audit: update the mailing list in MAINTAINERS
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167         trace_rss_stat(mm, member, count);
168 }
169
170 #if defined(SPLIT_RSS_COUNTING)
171
172 void sync_mm_rss(struct mm_struct *mm)
173 {
174         int i;
175
176         for (i = 0; i < NR_MM_COUNTERS; i++) {
177                 if (current->rss_stat.count[i]) {
178                         add_mm_counter(mm, i, current->rss_stat.count[i]);
179                         current->rss_stat.count[i] = 0;
180                 }
181         }
182         current->rss_stat.events = 0;
183 }
184
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187         struct task_struct *task = current;
188
189         if (likely(task->mm == mm))
190                 task->rss_stat.count[member] += val;
191         else
192                 add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH  (64)
199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201         if (unlikely(task != current))
202                 return;
203         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204                 sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210
211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214
215 #endif /* SPLIT_RSS_COUNTING */
216
217 /*
218  * Note: this doesn't free the actual pages themselves. That
219  * has been handled earlier when unmapping all the memory regions.
220  */
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222                            unsigned long addr)
223 {
224         pgtable_t token = pmd_pgtable(*pmd);
225         pmd_clear(pmd);
226         pte_free_tlb(tlb, token, addr);
227         mm_dec_nr_ptes(tlb->mm);
228 }
229
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231                                 unsigned long addr, unsigned long end,
232                                 unsigned long floor, unsigned long ceiling)
233 {
234         pmd_t *pmd;
235         unsigned long next;
236         unsigned long start;
237
238         start = addr;
239         pmd = pmd_offset(pud, addr);
240         do {
241                 next = pmd_addr_end(addr, end);
242                 if (pmd_none_or_clear_bad(pmd))
243                         continue;
244                 free_pte_range(tlb, pmd, addr);
245         } while (pmd++, addr = next, addr != end);
246
247         start &= PUD_MASK;
248         if (start < floor)
249                 return;
250         if (ceiling) {
251                 ceiling &= PUD_MASK;
252                 if (!ceiling)
253                         return;
254         }
255         if (end - 1 > ceiling - 1)
256                 return;
257
258         pmd = pmd_offset(pud, start);
259         pud_clear(pud);
260         pmd_free_tlb(tlb, pmd, start);
261         mm_dec_nr_pmds(tlb->mm);
262 }
263
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265                                 unsigned long addr, unsigned long end,
266                                 unsigned long floor, unsigned long ceiling)
267 {
268         pud_t *pud;
269         unsigned long next;
270         unsigned long start;
271
272         start = addr;
273         pud = pud_offset(p4d, addr);
274         do {
275                 next = pud_addr_end(addr, end);
276                 if (pud_none_or_clear_bad(pud))
277                         continue;
278                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279         } while (pud++, addr = next, addr != end);
280
281         start &= P4D_MASK;
282         if (start < floor)
283                 return;
284         if (ceiling) {
285                 ceiling &= P4D_MASK;
286                 if (!ceiling)
287                         return;
288         }
289         if (end - 1 > ceiling - 1)
290                 return;
291
292         pud = pud_offset(p4d, start);
293         p4d_clear(p4d);
294         pud_free_tlb(tlb, pud, start);
295         mm_dec_nr_puds(tlb->mm);
296 }
297
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299                                 unsigned long addr, unsigned long end,
300                                 unsigned long floor, unsigned long ceiling)
301 {
302         p4d_t *p4d;
303         unsigned long next;
304         unsigned long start;
305
306         start = addr;
307         p4d = p4d_offset(pgd, addr);
308         do {
309                 next = p4d_addr_end(addr, end);
310                 if (p4d_none_or_clear_bad(p4d))
311                         continue;
312                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313         } while (p4d++, addr = next, addr != end);
314
315         start &= PGDIR_MASK;
316         if (start < floor)
317                 return;
318         if (ceiling) {
319                 ceiling &= PGDIR_MASK;
320                 if (!ceiling)
321                         return;
322         }
323         if (end - 1 > ceiling - 1)
324                 return;
325
326         p4d = p4d_offset(pgd, start);
327         pgd_clear(pgd);
328         p4d_free_tlb(tlb, p4d, start);
329 }
330
331 /*
332  * This function frees user-level page tables of a process.
333  */
334 void free_pgd_range(struct mmu_gather *tlb,
335                         unsigned long addr, unsigned long end,
336                         unsigned long floor, unsigned long ceiling)
337 {
338         pgd_t *pgd;
339         unsigned long next;
340
341         /*
342          * The next few lines have given us lots of grief...
343          *
344          * Why are we testing PMD* at this top level?  Because often
345          * there will be no work to do at all, and we'd prefer not to
346          * go all the way down to the bottom just to discover that.
347          *
348          * Why all these "- 1"s?  Because 0 represents both the bottom
349          * of the address space and the top of it (using -1 for the
350          * top wouldn't help much: the masks would do the wrong thing).
351          * The rule is that addr 0 and floor 0 refer to the bottom of
352          * the address space, but end 0 and ceiling 0 refer to the top
353          * Comparisons need to use "end - 1" and "ceiling - 1" (though
354          * that end 0 case should be mythical).
355          *
356          * Wherever addr is brought up or ceiling brought down, we must
357          * be careful to reject "the opposite 0" before it confuses the
358          * subsequent tests.  But what about where end is brought down
359          * by PMD_SIZE below? no, end can't go down to 0 there.
360          *
361          * Whereas we round start (addr) and ceiling down, by different
362          * masks at different levels, in order to test whether a table
363          * now has no other vmas using it, so can be freed, we don't
364          * bother to round floor or end up - the tests don't need that.
365          */
366
367         addr &= PMD_MASK;
368         if (addr < floor) {
369                 addr += PMD_SIZE;
370                 if (!addr)
371                         return;
372         }
373         if (ceiling) {
374                 ceiling &= PMD_MASK;
375                 if (!ceiling)
376                         return;
377         }
378         if (end - 1 > ceiling - 1)
379                 end -= PMD_SIZE;
380         if (addr > end - 1)
381                 return;
382         /*
383          * We add page table cache pages with PAGE_SIZE,
384          * (see pte_free_tlb()), flush the tlb if we need
385          */
386         tlb_change_page_size(tlb, PAGE_SIZE);
387         pgd = pgd_offset(tlb->mm, addr);
388         do {
389                 next = pgd_addr_end(addr, end);
390                 if (pgd_none_or_clear_bad(pgd))
391                         continue;
392                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393         } while (pgd++, addr = next, addr != end);
394 }
395
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397                    struct vm_area_struct *vma, unsigned long floor,
398                    unsigned long ceiling)
399 {
400         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401
402         do {
403                 unsigned long addr = vma->vm_start;
404                 struct vm_area_struct *next;
405
406                 /*
407                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408                  * be 0.  This will underflow and is okay.
409                  */
410                 next = mas_find(&mas, ceiling - 1);
411
412                 /*
413                  * Hide vma from rmap and truncate_pagecache before freeing
414                  * pgtables
415                  */
416                 unlink_anon_vmas(vma);
417                 unlink_file_vma(vma);
418
419                 if (is_vm_hugetlb_page(vma)) {
420                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421                                 floor, next ? next->vm_start : ceiling);
422                 } else {
423                         /*
424                          * Optimization: gather nearby vmas into one call down
425                          */
426                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427                                && !is_vm_hugetlb_page(next)) {
428                                 vma = next;
429                                 next = mas_find(&mas, ceiling - 1);
430                                 unlink_anon_vmas(vma);
431                                 unlink_file_vma(vma);
432                         }
433                         free_pgd_range(tlb, addr, vma->vm_end,
434                                 floor, next ? next->vm_start : ceiling);
435                 }
436                 vma = next;
437         } while (vma);
438 }
439
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442         spinlock_t *ptl = pmd_lock(mm, pmd);
443
444         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
445                 mm_inc_nr_ptes(mm);
446                 /*
447                  * Ensure all pte setup (eg. pte page lock and page clearing) are
448                  * visible before the pte is made visible to other CPUs by being
449                  * put into page tables.
450                  *
451                  * The other side of the story is the pointer chasing in the page
452                  * table walking code (when walking the page table without locking;
453                  * ie. most of the time). Fortunately, these data accesses consist
454                  * of a chain of data-dependent loads, meaning most CPUs (alpha
455                  * being the notable exception) will already guarantee loads are
456                  * seen in-order. See the alpha page table accessors for the
457                  * smp_rmb() barriers in page table walking code.
458                  */
459                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460                 pmd_populate(mm, pmd, *pte);
461                 *pte = NULL;
462         }
463         spin_unlock(ptl);
464 }
465
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468         pgtable_t new = pte_alloc_one(mm);
469         if (!new)
470                 return -ENOMEM;
471
472         pmd_install(mm, pmd, &new);
473         if (new)
474                 pte_free(mm, new);
475         return 0;
476 }
477
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480         pte_t *new = pte_alloc_one_kernel(&init_mm);
481         if (!new)
482                 return -ENOMEM;
483
484         spin_lock(&init_mm.page_table_lock);
485         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
486                 smp_wmb(); /* See comment in pmd_install() */
487                 pmd_populate_kernel(&init_mm, pmd, new);
488                 new = NULL;
489         }
490         spin_unlock(&init_mm.page_table_lock);
491         if (new)
492                 pte_free_kernel(&init_mm, new);
493         return 0;
494 }
495
496 static inline void init_rss_vec(int *rss)
497 {
498         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503         int i;
504
505         if (current->mm == mm)
506                 sync_mm_rss(mm);
507         for (i = 0; i < NR_MM_COUNTERS; i++)
508                 if (rss[i])
509                         add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520                           pte_t pte, struct page *page)
521 {
522         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523         p4d_t *p4d = p4d_offset(pgd, addr);
524         pud_t *pud = pud_offset(p4d, addr);
525         pmd_t *pmd = pmd_offset(pud, addr);
526         struct address_space *mapping;
527         pgoff_t index;
528         static unsigned long resume;
529         static unsigned long nr_shown;
530         static unsigned long nr_unshown;
531
532         /*
533          * Allow a burst of 60 reports, then keep quiet for that minute;
534          * or allow a steady drip of one report per second.
535          */
536         if (nr_shown == 60) {
537                 if (time_before(jiffies, resume)) {
538                         nr_unshown++;
539                         return;
540                 }
541                 if (nr_unshown) {
542                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543                                  nr_unshown);
544                         nr_unshown = 0;
545                 }
546                 nr_shown = 0;
547         }
548         if (nr_shown++ == 0)
549                 resume = jiffies + 60 * HZ;
550
551         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552         index = linear_page_index(vma, addr);
553
554         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555                  current->comm,
556                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
557         if (page)
558                 dump_page(page, "bad pte");
559         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562                  vma->vm_file,
563                  vma->vm_ops ? vma->vm_ops->fault : NULL,
564                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565                  mapping ? mapping->a_ops->read_folio : NULL);
566         dump_stack();
567         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613                             pte_t pte)
614 {
615         unsigned long pfn = pte_pfn(pte);
616
617         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618                 if (likely(!pte_special(pte)))
619                         goto check_pfn;
620                 if (vma->vm_ops && vma->vm_ops->find_special_page)
621                         return vma->vm_ops->find_special_page(vma, addr);
622                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623                         return NULL;
624                 if (is_zero_pfn(pfn))
625                         return NULL;
626                 if (pte_devmap(pte))
627                 /*
628                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629                  * and will have refcounts incremented on their struct pages
630                  * when they are inserted into PTEs, thus they are safe to
631                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632                  * do not have refcounts. Example of legacy ZONE_DEVICE is
633                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634                  */
635                         return NULL;
636
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642
643         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644                 if (vma->vm_flags & VM_MIXEDMAP) {
645                         if (!pfn_valid(pfn))
646                                 return NULL;
647                         goto out;
648                 } else {
649                         unsigned long off;
650                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
651                         if (pfn == vma->vm_pgoff + off)
652                                 return NULL;
653                         if (!is_cow_mapping(vma->vm_flags))
654                                 return NULL;
655                 }
656         }
657
658         if (is_zero_pfn(pfn))
659                 return NULL;
660
661 check_pfn:
662         if (unlikely(pfn > highest_memmap_pfn)) {
663                 print_bad_pte(vma, addr, pte, NULL);
664                 return NULL;
665         }
666
667         /*
668          * NOTE! We still have PageReserved() pages in the page tables.
669          * eg. VDSO mappings can cause them to exist.
670          */
671 out:
672         return pfn_to_page(pfn);
673 }
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677                                 pmd_t pmd)
678 {
679         unsigned long pfn = pmd_pfn(pmd);
680
681         /*
682          * There is no pmd_special() but there may be special pmds, e.g.
683          * in a direct-access (dax) mapping, so let's just replicate the
684          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685          */
686         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687                 if (vma->vm_flags & VM_MIXEDMAP) {
688                         if (!pfn_valid(pfn))
689                                 return NULL;
690                         goto out;
691                 } else {
692                         unsigned long off;
693                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
694                         if (pfn == vma->vm_pgoff + off)
695                                 return NULL;
696                         if (!is_cow_mapping(vma->vm_flags))
697                                 return NULL;
698                 }
699         }
700
701         if (pmd_devmap(pmd))
702                 return NULL;
703         if (is_huge_zero_pmd(pmd))
704                 return NULL;
705         if (unlikely(pfn > highest_memmap_pfn))
706                 return NULL;
707
708         /*
709          * NOTE! We still have PageReserved() pages in the page tables.
710          * eg. VDSO mappings can cause them to exist.
711          */
712 out:
713         return pfn_to_page(pfn);
714 }
715 #endif
716
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718                                   struct page *page, unsigned long address,
719                                   pte_t *ptep)
720 {
721         pte_t pte;
722         swp_entry_t entry;
723
724         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725         if (pte_swp_soft_dirty(*ptep))
726                 pte = pte_mksoft_dirty(pte);
727
728         entry = pte_to_swp_entry(*ptep);
729         if (pte_swp_uffd_wp(*ptep))
730                 pte = pte_mkuffd_wp(pte);
731         else if (is_writable_device_exclusive_entry(entry))
732                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
734         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
736         /*
737          * No need to take a page reference as one was already
738          * created when the swap entry was made.
739          */
740         if (PageAnon(page))
741                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
742         else
743                 /*
744                  * Currently device exclusive access only supports anonymous
745                  * memory so the entry shouldn't point to a filebacked page.
746                  */
747                 WARN_ON_ONCE(1);
748
749         set_pte_at(vma->vm_mm, address, ptep, pte);
750
751         /*
752          * No need to invalidate - it was non-present before. However
753          * secondary CPUs may have mappings that need invalidating.
754          */
755         update_mmu_cache(vma, address, ptep);
756 }
757
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764                         unsigned long addr)
765 {
766         swp_entry_t entry = pte_to_swp_entry(*src_pte);
767         struct page *page = pfn_swap_entry_to_page(entry);
768
769         if (trylock_page(page)) {
770                 restore_exclusive_pte(vma, page, addr, src_pte);
771                 unlock_page(page);
772                 return 0;
773         }
774
775         return -EBUSY;
776 }
777
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789         unsigned long vm_flags = dst_vma->vm_flags;
790         pte_t pte = *src_pte;
791         struct page *page;
792         swp_entry_t entry = pte_to_swp_entry(pte);
793
794         if (likely(!non_swap_entry(entry))) {
795                 if (swap_duplicate(entry) < 0)
796                         return -EIO;
797
798                 /* make sure dst_mm is on swapoff's mmlist. */
799                 if (unlikely(list_empty(&dst_mm->mmlist))) {
800                         spin_lock(&mmlist_lock);
801                         if (list_empty(&dst_mm->mmlist))
802                                 list_add(&dst_mm->mmlist,
803                                                 &src_mm->mmlist);
804                         spin_unlock(&mmlist_lock);
805                 }
806                 /* Mark the swap entry as shared. */
807                 if (pte_swp_exclusive(*src_pte)) {
808                         pte = pte_swp_clear_exclusive(*src_pte);
809                         set_pte_at(src_mm, addr, src_pte, pte);
810                 }
811                 rss[MM_SWAPENTS]++;
812         } else if (is_migration_entry(entry)) {
813                 page = pfn_swap_entry_to_page(entry);
814
815                 rss[mm_counter(page)]++;
816
817                 if (!is_readable_migration_entry(entry) &&
818                                 is_cow_mapping(vm_flags)) {
819                         /*
820                          * COW mappings require pages in both parent and child
821                          * to be set to read. A previously exclusive entry is
822                          * now shared.
823                          */
824                         entry = make_readable_migration_entry(
825                                                         swp_offset(entry));
826                         pte = swp_entry_to_pte(entry);
827                         if (pte_swp_soft_dirty(*src_pte))
828                                 pte = pte_swp_mksoft_dirty(pte);
829                         if (pte_swp_uffd_wp(*src_pte))
830                                 pte = pte_swp_mkuffd_wp(pte);
831                         set_pte_at(src_mm, addr, src_pte, pte);
832                 }
833         } else if (is_device_private_entry(entry)) {
834                 page = pfn_swap_entry_to_page(entry);
835
836                 /*
837                  * Update rss count even for unaddressable pages, as
838                  * they should treated just like normal pages in this
839                  * respect.
840                  *
841                  * We will likely want to have some new rss counters
842                  * for unaddressable pages, at some point. But for now
843                  * keep things as they are.
844                  */
845                 get_page(page);
846                 rss[mm_counter(page)]++;
847                 /* Cannot fail as these pages cannot get pinned. */
848                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849
850                 /*
851                  * We do not preserve soft-dirty information, because so
852                  * far, checkpoint/restore is the only feature that
853                  * requires that. And checkpoint/restore does not work
854                  * when a device driver is involved (you cannot easily
855                  * save and restore device driver state).
856                  */
857                 if (is_writable_device_private_entry(entry) &&
858                     is_cow_mapping(vm_flags)) {
859                         entry = make_readable_device_private_entry(
860                                                         swp_offset(entry));
861                         pte = swp_entry_to_pte(entry);
862                         if (pte_swp_uffd_wp(*src_pte))
863                                 pte = pte_swp_mkuffd_wp(pte);
864                         set_pte_at(src_mm, addr, src_pte, pte);
865                 }
866         } else if (is_device_exclusive_entry(entry)) {
867                 /*
868                  * Make device exclusive entries present by restoring the
869                  * original entry then copying as for a present pte. Device
870                  * exclusive entries currently only support private writable
871                  * (ie. COW) mappings.
872                  */
873                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875                         return -EBUSY;
876                 return -ENOENT;
877         } else if (is_pte_marker_entry(entry)) {
878                 if (userfaultfd_wp(dst_vma))
879                         set_pte_at(dst_mm, addr, dst_pte, pte);
880                 return 0;
881         }
882         if (!userfaultfd_wp(dst_vma))
883                 pte = pte_swp_clear_uffd_wp(pte);
884         set_pte_at(dst_mm, addr, dst_pte, pte);
885         return 0;
886 }
887
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903                   struct page **prealloc, struct page *page)
904 {
905         struct page *new_page;
906         pte_t pte;
907
908         new_page = *prealloc;
909         if (!new_page)
910                 return -EAGAIN;
911
912         /*
913          * We have a prealloc page, all good!  Take it
914          * over and copy the page & arm it.
915          */
916         *prealloc = NULL;
917         copy_user_highpage(new_page, page, addr, src_vma);
918         __SetPageUptodate(new_page);
919         page_add_new_anon_rmap(new_page, dst_vma, addr);
920         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
921         rss[mm_counter(new_page)]++;
922
923         /* All done, just insert the new page copy in the child */
924         pte = mk_pte(new_page, dst_vma->vm_page_prot);
925         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926         if (userfaultfd_pte_wp(dst_vma, *src_pte))
927                 /* Uffd-wp needs to be delivered to dest pte as well */
928                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
929         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930         return 0;
931 }
932
933 /*
934  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
935  * is required to copy this pte.
936  */
937 static inline int
938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
939                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
940                  struct page **prealloc)
941 {
942         struct mm_struct *src_mm = src_vma->vm_mm;
943         unsigned long vm_flags = src_vma->vm_flags;
944         pte_t pte = *src_pte;
945         struct page *page;
946
947         page = vm_normal_page(src_vma, addr, pte);
948         if (page && PageAnon(page)) {
949                 /*
950                  * If this page may have been pinned by the parent process,
951                  * copy the page immediately for the child so that we'll always
952                  * guarantee the pinned page won't be randomly replaced in the
953                  * future.
