x86-64: make access_ok() independent of LAM
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117                 return false;
118
119         return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140                                         1;
141 #else
142                                         2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148         /*
149          * Transitioning a PTE from 'old' to 'young' can be expensive on
150          * some architectures, even if it's performed in hardware. By
151          * default, "false" means prefaulted entries will be 'young'.
152          */
153         return false;
154 }
155 #endif
156
157 static int __init disable_randmaps(char *s)
158 {
159         randomize_va_space = 0;
160         return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174         zero_pfn = page_to_pfn(ZERO_PAGE(0));
175         return 0;
176 }
177 early_initcall(init_zero_pfn);
178
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181         trace_rss_stat(mm, member);
182 }
183
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189                            unsigned long addr)
190 {
191         pgtable_t token = pmd_pgtable(*pmd);
192         pmd_clear(pmd);
193         pte_free_tlb(tlb, token, addr);
194         mm_dec_nr_ptes(tlb->mm);
195 }
196
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198                                 unsigned long addr, unsigned long end,
199                                 unsigned long floor, unsigned long ceiling)
200 {
201         pmd_t *pmd;
202         unsigned long next;
203         unsigned long start;
204
205         start = addr;
206         pmd = pmd_offset(pud, addr);
207         do {
208                 next = pmd_addr_end(addr, end);
209                 if (pmd_none_or_clear_bad(pmd))
210                         continue;
211                 free_pte_range(tlb, pmd, addr);
212         } while (pmd++, addr = next, addr != end);
213
214         start &= PUD_MASK;
215         if (start < floor)
216                 return;
217         if (ceiling) {
218                 ceiling &= PUD_MASK;
219                 if (!ceiling)
220                         return;
221         }
222         if (end - 1 > ceiling - 1)
223                 return;
224
225         pmd = pmd_offset(pud, start);
226         pud_clear(pud);
227         pmd_free_tlb(tlb, pmd, start);
228         mm_dec_nr_pmds(tlb->mm);
229 }
230
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232                                 unsigned long addr, unsigned long end,
233                                 unsigned long floor, unsigned long ceiling)
234 {
235         pud_t *pud;
236         unsigned long next;
237         unsigned long start;
238
239         start = addr;
240         pud = pud_offset(p4d, addr);
241         do {
242                 next = pud_addr_end(addr, end);
243                 if (pud_none_or_clear_bad(pud))
244                         continue;
245                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246         } while (pud++, addr = next, addr != end);
247
248         start &= P4D_MASK;
249         if (start < floor)
250                 return;
251         if (ceiling) {
252                 ceiling &= P4D_MASK;
253                 if (!ceiling)
254                         return;
255         }
256         if (end - 1 > ceiling - 1)
257                 return;
258
259         pud = pud_offset(p4d, start);
260         p4d_clear(p4d);
261         pud_free_tlb(tlb, pud, start);
262         mm_dec_nr_puds(tlb->mm);
263 }
264
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266                                 unsigned long addr, unsigned long end,
267                                 unsigned long floor, unsigned long ceiling)
268 {
269         p4d_t *p4d;
270         unsigned long next;
271         unsigned long start;
272
273         start = addr;
274         p4d = p4d_offset(pgd, addr);
275         do {
276                 next = p4d_addr_end(addr, end);
277                 if (p4d_none_or_clear_bad(p4d))
278                         continue;
279                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280         } while (p4d++, addr = next, addr != end);
281
282         start &= PGDIR_MASK;
283         if (start < floor)
284                 return;
285         if (ceiling) {
286                 ceiling &= PGDIR_MASK;
287                 if (!ceiling)
288                         return;
289         }
290         if (end - 1 > ceiling - 1)
291                 return;
292
293         p4d = p4d_offset(pgd, start);
294         pgd_clear(pgd);
295         p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302                         unsigned long addr, unsigned long end,
303                         unsigned long floor, unsigned long ceiling)
304 {
305         pgd_t *pgd;
306         unsigned long next;
307
308         /*
309          * The next few lines have given us lots of grief...
310          *
311          * Why are we testing PMD* at this top level?  Because often
312          * there will be no work to do at all, and we'd prefer not to
313          * go all the way down to the bottom just to discover that.
314          *
315          * Why all these "- 1"s?  Because 0 represents both the bottom
316          * of the address space and the top of it (using -1 for the
317          * top wouldn't help much: the masks would do the wrong thing).
318          * The rule is that addr 0 and floor 0 refer to the bottom of
319          * the address space, but end 0 and ceiling 0 refer to the top
320          * Comparisons need to use "end - 1" and "ceiling - 1" (though
321          * that end 0 case should be mythical).
322          *
323          * Wherever addr is brought up or ceiling brought down, we must
324          * be careful to reject "the opposite 0" before it confuses the
325          * subsequent tests.  But what about where end is brought down
326          * by PMD_SIZE below? no, end can't go down to 0 there.
327          *
328          * Whereas we round start (addr) and ceiling down, by different
329          * masks at different levels, in order to test whether a table
330          * now has no other vmas using it, so can be freed, we don't
331          * bother to round floor or end up - the tests don't need that.
332          */
333
334         addr &= PMD_MASK;
335         if (addr < floor) {
336                 addr += PMD_SIZE;
337                 if (!addr)
338                         return;
339         }
340         if (ceiling) {
341                 ceiling &= PMD_MASK;
342                 if (!ceiling)
343                         return;
344         }
345         if (end - 1 > ceiling - 1)
346                 end -= PMD_SIZE;
347         if (addr > end - 1)
348                 return;
349         /*
350          * We add page table cache pages with PAGE_SIZE,
351          * (see pte_free_tlb()), flush the tlb if we need
352          */
353         tlb_change_page_size(tlb, PAGE_SIZE);
354         pgd = pgd_offset(tlb->mm, addr);
355         do {
356                 next = pgd_addr_end(addr, end);
357                 if (pgd_none_or_clear_bad(pgd))
358                         continue;
359                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360         } while (pgd++, addr = next, addr != end);
361 }
362
363 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
364                    struct vm_area_struct *vma, unsigned long floor,
365                    unsigned long ceiling, bool mm_wr_locked)
366 {
367         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
368
369         do {
370                 unsigned long addr = vma->vm_start;
371                 struct vm_area_struct *next;
372
373                 /*
374                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375                  * be 0.  This will underflow and is okay.
376                  */
377                 next = mas_find(&mas, ceiling - 1);
378
379                 /*
380                  * Hide vma from rmap and truncate_pagecache before freeing
381                  * pgtables
382                  */
383                 if (mm_wr_locked)
384                         vma_start_write(vma);
385                 unlink_anon_vmas(vma);
386                 unlink_file_vma(vma);
387
388                 if (is_vm_hugetlb_page(vma)) {
389                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390                                 floor, next ? next->vm_start : ceiling);
391                 } else {
392                         /*
393                          * Optimization: gather nearby vmas into one call down
394                          */
395                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396                                && !is_vm_hugetlb_page(next)) {
397                                 vma = next;
398                                 next = mas_find(&mas, ceiling - 1);
399                                 if (mm_wr_locked)
400                                         vma_start_write(vma);
401                                 unlink_anon_vmas(vma);
402                                 unlink_file_vma(vma);
403                         }
404                         free_pgd_range(tlb, addr, vma->vm_end,
405                                 floor, next ? next->vm_start : ceiling);
406                 }
407                 vma = next;
408         } while (vma);
409 }
410
411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413         spinlock_t *ptl = pmd_lock(mm, pmd);
414
415         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
416                 mm_inc_nr_ptes(mm);
417                 /*
418                  * Ensure all pte setup (eg. pte page lock and page clearing) are
419                  * visible before the pte is made visible to other CPUs by being
420                  * put into page tables.
421                  *
422                  * The other side of the story is the pointer chasing in the page
423                  * table walking code (when walking the page table without locking;
424                  * ie. most of the time). Fortunately, these data accesses consist
425                  * of a chain of data-dependent loads, meaning most CPUs (alpha
426                  * being the notable exception) will already guarantee loads are
427                  * seen in-order. See the alpha page table accessors for the
428                  * smp_rmb() barriers in page table walking code.
429                  */
430                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431                 pmd_populate(mm, pmd, *pte);
432                 *pte = NULL;
433         }
434         spin_unlock(ptl);
435 }
436
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439         pgtable_t new = pte_alloc_one(mm);
440         if (!new)
441                 return -ENOMEM;
442
443         pmd_install(mm, pmd, &new);
444         if (new)
445                 pte_free(mm, new);
446         return 0;
447 }
448
449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451         pte_t *new = pte_alloc_one_kernel(&init_mm);
452         if (!new)
453                 return -ENOMEM;
454
455         spin_lock(&init_mm.page_table_lock);
456         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
457                 smp_wmb(); /* See comment in pmd_install() */
458                 pmd_populate_kernel(&init_mm, pmd, new);
459                 new = NULL;
460         }
461         spin_unlock(&init_mm.page_table_lock);
462         if (new)
463                 pte_free_kernel(&init_mm, new);
464         return 0;
465 }
466
467 static inline void init_rss_vec(int *rss)
468 {
469         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471
472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474         int i;
475
476         if (current->mm == mm)
477                 sync_mm_rss(mm);
478         for (i = 0; i < NR_MM_COUNTERS; i++)
479                 if (rss[i])
480                         add_mm_counter(mm, i, rss[i]);
481 }
482
483 /*
484  * This function is called to print an error when a bad pte
485  * is found. For example, we might have a PFN-mapped pte in
486  * a region that doesn't allow it.
487  *
488  * The calling function must still handle the error.
489  */
490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491                           pte_t pte, struct page *page)
492 {
493         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494         p4d_t *p4d = p4d_offset(pgd, addr);
495         pud_t *pud = pud_offset(p4d, addr);
496         pmd_t *pmd = pmd_offset(pud, addr);
497         struct address_space *mapping;
498         pgoff_t index;
499         static unsigned long resume;
500         static unsigned long nr_shown;
501         static unsigned long nr_unshown;
502
503         /*
504          * Allow a burst of 60 reports, then keep quiet for that minute;
505          * or allow a steady drip of one report per second.
506          */
507         if (nr_shown == 60) {
508                 if (time_before(jiffies, resume)) {
509                         nr_unshown++;
510                         return;
511                 }
512                 if (nr_unshown) {
513                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514                                  nr_unshown);
515                         nr_unshown = 0;
516                 }
517                 nr_shown = 0;
518         }
519         if (nr_shown++ == 0)
520                 resume = jiffies + 60 * HZ;
521
522         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523         index = linear_page_index(vma, addr);
524
525         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
526                  current->comm,
527                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
528         if (page)
529                 dump_page(page, "bad pte");
530         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533                  vma->vm_file,
534                  vma->vm_ops ? vma->vm_ops->fault : NULL,
535                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536                  mapping ? mapping->a_ops->read_folio : NULL);
537         dump_stack();
538         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540
541 /*
542  * vm_normal_page -- This function gets the "struct page" associated with a pte.
543  *
544  * "Special" mappings do not wish to be associated with a "struct page" (either
545  * it doesn't exist, or it exists but they don't want to touch it). In this
546  * case, NULL is returned here. "Normal" mappings do have a struct page.
547  *
548  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549  * pte bit, in which case this function is trivial. Secondly, an architecture
550  * may not have a spare pte bit, which requires a more complicated scheme,
551  * described below.
552  *
553  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554  * special mapping (even if there are underlying and valid "struct pages").
555  * COWed pages of a VM_PFNMAP are always normal.
556  *
557  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560  * mapping will always honor the rule
561  *
562  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563  *
564  * And for normal mappings this is false.
565  *
566  * This restricts such mappings to be a linear translation from virtual address
567  * to pfn. To get around this restriction, we allow arbitrary mappings so long
568  * as the vma is not a COW mapping; in that case, we know that all ptes are
569  * special (because none can have been COWed).
570  *
571  *
572  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573  *
574  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575  * page" backing, however the difference is that _all_ pages with a struct
576  * page (that is, those where pfn_valid is true) are refcounted and considered
577  * normal pages by the VM. The disadvantage is that pages are refcounted
578  * (which can be slower and simply not an option for some PFNMAP users). The
579  * advantage is that we don't have to follow the strict linearity rule of
580  * PFNMAP mappings in order to support COWable mappings.
581  *
582  */
583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584                             pte_t pte)
585 {
586         unsigned long pfn = pte_pfn(pte);
587
588         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589                 if (likely(!pte_special(pte)))
590                         goto check_pfn;
591                 if (vma->vm_ops && vma->vm_ops->find_special_page)
592                         return vma->vm_ops->find_special_page(vma, addr);
593                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594                         return NULL;
595                 if (is_zero_pfn(pfn))
596                         return NULL;
597                 if (pte_devmap(pte))
598                 /*
599                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600                  * and will have refcounts incremented on their struct pages
601                  * when they are inserted into PTEs, thus they are safe to
602                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603                  * do not have refcounts. Example of legacy ZONE_DEVICE is
604                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605                  */
606                         return NULL;
607
608                 print_bad_pte(vma, addr, pte, NULL);
609                 return NULL;
610         }
611
612         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615                 if (vma->vm_flags & VM_MIXEDMAP) {
616                         if (!pfn_valid(pfn))
617                                 return NULL;
618                         goto out;
619                 } else {
620                         unsigned long off;
621                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
622                         if (pfn == vma->vm_pgoff + off)
623                                 return NULL;
624                         if (!is_cow_mapping(vma->vm_flags))
625                                 return NULL;
626                 }
627         }
628
629         if (is_zero_pfn(pfn))
630                 return NULL;
631
632 check_pfn:
633         if (unlikely(pfn > highest_memmap_pfn)) {
634                 print_bad_pte(vma, addr, pte, NULL);
635                 return NULL;
636         }
637
638         /*
639          * NOTE! We still have PageReserved() pages in the page tables.
640          * eg. VDSO mappings can cause them to exist.
641          */
642 out:
643         return pfn_to_page(pfn);
644 }
645
646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647                             pte_t pte)
648 {
649         struct page *page = vm_normal_page(vma, addr, pte);
650
651         if (page)
652                 return page_folio(page);
653         return NULL;
654 }
655
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658                                 pmd_t pmd)
659 {
660         unsigned long pfn = pmd_pfn(pmd);
661
662         /*
663          * There is no pmd_special() but there may be special pmds, e.g.
664          * in a direct-access (dax) mapping, so let's just replicate the
665          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666          */
667         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668                 if (vma->vm_flags & VM_MIXEDMAP) {
669                         if (!pfn_valid(pfn))
670                                 return NULL;
671                         goto out;
672                 } else {
673                         unsigned long off;
674                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
675                         if (pfn == vma->vm_pgoff + off)
676                                 return NULL;
677                         if (!is_cow_mapping(vma->vm_flags))
678                                 return NULL;
679                 }
680         }
681
682         if (pmd_devmap(pmd))
683                 return NULL;
684         if (is_huge_zero_pmd(pmd))
685                 return NULL;
686         if (unlikely(pfn > highest_memmap_pfn))
687                 return NULL;
688
689         /*
690          * NOTE! We still have PageReserved() pages in the page tables.
691          * eg. VDSO mappings can cause them to exist.
692          */
693 out:
694         return pfn_to_page(pfn);
695 }
696 #endif
697
698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699                                   struct page *page, unsigned long address,
700                                   pte_t *ptep)
701 {
702         pte_t pte;
703         swp_entry_t entry;
704
705         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706         if (pte_swp_soft_dirty(*ptep))
707                 pte = pte_mksoft_dirty(pte);
708
709         entry = pte_to_swp_entry(*ptep);
710         if (pte_swp_uffd_wp(*ptep))
711                 pte = pte_mkuffd_wp(pte);
712         else if (is_writable_device_exclusive_entry(entry))
713                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717         /*
718          * No need to take a page reference as one was already
719          * created when the swap entry was made.
720          */
721         if (PageAnon(page))
722                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723         else
724                 /*
725                  * Currently device exclusive access only supports anonymous
726                  * memory so the entry shouldn't point to a filebacked page.
727                  */
728                 WARN_ON_ONCE(1);
729
730         set_pte_at(vma->vm_mm, address, ptep, pte);
731
732         /*
733          * No need to invalidate - it was non-present before. However
734          * secondary CPUs may have mappings that need invalidating.
735          */
736         update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745                         unsigned long addr)
746 {
747         swp_entry_t entry = pte_to_swp_entry(*src_pte);
748         struct page *page = pfn_swap_entry_to_page(entry);
749
750         if (trylock_page(page)) {
751                 restore_exclusive_pte(vma, page, addr, src_pte);
752                 unlock_page(page);
753                 return 0;
754         }
755
756         return -EBUSY;
757 }
758
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770         unsigned long vm_flags = dst_vma->vm_flags;
771         pte_t pte = *src_pte;
772         struct page *page;
773         swp_entry_t entry = pte_to_swp_entry(pte);
774
775         if (likely(!non_swap_entry(entry))) {
776                 if (swap_duplicate(entry) < 0)
777                         return -EIO;
778
779                 /* make sure dst_mm is on swapoff's mmlist. */
780                 if (unlikely(list_empty(&dst_mm->mmlist))) {
781                         spin_lock(&mmlist_lock);
782                         if (list_empty(&dst_mm->mmlist))
783                                 list_add(&dst_mm->mmlist,
784                                                 &src_mm->mmlist);
785                         spin_unlock(&mmlist_lock);
786                 }
787                 /* Mark the swap entry as shared. */
788                 if (pte_swp_exclusive(*src_pte)) {
789                         pte = pte_swp_clear_exclusive(*src_pte);
790                         set_pte_at(src_mm, addr, src_pte, pte);
791                 }
792                 rss[MM_SWAPENTS]++;
793         } else if (is_migration_entry(entry)) {
794                 page = pfn_swap_entry_to_page(entry);
795
796                 rss[mm_counter(page)]++;
797
798                 if (!is_readable_migration_entry(entry) &&
799                                 is_cow_mapping(vm_flags)) {
800                         /*
801                          * COW mappings require pages in both parent and child
802                          * to be set to read. A previously exclusive entry is
803                          * now shared.
804                          */
805                         entry = make_readable_migration_entry(
806                                                         swp_offset(entry));
807                         pte = swp_entry_to_pte(entry);
808                         if (pte_swp_soft_dirty(*src_pte))
809                                 pte = pte_swp_mksoft_dirty(pte);
810                         if (pte_swp_uffd_wp(*src_pte))
811                                 pte = pte_swp_mkuffd_wp(pte);
812                         set_pte_at(src_mm, addr, src_pte, pte);
813                 }
814         } else if (is_device_private_entry(entry)) {
815                 page = pfn_swap_entry_to_page(entry);
816
817                 /*
818                  * Update rss count even for unaddressable pages, as
819                  * they should treated just like normal pages in this
820                  * respect.
821                  *
822                  * We will likely want to have some new rss counters
823                  * for unaddressable pages, at some point. But for now
824                  * keep things as they are.
825                  */
826                 get_page(page);
827                 rss[mm_counter(page)]++;
828                 /* Cannot fail as these pages cannot get pinned. */
829                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
830
831                 /*
832                  * We do not preserve soft-dirty information, because so
833                  * far, checkpoint/restore is the only feature that
834                  * requires that. And checkpoint/restore does not work
835                  * when a device driver is involved (you cannot easily
836                  * save and restore device driver state).
