <linux/extable.h>
5257
5258 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5259 {
5260         if (likely(mmap_read_trylock(mm)))
5261                 return true;
5262
5263         if (regs && !user_mode(regs)) {
5264                 unsigned long ip = instruction_pointer(regs);
5265                 if (!search_exception_tables(ip))
5266                         return false;
5267         }
5268
5269         return !mmap_read_lock_killable(mm);
5270 }
5271
5272 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5273 {
5274         /*
5275          * We don't have this operation yet.
5276          *
5277          * It should be easy enough to do: it's basically a
5278          *    atomic_long_try_cmpxchg_acquire()
5279          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5280          * it also needs the proper lockdep magic etc.
5281          */
5282         return false;
5283 }
5284
5285 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5286 {
5287         mmap_read_unlock(mm);
5288         if (regs && !user_mode(regs)) {
5289                 unsigned long ip = instruction_pointer(regs);
5290                 if (!search_exception_tables(ip))
5291                         return false;
5292         }
5293         return !mmap_write_lock_killable(mm);
5294 }
5295
5296 /*
5297  * Helper for page fault handling.
5298  *
5299  * This is kind of equivalend to "mmap_read_lock()" followed
5300  * by "find_extend_vma()", except it's a lot more careful about
5301  * the locking (and will drop the lock on failure).
5302  *
5303  * For example, if we have a kernel bug that causes a page
5304  * fault, we don't want to just use mmap_read_lock() to get
5305  * the mm lock, because that would deadlock if the bug were
5306  * to happen while we're holding the mm lock for writing.
5307  *
5308  * So this checks the exception tables on kernel faults in
5309  * order to only do this all for instructions that are actually
5310  * expected to fault.
5311  *
5312  * We can also actually take the mm lock for writing if we
5313  * need to extend the vma, which helps the VM layer a lot.
5314  */
5315 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5316                         unsigned long addr, struct pt_regs *regs)
5317 {
5318         struct vm_area_struct *vma;
5319
5320         if (!get_mmap_lock_carefully(mm, regs))
5321                 return NULL;
5322
5323         vma = find_vma(mm, addr);
5324         if (likely(vma && (vma->vm_start <= addr)))
5325                 return vma;
5326
5327         /*
5328          * Well, dang. We might still be successful, but only
5329          * if we can extend a vma to do so.
5330          */
5331         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5332                 mmap_read_unlock(mm);
5333                 return NULL;
5334         }
5335
5336         /*
5337          * We can try to upgrade the mmap lock atomically,
5338          * in which case we can continue to use the vma
5339          * we already looked up.
5340          *
5341          * Otherwise we'll have to drop the mmap lock and
5342          * re-take it, and also look up the vma again,
5343          * re-checking it.
5344          */
5345         if (!mmap_upgrade_trylock(mm)) {
5346                 if (!upgrade_mmap_lock_carefully(mm, regs))
5347                         return NULL;
5348
5349                 vma = find_vma(mm, addr);
5350                 if (!vma)
5351                         goto fail;
5352                 if (vma->vm_start <= addr)
5353                         goto success;
5354                 if (!(vma->vm_flags & VM_GROWSDOWN))
5355                         goto fail;
5356         }
5357
5358         if (expand_stack_locked(vma, addr))
5359                 goto fail;
5360
5361 success:
5362         mmap_write_downgrade(mm);
5363         return vma;
5364
5365 fail:
5366         mmap_write_unlock(mm);
5367         return NULL;
5368 }
5369 #endif
5370
5371 #ifdef CONFIG_PER_VMA_LOCK
5372 /*
5373  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5374  * stable and not isolated. If the VMA is not found or is being modified the
5375  * function returns NULL.
5376  */
5377 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5378                                           unsigned long address)
5379 {
5380         MA_STATE(mas, &mm->mm_mt, address, address);
5381         struct vm_area_struct *vma;
5382
5383         rcu_read_lock();
5384 retry:
5385         vma = mas_walk(&mas);
5386         if (!vma)
5387                 goto inval;
5388
5389         /* Only anonymous and tcp vmas are supported for now */
5390         if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5391                 goto inval;
5392
5393         if (!vma_start_read(vma))
5394                 goto inval;
5395
5396         /*
5397          * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5398          * This check must happen after vma_start_read(); otherwise, a
5399          * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5400          * from its anon_vma.