954                  */
955                 get_page(page);
956                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
957                         /* Page maybe pinned, we have to copy. */
958                         put_page(page);
959                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
960                                                  addr, rss, prealloc, page);
961                 }
962                 rss[mm_counter(page)]++;
963         } else if (page) {
964                 get_page(page);
965                 page_dup_file_rmap(page, false);
966                 rss[mm_counter(page)]++;
967         }
968
969         /*
970          * If it's a COW mapping, write protect it both
971          * in the parent and the child
972          */
973         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
974                 ptep_set_wrprotect(src_mm, addr, src_pte);
975                 pte = pte_wrprotect(pte);
976         }
977         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
978
979         /*
980          * If it's a shared mapping, mark it clean in
981          * the child
982          */
983         if (vm_flags & VM_SHARED)
984                 pte = pte_mkclean(pte);
985         pte = pte_mkold(pte);
986
987         if (!userfaultfd_wp(dst_vma))
988                 pte = pte_clear_uffd_wp(pte);
989
990         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
991         return 0;
992 }
993
994 static inline struct page *
995 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
996                    unsigned long addr)
997 {
998         struct page *new_page;
999
1000         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1001         if (!new_page)
1002                 return NULL;
1003
1004         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1005                 put_page(new_page);
1006                 return NULL;
1007         }
1008         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1009
1010         return new_page;
1011 }
1012
1013 static int
1014 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1015                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1016                unsigned long end)
1017 {
1018         struct mm_struct *dst_mm = dst_vma->vm_mm;
1019         struct mm_struct *src_mm = src_vma->vm_mm;
1020         pte_t *orig_src_pte, *orig_dst_pte;
1021         pte_t *src_pte, *dst_pte;
1022         spinlock_t *src_ptl, *dst_ptl;
1023         int progress, ret = 0;
1024         int rss[NR_MM_COUNTERS];
1025         swp_entry_t entry = (swp_entry_t){0};
1026         struct page *prealloc = NULL;
1027
1028 again:
1029         progress = 0;
1030         init_rss_vec(rss);
1031
1032         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1033         if (!dst_pte) {
1034                 ret = -ENOMEM;
1035                 goto out;
1036         }
1037         src_pte = pte_offset_map(src_pmd, addr);
1038         src_ptl = pte_lockptr(src_mm, src_pmd);
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 if (pte_none(*src_pte)) {
1056                         progress++;
1057                         continue;
1058                 }
1059                 if (unlikely(!pte_present(*src_pte))) {
1060                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1061                                                   dst_pte, src_pte,
1062                                                   dst_vma, src_vma,
1063                                                   addr, rss);
1064                         if (ret == -EIO) {
1065                                 entry = pte_to_swp_entry(*src_pte);
1066                                 break;
1067                         } else if (ret == -EBUSY) {
1068                                 break;
1069                         } else if (!ret) {
1070                                 progress += 8;
1071                                 continue;
1072                         }
1073
1074                         /*
1075                          * Device exclusive entry restored, continue by copying
1076                          * the now present pte.
1077                          */
1078                         WARN_ON_ONCE(ret != -ENOENT);
1079                 }
1080                 /* copy_present_pte() will clear `*prealloc' if consumed */
1081                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1082                                        addr, rss, &prealloc);
1083                 /*
1084                  * If we need a pre-allocated page for this pte, drop the
1085                  * locks, allocate, and try again.
1086                  */
1087                 if (unlikely(ret == -EAGAIN))
1088                         break;
1089                 if (unlikely(prealloc)) {
1090                         /*
1091                          * pre-alloc page cannot be reused by next time so as
1092                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1093                          * will allocate page according to address).  This
1094                          * could only happen if one pinned pte changed.
1095                          */
1096                         put_page(prealloc);
1097                         prealloc = NULL;
1098                 }
1099                 progress += 8;
1100         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1101
1102         arch_leave_lazy_mmu_mode();
1103         spin_unlock(src_ptl);
1104         pte_unmap(orig_src_pte);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 put_page(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_vma, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 mmap_assert_write_locked(src_mm);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         ret = -ENOMEM;
1329                         break;
1330                 }
1331         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1332
1333         if (is_cow) {
1334                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1335                 mmu_notifier_invalidate_range_end(&range);
1336         }
1337         return ret;
1338 }
1339
1340 /* Whether we should zap all COWed (private) pages too */
1341 static inline bool should_zap_cows(struct zap_details *details)
1342 {
1343         /* By default, zap all pages */
1344         if (!details)
1345                 return true;
1346
1347         /* Or, we zap COWed pages only if the caller wants to */
1348         return details->even_cows;
1349 }
1350
1351 /* Decides whether we should zap this page with the page pointer specified */
1352 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1353 {
1354         /* If we can make a decision without *page.. */
1355         if (should_zap_cows(details))
1356                 return true;
1357
1358         /* E.g. the caller passes NULL for the case of a zero page */
1359         if (!page)
1360                 return true;
1361
1362         /* Otherwise we should only zap non-anon pages */
1363         return !PageAnon(page);
1364 }
1365
1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1367 {
1368         if (!details)
1369                 return false;
1370
1371         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1372 }
1373
1374 /*
1375  * This function makes sure that we'll replace the none pte with an uffd-wp
1376  * swap special pte marker when necessary. Must be with the pgtable lock held.
1377  */
1378 static inline void
1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1380                               unsigned long addr, pte_t *pte,
1381                               struct zap_details *details, pte_t pteval)
1382 {
1383 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1384         if (zap_drop_file_uffd_wp(details))
1385                 return;
1386
1387         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1388 #endif
1389 }
1390
1391 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1392                                 struct vm_area_struct *vma, pmd_t *pmd,
1393                                 unsigned long addr, unsigned long end,
1394                                 struct zap_details *details)
1395 {
1396         struct mm_struct *mm = tlb->mm;
1397         int force_flush = 0;
1398         int rss[NR_MM_COUNTERS];
1399         spinlock_t *ptl;
1400         pte_t *start_pte;
1401         pte_t *pte;
1402         swp_entry_t entry;
1403
1404         tlb_change_page_size(tlb, PAGE_SIZE);
1405 again:
1406         init_rss_vec(rss);
1407         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1408         pte = start_pte;
1409         flush_tlb_batched_pending(mm);
1410         arch_enter_lazy_mmu_mode();
1411         do {
1412                 pte_t ptent = *pte;
1413                 struct page *page;
1414
1415                 if (pte_none(ptent))
1416                         continue;
1417
1418                 if (need_resched())
1419                         break;
1420
1421                 if (pte_present(ptent)) {
1422                         page = vm_normal_page(vma, addr, ptent);
1423                         if (unlikely(!should_zap_page(details, page)))
1424                                 continue;
1425                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1426                                                         tlb->fullmm);
1427                         tlb_remove_tlb_entry(tlb, pte, addr);
1428                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1429                                                       ptent);
1430                         if (unlikely(!page))
1431                                 continue;
1432
1433                         if (!PageAnon(page)) {
1434                                 if (pte_dirty(ptent)) {
1435                                         force_flush = 1;
1436                                         set_page_dirty(page);
1437                                 }
1438                                 if (pte_young(ptent) &&
1439                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1440                                         mark_page_accessed(page);
1441                         }
1442                         rss[mm_counter(page)]--;
1443                         page_remove_rmap(page, vma, false);
1444                         if (unlikely(page_mapcount(page) < 0))
1445                                 print_bad_pte(vma, addr, ptent, page);
1446                         if (unlikely(__tlb_remove_page(tlb, page))) {
1447                                 force_flush = 1;
1448                                 addr += PAGE_SIZE;
1449                                 break;
1450                         }
1451                         continue;
1452                 }
1453
1454                 entry = pte_to_swp_entry(ptent);
1455                 if (is_device_private_entry(entry) ||
1456                     is_device_exclusive_entry(entry)) {
1457                         page = pfn_swap_entry_to_page(entry);
1458                         if (unlikely(!should_zap_page(details, page)))
1459                                 continue;
1460                         /*
1461                          * Both device private/exclusive mappings should only
1462                          * work with anonymous page so far, so we don't need to
1463                          * consider uffd-wp bit when zap. For more information,
1464                          * see zap_install_uffd_wp_if_needed().
1465                          */
1466                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1467                         rss[mm_counter(page)]--;
1468                         if (is_device_private_entry(entry))
1469                                 page_remove_rmap(page, vma, false);
1470                         put_page(page);
1471                 } else if (!non_swap_entry(entry)) {
1472                         /* Genuine swap entry, hence a private anon page */
1473                         if (!should_zap_cows(details))
1474                                 continue;
1475                         rss[MM_SWAPENTS]--;
1476                         if (unlikely(!free_swap_and_cache(entry)))
1477                                 print_bad_pte(vma, addr, ptent, NULL);
1478                 } else if (is_migration_entry(entry)) {
1479                         page = pfn_swap_entry_to_page(entry);
1480                         if (!should_zap_page(details, page))
1481                                 continue;
1482                         rss[mm_counter(page)]--;
1483                 } else if (pte_marker_entry_uffd_wp(entry)) {
1484                         /* Only drop the uffd-wp marker if explicitly requested */
1485                         if (!zap_drop_file_uffd_wp(details))
1486                                 continue;
1487                 } else if (is_hwpoison_entry(entry) ||
1488                            is_swapin_error_entry(entry)) {
1489                         if (!should_zap_cows(details))
1490                                 continue;
1491                 } else {
1492                         /* We should have covered all the swap entry types */
1493                         WARN_ON_ONCE(1);
1494                 }
1495                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1496                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1497         } while (pte++, addr += PAGE_SIZE, addr != end);
1498
1499         add_mm_rss_vec(mm, rss);
1500         arch_leave_lazy_mmu_mode();
1501
1502         /* Do the actual TLB flush before dropping ptl */
1503         if (force_flush)
1504                 tlb_flush_mmu_tlbonly(tlb);
1505         pte_unmap_unlock(start_pte, ptl);
1506
1507         /*
1508          * If we forced a TLB flush (either due to running out of
1509          * batch buffers or because we needed to flush dirty TLB
1510          * entries before releasing the ptl), free the batched
1511          * memory too. Restart if we didn't do everything.
1512          */
1513         if (force_flush) {
1514                 force_flush = 0;
1515                 tlb_flush_mmu(tlb);
1516         }
1517
1518         if (addr != end) {
1519                 cond_resched();
1520                 goto again;
1521         }
1522
1523         return addr;
1524 }
1525
1526 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1527                                 struct vm_area_struct *vma, pud_t *pud,
1528                                 unsigned long addr, unsigned long end,
1529                                 struct zap_details *details)
1530 {
1531         pmd_t *pmd;
1532         unsigned long next;
1533
1534         pmd = pmd_offset(pud, addr);
1535         do {
1536                 next = pmd_addr_end(addr, end);
1537                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1538                         if (next - addr != HPAGE_PMD_SIZE)
1539                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1540                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1541                                 goto next;
1542                         /* fall through */
1543                 } else if (details && details->single_folio &&
1544                            folio_test_pmd_mappable(details->single_folio) &&
1545                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1546                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1547                         /*
1548                          * Take and drop THP pmd lock so that we cannot return
1549                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1550                          * but not yet decremented compound_mapcount().
1551                          */
1552                         spin_unlock(ptl);
1553                 }
1554
1555                 /*
1556                  * Here there can be other concurrent MADV_DONTNEED or
1557                  * trans huge page faults running, and if the pmd is
1558                  * none or trans huge it can change under us. This is
1559                  * because MADV_DONTNEED holds the mmap_lock in read
1560                  * mode.
1561                  */
1562                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1563                         goto next;
1564                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1565 next:
1566                 cond_resched();
1567         } while (pmd++, addr = next, addr != end);
1568
1569         return addr;
1570 }
1571
1572 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1573                                 struct vm_area_struct *vma, p4d_t *p4d,
1574                                 unsigned long addr, unsigned long end,
1575                                 struct zap_details *details)
1576 {
1577         pud_t *pud;
1578         unsigned long next;
1579
1580         pud = pud_offset(p4d, addr);
1581         do {
1582                 next = pud_addr_end(addr, end);
1583                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1584                         if (next - addr != HPAGE_PUD_SIZE) {
1585                                 mmap_assert_locked(tlb->mm);
1586                                 split_huge_pud(vma, pud, addr);
1587                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1588                                 goto next;
1589                         /* fall through */
1590                 }
1591                 if (pud_none_or_clear_bad(pud))
1592                         continue;
1593                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1594 next:
1595                 cond_resched();
1596         } while (pud++, addr = next, addr != end);
1597
1598         return addr;
1599 }
1600
1601 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1602                                 struct vm_area_struct *vma, pgd_t *pgd,
1603                                 unsigned long addr, unsigned long end,
1604                                 struct zap_details *details)
1605 {
1606         p4d_t *p4d;
1607         unsigned long next;
1608
1609         p4d = p4d_offset(pgd, addr);
1610         do {
1611                 next = p4d_addr_end(addr, end);
1612                 if (p4d_none_or_clear_bad(p4d))
1613                         continue;
1614                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1615         } while (p4d++, addr = next, addr != end);
1616
1617         return addr;
1618 }
1619
1620 void unmap_page_range(struct mmu_gather *tlb,
1621                              struct vm_area_struct *vma,
1622                              unsigned long addr, unsigned long end,
1623                              struct zap_details *details)
1624 {
1625         pgd_t *pgd;
1626         unsigned long next;
1627
1628         BUG_ON(addr >= end);
1629         tlb_start_vma(tlb, vma);
1630         pgd = pgd_offset(vma->vm_mm, addr);
1631         do {
1632                 next = pgd_addr_end(addr, end);
1633                 if (pgd_none_or_clear_bad(pgd))
1634                         continue;
1635                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1636         } while (pgd++, addr = next, addr != end);
1637         tlb_end_vma(tlb, vma);
1638 }
1639
1640
1641 static void unmap_single_vma(struct mmu_gather *tlb,
1642                 struct vm_area_struct *vma, unsigned long start_addr,
1643                 unsigned long end_addr,
1644                 struct zap_details *details)
1645 {
1646         unsigned long start = max(vma->vm_start, start_addr);
1647         unsigned long end;
1648
1649         if (start >= vma->vm_end)
1650                 return;
1651         end = min(vma->vm_end, end_addr);
1652         if (end <= vma->vm_start)
1653                 return;
1654
1655         if (vma->vm_file)
1656                 uprobe_munmap(vma, start, end);
1657
1658         if (unlikely(vma->vm_flags & VM_PFNMAP))
1659                 untrack_pfn(vma, 0, 0);
1660
1661         if (start != end) {
1662                 if (unlikely(is_vm_hugetlb_page(vma))) {
1663                         /*
1664                          * It is undesirable to test vma->vm_file as it
1665                          * should be non-null for valid hugetlb area.
1666                          * However, vm_file will be NULL in the error
1667                          * cleanup path of mmap_region. When
1668                          * hugetlbfs ->mmap method fails,
1669                          * mmap_region() nullifies vma->vm_file
1670                          * before calling this function to clean up.
1671                          * Since no pte has actually been setup, it is
1672                          * safe to do nothing in this case.
1673                          */
1674                         if (vma->vm_file) {
1675                                 zap_flags_t zap_flags = details ?
1676                                     details->zap_flags : 0;
1677                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1678                                                              NULL, zap_flags);
1679                         }
1680                 } else
1681                         unmap_page_range(tlb, vma, start, end, details);
1682         }
1683 }
1684
1685 /**
1686  * unmap_vmas - unmap a range of memory covered by a list of vma's
1687  * @tlb: address of the caller's struct mmu_gather
1688  * @mt: the maple tree
1689  * @vma: the starting vma
1690  * @start_addr: virtual address at which to start unmapping
1691  * @end_addr: virtual address at which to end unmapping
1692  *
1693  * Unmap all pages in the vma list.
1694  *
1695  * Only addresses between `start' and `end' will be unmapped.
1696  *
1697  * The VMA list must be sorted in ascending virtual address order.
1698  *
1699  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1700  * range after unmap_vmas() returns.  So the only responsibility here is to
1701  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1702  * drops the lock and schedules.
1703  */
1704 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1705                 struct vm_area_struct *vma, unsigned long start_addr,
1706                 unsigned long end_addr)
1707 {
1708         struct mmu_notifier_range range;
1709         struct zap_details details = {
1710                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1711                 /* Careful - we need to zap private pages too! */
1712                 .even_cows = true,
1713         };
1714         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1715
1716         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1717                                 start_addr, end_addr);
1718         mmu_notifier_invalidate_range_start(&range);
1719         do {
1720                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1721         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722         mmu_notifier_invalidate_range_end(&range);
1723 }
1724
1725 /**
1726  * zap_page_range - remove user pages in a given range
1727  * @vma: vm_area_struct holding the applicable pages
1728  * @start: starting address of pages to zap
1729  * @size: number of bytes to zap
1730  *
1731  * Caller must protect the VMA list
1732  */
1733 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1734                 unsigned long size)
1735 {
1736         struct maple_tree *mt = &vma->vm_mm->mm_mt;
1737         unsigned long end = start + size;
1738         struct mmu_notifier_range range;
1739         struct mmu_gather tlb;
1740         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1741
1742         lru_add_drain();
1743         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1744                                 start, start + size);
1745         tlb_gather_mmu(&tlb, vma->vm_mm);
1746         update_hiwater_rss(vma->vm_mm);
1747         mmu_notifier_invalidate_range_start(&range);
1748         do {
1749                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1750         } while ((vma = mas_find(&mas, end - 1)) != NULL);
1751         mmu_notifier_invalidate_range_end(&range);
1752         tlb_finish_mmu(&tlb);
1753 }
1754
1755 /**
1756  * zap_page_range_single - remove user pages in a given range
1757  * @vma: vm_area_struct holding the applicable pages
1758  * @address: starting address of pages to zap
1759  * @size: number of bytes to zap
1760  * @details: details of shared cache invalidation
1761  *
1762  * The range must fit into one VMA.
1763  */
1764 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1765                 unsigned long size, struct zap_details *details)
1766 {
1767         const unsigned long end = address + size;
1768         struct mmu_notifier_range range;
1769         struct mmu_gather tlb;
1770
1771         lru_add_drain();
1772         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1773                                 address, end);
1774         if (is_vm_hugetlb_page(vma))
1775                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1776                                                      &range.end);
1777         tlb_gather_mmu(&tlb, vma->vm_mm);
1778         update_hiwater_rss(vma->vm_mm);
1779         mmu_notifier_invalidate_range_start(&range);
1780         /*
1781          * unmap 'address-end' not 'range.start-range.end' as range
1782          * could have been expanded for hugetlb pmd sharing.
1783          */
1784         unmap_single_vma(&tlb, vma, address, end, details);
1785         mmu_notifier_invalidate_range_end(&range);
1786         tlb_finish_mmu(&tlb);
1787 }
1788
1789 /**
1790  * zap_vma_ptes - remove ptes mapping the vma
1791  * @vma: vm_area_struct holding ptes to be zapped
1792  * @address: starting address of pages to zap
1793  * @size: number of bytes to zap
1794  *
1795  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1796  *
1797  * The entire address range must be fully contained within the vma.
1798  *
1799  */
1800 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1801                 unsigned long size)
1802 {
1803         if (!range_in_vma(vma, address, address + size) ||
1804                         !(vma->vm_flags & VM_PFNMAP))
1805                 return;
1806
1807         zap_page_range_single(vma, address, size, NULL);
1808 }
1809 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1810
1811 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1812 {
1813         pgd_t *pgd;
1814         p4d_t *p4d;
1815         pud_t *pud;
1816         pmd_t *pmd;
1817
1818         pgd = pgd_offset(mm, addr);
1819         p4d = p4d_alloc(mm, pgd, addr);
1820         if (!p4d)
1821                 return NULL;
1822         pud = pud_alloc(mm, p4d, addr);
1823         if (!pud)
1824                 return NULL;
1825         pmd = pmd_alloc(mm, pud, addr);
1826         if (!pmd)
1827                 return NULL;
1828
1829         VM_BUG_ON(pmd_trans_huge(*pmd));
1830         return pmd;
1831 }
1832
1833 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1834                         spinlock_t **ptl)
1835 {
1836         pmd_t *pmd = walk_to_pmd(mm, addr);
1837
1838         if (!pmd)
1839                 return NULL;
1840         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1841 }
1842
1843 static int validate_page_before_insert(struct page *page)
1844 {
1845         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1846                 return -EINVAL;
1847         flush_dcache_page(page);
1848         return 0;
1849 }
1850
1851 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1852                         unsigned long addr, struct page *page, pgprot_t prot)
1853 {
1854         if (!pte_none(*pte))
1855                 return -EBUSY;
1856         /* Ok, finally just insert the thing.. */
1857         get_page(page);
1858         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1859         page_add_file_rmap(page, vma, false);
1860         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1861         return 0;
1862 }
1863
1864 /*
1865  * This is the old fallback for page remapping.