837                  */
838                 if (is_writable_device_private_entry(entry) &&
839                     is_cow_mapping(vm_flags)) {
840                         entry = make_readable_device_private_entry(
841                                                         swp_offset(entry));
842                         pte = swp_entry_to_pte(entry);
843                         if (pte_swp_uffd_wp(*src_pte))
844                                 pte = pte_swp_mkuffd_wp(pte);
845                         set_pte_at(src_mm, addr, src_pte, pte);
846                 }
847         } else if (is_device_exclusive_entry(entry)) {
848                 /*
849                  * Make device exclusive entries present by restoring the
850                  * original entry then copying as for a present pte. Device
851                  * exclusive entries currently only support private writable
852                  * (ie. COW) mappings.
853                  */
854                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
856                         return -EBUSY;
857                 return -ENOENT;
858         } else if (is_pte_marker_entry(entry)) {
859                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
860                         set_pte_at(dst_mm, addr, dst_pte, pte);
861                 return 0;
862         }
863         if (!userfaultfd_wp(dst_vma))
864                 pte = pte_swp_clear_uffd_wp(pte);
865         set_pte_at(dst_mm, addr, dst_pte, pte);
866         return 0;
867 }
868
869 /*
870  * Copy a present and normal page.
871  *
872  * NOTE! The usual case is that this isn't required;
873  * instead, the caller can just increase the page refcount
874  * and re-use the pte the traditional way.
875  *
876  * And if we need a pre-allocated page but don't yet have
877  * one, return a negative error to let the preallocation
878  * code know so that it can do so outside the page table
879  * lock.
880  */
881 static inline int
882 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
883                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
884                   struct folio **prealloc, struct page *page)
885 {
886         struct folio *new_folio;
887         pte_t pte;
888
889         new_folio = *prealloc;
890         if (!new_folio)
891                 return -EAGAIN;
892
893         /*
894          * We have a prealloc page, all good!  Take it
895          * over and copy the page & arm it.
896          */
897         *prealloc = NULL;
898         copy_user_highpage(&new_folio->page, page, addr, src_vma);
899         __folio_mark_uptodate(new_folio);
900         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
901         folio_add_lru_vma(new_folio, dst_vma);
902         rss[MM_ANONPAGES]++;
903
904         /* All done, just insert the new page copy in the child */
905         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
906         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
907         if (userfaultfd_pte_wp(dst_vma, *src_pte))
908                 /* Uffd-wp needs to be delivered to dest pte as well */
909                 pte = pte_mkuffd_wp(pte);
910         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
911         return 0;
912 }
913
914 /*
915  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
916  * is required to copy this pte.
917  */
918 static inline int
919 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
920                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
921                  struct folio **prealloc)
922 {
923         struct mm_struct *src_mm = src_vma->vm_mm;
924         unsigned long vm_flags = src_vma->vm_flags;
925         pte_t pte = *src_pte;
926         struct page *page;
927         struct folio *folio;
928
929         page = vm_normal_page(src_vma, addr, pte);
930         if (page)
931                 folio = page_folio(page);
932         if (page && folio_test_anon(folio)) {
933                 /*
934                  * If this page may have been pinned by the parent process,
935                  * copy the page immediately for the child so that we'll always
936                  * guarantee the pinned page won't be randomly replaced in the
937                  * future.
938                  */
939                 folio_get(folio);
940                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
941                         /* Page may be pinned, we have to copy. */
942                         folio_put(folio);
943                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
944                                                  addr, rss, prealloc, page);
945                 }
946                 rss[MM_ANONPAGES]++;
947         } else if (page) {
948                 folio_get(folio);
949                 page_dup_file_rmap(page, false);
950                 rss[mm_counter_file(page)]++;
951         }
952
953         /*
954          * If it's a COW mapping, write protect it both
955          * in the parent and the child
956          */
957         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
958                 ptep_set_wrprotect(src_mm, addr, src_pte);
959                 pte = pte_wrprotect(pte);
960         }
961         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
962
963         /*
964          * If it's a shared mapping, mark it clean in
965          * the child
966          */
967         if (vm_flags & VM_SHARED)
968                 pte = pte_mkclean(pte);
969         pte = pte_mkold(pte);
970
971         if (!userfaultfd_wp(dst_vma))
972                 pte = pte_clear_uffd_wp(pte);
973
974         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
975         return 0;
976 }
977
978 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
979                 struct vm_area_struct *vma, unsigned long addr)
980 {
981         struct folio *new_folio;
982
983         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
984         if (!new_folio)
985                 return NULL;
986
987         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
988                 folio_put(new_folio);
989                 return NULL;
990         }
991         folio_throttle_swaprate(new_folio, GFP_KERNEL);
992
993         return new_folio;
994 }
995
996 static int
997 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
998                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999                unsigned long end)
1000 {
1001         struct mm_struct *dst_mm = dst_vma->vm_mm;
1002         struct mm_struct *src_mm = src_vma->vm_mm;
1003         pte_t *orig_src_pte, *orig_dst_pte;
1004         pte_t *src_pte, *dst_pte;
1005         spinlock_t *src_ptl, *dst_ptl;
1006         int progress, ret = 0;
1007         int rss[NR_MM_COUNTERS];
1008         swp_entry_t entry = (swp_entry_t){0};
1009         struct folio *prealloc = NULL;
1010
1011 again:
1012         progress = 0;
1013         init_rss_vec(rss);
1014
1015         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1016         if (!dst_pte) {
1017                 ret = -ENOMEM;
1018                 goto out;
1019         }
1020         src_pte = pte_offset_map(src_pmd, addr);
1021         src_ptl = pte_lockptr(src_mm, src_pmd);
1022         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1023         orig_src_pte = src_pte;
1024         orig_dst_pte = dst_pte;
1025         arch_enter_lazy_mmu_mode();
1026
1027         do {
1028                 /*
1029                  * We are holding two locks at this point - either of them
1030                  * could generate latencies in another task on another CPU.
1031                  */
1032                 if (progress >= 32) {
1033                         progress = 0;
1034                         if (need_resched() ||
1035                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1036                                 break;
1037                 }
1038                 if (pte_none(*src_pte)) {
1039                         progress++;
1040                         continue;
1041                 }
1042                 if (unlikely(!pte_present(*src_pte))) {
1043                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1044                                                   dst_pte, src_pte,
1045                                                   dst_vma, src_vma,
1046                                                   addr, rss);
1047                         if (ret == -EIO) {
1048                                 entry = pte_to_swp_entry(*src_pte);
1049                                 break;
1050                         } else if (ret == -EBUSY) {
1051                                 break;
1052                         } else if (!ret) {
1053                                 progress += 8;
1054                                 continue;
1055                         }
1056
1057                         /*
1058                          * Device exclusive entry restored, continue by copying
1059                          * the now present pte.
1060                          */
1061                         WARN_ON_ONCE(ret != -ENOENT);
1062                 }
1063                 /* copy_present_pte() will clear `*prealloc' if consumed */
1064                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1065                                        addr, rss, &prealloc);
1066                 /*
1067                  * If we need a pre-allocated page for this pte, drop the
1068                  * locks, allocate, and try again.
1069                  */
1070                 if (unlikely(ret == -EAGAIN))
1071                         break;
1072                 if (unlikely(prealloc)) {
1073                         /*
1074                          * pre-alloc page cannot be reused by next time so as
1075                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1076                          * will allocate page according to address).  This
1077                          * could only happen if one pinned pte changed.
1078                          */
1079                         folio_put(prealloc);
1080                         prealloc = NULL;
1081                 }
1082                 progress += 8;
1083         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1084
1085         arch_leave_lazy_mmu_mode();
1086         spin_unlock(src_ptl);
1087         pte_unmap(orig_src_pte);
1088         add_mm_rss_vec(dst_mm, rss);
1089         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1090         cond_resched();
1091
1092         if (ret == -EIO) {
1093                 VM_WARN_ON_ONCE(!entry.val);
1094                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1095                         ret = -ENOMEM;
1096                         goto out;
1097                 }
1098                 entry.val = 0;
1099         } else if (ret == -EBUSY) {
1100                 goto out;
1101         } else if (ret ==  -EAGAIN) {
1102                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1103                 if (!prealloc)
1104                         return -ENOMEM;
1105         } else if (ret) {
1106                 VM_WARN_ON_ONCE(1);
1107         }
1108
1109         /* We've captured and resolved the error. Reset, try again. */
1110         ret = 0;
1111
1112         if (addr != end)
1113                 goto again;
1114 out:
1115         if (unlikely(prealloc))
1116                 folio_put(prealloc);
1117         return ret;
1118 }
1119
1120 static inline int
1121 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1122                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1123                unsigned long end)
1124 {
1125         struct mm_struct *dst_mm = dst_vma->vm_mm;
1126         struct mm_struct *src_mm = src_vma->vm_mm;
1127         pmd_t *src_pmd, *dst_pmd;
1128         unsigned long next;
1129
1130         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1131         if (!dst_pmd)
1132                 return -ENOMEM;
1133         src_pmd = pmd_offset(src_pud, addr);
1134         do {
1135                 next = pmd_addr_end(addr, end);
1136                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1137                         || pmd_devmap(*src_pmd)) {
1138                         int err;
1139                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1140                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1141                                             addr, dst_vma, src_vma);
1142                         if (err == -ENOMEM)
1143                                 return -ENOMEM;
1144                         if (!err)
1145                                 continue;
1146                         /* fall through */
1147                 }
1148                 if (pmd_none_or_clear_bad(src_pmd))
1149                         continue;
1150                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1151                                    addr, next))
1152                         return -ENOMEM;
1153         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1154         return 0;
1155 }
1156
1157 static inline int
1158 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1160                unsigned long end)
1161 {
1162         struct mm_struct *dst_mm = dst_vma->vm_mm;
1163         struct mm_struct *src_mm = src_vma->vm_mm;
1164         pud_t *src_pud, *dst_pud;
1165         unsigned long next;
1166
1167         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168         if (!dst_pud)
1169                 return -ENOMEM;
1170         src_pud = pud_offset(src_p4d, addr);
1171         do {
1172                 next = pud_addr_end(addr, end);
1173                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174                         int err;
1175
1176                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1177                         err = copy_huge_pud(dst_mm, src_mm,
1178                                             dst_pud, src_pud, addr, src_vma);
1179                         if (err == -ENOMEM)
1180                                 return -ENOMEM;
1181                         if (!err)
1182                                 continue;
1183                         /* fall through */
1184                 }
1185                 if (pud_none_or_clear_bad(src_pud))
1186                         continue;
1187                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1188                                    addr, next))
1189                         return -ENOMEM;
1190         } while (dst_pud++, src_pud++, addr = next, addr != end);
1191         return 0;
1192 }
1193
1194 static inline int
1195 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1197                unsigned long end)
1198 {
1199         struct mm_struct *dst_mm = dst_vma->vm_mm;
1200         p4d_t *src_p4d, *dst_p4d;
1201         unsigned long next;
1202
1203         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1204         if (!dst_p4d)
1205                 return -ENOMEM;
1206         src_p4d = p4d_offset(src_pgd, addr);
1207         do {
1208                 next = p4d_addr_end(addr, end);
1209                 if (p4d_none_or_clear_bad(src_p4d))
1210                         continue;
1211                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1212                                    addr, next))
1213                         return -ENOMEM;
1214         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1215         return 0;
1216 }
1217
1218 /*
1219  * Return true if the vma needs to copy the pgtable during this fork().  Return
1220  * false when we can speed up fork() by allowing lazy page faults later until
1221  * when the child accesses the memory range.
1222  */
1223 static bool
1224 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1225 {
1226         /*
1227          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1228          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1229          * contains uffd-wp protection information, that's something we can't
1230          * retrieve from page cache, and skip copying will lose those info.
1231          */
1232         if (userfaultfd_wp(dst_vma))
1233                 return true;
1234
1235         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1236                 return true;
1237
1238         if (src_vma->anon_vma)
1239                 return true;
1240
1241         /*
1242          * Don't copy ptes where a page fault will fill them correctly.  Fork
1243          * becomes much lighter when there are big shared or private readonly
1244          * mappings. The tradeoff is that copy_page_range is more efficient
1245          * than faulting.
1246          */
1247         return false;
1248 }
1249
1250 int
1251 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1252 {
1253         pgd_t *src_pgd, *dst_pgd;
1254         unsigned long next;
1255         unsigned long addr = src_vma->vm_start;
1256         unsigned long end = src_vma->vm_end;
1257         struct mm_struct *dst_mm = dst_vma->vm_mm;
1258         struct mm_struct *src_mm = src_vma->vm_mm;
1259         struct mmu_notifier_range range;
1260         bool is_cow;
1261         int ret;
1262
1263         if (!vma_needs_copy(dst_vma, src_vma))
1264                 return 0;
1265
1266         if (is_vm_hugetlb_page(src_vma))
1267                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1268
1269         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1270                 /*
1271                  * We do not free on error cases below as remove_vma
1272                  * gets called on error from higher level routine
1273                  */
1274                 ret = track_pfn_copy(src_vma);
1275                 if (ret)
1276                         return ret;
1277         }
1278
1279         /*
1280          * We need to invalidate the secondary MMU mappings only when
1281          * there could be a permission downgrade on the ptes of the
1282          * parent mm. And a permission downgrade will only happen if
1283          * is_cow_mapping() returns true.
1284          */
1285         is_cow = is_cow_mapping(src_vma->vm_flags);
1286
1287         if (is_cow) {
1288                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1289                                         0, src_mm, addr, end);
1290                 mmu_notifier_invalidate_range_start(&range);
1291                 /*
1292                  * Disabling preemption is not needed for the write side, as
1293                  * the read side doesn't spin, but goes to the mmap_lock.
1294                  *
1295                  * Use the raw variant of the seqcount_t write API to avoid
1296                  * lockdep complaining about preemptibility.
1297                  */
1298                 mmap_assert_write_locked(src_mm);
1299                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1300         }
1301
1302         ret = 0;
1303         dst_pgd = pgd_offset(dst_mm, addr);
1304         src_pgd = pgd_offset(src_mm, addr);
1305         do {
1306                 next = pgd_addr_end(addr, end);
1307                 if (pgd_none_or_clear_bad(src_pgd))
1308                         continue;
1309                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1310                                             addr, next))) {
1311                         untrack_pfn_clear(dst_vma);
1312                         ret = -ENOMEM;
1313                         break;
1314                 }
1315         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1316
1317         if (is_cow) {
1318                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1319                 mmu_notifier_invalidate_range_end(&range);
1320         }
1321         return ret;
1322 }
1323
1324 /* Whether we should zap all COWed (private) pages too */
1325 static inline bool should_zap_cows(struct zap_details *details)
1326 {
1327         /* By default, zap all pages */
1328         if (!details)
1329                 return true;
1330
1331         /* Or, we zap COWed pages only if the caller wants to */
1332         return details->even_cows;
1333 }
1334
1335 /* Decides whether we should zap this page with the page pointer specified */
1336 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1337 {
1338         /* If we can make a decision without *page.. */
1339         if (should_zap_cows(details))
1340                 return true;
1341
1342         /* E.g. the caller passes NULL for the case of a zero page */
1343         if (!page)
1344                 return true;
1345
1346         /* Otherwise we should only zap non-anon pages */
1347         return !PageAnon(page);
1348 }
1349
1350 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1351 {
1352         if (!details)
1353                 return false;
1354
1355         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1356 }
1357
1358 /*
1359  * This function makes sure that we'll replace the none pte with an uffd-wp
1360  * swap special pte marker when necessary. Must be with the pgtable lock held.
1361  */
1362 static inline void
1363 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1364                               unsigned long addr, pte_t *pte,
1365                               struct zap_details *details, pte_t pteval)
1366 {
1367         /* Zap on anonymous always means dropping everything */
1368         if (vma_is_anonymous(vma))
1369                 return;
1370
1371         if (zap_drop_file_uffd_wp(details))
1372                 return;
1373
1374         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1375 }
1376
1377 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1378                                 struct vm_area_struct *vma, pmd_t *pmd,
1379                                 unsigned long addr, unsigned long end,
1380                                 struct zap_details *details)
1381 {
1382         struct mm_struct *mm = tlb->mm;
1383         int force_flush = 0;
1384         int rss[NR_MM_COUNTERS];
1385         spinlock_t *ptl;
1386         pte_t *start_pte;
1387         pte_t *pte;
1388         swp_entry_t entry;
1389
1390         tlb_change_page_size(tlb, PAGE_SIZE);
1391 again:
1392         init_rss_vec(rss);
1393         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1394         pte = start_pte;
1395         flush_tlb_batched_pending(mm);
1396         arch_enter_lazy_mmu_mode();
1397         do {
1398                 pte_t ptent = *pte;
1399                 struct page *page;
1400
1401                 if (pte_none(ptent))
1402                         continue;
1403
1404                 if (need_resched())
1405                         break;
1406
1407                 if (pte_present(ptent)) {
1408                         unsigned int delay_rmap;
1409
1410                         page = vm_normal_page(vma, addr, ptent);
1411                         if (unlikely(!should_zap_page(details, page)))
1412                                 continue;
1413                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1414                                                         tlb->fullmm);
1415                         tlb_remove_tlb_entry(tlb, pte, addr);
1416                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1417                                                       ptent);
1418                         if (unlikely(!page))
1419                                 continue;
1420
1421                         delay_rmap = 0;
1422                         if (!PageAnon(page)) {
1423                                 if (pte_dirty(ptent)) {
1424                                         set_page_dirty(page);
1425                                         if (tlb_delay_rmap(tlb)) {
1426                                                 delay_rmap = 1;
1427                                                 force_flush = 1;
1428                                         }
1429                                 }
1430                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1431                                         mark_page_accessed(page);
1432                         }
1433                         rss[mm_counter(page)]--;
1434                         if (!delay_rmap) {
1435                                 page_remove_rmap(page, vma, false);
1436                                 if (unlikely(page_mapcount(page) < 0))
1437                                         print_bad_pte(vma, addr, ptent, page);
1438                         }
1439                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1440                                 force_flush = 1;
1441                                 addr += PAGE_SIZE;
1442                                 break;
1443                         }
1444                         continue;
1445                 }
1446
1447                 entry = pte_to_swp_entry(ptent);
1448                 if (is_device_private_entry(entry) ||
1449                     is_device_exclusive_entry(entry)) {
1450                         page = pfn_swap_entry_to_page(entry);
1451                         if (unlikely(!should_zap_page(details, page)))
1452                                 continue;
1453                         /*
1454                          * Both device private/exclusive mappings should only
1455                          * work with anonymous page so far, so we don't need to
1456                          * consider uffd-wp bit when zap. For more information,
1457                          * see zap_install_uffd_wp_if_needed().
1458                          */
1459                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1460                         rss[mm_counter(page)]--;
1461                         if (is_device_private_entry(entry))
1462                                 page_remove_rmap(page, vma, false);
1463                         put_page(page);
1464                 } else if (!non_swap_entry(entry)) {
1465                         /* Genuine swap entry, hence a private anon page */
1466                         if (!should_zap_cows(details))
1467                                 continue;
1468                         rss[MM_SWAPENTS]--;
1469                         if (unlikely(!free_swap_and_cache(entry)))
1470                                 print_bad_pte(vma, addr, ptent, NULL);
1471                 } else if (is_migration_entry(entry)) {
1472                         page = pfn_swap_entry_to_page(entry);
1473                         if (!should_zap_page(details, page))
1474                                 continue;
1475                         rss[mm_counter(page)]--;
1476                 } else if (pte_marker_entry_uffd_wp(entry)) {
1477                         /*
1478                          * For anon: always drop the marker; for file: only
1479                          * drop the marker if explicitly requested.