5401          */
5402         if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5403                 goto inval_end_read;
5404
5405         /*
5406          * Due to the possibility of userfault handler dropping mmap_lock, avoid
5407          * it for now and fall back to page fault handling under mmap_lock.
5408          */
5409         if (userfaultfd_armed(vma))
5410                 goto inval_end_read;
5411
5412         /* Check since vm_start/vm_end might change before we lock the VMA */
5413         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5414                 goto inval_end_read;
5415
5416         /* Check if the VMA got isolated after we found it */
5417         if (vma->detached) {
5418                 vma_end_read(vma);
5419                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5420                 /* The area was replaced with another one */
5421                 goto retry;
5422         }
5423
5424         rcu_read_unlock();
5425         return vma;
5426
5427 inval_end_read:
5428         vma_end_read(vma);
5429 inval:
5430         rcu_read_unlock();
5431         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5432         return NULL;
5433 }
5434 #endif /* CONFIG_PER_VMA_LOCK */
5435
5436 #ifndef __PAGETABLE_P4D_FOLDED
5437 /*
5438  * Allocate p4d page table.
5439  * We've already handled the fast-path in-line.
5440  */
5441 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5442 {
5443         p4d_t *new = p4d_alloc_one(mm, address);
5444         if (!new)
5445                 return -ENOMEM;
5446
5447         spin_lock(&mm->page_table_lock);
5448         if (pgd_present(*pgd)) {        /* Another has populated it */
5449                 p4d_free(mm, new);
5450         } else {
5451                 smp_wmb(); /* See comment in pmd_install() */
5452                 pgd_populate(mm, pgd, new);
5453         }
5454         spin_unlock(&mm->page_table_lock);
5455         return 0;
5456 }
5457 #endif /* __PAGETABLE_P4D_FOLDED */
5458
5459 #ifndef __PAGETABLE_PUD_FOLDED
5460 /*
5461  * Allocate page upper directory.
5462  * We've already handled the fast-path in-line.
5463  */
5464 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5465 {
5466         pud_t *new = pud_alloc_one(mm, address);
5467         if (!new)
5468                 return -ENOMEM;
5469
5470         spin_lock(&mm->page_table_lock);
5471         if (!p4d_present(*p4d)) {
5472                 mm_inc_nr_puds(mm);
5473                 smp_wmb(); /* See comment in pmd_install() */
5474                 p4d_populate(mm, p4d, new);
5475         } else  /* Another has populated it */
5476                 pud_free(mm, new);
5477         spin_unlock(&mm->page_table_lock);
5478         return 0;
5479 }
5480 #endif /* __PAGETABLE_PUD_FOLDED */
5481
5482 #ifndef __PAGETABLE_PMD_FOLDED
5483 /*
5484  * Allocate page middle directory.
5485  * We've already handled the fast-path in-line.
5486  */
5487 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5488 {
5489         spinlock_t *ptl;
5490         pmd_t *new = pmd_alloc_one(mm, address);
5491         if (!new)
5492                 return -ENOMEM;
5493
5494         ptl = pud_lock(mm, pud);
5495         if (!pud_present(*pud)) {
5496                 mm_inc_nr_pmds(mm);
5497                 smp_wmb(); /* See comment in pmd_install() */
5498                 pud_populate(mm, pud, new);
5499         } else {        /* Another has populated it */
5500                 pmd_free(mm, new);
5501         }
5502         spin_unlock(ptl);
5503         return 0;
5504 }
5505 #endif /* __PAGETABLE_PMD_FOLDED */
5506
5507 /**
5508  * follow_pte - look up PTE at a user virtual address
5509  * @mm: the mm_struct of the target address space
5510  * @address: user virtual address
5511  * @ptepp: location to store found PTE
5512  * @ptlp: location to store the lock for the PTE
5513  *
5514  * On a successful return, the pointer to the PTE is stored in @ptepp;
5515  * the corresponding lock is taken and its location is stored in @ptlp.