1866  *
1867  * For historical reasons, it only allows reserved pages. Only
1868  * old drivers should use this, and they needed to mark their
1869  * pages reserved for the old functions anyway.
1870  */
1871 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1872                         struct page *page, pgprot_t prot)
1873 {
1874         int retval;
1875         pte_t *pte;
1876         spinlock_t *ptl;
1877
1878         retval = validate_page_before_insert(page);
1879         if (retval)
1880                 goto out;
1881         retval = -ENOMEM;
1882         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1883         if (!pte)
1884                 goto out;
1885         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886         pte_unmap_unlock(pte, ptl);
1887 out:
1888         return retval;
1889 }
1890
1891 #ifdef pte_index
1892 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1893                         unsigned long addr, struct page *page, pgprot_t prot)
1894 {
1895         int err;
1896
1897         if (!page_count(page))
1898                 return -EINVAL;
1899         err = validate_page_before_insert(page);
1900         if (err)
1901                 return err;
1902         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1903 }
1904
1905 /* insert_pages() amortizes the cost of spinlock operations
1906  * when inserting pages in a loop. Arch *must* define pte_index.
1907  */
1908 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1909                         struct page **pages, unsigned long *num, pgprot_t prot)
1910 {
1911         pmd_t *pmd = NULL;
1912         pte_t *start_pte, *pte;
1913         spinlock_t *pte_lock;
1914         struct mm_struct *const mm = vma->vm_mm;
1915         unsigned long curr_page_idx = 0;
1916         unsigned long remaining_pages_total = *num;
1917         unsigned long pages_to_write_in_pmd;
1918         int ret;
1919 more:
1920         ret = -EFAULT;
1921         pmd = walk_to_pmd(mm, addr);
1922         if (!pmd)
1923                 goto out;
1924
1925         pages_to_write_in_pmd = min_t(unsigned long,
1926                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1927
1928         /* Allocate the PTE if necessary; takes PMD lock once only. */
1929         ret = -ENOMEM;
1930         if (pte_alloc(mm, pmd))
1931                 goto out;
1932
1933         while (pages_to_write_in_pmd) {
1934                 int pte_idx = 0;
1935                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1936
1937                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1938                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1939                         int err = insert_page_in_batch_locked(vma, pte,
1940                                 addr, pages[curr_page_idx], prot);
1941                         if (unlikely(err)) {
1942                                 pte_unmap_unlock(start_pte, pte_lock);
1943                                 ret = err;
1944                                 remaining_pages_total -= pte_idx;
1945                                 goto out;
1946                         }
1947                         addr += PAGE_SIZE;
1948                         ++curr_page_idx;
1949                 }
1950                 pte_unmap_unlock(start_pte, pte_lock);
1951                 pages_to_write_in_pmd -= batch_size;
1952                 remaining_pages_total -= batch_size;
1953         }
1954         if (remaining_pages_total)
1955                 goto more;
1956         ret = 0;
1957 out:
1958         *num = remaining_pages_total;
1959         return ret;
1960 }
1961 #endif  /* ifdef pte_index */
1962
1963 /**
1964  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1965  * @vma: user vma to map to
1966  * @addr: target start user address of these pages
1967  * @pages: source kernel pages
1968  * @num: in: number of pages to map. out: number of pages that were *not*
1969  * mapped. (0 means all pages were successfully mapped).
1970  *
1971  * Preferred over vm_insert_page() when inserting multiple pages.
1972  *
1973  * In case of error, we may have mapped a subset of the provided
1974  * pages. It is the caller's responsibility to account for this case.
1975  *
1976  * The same restrictions apply as in vm_insert_page().
1977  */
1978 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1979                         struct page **pages, unsigned long *num)
1980 {
1981 #ifdef pte_index
1982         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1983
1984         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1985                 return -EFAULT;
1986         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1987                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1988                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1989                 vma->vm_flags |= VM_MIXEDMAP;
1990         }
1991         /* Defer page refcount checking till we're about to map that page. */
1992         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1993 #else
1994         unsigned long idx = 0, pgcount = *num;
1995         int err = -EINVAL;
1996
1997         for (; idx < pgcount; ++idx) {
1998                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1999                 if (err)
2000                         break;
2001         }
2002         *num = pgcount - idx;
2003         return err;
2004 #endif  /* ifdef pte_index */
2005 }
2006 EXPORT_SYMBOL(vm_insert_pages);
2007
2008 /**
2009  * vm_insert_page - insert single page into user vma
2010  * @vma: user vma to map to
2011  * @addr: target user address of this page
2012  * @page: source kernel page
2013  *
2014  * This allows drivers to insert individual pages they've allocated
2015  * into a user vma.
2016  *
2017  * The page has to be a nice clean _individual_ kernel allocation.
2018  * If you allocate a compound page, you need to have marked it as
2019  * such (__GFP_COMP), or manually just split the page up yourself
2020  * (see split_page()).
2021  *
2022  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2023  * took an arbitrary page protection parameter. This doesn't allow
2024  * that. Your vma protection will have to be set up correctly, which
2025  * means that if you want a shared writable mapping, you'd better
2026  * ask for a shared writable mapping!
2027  *
2028  * The page does not need to be reserved.
2029  *
2030  * Usually this function is called from f_op->mmap() handler
2031  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2032  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2033  * function from other places, for example from page-fault handler.
2034  *
2035  * Return: %0 on success, negative error code otherwise.
2036  */
2037 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2038                         struct page *page)
2039 {
2040         if (addr < vma->vm_start || addr >= vma->vm_end)
2041                 return -EFAULT;
2042         if (!page_count(page))
2043                 return -EINVAL;
2044         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2045                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2046                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2047                 vma->vm_flags |= VM_MIXEDMAP;
2048         }
2049         return insert_page(vma, addr, page, vma->vm_page_prot);
2050 }
2051 EXPORT_SYMBOL(vm_insert_page);
2052
2053 /*
2054  * __vm_map_pages - maps range of kernel pages into user vma
2055  * @vma: user vma to map to
2056  * @pages: pointer to array of source kernel pages
2057  * @num: number of pages in page array
2058  * @offset: user's requested vm_pgoff
2059  *
2060  * This allows drivers to map range of kernel pages into a user vma.
2061  *
2062  * Return: 0 on success and error code otherwise.
2063  */
2064 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2065                                 unsigned long num, unsigned long offset)
2066 {
2067         unsigned long count = vma_pages(vma);
2068         unsigned long uaddr = vma->vm_start;
2069         int ret, i;
2070
2071         /* Fail if the user requested offset is beyond the end of the object */
2072         if (offset >= num)
2073                 return -ENXIO;
2074
2075         /* Fail if the user requested size exceeds available object size */
2076         if (count > num - offset)
2077                 return -ENXIO;
2078
2079         for (i = 0; i < count; i++) {
2080                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2081                 if (ret < 0)
2082                         return ret;
2083                 uaddr += PAGE_SIZE;
2084         }
2085
2086         return 0;
2087 }
2088
2089 /**
2090  * vm_map_pages - maps range of kernel pages starts with non zero offset
2091  * @vma: user vma to map to
2092  * @pages: pointer to array of source kernel pages
2093  * @num: number of pages in page array
2094  *
2095  * Maps an object consisting of @num pages, catering for the user's
2096  * requested vm_pgoff
2097  *
2098  * If we fail to insert any page into the vma, the function will return
2099  * immediately leaving any previously inserted pages present.  Callers
2100  * from the mmap handler may immediately return the error as their caller
2101  * will destroy the vma, removing any successfully inserted pages. Other
2102  * callers should make their own arrangements for calling unmap_region().
2103  *
2104  * Context: Process context. Called by mmap handlers.
2105  * Return: 0 on success and error code otherwise.
2106  */
2107 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2108                                 unsigned long num)
2109 {
2110         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2111 }
2112 EXPORT_SYMBOL(vm_map_pages);
2113
2114 /**
2115  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2116  * @vma: user vma to map to
2117  * @pages: pointer to array of source kernel pages
2118  * @num: number of pages in page array
2119  *
2120  * Similar to vm_map_pages(), except that it explicitly sets the offset
2121  * to 0. This function is intended for the drivers that did not consider
2122  * vm_pgoff.
2123  *
2124  * Context: Process context. Called by mmap handlers.
2125  * Return: 0 on success and error code otherwise.
2126  */
2127 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2128                                 unsigned long num)
2129 {
2130         return __vm_map_pages(vma, pages, num, 0);
2131 }
2132 EXPORT_SYMBOL(vm_map_pages_zero);
2133
2134 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2136 {
2137         struct mm_struct *mm = vma->vm_mm;
2138         pte_t *pte, entry;
2139         spinlock_t *ptl;
2140
2141         pte = get_locked_pte(mm, addr, &ptl);
2142         if (!pte)
2143                 return VM_FAULT_OOM;
2144         if (!pte_none(*pte)) {
2145                 if (mkwrite) {
2146                         /*
2147                          * For read faults on private mappings the PFN passed
2148                          * in may not match the PFN we have mapped if the
2149                          * mapped PFN is a writeable COW page.  In the mkwrite
2150                          * case we are creating a writable PTE for a shared
2151                          * mapping and we expect the PFNs to match. If they
2152                          * don't match, we are likely racing with block
2153                          * allocation and mapping invalidation so just skip the
2154                          * update.
2155                          */
2156                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2157                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2158                                 goto out_unlock;
2159                         }
2160                         entry = pte_mkyoung(*pte);
2161                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2162                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2163                                 update_mmu_cache(vma, addr, pte);
2164                 }
2165                 goto out_unlock;
2166         }
2167
2168         /* Ok, finally just insert the thing.. */
2169         if (pfn_t_devmap(pfn))
2170                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2171         else
2172                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2173
2174         if (mkwrite) {
2175                 entry = pte_mkyoung(entry);
2176                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2177         }
2178
2179         set_pte_at(mm, addr, pte, entry);
2180         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2181
2182 out_unlock:
2183         pte_unmap_unlock(pte, ptl);
2184         return VM_FAULT_NOPAGE;
2185 }
2186
2187 /**
2188  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2189  * @vma: user vma to map to
2190  * @addr: target user address of this page
2191  * @pfn: source kernel pfn
2192  * @pgprot: pgprot flags for the inserted page
2193  *
2194  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2195  * to override pgprot on a per-page basis.
2196  *
2197  * This only makes sense for IO mappings, and it makes no sense for
2198  * COW mappings.  In general, using multiple vmas is preferable;
2199  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2200  * impractical.
2201  *
2202  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2203  * a value of @pgprot different from that of @vma->vm_page_prot.
2204  *
2205  * Context: Process context.  May allocate using %GFP_KERNEL.
2206  * Return: vm_fault_t value.
2207  */
2208 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2209                         unsigned long pfn, pgprot_t pgprot)
2210 {
2211         /*
2212          * Technically, architectures with pte_special can avoid all these
2213          * restrictions (same for remap_pfn_range).  However we would like
2214          * consistency in testing and feature parity among all, so we should
2215          * try to keep these invariants in place for everybody.
2216          */
2217         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219                                                 (VM_PFNMAP|VM_MIXEDMAP));
2220         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2222
2223         if (addr < vma->vm_start || addr >= vma->vm_end)
2224                 return VM_FAULT_SIGBUS;
2225
2226         if (!pfn_modify_allowed(pfn, pgprot))
2227                 return VM_FAULT_SIGBUS;
2228
2229         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2230
2231         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2232                         false);
2233 }
2234 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2235
2236 /**
2237  * vmf_insert_pfn - insert single pfn into user vma
2238  * @vma: user vma to map to
2239  * @addr: target user address of this page
2240  * @pfn: source kernel pfn
2241  *
2242  * Similar to vm_insert_page, this allows drivers to insert individual pages
2243  * they've allocated into a user vma. Same comments apply.
2244  *
2245  * This function should only be called from a vm_ops->fault handler, and
2246  * in that case the handler should return the result of this function.
2247  *
2248  * vma cannot be a COW mapping.
2249  *
2250  * As this is called only for pages that do not currently exist, we
2251  * do not need to flush old virtual caches or the TLB.
2252  *
2253  * Context: Process context.  May allocate using %GFP_KERNEL.
2254  * Return: vm_fault_t value.
2255  */
2256 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2257                         unsigned long pfn)
2258 {
2259         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2260 }
2261 EXPORT_SYMBOL(vmf_insert_pfn);
2262
2263 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2264 {
2265         /* these checks mirror the abort conditions in vm_normal_page */
2266         if (vma->vm_flags & VM_MIXEDMAP)
2267                 return true;
2268         if (pfn_t_devmap(pfn))
2269                 return true;
2270         if (pfn_t_special(pfn))
2271                 return true;
2272         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2273                 return true;
2274         return false;
2275 }
2276
2277 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2278                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2279                 bool mkwrite)
2280 {
2281         int err;
2282
2283         BUG_ON(!vm_mixed_ok(vma, pfn));
2284
2285         if (addr < vma->vm_start || addr >= vma->vm_end)
2286                 return VM_FAULT_SIGBUS;
2287
2288         track_pfn_insert(vma, &pgprot, pfn);
2289
2290         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2291                 return VM_FAULT_SIGBUS;
2292
2293         /*
2294          * If we don't have pte special, then we have to use the pfn_valid()
2295          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2296          * refcount the page if pfn_valid is true (hence insert_page rather
2297          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2298          * without pte special, it would there be refcounted as a normal page.
2299          */
2300         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2301             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2302                 struct page *page;
2303
2304                 /*
2305                  * At this point we are committed to insert_page()
2306                  * regardless of whether the caller specified flags that
2307                  * result in pfn_t_has_page() == false.
2308                  */
2309                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2310                 err = insert_page(vma, addr, page, pgprot);
2311         } else {
2312                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2313         }
2314
2315         if (err == -ENOMEM)
2316                 return VM_FAULT_OOM;
2317         if (err < 0 && err != -EBUSY)
2318                 return VM_FAULT_SIGBUS;
2319
2320         return VM_FAULT_NOPAGE;
2321 }
2322
2323 /**
2324  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2325  * @vma: user vma to map to
2326  * @addr: target user address of this page
2327  * @pfn: source kernel pfn
2328  * @pgprot: pgprot flags for the inserted page
2329  *
2330  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2331  * to override pgprot on a per-page basis.
2332  *
2333  * Typically this function should be used by drivers to set caching- and
2334  * encryption bits different than those of @vma->vm_page_prot, because
2335  * the caching- or encryption mode may not be known at mmap() time.
2336  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2337  * to set caching and encryption bits for those vmas (except for COW pages).
2338  * This is ensured by core vm only modifying these page table entries using
2339  * functions that don't touch caching- or encryption bits, using pte_modify()
2340  * if needed. (See for example mprotect()).
2341  * Also when new page-table entries are created, this is only done using the
2342  * fault() callback, and never using the value of vma->vm_page_prot,
2343  * except for page-table entries that point to anonymous pages as the result
2344  * of COW.
2345  *
2346  * Context: Process context.  May allocate using %GFP_KERNEL.
2347  * Return: vm_fault_t value.
2348  */
2349 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2350                                  pfn_t pfn, pgprot_t pgprot)
2351 {
2352         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2353 }
2354 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2355
2356 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2357                 pfn_t pfn)
2358 {
2359         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2360 }
2361 EXPORT_SYMBOL(vmf_insert_mixed);
2362
2363 /*
2364  *  If the insertion of PTE failed because someone else already added a
2365  *  different entry in the mean time, we treat that as success as we assume
2366  *  the same entry was actually inserted.
2367  */
2368 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2369                 unsigned long addr, pfn_t pfn)
2370 {
2371         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2372 }
2373 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2374
2375 /*
2376  * maps a range of physical memory into the requested pages. the old
2377  * mappings are removed. any references to nonexistent pages results
2378  * in null mappings (currently treated as "copy-on-access")
2379  */
2380 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381                         unsigned long addr, unsigned long end,
2382                         unsigned long pfn, pgprot_t prot)
2383 {
2384         pte_t *pte, *mapped_pte;
2385         spinlock_t *ptl;
2386         int err = 0;
2387
2388         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2389         if (!pte)
2390                 return -ENOMEM;
2391         arch_enter_lazy_mmu_mode();
2392         do {
2393                 BUG_ON(!pte_none(*pte));
2394                 if (!pfn_modify_allowed(pfn, prot)) {
2395                         err = -EACCES;
2396                         break;
2397                 }
2398                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2399                 pfn++;
2400         } while (pte++, addr += PAGE_SIZE, addr != end);
2401         arch_leave_lazy_mmu_mode();
2402         pte_unmap_unlock(mapped_pte, ptl);
2403         return err;
2404 }
2405
2406 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2407                         unsigned long addr, unsigned long end,
2408                         unsigned long pfn, pgprot_t prot)
2409 {
2410         pmd_t *pmd;
2411         unsigned long next;
2412         int err;
2413
2414         pfn -= addr >> PAGE_SHIFT;
2415         pmd = pmd_alloc(mm, pud, addr);
2416         if (!pmd)
2417                 return -ENOMEM;
2418         VM_BUG_ON(pmd_trans_huge(*pmd));
2419         do {
2420                 next = pmd_addr_end(addr, end);
2421                 err = remap_pte_range(mm, pmd, addr, next,
2422                                 pfn + (addr >> PAGE_SHIFT), prot);
2423                 if (err)
2424                         return err;
2425         } while (pmd++, addr = next, addr != end);
2426         return 0;
2427 }
2428
2429 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2430                         unsigned long addr, unsigned long end,
2431                         unsigned long pfn, pgprot_t prot)
2432 {
2433         pud_t *pud;
2434         unsigned long next;
2435         int err;
2436
2437         pfn -= addr >> PAGE_SHIFT;
2438         pud = pud_alloc(mm, p4d, addr);
2439         if (!pud)
2440                 return -ENOMEM;
2441         do {
2442                 next = pud_addr_end(addr, end);
2443                 err = remap_pmd_range(mm, pud, addr, next,
2444                                 pfn + (addr >> PAGE_SHIFT), prot);
2445                 if (err)
2446                         return err;
2447         } while (pud++, addr = next, addr != end);
2448         return 0;
2449 }
2450
2451 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2452                         unsigned long addr, unsigned long end,
2453                         unsigned long pfn, pgprot_t prot)
2454 {
2455         p4d_t *p4d;
2456         unsigned long next;
2457         int err;
2458
2459         pfn -= addr >> PAGE_SHIFT;
2460         p4d = p4d_alloc(mm, pgd, addr);
2461         if (!p4d)
2462                 return -ENOMEM;
2463         do {
2464                 next = p4d_addr_end(addr, end);
2465                 err = remap_pud_range(mm, p4d, addr, next,
2466                                 pfn + (addr >> PAGE_SHIFT), prot);
2467                 if (err)
2468                         return err;
2469         } while (p4d++, addr = next, addr != end);
2470         return 0;
2471 }
2472
2473 /*
2474  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2475  * must have pre-validated the caching bits of the pgprot_t.
2476  */
2477 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2478                 unsigned long pfn, unsigned long size, pgprot_t prot)
2479 {
2480         pgd_t *pgd;
2481         unsigned long next;
2482         unsigned long end = addr + PAGE_ALIGN(size);
2483         struct mm_struct *mm = vma->vm_mm;
2484         int err;
2485
2486         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2487                 return -EINVAL;
2488
2489         /*
2490          * Physically remapped pages are special. Tell the
2491          * rest of the world about it:
2492          *   VM_IO tells people not to look at these pages
2493          *      (accesses can have side effects).
2494          *   VM_PFNMAP tells the core MM that the base pages are just
2495          *      raw PFN mappings, and do not have a "struct page" associated
2496          *      with them.
2497          *   VM_DONTEXPAND
2498          *      Disable vma merging and expanding with mremap().
2499          *   VM_DONTDUMP
2500          *      Omit vma from core dump, even when VM_IO turned off.
2501          *
2502          * There's a horrible special case to handle copy-on-write
2503          * behaviour that some programs depend on. We mark the "original"
2504          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2505          * See vm_normal_page() for details.