1480                          */
1481                         if (!vma_is_anonymous(vma) &&
1482                             !zap_drop_file_uffd_wp(details))
1483                                 continue;
1484                 } else if (is_hwpoison_entry(entry) ||
1485                            is_swapin_error_entry(entry)) {
1486                         if (!should_zap_cows(details))
1487                                 continue;
1488                 } else {
1489                         /* We should have covered all the swap entry types */
1490                         WARN_ON_ONCE(1);
1491                 }
1492                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1493                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1494         } while (pte++, addr += PAGE_SIZE, addr != end);
1495
1496         add_mm_rss_vec(mm, rss);
1497         arch_leave_lazy_mmu_mode();
1498
1499         /* Do the actual TLB flush before dropping ptl */
1500         if (force_flush) {
1501                 tlb_flush_mmu_tlbonly(tlb);
1502                 tlb_flush_rmaps(tlb, vma);
1503         }
1504         pte_unmap_unlock(start_pte, ptl);
1505
1506         /*
1507          * If we forced a TLB flush (either due to running out of
1508          * batch buffers or because we needed to flush dirty TLB
1509          * entries before releasing the ptl), free the batched
1510          * memory too. Restart if we didn't do everything.
1511          */
1512         if (force_flush) {
1513                 force_flush = 0;
1514                 tlb_flush_mmu(tlb);
1515         }
1516
1517         if (addr != end) {
1518                 cond_resched();
1519                 goto again;
1520         }
1521
1522         return addr;
1523 }
1524
1525 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1526                                 struct vm_area_struct *vma, pud_t *pud,
1527                                 unsigned long addr, unsigned long end,
1528                                 struct zap_details *details)
1529 {
1530         pmd_t *pmd;
1531         unsigned long next;
1532
1533         pmd = pmd_offset(pud, addr);
1534         do {
1535                 next = pmd_addr_end(addr, end);
1536                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1537                         if (next - addr != HPAGE_PMD_SIZE)
1538                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1539                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1540                                 goto next;
1541                         /* fall through */
1542                 } else if (details && details->single_folio &&
1543                            folio_test_pmd_mappable(details->single_folio) &&
1544                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1545                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1546                         /*
1547                          * Take and drop THP pmd lock so that we cannot return
1548                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1549                          * but not yet decremented compound_mapcount().
1550                          */
1551                         spin_unlock(ptl);
1552                 }
1553
1554                 /*
1555                  * Here there can be other concurrent MADV_DONTNEED or
1556                  * trans huge page faults running, and if the pmd is
1557                  * none or trans huge it can change under us. This is
1558                  * because MADV_DONTNEED holds the mmap_lock in read
1559                  * mode.
1560                  */
1561                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1562                         goto next;
1563                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1564 next:
1565                 cond_resched();
1566         } while (pmd++, addr = next, addr != end);
1567
1568         return addr;
1569 }
1570
1571 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1572                                 struct vm_area_struct *vma, p4d_t *p4d,
1573                                 unsigned long addr, unsigned long end,
1574                                 struct zap_details *details)
1575 {
1576         pud_t *pud;
1577         unsigned long next;
1578
1579         pud = pud_offset(p4d, addr);
1580         do {
1581                 next = pud_addr_end(addr, end);
1582                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1583                         if (next - addr != HPAGE_PUD_SIZE) {
1584                                 mmap_assert_locked(tlb->mm);
1585                                 split_huge_pud(vma, pud, addr);
1586                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1587                                 goto next;
1588                         /* fall through */
1589                 }
1590                 if (pud_none_or_clear_bad(pud))
1591                         continue;
1592                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1593 next:
1594                 cond_resched();
1595         } while (pud++, addr = next, addr != end);
1596
1597         return addr;
1598 }
1599
1600 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1601                                 struct vm_area_struct *vma, pgd_t *pgd,
1602                                 unsigned long addr, unsigned long end,
1603                                 struct zap_details *details)
1604 {
1605         p4d_t *p4d;
1606         unsigned long next;
1607
1608         p4d = p4d_offset(pgd, addr);
1609         do {
1610                 next = p4d_addr_end(addr, end);
1611                 if (p4d_none_or_clear_bad(p4d))
1612                         continue;
1613                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1614         } while (p4d++, addr = next, addr != end);
1615
1616         return addr;
1617 }
1618
1619 void unmap_page_range(struct mmu_gather *tlb,
1620                              struct vm_area_struct *vma,
1621                              unsigned long addr, unsigned long end,
1622                              struct zap_details *details)
1623 {
1624         pgd_t *pgd;
1625         unsigned long next;
1626
1627         BUG_ON(addr >= end);
1628         tlb_start_vma(tlb, vma);
1629         pgd = pgd_offset(vma->vm_mm, addr);
1630         do {
1631                 next = pgd_addr_end(addr, end);
1632                 if (pgd_none_or_clear_bad(pgd))
1633                         continue;
1634                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1635         } while (pgd++, addr = next, addr != end);
1636         tlb_end_vma(tlb, vma);
1637 }
1638
1639
1640 static void unmap_single_vma(struct mmu_gather *tlb,
1641                 struct vm_area_struct *vma, unsigned long start_addr,
1642                 unsigned long end_addr,
1643                 struct zap_details *details, bool mm_wr_locked)
1644 {
1645         unsigned long start = max(vma->vm_start, start_addr);
1646         unsigned long end;
1647
1648         if (start >= vma->vm_end)
1649                 return;
1650         end = min(vma->vm_end, end_addr);
1651         if (end <= vma->vm_start)
1652                 return;
1653
1654         if (vma->vm_file)
1655                 uprobe_munmap(vma, start, end);
1656
1657         if (unlikely(vma->vm_flags & VM_PFNMAP))
1658                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1659
1660         if (start != end) {
1661                 if (unlikely(is_vm_hugetlb_page(vma))) {
1662                         /*
1663                          * It is undesirable to test vma->vm_file as it
1664                          * should be non-null for valid hugetlb area.
1665                          * However, vm_file will be NULL in the error
1666                          * cleanup path of mmap_region. When
1667                          * hugetlbfs ->mmap method fails,
1668                          * mmap_region() nullifies vma->vm_file
1669                          * before calling this function to clean up.
1670                          * Since no pte has actually been setup, it is
1671                          * safe to do nothing in this case.
1672                          */
1673                         if (vma->vm_file) {
1674                                 zap_flags_t zap_flags = details ?
1675                                     details->zap_flags : 0;
1676                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1677                                                              NULL, zap_flags);
1678                         }
1679                 } else
1680                         unmap_page_range(tlb, vma, start, end, details);
1681         }
1682 }
1683
1684 /**
1685  * unmap_vmas - unmap a range of memory covered by a list of vma's
1686  * @tlb: address of the caller's struct mmu_gather
1687  * @mt: the maple tree
1688  * @vma: the starting vma
1689  * @start_addr: virtual address at which to start unmapping
1690  * @end_addr: virtual address at which to end unmapping
1691  *
1692  * Unmap all pages in the vma list.
1693  *
1694  * Only addresses between `start' and `end' will be unmapped.
1695  *
1696  * The VMA list must be sorted in ascending virtual address order.
1697  *
1698  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1699  * range after unmap_vmas() returns.  So the only responsibility here is to
1700  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1701  * drops the lock and schedules.
1702  */
1703 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1704                 struct vm_area_struct *vma, unsigned long start_addr,
1705                 unsigned long end_addr, bool mm_wr_locked)
1706 {
1707         struct mmu_notifier_range range;
1708         struct zap_details details = {
1709                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1710                 /* Careful - we need to zap private pages too! */
1711                 .even_cows = true,
1712         };
1713         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1714
1715         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1716                                 start_addr, end_addr);
1717         mmu_notifier_invalidate_range_start(&range);
1718         do {
1719                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1720                                  mm_wr_locked);
1721         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722         mmu_notifier_invalidate_range_end(&range);
1723 }
1724
1725 /**
1726  * zap_page_range_single - remove user pages in a given range
1727  * @vma: vm_area_struct holding the applicable pages
1728  * @address: starting address of pages to zap
1729  * @size: number of bytes to zap
1730  * @details: details of shared cache invalidation
1731  *
1732  * The range must fit into one VMA.
1733  */
1734 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1735                 unsigned long size, struct zap_details *details)
1736 {
1737         const unsigned long end = address + size;
1738         struct mmu_notifier_range range;
1739         struct mmu_gather tlb;
1740
1741         lru_add_drain();
1742         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1743                                 address, end);
1744         if (is_vm_hugetlb_page(vma))
1745                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1746                                                      &range.end);
1747         tlb_gather_mmu(&tlb, vma->vm_mm);
1748         update_hiwater_rss(vma->vm_mm);
1749         mmu_notifier_invalidate_range_start(&range);
1750         /*
1751          * unmap 'address-end' not 'range.start-range.end' as range
1752          * could have been expanded for hugetlb pmd sharing.
1753          */
1754         unmap_single_vma(&tlb, vma, address, end, details, false);
1755         mmu_notifier_invalidate_range_end(&range);
1756         tlb_finish_mmu(&tlb);
1757 }
1758
1759 /**
1760  * zap_vma_ptes - remove ptes mapping the vma
1761  * @vma: vm_area_struct holding ptes to be zapped
1762  * @address: starting address of pages to zap
1763  * @size: number of bytes to zap
1764  *
1765  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1766  *
1767  * The entire address range must be fully contained within the vma.
1768  *
1769  */
1770 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1771                 unsigned long size)
1772 {
1773         if (!range_in_vma(vma, address, address + size) ||
1774                         !(vma->vm_flags & VM_PFNMAP))
1775                 return;
1776
1777         zap_page_range_single(vma, address, size, NULL);
1778 }
1779 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1780
1781 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1782 {
1783         pgd_t *pgd;
1784         p4d_t *p4d;
1785         pud_t *pud;
1786         pmd_t *pmd;
1787
1788         pgd = pgd_offset(mm, addr);
1789         p4d = p4d_alloc(mm, pgd, addr);
1790         if (!p4d)
1791                 return NULL;
1792         pud = pud_alloc(mm, p4d, addr);
1793         if (!pud)
1794                 return NULL;
1795         pmd = pmd_alloc(mm, pud, addr);
1796         if (!pmd)
1797                 return NULL;
1798
1799         VM_BUG_ON(pmd_trans_huge(*pmd));
1800         return pmd;
1801 }
1802
1803 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1804                         spinlock_t **ptl)
1805 {
1806         pmd_t *pmd = walk_to_pmd(mm, addr);
1807
1808         if (!pmd)
1809                 return NULL;
1810         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1811 }
1812
1813 static int validate_page_before_insert(struct page *page)
1814 {
1815         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1816                 return -EINVAL;
1817         flush_dcache_page(page);
1818         return 0;
1819 }
1820
1821 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1822                         unsigned long addr, struct page *page, pgprot_t prot)
1823 {
1824         if (!pte_none(*pte))
1825                 return -EBUSY;
1826         /* Ok, finally just insert the thing.. */
1827         get_page(page);
1828         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1829         page_add_file_rmap(page, vma, false);
1830         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1831         return 0;
1832 }
1833
1834 /*
1835  * This is the old fallback for page remapping.
1836  *
1837  * For historical reasons, it only allows reserved pages. Only
1838  * old drivers should use this, and they needed to mark their
1839  * pages reserved for the old functions anyway.
1840  */
1841 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1842                         struct page *page, pgprot_t prot)
1843 {
1844         int retval;
1845         pte_t *pte;
1846         spinlock_t *ptl;
1847
1848         retval = validate_page_before_insert(page);
1849         if (retval)
1850                 goto out;
1851         retval = -ENOMEM;
1852         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1853         if (!pte)
1854                 goto out;
1855         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1856         pte_unmap_unlock(pte, ptl);
1857 out:
1858         return retval;
1859 }
1860
1861 #ifdef pte_index
1862 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1863                         unsigned long addr, struct page *page, pgprot_t prot)
1864 {
1865         int err;
1866
1867         if (!page_count(page))
1868                 return -EINVAL;
1869         err = validate_page_before_insert(page);
1870         if (err)
1871                 return err;
1872         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1873 }
1874
1875 /* insert_pages() amortizes the cost of spinlock operations
1876  * when inserting pages in a loop. Arch *must* define pte_index.
1877  */
1878 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879                         struct page **pages, unsigned long *num, pgprot_t prot)
1880 {
1881         pmd_t *pmd = NULL;
1882         pte_t *start_pte, *pte;
1883         spinlock_t *pte_lock;
1884         struct mm_struct *const mm = vma->vm_mm;
1885         unsigned long curr_page_idx = 0;
1886         unsigned long remaining_pages_total = *num;
1887         unsigned long pages_to_write_in_pmd;
1888         int ret;
1889 more:
1890         ret = -EFAULT;
1891         pmd = walk_to_pmd(mm, addr);
1892         if (!pmd)
1893                 goto out;
1894
1895         pages_to_write_in_pmd = min_t(unsigned long,
1896                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1897
1898         /* Allocate the PTE if necessary; takes PMD lock once only. */
1899         ret = -ENOMEM;
1900         if (pte_alloc(mm, pmd))
1901                 goto out;
1902
1903         while (pages_to_write_in_pmd) {
1904                 int pte_idx = 0;
1905                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1906
1907                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1908                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1909                         int err = insert_page_in_batch_locked(vma, pte,
1910                                 addr, pages[curr_page_idx], prot);
1911                         if (unlikely(err)) {
1912                                 pte_unmap_unlock(start_pte, pte_lock);
1913                                 ret = err;
1914                                 remaining_pages_total -= pte_idx;
1915                                 goto out;
1916                         }
1917                         addr += PAGE_SIZE;
1918                         ++curr_page_idx;
1919                 }
1920                 pte_unmap_unlock(start_pte, pte_lock);
1921                 pages_to_write_in_pmd -= batch_size;
1922                 remaining_pages_total -= batch_size;
1923         }
1924         if (remaining_pages_total)
1925                 goto more;
1926         ret = 0;
1927 out:
1928         *num = remaining_pages_total;
1929         return ret;
1930 }
1931 #endif  /* ifdef pte_index */
1932
1933 /**
1934  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1935  * @vma: user vma to map to
1936  * @addr: target start user address of these pages
1937  * @pages: source kernel pages
1938  * @num: in: number of pages to map. out: number of pages that were *not*
1939  * mapped. (0 means all pages were successfully mapped).
1940  *
1941  * Preferred over vm_insert_page() when inserting multiple pages.
1942  *
1943  * In case of error, we may have mapped a subset of the provided
1944  * pages. It is the caller's responsibility to account for this case.
1945  *
1946  * The same restrictions apply as in vm_insert_page().
1947  */
1948 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1949                         struct page **pages, unsigned long *num)
1950 {
1951 #ifdef pte_index
1952         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1953
1954         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1955                 return -EFAULT;
1956         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1958                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1959                 vm_flags_set(vma, VM_MIXEDMAP);
1960         }
1961         /* Defer page refcount checking till we're about to map that page. */
1962         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1963 #else
1964         unsigned long idx = 0, pgcount = *num;
1965         int err = -EINVAL;
1966
1967         for (; idx < pgcount; ++idx) {
1968                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1969                 if (err)
1970                         break;
1971         }
1972         *num = pgcount - idx;
1973         return err;
1974 #endif  /* ifdef pte_index */
1975 }
1976 EXPORT_SYMBOL(vm_insert_pages);
1977
1978 /**
1979  * vm_insert_page - insert single page into user vma
1980  * @vma: user vma to map to
1981  * @addr: target user address of this page
1982  * @page: source kernel page
1983  *
1984  * This allows drivers to insert individual pages they've allocated
1985  * into a user vma.
1986  *
1987  * The page has to be a nice clean _individual_ kernel allocation.
1988  * If you allocate a compound page, you need to have marked it as
1989  * such (__GFP_COMP), or manually just split the page up yourself
1990  * (see split_page()).
1991  *
1992  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993  * took an arbitrary page protection parameter. This doesn't allow
1994  * that. Your vma protection will have to be set up correctly, which
1995  * means that if you want a shared writable mapping, you'd better
1996  * ask for a shared writable mapping!
1997  *
1998  * The page does not need to be reserved.
1999  *
2000  * Usually this function is called from f_op->mmap() handler
2001  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2002  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003  * function from other places, for example from page-fault handler.
2004  *
2005  * Return: %0 on success, negative error code otherwise.
2006  */
2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2008                         struct page *page)
2009 {
2010         if (addr < vma->vm_start || addr >= vma->vm_end)
2011                 return -EFAULT;
2012         if (!page_count(page))
2013                 return -EINVAL;
2014         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2015                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2016                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2017                 vm_flags_set(vma, VM_MIXEDMAP);
2018         }
2019         return insert_page(vma, addr, page, vma->vm_page_prot);
2020 }
2021 EXPORT_SYMBOL(vm_insert_page);
2022
2023 /*
2024  * __vm_map_pages - maps range of kernel pages into user vma
2025  * @vma: user vma to map to
2026  * @pages: pointer to array of source kernel pages
2027  * @num: number of pages in page array
2028  * @offset: user's requested vm_pgoff
2029  *
2030  * This allows drivers to map range of kernel pages into a user vma.
2031  *
2032  * Return: 0 on success and error code otherwise.
2033  */
2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035                                 unsigned long num, unsigned long offset)
2036 {
2037         unsigned long count = vma_pages(vma);
2038         unsigned long uaddr = vma->vm_start;
2039         int ret, i;
2040
2041         /* Fail if the user requested offset is beyond the end of the object */
2042         if (offset >= num)
2043                 return -ENXIO;
2044
2045         /* Fail if the user requested size exceeds available object size */
2046         if (count > num - offset)
2047                 return -ENXIO;
2048
2049         for (i = 0; i < count; i++) {
2050                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2051                 if (ret < 0)
2052                         return ret;
2053                 uaddr += PAGE_SIZE;
2054         }
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * vm_map_pages - maps range of kernel pages starts with non zero offset
2061  * @vma: user vma to map to
2062  * @pages: pointer to array of source kernel pages
2063  * @num: number of pages in page array
2064  *
2065  * Maps an object consisting of @num pages, catering for the user's
2066  * requested vm_pgoff
2067  *
2068  * If we fail to insert any page into the vma, the function will return
2069  * immediately leaving any previously inserted pages present.  Callers
2070  * from the mmap handler may immediately return the error as their caller
2071  * will destroy the vma, removing any successfully inserted pages. Other
2072  * callers should make their own arrangements for calling unmap_region().
2073  *
2074  * Context: Process context. Called by mmap handlers.
2075  * Return: 0 on success and error code otherwise.
2076  */
2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2078                                 unsigned long num)
2079 {
2080         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2081 }
2082 EXPORT_SYMBOL(vm_map_pages);
2083
2084 /**
2085  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086  * @vma: user vma to map to
2087  * @pages: pointer to array of source kernel pages
2088  * @num: number of pages in page array
2089  *
2090  * Similar to vm_map_pages(), except that it explicitly sets the offset
2091  * to 0. This function is intended for the drivers that did not consider
2092  * vm_pgoff.
2093  *
2094  * Context: Process context. Called by mmap handlers.
2095  * Return: 0 on success and error code otherwise.
2096  */
2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2098                                 unsigned long num)
2099 {
2100         return __vm_map_pages(vma, pages, num, 0);
2101 }
2102 EXPORT_SYMBOL(vm_map_pages_zero);
2103
2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2105                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2106 {
2107         struct mm_struct *mm = vma->vm_mm;
2108         pte_t *pte, entry;
2109         spinlock_t *ptl;
2110
2111         pte = get_locked_pte(mm, addr, &ptl);
2112         if (!pte)
2113                 return VM_FAULT_OOM;
2114         if (!pte_none(*pte)) {
2115                 if (mkwrite) {
2116                         /*
2117                          * For read faults on private mappings the PFN passed
2118                          * in may not match the PFN we have mapped if the
2119                          * mapped PFN is a writeable COW page.  In the mkwrite
2120                          * case we are creating a writable PTE for a shared
2121                          * mapping and we expect the PFNs to match. If they
2122                          * don't match, we are likely racing with block
2123                          * allocation and mapping invalidation so just skip the
2124                          * update.