5516  * The contents of the PTE are only stable until @ptlp is released;
5517  * any further use, if any, must be protected against invalidation
5518  * with MMU notifiers.
5519  *
5520  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5521  * should be taken for read.
5522  *
5523  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5524  * it is not a good general-purpose API.
5525  *
5526  * Return: zero on success, -ve otherwise.
5527  */
5528 int follow_pte(struct mm_struct *mm, unsigned long address,
5529                pte_t **ptepp, spinlock_t **ptlp)
5530 {
5531         pgd_t *pgd;
5532         p4d_t *p4d;
5533         pud_t *pud;
5534         pmd_t *pmd;
5535         pte_t *ptep;
5536
5537         pgd = pgd_offset(mm, address);
5538         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5539                 goto out;
5540
5541         p4d = p4d_offset(pgd, address);
5542         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5543                 goto out;
5544
5545         pud = pud_offset(p4d, address);
5546         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5547                 goto out;
5548
5549         pmd = pmd_offset(pud, address);
5550         VM_BUG_ON(pmd_trans_huge(*pmd));
5551
5552         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5553         if (!ptep)
5554                 goto out;
5555         if (!pte_present(ptep_get(ptep)))
5556                 goto unlock;
5557         *ptepp = ptep;
5558         return 0;
5559 unlock:
5560         pte_unmap_unlock(ptep, *ptlp);
5561 out:
5562         return -EINVAL;
5563 }
5564 EXPORT_SYMBOL_GPL(follow_pte);
5565
5566 /**
5567  * follow_pfn - look up PFN at a user virtual address
5568  * @vma: memory mapping
5569  * @address: user virtual address
5570  * @pfn: location to store found PFN
5571  *
5572  * Only IO mappings and raw PFN mappings are allowed.
5573  *
5574  * This function does not allow the caller to read the permissions
5575  * of the PTE.  Do not use it.
5576  *
5577  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5578  */
5579 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5580         unsigned long *pfn)
5581 {
5582         int ret = -EINVAL;
5583         spinlock_t *ptl;
5584         pte_t *ptep;
5585
5586         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5587                 return ret;
5588
5589         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5590         if (ret)
5591                 return ret;
5592         *pfn = pte_pfn(ptep_get(ptep));
5593         pte_unmap_unlock(ptep, ptl);
5594         return 0;
5595 }
5596 EXPORT_SYMBOL(follow_pfn);
5597
5598 #ifdef CONFIG_HAVE_IOREMAP_PROT
5599 int follow_phys(struct vm_area_struct *vma,
5600                 unsigned long address, unsigned int flags,
5601                 unsigned long *prot, resource_size_t *phys)
5602 {
5603         int ret = -EINVAL;
5604         pte_t *ptep, pte;
5605         spinlock_t *ptl;
5606
5607         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5608                 goto out;
5609
5610         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5611                 goto out;
5612         pte = ptep_get(ptep);
5613
5614         if ((flags & FOLL_WRITE) && !pte_write(pte))
5615                 goto unlock;
5616
5617         *prot = pgprot_val(pte_pgprot(pte));
5618         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5619
5620         ret = 0;
5621 unlock:
5622         pte_unmap_unlock(ptep, ptl);
5623 out:
5624         return ret;
5625 }
5626
5627 /**
5628  * generic_access_phys - generic implementation for iomem mmap access
5629  * @vma: the vma to access
5630  * @addr: userspace address, not relative offset within @vma
5631  * @buf: buffer to read/write
5632  * @len: length of transfer
5633  * @write: set to FOLL_WRITE when writing, otherwise reading
5634  *
5635  * This is a generic implementation for &vm_operations_struct.access for an
5636  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5637  * not page based.