2506          */
2507         if (is_cow_mapping(vma->vm_flags)) {
2508                 if (addr != vma->vm_start || end != vma->vm_end)
2509                         return -EINVAL;
2510                 vma->vm_pgoff = pfn;
2511         }
2512
2513         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2514
2515         BUG_ON(addr >= end);
2516         pfn -= addr >> PAGE_SHIFT;
2517         pgd = pgd_offset(mm, addr);
2518         flush_cache_range(vma, addr, end);
2519         do {
2520                 next = pgd_addr_end(addr, end);
2521                 err = remap_p4d_range(mm, pgd, addr, next,
2522                                 pfn + (addr >> PAGE_SHIFT), prot);
2523                 if (err)
2524                         return err;
2525         } while (pgd++, addr = next, addr != end);
2526
2527         return 0;
2528 }
2529
2530 /**
2531  * remap_pfn_range - remap kernel memory to userspace
2532  * @vma: user vma to map to
2533  * @addr: target page aligned user address to start at
2534  * @pfn: page frame number of kernel physical memory address
2535  * @size: size of mapping area
2536  * @prot: page protection flags for this mapping
2537  *
2538  * Note: this is only safe if the mm semaphore is held when called.
2539  *
2540  * Return: %0 on success, negative error code otherwise.
2541  */
2542 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2543                     unsigned long pfn, unsigned long size, pgprot_t prot)
2544 {
2545         int err;
2546
2547         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2548         if (err)
2549                 return -EINVAL;
2550
2551         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2552         if (err)
2553                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2554         return err;
2555 }
2556 EXPORT_SYMBOL(remap_pfn_range);
2557
2558 /**
2559  * vm_iomap_memory - remap memory to userspace
2560  * @vma: user vma to map to
2561  * @start: start of the physical memory to be mapped
2562  * @len: size of area
2563  *
2564  * This is a simplified io_remap_pfn_range() for common driver use. The
2565  * driver just needs to give us the physical memory range to be mapped,
2566  * we'll figure out the rest from the vma information.
2567  *
2568  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2569  * whatever write-combining details or similar.
2570  *
2571  * Return: %0 on success, negative error code otherwise.
2572  */
2573 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2574 {
2575         unsigned long vm_len, pfn, pages;
2576
2577         /* Check that the physical memory area passed in looks valid */
2578         if (start + len < start)
2579                 return -EINVAL;
2580         /*
2581          * You *really* shouldn't map things that aren't page-aligned,
2582          * but we've historically allowed it because IO memory might
2583          * just have smaller alignment.
2584          */
2585         len += start & ~PAGE_MASK;
2586         pfn = start >> PAGE_SHIFT;
2587         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2588         if (pfn + pages < pfn)
2589                 return -EINVAL;
2590
2591         /* We start the mapping 'vm_pgoff' pages into the area */
2592         if (vma->vm_pgoff > pages)
2593                 return -EINVAL;
2594         pfn += vma->vm_pgoff;
2595         pages -= vma->vm_pgoff;
2596
2597         /* Can we fit all of the mapping? */
2598         vm_len = vma->vm_end - vma->vm_start;
2599         if (vm_len >> PAGE_SHIFT > pages)
2600                 return -EINVAL;
2601
2602         /* Ok, let it rip */
2603         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2604 }
2605 EXPORT_SYMBOL(vm_iomap_memory);
2606
2607 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2608                                      unsigned long addr, unsigned long end,
2609                                      pte_fn_t fn, void *data, bool create,
2610                                      pgtbl_mod_mask *mask)
2611 {
2612         pte_t *pte, *mapped_pte;
2613         int err = 0;
2614         spinlock_t *ptl;
2615
2616         if (create) {
2617                 mapped_pte = pte = (mm == &init_mm) ?
2618                         pte_alloc_kernel_track(pmd, addr, mask) :
2619                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2620                 if (!pte)
2621                         return -ENOMEM;
2622         } else {
2623                 mapped_pte = pte = (mm == &init_mm) ?
2624                         pte_offset_kernel(pmd, addr) :
2625                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2626         }
2627
2628         BUG_ON(pmd_huge(*pmd));
2629
2630         arch_enter_lazy_mmu_mode();
2631
2632         if (fn) {
2633                 do {
2634                         if (create || !pte_none(*pte)) {
2635                                 err = fn(pte++, addr, data);
2636                                 if (err)
2637                                         break;
2638                         }
2639                 } while (addr += PAGE_SIZE, addr != end);
2640         }
2641         *mask |= PGTBL_PTE_MODIFIED;
2642
2643         arch_leave_lazy_mmu_mode();
2644
2645         if (mm != &init_mm)
2646                 pte_unmap_unlock(mapped_pte, ptl);
2647         return err;
2648 }
2649
2650 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2651                                      unsigned long addr, unsigned long end,
2652                                      pte_fn_t fn, void *data, bool create,
2653                                      pgtbl_mod_mask *mask)
2654 {
2655         pmd_t *pmd;
2656         unsigned long next;
2657         int err = 0;
2658
2659         BUG_ON(pud_huge(*pud));
2660
2661         if (create) {
2662                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2663                 if (!pmd)
2664                         return -ENOMEM;
2665         } else {
2666                 pmd = pmd_offset(pud, addr);
2667         }
2668         do {
2669                 next = pmd_addr_end(addr, end);
2670                 if (pmd_none(*pmd) && !create)
2671                         continue;
2672                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2673                         return -EINVAL;
2674                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2675                         if (!create)
2676                                 continue;
2677                         pmd_clear_bad(pmd);
2678                 }
2679                 err = apply_to_pte_range(mm, pmd, addr, next,
2680                                          fn, data, create, mask);
2681                 if (err)
2682                         break;
2683         } while (pmd++, addr = next, addr != end);
2684
2685         return err;
2686 }
2687
2688 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2689                                      unsigned long addr, unsigned long end,
2690                                      pte_fn_t fn, void *data, bool create,
2691                                      pgtbl_mod_mask *mask)
2692 {
2693         pud_t *pud;
2694         unsigned long next;
2695         int err = 0;
2696
2697         if (create) {
2698                 pud = pud_alloc_track(mm, p4d, addr, mask);
2699                 if (!pud)
2700                         return -ENOMEM;
2701         } else {
2702                 pud = pud_offset(p4d, addr);
2703         }
2704         do {
2705                 next = pud_addr_end(addr, end);
2706                 if (pud_none(*pud) && !create)
2707                         continue;
2708                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2709                         return -EINVAL;
2710                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2711                         if (!create)
2712                                 continue;
2713                         pud_clear_bad(pud);
2714                 }
2715                 err = apply_to_pmd_range(mm, pud, addr, next,
2716                                          fn, data, create, mask);
2717                 if (err)
2718                         break;
2719         } while (pud++, addr = next, addr != end);
2720
2721         return err;
2722 }
2723
2724 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2725                                      unsigned long addr, unsigned long end,
2726                                      pte_fn_t fn, void *data, bool create,
2727                                      pgtbl_mod_mask *mask)
2728 {
2729         p4d_t *p4d;
2730         unsigned long next;
2731         int err = 0;
2732
2733         if (create) {
2734                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2735                 if (!p4d)
2736                         return -ENOMEM;
2737         } else {
2738                 p4d = p4d_offset(pgd, addr);
2739         }
2740         do {
2741                 next = p4d_addr_end(addr, end);
2742                 if (p4d_none(*p4d) && !create)
2743                         continue;
2744                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2745                         return -EINVAL;
2746                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2747                         if (!create)
2748                                 continue;
2749                         p4d_clear_bad(p4d);
2750                 }
2751                 err = apply_to_pud_range(mm, p4d, addr, next,
2752                                          fn, data, create, mask);
2753                 if (err)
2754                         break;
2755         } while (p4d++, addr = next, addr != end);
2756
2757         return err;
2758 }
2759
2760 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2761                                  unsigned long size, pte_fn_t fn,
2762                                  void *data, bool create)
2763 {
2764         pgd_t *pgd;
2765         unsigned long start = addr, next;
2766         unsigned long end = addr + size;
2767         pgtbl_mod_mask mask = 0;
2768         int err = 0;
2769
2770         if (WARN_ON(addr >= end))
2771                 return -EINVAL;
2772
2773         pgd = pgd_offset(mm, addr);
2774         do {
2775                 next = pgd_addr_end(addr, end);
2776                 if (pgd_none(*pgd) && !create)
2777                         continue;
2778                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2779                         return -EINVAL;
2780                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2781                         if (!create)
2782                                 continue;
2783                         pgd_clear_bad(pgd);
2784                 }
2785                 err = apply_to_p4d_range(mm, pgd, addr, next,
2786                                          fn, data, create, &mask);
2787                 if (err)
2788                         break;
2789         } while (pgd++, addr = next, addr != end);
2790
2791         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2792                 arch_sync_kernel_mappings(start, start + size);
2793
2794         return err;
2795 }
2796
2797 /*
2798  * Scan a region of virtual memory, filling in page tables as necessary
2799  * and calling a provided function on each leaf page table.
2800  */
2801 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2802                         unsigned long size, pte_fn_t fn, void *data)
2803 {
2804         return __apply_to_page_range(mm, addr, size, fn, data, true);
2805 }
2806 EXPORT_SYMBOL_GPL(apply_to_page_range);
2807
2808 /*
2809  * Scan a region of virtual memory, calling a provided function on
2810  * each leaf page table where it exists.
2811  *
2812  * Unlike apply_to_page_range, this does _not_ fill in page tables
2813  * where they are absent.
2814  */
2815 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2816                                  unsigned long size, pte_fn_t fn, void *data)
2817 {
2818         return __apply_to_page_range(mm, addr, size, fn, data, false);
2819 }
2820 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2821
2822 /*
2823  * handle_pte_fault chooses page fault handler according to an entry which was
2824  * read non-atomically.  Before making any commitment, on those architectures
2825  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2826  * parts, do_swap_page must check under lock before unmapping the pte and
2827  * proceeding (but do_wp_page is only called after already making such a check;
2828  * and do_anonymous_page can safely check later on).
2829  */
2830 static inline int pte_unmap_same(struct vm_fault *vmf)
2831 {
2832         int same = 1;
2833 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2834         if (sizeof(pte_t) > sizeof(unsigned long)) {
2835                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2836                 spin_lock(ptl);
2837                 same = pte_same(*vmf->pte, vmf->orig_pte);
2838                 spin_unlock(ptl);
2839         }
2840 #endif
2841         pte_unmap(vmf->pte);
2842         vmf->pte = NULL;
2843         return same;
2844 }
2845
2846 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2847                                        struct vm_fault *vmf)
2848 {
2849         bool ret;
2850         void *kaddr;
2851         void __user *uaddr;
2852         bool locked = false;
2853         struct vm_area_struct *vma = vmf->vma;
2854         struct mm_struct *mm = vma->vm_mm;
2855         unsigned long addr = vmf->address;
2856
2857         if (likely(src)) {
2858                 copy_user_highpage(dst, src, addr, vma);
2859                 return true;
2860         }
2861
2862         /*
2863          * If the source page was a PFN mapping, we don't have
2864          * a "struct page" for it. We do a best-effort copy by
2865          * just copying from the original user address. If that
2866          * fails, we just zero-fill it. Live with it.
2867          */
2868         kaddr = kmap_atomic(dst);
2869         uaddr = (void __user *)(addr & PAGE_MASK);
2870
2871         /*
2872          * On architectures with software "accessed" bits, we would
2873          * take a double page fault, so mark it accessed here.
2874          */
2875         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2876                 pte_t entry;
2877
2878                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2879                 locked = true;
2880                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2881                         /*
2882                          * Other thread has already handled the fault
2883                          * and update local tlb only
2884                          */
2885                         update_mmu_tlb(vma, addr, vmf->pte);
2886                         ret = false;
2887                         goto pte_unlock;
2888                 }
2889
2890                 entry = pte_mkyoung(vmf->orig_pte);
2891                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2892                         update_mmu_cache(vma, addr, vmf->pte);
2893         }
2894
2895         /*
2896          * This really shouldn't fail, because the page is there
2897          * in the page tables. But it might just be unreadable,
2898          * in which case we just give up and fill the result with
2899          * zeroes.
2900          */
2901         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2902                 if (locked)
2903                         goto warn;
2904
2905                 /* Re-validate under PTL if the page is still mapped */
2906                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2907                 locked = true;
2908                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2909                         /* The PTE changed under us, update local tlb */
2910                         update_mmu_tlb(vma, addr, vmf->pte);
2911                         ret = false;
2912                         goto pte_unlock;
2913                 }
2914
2915                 /*
2916                  * The same page can be mapped back since last copy attempt.
2917                  * Try to copy again under PTL.
2918                  */
2919                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2920                         /*
2921                          * Give a warn in case there can be some obscure
2922                          * use-case
2923                          */
2924 warn:
2925                         WARN_ON_ONCE(1);
2926                         clear_page(kaddr);
2927                 }
2928         }
2929
2930         ret = true;
2931
2932 pte_unlock:
2933         if (locked)
2934                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2935         kunmap_atomic(kaddr);
2936         flush_dcache_page(dst);
2937
2938         return ret;
2939 }
2940
2941 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2942 {
2943         struct file *vm_file = vma->vm_file;
2944
2945         if (vm_file)
2946                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2947
2948         /*
2949          * Special mappings (e.g. VDSO) do not have any file so fake
2950          * a default GFP_KERNEL for them.
2951          */
2952         return GFP_KERNEL;
2953 }
2954
2955 /*
2956  * Notify the address space that the page is about to become writable so that
2957  * it can prohibit this or wait for the page to get into an appropriate state.
2958  *
2959  * We do this without the lock held, so that it can sleep if it needs to.
2960  */
2961 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2962 {
2963         vm_fault_t ret;
2964         struct page *page = vmf->page;
2965         unsigned int old_flags = vmf->flags;
2966
2967         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2968
2969         if (vmf->vma->vm_file &&
2970             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2971                 return VM_FAULT_SIGBUS;
2972
2973         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2974         /* Restore original flags so that caller is not surprised */
2975         vmf->flags = old_flags;
2976         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2977                 return ret;
2978         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2979                 lock_page(page);
2980                 if (!page->mapping) {
2981                         unlock_page(page);
2982                         return 0; /* retry */
2983                 }
2984                 ret |= VM_FAULT_LOCKED;
2985         } else
2986                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2987         return ret;
2988 }
2989
2990 /*
2991  * Handle dirtying of a page in shared file mapping on a write fault.
2992  *
2993  * The function expects the page to be locked and unlocks it.
2994  */
2995 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2996 {
2997         struct vm_area_struct *vma = vmf->vma;
2998         struct address_space *mapping;
2999         struct page *page = vmf->page;
3000         bool dirtied;
3001         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3002
3003         dirtied = set_page_dirty(page);
3004         VM_BUG_ON_PAGE(PageAnon(page), page);
3005         /*
3006          * Take a local copy of the address_space - page.mapping may be zeroed
3007          * by truncate after unlock_page().   The address_space itself remains
3008          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3009          * release semantics to prevent the compiler from undoing this copying.
3010          */
3011         mapping = page_rmapping(page);
3012         unlock_page(page);
3013
3014         if (!page_mkwrite)
3015                 file_update_time(vma->vm_file);
3016
3017         /*
3018          * Throttle page dirtying rate down to writeback speed.
3019          *
3020          * mapping may be NULL here because some device drivers do not
3021          * set page.mapping but still dirty their pages
3022          *
3023          * Drop the mmap_lock before waiting on IO, if we can. The file
3024          * is pinning the mapping, as per above.
3025          */
3026         if ((dirtied || page_mkwrite) && mapping) {
3027                 struct file *fpin;
3028
3029                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3030                 balance_dirty_pages_ratelimited(mapping);
3031                 if (fpin) {
3032                         fput(fpin);
3033                         return VM_FAULT_COMPLETED;
3034                 }
3035         }
3036
3037         return 0;
3038 }
3039
3040 /*
3041  * Handle write page faults for pages that can be reused in the current vma
3042  *
3043  * This can happen either due to the mapping being with the VM_SHARED flag,
3044  * or due to us being the last reference standing to the page. In either
3045  * case, all we need to do here is to mark the page as writable and update
3046  * any related book-keeping.
3047  */
3048 static inline void wp_page_reuse(struct vm_fault *vmf)
3049         __releases(vmf->ptl)
3050 {
3051         struct vm_area_struct *vma = vmf->vma;
3052         struct page *page = vmf->page;
3053         pte_t entry;
3054
3055         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3056         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3057
3058         /*
3059          * Clear the pages cpupid information as the existing
3060          * information potentially belongs to a now completely
3061          * unrelated process.
3062          */
3063         if (page)
3064                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3065
3066         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3067         entry = pte_mkyoung(vmf->orig_pte);
3068         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3069         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3070                 update_mmu_cache(vma, vmf->address, vmf->pte);
3071         pte_unmap_unlock(vmf->pte, vmf->ptl);
3072         count_vm_event(PGREUSE);
3073 }
3074
3075 /*
3076  * Handle the case of a page which we actually need to copy to a new page,
3077  * either due to COW or unsharing.
3078  *
3079  * Called with mmap_lock locked and the old page referenced, but
3080  * without the ptl held.
3081  *
3082  * High level logic flow:
3083  *
3084  * - Allocate a page, copy the content of the old page to the new one.
3085  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3086  * - Take the PTL. If the pte changed, bail out and release the allocated page
3087  * - If the pte is still the way we remember it, update the page table and all
3088  *   relevant references. This includes dropping the reference the page-table
3089  *   held to the old page, as well as updating the rmap.
3090  * - In any case, unlock the PTL and drop the reference we took to the old page.
3091  */
3092 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3093 {
3094         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3095         struct vm_area_struct *vma = vmf->vma;
3096         struct mm_struct *mm = vma->vm_mm;
3097         struct page *old_page = vmf->page;
3098         struct page *new_page = NULL;
3099         pte_t entry;
3100         int page_copied = 0;
3101         struct mmu_notifier_range range;
3102
3103         delayacct_wpcopy_start();
3104
3105         if (unlikely(anon_vma_prepare(vma)))
3106                 goto oom;
3107
3108         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3109                 new_page = alloc_zeroed_user_highpage_movable(vma,
3110                                                               vmf->address);
3111                 if (!new_page)
3112                         goto oom;
3113         } else {
3114                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3115                                 vmf->address);
3116                 if (!new_page)
3117                         goto oom;
3118
3119                 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3120                         /*
3121                          * COW failed, if the fault was solved by other,
3122                          * it's fine. If not, userspace would re-fault on
3123                          * the same address and we will handle the fault
3124                          * from the second attempt.
3125                          */
3126                         put_page(new_page);
3127                         if (old_page)
3128                                 put_page(old_page);
3129
3130                         delayacct_wpcopy_end();
3131                         return 0;
3132                 }
3133                 kmsan_copy_page_meta(new_page, old_page);
3134         }
3135
3136         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3137                 goto oom_free_new;
3138         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3139
3140         __SetPageUptodate(new_page);
3141
3142         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3143                                 vmf->address & PAGE_MASK,
3144                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3145         mmu_notifier_invalidate_range_start(&range);
3146
3147         /*
3148          * Re-check the pte - we dropped the lock
3149          */
3150         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3151         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3152                 if (old_page) {
3153                         if (!PageAnon(old_page)) {
3154                                 dec_mm_counter_fast(mm,
3155                                                 mm_counter_file(old_page));
3156                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3157                         }
3158                 } else {
3159                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3160                 }
3161                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3162                 entry = mk_pte(new_page, vma->vm_page_prot);
3163                 entry = pte_sw_mkyoung(entry);
3164                 if (unlikely(unshare)) {
3165                         if (pte_soft_dirty(vmf->orig_pte))
3166                                 entry = pte_mksoft_dirty(entry);
3167                         if (pte_uffd_wp(vmf->orig_pte))
3168                                 entry = pte_mkuffd_wp(entry);
3169                 } else {
3170                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3171                 }
3172
3173                 /*
3174                  * Clear the pte entry and flush it first, before updating the
3175                  * pte with the new entry, to keep TLBs on different CPUs in
3176                  * sync. This code used to set the new PTE then flush TLBs, but
3177                  * that left a window where the new PTE could be loaded into
3178                  * some TLBs while the old PTE remains in others.
3179                  */
3180                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3181                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3182                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3183                 /*
3184                  * We call the notify macro here because, when using secondary
3185                  * mmu page tables (such as kvm shadow page tables), we want the
3186                  * new page to be mapped directly into the secondary page table.