2125                          */
2126                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2127                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2128                                 goto out_unlock;
2129                         }
2130                         entry = pte_mkyoung(*pte);
2131                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2133                                 update_mmu_cache(vma, addr, pte);
2134                 }
2135                 goto out_unlock;
2136         }
2137
2138         /* Ok, finally just insert the thing.. */
2139         if (pfn_t_devmap(pfn))
2140                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2141         else
2142                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2143
2144         if (mkwrite) {
2145                 entry = pte_mkyoung(entry);
2146                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147         }
2148
2149         set_pte_at(mm, addr, pte, entry);
2150         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2151
2152 out_unlock:
2153         pte_unmap_unlock(pte, ptl);
2154         return VM_FAULT_NOPAGE;
2155 }
2156
2157 /**
2158  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2159  * @vma: user vma to map to
2160  * @addr: target user address of this page
2161  * @pfn: source kernel pfn
2162  * @pgprot: pgprot flags for the inserted page
2163  *
2164  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2165  * to override pgprot on a per-page basis.
2166  *
2167  * This only makes sense for IO mappings, and it makes no sense for
2168  * COW mappings.  In general, using multiple vmas is preferable;
2169  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2170  * impractical.
2171  *
2172  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2173  * caching- and encryption bits different than those of @vma->vm_page_prot,
2174  * because the caching- or encryption mode may not be known at mmap() time.
2175  *
2176  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2177  * to set caching and encryption bits for those vmas (except for COW pages).
2178  * This is ensured by core vm only modifying these page table entries using
2179  * functions that don't touch caching- or encryption bits, using pte_modify()
2180  * if needed. (See for example mprotect()).
2181  *
2182  * Also when new page-table entries are created, this is only done using the
2183  * fault() callback, and never using the value of vma->vm_page_prot,
2184  * except for page-table entries that point to anonymous pages as the result
2185  * of COW.
2186  *
2187  * Context: Process context.  May allocate using %GFP_KERNEL.
2188  * Return: vm_fault_t value.
2189  */
2190 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2191                         unsigned long pfn, pgprot_t pgprot)
2192 {
2193         /*
2194          * Technically, architectures with pte_special can avoid all these
2195          * restrictions (same for remap_pfn_range).  However we would like
2196          * consistency in testing and feature parity among all, so we should
2197          * try to keep these invariants in place for everybody.
2198          */
2199         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2200         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2201                                                 (VM_PFNMAP|VM_MIXEDMAP));
2202         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2203         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2204
2205         if (addr < vma->vm_start || addr >= vma->vm_end)
2206                 return VM_FAULT_SIGBUS;
2207
2208         if (!pfn_modify_allowed(pfn, pgprot))
2209                 return VM_FAULT_SIGBUS;
2210
2211         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2212
2213         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2214                         false);
2215 }
2216 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2217
2218 /**
2219  * vmf_insert_pfn - insert single pfn into user vma
2220  * @vma: user vma to map to
2221  * @addr: target user address of this page
2222  * @pfn: source kernel pfn
2223  *
2224  * Similar to vm_insert_page, this allows drivers to insert individual pages
2225  * they've allocated into a user vma. Same comments apply.
2226  *
2227  * This function should only be called from a vm_ops->fault handler, and
2228  * in that case the handler should return the result of this function.
2229  *
2230  * vma cannot be a COW mapping.
2231  *
2232  * As this is called only for pages that do not currently exist, we
2233  * do not need to flush old virtual caches or the TLB.
2234  *
2235  * Context: Process context.  May allocate using %GFP_KERNEL.
2236  * Return: vm_fault_t value.
2237  */
2238 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2239                         unsigned long pfn)
2240 {
2241         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2242 }
2243 EXPORT_SYMBOL(vmf_insert_pfn);
2244
2245 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2246 {
2247         /* these checks mirror the abort conditions in vm_normal_page */
2248         if (vma->vm_flags & VM_MIXEDMAP)
2249                 return true;
2250         if (pfn_t_devmap(pfn))
2251                 return true;
2252         if (pfn_t_special(pfn))
2253                 return true;
2254         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2255                 return true;
2256         return false;
2257 }
2258
2259 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2260                 unsigned long addr, pfn_t pfn, bool mkwrite)
2261 {
2262         pgprot_t pgprot = vma->vm_page_prot;
2263         int err;
2264
2265         BUG_ON(!vm_mixed_ok(vma, pfn));
2266
2267         if (addr < vma->vm_start || addr >= vma->vm_end)
2268                 return VM_FAULT_SIGBUS;
2269
2270         track_pfn_insert(vma, &pgprot, pfn);
2271
2272         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2273                 return VM_FAULT_SIGBUS;
2274
2275         /*
2276          * If we don't have pte special, then we have to use the pfn_valid()
2277          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2278          * refcount the page if pfn_valid is true (hence insert_page rather
2279          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2280          * without pte special, it would there be refcounted as a normal page.
2281          */
2282         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2283             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2284                 struct page *page;
2285
2286                 /*
2287                  * At this point we are committed to insert_page()
2288                  * regardless of whether the caller specified flags that
2289                  * result in pfn_t_has_page() == false.
2290                  */
2291                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2292                 err = insert_page(vma, addr, page, pgprot);
2293         } else {
2294                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2295         }
2296
2297         if (err == -ENOMEM)
2298                 return VM_FAULT_OOM;
2299         if (err < 0 && err != -EBUSY)
2300                 return VM_FAULT_SIGBUS;
2301
2302         return VM_FAULT_NOPAGE;
2303 }
2304
2305 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2306                 pfn_t pfn)
2307 {
2308         return __vm_insert_mixed(vma, addr, pfn, false);
2309 }
2310 EXPORT_SYMBOL(vmf_insert_mixed);
2311
2312 /*
2313  *  If the insertion of PTE failed because someone else already added a
2314  *  different entry in the mean time, we treat that as success as we assume
2315  *  the same entry was actually inserted.
2316  */
2317 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2318                 unsigned long addr, pfn_t pfn)
2319 {
2320         return __vm_insert_mixed(vma, addr, pfn, true);
2321 }
2322 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2323
2324 /*
2325  * maps a range of physical memory into the requested pages. the old
2326  * mappings are removed. any references to nonexistent pages results
2327  * in null mappings (currently treated as "copy-on-access")
2328  */
2329 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2330                         unsigned long addr, unsigned long end,
2331                         unsigned long pfn, pgprot_t prot)
2332 {
2333         pte_t *pte, *mapped_pte;
2334         spinlock_t *ptl;
2335         int err = 0;
2336
2337         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2338         if (!pte)
2339                 return -ENOMEM;
2340         arch_enter_lazy_mmu_mode();
2341         do {
2342                 BUG_ON(!pte_none(*pte));
2343                 if (!pfn_modify_allowed(pfn, prot)) {
2344                         err = -EACCES;
2345                         break;
2346                 }
2347                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2348                 pfn++;
2349         } while (pte++, addr += PAGE_SIZE, addr != end);
2350         arch_leave_lazy_mmu_mode();
2351         pte_unmap_unlock(mapped_pte, ptl);
2352         return err;
2353 }
2354
2355 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2356                         unsigned long addr, unsigned long end,
2357                         unsigned long pfn, pgprot_t prot)
2358 {
2359         pmd_t *pmd;
2360         unsigned long next;
2361         int err;
2362
2363         pfn -= addr >> PAGE_SHIFT;
2364         pmd = pmd_alloc(mm, pud, addr);
2365         if (!pmd)
2366                 return -ENOMEM;
2367         VM_BUG_ON(pmd_trans_huge(*pmd));
2368         do {
2369                 next = pmd_addr_end(addr, end);
2370                 err = remap_pte_range(mm, pmd, addr, next,
2371                                 pfn + (addr >> PAGE_SHIFT), prot);
2372                 if (err)
2373                         return err;
2374         } while (pmd++, addr = next, addr != end);
2375         return 0;
2376 }
2377
2378 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2379                         unsigned long addr, unsigned long end,
2380                         unsigned long pfn, pgprot_t prot)
2381 {
2382         pud_t *pud;
2383         unsigned long next;
2384         int err;
2385
2386         pfn -= addr >> PAGE_SHIFT;
2387         pud = pud_alloc(mm, p4d, addr);
2388         if (!pud)
2389                 return -ENOMEM;
2390         do {
2391                 next = pud_addr_end(addr, end);
2392                 err = remap_pmd_range(mm, pud, addr, next,
2393                                 pfn + (addr >> PAGE_SHIFT), prot);
2394                 if (err)
2395                         return err;
2396         } while (pud++, addr = next, addr != end);
2397         return 0;
2398 }
2399
2400 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2401                         unsigned long addr, unsigned long end,
2402                         unsigned long pfn, pgprot_t prot)
2403 {
2404         p4d_t *p4d;
2405         unsigned long next;
2406         int err;
2407
2408         pfn -= addr >> PAGE_SHIFT;
2409         p4d = p4d_alloc(mm, pgd, addr);
2410         if (!p4d)
2411                 return -ENOMEM;
2412         do {
2413                 next = p4d_addr_end(addr, end);
2414                 err = remap_pud_range(mm, p4d, addr, next,
2415                                 pfn + (addr >> PAGE_SHIFT), prot);
2416                 if (err)
2417                         return err;
2418         } while (p4d++, addr = next, addr != end);
2419         return 0;
2420 }
2421
2422 /*
2423  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2424  * must have pre-validated the caching bits of the pgprot_t.
2425  */
2426 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2427                 unsigned long pfn, unsigned long size, pgprot_t prot)
2428 {
2429         pgd_t *pgd;
2430         unsigned long next;
2431         unsigned long end = addr + PAGE_ALIGN(size);
2432         struct mm_struct *mm = vma->vm_mm;
2433         int err;
2434
2435         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2436                 return -EINVAL;
2437
2438         /*
2439          * Physically remapped pages are special. Tell the
2440          * rest of the world about it:
2441          *   VM_IO tells people not to look at these pages
2442          *      (accesses can have side effects).
2443          *   VM_PFNMAP tells the core MM that the base pages are just
2444          *      raw PFN mappings, and do not have a "struct page" associated
2445          *      with them.
2446          *   VM_DONTEXPAND
2447          *      Disable vma merging and expanding with mremap().
2448          *   VM_DONTDUMP
2449          *      Omit vma from core dump, even when VM_IO turned off.
2450          *
2451          * There's a horrible special case to handle copy-on-write
2452          * behaviour that some programs depend on. We mark the "original"
2453          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2454          * See vm_normal_page() for details.
2455          */
2456         if (is_cow_mapping(vma->vm_flags)) {
2457                 if (addr != vma->vm_start || end != vma->vm_end)
2458                         return -EINVAL;
2459                 vma->vm_pgoff = pfn;
2460         }
2461
2462         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2463
2464         BUG_ON(addr >= end);
2465         pfn -= addr >> PAGE_SHIFT;
2466         pgd = pgd_offset(mm, addr);
2467         flush_cache_range(vma, addr, end);
2468         do {
2469                 next = pgd_addr_end(addr, end);
2470                 err = remap_p4d_range(mm, pgd, addr, next,
2471                                 pfn + (addr >> PAGE_SHIFT), prot);
2472                 if (err)
2473                         return err;
2474         } while (pgd++, addr = next, addr != end);
2475
2476         return 0;
2477 }
2478
2479 /**
2480  * remap_pfn_range - remap kernel memory to userspace
2481  * @vma: user vma to map to
2482  * @addr: target page aligned user address to start at
2483  * @pfn: page frame number of kernel physical memory address
2484  * @size: size of mapping area
2485  * @prot: page protection flags for this mapping
2486  *
2487  * Note: this is only safe if the mm semaphore is held when called.
2488  *
2489  * Return: %0 on success, negative error code otherwise.
2490  */
2491 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2492                     unsigned long pfn, unsigned long size, pgprot_t prot)
2493 {
2494         int err;
2495
2496         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2497         if (err)
2498                 return -EINVAL;
2499
2500         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2501         if (err)
2502                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2503         return err;
2504 }
2505 EXPORT_SYMBOL(remap_pfn_range);
2506
2507 /**
2508  * vm_iomap_memory - remap memory to userspace
2509  * @vma: user vma to map to
2510  * @start: start of the physical memory to be mapped
2511  * @len: size of area
2512  *
2513  * This is a simplified io_remap_pfn_range() for common driver use. The
2514  * driver just needs to give us the physical memory range to be mapped,
2515  * we'll figure out the rest from the vma information.
2516  *
2517  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2518  * whatever write-combining details or similar.
2519  *
2520  * Return: %0 on success, negative error code otherwise.
2521  */
2522 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2523 {
2524         unsigned long vm_len, pfn, pages;
2525
2526         /* Check that the physical memory area passed in looks valid */
2527         if (start + len < start)
2528                 return -EINVAL;
2529         /*
2530          * You *really* shouldn't map things that aren't page-aligned,
2531          * but we've historically allowed it because IO memory might
2532          * just have smaller alignment.
2533          */
2534         len += start & ~PAGE_MASK;
2535         pfn = start >> PAGE_SHIFT;
2536         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2537         if (pfn + pages < pfn)
2538                 return -EINVAL;
2539
2540         /* We start the mapping 'vm_pgoff' pages into the area */
2541         if (vma->vm_pgoff > pages)
2542                 return -EINVAL;
2543         pfn += vma->vm_pgoff;
2544         pages -= vma->vm_pgoff;
2545
2546         /* Can we fit all of the mapping? */
2547         vm_len = vma->vm_end - vma->vm_start;
2548         if (vm_len >> PAGE_SHIFT > pages)
2549                 return -EINVAL;
2550
2551         /* Ok, let it rip */
2552         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2553 }
2554 EXPORT_SYMBOL(vm_iomap_memory);
2555
2556 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2557                                      unsigned long addr, unsigned long end,
2558                                      pte_fn_t fn, void *data, bool create,
2559                                      pgtbl_mod_mask *mask)
2560 {
2561         pte_t *pte, *mapped_pte;
2562         int err = 0;
2563         spinlock_t *ptl;
2564
2565         if (create) {
2566                 mapped_pte = pte = (mm == &init_mm) ?
2567                         pte_alloc_kernel_track(pmd, addr, mask) :
2568                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2569                 if (!pte)
2570                         return -ENOMEM;
2571         } else {
2572                 mapped_pte = pte = (mm == &init_mm) ?
2573                         pte_offset_kernel(pmd, addr) :
2574                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2575         }
2576
2577         BUG_ON(pmd_huge(*pmd));
2578
2579         arch_enter_lazy_mmu_mode();
2580
2581         if (fn) {
2582                 do {
2583                         if (create || !pte_none(*pte)) {
2584                                 err = fn(pte++, addr, data);
2585                                 if (err)
2586                                         break;
2587                         }
2588                 } while (addr += PAGE_SIZE, addr != end);
2589         }
2590         *mask |= PGTBL_PTE_MODIFIED;
2591
2592         arch_leave_lazy_mmu_mode();
2593
2594         if (mm != &init_mm)
2595                 pte_unmap_unlock(mapped_pte, ptl);
2596         return err;
2597 }
2598
2599 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2600                                      unsigned long addr, unsigned long end,
2601                                      pte_fn_t fn, void *data, bool create,
2602                                      pgtbl_mod_mask *mask)
2603 {
2604         pmd_t *pmd;
2605         unsigned long next;
2606         int err = 0;
2607
2608         BUG_ON(pud_huge(*pud));
2609
2610         if (create) {
2611                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2612                 if (!pmd)
2613                         return -ENOMEM;
2614         } else {
2615                 pmd = pmd_offset(pud, addr);
2616         }
2617         do {
2618                 next = pmd_addr_end(addr, end);
2619                 if (pmd_none(*pmd) && !create)
2620                         continue;
2621                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2622                         return -EINVAL;
2623                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2624                         if (!create)
2625                                 continue;
2626                         pmd_clear_bad(pmd);
2627                 }
2628                 err = apply_to_pte_range(mm, pmd, addr, next,
2629                                          fn, data, create, mask);
2630                 if (err)
2631                         break;
2632         } while (pmd++, addr = next, addr != end);
2633
2634         return err;
2635 }
2636
2637 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2638                                      unsigned long addr, unsigned long end,
2639                                      pte_fn_t fn, void *data, bool create,
2640                                      pgtbl_mod_mask *mask)
2641 {
2642         pud_t *pud;
2643         unsigned long next;
2644         int err = 0;
2645
2646         if (create) {
2647                 pud = pud_alloc_track(mm, p4d, addr, mask);
2648                 if (!pud)
2649                         return -ENOMEM;
2650         } else {
2651                 pud = pud_offset(p4d, addr);
2652         }
2653         do {
2654                 next = pud_addr_end(addr, end);
2655                 if (pud_none(*pud) && !create)
2656                         continue;
2657                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2658                         return -EINVAL;
2659                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2660                         if (!create)
2661                                 continue;
2662                         pud_clear_bad(pud);
2663                 }
2664                 err = apply_to_pmd_range(mm, pud, addr, next,
2665                                          fn, data, create, mask);
2666                 if (err)
2667                         break;
2668         } while (pud++, addr = next, addr != end);
2669
2670         return err;
2671 }
2672
2673 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2674                                      unsigned long addr, unsigned long end,
2675                                      pte_fn_t fn, void *data, bool create,
2676                                      pgtbl_mod_mask *mask)
2677 {
2678         p4d_t *p4d;
2679         unsigned long next;
2680         int err = 0;
2681
2682         if (create) {
2683                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2684                 if (!p4d)
2685                         return -ENOMEM;
2686         } else {
2687                 p4d = p4d_offset(pgd, addr);
2688         }
2689         do {
2690                 next = p4d_addr_end(addr, end);
2691                 if (p4d_none(*p4d) && !create)
2692                         continue;
2693                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2694                         return -EINVAL;
2695                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2696                         if (!create)
2697                                 continue;
2698                         p4d_clear_bad(p4d);
2699                 }
2700                 err = apply_to_pud_range(mm, p4d, addr, next,
2701                                          fn, data, create, mask);
2702                 if (err)
2703                         break;
2704         } while (p4d++, addr = next, addr != end);
2705
2706         return err;
2707 }
2708
2709 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2710                                  unsigned long size, pte_fn_t fn,
2711                                  void *data, bool create)
2712 {
2713         pgd_t *pgd;
2714         unsigned long start = addr, next;
2715         unsigned long end = addr + size;
2716         pgtbl_mod_mask mask = 0;
2717         int err = 0;
2718
2719         if (WARN_ON(addr >= end))
2720                 return -EINVAL;
2721
2722         pgd = pgd_offset(mm, addr);
2723         do {
2724                 next = pgd_addr_end(addr, end);
2725                 if (pgd_none(*pgd) && !create)
2726                         continue;
2727                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2728                         return -EINVAL;
2729                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2730                         if (!create)
2731                                 continue;
2732                         pgd_clear_bad(pgd);
2733                 }
2734                 err = apply_to_p4d_range(mm, pgd, addr, next,
2735                                          fn, data, create, &mask);
2736                 if (err)
2737                         break;
2738         } while (pgd++, addr = next, addr != end);
2739
2740         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2741                 arch_sync_kernel_mappings(start, start + size);
2742
2743         return err;
2744 }
2745
2746 /*
2747  * Scan a region of virtual memory, filling in page tables as necessary
2748  * and calling a provided function on each leaf page table.