5638  */
5639 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5640                         void *buf, int len, int write)
5641 {
5642         resource_size_t phys_addr;
5643         unsigned long prot = 0;
5644         void __iomem *maddr;
5645         pte_t *ptep, pte;
5646         spinlock_t *ptl;
5647         int offset = offset_in_page(addr);
5648         int ret = -EINVAL;
5649
5650         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5651                 return -EINVAL;
5652
5653 retry:
5654         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5655                 return -EINVAL;
5656         pte = ptep_get(ptep);
5657         pte_unmap_unlock(ptep, ptl);
5658
5659         prot = pgprot_val(pte_pgprot(pte));
5660         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5661
5662         if ((write & FOLL_WRITE) && !pte_write(pte))
5663                 return -EINVAL;
5664
5665         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5666         if (!maddr)
5667                 return -ENOMEM;
5668
5669         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5670                 goto out_unmap;
5671
5672         if (!pte_same(pte, ptep_get(ptep))) {
5673                 pte_unmap_unlock(ptep, ptl);
5674                 iounmap(maddr);
5675
5676                 goto retry;
5677         }
5678
5679         if (write)
5680                 memcpy_toio(maddr + offset, buf, len);
5681         else
5682                 memcpy_fromio(buf, maddr + offset, len);
5683         ret = len;
5684         pte_unmap_unlock(ptep, ptl);
5685 out_unmap:
5686         iounmap(maddr);
5687
5688         return ret;
5689 }
5690 EXPORT_SYMBOL_GPL(generic_access_phys);
5691 #endif
5692
5693 /*
5694  * Access another process' address space as given in mm.
5695  */
5696 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5697                        int len, unsigned int gup_flags)
5698 {
5699         void *old_buf = buf;
5700         int write = gup_flags & FOLL_WRITE;
5701
5702         if (mmap_read_lock_killable(mm))
5703                 return 0;
5704
5705         /* Untag the address before looking up the VMA */
5706         addr = untagged_addr_remote(mm, addr);
5707
5708         /* Avoid triggering the temporary warning in __get_user_pages */
5709         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5710                 return 0;
5711
5712         /* ignore errors, just check how much was successfully transferred */
5713         while (len) {
5714                 int bytes, offset;
5715                 void *maddr;
5716                 struct vm_area_struct *vma = NULL;
5717                 struct page *page = get_user_page_vma_remote(mm, addr,
5718                                                              gup_flags, &vma);
5719
5720                 if (IS_ERR_OR_NULL(page)) {
5721                         /* We might need to expand the stack to access it */
5722                         vma = vma_lookup(mm, addr);
5723                         if (!vma) {
5724                                 vma = expand_stack(mm, addr);
5725
5726                                 /* mmap_lock was dropped on failure */
5727                                 if (!vma)
5728                                         return buf - old_buf;
5729
5730                                 /* Try again if stack expansion worked */
5731                                 continue;
5732                         }
5733
5734
5735                         /*
5736                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5737                          * we can access using slightly different code.
5738                          */
5739                         bytes = 0;
5740 #ifdef CONFIG_HAVE_IOREMAP_PROT
5741                         if (vma->vm_ops && vma->vm_ops->access)
5742                                 bytes = vma->vm_ops->access(vma, addr, buf,
5743                                                             len, write);
5744 #endif
5745                         if (bytes <= 0)
5746                                 break;
5747                 } else {
5748                         bytes = len;
5749                         offset = addr & (PAGE_SIZE-1);
5750                         if (bytes > PAGE_SIZE-offset)
5751                                 bytes = PAGE_SIZE-offset;
5752
5753                         maddr = kmap(page);
5754                         if (write) {
5755                                 copy_to_user_page(vma, page, addr,
5756                                                   maddr + offset, buf, bytes);
5757                                 set_page_dirty_lock(page);
5758                         } else {
5759                                 copy_from_user_page(vma, page, addr,
5760                                                     buf, maddr + offset, bytes);
5761                         }
5762                         kunmap(page);
5763                         put_page(page);
5764                 }
5765                 len -= bytes;
5766                 buf += bytes;
5767                 addr += bytes;
5768         }
5769         mmap_read_unlock(mm);
5770
5771         return buf - old_buf;
5772 }
5773
5774 /**
5775  * access_remote_vm - access another process' address space
5776  * @mm:         the mm_struct of the target address space
5777  * @addr:       start address to access
5778  * @buf:        source or destination buffer
5779  * @len:        number of bytes to transfer
5780  * @gup_flags:  flags modifying lookup behaviour
5781  *
5782  * The caller must hold a reference on @mm.
5783  *
5784  * Return: number of bytes copied from source to destination.