3187                  */
3188                 BUG_ON(unshare && pte_write(entry));
3189                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3190                 update_mmu_cache(vma, vmf->address, vmf->pte);
3191                 if (old_page) {
3192                         /*
3193                          * Only after switching the pte to the new page may
3194                          * we remove the mapcount here. Otherwise another
3195                          * process may come and find the rmap count decremented
3196                          * before the pte is switched to the new page, and
3197                          * "reuse" the old page writing into it while our pte
3198                          * here still points into it and can be read by other
3199                          * threads.
3200                          *
3201                          * The critical issue is to order this
3202                          * page_remove_rmap with the ptp_clear_flush above.
3203                          * Those stores are ordered by (if nothing else,)
3204                          * the barrier present in the atomic_add_negative
3205                          * in page_remove_rmap.
3206                          *
3207                          * Then the TLB flush in ptep_clear_flush ensures that
3208                          * no process can access the old page before the
3209                          * decremented mapcount is visible. And the old page
3210                          * cannot be reused until after the decremented
3211                          * mapcount is visible. So transitively, TLBs to
3212                          * old page will be flushed before it can be reused.
3213                          */
3214                         page_remove_rmap(old_page, vma, false);
3215                 }
3216
3217                 /* Free the old page.. */
3218                 new_page = old_page;
3219                 page_copied = 1;
3220         } else {
3221                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3222         }
3223
3224         if (new_page)
3225                 put_page(new_page);
3226
3227         pte_unmap_unlock(vmf->pte, vmf->ptl);
3228         /*
3229          * No need to double call mmu_notifier->invalidate_range() callback as
3230          * the above ptep_clear_flush_notify() did already call it.
3231          */
3232         mmu_notifier_invalidate_range_only_end(&range);
3233         if (old_page) {
3234                 if (page_copied)
3235                         free_swap_cache(old_page);
3236                 put_page(old_page);
3237         }
3238
3239         delayacct_wpcopy_end();
3240         return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3241 oom_free_new:
3242         put_page(new_page);
3243 oom:
3244         if (old_page)
3245                 put_page(old_page);
3246
3247         delayacct_wpcopy_end();
3248         return VM_FAULT_OOM;
3249 }
3250
3251 /**
3252  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3253  *                        writeable once the page is prepared
3254  *
3255  * @vmf: structure describing the fault
3256  *
3257  * This function handles all that is needed to finish a write page fault in a
3258  * shared mapping due to PTE being read-only once the mapped page is prepared.
3259  * It handles locking of PTE and modifying it.
3260  *
3261  * The function expects the page to be locked or other protection against
3262  * concurrent faults / writeback (such as DAX radix tree locks).
3263  *
3264  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3265  * we acquired PTE lock.
3266  */
3267 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3268 {
3269         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3270         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3271                                        &vmf->ptl);
3272         /*
3273          * We might have raced with another page fault while we released the
3274          * pte_offset_map_lock.
3275          */
3276         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3277                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3278                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3279                 return VM_FAULT_NOPAGE;
3280         }
3281         wp_page_reuse(vmf);
3282         return 0;
3283 }
3284
3285 /*
3286  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3287  * mapping
3288  */
3289 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3290 {
3291         struct vm_area_struct *vma = vmf->vma;
3292
3293         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3294                 vm_fault_t ret;
3295
3296                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3297                 vmf->flags |= FAULT_FLAG_MKWRITE;
3298                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3299                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3300                         return ret;
3301                 return finish_mkwrite_fault(vmf);
3302         }
3303         wp_page_reuse(vmf);
3304         return VM_FAULT_WRITE;
3305 }
3306
3307 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3308         __releases(vmf->ptl)
3309 {
3310         struct vm_area_struct *vma = vmf->vma;
3311         vm_fault_t ret = VM_FAULT_WRITE;
3312
3313         get_page(vmf->page);
3314
3315         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3316                 vm_fault_t tmp;
3317
3318                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3319                 tmp = do_page_mkwrite(vmf);
3320                 if (unlikely(!tmp || (tmp &
3321                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3322                         put_page(vmf->page);
3323                         return tmp;
3324                 }
3325                 tmp = finish_mkwrite_fault(vmf);
3326                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3327                         unlock_page(vmf->page);
3328                         put_page(vmf->page);
3329                         return tmp;
3330                 }
3331         } else {
3332                 wp_page_reuse(vmf);
3333                 lock_page(vmf->page);
3334         }
3335         ret |= fault_dirty_shared_page(vmf);
3336         put_page(vmf->page);
3337
3338         return ret;
3339 }
3340
3341 /*
3342  * This routine handles present pages, when
3343  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3344  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3345  *   (FAULT_FLAG_UNSHARE)
3346  *
3347  * It is done by copying the page to a new address and decrementing the
3348  * shared-page counter for the old page.
3349  *
3350  * Note that this routine assumes that the protection checks have been
3351  * done by the caller (the low-level page fault routine in most cases).
3352  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3353  * done any necessary COW.
3354  *
3355  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3356  * though the page will change only once the write actually happens. This
3357  * avoids a few races, and potentially makes it more efficient.
3358  *
3359  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3360  * but allow concurrent faults), with pte both mapped and locked.
3361  * We return with mmap_lock still held, but pte unmapped and unlocked.
3362  */
3363 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3364         __releases(vmf->ptl)
3365 {
3366         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3367         struct vm_area_struct *vma = vmf->vma;
3368         struct folio *folio;
3369
3370         VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3371         VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3372
3373         if (likely(!unshare)) {
3374                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3375                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3376                         return handle_userfault(vmf, VM_UFFD_WP);
3377                 }
3378
3379                 /*
3380                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3381                  * is flushed in this case before copying.
3382                  */
3383                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3384                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3385                         flush_tlb_page(vmf->vma, vmf->address);
3386         }
3387
3388         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3389         if (!vmf->page) {
3390                 if (unlikely(unshare)) {
3391                         /* No anonymous page -> nothing to do. */
3392                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3393                         return 0;
3394                 }
3395
3396                 /*
3397                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3398                  * VM_PFNMAP VMA.
3399                  *
3400                  * We should not cow pages in a shared writeable mapping.
3401                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3402                  */
3403                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3404                                      (VM_WRITE|VM_SHARED))
3405                         return wp_pfn_shared(vmf);
3406
3407                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3408                 return wp_page_copy(vmf);
3409         }
3410
3411         /*
3412          * Take out anonymous pages first, anonymous shared vmas are
3413          * not dirty accountable.
3414          */
3415         folio = page_folio(vmf->page);
3416         if (folio_test_anon(folio)) {
3417                 /*
3418                  * If the page is exclusive to this process we must reuse the
3419                  * page without further checks.
3420                  */
3421                 if (PageAnonExclusive(vmf->page))
3422                         goto reuse;
3423
3424                 /*
3425                  * We have to verify under folio lock: these early checks are
3426                  * just an optimization to avoid locking the folio and freeing
3427                  * the swapcache if there is little hope that we can reuse.
3428                  *
3429                  * KSM doesn't necessarily raise the folio refcount.
3430                  */
3431                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3432                         goto copy;
3433                 if (!folio_test_lru(folio))
3434                         /*
3435                          * Note: We cannot easily detect+handle references from
3436                          * remote LRU pagevecs or references to LRU folios.
3437                          */
3438                         lru_add_drain();
3439                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3440                         goto copy;
3441                 if (!folio_trylock(folio))
3442                         goto copy;
3443                 if (folio_test_swapcache(folio))
3444                         folio_free_swap(folio);
3445                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3446                         folio_unlock(folio);
3447                         goto copy;
3448                 }
3449                 /*
3450                  * Ok, we've got the only folio reference from our mapping
3451                  * and the folio is locked, it's dark out, and we're wearing
3452                  * sunglasses. Hit it.
3453                  */
3454                 page_move_anon_rmap(vmf->page, vma);
3455                 folio_unlock(folio);
3456 reuse:
3457                 if (unlikely(unshare)) {
3458                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3459                         return 0;
3460                 }
3461                 wp_page_reuse(vmf);
3462                 return VM_FAULT_WRITE;
3463         } else if (unshare) {
3464                 /* No anonymous page -> nothing to do. */
3465                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3466                 return 0;
3467         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3468                                         (VM_WRITE|VM_SHARED))) {
3469                 return wp_page_shared(vmf);
3470         }
3471 copy:
3472         /*
3473          * Ok, we need to copy. Oh, well..
3474          */
3475         get_page(vmf->page);
3476
3477         pte_unmap_unlock(vmf->pte, vmf->ptl);
3478 #ifdef CONFIG_KSM
3479         if (PageKsm(vmf->page))
3480                 count_vm_event(COW_KSM);
3481 #endif
3482         return wp_page_copy(vmf);
3483 }
3484
3485 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3486                 unsigned long start_addr, unsigned long end_addr,
3487                 struct zap_details *details)
3488 {
3489         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3490 }
3491
3492 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3493                                             pgoff_t first_index,
3494                                             pgoff_t last_index,
3495                                             struct zap_details *details)
3496 {
3497         struct vm_area_struct *vma;
3498         pgoff_t vba, vea, zba, zea;
3499
3500         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3501                 vba = vma->vm_pgoff;
3502                 vea = vba + vma_pages(vma) - 1;
3503                 zba = max(first_index, vba);
3504                 zea = min(last_index, vea);
3505
3506                 unmap_mapping_range_vma(vma,
3507                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3508                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3509                                 details);
3510         }
3511 }
3512
3513 /**
3514  * unmap_mapping_folio() - Unmap single folio from processes.
3515  * @folio: The locked folio to be unmapped.
3516  *
3517  * Unmap this folio from any userspace process which still has it mmaped.
3518  * Typically, for efficiency, the range of nearby pages has already been
3519  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3520  * truncation or invalidation holds the lock on a folio, it may find that
3521  * the page has been remapped again: and then uses unmap_mapping_folio()
3522  * to unmap it finally.
3523  */
3524 void unmap_mapping_folio(struct folio *folio)
3525 {
3526         struct address_space *mapping = folio->mapping;
3527         struct zap_details details = { };
3528         pgoff_t first_index;
3529         pgoff_t last_index;
3530
3531         VM_BUG_ON(!folio_test_locked(folio));
3532
3533         first_index = folio->index;
3534         last_index = folio->index + folio_nr_pages(folio) - 1;
3535
3536         details.even_cows = false;
3537         details.single_folio = folio;
3538         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3539
3540         i_mmap_lock_read(mapping);
3541         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3542                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3543                                          last_index, &details);
3544         i_mmap_unlock_read(mapping);
3545 }
3546
3547 /**
3548  * unmap_mapping_pages() - Unmap pages from processes.
3549  * @mapping: The address space containing pages to be unmapped.
3550  * @start: Index of first page to be unmapped.
3551  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3552  * @even_cows: Whether to unmap even private COWed pages.
3553  *
3554  * Unmap the pages in this address space from any userspace process which
3555  * has them mmaped.  Generally, you want to remove COWed pages as well when
3556  * a file is being truncated, but not when invalidating pages from the page
3557  * cache.
3558  */
3559 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3560                 pgoff_t nr, bool even_cows)
3561 {
3562         struct zap_details details = { };
3563         pgoff_t first_index = start;
3564         pgoff_t last_index = start + nr - 1;
3565
3566         details.even_cows = even_cows;
3567         if (last_index < first_index)
3568                 last_index = ULONG_MAX;
3569
3570         i_mmap_lock_read(mapping);
3571         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3572                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3573                                          last_index, &details);
3574         i_mmap_unlock_read(mapping);
3575 }
3576 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3577
3578 /**
3579  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3580  * address_space corresponding to the specified byte range in the underlying
3581  * file.
3582  *
3583  * @mapping: the address space containing mmaps to be unmapped.
3584  * @holebegin: byte in first page to unmap, relative to the start of
3585  * the underlying file.  This will be rounded down to a PAGE_SIZE
3586  * boundary.  Note that this is different from truncate_pagecache(), which
3587  * must keep the partial page.  In contrast, we must get rid of
3588  * partial pages.
3589  * @holelen: size of prospective hole in bytes.  This will be rounded
3590  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3591  * end of the file.
3592  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3593  * but 0 when invalidating pagecache, don't throw away private data.
3594  */
3595 void unmap_mapping_range(struct address_space *mapping,
3596                 loff_t const holebegin, loff_t const holelen, int even_cows)
3597 {
3598         pgoff_t hba = holebegin >> PAGE_SHIFT;
3599         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3600
3601         /* Check for overflow. */
3602         if (sizeof(holelen) > sizeof(hlen)) {
3603                 long long holeend =
3604                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3605                 if (holeend & ~(long long)ULONG_MAX)
3606                         hlen = ULONG_MAX - hba + 1;
3607         }
3608
3609         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3610 }
3611 EXPORT_SYMBOL(unmap_mapping_range);
3612
3613 /*
3614  * Restore a potential device exclusive pte to a working pte entry
3615  */
3616 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3617 {
3618         struct folio *folio = page_folio(vmf->page);
3619         struct vm_area_struct *vma = vmf->vma;
3620         struct mmu_notifier_range range;
3621
3622         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3623                 return VM_FAULT_RETRY;
3624         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3625                                 vma->vm_mm, vmf->address & PAGE_MASK,
3626                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3627         mmu_notifier_invalidate_range_start(&range);
3628
3629         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3630                                 &vmf->ptl);
3631         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3632                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3633
3634         pte_unmap_unlock(vmf->pte, vmf->ptl);
3635         folio_unlock(folio);
3636
3637         mmu_notifier_invalidate_range_end(&range);
3638         return 0;
3639 }
3640
3641 static inline bool should_try_to_free_swap(struct folio *folio,
3642                                            struct vm_area_struct *vma,
3643                                            unsigned int fault_flags)
3644 {
3645         if (!folio_test_swapcache(folio))
3646                 return false;
3647         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3648             folio_test_mlocked(folio))
3649                 return true;
3650         /*
3651          * If we want to map a page that's in the swapcache writable, we
3652          * have to detect via the refcount if we're really the exclusive
3653          * user. Try freeing the swapcache to get rid of the swapcache
3654          * reference only in case it's likely that we'll be the exlusive user.
3655          */
3656         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3657                 folio_ref_count(folio) == 2;
3658 }
3659
3660 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3661 {
3662         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3663                                        vmf->address, &vmf->ptl);
3664         /*
3665          * Be careful so that we will only recover a special uffd-wp pte into a
3666          * none pte.  Otherwise it means the pte could have changed, so retry.
3667          */
3668         if (is_pte_marker(*vmf->pte))
3669                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3670         pte_unmap_unlock(vmf->pte, vmf->ptl);
3671         return 0;
3672 }
3673
3674 /*
3675  * This is actually a page-missing access, but with uffd-wp special pte
3676  * installed.  It means this pte was wr-protected before being unmapped.
3677  */
3678 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3679 {
3680         /*
3681          * Just in case there're leftover special ptes even after the region
3682          * got unregistered - we can simply clear them.  We can also do that
3683          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3684          * ranges, but it should be more efficient to be done lazily here.
3685          */
3686         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3687                 return pte_marker_clear(vmf);
3688
3689         /* do_fault() can handle pte markers too like none pte */
3690         return do_fault(vmf);
3691 }
3692
3693 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3694 {
3695         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3696         unsigned long marker = pte_marker_get(entry);
3697
3698         /*
3699          * PTE markers should always be with file-backed memories, and the
3700          * marker should never be empty.  If anything weird happened, the best
3701          * thing to do is to kill the process along with its mm.
3702          */
3703         if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3704                 return VM_FAULT_SIGBUS;
3705
3706         if (pte_marker_entry_uffd_wp(entry))
3707                 return pte_marker_handle_uffd_wp(vmf);
3708
3709         /* This is an unknown pte marker */
3710         return VM_FAULT_SIGBUS;
3711 }
3712
3713 /*
3714  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3715  * but allow concurrent faults), and pte mapped but not yet locked.
3716  * We return with pte unmapped and unlocked.
3717  *
3718  * We return with the mmap_lock locked or unlocked in the same cases
3719  * as does filemap_fault().
3720  */
3721 vm_fault_t do_swap_page(struct vm_fault *vmf)
3722 {
3723         struct vm_area_struct *vma = vmf->vma;
3724         struct folio *swapcache, *folio = NULL;
3725         struct page *page;
3726         struct swap_info_struct *si = NULL;
3727         rmap_t rmap_flags = RMAP_NONE;
3728         bool exclusive = false;
3729         swp_entry_t entry;
3730         pte_t pte;
3731         int locked;
3732         vm_fault_t ret = 0;
3733         void *shadow = NULL;
3734
3735         if (!pte_unmap_same(vmf))
3736                 goto out;
3737
3738         entry = pte_to_swp_entry(vmf->orig_pte);
3739         if (unlikely(non_swap_entry(entry))) {
3740                 if (is_migration_entry(entry)) {
3741                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3742                                              vmf->address);
3743                 } else if (is_device_exclusive_entry(entry)) {
3744                         vmf->page = pfn_swap_entry_to_page(entry);
3745                         ret = remove_device_exclusive_entry(vmf);
3746                 } else if (is_device_private_entry(entry)) {
3747                         vmf->page = pfn_swap_entry_to_page(entry);
3748                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3749                                         vmf->address, &vmf->ptl);
3750                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3751                                 spin_unlock(vmf->ptl);
3752                                 goto out;
3753                         }
3754
3755                         /*
3756                          * Get a page reference while we know the page can't be
3757                          * freed.
3758                          */
3759                         get_page(vmf->page);
3760                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3761                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3762                         put_page(vmf->page);
3763                 } else if (is_hwpoison_entry(entry)) {
3764                         ret = VM_FAULT_HWPOISON;
3765                 } else if (is_swapin_error_entry(entry)) {
3766                         ret = VM_FAULT_SIGBUS;
3767                 } else if (is_pte_marker_entry(entry)) {
3768                         ret = handle_pte_marker(vmf);
3769                 } else {
3770                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3771                         ret = VM_FAULT_SIGBUS;
3772                 }
3773                 goto out;
3774         }
3775
3776         /* Prevent swapoff from happening to us. */
3777         si = get_swap_device(entry);
3778         if (unlikely(!si))
3779                 goto out;
3780
3781         folio = swap_cache_get_folio(entry, vma, vmf->address);
3782         if (folio)
3783                 page = folio_file_page(folio, swp_offset(entry));
3784         swapcache = folio;
3785
3786         if (!folio) {
3787                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3788                     __swap_count(entry) == 1) {
3789                         /* skip swapcache */
3790                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3791                                                 vma, vmf->address, false);
3792                         page = &folio->page;
3793                         if (folio) {
3794                                 __folio_set_locked(folio);
3795                                 __folio_set_swapbacked(folio);
3796
3797                                 if (mem_cgroup_swapin_charge_folio(folio,
3798                                                         vma->vm_mm, GFP_KERNEL,
3799                                                         entry)) {
3800                                         ret = VM_FAULT_OOM;
3801                                         goto out_page;
3802                                 }
3803                                 mem_cgroup_swapin_uncharge_swap(entry);
3804
3805                                 shadow = get_shadow_from_swap_cache(entry);
3806                                 if (shadow)
3807                                         workingset_refault(folio, shadow);
3808
3809                                 folio_add_lru(folio);
3810
3811                                 /* To provide entry to swap_readpage() */
3812                                 folio_set_swap_entry(folio, entry);
3813                                 swap_readpage(page, true, NULL);
3814                                 folio->private = NULL;
3815                         }
3816                 } else {
3817                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3818                                                 vmf);
3819                         if (page)
3820                                 folio = page_folio(page);
3821                         swapcache = folio;
3822                 }
3823
3824                 if (!folio) {
3825                         /*
3826                          * Back out if somebody else faulted in this pte
3827                          * while we released the pte lock.
3828                          */
3829                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3830                                         vmf->address, &vmf->ptl);
3831                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3832                                 ret = VM_FAULT_OOM;
3833                         goto unlock;
3834                 }
3835
3836                 /* Had to read the page from swap area: Major fault */
3837                 ret = VM_FAULT_MAJOR;
3838                 count_vm_event(PGMAJFAULT);
3839                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3840         } else if (PageHWPoison(page)) {
3841                 /*
3842                  * hwpoisoned dirty swapcache pages are kept for killing
3843                  * owner processes (which may be unknown at hwpoison time)
3844                  */
3845                 ret = VM_FAULT_HWPOISON;
3846                 goto out_release;
3847         }
3848
3849         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3850
3851         if (!locked) {
3852                 ret |= VM_FAULT_RETRY;
3853                 goto out_release;
3854         }
3855
3856         if (swapcache) {
3857                 /*
3858                  * Make sure folio_free_swap() or swapoff did not release the
3859                  * swapcache from under us.  The page pin, and pte_same test
3860                  * below, are not enough to exclude that.  Even if it is still
3861                  * swapcache, we need to check that the page's swap has not
3862                  * changed.