2749  */
2750 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751                         unsigned long size, pte_fn_t fn, void *data)
2752 {
2753         return __apply_to_page_range(mm, addr, size, fn, data, true);
2754 }
2755 EXPORT_SYMBOL_GPL(apply_to_page_range);
2756
2757 /*
2758  * Scan a region of virtual memory, calling a provided function on
2759  * each leaf page table where it exists.
2760  *
2761  * Unlike apply_to_page_range, this does _not_ fill in page tables
2762  * where they are absent.
2763  */
2764 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2765                                  unsigned long size, pte_fn_t fn, void *data)
2766 {
2767         return __apply_to_page_range(mm, addr, size, fn, data, false);
2768 }
2769 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2770
2771 /*
2772  * handle_pte_fault chooses page fault handler according to an entry which was
2773  * read non-atomically.  Before making any commitment, on those architectures
2774  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2775  * parts, do_swap_page must check under lock before unmapping the pte and
2776  * proceeding (but do_wp_page is only called after already making such a check;
2777  * and do_anonymous_page can safely check later on).
2778  */
2779 static inline int pte_unmap_same(struct vm_fault *vmf)
2780 {
2781         int same = 1;
2782 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2783         if (sizeof(pte_t) > sizeof(unsigned long)) {
2784                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2785                 spin_lock(ptl);
2786                 same = pte_same(*vmf->pte, vmf->orig_pte);
2787                 spin_unlock(ptl);
2788         }
2789 #endif
2790         pte_unmap(vmf->pte);
2791         vmf->pte = NULL;
2792         return same;
2793 }
2794
2795 /*
2796  * Return:
2797  *      0:              copied succeeded
2798  *      -EHWPOISON:     copy failed due to hwpoison in source page
2799  *      -EAGAIN:        copied failed (some other reason)
2800  */
2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802                                       struct vm_fault *vmf)
2803 {
2804         int ret;
2805         void *kaddr;
2806         void __user *uaddr;
2807         bool locked = false;
2808         struct vm_area_struct *vma = vmf->vma;
2809         struct mm_struct *mm = vma->vm_mm;
2810         unsigned long addr = vmf->address;
2811
2812         if (likely(src)) {
2813                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814                         memory_failure_queue(page_to_pfn(src), 0);
2815                         return -EHWPOISON;
2816                 }
2817                 return 0;
2818         }
2819
2820         /*
2821          * If the source page was a PFN mapping, we don't have
2822          * a "struct page" for it. We do a best-effort copy by
2823          * just copying from the original user address. If that
2824          * fails, we just zero-fill it. Live with it.
2825          */
2826         kaddr = kmap_atomic(dst);
2827         uaddr = (void __user *)(addr & PAGE_MASK);
2828
2829         /*
2830          * On architectures with software "accessed" bits, we would
2831          * take a double page fault, so mark it accessed here.
2832          */
2833         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2834                 pte_t entry;
2835
2836                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2837                 locked = true;
2838                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2839                         /*
2840                          * Other thread has already handled the fault
2841                          * and update local tlb only
2842                          */
2843                         update_mmu_tlb(vma, addr, vmf->pte);
2844                         ret = -EAGAIN;
2845                         goto pte_unlock;
2846                 }
2847
2848                 entry = pte_mkyoung(vmf->orig_pte);
2849                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850                         update_mmu_cache(vma, addr, vmf->pte);
2851         }
2852
2853         /*
2854          * This really shouldn't fail, because the page is there
2855          * in the page tables. But it might just be unreadable,
2856          * in which case we just give up and fill the result with
2857          * zeroes.
2858          */
2859         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2860                 if (locked)
2861                         goto warn;
2862
2863                 /* Re-validate under PTL if the page is still mapped */
2864                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2865                 locked = true;
2866                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2867                         /* The PTE changed under us, update local tlb */
2868                         update_mmu_tlb(vma, addr, vmf->pte);
2869                         ret = -EAGAIN;
2870                         goto pte_unlock;
2871                 }
2872
2873                 /*
2874                  * The same page can be mapped back since last copy attempt.
2875                  * Try to copy again under PTL.
2876                  */
2877                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2878                         /*
2879                          * Give a warn in case there can be some obscure
2880                          * use-case
2881                          */
2882 warn:
2883                         WARN_ON_ONCE(1);
2884                         clear_page(kaddr);
2885                 }
2886         }
2887
2888         ret = 0;
2889
2890 pte_unlock:
2891         if (locked)
2892                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2893         kunmap_atomic(kaddr);
2894         flush_dcache_page(dst);
2895
2896         return ret;
2897 }
2898
2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2900 {
2901         struct file *vm_file = vma->vm_file;
2902
2903         if (vm_file)
2904                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2905
2906         /*
2907          * Special mappings (e.g. VDSO) do not have any file so fake
2908          * a default GFP_KERNEL for them.
2909          */
2910         return GFP_KERNEL;
2911 }
2912
2913 /*
2914  * Notify the address space that the page is about to become writable so that
2915  * it can prohibit this or wait for the page to get into an appropriate state.
2916  *
2917  * We do this without the lock held, so that it can sleep if it needs to.
2918  */
2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2920 {
2921         vm_fault_t ret;
2922         struct page *page = vmf->page;
2923         unsigned int old_flags = vmf->flags;
2924
2925         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2926
2927         if (vmf->vma->vm_file &&
2928             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929                 return VM_FAULT_SIGBUS;
2930
2931         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2932         /* Restore original flags so that caller is not surprised */
2933         vmf->flags = old_flags;
2934         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935                 return ret;
2936         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2937                 lock_page(page);
2938                 if (!page->mapping) {
2939                         unlock_page(page);
2940                         return 0; /* retry */
2941                 }
2942                 ret |= VM_FAULT_LOCKED;
2943         } else
2944                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2945         return ret;
2946 }
2947
2948 /*
2949  * Handle dirtying of a page in shared file mapping on a write fault.
2950  *
2951  * The function expects the page to be locked and unlocks it.
2952  */
2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2954 {
2955         struct vm_area_struct *vma = vmf->vma;
2956         struct address_space *mapping;
2957         struct page *page = vmf->page;
2958         bool dirtied;
2959         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960
2961         dirtied = set_page_dirty(page);
2962         VM_BUG_ON_PAGE(PageAnon(page), page);
2963         /*
2964          * Take a local copy of the address_space - page.mapping may be zeroed
2965          * by truncate after unlock_page().   The address_space itself remains
2966          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2967          * release semantics to prevent the compiler from undoing this copying.
2968          */
2969         mapping = page_rmapping(page);
2970         unlock_page(page);
2971
2972         if (!page_mkwrite)
2973                 file_update_time(vma->vm_file);
2974
2975         /*
2976          * Throttle page dirtying rate down to writeback speed.
2977          *
2978          * mapping may be NULL here because some device drivers do not
2979          * set page.mapping but still dirty their pages
2980          *
2981          * Drop the mmap_lock before waiting on IO, if we can. The file
2982          * is pinning the mapping, as per above.
2983          */
2984         if ((dirtied || page_mkwrite) && mapping) {
2985                 struct file *fpin;
2986
2987                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2988                 balance_dirty_pages_ratelimited(mapping);
2989                 if (fpin) {
2990                         fput(fpin);
2991                         return VM_FAULT_COMPLETED;
2992                 }
2993         }
2994
2995         return 0;
2996 }
2997
2998 /*
2999  * Handle write page faults for pages that can be reused in the current vma
3000  *
3001  * This can happen either due to the mapping being with the VM_SHARED flag,
3002  * or due to us being the last reference standing to the page. In either
3003  * case, all we need to do here is to mark the page as writable and update
3004  * any related book-keeping.
3005  */
3006 static inline void wp_page_reuse(struct vm_fault *vmf)
3007         __releases(vmf->ptl)
3008 {
3009         struct vm_area_struct *vma = vmf->vma;
3010         struct page *page = vmf->page;
3011         pte_t entry;
3012
3013         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3014         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3015
3016         /*
3017          * Clear the pages cpupid information as the existing
3018          * information potentially belongs to a now completely
3019          * unrelated process.
3020          */
3021         if (page)
3022                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023
3024         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025         entry = pte_mkyoung(vmf->orig_pte);
3026         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3027         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028                 update_mmu_cache(vma, vmf->address, vmf->pte);
3029         pte_unmap_unlock(vmf->pte, vmf->ptl);
3030         count_vm_event(PGREUSE);
3031 }
3032
3033 /*
3034  * Handle the case of a page which we actually need to copy to a new page,
3035  * either due to COW or unsharing.
3036  *
3037  * Called with mmap_lock locked and the old page referenced, but
3038  * without the ptl held.
3039  *
3040  * High level logic flow:
3041  *
3042  * - Allocate a page, copy the content of the old page to the new one.
3043  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044  * - Take the PTL. If the pte changed, bail out and release the allocated page
3045  * - If the pte is still the way we remember it, update the page table and all
3046  *   relevant references. This includes dropping the reference the page-table
3047  *   held to the old page, as well as updating the rmap.
3048  * - In any case, unlock the PTL and drop the reference we took to the old page.
3049  */
3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3051 {
3052         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3053         struct vm_area_struct *vma = vmf->vma;
3054         struct mm_struct *mm = vma->vm_mm;
3055         struct folio *old_folio = NULL;
3056         struct folio *new_folio = NULL;
3057         pte_t entry;
3058         int page_copied = 0;
3059         struct mmu_notifier_range range;
3060         int ret;
3061
3062         delayacct_wpcopy_start();
3063
3064         if (vmf->page)
3065                 old_folio = page_folio(vmf->page);
3066         if (unlikely(anon_vma_prepare(vma)))
3067                 goto oom;
3068
3069         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3070                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3071                 if (!new_folio)
3072                         goto oom;
3073         } else {
3074                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075                                 vmf->address, false);
3076                 if (!new_folio)
3077                         goto oom;
3078
3079                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3080                 if (ret) {
3081                         /*
3082                          * COW failed, if the fault was solved by other,
3083                          * it's fine. If not, userspace would re-fault on
3084                          * the same address and we will handle the fault
3085                          * from the second attempt.
3086                          * The -EHWPOISON case will not be retried.
3087                          */
3088                         folio_put(new_folio);
3089                         if (old_folio)
3090                                 folio_put(old_folio);
3091
3092                         delayacct_wpcopy_end();
3093                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3094                 }
3095                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3096         }
3097
3098         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3099                 goto oom_free_new;
3100         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3101
3102         __folio_mark_uptodate(new_folio);
3103
3104         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3105                                 vmf->address & PAGE_MASK,
3106                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107         mmu_notifier_invalidate_range_start(&range);
3108
3109         /*
3110          * Re-check the pte - we dropped the lock
3111          */
3112         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3113         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3114                 if (old_folio) {
3115                         if (!folio_test_anon(old_folio)) {
3116                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3117                                 inc_mm_counter(mm, MM_ANONPAGES);
3118                         }
3119                 } else {
3120                         inc_mm_counter(mm, MM_ANONPAGES);
3121                 }
3122                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3123                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3124                 entry = pte_sw_mkyoung(entry);
3125                 if (unlikely(unshare)) {
3126                         if (pte_soft_dirty(vmf->orig_pte))
3127                                 entry = pte_mksoft_dirty(entry);
3128                         if (pte_uffd_wp(vmf->orig_pte))
3129                                 entry = pte_mkuffd_wp(entry);
3130                 } else {
3131                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3132                 }
3133
3134                 /*
3135                  * Clear the pte entry and flush it first, before updating the
3136                  * pte with the new entry, to keep TLBs on different CPUs in
3137                  * sync. This code used to set the new PTE then flush TLBs, but
3138                  * that left a window where the new PTE could be loaded into
3139                  * some TLBs while the old PTE remains in others.
3140                  */
3141                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3142                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143                 folio_add_lru_vma(new_folio, vma);
3144                 /*
3145                  * We call the notify macro here because, when using secondary
3146                  * mmu page tables (such as kvm shadow page tables), we want the
3147                  * new page to be mapped directly into the secondary page table.
3148                  */
3149                 BUG_ON(unshare && pte_write(entry));
3150                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151                 update_mmu_cache(vma, vmf->address, vmf->pte);
3152                 if (old_folio) {
3153                         /*
3154                          * Only after switching the pte to the new page may
3155                          * we remove the mapcount here. Otherwise another
3156                          * process may come and find the rmap count decremented
3157                          * before the pte is switched to the new page, and
3158                          * "reuse" the old page writing into it while our pte
3159                          * here still points into it and can be read by other
3160                          * threads.
3161                          *
3162                          * The critical issue is to order this
3163                          * page_remove_rmap with the ptp_clear_flush above.
3164                          * Those stores are ordered by (if nothing else,)
3165                          * the barrier present in the atomic_add_negative
3166                          * in page_remove_rmap.
3167                          *
3168                          * Then the TLB flush in ptep_clear_flush ensures that
3169                          * no process can access the old page before the
3170                          * decremented mapcount is visible. And the old page
3171                          * cannot be reused until after the decremented
3172                          * mapcount is visible. So transitively, TLBs to
3173                          * old page will be flushed before it can be reused.
3174                          */
3175                         page_remove_rmap(vmf->page, vma, false);
3176                 }
3177
3178                 /* Free the old page.. */
3179                 new_folio = old_folio;
3180                 page_copied = 1;
3181         } else {
3182                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3183         }
3184
3185         if (new_folio)
3186                 folio_put(new_folio);
3187
3188         pte_unmap_unlock(vmf->pte, vmf->ptl);
3189         /*
3190          * No need to double call mmu_notifier->invalidate_range() callback as
3191          * the above ptep_clear_flush_notify() did already call it.
3192          */
3193         mmu_notifier_invalidate_range_only_end(&range);
3194         if (old_folio) {
3195                 if (page_copied)
3196                         free_swap_cache(&old_folio->page);
3197                 folio_put(old_folio);
3198         }
3199
3200         delayacct_wpcopy_end();
3201         return 0;
3202 oom_free_new:
3203         folio_put(new_folio);
3204 oom:
3205         if (old_folio)
3206                 folio_put(old_folio);
3207
3208         delayacct_wpcopy_end();
3209         return VM_FAULT_OOM;
3210 }
3211
3212 /**
3213  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3214  *                        writeable once the page is prepared
3215  *
3216  * @vmf: structure describing the fault
3217  *
3218  * This function handles all that is needed to finish a write page fault in a
3219  * shared mapping due to PTE being read-only once the mapped page is prepared.
3220  * It handles locking of PTE and modifying it.
3221  *
3222  * The function expects the page to be locked or other protection against
3223  * concurrent faults / writeback (such as DAX radix tree locks).
3224  *
3225  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3226  * we acquired PTE lock.
3227  */
3228 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3229 {
3230         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3231         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3232                                        &vmf->ptl);
3233         /*
3234          * We might have raced with another page fault while we released the
3235          * pte_offset_map_lock.
3236          */
3237         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3238                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3239                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3240                 return VM_FAULT_NOPAGE;
3241         }
3242         wp_page_reuse(vmf);
3243         return 0;
3244 }
3245
3246 /*
3247  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3248  * mapping
3249  */
3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3251 {
3252         struct vm_area_struct *vma = vmf->vma;
3253
3254         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3255                 vm_fault_t ret;
3256
3257                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3258                 vmf->flags |= FAULT_FLAG_MKWRITE;
3259                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3260                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3261                         return ret;
3262                 return finish_mkwrite_fault(vmf);
3263         }
3264         wp_page_reuse(vmf);
3265         return 0;
3266 }
3267
3268 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3269         __releases(vmf->ptl)
3270 {
3271         struct vm_area_struct *vma = vmf->vma;
3272         vm_fault_t ret = 0;
3273
3274         get_page(vmf->page);
3275
3276         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3277                 vm_fault_t tmp;
3278
3279                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3280                 tmp = do_page_mkwrite(vmf);
3281                 if (unlikely(!tmp || (tmp &
3282                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3283                         put_page(vmf->page);
3284                         return tmp;
3285                 }
3286                 tmp = finish_mkwrite_fault(vmf);
3287                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3288                         unlock_page(vmf->page);
3289                         put_page(vmf->page);
3290                         return tmp;
3291                 }
3292         } else {
3293                 wp_page_reuse(vmf);
3294                 lock_page(vmf->page);
3295         }
3296         ret |= fault_dirty_shared_page(vmf);
3297         put_page(vmf->page);
3298
3299         return ret;
3300 }
3301
3302 /*
3303  * This routine handles present pages, when
3304  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3305  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3306  *   (FAULT_FLAG_UNSHARE)
3307  *
3308  * It is done by copying the page to a new address and decrementing the
3309  * shared-page counter for the old page.
3310  *
3311  * Note that this routine assumes that the protection checks have been
3312  * done by the caller (the low-level page fault routine in most cases).
3313  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3314  * done any necessary COW.
3315  *
3316  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3317  * though the page will change only once the write actually happens. This
3318  * avoids a few races, and potentially makes it more efficient.
3319  *
3320  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3321  * but allow concurrent faults), with pte both mapped and locked.
3322  * We return with mmap_lock still held, but pte unmapped and unlocked.
3323  */
3324 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3325         __releases(vmf->ptl)
3326 {
3327         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3328         struct vm_area_struct *vma = vmf->vma;
3329         struct folio *folio = NULL;
3330
3331         if (likely(!unshare)) {
3332                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3333                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3334                         return handle_userfault(vmf, VM_UFFD_WP);
3335                 }
3336
3337                 /*
3338                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3339                  * is flushed in this case before copying.
3340                  */
3341                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3342                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3343                         flush_tlb_page(vmf->vma, vmf->address);
3344         }
3345
3346         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3347
3348         /*
3349          * Shared mapping: we are guaranteed to have VM_WRITE and
3350          * FAULT_FLAG_WRITE set at this point.
3351          */
3352         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3353                 /*
3354                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3355                  * VM_PFNMAP VMA.
3356                  *
3357                  * We should not cow pages in a shared writeable mapping.
3358                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3359                  */
3360                 if (!vmf->page)
3361                         return wp_pfn_shared(vmf);
3362                 return wp_page_shared(vmf);
3363         }
3364
3365         if (vmf->page)
3366                 folio = page_folio(vmf->page);
3367
3368         /*
3369          * Private mapping: create an exclusive anonymous page copy if reuse
3370          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3371          */
3372         if (folio && folio_test_anon(folio)) {
3373                 /*
3374                  * If the page is exclusive to this process we must reuse the
3375                  * page without further checks.
3376                  */
3377                 if (PageAnonExclusive(vmf->page))
3378                         goto reuse;
3379
3380                 /*
3381                  * We have to verify under folio lock: these early checks are
3382                  * just an optimization to avoid locking the folio and freeing
3383                  * the swapcache if there is little hope that we can reuse.
3384                  *
3385                  * KSM doesn't necessarily raise the folio refcount.
3386                  */
3387                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3388                         goto copy;
3389                 if (!folio_test_lru(folio))
3390                         /*
3391                          * Note: We cannot easily detect+handle references from
3392                          * remote LRU pagevecs or references to LRU folios.
3393                          */
3394                         lru_add_drain();
3395                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3396                         goto copy;
3397                 if (!folio_trylock(folio))
3398                         goto copy;
3399                 if (folio_test_swapcache(folio))
3400                         folio_free_swap(folio);
3401                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3402                         folio_unlock(folio);
3403                         goto copy;
3404                 }
3405                 /*
3406                  * Ok, we've got the only folio reference from our mapping
3407                  * and the folio is locked, it's dark out, and we're wearing
3408                  * sunglasses. Hit it.