5785  */
5786 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5787                 void *buf, int len, unsigned int gup_flags)
5788 {
5789         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5790 }
5791
5792 /*
5793  * Access another process' address space.
5794  * Source/target buffer must be kernel space,
5795  * Do not walk the page table directly, use get_user_pages
5796  */
5797 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5798                 void *buf, int len, unsigned int gup_flags)
5799 {
5800         struct mm_struct *mm;
5801         int ret;
5802
5803         mm = get_task_mm(tsk);
5804         if (!mm)
5805                 return 0;
5806
5807         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5808
5809         mmput(mm);
5810
5811         return ret;
5812 }
5813 EXPORT_SYMBOL_GPL(access_process_vm);
5814
5815 /*
5816  * Print the name of a VMA.
5817  */
5818 void print_vma_addr(char *prefix, unsigned long ip)
5819 {
5820         struct mm_struct *mm = current->mm;
5821         struct vm_area_struct *vma;
5822
5823         /*
5824          * we might be running from an atomic context so we cannot sleep
5825          */
5826         if (!mmap_read_trylock(mm))
5827                 return;
5828
5829         vma = find_vma(mm, ip);
5830         if (vma && vma->vm_file) {
5831                 struct file *f = vma->vm_file;
5832                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5833                 if (buf) {
5834                         char *p;
5835
5836                         p = file_path(f, buf, PAGE_SIZE);
5837                         if (IS_ERR(p))
5838                                 p = "?";
5839                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5840                                         vma->vm_start,
5841                                         vma->vm_end - vma->vm_start);
5842                         free_page((unsigned long)buf);
5843                 }
5844         }
5845         mmap_read_unlock(mm);
5846 }
5847
5848 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5849 void __might_fault(const char *file, int line)
5850 {
5851         if (pagefault_disabled())
5852                 return;
5853         __might_sleep(file, line);
5854 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5855         if (current->mm)
5856                 might_lock_read(&current->mm->mmap_lock);
5857 #endif
5858 }
5859 EXPORT_SYMBOL(__might_fault);
5860 #endif
5861
5862 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5863 /*
5864  * Process all subpages of the specified huge page with the specified
5865  * operation.  The target subpage will be processed last to keep its
5866  * cache lines hot.
5867  */
5868 static inline int process_huge_page(
5869         unsigned long addr_hint, unsigned int pages_per_huge_page,
5870         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5871         void *arg)
5872 {
5873         int i, n, base, l, ret;
5874         unsigned long addr = addr_hint &
5875                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5876
5877         /* Process target subpage last to keep its cache lines hot */
5878         might_sleep();
5879         n = (addr_hint - addr) / PAGE_SIZE;
5880         if (2 * n <= pages_per_huge_page) {
5881                 /* If target subpage in first half of huge page */
5882                 base = 0;
5883                 l = n;
5884                 /* Process subpages at the end of huge page */
5885                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5886                         cond_resched();
5887                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5888                         if (ret)
5889                                 return ret;
5890                 }
5891         } else {
5892                 /* If target subpage in second half of huge page */
5893                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5894                 l = pages_per_huge_page - n;
5895                 /* Process subpages at the begin of huge page */
5896                 for (i = 0; i < base; i++) {
5897                         cond_resched();
5898                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5899                         if (ret)
5900                                 return ret;
5901                 }
5902         }
5903         /*
5904          * Process remaining subpages in left-right-left-right pattern
5905          * towards the target subpage
5906          */
5907         for (i = 0; i < l; i++) {
5908                 int left_idx = base + i;
5909                 int right_idx = base + 2 * l - 1 - i;
5910
5911                 cond_resched();
5912                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5913                 if (ret)
5914                         return ret;
5915                 cond_resched();
5916                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5917                 if (ret)
5918                         return ret;
5919         }
5920         return 0;
5921 }
5922
5923 static void clear_gigantic_page(struct page *page,
5924                                 unsigned long addr,
5925                                 unsigned int pages_per_huge_page)