3863                  */
3864                 if (unlikely(!folio_test_swapcache(folio) ||
3865                              page_private(page) != entry.val))
3866                         goto out_page;
3867
3868                 /*
3869                  * KSM sometimes has to copy on read faults, for example, if
3870                  * page->index of !PageKSM() pages would be nonlinear inside the
3871                  * anon VMA -- PageKSM() is lost on actual swapout.
3872                  */
3873                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3874                 if (unlikely(!page)) {
3875                         ret = VM_FAULT_OOM;
3876                         goto out_page;
3877                 }
3878                 folio = page_folio(page);
3879
3880                 /*
3881                  * If we want to map a page that's in the swapcache writable, we
3882                  * have to detect via the refcount if we're really the exclusive
3883                  * owner. Try removing the extra reference from the local LRU
3884                  * pagevecs if required.
3885                  */
3886                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3887                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3888                         lru_add_drain();
3889         }
3890
3891         cgroup_throttle_swaprate(page, GFP_KERNEL);
3892
3893         /*
3894          * Back out if somebody else already faulted in this pte.
3895          */
3896         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3897                         &vmf->ptl);
3898         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3899                 goto out_nomap;
3900
3901         if (unlikely(!folio_test_uptodate(folio))) {
3902                 ret = VM_FAULT_SIGBUS;
3903                 goto out_nomap;
3904         }
3905
3906         /*
3907          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3908          * must never point at an anonymous page in the swapcache that is
3909          * PG_anon_exclusive. Sanity check that this holds and especially, that
3910          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3911          * check after taking the PT lock and making sure that nobody
3912          * concurrently faulted in this page and set PG_anon_exclusive.
3913          */
3914         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3915         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3916
3917         /*
3918          * Check under PT lock (to protect against concurrent fork() sharing
3919          * the swap entry concurrently) for certainly exclusive pages.
3920          */
3921         if (!folio_test_ksm(folio)) {
3922                 /*
3923                  * Note that pte_swp_exclusive() == false for architectures
3924                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3925                  */
3926                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3927                 if (folio != swapcache) {
3928                         /*
3929                          * We have a fresh page that is not exposed to the
3930                          * swapcache -> certainly exclusive.
3931                          */
3932                         exclusive = true;
3933                 } else if (exclusive && folio_test_writeback(folio) &&
3934                           data_race(si->flags & SWP_STABLE_WRITES)) {
3935                         /*
3936                          * This is tricky: not all swap backends support
3937                          * concurrent page modifications while under writeback.
3938                          *
3939                          * So if we stumble over such a page in the swapcache
3940                          * we must not set the page exclusive, otherwise we can
3941                          * map it writable without further checks and modify it
3942                          * while still under writeback.
3943                          *
3944                          * For these problematic swap backends, simply drop the
3945                          * exclusive marker: this is perfectly fine as we start
3946                          * writeback only if we fully unmapped the page and
3947                          * there are no unexpected references on the page after
3948                          * unmapping succeeded. After fully unmapped, no
3949                          * further GUP references (FOLL_GET and FOLL_PIN) can
3950                          * appear, so dropping the exclusive marker and mapping
3951                          * it only R/O is fine.
3952                          */
3953                         exclusive = false;
3954                 }
3955         }
3956
3957         /*
3958          * Remove the swap entry and conditionally try to free up the swapcache.
3959          * We're already holding a reference on the page but haven't mapped it
3960          * yet.
3961          */
3962         swap_free(entry);
3963         if (should_try_to_free_swap(folio, vma, vmf->flags))
3964                 folio_free_swap(folio);
3965
3966         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3967         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3968         pte = mk_pte(page, vma->vm_page_prot);
3969
3970         /*
3971          * Same logic as in do_wp_page(); however, optimize for pages that are
3972          * certainly not shared either because we just allocated them without
3973          * exposing them to the swapcache or because the swap entry indicates
3974          * exclusivity.
3975          */
3976         if (!folio_test_ksm(folio) &&
3977             (exclusive || folio_ref_count(folio) == 1)) {
3978                 if (vmf->flags & FAULT_FLAG_WRITE) {
3979                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3980                         vmf->flags &= ~FAULT_FLAG_WRITE;
3981                         ret |= VM_FAULT_WRITE;
3982                 }
3983                 rmap_flags |= RMAP_EXCLUSIVE;
3984         }
3985         flush_icache_page(vma, page);
3986         if (pte_swp_soft_dirty(vmf->orig_pte))
3987                 pte = pte_mksoft_dirty(pte);
3988         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3989                 pte = pte_mkuffd_wp(pte);
3990                 pte = pte_wrprotect(pte);
3991         }
3992         vmf->orig_pte = pte;
3993
3994         /* ksm created a completely new copy */
3995         if (unlikely(folio != swapcache && swapcache)) {
3996                 page_add_new_anon_rmap(page, vma, vmf->address);
3997                 folio_add_lru_vma(folio, vma);
3998         } else {
3999                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4000         }
4001
4002         VM_BUG_ON(!folio_test_anon(folio) ||
4003                         (pte_write(pte) && !PageAnonExclusive(page)));
4004         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4005         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4006
4007         folio_unlock(folio);
4008         if (folio != swapcache && swapcache) {
4009                 /*
4010                  * Hold the lock to avoid the swap entry to be reused
4011                  * until we take the PT lock for the pte_same() check
4012                  * (to avoid false positives from pte_same). For
4013                  * further safety release the lock after the swap_free
4014                  * so that the swap count won't change under a
4015                  * parallel locked swapcache.
4016                  */
4017                 folio_unlock(swapcache);
4018                 folio_put(swapcache);
4019         }
4020
4021         if (vmf->flags & FAULT_FLAG_WRITE) {
4022                 ret |= do_wp_page(vmf);
4023                 if (ret & VM_FAULT_ERROR)
4024                         ret &= VM_FAULT_ERROR;
4025                 goto out;
4026         }
4027
4028         /* No need to invalidate - it was non-present before */
4029         update_mmu_cache(vma, vmf->address, vmf->pte);
4030 unlock:
4031         pte_unmap_unlock(vmf->pte, vmf->ptl);
4032 out:
4033         if (si)
4034                 put_swap_device(si);
4035         return ret;
4036 out_nomap:
4037         pte_unmap_unlock(vmf->pte, vmf->ptl);
4038 out_page:
4039         folio_unlock(folio);
4040 out_release:
4041         folio_put(folio);
4042         if (folio != swapcache && swapcache) {
4043                 folio_unlock(swapcache);
4044                 folio_put(swapcache);
4045         }
4046         if (si)
4047                 put_swap_device(si);
4048         return ret;
4049 }
4050
4051 /*
4052  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4053  * but allow concurrent faults), and pte mapped but not yet locked.
4054  * We return with mmap_lock still held, but pte unmapped and unlocked.
4055  */
4056 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4057 {
4058         struct vm_area_struct *vma = vmf->vma;
4059         struct page *page;
4060         vm_fault_t ret = 0;
4061         pte_t entry;
4062
4063         /* File mapping without ->vm_ops ? */
4064         if (vma->vm_flags & VM_SHARED)
4065                 return VM_FAULT_SIGBUS;
4066
4067         /*
4068          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4069          * pte_offset_map() on pmds where a huge pmd might be created
4070          * from a different thread.
4071          *
4072          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4073          * parallel threads are excluded by other means.
4074          *
4075          * Here we only have mmap_read_lock(mm).
4076          */
4077         if (pte_alloc(vma->vm_mm, vmf->pmd))
4078                 return VM_FAULT_OOM;
4079
4080         /* See comment in handle_pte_fault() */
4081         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4082                 return 0;
4083
4084         /* Use the zero-page for reads */
4085         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4086                         !mm_forbids_zeropage(vma->vm_mm)) {
4087                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4088                                                 vma->vm_page_prot));
4089                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4090                                 vmf->address, &vmf->ptl);
4091                 if (!pte_none(*vmf->pte)) {
4092                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4093                         goto unlock;
4094                 }
4095                 ret = check_stable_address_space(vma->vm_mm);
4096                 if (ret)
4097                         goto unlock;
4098                 /* Deliver the page fault to userland, check inside PT lock */
4099                 if (userfaultfd_missing(vma)) {
4100                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4101                         return handle_userfault(vmf, VM_UFFD_MISSING);
4102                 }
4103                 goto setpte;
4104         }
4105
4106         /* Allocate our own private page. */
4107         if (unlikely(anon_vma_prepare(vma)))
4108                 goto oom;
4109         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4110         if (!page)
4111                 goto oom;
4112
4113         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4114                 goto oom_free_page;
4115         cgroup_throttle_swaprate(page, GFP_KERNEL);
4116
4117         /*
4118          * The memory barrier inside __SetPageUptodate makes sure that
4119          * preceding stores to the page contents become visible before
4120          * the set_pte_at() write.
4121          */
4122         __SetPageUptodate(page);
4123
4124         entry = mk_pte(page, vma->vm_page_prot);
4125         entry = pte_sw_mkyoung(entry);
4126         if (vma->vm_flags & VM_WRITE)
4127                 entry = pte_mkwrite(pte_mkdirty(entry));
4128
4129         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4130                         &vmf->ptl);
4131         if (!pte_none(*vmf->pte)) {
4132                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4133                 goto release;
4134         }
4135
4136         ret = check_stable_address_space(vma->vm_mm);
4137         if (ret)
4138                 goto release;
4139
4140         /* Deliver the page fault to userland, check inside PT lock */
4141         if (userfaultfd_missing(vma)) {
4142                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4143                 put_page(page);
4144                 return handle_userfault(vmf, VM_UFFD_MISSING);
4145         }
4146
4147         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4148         page_add_new_anon_rmap(page, vma, vmf->address);
4149         lru_cache_add_inactive_or_unevictable(page, vma);
4150 setpte:
4151         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4152
4153         /* No need to invalidate - it was non-present before */
4154         update_mmu_cache(vma, vmf->address, vmf->pte);
4155 unlock:
4156         pte_unmap_unlock(vmf->pte, vmf->ptl);
4157         return ret;
4158 release:
4159         put_page(page);
4160         goto unlock;
4161 oom_free_page:
4162         put_page(page);
4163 oom:
4164         return VM_FAULT_OOM;
4165 }
4166
4167 /*
4168  * The mmap_lock must have been held on entry, and may have been
4169  * released depending on flags and vma->vm_ops->fault() return value.
4170  * See filemap_fault() and __lock_page_retry().
4171  */
4172 static vm_fault_t __do_fault(struct vm_fault *vmf)
4173 {
4174         struct vm_area_struct *vma = vmf->vma;
4175         vm_fault_t ret;
4176
4177         /*
4178          * Preallocate pte before we take page_lock because this might lead to
4179          * deadlocks for memcg reclaim which waits for pages under writeback:
4180          *                              lock_page(A)
4181          *                              SetPageWriteback(A)
4182          *                              unlock_page(A)
4183          * lock_page(B)
4184          *                              lock_page(B)
4185          * pte_alloc_one
4186          *   shrink_page_list
4187          *     wait_on_page_writeback(A)
4188          *                              SetPageWriteback(B)
4189          *                              unlock_page(B)
4190          *                              # flush A, B to clear the writeback
4191          */
4192         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4193                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4194                 if (!vmf->prealloc_pte)
4195                         return VM_FAULT_OOM;
4196         }
4197
4198         ret = vma->vm_ops->fault(vmf);
4199         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4200                             VM_FAULT_DONE_COW)))
4201                 return ret;
4202
4203         if (unlikely(PageHWPoison(vmf->page))) {
4204                 struct page *page = vmf->page;
4205                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4206                 if (ret & VM_FAULT_LOCKED) {
4207                         if (page_mapped(page))
4208                                 unmap_mapping_pages(page_mapping(page),
4209                                                     page->index, 1, false);
4210                         /* Retry if a clean page was removed from the cache. */
4211                         if (invalidate_inode_page(page))
4212                                 poisonret = VM_FAULT_NOPAGE;
4213                         unlock_page(page);
4214                 }
4215                 put_page(page);
4216                 vmf->page = NULL;
4217                 return poisonret;
4218         }
4219
4220         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4221                 lock_page(vmf->page);
4222         else
4223                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4224
4225         return ret;
4226 }
4227
4228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 static void deposit_prealloc_pte(struct vm_fault *vmf)
4230 {
4231         struct vm_area_struct *vma = vmf->vma;
4232
4233         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4234         /*
4235          * We are going to consume the prealloc table,
4236          * count that as nr_ptes.
4237          */
4238         mm_inc_nr_ptes(vma->vm_mm);
4239         vmf->prealloc_pte = NULL;
4240 }
4241
4242 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4243 {
4244         struct vm_area_struct *vma = vmf->vma;
4245         bool write = vmf->flags & FAULT_FLAG_WRITE;
4246         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4247         pmd_t entry;
4248         int i;
4249         vm_fault_t ret = VM_FAULT_FALLBACK;
4250
4251         if (!transhuge_vma_suitable(vma, haddr))
4252                 return ret;
4253
4254         page = compound_head(page);
4255         if (compound_order(page) != HPAGE_PMD_ORDER)
4256                 return ret;
4257
4258         /*
4259          * Just backoff if any subpage of a THP is corrupted otherwise
4260          * the corrupted page may mapped by PMD silently to escape the
4261          * check.  This kind of THP just can be PTE mapped.  Access to
4262          * the corrupted subpage should trigger SIGBUS as expected.
4263          */
4264         if (unlikely(PageHasHWPoisoned(page)))
4265                 return ret;
4266
4267         /*
4268          * Archs like ppc64 need additional space to store information
4269          * related to pte entry. Use the preallocated table for that.
4270          */
4271         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4272                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4273                 if (!vmf->prealloc_pte)
4274                         return VM_FAULT_OOM;
4275         }
4276
4277         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4278         if (unlikely(!pmd_none(*vmf->pmd)))
4279                 goto out;
4280
4281         for (i = 0; i < HPAGE_PMD_NR; i++)
4282                 flush_icache_page(vma, page + i);
4283
4284         entry = mk_huge_pmd(page, vma->vm_page_prot);
4285         if (write)
4286                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4287
4288         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4289         page_add_file_rmap(page, vma, true);
4290
4291         /*
4292          * deposit and withdraw with pmd lock held
4293          */
4294         if (arch_needs_pgtable_deposit())
4295                 deposit_prealloc_pte(vmf);
4296
4297         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4298
4299         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4300
4301         /* fault is handled */
4302         ret = 0;
4303         count_vm_event(THP_FILE_MAPPED);
4304 out:
4305         spin_unlock(vmf->ptl);
4306         return ret;
4307 }
4308 #else
4309 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4310 {
4311         return VM_FAULT_FALLBACK;
4312 }
4313 #endif
4314
4315 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4316 {
4317         struct vm_area_struct *vma = vmf->vma;
4318         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4319         bool write = vmf->flags & FAULT_FLAG_WRITE;
4320         bool prefault = vmf->address != addr;
4321         pte_t entry;
4322
4323         flush_icache_page(vma, page);
4324         entry = mk_pte(page, vma->vm_page_prot);
4325
4326         if (prefault && arch_wants_old_prefaulted_pte())
4327                 entry = pte_mkold(entry);
4328         else
4329                 entry = pte_sw_mkyoung(entry);
4330
4331         if (write)
4332                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4333         if (unlikely(uffd_wp))
4334                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4335         /* copy-on-write page */
4336         if (write && !(vma->vm_flags & VM_SHARED)) {
4337                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4338                 page_add_new_anon_rmap(page, vma, addr);
4339                 lru_cache_add_inactive_or_unevictable(page, vma);
4340         } else {
4341                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4342                 page_add_file_rmap(page, vma, false);
4343         }
4344         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4345 }
4346
4347 static bool vmf_pte_changed(struct vm_fault *vmf)
4348 {
4349         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4350                 return !pte_same(*vmf->pte, vmf->orig_pte);
4351
4352         return !pte_none(*vmf->pte);
4353 }
4354
4355 /**
4356  * finish_fault - finish page fault once we have prepared the page to fault
4357  *
4358  * @vmf: structure describing the fault
4359  *
4360  * This function handles all that is needed to finish a page fault once the
4361  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4362  * given page, adds reverse page mapping, handles memcg charges and LRU
4363  * addition.
4364  *
4365  * The function expects the page to be locked and on success it consumes a
4366  * reference of a page being mapped (for the PTE which maps it).
4367  *
4368  * Return: %0 on success, %VM_FAULT_ code in case of error.
4369  */
4370 vm_fault_t finish_fault(struct vm_fault *vmf)
4371 {
4372         struct vm_area_struct *vma = vmf->vma;
4373         struct page *page;
4374         vm_fault_t ret;
4375
4376         /* Did we COW the page? */
4377         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4378                 page = vmf->cow_page;
4379         else
4380                 page = vmf->page;
4381
4382         /*
4383          * check even for read faults because we might have lost our CoWed
4384          * page
4385          */
4386         if (!(vma->vm_flags & VM_SHARED)) {
4387                 ret = check_stable_address_space(vma->vm_mm);
4388                 if (ret)
4389                         return ret;
4390         }
4391
4392         if (pmd_none(*vmf->pmd)) {
4393                 if (PageTransCompound(page)) {
4394                         ret = do_set_pmd(vmf, page);
4395                         if (ret != VM_FAULT_FALLBACK)
4396                                 return ret;
4397                 }
4398
4399                 if (vmf->prealloc_pte)
4400                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4401                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4402                         return VM_FAULT_OOM;
4403         }
4404
4405         /*
4406          * See comment in handle_pte_fault() for how this scenario happens, we
4407          * need to return NOPAGE so that we drop this page.
4408          */
4409         if (pmd_devmap_trans_unstable(vmf->pmd))
4410                 return VM_FAULT_NOPAGE;
4411
4412         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4413                                       vmf->address, &vmf->ptl);
4414
4415         /* Re-check under ptl */
4416         if (likely(!vmf_pte_changed(vmf))) {
4417                 do_set_pte(vmf, page, vmf->address);
4418
4419                 /* no need to invalidate: a not-present page won't be cached */
4420                 update_mmu_cache(vma, vmf->address, vmf->pte);
4421
4422                 ret = 0;
4423         } else {
4424                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4425                 ret = VM_FAULT_NOPAGE;
4426         }
4427
4428         pte_unmap_unlock(vmf->pte, vmf->ptl);
4429         return ret;
4430 }
4431
4432 static unsigned long fault_around_bytes __read_mostly =
4433         rounddown_pow_of_two(65536);
4434
4435 #ifdef CONFIG_DEBUG_FS
4436 static int fault_around_bytes_get(void *data, u64 *val)
4437 {
4438         *val = fault_around_bytes;
4439         return 0;
4440 }
4441
4442 /*
4443  * fault_around_bytes must be rounded down to the nearest page order as it's
4444  * what do_fault_around() expects to see.
4445  */
4446 static int fault_around_bytes_set(void *data, u64 val)
4447 {
4448         if (val / PAGE_SIZE > PTRS_PER_PTE)
4449                 return -EINVAL;
4450         if (val > PAGE_SIZE)
4451                 fault_around_bytes = rounddown_pow_of_two(val);
4452         else
4453                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4454         return 0;
4455 }
4456 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4457                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4458
4459 static int __init fault_around_debugfs(void)
4460 {
4461         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4462                                    &fault_around_bytes_fops);
4463         return 0;
4464 }
4465 late_initcall(fault_around_debugfs);
4466 #endif
4467
4468 /*
4469  * do_fault_around() tries to map few pages around the fault address. The hope
4470  * is that the pages will be needed soon and this will lower the number of
4471  * faults to handle.
4472  *
4473  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4474  * not ready to be mapped: not up-to-date, locked, etc.
4475  *
4476  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4477  * only once.
4478  *
4479  * fault_around_bytes defines how many bytes we'll try to map.
4480  * do_fault_around() expects it to be set to a power of two less than or equal
4481  * to PTRS_PER_PTE.
4482  *
4483  * The virtual address of the area that we map is naturally aligned to
4484  * fault_around_bytes rounded down to the machine page size
4485  * (and therefore to page order).  This way it's easier to guarantee
4486  * that we don't cross page table boundaries.