3409                  */
3410                 page_move_anon_rmap(vmf->page, vma);
3411                 folio_unlock(folio);
3412 reuse:
3413                 if (unlikely(unshare)) {
3414                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3415                         return 0;
3416                 }
3417                 wp_page_reuse(vmf);
3418                 return 0;
3419         }
3420 copy:
3421         /*
3422          * Ok, we need to copy. Oh, well..
3423          */
3424         if (folio)
3425                 folio_get(folio);
3426
3427         pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 #ifdef CONFIG_KSM
3429         if (folio && folio_test_ksm(folio))
3430                 count_vm_event(COW_KSM);
3431 #endif
3432         return wp_page_copy(vmf);
3433 }
3434
3435 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3436                 unsigned long start_addr, unsigned long end_addr,
3437                 struct zap_details *details)
3438 {
3439         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3440 }
3441
3442 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3443                                             pgoff_t first_index,
3444                                             pgoff_t last_index,
3445                                             struct zap_details *details)
3446 {
3447         struct vm_area_struct *vma;
3448         pgoff_t vba, vea, zba, zea;
3449
3450         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3451                 vba = vma->vm_pgoff;
3452                 vea = vba + vma_pages(vma) - 1;
3453                 zba = max(first_index, vba);
3454                 zea = min(last_index, vea);
3455
3456                 unmap_mapping_range_vma(vma,
3457                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3458                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3459                                 details);
3460         }
3461 }
3462
3463 /**
3464  * unmap_mapping_folio() - Unmap single folio from processes.
3465  * @folio: The locked folio to be unmapped.
3466  *
3467  * Unmap this folio from any userspace process which still has it mmaped.
3468  * Typically, for efficiency, the range of nearby pages has already been
3469  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3470  * truncation or invalidation holds the lock on a folio, it may find that
3471  * the page has been remapped again: and then uses unmap_mapping_folio()
3472  * to unmap it finally.
3473  */
3474 void unmap_mapping_folio(struct folio *folio)
3475 {
3476         struct address_space *mapping = folio->mapping;
3477         struct zap_details details = { };
3478         pgoff_t first_index;
3479         pgoff_t last_index;
3480
3481         VM_BUG_ON(!folio_test_locked(folio));
3482
3483         first_index = folio->index;
3484         last_index = folio->index + folio_nr_pages(folio) - 1;
3485
3486         details.even_cows = false;
3487         details.single_folio = folio;
3488         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3489
3490         i_mmap_lock_read(mapping);
3491         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3492                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3493                                          last_index, &details);
3494         i_mmap_unlock_read(mapping);
3495 }
3496
3497 /**
3498  * unmap_mapping_pages() - Unmap pages from processes.
3499  * @mapping: The address space containing pages to be unmapped.
3500  * @start: Index of first page to be unmapped.
3501  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3502  * @even_cows: Whether to unmap even private COWed pages.
3503  *
3504  * Unmap the pages in this address space from any userspace process which
3505  * has them mmaped.  Generally, you want to remove COWed pages as well when
3506  * a file is being truncated, but not when invalidating pages from the page
3507  * cache.
3508  */
3509 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3510                 pgoff_t nr, bool even_cows)
3511 {
3512         struct zap_details details = { };
3513         pgoff_t first_index = start;
3514         pgoff_t last_index = start + nr - 1;
3515
3516         details.even_cows = even_cows;
3517         if (last_index < first_index)
3518                 last_index = ULONG_MAX;
3519
3520         i_mmap_lock_read(mapping);
3521         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3522                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3523                                          last_index, &details);
3524         i_mmap_unlock_read(mapping);
3525 }
3526 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3527
3528 /**
3529  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3530  * address_space corresponding to the specified byte range in the underlying
3531  * file.
3532  *
3533  * @mapping: the address space containing mmaps to be unmapped.
3534  * @holebegin: byte in first page to unmap, relative to the start of
3535  * the underlying file.  This will be rounded down to a PAGE_SIZE
3536  * boundary.  Note that this is different from truncate_pagecache(), which
3537  * must keep the partial page.  In contrast, we must get rid of
3538  * partial pages.
3539  * @holelen: size of prospective hole in bytes.  This will be rounded
3540  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3541  * end of the file.
3542  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3543  * but 0 when invalidating pagecache, don't throw away private data.
3544  */
3545 void unmap_mapping_range(struct address_space *mapping,
3546                 loff_t const holebegin, loff_t const holelen, int even_cows)
3547 {
3548         pgoff_t hba = holebegin >> PAGE_SHIFT;
3549         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3550
3551         /* Check for overflow. */
3552         if (sizeof(holelen) > sizeof(hlen)) {
3553                 long long holeend =
3554                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3555                 if (holeend & ~(long long)ULONG_MAX)
3556                         hlen = ULONG_MAX - hba + 1;
3557         }
3558
3559         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3560 }
3561 EXPORT_SYMBOL(unmap_mapping_range);
3562
3563 /*
3564  * Restore a potential device exclusive pte to a working pte entry
3565  */
3566 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3567 {
3568         struct folio *folio = page_folio(vmf->page);
3569         struct vm_area_struct *vma = vmf->vma;
3570         struct mmu_notifier_range range;
3571
3572         /*
3573          * We need a reference to lock the folio because we don't hold
3574          * the PTL so a racing thread can remove the device-exclusive
3575          * entry and unmap it. If the folio is free the entry must
3576          * have been removed already. If it happens to have already
3577          * been re-allocated after being freed all we do is lock and
3578          * unlock it.
3579          */
3580         if (!folio_try_get(folio))
3581                 return 0;
3582
3583         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3584                 folio_put(folio);
3585                 return VM_FAULT_RETRY;
3586         }
3587         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3588                                 vma->vm_mm, vmf->address & PAGE_MASK,
3589                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3590         mmu_notifier_invalidate_range_start(&range);
3591
3592         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3593                                 &vmf->ptl);
3594         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3595                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3596
3597         pte_unmap_unlock(vmf->pte, vmf->ptl);
3598         folio_unlock(folio);
3599         folio_put(folio);
3600
3601         mmu_notifier_invalidate_range_end(&range);
3602         return 0;
3603 }
3604
3605 static inline bool should_try_to_free_swap(struct folio *folio,
3606                                            struct vm_area_struct *vma,
3607                                            unsigned int fault_flags)
3608 {
3609         if (!folio_test_swapcache(folio))
3610                 return false;
3611         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3612             folio_test_mlocked(folio))
3613                 return true;
3614         /*
3615          * If we want to map a page that's in the swapcache writable, we
3616          * have to detect via the refcount if we're really the exclusive
3617          * user. Try freeing the swapcache to get rid of the swapcache
3618          * reference only in case it's likely that we'll be the exlusive user.
3619          */
3620         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3621                 folio_ref_count(folio) == 2;
3622 }
3623
3624 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3625 {
3626         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3627                                        vmf->address, &vmf->ptl);
3628         /*
3629          * Be careful so that we will only recover a special uffd-wp pte into a
3630          * none pte.  Otherwise it means the pte could have changed, so retry.
3631          *
3632          * This should also cover the case where e.g. the pte changed
3633          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3634          * So is_pte_marker() check is not enough to safely drop the pte.
3635          */
3636         if (pte_same(vmf->orig_pte, *vmf->pte))
3637                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3638         pte_unmap_unlock(vmf->pte, vmf->ptl);
3639         return 0;
3640 }
3641
3642 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3643 {
3644         if (vma_is_anonymous(vmf->vma))
3645                 return do_anonymous_page(vmf);
3646         else
3647                 return do_fault(vmf);
3648 }
3649
3650 /*
3651  * This is actually a page-missing access, but with uffd-wp special pte
3652  * installed.  It means this pte was wr-protected before being unmapped.
3653  */
3654 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3655 {
3656         /*
3657          * Just in case there're leftover special ptes even after the region
3658          * got unregistered - we can simply clear them.
3659          */
3660         if (unlikely(!userfaultfd_wp(vmf->vma)))
3661                 return pte_marker_clear(vmf);
3662
3663         return do_pte_missing(vmf);
3664 }
3665
3666 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3667 {
3668         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3669         unsigned long marker = pte_marker_get(entry);
3670
3671         /*
3672          * PTE markers should never be empty.  If anything weird happened,
3673          * the best thing to do is to kill the process along with its mm.
3674          */
3675         if (WARN_ON_ONCE(!marker))
3676                 return VM_FAULT_SIGBUS;
3677
3678         /* Higher priority than uffd-wp when data corrupted */
3679         if (marker & PTE_MARKER_SWAPIN_ERROR)
3680                 return VM_FAULT_SIGBUS;
3681
3682         if (pte_marker_entry_uffd_wp(entry))
3683                 return pte_marker_handle_uffd_wp(vmf);
3684
3685         /* This is an unknown pte marker */
3686         return VM_FAULT_SIGBUS;
3687 }
3688
3689 /*
3690  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3691  * but allow concurrent faults), and pte mapped but not yet locked.
3692  * We return with pte unmapped and unlocked.
3693  *
3694  * We return with the mmap_lock locked or unlocked in the same cases
3695  * as does filemap_fault().
3696  */
3697 vm_fault_t do_swap_page(struct vm_fault *vmf)
3698 {
3699         struct vm_area_struct *vma = vmf->vma;
3700         struct folio *swapcache, *folio = NULL;
3701         struct page *page;
3702         struct swap_info_struct *si = NULL;
3703         rmap_t rmap_flags = RMAP_NONE;
3704         bool exclusive = false;
3705         swp_entry_t entry;
3706         pte_t pte;
3707         int locked;
3708         vm_fault_t ret = 0;
3709         void *shadow = NULL;
3710
3711         if (!pte_unmap_same(vmf))
3712                 goto out;
3713
3714         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3715                 ret = VM_FAULT_RETRY;
3716                 goto out;
3717         }
3718
3719         entry = pte_to_swp_entry(vmf->orig_pte);
3720         if (unlikely(non_swap_entry(entry))) {
3721                 if (is_migration_entry(entry)) {
3722                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3723                                              vmf->address);
3724                 } else if (is_device_exclusive_entry(entry)) {
3725                         vmf->page = pfn_swap_entry_to_page(entry);
3726                         ret = remove_device_exclusive_entry(vmf);
3727                 } else if (is_device_private_entry(entry)) {
3728                         vmf->page = pfn_swap_entry_to_page(entry);
3729                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3730                                         vmf->address, &vmf->ptl);
3731                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3732                                 spin_unlock(vmf->ptl);
3733                                 goto out;
3734                         }
3735
3736                         /*
3737                          * Get a page reference while we know the page can't be
3738                          * freed.
3739                          */
3740                         get_page(vmf->page);
3741                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3742                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3743                         put_page(vmf->page);
3744                 } else if (is_hwpoison_entry(entry)) {
3745                         ret = VM_FAULT_HWPOISON;
3746                 } else if (is_pte_marker_entry(entry)) {
3747                         ret = handle_pte_marker(vmf);
3748                 } else {
3749                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3750                         ret = VM_FAULT_SIGBUS;
3751                 }
3752                 goto out;
3753         }
3754
3755         /* Prevent swapoff from happening to us. */
3756         si = get_swap_device(entry);
3757         if (unlikely(!si))
3758                 goto out;
3759
3760         folio = swap_cache_get_folio(entry, vma, vmf->address);
3761         if (folio)
3762                 page = folio_file_page(folio, swp_offset(entry));
3763         swapcache = folio;
3764
3765         if (!folio) {
3766                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3767                     __swap_count(entry) == 1) {
3768                         /* skip swapcache */
3769                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3770                                                 vma, vmf->address, false);
3771                         page = &folio->page;
3772                         if (folio) {
3773                                 __folio_set_locked(folio);
3774                                 __folio_set_swapbacked(folio);
3775
3776                                 if (mem_cgroup_swapin_charge_folio(folio,
3777                                                         vma->vm_mm, GFP_KERNEL,
3778                                                         entry)) {
3779                                         ret = VM_FAULT_OOM;
3780                                         goto out_page;
3781                                 }
3782                                 mem_cgroup_swapin_uncharge_swap(entry);
3783
3784                                 shadow = get_shadow_from_swap_cache(entry);
3785                                 if (shadow)
3786                                         workingset_refault(folio, shadow);
3787
3788                                 folio_add_lru(folio);
3789
3790                                 /* To provide entry to swap_readpage() */
3791                                 folio_set_swap_entry(folio, entry);
3792                                 swap_readpage(page, true, NULL);
3793                                 folio->private = NULL;
3794                         }
3795                 } else {
3796                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797                                                 vmf);
3798                         if (page)
3799                                 folio = page_folio(page);
3800                         swapcache = folio;
3801                 }
3802
3803                 if (!folio) {
3804                         /*
3805                          * Back out if somebody else faulted in this pte
3806                          * while we released the pte lock.
3807                          */
3808                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3809                                         vmf->address, &vmf->ptl);
3810                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3811                                 ret = VM_FAULT_OOM;
3812                         goto unlock;
3813                 }
3814
3815                 /* Had to read the page from swap area: Major fault */
3816                 ret = VM_FAULT_MAJOR;
3817                 count_vm_event(PGMAJFAULT);
3818                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3819         } else if (PageHWPoison(page)) {
3820                 /*
3821                  * hwpoisoned dirty swapcache pages are kept for killing
3822                  * owner processes (which may be unknown at hwpoison time)
3823                  */
3824                 ret = VM_FAULT_HWPOISON;
3825                 goto out_release;
3826         }
3827
3828         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3829
3830         if (!locked) {
3831                 ret |= VM_FAULT_RETRY;
3832                 goto out_release;
3833         }
3834
3835         if (swapcache) {
3836                 /*
3837                  * Make sure folio_free_swap() or swapoff did not release the
3838                  * swapcache from under us.  The page pin, and pte_same test
3839                  * below, are not enough to exclude that.  Even if it is still
3840                  * swapcache, we need to check that the page's swap has not
3841                  * changed.
3842                  */
3843                 if (unlikely(!folio_test_swapcache(folio) ||
3844                              page_private(page) != entry.val))
3845                         goto out_page;
3846
3847                 /*
3848                  * KSM sometimes has to copy on read faults, for example, if
3849                  * page->index of !PageKSM() pages would be nonlinear inside the
3850                  * anon VMA -- PageKSM() is lost on actual swapout.
3851                  */
3852                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3853                 if (unlikely(!page)) {
3854                         ret = VM_FAULT_OOM;
3855                         goto out_page;
3856                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3857                         ret = VM_FAULT_HWPOISON;
3858                         goto out_page;
3859                 }
3860                 folio = page_folio(page);
3861
3862                 /*
3863                  * If we want to map a page that's in the swapcache writable, we
3864                  * have to detect via the refcount if we're really the exclusive
3865                  * owner. Try removing the extra reference from the local LRU
3866                  * pagevecs if required.
3867                  */
3868                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3869                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3870                         lru_add_drain();
3871         }
3872
3873         folio_throttle_swaprate(folio, GFP_KERNEL);
3874
3875         /*
3876          * Back out if somebody else already faulted in this pte.
3877          */
3878         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3879                         &vmf->ptl);
3880         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3881                 goto out_nomap;
3882
3883         if (unlikely(!folio_test_uptodate(folio))) {
3884                 ret = VM_FAULT_SIGBUS;
3885                 goto out_nomap;
3886         }
3887
3888         /*
3889          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3890          * must never point at an anonymous page in the swapcache that is
3891          * PG_anon_exclusive. Sanity check that this holds and especially, that
3892          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3893          * check after taking the PT lock and making sure that nobody
3894          * concurrently faulted in this page and set PG_anon_exclusive.
3895          */
3896         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3897         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3898
3899         /*
3900          * Check under PT lock (to protect against concurrent fork() sharing
3901          * the swap entry concurrently) for certainly exclusive pages.
3902          */
3903         if (!folio_test_ksm(folio)) {
3904                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3905                 if (folio != swapcache) {
3906                         /*
3907                          * We have a fresh page that is not exposed to the
3908                          * swapcache -> certainly exclusive.
3909                          */
3910                         exclusive = true;
3911                 } else if (exclusive && folio_test_writeback(folio) &&
3912                           data_race(si->flags & SWP_STABLE_WRITES)) {
3913                         /*
3914                          * This is tricky: not all swap backends support
3915                          * concurrent page modifications while under writeback.
3916                          *
3917                          * So if we stumble over such a page in the swapcache
3918                          * we must not set the page exclusive, otherwise we can
3919                          * map it writable without further checks and modify it
3920                          * while still under writeback.
3921                          *
3922                          * For these problematic swap backends, simply drop the
3923                          * exclusive marker: this is perfectly fine as we start
3924                          * writeback only if we fully unmapped the page and
3925                          * there are no unexpected references on the page after
3926                          * unmapping succeeded. After fully unmapped, no
3927                          * further GUP references (FOLL_GET and FOLL_PIN) can
3928                          * appear, so dropping the exclusive marker and mapping
3929                          * it only R/O is fine.
3930                          */
3931                         exclusive = false;
3932                 }
3933         }
3934
3935         /*
3936          * Remove the swap entry and conditionally try to free up the swapcache.
3937          * We're already holding a reference on the page but haven't mapped it
3938          * yet.
3939          */
3940         swap_free(entry);
3941         if (should_try_to_free_swap(folio, vma, vmf->flags))
3942                 folio_free_swap(folio);
3943
3944         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3945         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3946         pte = mk_pte(page, vma->vm_page_prot);
3947
3948         /*
3949          * Same logic as in do_wp_page(); however, optimize for pages that are
3950          * certainly not shared either because we just allocated them without
3951          * exposing them to the swapcache or because the swap entry indicates
3952          * exclusivity.
3953          */
3954         if (!folio_test_ksm(folio) &&
3955             (exclusive || folio_ref_count(folio) == 1)) {
3956                 if (vmf->flags & FAULT_FLAG_WRITE) {
3957                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3958                         vmf->flags &= ~FAULT_FLAG_WRITE;
3959                 }
3960                 rmap_flags |= RMAP_EXCLUSIVE;
3961         }
3962         flush_icache_page(vma, page);
3963         if (pte_swp_soft_dirty(vmf->orig_pte))
3964                 pte = pte_mksoft_dirty(pte);
3965         if (pte_swp_uffd_wp(vmf->orig_pte))
3966                 pte = pte_mkuffd_wp(pte);
3967         vmf->orig_pte = pte;
3968
3969         /* ksm created a completely new copy */
3970         if (unlikely(folio != swapcache && swapcache)) {
3971                 page_add_new_anon_rmap(page, vma, vmf->address);
3972                 folio_add_lru_vma(folio, vma);
3973         } else {
3974                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3975         }
3976
3977         VM_BUG_ON(!folio_test_anon(folio) ||
3978                         (pte_write(pte) && !PageAnonExclusive(page)));
3979         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981
3982         folio_unlock(folio);
3983         if (folio != swapcache && swapcache) {
3984                 /*
3985                  * Hold the lock to avoid the swap entry to be reused
3986                  * until we take the PT lock for the pte_same() check
3987                  * (to avoid false positives from pte_same). For
3988                  * further safety release the lock after the swap_free
3989                  * so that the swap count won't change under a
3990                  * parallel locked swapcache.