5926 {
5927         int i;
5928         struct page *p;
5929
5930         might_sleep();
5931         for (i = 0; i < pages_per_huge_page; i++) {
5932                 p = nth_page(page, i);
5933                 cond_resched();
5934                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5935         }
5936 }
5937
5938 static int clear_subpage(unsigned long addr, int idx, void *arg)
5939 {
5940         struct page *page = arg;
5941
5942         clear_user_highpage(page + idx, addr);
5943         return 0;
5944 }
5945
5946 void clear_huge_page(struct page *page,
5947                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5948 {
5949         unsigned long addr = addr_hint &
5950                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5951
5952         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5953                 clear_gigantic_page(page, addr, pages_per_huge_page);
5954                 return;
5955         }
5956
5957         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5958 }
5959
5960 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5961                                      unsigned long addr,
5962                                      struct vm_area_struct *vma,
5963                                      unsigned int pages_per_huge_page)
5964 {
5965         int i;
5966         struct page *dst_page;
5967         struct page *src_page;
5968
5969         for (i = 0; i < pages_per_huge_page; i++) {
5970                 dst_page = folio_page(dst, i);
5971                 src_page = folio_page(src, i);
5972
5973                 cond_resched();
5974                 if (copy_mc_user_highpage(dst_page, src_page,
5975                                           addr + i*PAGE_SIZE, vma)) {
5976                         memory_failure_queue(page_to_pfn(src_page), 0);
5977                         return -EHWPOISON;
5978                 }
5979         }
5980         return 0;
5981 }
5982
5983 struct copy_subpage_arg {
5984         struct page *dst;
5985         struct page *src;
5986         struct vm_area_struct *vma;
5987 };
5988
5989 static int copy_subpage(unsigned long addr, int idx, void *arg)
5990 {
5991         struct copy_subpage_arg *copy_arg = arg;
5992
5993         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5994                                   addr, copy_arg->vma)) {
5995                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5996                 return -EHWPOISON;
5997         }
5998         return 0;
5999 }
6000
6001 int copy_user_large_folio(struct folio *dst, struct folio *src,
6002                           unsigned long addr_hint, struct vm_area_struct *vma)
6003 {
6004         unsigned int pages_per_huge_page = folio_nr_pages(dst);
6005         unsigned long addr = addr_hint &
6006                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6007         struct copy_subpage_arg arg = {
6008                 .dst = &dst->page,
6009                 .src = &src->page,
6010                 .vma = vma,
6011         };
6012
6013         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6014                 return copy_user_gigantic_page(dst, src, addr, vma,
6015                                                pages_per_huge_page);
6016
6017         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6018 }
6019
6020 long copy_folio_from_user(struct folio *dst_folio,
6021                            const void __user *usr_src,
6022                            bool allow_pagefault)
6023 {
6024         void *kaddr;
6025         unsigned long i, rc = 0;
6026         unsigned int nr_pages = folio_nr_pages(dst_folio);
6027         unsigned long ret_val = nr_pages * PAGE_SIZE;
6028         struct page *subpage;
6029
6030         for (i = 0; i < nr_pages; i++) {
6031                 subpage = folio_page(dst_folio, i);
6032                 kaddr = kmap_local_page(subpage);
6033                 if (!allow_pagefault)
6034                         pagefault_disable();
6035                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6036                 if (!allow_pagefault)
6037                         pagefault_enable();
6038                 kunmap_local(kaddr);
6039
6040                 ret_val -= (PAGE_SIZE - rc);
6041                 if (rc)
6042                         break;
6043
6044                 flush_dcache_page(subpage);
6045
6046                 cond_resched();
6047         }
6048         return ret_val;
6049 }
6050 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6051
6052 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6053
6054 static struct kmem_cache *page_ptl_cachep;
6055
6056 void __init ptlock_cache_init(void)
6057 {
6058         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6059                         SLAB_PANIC, NULL);
6060 }
6061
6062 bool ptlock_alloc(struct page *page)
6063 {
6064         spinlock_t *ptl;
6065
6066         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6067         if (!ptl)
6068                 return false;
6069         page->ptl = ptl;
6070         return true;
6071 }
6072
6073 void ptlock_free(struct page *page)
6074 {
6075         kmem_cache_free(page_ptl_cachep, page->ptl);
6076 }
6077 #endif