4487  */
4488 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4489 {
4490         unsigned long address = vmf->address, nr_pages, mask;
4491         pgoff_t start_pgoff = vmf->pgoff;
4492         pgoff_t end_pgoff;
4493         int off;
4494
4495         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4496         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4497
4498         address = max(address & mask, vmf->vma->vm_start);
4499         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4500         start_pgoff -= off;
4501
4502         /*
4503          *  end_pgoff is either the end of the page table, the end of
4504          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4505          */
4506         end_pgoff = start_pgoff -
4507                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4508                 PTRS_PER_PTE - 1;
4509         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4510                         start_pgoff + nr_pages - 1);
4511
4512         if (pmd_none(*vmf->pmd)) {
4513                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4514                 if (!vmf->prealloc_pte)
4515                         return VM_FAULT_OOM;
4516         }
4517
4518         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4519 }
4520
4521 /* Return true if we should do read fault-around, false otherwise */
4522 static inline bool should_fault_around(struct vm_fault *vmf)
4523 {
4524         /* No ->map_pages?  No way to fault around... */
4525         if (!vmf->vma->vm_ops->map_pages)
4526                 return false;
4527
4528         if (uffd_disable_fault_around(vmf->vma))
4529                 return false;
4530
4531         return fault_around_bytes >> PAGE_SHIFT > 1;
4532 }
4533
4534 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4535 {
4536         vm_fault_t ret = 0;
4537
4538         /*
4539          * Let's call ->map_pages() first and use ->fault() as fallback
4540          * if page by the offset is not ready to be mapped (cold cache or
4541          * something).
4542          */
4543         if (should_fault_around(vmf)) {
4544                 ret = do_fault_around(vmf);
4545                 if (ret)
4546                         return ret;
4547         }
4548
4549         ret = __do_fault(vmf);
4550         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4551                 return ret;
4552
4553         ret |= finish_fault(vmf);
4554         unlock_page(vmf->page);
4555         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556                 put_page(vmf->page);
4557         return ret;
4558 }
4559
4560 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4561 {
4562         struct vm_area_struct *vma = vmf->vma;
4563         vm_fault_t ret;
4564
4565         if (unlikely(anon_vma_prepare(vma)))
4566                 return VM_FAULT_OOM;
4567
4568         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4569         if (!vmf->cow_page)
4570                 return VM_FAULT_OOM;
4571
4572         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4573                                 GFP_KERNEL)) {
4574                 put_page(vmf->cow_page);
4575                 return VM_FAULT_OOM;
4576         }
4577         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4578
4579         ret = __do_fault(vmf);
4580         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4581                 goto uncharge_out;
4582         if (ret & VM_FAULT_DONE_COW)
4583                 return ret;
4584
4585         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4586         __SetPageUptodate(vmf->cow_page);
4587
4588         ret |= finish_fault(vmf);
4589         unlock_page(vmf->page);
4590         put_page(vmf->page);
4591         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4592                 goto uncharge_out;
4593         return ret;
4594 uncharge_out:
4595         put_page(vmf->cow_page);
4596         return ret;
4597 }
4598
4599 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4600 {
4601         struct vm_area_struct *vma = vmf->vma;
4602         vm_fault_t ret, tmp;
4603
4604         ret = __do_fault(vmf);
4605         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4606                 return ret;
4607
4608         /*
4609          * Check if the backing address space wants to know that the page is
4610          * about to become writable
4611          */
4612         if (vma->vm_ops->page_mkwrite) {
4613                 unlock_page(vmf->page);
4614                 tmp = do_page_mkwrite(vmf);
4615                 if (unlikely(!tmp ||
4616                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4617                         put_page(vmf->page);
4618                         return tmp;
4619                 }
4620         }
4621
4622         ret |= finish_fault(vmf);
4623         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4624                                         VM_FAULT_RETRY))) {
4625                 unlock_page(vmf->page);
4626                 put_page(vmf->page);
4627                 return ret;
4628         }
4629
4630         ret |= fault_dirty_shared_page(vmf);
4631         return ret;
4632 }
4633
4634 /*
4635  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4636  * but allow concurrent faults).
4637  * The mmap_lock may have been released depending on flags and our
4638  * return value.  See filemap_fault() and __folio_lock_or_retry().
4639  * If mmap_lock is released, vma may become invalid (for example
4640  * by other thread calling munmap()).
4641  */
4642 static vm_fault_t do_fault(struct vm_fault *vmf)
4643 {
4644         struct vm_area_struct *vma = vmf->vma;
4645         struct mm_struct *vm_mm = vma->vm_mm;
4646         vm_fault_t ret;
4647
4648         /*
4649          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4650          */
4651         if (!vma->vm_ops->fault) {
4652                 /*
4653                  * If we find a migration pmd entry or a none pmd entry, which
4654                  * should never happen, return SIGBUS
4655                  */
4656                 if (unlikely(!pmd_present(*vmf->pmd)))
4657                         ret = VM_FAULT_SIGBUS;
4658                 else {
4659                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4660                                                        vmf->pmd,
4661                                                        vmf->address,
4662                                                        &vmf->ptl);
4663                         /*
4664                          * Make sure this is not a temporary clearing of pte
4665                          * by holding ptl and checking again. A R/M/W update
4666                          * of pte involves: take ptl, clearing the pte so that
4667                          * we don't have concurrent modification by hardware
4668                          * followed by an update.
4669                          */
4670                         if (unlikely(pte_none(*vmf->pte)))
4671                                 ret = VM_FAULT_SIGBUS;
4672                         else
4673                                 ret = VM_FAULT_NOPAGE;
4674
4675                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4676                 }
4677         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4678                 ret = do_read_fault(vmf);
4679         else if (!(vma->vm_flags & VM_SHARED))
4680                 ret = do_cow_fault(vmf);
4681         else
4682                 ret = do_shared_fault(vmf);
4683
4684         /* preallocated pagetable is unused: free it */
4685         if (vmf->prealloc_pte) {
4686                 pte_free(vm_mm, vmf->prealloc_pte);
4687                 vmf->prealloc_pte = NULL;
4688         }
4689         return ret;
4690 }
4691
4692 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4693                       unsigned long addr, int page_nid, int *flags)
4694 {
4695         get_page(page);
4696
4697         count_vm_numa_event(NUMA_HINT_FAULTS);
4698         if (page_nid == numa_node_id()) {
4699                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4700                 *flags |= TNF_FAULT_LOCAL;
4701         }
4702
4703         return mpol_misplaced(page, vma, addr);
4704 }
4705
4706 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4707 {
4708         struct vm_area_struct *vma = vmf->vma;
4709         struct page *page = NULL;
4710         int page_nid = NUMA_NO_NODE;
4711         int last_cpupid;
4712         int target_nid;
4713         pte_t pte, old_pte;
4714         bool was_writable = pte_savedwrite(vmf->orig_pte);
4715         int flags = 0;
4716
4717         /*
4718          * The "pte" at this point cannot be used safely without
4719          * validation through pte_unmap_same(). It's of NUMA type but
4720          * the pfn may be screwed if the read is non atomic.
4721          */
4722         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4723         spin_lock(vmf->ptl);
4724         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4725                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4726                 goto out;
4727         }
4728
4729         /* Get the normal PTE  */
4730         old_pte = ptep_get(vmf->pte);
4731         pte = pte_modify(old_pte, vma->vm_page_prot);
4732
4733         page = vm_normal_page(vma, vmf->address, pte);
4734         if (!page || is_zone_device_page(page))
4735                 goto out_map;
4736
4737         /* TODO: handle PTE-mapped THP */
4738         if (PageCompound(page))
4739                 goto out_map;
4740
4741         /*
4742          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4743          * much anyway since they can be in shared cache state. This misses
4744          * the case where a mapping is writable but the process never writes
4745          * to it but pte_write gets cleared during protection updates and
4746          * pte_dirty has unpredictable behaviour between PTE scan updates,
4747          * background writeback, dirty balancing and application behaviour.
4748          */
4749         if (!was_writable)
4750                 flags |= TNF_NO_GROUP;
4751
4752         /*
4753          * Flag if the page is shared between multiple address spaces. This
4754          * is later used when determining whether to group tasks together
4755          */
4756         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4757                 flags |= TNF_SHARED;
4758
4759         page_nid = page_to_nid(page);
4760         /*
4761          * For memory tiering mode, cpupid of slow memory page is used
4762          * to record page access time.  So use default value.
4763          */
4764         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4765             !node_is_toptier(page_nid))
4766                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4767         else
4768                 last_cpupid = page_cpupid_last(page);
4769         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4770                         &flags);
4771         if (target_nid == NUMA_NO_NODE) {
4772                 put_page(page);
4773                 goto out_map;
4774         }
4775         pte_unmap_unlock(vmf->pte, vmf->ptl);
4776
4777         /* Migrate to the requested node */
4778         if (migrate_misplaced_page(page, vma, target_nid)) {
4779                 page_nid = target_nid;
4780                 flags |= TNF_MIGRATED;
4781         } else {
4782                 flags |= TNF_MIGRATE_FAIL;
4783                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4784                 spin_lock(vmf->ptl);
4785                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4786                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4787                         goto out;
4788                 }
4789                 goto out_map;
4790         }
4791
4792 out:
4793         if (page_nid != NUMA_NO_NODE)
4794                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4795         return 0;
4796 out_map:
4797         /*
4798          * Make it present again, depending on how arch implements
4799          * non-accessible ptes, some can allow access by kernel mode.
4800          */
4801         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4802         pte = pte_modify(old_pte, vma->vm_page_prot);
4803         pte = pte_mkyoung(pte);
4804         if (was_writable)
4805                 pte = pte_mkwrite(pte);
4806         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4807         update_mmu_cache(vma, vmf->address, vmf->pte);
4808         pte_unmap_unlock(vmf->pte, vmf->ptl);
4809         goto out;
4810 }
4811
4812 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4813 {
4814         if (vma_is_anonymous(vmf->vma))
4815                 return do_huge_pmd_anonymous_page(vmf);
4816         if (vmf->vma->vm_ops->huge_fault)
4817                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4818         return VM_FAULT_FALLBACK;
4819 }
4820
4821 /* `inline' is required to avoid gcc 4.1.2 build error */
4822 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4823 {
4824         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4825
4826         if (vma_is_anonymous(vmf->vma)) {
4827                 if (likely(!unshare) &&
4828                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4829                         return handle_userfault(vmf, VM_UFFD_WP);
4830                 return do_huge_pmd_wp_page(vmf);
4831         }
4832         if (vmf->vma->vm_ops->huge_fault) {
4833                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4834
4835                 if (!(ret & VM_FAULT_FALLBACK))
4836                         return ret;
4837         }
4838
4839         /* COW or write-notify handled on pte level: split pmd. */
4840         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4841
4842         return VM_FAULT_FALLBACK;
4843 }
4844
4845 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4846 {
4847 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4848         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4849         /* No support for anonymous transparent PUD pages yet */
4850         if (vma_is_anonymous(vmf->vma))
4851                 return VM_FAULT_FALLBACK;
4852         if (vmf->vma->vm_ops->huge_fault)
4853                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4854 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4855         return VM_FAULT_FALLBACK;
4856 }
4857
4858 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4859 {
4860 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4861         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4862         /* No support for anonymous transparent PUD pages yet */
4863         if (vma_is_anonymous(vmf->vma))
4864                 goto split;
4865         if (vmf->vma->vm_ops->huge_fault) {
4866                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4867
4868                 if (!(ret & VM_FAULT_FALLBACK))
4869                         return ret;
4870         }
4871 split:
4872         /* COW or write-notify not handled on PUD level: split pud.*/
4873         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4875         return VM_FAULT_FALLBACK;
4876 }
4877
4878 /*
4879  * These routines also need to handle stuff like marking pages dirty
4880  * and/or accessed for architectures that don't do it in hardware (most
4881  * RISC architectures).  The early dirtying is also good on the i386.
4882  *
4883  * There is also a hook called "update_mmu_cache()" that architectures
4884  * with external mmu caches can use to update those (ie the Sparc or
4885  * PowerPC hashed page tables that act as extended TLBs).
4886  *
4887  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4888  * concurrent faults).
4889  *
4890  * The mmap_lock may have been released depending on flags and our return value.
4891  * See filemap_fault() and __folio_lock_or_retry().
4892  */
4893 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4894 {
4895         pte_t entry;
4896
4897         if (unlikely(pmd_none(*vmf->pmd))) {
4898                 /*
4899                  * Leave __pte_alloc() until later: because vm_ops->fault may
4900                  * want to allocate huge page, and if we expose page table
4901                  * for an instant, it will be difficult to retract from
4902                  * concurrent faults and from rmap lookups.
4903                  */
4904                 vmf->pte = NULL;
4905                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4906         } else {
4907                 /*
4908                  * If a huge pmd materialized under us just retry later.  Use
4909                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4910                  * of pmd_trans_huge() to ensure the pmd didn't become
4911                  * pmd_trans_huge under us and then back to pmd_none, as a
4912                  * result of MADV_DONTNEED running immediately after a huge pmd
4913                  * fault in a different thread of this mm, in turn leading to a
4914                  * misleading pmd_trans_huge() retval. All we have to ensure is
4915                  * that it is a regular pmd that we can walk with
4916                  * pte_offset_map() and we can do that through an atomic read
4917                  * in C, which is what pmd_trans_unstable() provides.
4918                  */
4919                 if (pmd_devmap_trans_unstable(vmf->pmd))
4920                         return 0;
4921                 /*
4922                  * A regular pmd is established and it can't morph into a huge
4923                  * pmd from under us anymore at this point because we hold the
4924                  * mmap_lock read mode and khugepaged takes it in write mode.
4925                  * So now it's safe to run pte_offset_map().
4926                  */
4927                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4928                 vmf->orig_pte = *vmf->pte;
4929                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4930
4931                 /*
4932                  * some architectures can have larger ptes than wordsize,
4933                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4934                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4935                  * accesses.  The code below just needs a consistent view
4936                  * for the ifs and we later double check anyway with the
4937                  * ptl lock held. So here a barrier will do.
4938                  */
4939                 barrier();
4940                 if (pte_none(vmf->orig_pte)) {
4941                         pte_unmap(vmf->pte);
4942                         vmf->pte = NULL;
4943                 }
4944         }
4945
4946         if (!vmf->pte) {
4947                 if (vma_is_anonymous(vmf->vma))
4948                         return do_anonymous_page(vmf);
4949                 else
4950                         return do_fault(vmf);
4951         }
4952
4953         if (!pte_present(vmf->orig_pte))
4954                 return do_swap_page(vmf);
4955
4956         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4957                 return do_numa_page(vmf);
4958
4959         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4960         spin_lock(vmf->ptl);
4961         entry = vmf->orig_pte;
4962         if (unlikely(!pte_same(*vmf->pte, entry))) {
4963                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4964                 goto unlock;
4965         }
4966         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4967                 if (!pte_write(entry))
4968                         return do_wp_page(vmf);
4969                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4970                         entry = pte_mkdirty(entry);
4971         }
4972         entry = pte_mkyoung(entry);
4973         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4974                                 vmf->flags & FAULT_FLAG_WRITE)) {
4975                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4976         } else {
4977                 /* Skip spurious TLB flush for retried page fault */
4978                 if (vmf->flags & FAULT_FLAG_TRIED)
4979                         goto unlock;
4980                 /*
4981                  * This is needed only for protection faults but the arch code
4982                  * is not yet telling us if this is a protection fault or not.
4983                  * This still avoids useless tlb flushes for .text page faults
4984                  * with threads.
4985                  */
4986                 if (vmf->flags & FAULT_FLAG_WRITE)
4987                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4988         }
4989 unlock:
4990         pte_unmap_unlock(vmf->pte, vmf->ptl);
4991         return 0;
4992 }
4993
4994 /*
4995  * By the time we get here, we already hold the mm semaphore
4996  *
4997  * The mmap_lock may have been released depending on flags and our
4998  * return value.  See filemap_fault() and __folio_lock_or_retry().
4999  */
5000 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5001                 unsigned long address, unsigned int flags)
5002 {
5003         struct vm_fault vmf = {
5004                 .vma = vma,
5005                 .address = address & PAGE_MASK,
5006                 .real_address = address,
5007                 .flags = flags,
5008                 .pgoff = linear_page_index(vma, address),
5009                 .gfp_mask = __get_fault_gfp_mask(vma),
5010         };
5011         struct mm_struct *mm = vma->vm_mm;
5012         unsigned long vm_flags = vma->vm_flags;
5013         pgd_t *pgd;
5014         p4d_t *p4d;
5015         vm_fault_t ret;
5016
5017         pgd = pgd_offset(mm, address);
5018         p4d = p4d_alloc(mm, pgd, address);
5019         if (!p4d)
5020                 return VM_FAULT_OOM;
5021
5022         vmf.pud = pud_alloc(mm, p4d, address);
5023         if (!vmf.pud)
5024                 return VM_FAULT_OOM;
5025 retry_pud:
5026         if (pud_none(*vmf.pud) &&
5027             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5028                 ret = create_huge_pud(&vmf);
5029                 if (!(ret & VM_FAULT_FALLBACK))
5030                         return ret;
5031         } else {
5032                 pud_t orig_pud = *vmf.pud;
5033
5034                 barrier();
5035                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5036
5037                         /*
5038                          * TODO once we support anonymous PUDs: NUMA case and
5039                          * FAULT_FLAG_UNSHARE handling.
5040                          */
5041                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5042                                 ret = wp_huge_pud(&vmf, orig_pud);
5043                                 if (!(ret & VM_FAULT_FALLBACK))
5044                                         return ret;
5045                         } else {
5046                                 huge_pud_set_accessed(&vmf, orig_pud);
5047                                 return 0;
5048                         }
5049                 }
5050         }
5051
5052         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5053         if (!vmf.pmd)
5054                 return VM_FAULT_OOM;
5055
5056         /* Huge pud page fault raced with pmd_alloc? */
5057         if (pud_trans_unstable(vmf.pud))
5058                 goto retry_pud;
5059
5060         if (pmd_none(*vmf.pmd) &&
5061             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5062                 ret = create_huge_pmd(&vmf);
5063                 if (!(ret & VM_FAULT_FALLBACK))
5064                         return ret;
5065         } else {
5066                 vmf.orig_pmd = *vmf.pmd;
5067
5068                 barrier();
5069                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5070                         VM_BUG_ON(thp_migration_supported() &&
5071                                           !is_pmd_migration_entry(vmf.orig_pmd));
5072                         if (is_pmd_migration_entry(vmf.orig_pmd))
5073                                 pmd_migration_entry_wait(mm, vmf.pmd);
5074                         return 0;
5075                 }
5076                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5077                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5078                                 return do_huge_pmd_numa_page(&vmf);
5079
5080                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5081                             !pmd_write(vmf.orig_pmd)) {
5082                                 ret = wp_huge_pmd(&vmf);
5083                                 if (!(ret & VM_FAULT_FALLBACK))
5084                                         return ret;
5085                         } else {
5086                                 huge_pmd_set_accessed(&vmf);
5087                                 return 0;
5088                         }
5089                 }
5090         }
5091
5092         return handle_pte_fault(&vmf);
5093 }
5094
5095 /**
5096  * mm_account_fault - Do page fault accounting
5097  *
5098  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5099  *        of perf event counters, but we'll still do the per-task accounting to
5100  *        the task who triggered this page fault.
5101  * @address: the faulted address.
5102  * @flags: the fault flags.
5103  * @ret: the fault retcode.
5104  *
5105  * This will take care of most of the page fault accounting.  Meanwhile, it
5106  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5107  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5108  * still be in per-arch page fault handlers at the entry of page fault.
5109  */
5110 static inline void mm_account_fault(struct pt_regs *regs,
5111                                     unsigned long address, unsigned int flags,
5112                                     vm_fault_t ret)
5113 {
5114         bool major;
5115
5116         /*
5117          * We don't do accounting for some specific faults:
5118          *
5119          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5120          *   includes arch_vma_access_permitted() failing before reaching here.
5121          *   So this is not a "this many hardware page faults" counter.  We
5122          *   should use the hw profiling for that.
5123          *
5124          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5125          *   once they're completed.
5126          */
5127         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5128                 return;
5129
5130         /*
5131          * We define the fault as a major fault when the final successful fault
5132          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5133          * handle it immediately previously).
5134          */
5135         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5136
5137         if (major)
5138                 current->maj_flt++;
5139         else
5140                 current->min_flt++;
5141
5142         /*
5143          * If the fault is done for GUP, regs will be NULL.  We only do the
5144          * accounting for the per thread fault counters who triggered the
5145          * fault, and we skip the perf event updates.