3991                  */
3992                 folio_unlock(swapcache);
3993                 folio_put(swapcache);
3994         }
3995
3996         if (vmf->flags & FAULT_FLAG_WRITE) {
3997                 ret |= do_wp_page(vmf);
3998                 if (ret & VM_FAULT_ERROR)
3999                         ret &= VM_FAULT_ERROR;
4000                 goto out;
4001         }
4002
4003         /* No need to invalidate - it was non-present before */
4004         update_mmu_cache(vma, vmf->address, vmf->pte);
4005 unlock:
4006         pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 out:
4008         if (si)
4009                 put_swap_device(si);
4010         return ret;
4011 out_nomap:
4012         pte_unmap_unlock(vmf->pte, vmf->ptl);
4013 out_page:
4014         folio_unlock(folio);
4015 out_release:
4016         folio_put(folio);
4017         if (folio != swapcache && swapcache) {
4018                 folio_unlock(swapcache);
4019                 folio_put(swapcache);
4020         }
4021         if (si)
4022                 put_swap_device(si);
4023         return ret;
4024 }
4025
4026 /*
4027  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028  * but allow concurrent faults), and pte mapped but not yet locked.
4029  * We return with mmap_lock still held, but pte unmapped and unlocked.
4030  */
4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4032 {
4033         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4034         struct vm_area_struct *vma = vmf->vma;
4035         struct folio *folio;
4036         vm_fault_t ret = 0;
4037         pte_t entry;
4038
4039         /* File mapping without ->vm_ops ? */
4040         if (vma->vm_flags & VM_SHARED)
4041                 return VM_FAULT_SIGBUS;
4042
4043         /*
4044          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4045          * pte_offset_map() on pmds where a huge pmd might be created
4046          * from a different thread.
4047          *
4048          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4049          * parallel threads are excluded by other means.
4050          *
4051          * Here we only have mmap_read_lock(mm).
4052          */
4053         if (pte_alloc(vma->vm_mm, vmf->pmd))
4054                 return VM_FAULT_OOM;
4055
4056         /* See comment in handle_pte_fault() */
4057         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4058                 return 0;
4059
4060         /* Use the zero-page for reads */
4061         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4062                         !mm_forbids_zeropage(vma->vm_mm)) {
4063                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4064                                                 vma->vm_page_prot));
4065                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4066                                 vmf->address, &vmf->ptl);
4067                 if (vmf_pte_changed(vmf)) {
4068                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4069                         goto unlock;
4070                 }
4071                 ret = check_stable_address_space(vma->vm_mm);
4072                 if (ret)
4073                         goto unlock;
4074                 /* Deliver the page fault to userland, check inside PT lock */
4075                 if (userfaultfd_missing(vma)) {
4076                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4077                         return handle_userfault(vmf, VM_UFFD_MISSING);
4078                 }
4079                 goto setpte;
4080         }
4081
4082         /* Allocate our own private page. */
4083         if (unlikely(anon_vma_prepare(vma)))
4084                 goto oom;
4085         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4086         if (!folio)
4087                 goto oom;
4088
4089         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4090                 goto oom_free_page;
4091         folio_throttle_swaprate(folio, GFP_KERNEL);
4092
4093         /*
4094          * The memory barrier inside __folio_mark_uptodate makes sure that
4095          * preceding stores to the page contents become visible before
4096          * the set_pte_at() write.
4097          */
4098         __folio_mark_uptodate(folio);
4099
4100         entry = mk_pte(&folio->page, vma->vm_page_prot);
4101         entry = pte_sw_mkyoung(entry);
4102         if (vma->vm_flags & VM_WRITE)
4103                 entry = pte_mkwrite(pte_mkdirty(entry));
4104
4105         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4106                         &vmf->ptl);
4107         if (vmf_pte_changed(vmf)) {
4108                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4109                 goto release;
4110         }
4111
4112         ret = check_stable_address_space(vma->vm_mm);
4113         if (ret)
4114                 goto release;
4115
4116         /* Deliver the page fault to userland, check inside PT lock */
4117         if (userfaultfd_missing(vma)) {
4118                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4119                 folio_put(folio);
4120                 return handle_userfault(vmf, VM_UFFD_MISSING);
4121         }
4122
4123         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4124         folio_add_new_anon_rmap(folio, vma, vmf->address);
4125         folio_add_lru_vma(folio, vma);
4126 setpte:
4127         if (uffd_wp)
4128                 entry = pte_mkuffd_wp(entry);
4129         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4130
4131         /* No need to invalidate - it was non-present before */
4132         update_mmu_cache(vma, vmf->address, vmf->pte);
4133 unlock:
4134         pte_unmap_unlock(vmf->pte, vmf->ptl);
4135         return ret;
4136 release:
4137         folio_put(folio);
4138         goto unlock;
4139 oom_free_page:
4140         folio_put(folio);
4141 oom:
4142         return VM_FAULT_OOM;
4143 }
4144
4145 /*
4146  * The mmap_lock must have been held on entry, and may have been
4147  * released depending on flags and vma->vm_ops->fault() return value.
4148  * See filemap_fault() and __lock_page_retry().
4149  */
4150 static vm_fault_t __do_fault(struct vm_fault *vmf)
4151 {
4152         struct vm_area_struct *vma = vmf->vma;
4153         vm_fault_t ret;
4154
4155         /*
4156          * Preallocate pte before we take page_lock because this might lead to
4157          * deadlocks for memcg reclaim which waits for pages under writeback:
4158          *                              lock_page(A)
4159          *                              SetPageWriteback(A)
4160          *                              unlock_page(A)
4161          * lock_page(B)
4162          *                              lock_page(B)
4163          * pte_alloc_one
4164          *   shrink_page_list
4165          *     wait_on_page_writeback(A)
4166          *                              SetPageWriteback(B)
4167          *                              unlock_page(B)
4168          *                              # flush A, B to clear the writeback
4169          */
4170         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4171                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4172                 if (!vmf->prealloc_pte)
4173                         return VM_FAULT_OOM;
4174         }
4175
4176         ret = vma->vm_ops->fault(vmf);
4177         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4178                             VM_FAULT_DONE_COW)))
4179                 return ret;
4180
4181         if (unlikely(PageHWPoison(vmf->page))) {
4182                 struct page *page = vmf->page;
4183                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4184                 if (ret & VM_FAULT_LOCKED) {
4185                         if (page_mapped(page))
4186                                 unmap_mapping_pages(page_mapping(page),
4187                                                     page->index, 1, false);
4188                         /* Retry if a clean page was removed from the cache. */
4189                         if (invalidate_inode_page(page))
4190                                 poisonret = VM_FAULT_NOPAGE;
4191                         unlock_page(page);
4192                 }
4193                 put_page(page);
4194                 vmf->page = NULL;
4195                 return poisonret;
4196         }
4197
4198         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4199                 lock_page(vmf->page);
4200         else
4201                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4202
4203         return ret;
4204 }
4205
4206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4207 static void deposit_prealloc_pte(struct vm_fault *vmf)
4208 {
4209         struct vm_area_struct *vma = vmf->vma;
4210
4211         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4212         /*
4213          * We are going to consume the prealloc table,
4214          * count that as nr_ptes.
4215          */
4216         mm_inc_nr_ptes(vma->vm_mm);
4217         vmf->prealloc_pte = NULL;
4218 }
4219
4220 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4221 {
4222         struct vm_area_struct *vma = vmf->vma;
4223         bool write = vmf->flags & FAULT_FLAG_WRITE;
4224         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4225         pmd_t entry;
4226         int i;
4227         vm_fault_t ret = VM_FAULT_FALLBACK;
4228
4229         if (!transhuge_vma_suitable(vma, haddr))
4230                 return ret;
4231
4232         page = compound_head(page);
4233         if (compound_order(page) != HPAGE_PMD_ORDER)
4234                 return ret;
4235
4236         /*
4237          * Just backoff if any subpage of a THP is corrupted otherwise
4238          * the corrupted page may mapped by PMD silently to escape the
4239          * check.  This kind of THP just can be PTE mapped.  Access to
4240          * the corrupted subpage should trigger SIGBUS as expected.
4241          */
4242         if (unlikely(PageHasHWPoisoned(page)))
4243                 return ret;
4244
4245         /*
4246          * Archs like ppc64 need additional space to store information
4247          * related to pte entry. Use the preallocated table for that.
4248          */
4249         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4250                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4251                 if (!vmf->prealloc_pte)
4252                         return VM_FAULT_OOM;
4253         }
4254
4255         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4256         if (unlikely(!pmd_none(*vmf->pmd)))
4257                 goto out;
4258
4259         for (i = 0; i < HPAGE_PMD_NR; i++)
4260                 flush_icache_page(vma, page + i);
4261
4262         entry = mk_huge_pmd(page, vma->vm_page_prot);
4263         if (write)
4264                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4265
4266         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4267         page_add_file_rmap(page, vma, true);
4268
4269         /*
4270          * deposit and withdraw with pmd lock held
4271          */
4272         if (arch_needs_pgtable_deposit())
4273                 deposit_prealloc_pte(vmf);
4274
4275         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4276
4277         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4278
4279         /* fault is handled */
4280         ret = 0;
4281         count_vm_event(THP_FILE_MAPPED);
4282 out:
4283         spin_unlock(vmf->ptl);
4284         return ret;
4285 }
4286 #else
4287 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4288 {
4289         return VM_FAULT_FALLBACK;
4290 }
4291 #endif
4292
4293 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4294 {
4295         struct vm_area_struct *vma = vmf->vma;
4296         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4297         bool write = vmf->flags & FAULT_FLAG_WRITE;
4298         bool prefault = vmf->address != addr;
4299         pte_t entry;
4300
4301         flush_icache_page(vma, page);
4302         entry = mk_pte(page, vma->vm_page_prot);
4303
4304         if (prefault && arch_wants_old_prefaulted_pte())
4305                 entry = pte_mkold(entry);
4306         else
4307                 entry = pte_sw_mkyoung(entry);
4308
4309         if (write)
4310                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4311         if (unlikely(uffd_wp))
4312                 entry = pte_mkuffd_wp(entry);
4313         /* copy-on-write page */
4314         if (write && !(vma->vm_flags & VM_SHARED)) {
4315                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4316                 page_add_new_anon_rmap(page, vma, addr);
4317                 lru_cache_add_inactive_or_unevictable(page, vma);
4318         } else {
4319                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4320                 page_add_file_rmap(page, vma, false);
4321         }
4322         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4323 }
4324
4325 static bool vmf_pte_changed(struct vm_fault *vmf)
4326 {
4327         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4328                 return !pte_same(*vmf->pte, vmf->orig_pte);
4329
4330         return !pte_none(*vmf->pte);
4331 }
4332
4333 /**
4334  * finish_fault - finish page fault once we have prepared the page to fault
4335  *
4336  * @vmf: structure describing the fault
4337  *
4338  * This function handles all that is needed to finish a page fault once the
4339  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4340  * given page, adds reverse page mapping, handles memcg charges and LRU
4341  * addition.
4342  *
4343  * The function expects the page to be locked and on success it consumes a
4344  * reference of a page being mapped (for the PTE which maps it).
4345  *
4346  * Return: %0 on success, %VM_FAULT_ code in case of error.
4347  */
4348 vm_fault_t finish_fault(struct vm_fault *vmf)
4349 {
4350         struct vm_area_struct *vma = vmf->vma;
4351         struct page *page;
4352         vm_fault_t ret;
4353
4354         /* Did we COW the page? */
4355         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4356                 page = vmf->cow_page;
4357         else
4358                 page = vmf->page;
4359
4360         /*
4361          * check even for read faults because we might have lost our CoWed
4362          * page
4363          */
4364         if (!(vma->vm_flags & VM_SHARED)) {
4365                 ret = check_stable_address_space(vma->vm_mm);
4366                 if (ret)
4367                         return ret;
4368         }
4369
4370         if (pmd_none(*vmf->pmd)) {
4371                 if (PageTransCompound(page)) {
4372                         ret = do_set_pmd(vmf, page);
4373                         if (ret != VM_FAULT_FALLBACK)
4374                                 return ret;
4375                 }
4376
4377                 if (vmf->prealloc_pte)
4378                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4379                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4380                         return VM_FAULT_OOM;
4381         }
4382
4383         /*
4384          * See comment in handle_pte_fault() for how this scenario happens, we
4385          * need to return NOPAGE so that we drop this page.
4386          */
4387         if (pmd_devmap_trans_unstable(vmf->pmd))
4388                 return VM_FAULT_NOPAGE;
4389
4390         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4391                                       vmf->address, &vmf->ptl);
4392
4393         /* Re-check under ptl */
4394         if (likely(!vmf_pte_changed(vmf))) {
4395                 do_set_pte(vmf, page, vmf->address);
4396
4397                 /* no need to invalidate: a not-present page won't be cached */
4398                 update_mmu_cache(vma, vmf->address, vmf->pte);
4399
4400                 ret = 0;
4401         } else {
4402                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4403                 ret = VM_FAULT_NOPAGE;
4404         }
4405
4406         pte_unmap_unlock(vmf->pte, vmf->ptl);
4407         return ret;
4408 }
4409
4410 static unsigned long fault_around_pages __read_mostly =
4411         65536 >> PAGE_SHIFT;
4412
4413 #ifdef CONFIG_DEBUG_FS
4414 static int fault_around_bytes_get(void *data, u64 *val)
4415 {
4416         *val = fault_around_pages << PAGE_SHIFT;
4417         return 0;
4418 }
4419
4420 /*
4421  * fault_around_bytes must be rounded down to the nearest page order as it's
4422  * what do_fault_around() expects to see.
4423  */
4424 static int fault_around_bytes_set(void *data, u64 val)
4425 {
4426         if (val / PAGE_SIZE > PTRS_PER_PTE)
4427                 return -EINVAL;
4428
4429         /*
4430          * The minimum value is 1 page, however this results in no fault-around
4431          * at all. See should_fault_around().
4432          */
4433         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4434
4435         return 0;
4436 }
4437 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4438                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4439
4440 static int __init fault_around_debugfs(void)
4441 {
4442         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4443                                    &fault_around_bytes_fops);
4444         return 0;
4445 }
4446 late_initcall(fault_around_debugfs);
4447 #endif
4448
4449 /*
4450  * do_fault_around() tries to map few pages around the fault address. The hope
4451  * is that the pages will be needed soon and this will lower the number of
4452  * faults to handle.
4453  *
4454  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4455  * not ready to be mapped: not up-to-date, locked, etc.
4456  *
4457  * This function doesn't cross VMA or page table boundaries, in order to call
4458  * map_pages() and acquire a PTE lock only once.
4459  *
4460  * fault_around_pages defines how many pages we'll try to map.
4461  * do_fault_around() expects it to be set to a power of two less than or equal
4462  * to PTRS_PER_PTE.
4463  *
4464  * The virtual address of the area that we map is naturally aligned to
4465  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4466  * (and therefore to page order).  This way it's easier to guarantee
4467  * that we don't cross page table boundaries.
4468  */
4469 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4470 {
4471         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4472         pgoff_t pte_off = pte_index(vmf->address);
4473         /* The page offset of vmf->address within the VMA. */
4474         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4475         pgoff_t from_pte, to_pte;
4476         vm_fault_t ret;
4477
4478         /* The PTE offset of the start address, clamped to the VMA. */
4479         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4480                        pte_off - min(pte_off, vma_off));
4481
4482         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4483         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4484                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4485
4486         if (pmd_none(*vmf->pmd)) {
4487                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4488                 if (!vmf->prealloc_pte)
4489                         return VM_FAULT_OOM;
4490         }
4491
4492         rcu_read_lock();
4493         ret = vmf->vma->vm_ops->map_pages(vmf,
4494                         vmf->pgoff + from_pte - pte_off,
4495                         vmf->pgoff + to_pte - pte_off);
4496         rcu_read_unlock();
4497
4498         return ret;
4499 }
4500
4501 /* Return true if we should do read fault-around, false otherwise */
4502 static inline bool should_fault_around(struct vm_fault *vmf)
4503 {
4504         /* No ->map_pages?  No way to fault around... */
4505         if (!vmf->vma->vm_ops->map_pages)
4506                 return false;
4507
4508         if (uffd_disable_fault_around(vmf->vma))
4509                 return false;
4510
4511         /* A single page implies no faulting 'around' at all. */
4512         return fault_around_pages > 1;
4513 }
4514
4515 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4516 {
4517         vm_fault_t ret = 0;
4518
4519         /*
4520          * Let's call ->map_pages() first and use ->fault() as fallback
4521          * if page by the offset is not ready to be mapped (cold cache or
4522          * something).
4523          */
4524         if (should_fault_around(vmf)) {
4525                 ret = do_fault_around(vmf);
4526                 if (ret)
4527                         return ret;
4528         }
4529
4530         ret = __do_fault(vmf);
4531         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4532                 return ret;
4533
4534         ret |= finish_fault(vmf);
4535         unlock_page(vmf->page);
4536         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4537                 put_page(vmf->page);
4538         return ret;
4539 }
4540
4541 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4542 {
4543         struct vm_area_struct *vma = vmf->vma;
4544         vm_fault_t ret;
4545
4546         if (unlikely(anon_vma_prepare(vma)))
4547                 return VM_FAULT_OOM;
4548
4549         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4550         if (!vmf->cow_page)
4551                 return VM_FAULT_OOM;
4552
4553         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4554                                 GFP_KERNEL)) {
4555                 put_page(vmf->cow_page);
4556                 return VM_FAULT_OOM;
4557         }
4558         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4559
4560         ret = __do_fault(vmf);
4561         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562                 goto uncharge_out;
4563         if (ret & VM_FAULT_DONE_COW)
4564                 return ret;
4565
4566         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4567         __SetPageUptodate(vmf->cow_page);
4568
4569         ret |= finish_fault(vmf);
4570         unlock_page(vmf->page);
4571         put_page(vmf->page);
4572         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4573                 goto uncharge_out;
4574         return ret;
4575 uncharge_out:
4576         put_page(vmf->cow_page);
4577         return ret;
4578 }
4579
4580 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4581 {
4582         struct vm_area_struct *vma = vmf->vma;
4583         vm_fault_t ret, tmp;
4584
4585         ret = __do_fault(vmf);
4586         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4587                 return ret;
4588
4589         /*
4590          * Check if the backing address space wants to know that the page is
4591          * about to become writable
4592          */
4593         if (vma->vm_ops->page_mkwrite) {
4594                 unlock_page(vmf->page);
4595                 tmp = do_page_mkwrite(vmf);
4596                 if (unlikely(!tmp ||
4597                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4598                         put_page(vmf->page);
4599                         return tmp;
4600                 }
4601         }
4602
4603         ret |= finish_fault(vmf);
4604         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4605                                         VM_FAULT_RETRY))) {
4606                 unlock_page(vmf->page);
4607                 put_page(vmf->page);
4608                 return ret;
4609         }
4610
4611         ret |= fault_dirty_shared_page(vmf);
4612         return ret;
4613 }
4614
4615 /*
4616  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4617  * but allow concurrent faults).
4618  * The mmap_lock may have been released depending on flags and our
4619  * return value.  See filemap_fault() and __folio_lock_or_retry().
4620  * If mmap_lock is released, vma may become invalid (for example
4621  * by other thread calling munmap()).
4622  */
4623 static vm_fault_t do_fault(struct vm_fault *vmf)
4624 {
4625         struct vm_area_struct *vma = vmf->vma;
4626         struct mm_struct *vm_mm = vma->vm_mm;
4627         vm_fault_t ret;
4628
4629         /*
4630          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4631          */
4632         if (!vma->vm_ops->fault) {
4633                 /*
4634                  * If we find a migration pmd entry or a none pmd entry, which
4635                  * should never happen, return SIGBUS
4636                  */
4637                 if (unlikely(!pmd_present(*vmf->pmd)))
4638                         ret = VM_FAULT_SIGBUS;
4639                 else {
4640                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4641                                                        vmf->pmd,
4642                                                        vmf->address,
4643                                                        &vmf->ptl);
4644                         /*
4645                          * Make sure this is not a temporary clearing of pte
4646                          * by holding ptl and checking again. A R/M/W update
4647                          * of pte involves: take ptl, clearing the pte so that
4648                          * we don't have concurrent modification by hardware
4649                          * followed by an update.