5146          */
5147         if (!regs)
5148                 return;
5149
5150         if (major)
5151                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5152         else
5153                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5154 }
5155
5156 #ifdef CONFIG_LRU_GEN
5157 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5158 {
5159         /* the LRU algorithm doesn't apply to sequential or random reads */
5160         current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5161 }
5162
5163 static void lru_gen_exit_fault(void)
5164 {
5165         current->in_lru_fault = false;
5166 }
5167 #else
5168 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5169 {
5170 }
5171
5172 static void lru_gen_exit_fault(void)
5173 {
5174 }
5175 #endif /* CONFIG_LRU_GEN */
5176
5177 /*
5178  * By the time we get here, we already hold the mm semaphore
5179  *
5180  * The mmap_lock may have been released depending on flags and our
5181  * return value.  See filemap_fault() and __folio_lock_or_retry().
5182  */
5183 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5184                            unsigned int flags, struct pt_regs *regs)
5185 {
5186         vm_fault_t ret;
5187
5188         __set_current_state(TASK_RUNNING);
5189
5190         count_vm_event(PGFAULT);
5191         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5192
5193         /* do counter updates before entering really critical section. */
5194         check_sync_rss_stat(current);
5195
5196         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5197                                             flags & FAULT_FLAG_INSTRUCTION,
5198                                             flags & FAULT_FLAG_REMOTE))
5199                 return VM_FAULT_SIGSEGV;
5200
5201         /*
5202          * Enable the memcg OOM handling for faults triggered in user
5203          * space.  Kernel faults are handled more gracefully.
5204          */
5205         if (flags & FAULT_FLAG_USER)
5206                 mem_cgroup_enter_user_fault();
5207
5208         lru_gen_enter_fault(vma);
5209
5210         if (unlikely(is_vm_hugetlb_page(vma)))
5211                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5212         else
5213                 ret = __handle_mm_fault(vma, address, flags);
5214
5215         lru_gen_exit_fault();
5216
5217         if (flags & FAULT_FLAG_USER) {
5218                 mem_cgroup_exit_user_fault();
5219                 /*
5220                  * The task may have entered a memcg OOM situation but
5221                  * if the allocation error was handled gracefully (no
5222                  * VM_FAULT_OOM), there is no need to kill anything.
5223                  * Just clean up the OOM state peacefully.
5224                  */
5225                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5226                         mem_cgroup_oom_synchronize(false);
5227         }
5228
5229         mm_account_fault(regs, address, flags, ret);
5230
5231         return ret;
5232 }
5233 EXPORT_SYMBOL_GPL(handle_mm_fault);
5234
5235 #ifndef __PAGETABLE_P4D_FOLDED
5236 /*
5237  * Allocate p4d page table.
5238  * We've already handled the fast-path in-line.
5239  */
5240 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5241 {
5242         p4d_t *new = p4d_alloc_one(mm, address);
5243         if (!new)
5244                 return -ENOMEM;
5245
5246         spin_lock(&mm->page_table_lock);
5247         if (pgd_present(*pgd)) {        /* Another has populated it */
5248                 p4d_free(mm, new);
5249         } else {
5250                 smp_wmb(); /* See comment in pmd_install() */
5251                 pgd_populate(mm, pgd, new);
5252         }
5253         spin_unlock(&mm->page_table_lock);
5254         return 0;
5255 }
5256 #endif /* __PAGETABLE_P4D_FOLDED */
5257
5258 #ifndef __PAGETABLE_PUD_FOLDED
5259 /*
5260  * Allocate page upper directory.
5261  * We've already handled the fast-path in-line.
5262  */
5263 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5264 {
5265         pud_t *new = pud_alloc_one(mm, address);
5266         if (!new)
5267                 return -ENOMEM;
5268
5269         spin_lock(&mm->page_table_lock);
5270         if (!p4d_present(*p4d)) {
5271                 mm_inc_nr_puds(mm);
5272                 smp_wmb(); /* See comment in pmd_install() */
5273                 p4d_populate(mm, p4d, new);
5274         } else  /* Another has populated it */
5275                 pud_free(mm, new);
5276         spin_unlock(&mm->page_table_lock);
5277         return 0;
5278 }
5279 #endif /* __PAGETABLE_PUD_FOLDED */
5280
5281 #ifndef __PAGETABLE_PMD_FOLDED
5282 /*
5283  * Allocate page middle directory.
5284  * We've already handled the fast-path in-line.
5285  */
5286 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5287 {
5288         spinlock_t *ptl;
5289         pmd_t *new = pmd_alloc_one(mm, address);
5290         if (!new)
5291                 return -ENOMEM;
5292
5293         ptl = pud_lock(mm, pud);
5294         if (!pud_present(*pud)) {
5295                 mm_inc_nr_pmds(mm);
5296                 smp_wmb(); /* See comment in pmd_install() */
5297                 pud_populate(mm, pud, new);
5298         } else {        /* Another has populated it */
5299                 pmd_free(mm, new);
5300         }
5301         spin_unlock(ptl);
5302         return 0;
5303 }
5304 #endif /* __PAGETABLE_PMD_FOLDED */
5305
5306 /**
5307  * follow_pte - look up PTE at a user virtual address
5308  * @mm: the mm_struct of the target address space
5309  * @address: user virtual address
5310  * @ptepp: location to store found PTE
5311  * @ptlp: location to store the lock for the PTE
5312  *
5313  * On a successful return, the pointer to the PTE is stored in @ptepp;
5314  * the corresponding lock is taken and its location is stored in @ptlp.
5315  * The contents of the PTE are only stable until @ptlp is released;
5316  * any further use, if any, must be protected against invalidation
5317  * with MMU notifiers.
5318  *
5319  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5320  * should be taken for read.
5321  *
5322  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5323  * it is not a good general-purpose API.
5324  *
5325  * Return: zero on success, -ve otherwise.
5326  */
5327 int follow_pte(struct mm_struct *mm, unsigned long address,
5328                pte_t **ptepp, spinlock_t **ptlp)
5329 {
5330         pgd_t *pgd;
5331         p4d_t *p4d;
5332         pud_t *pud;
5333         pmd_t *pmd;
5334         pte_t *ptep;
5335
5336         pgd = pgd_offset(mm, address);
5337         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5338                 goto out;
5339
5340         p4d = p4d_offset(pgd, address);
5341         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5342                 goto out;
5343
5344         pud = pud_offset(p4d, address);
5345         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5346                 goto out;
5347
5348         pmd = pmd_offset(pud, address);
5349         VM_BUG_ON(pmd_trans_huge(*pmd));
5350
5351         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5352                 goto out;
5353
5354         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5355         if (!pte_present(*ptep))
5356                 goto unlock;
5357         *ptepp = ptep;
5358         return 0;
5359 unlock:
5360         pte_unmap_unlock(ptep, *ptlp);
5361 out:
5362         return -EINVAL;
5363 }
5364 EXPORT_SYMBOL_GPL(follow_pte);
5365
5366 /**
5367  * follow_pfn - look up PFN at a user virtual address
5368  * @vma: memory mapping
5369  * @address: user virtual address
5370  * @pfn: location to store found PFN
5371  *
5372  * Only IO mappings and raw PFN mappings are allowed.
5373  *
5374  * This function does not allow the caller to read the permissions
5375  * of the PTE.  Do not use it.
5376  *
5377  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5378  */
5379 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5380         unsigned long *pfn)
5381 {
5382         int ret = -EINVAL;
5383         spinlock_t *ptl;
5384         pte_t *ptep;
5385
5386         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5387                 return ret;
5388
5389         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5390         if (ret)
5391                 return ret;
5392         *pfn = pte_pfn(*ptep);
5393         pte_unmap_unlock(ptep, ptl);
5394         return 0;
5395 }
5396 EXPORT_SYMBOL(follow_pfn);
5397
5398 #ifdef CONFIG_HAVE_IOREMAP_PROT
5399 int follow_phys(struct vm_area_struct *vma,
5400                 unsigned long address, unsigned int flags,
5401                 unsigned long *prot, resource_size_t *phys)
5402 {
5403         int ret = -EINVAL;
5404         pte_t *ptep, pte;
5405         spinlock_t *ptl;
5406
5407         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5408                 goto out;
5409
5410         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5411                 goto out;
5412         pte = *ptep;
5413
5414         if ((flags & FOLL_WRITE) && !pte_write(pte))
5415                 goto unlock;
5416
5417         *prot = pgprot_val(pte_pgprot(pte));
5418         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5419
5420         ret = 0;
5421 unlock:
5422         pte_unmap_unlock(ptep, ptl);
5423 out:
5424         return ret;
5425 }
5426
5427 /**
5428  * generic_access_phys - generic implementation for iomem mmap access
5429  * @vma: the vma to access
5430  * @addr: userspace address, not relative offset within @vma
5431  * @buf: buffer to read/write
5432  * @len: length of transfer
5433  * @write: set to FOLL_WRITE when writing, otherwise reading
5434  *
5435  * This is a generic implementation for &vm_operations_struct.access for an
5436  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5437  * not page based.
5438  */
5439 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5440                         void *buf, int len, int write)
5441 {
5442         resource_size_t phys_addr;
5443         unsigned long prot = 0;
5444         void __iomem *maddr;
5445         pte_t *ptep, pte;
5446         spinlock_t *ptl;
5447         int offset = offset_in_page(addr);
5448         int ret = -EINVAL;
5449
5450         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5451                 return -EINVAL;
5452
5453 retry:
5454         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5455                 return -EINVAL;
5456         pte = *ptep;
5457         pte_unmap_unlock(ptep, ptl);
5458
5459         prot = pgprot_val(pte_pgprot(pte));
5460         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5461
5462         if ((write & FOLL_WRITE) && !pte_write(pte))
5463                 return -EINVAL;
5464
5465         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5466         if (!maddr)
5467                 return -ENOMEM;
5468
5469         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5470                 goto out_unmap;
5471
5472         if (!pte_same(pte, *ptep)) {
5473                 pte_unmap_unlock(ptep, ptl);
5474                 iounmap(maddr);
5475
5476                 goto retry;
5477         }
5478
5479         if (write)
5480                 memcpy_toio(maddr + offset, buf, len);
5481         else
5482                 memcpy_fromio(buf, maddr + offset, len);
5483         ret = len;
5484         pte_unmap_unlock(ptep, ptl);
5485 out_unmap:
5486         iounmap(maddr);
5487
5488         return ret;
5489 }
5490 EXPORT_SYMBOL_GPL(generic_access_phys);
5491 #endif
5492
5493 /*
5494  * Access another process' address space as given in mm.
5495  */
5496 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5497                        int len, unsigned int gup_flags)
5498 {
5499         struct vm_area_struct *vma;
5500         void *old_buf = buf;
5501         int write = gup_flags & FOLL_WRITE;
5502
5503         if (mmap_read_lock_killable(mm))
5504                 return 0;
5505
5506         /* ignore errors, just check how much was successfully transferred */
5507         while (len) {
5508                 int bytes, ret, offset;
5509                 void *maddr;
5510                 struct page *page = NULL;
5511
5512                 ret = get_user_pages_remote(mm, addr, 1,
5513                                 gup_flags, &page, &vma, NULL);
5514                 if (ret <= 0) {
5515 #ifndef CONFIG_HAVE_IOREMAP_PROT
5516                         break;
5517 #else
5518                         /*
5519                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5520                          * we can access using slightly different code.
5521                          */
5522                         vma = vma_lookup(mm, addr);
5523                         if (!vma)
5524                                 break;
5525                         if (vma->vm_ops && vma->vm_ops->access)
5526                                 ret = vma->vm_ops->access(vma, addr, buf,
5527                                                           len, write);
5528                         if (ret <= 0)
5529                                 break;
5530                         bytes = ret;
5531 #endif
5532                 } else {
5533                         bytes = len;
5534                         offset = addr & (PAGE_SIZE-1);
5535                         if (bytes > PAGE_SIZE-offset)
5536                                 bytes = PAGE_SIZE-offset;
5537
5538                         maddr = kmap(page);
5539                         if (write) {
5540                                 copy_to_user_page(vma, page, addr,
5541                                                   maddr + offset, buf, bytes);
5542                                 set_page_dirty_lock(page);
5543                         } else {
5544                                 copy_from_user_page(vma, page, addr,
5545                                                     buf, maddr + offset, bytes);
5546                         }
5547                         kunmap(page);
5548                         put_page(page);
5549                 }
5550                 len -= bytes;
5551                 buf += bytes;
5552                 addr += bytes;
5553         }
5554         mmap_read_unlock(mm);
5555
5556         return buf - old_buf;
5557 }
5558
5559 /**
5560  * access_remote_vm - access another process' address space
5561  * @mm:         the mm_struct of the target address space
5562  * @addr:       start address to access
5563  * @buf:        source or destination buffer
5564  * @len:        number of bytes to transfer
5565  * @gup_flags:  flags modifying lookup behaviour
5566  *
5567  * The caller must hold a reference on @mm.
5568  *
5569  * Return: number of bytes copied from source to destination.
5570  */
5571 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5572                 void *buf, int len, unsigned int gup_flags)
5573 {
5574         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5575 }
5576
5577 /*
5578  * Access another process' address space.
5579  * Source/target buffer must be kernel space,
5580  * Do not walk the page table directly, use get_user_pages
5581  */
5582 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5583                 void *buf, int len, unsigned int gup_flags)
5584 {
5585         struct mm_struct *mm;
5586         int ret;
5587
5588         mm = get_task_mm(tsk);
5589         if (!mm)
5590                 return 0;
5591
5592         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5593
5594         mmput(mm);
5595
5596         return ret;
5597 }
5598 EXPORT_SYMBOL_GPL(access_process_vm);
5599
5600 /*
5601  * Print the name of a VMA.
5602  */
5603 void print_vma_addr(char *prefix, unsigned long ip)
5604 {
5605         struct mm_struct *mm = current->mm;
5606         struct vm_area_struct *vma;
5607
5608         /*
5609          * we might be running from an atomic context so we cannot sleep
5610          */
5611         if (!mmap_read_trylock(mm))
5612                 return;
5613
5614         vma = find_vma(mm, ip);
5615         if (vma && vma->vm_file) {
5616                 struct file *f = vma->vm_file;
5617                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5618                 if (buf) {
5619                         char *p;
5620
5621                         p = file_path(f, buf, PAGE_SIZE);
5622                         if (IS_ERR(p))
5623                                 p = "?";
5624                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5625                                         vma->vm_start,
5626                                         vma->vm_end - vma->vm_start);
5627                         free_page((unsigned long)buf);
5628                 }
5629         }
5630         mmap_read_unlock(mm);
5631 }
5632
5633 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5634 void __might_fault(const char *file, int line)
5635 {
5636         if (pagefault_disabled())
5637                 return;
5638         __might_sleep(file, line);
5639 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5640         if (current->mm)
5641                 might_lock_read(&current->mm->mmap_lock);
5642 #endif
5643 }
5644 EXPORT_SYMBOL(__might_fault);
5645 #endif
5646
5647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5648 /*
5649  * Process all subpages of the specified huge page with the specified
5650  * operation.  The target subpage will be processed last to keep its
5651  * cache lines hot.
5652  */
5653 static inline void process_huge_page(
5654         unsigned long addr_hint, unsigned int pages_per_huge_page,
5655         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5656         void *arg)
5657 {
5658         int i, n, base, l;
5659         unsigned long addr = addr_hint &
5660                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5661
5662         /* Process target subpage last to keep its cache lines hot */
5663         might_sleep();
5664         n = (addr_hint - addr) / PAGE_SIZE;
5665         if (2 * n <= pages_per_huge_page) {
5666                 /* If target subpage in first half of huge page */
5667                 base = 0;
5668                 l = n;
5669                 /* Process subpages at the end of huge page */
5670                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5671                         cond_resched();
5672                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5673                 }
5674         } else {
5675                 /* If target subpage in second half of huge page */
5676                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5677                 l = pages_per_huge_page - n;
5678                 /* Process subpages at the begin of huge page */
5679                 for (i = 0; i < base; i++) {
5680                         cond_resched();
5681                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5682                 }
5683         }
5684         /*
5685          * Process remaining subpages in left-right-left-right pattern
5686          * towards the target subpage
5687          */
5688         for (i = 0; i < l; i++) {
5689                 int left_idx = base + i;
5690                 int right_idx = base + 2 * l - 1 - i;
5691
5692                 cond_resched();
5693                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5694                 cond_resched();
5695                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5696         }
5697 }
5698
5699 static void clear_gigantic_page(struct page *page,
5700                                 unsigned long addr,
5701                                 unsigned int pages_per_huge_page)
5702 {
5703         int i;
5704         struct page *p;
5705
5706         might_sleep();
5707         for (i = 0; i < pages_per_huge_page; i++) {
5708                 p = nth_page(page, i);
5709                 cond_resched();
5710                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5711         }
5712 }
5713
5714 static void clear_subpage(unsigned long addr, int idx, void *arg)
5715 {
5716         struct page *page = arg;
5717
5718         clear_user_highpage(page + idx, addr);
5719 }
5720
5721 void clear_huge_page(struct page *page,
5722                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5723 {
5724         unsigned long addr = addr_hint &
5725                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5726
5727         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5728                 clear_gigantic_page(page, addr, pages_per_huge_page);
5729                 return;
5730         }
5731
5732         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5733 }
5734
5735 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5736                                     unsigned long addr,
5737                                     struct vm_area_struct *vma,
5738                                     unsigned int pages_per_huge_page)
5739 {
5740         int i;
5741         struct page *dst_base = dst;
5742         struct page *src_base = src;
5743
5744         for (i = 0; i < pages_per_huge_page; i++) {
5745                 dst = nth_page(dst_base, i);
5746                 src = nth_page(src_base, i);
5747
5748                 cond_resched();
5749                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5750         }
5751 }
5752
5753 struct copy_subpage_arg {
5754         struct page *dst;
5755         struct page *src;
5756         struct vm_area_struct *vma;
5757 };
5758
5759 static void copy_subpage(unsigned long addr, int idx, void *arg)
5760 {
5761         struct copy_subpage_arg *copy_arg = arg;
5762
5763         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5764                            addr, copy_arg->vma);
5765 }
5766
5767 void copy_user_huge_page(struct page *dst, struct page *src,
5768                          unsigned long addr_hint, struct vm_area_struct *vma,
5769                          unsigned int pages_per_huge_page)
5770 {
5771         unsigned long addr = addr_hint &
5772                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5773         struct copy_subpage_arg arg = {
5774                 .dst = dst,
5775                 .src = src,
5776                 .vma = vma,
5777         };
5778
5779         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5780                 copy_user_gigantic_page(dst, src, addr, vma,
5781                                         pages_per_huge_page);
5782                 return;
5783         }
5784
5785         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5786 }
5787
5788 long copy_huge_page_from_user(struct page *dst_page,
5789                                 const void __user *usr_src,
5790                                 unsigned int pages_per_huge_page,
5791                                 bool allow_pagefault)
5792 {
5793         void *page_kaddr;
5794         unsigned long i, rc = 0;
5795         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5796         struct page *subpage;
5797
5798         for (i = 0; i < pages_per_huge_page; i++) {
5799                 subpage = nth_page(dst_page, i);
5800                 if (allow_pagefault)
5801                         page_kaddr = kmap(subpage);
5802                 else
5803                         page_kaddr = kmap_atomic(subpage);
5804                 rc = copy_from_user(page_kaddr,
5805                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5806                 if (allow_pagefault)
5807                         kunmap(subpage);
5808                 else
5809                         kunmap_atomic(page_kaddr);
5810
5811                 ret_val -= (PAGE_SIZE - rc);
5812                 if (rc)
5813                         break;
5814
5815                 flush_dcache_page(subpage);
5816
5817                 cond_resched();
5818         }
5819         return ret_val;
5820 }
5821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5822
5823 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5824
5825 static struct kmem_cache *page_ptl_cachep;
5826
5827 void __init ptlock_cache_init(void)
5828 {
5829         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5830                         SLAB_PANIC, NULL);
5831 }
5832
5833 bool ptlock_alloc(struct page *page)
5834 {
5835         spinlock_t *ptl;
5836
5837         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5838         if (!ptl)
5839                 return false;
5840         page->ptl = ptl;
5841         return true;
5842 }
5843
5844 void ptlock_free(struct page *page)
5845 {
5846         kmem_cache_free(page_ptl_cachep, page->ptl);
5847 }
5848 #endif