4650                          */
4651                         if (unlikely(pte_none(*vmf->pte)))
4652                                 ret = VM_FAULT_SIGBUS;
4653                         else
4654                                 ret = VM_FAULT_NOPAGE;
4655
4656                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4657                 }
4658         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4659                 ret = do_read_fault(vmf);
4660         else if (!(vma->vm_flags & VM_SHARED))
4661                 ret = do_cow_fault(vmf);
4662         else
4663                 ret = do_shared_fault(vmf);
4664
4665         /* preallocated pagetable is unused: free it */
4666         if (vmf->prealloc_pte) {
4667                 pte_free(vm_mm, vmf->prealloc_pte);
4668                 vmf->prealloc_pte = NULL;
4669         }
4670         return ret;
4671 }
4672
4673 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4674                       unsigned long addr, int page_nid, int *flags)
4675 {
4676         get_page(page);
4677
4678         /* Record the current PID acceesing VMA */
4679         vma_set_access_pid_bit(vma);
4680
4681         count_vm_numa_event(NUMA_HINT_FAULTS);
4682         if (page_nid == numa_node_id()) {
4683                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4684                 *flags |= TNF_FAULT_LOCAL;
4685         }
4686
4687         return mpol_misplaced(page, vma, addr);
4688 }
4689
4690 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4691 {
4692         struct vm_area_struct *vma = vmf->vma;
4693         struct page *page = NULL;
4694         int page_nid = NUMA_NO_NODE;
4695         bool writable = false;
4696         int last_cpupid;
4697         int target_nid;
4698         pte_t pte, old_pte;
4699         int flags = 0;
4700
4701         /*
4702          * The "pte" at this point cannot be used safely without
4703          * validation through pte_unmap_same(). It's of NUMA type but
4704          * the pfn may be screwed if the read is non atomic.
4705          */
4706         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4707         spin_lock(vmf->ptl);
4708         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4709                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4710                 goto out;
4711         }
4712
4713         /* Get the normal PTE  */
4714         old_pte = ptep_get(vmf->pte);
4715         pte = pte_modify(old_pte, vma->vm_page_prot);
4716
4717         /*
4718          * Detect now whether the PTE could be writable; this information
4719          * is only valid while holding the PT lock.
4720          */
4721         writable = pte_write(pte);
4722         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4723             can_change_pte_writable(vma, vmf->address, pte))
4724                 writable = true;
4725
4726         page = vm_normal_page(vma, vmf->address, pte);
4727         if (!page || is_zone_device_page(page))
4728                 goto out_map;
4729
4730         /* TODO: handle PTE-mapped THP */
4731         if (PageCompound(page))
4732                 goto out_map;
4733
4734         /*
4735          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4736          * much anyway since they can be in shared cache state. This misses
4737          * the case where a mapping is writable but the process never writes
4738          * to it but pte_write gets cleared during protection updates and
4739          * pte_dirty has unpredictable behaviour between PTE scan updates,
4740          * background writeback, dirty balancing and application behaviour.
4741          */
4742         if (!writable)
4743                 flags |= TNF_NO_GROUP;
4744
4745         /*
4746          * Flag if the page is shared between multiple address spaces. This
4747          * is later used when determining whether to group tasks together
4748          */
4749         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4750                 flags |= TNF_SHARED;
4751
4752         page_nid = page_to_nid(page);
4753         /*
4754          * For memory tiering mode, cpupid of slow memory page is used
4755          * to record page access time.  So use default value.
4756          */
4757         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4758             !node_is_toptier(page_nid))
4759                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4760         else
4761                 last_cpupid = page_cpupid_last(page);
4762         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4763                         &flags);
4764         if (target_nid == NUMA_NO_NODE) {
4765                 put_page(page);
4766                 goto out_map;
4767         }
4768         pte_unmap_unlock(vmf->pte, vmf->ptl);
4769         writable = false;
4770
4771         /* Migrate to the requested node */
4772         if (migrate_misplaced_page(page, vma, target_nid)) {
4773                 page_nid = target_nid;
4774                 flags |= TNF_MIGRATED;
4775         } else {
4776                 flags |= TNF_MIGRATE_FAIL;
4777                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4778                 spin_lock(vmf->ptl);
4779                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4780                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4781                         goto out;
4782                 }
4783                 goto out_map;
4784         }
4785
4786 out:
4787         if (page_nid != NUMA_NO_NODE)
4788                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4789         return 0;
4790 out_map:
4791         /*
4792          * Make it present again, depending on how arch implements
4793          * non-accessible ptes, some can allow access by kernel mode.
4794          */
4795         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4796         pte = pte_modify(old_pte, vma->vm_page_prot);
4797         pte = pte_mkyoung(pte);
4798         if (writable)
4799                 pte = pte_mkwrite(pte);
4800         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4801         update_mmu_cache(vma, vmf->address, vmf->pte);
4802         pte_unmap_unlock(vmf->pte, vmf->ptl);
4803         goto out;
4804 }
4805
4806 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4807 {
4808         if (vma_is_anonymous(vmf->vma))
4809                 return do_huge_pmd_anonymous_page(vmf);
4810         if (vmf->vma->vm_ops->huge_fault)
4811                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4812         return VM_FAULT_FALLBACK;
4813 }
4814
4815 /* `inline' is required to avoid gcc 4.1.2 build error */
4816 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4817 {
4818         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4819         vm_fault_t ret;
4820
4821         if (vma_is_anonymous(vmf->vma)) {
4822                 if (likely(!unshare) &&
4823                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4824                         return handle_userfault(vmf, VM_UFFD_WP);
4825                 return do_huge_pmd_wp_page(vmf);
4826         }
4827
4828         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4829                 if (vmf->vma->vm_ops->huge_fault) {
4830                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4831                         if (!(ret & VM_FAULT_FALLBACK))
4832                                 return ret;
4833                 }
4834         }
4835
4836         /* COW or write-notify handled on pte level: split pmd. */
4837         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4838
4839         return VM_FAULT_FALLBACK;
4840 }
4841
4842 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4843 {
4844 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4845         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4846         /* No support for anonymous transparent PUD pages yet */
4847         if (vma_is_anonymous(vmf->vma))
4848                 return VM_FAULT_FALLBACK;
4849         if (vmf->vma->vm_ops->huge_fault)
4850                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4852         return VM_FAULT_FALLBACK;
4853 }
4854
4855 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4856 {
4857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4858         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4859         vm_fault_t ret;
4860
4861         /* No support for anonymous transparent PUD pages yet */
4862         if (vma_is_anonymous(vmf->vma))
4863                 goto split;
4864         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4865                 if (vmf->vma->vm_ops->huge_fault) {
4866                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4867                         if (!(ret & VM_FAULT_FALLBACK))
4868                                 return ret;
4869                 }
4870         }
4871 split:
4872         /* COW or write-notify not handled on PUD level: split pud.*/
4873         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4875         return VM_FAULT_FALLBACK;
4876 }
4877
4878 /*
4879  * These routines also need to handle stuff like marking pages dirty
4880  * and/or accessed for architectures that don't do it in hardware (most
4881  * RISC architectures).  The early dirtying is also good on the i386.
4882  *
4883  * There is also a hook called "update_mmu_cache()" that architectures
4884  * with external mmu caches can use to update those (ie the Sparc or
4885  * PowerPC hashed page tables that act as extended TLBs).
4886  *
4887  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4888  * concurrent faults).
4889  *
4890  * The mmap_lock may have been released depending on flags and our return value.
4891  * See filemap_fault() and __folio_lock_or_retry().
4892  */
4893 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4894 {
4895         pte_t entry;
4896
4897         if (unlikely(pmd_none(*vmf->pmd))) {
4898                 /*
4899                  * Leave __pte_alloc() until later: because vm_ops->fault may
4900                  * want to allocate huge page, and if we expose page table
4901                  * for an instant, it will be difficult to retract from
4902                  * concurrent faults and from rmap lookups.
4903                  */
4904                 vmf->pte = NULL;
4905                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4906         } else {
4907                 /*
4908                  * If a huge pmd materialized under us just retry later.  Use
4909                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4910                  * of pmd_trans_huge() to ensure the pmd didn't become
4911                  * pmd_trans_huge under us and then back to pmd_none, as a
4912                  * result of MADV_DONTNEED running immediately after a huge pmd
4913                  * fault in a different thread of this mm, in turn leading to a
4914                  * misleading pmd_trans_huge() retval. All we have to ensure is
4915                  * that it is a regular pmd that we can walk with
4916                  * pte_offset_map() and we can do that through an atomic read
4917                  * in C, which is what pmd_trans_unstable() provides.
4918                  */
4919                 if (pmd_devmap_trans_unstable(vmf->pmd))
4920                         return 0;
4921                 /*
4922                  * A regular pmd is established and it can't morph into a huge
4923                  * pmd from under us anymore at this point because we hold the
4924                  * mmap_lock read mode and khugepaged takes it in write mode.
4925                  * So now it's safe to run pte_offset_map().
4926                  */
4927                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4928                 vmf->orig_pte = *vmf->pte;
4929                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4930
4931                 /*
4932                  * some architectures can have larger ptes than wordsize,
4933                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4934                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4935                  * accesses.  The code below just needs a consistent view
4936                  * for the ifs and we later double check anyway with the
4937                  * ptl lock held. So here a barrier will do.
4938                  */
4939                 barrier();
4940                 if (pte_none(vmf->orig_pte)) {
4941                         pte_unmap(vmf->pte);
4942                         vmf->pte = NULL;
4943                 }
4944         }
4945
4946         if (!vmf->pte)
4947                 return do_pte_missing(vmf);
4948
4949         if (!pte_present(vmf->orig_pte))
4950                 return do_swap_page(vmf);
4951
4952         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4953                 return do_numa_page(vmf);
4954
4955         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4956         spin_lock(vmf->ptl);
4957         entry = vmf->orig_pte;
4958         if (unlikely(!pte_same(*vmf->pte, entry))) {
4959                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4960                 goto unlock;
4961         }
4962         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4963                 if (!pte_write(entry))
4964                         return do_wp_page(vmf);
4965                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4966                         entry = pte_mkdirty(entry);
4967         }
4968         entry = pte_mkyoung(entry);
4969         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4970                                 vmf->flags & FAULT_FLAG_WRITE)) {
4971                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4972         } else {
4973                 /* Skip spurious TLB flush for retried page fault */
4974                 if (vmf->flags & FAULT_FLAG_TRIED)
4975                         goto unlock;
4976                 /*
4977                  * This is needed only for protection faults but the arch code
4978                  * is not yet telling us if this is a protection fault or not.
4979                  * This still avoids useless tlb flushes for .text page faults
4980                  * with threads.
4981                  */
4982                 if (vmf->flags & FAULT_FLAG_WRITE)
4983                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4984                                                      vmf->pte);
4985         }
4986 unlock:
4987         pte_unmap_unlock(vmf->pte, vmf->ptl);
4988         return 0;
4989 }
4990
4991 /*
4992  * By the time we get here, we already hold the mm semaphore
4993  *
4994  * The mmap_lock may have been released depending on flags and our
4995  * return value.  See filemap_fault() and __folio_lock_or_retry().
4996  */
4997 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4998                 unsigned long address, unsigned int flags)
4999 {
5000         struct vm_fault vmf = {
5001                 .vma = vma,
5002                 .address = address & PAGE_MASK,
5003                 .real_address = address,
5004                 .flags = flags,
5005                 .pgoff = linear_page_index(vma, address),
5006                 .gfp_mask = __get_fault_gfp_mask(vma),
5007         };
5008         struct mm_struct *mm = vma->vm_mm;
5009         unsigned long vm_flags = vma->vm_flags;
5010         pgd_t *pgd;
5011         p4d_t *p4d;
5012         vm_fault_t ret;
5013
5014         pgd = pgd_offset(mm, address);
5015         p4d = p4d_alloc(mm, pgd, address);
5016         if (!p4d)
5017                 return VM_FAULT_OOM;
5018
5019         vmf.pud = pud_alloc(mm, p4d, address);
5020         if (!vmf.pud)
5021                 return VM_FAULT_OOM;
5022 retry_pud:
5023         if (pud_none(*vmf.pud) &&
5024             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5025                 ret = create_huge_pud(&vmf);
5026                 if (!(ret & VM_FAULT_FALLBACK))
5027                         return ret;
5028         } else {
5029                 pud_t orig_pud = *vmf.pud;
5030
5031                 barrier();
5032                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5033
5034                         /*
5035                          * TODO once we support anonymous PUDs: NUMA case and
5036                          * FAULT_FLAG_UNSHARE handling.
5037                          */
5038                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5039                                 ret = wp_huge_pud(&vmf, orig_pud);
5040                                 if (!(ret & VM_FAULT_FALLBACK))
5041                                         return ret;
5042                         } else {
5043                                 huge_pud_set_accessed(&vmf, orig_pud);
5044                                 return 0;
5045                         }
5046                 }
5047         }
5048
5049         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5050         if (!vmf.pmd)
5051                 return VM_FAULT_OOM;
5052
5053         /* Huge pud page fault raced with pmd_alloc? */
5054         if (pud_trans_unstable(vmf.pud))
5055                 goto retry_pud;
5056
5057         if (pmd_none(*vmf.pmd) &&
5058             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5059                 ret = create_huge_pmd(&vmf);
5060                 if (!(ret & VM_FAULT_FALLBACK))
5061                         return ret;
5062         } else {
5063                 vmf.orig_pmd = *vmf.pmd;
5064
5065                 barrier();
5066                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5067                         VM_BUG_ON(thp_migration_supported() &&
5068                                           !is_pmd_migration_entry(vmf.orig_pmd));
5069                         if (is_pmd_migration_entry(vmf.orig_pmd))
5070                                 pmd_migration_entry_wait(mm, vmf.pmd);
5071                         return 0;
5072                 }
5073                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5074                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5075                                 return do_huge_pmd_numa_page(&vmf);
5076
5077                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5078                             !pmd_write(vmf.orig_pmd)) {
5079                                 ret = wp_huge_pmd(&vmf);
5080                                 if (!(ret & VM_FAULT_FALLBACK))
5081                                         return ret;
5082                         } else {
5083                                 huge_pmd_set_accessed(&vmf);
5084                                 return 0;
5085                         }
5086                 }
5087         }
5088
5089         return handle_pte_fault(&vmf);
5090 }
5091
5092 /**
5093  * mm_account_fault - Do page fault accounting
5094  *
5095  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5096  *        of perf event counters, but we'll still do the per-task accounting to
5097  *        the task who triggered this page fault.
5098  * @address: the faulted address.
5099  * @flags: the fault flags.
5100  * @ret: the fault retcode.
5101  *
5102  * This will take care of most of the page fault accounting.  Meanwhile, it
5103  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5104  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5105  * still be in per-arch page fault handlers at the entry of page fault.
5106  */
5107 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5108                                     unsigned long address, unsigned int flags,
5109                                     vm_fault_t ret)
5110 {
5111         bool major;
5112
5113         /* Incomplete faults will be accounted upon completion. */
5114         if (ret & VM_FAULT_RETRY)
5115                 return;
5116
5117         /*
5118          * To preserve the behavior of older kernels, PGFAULT counters record
5119          * both successful and failed faults, as opposed to perf counters,
5120          * which ignore failed cases.
5121          */
5122         count_vm_event(PGFAULT);
5123         count_memcg_event_mm(mm, PGFAULT);
5124
5125         /*
5126          * Do not account for unsuccessful faults (e.g. when the address wasn't
5127          * valid).  That includes arch_vma_access_permitted() failing before
5128          * reaching here. So this is not a "this many hardware page faults"
5129          * counter.  We should use the hw profiling for that.
5130          */
5131         if (ret & VM_FAULT_ERROR)
5132                 return;
5133
5134         /*
5135          * We define the fault as a major fault when the final successful fault
5136          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5137          * handle it immediately previously).
5138          */
5139         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5140
5141         if (major)
5142                 current->maj_flt++;
5143         else
5144                 current->min_flt++;
5145
5146         /*
5147          * If the fault is done for GUP, regs will be NULL.  We only do the
5148          * accounting for the per thread fault counters who triggered the
5149          * fault, and we skip the perf event updates.
5150          */
5151         if (!regs)
5152                 return;
5153
5154         if (major)
5155                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5156         else
5157                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5158 }
5159
5160 #ifdef CONFIG_LRU_GEN
5161 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5162 {
5163         /* the LRU algorithm only applies to accesses with recency */
5164         current->in_lru_fault = vma_has_recency(vma);
5165 }
5166
5167 static void lru_gen_exit_fault(void)
5168 {
5169         current->in_lru_fault = false;
5170 }
5171 #else
5172 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5173 {
5174 }
5175
5176 static void lru_gen_exit_fault(void)
5177 {
5178 }
5179 #endif /* CONFIG_LRU_GEN */
5180
5181 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5182                                        unsigned int *flags)
5183 {
5184         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5185                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5186                         return VM_FAULT_SIGSEGV;
5187                 /*
5188                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5189                  * just treat it like an ordinary read-fault otherwise.
5190                  */
5191                 if (!is_cow_mapping(vma->vm_flags))
5192                         *flags &= ~FAULT_FLAG_UNSHARE;
5193         } else if (*flags & FAULT_FLAG_WRITE) {
5194                 /* Write faults on read-only mappings are impossible ... */
5195                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5196                         return VM_FAULT_SIGSEGV;
5197                 /* ... and FOLL_FORCE only applies to COW mappings. */
5198                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5199                                  !is_cow_mapping(vma->vm_flags)))
5200                         return VM_FAULT_SIGSEGV;
5201         }
5202         return 0;
5203 }
5204
5205 /*
5206  * By the time we get here, we already hold the mm semaphore
5207  *
5208  * The mmap_lock may have been released depending on flags and our
5209  * return value.  See filemap_fault() and __folio_lock_or_retry().
5210  */
5211 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5212                            unsigned int flags, struct pt_regs *regs)
5213 {
5214         /* If the fault handler drops the mmap_lock, vma may be freed */
5215         struct mm_struct *mm = vma->vm_mm;
5216         vm_fault_t ret;
5217
5218         __set_current_state(TASK_RUNNING);
5219
5220         ret = sanitize_fault_flags(vma, &flags);
5221         if (ret)
5222                 goto out;
5223
5224         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5225                                             flags & FAULT_FLAG_INSTRUCTION,
5226                                             flags & FAULT_FLAG_REMOTE)) {
5227                 ret = VM_FAULT_SIGSEGV;
5228                 goto out;
5229         }
5230
5231         /*
5232          * Enable the memcg OOM handling for faults triggered in user
5233          * space.  Kernel faults are handled more gracefully.
5234          */
5235         if (flags & FAULT_FLAG_USER)
5236                 mem_cgroup_enter_user_fault();
5237
5238         lru_gen_enter_fault(vma);
5239
5240         if (unlikely(is_vm_hugetlb_page(vma)))
5241                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5242         else
5243                 ret = __handle_mm_fault(vma, address, flags);
5244
5245         lru_gen_exit_fault();
5246
5247         if (flags & FAULT_FLAG_USER) {
5248                 mem_cgroup_exit_user_fault();
5249                 /*
5250                  * The task may have entered a memcg OOM situation but
5251                  * if the allocation error was handled gracefully (no
5252                  * VM_FAULT_OOM), there is no need to kill anything.
5253                  * Just clean up the OOM state peacefully.
5254                  */
5255                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5256                         mem_cgroup_oom_synchronize(false);
5257         }
5258 out:
5259         mm_account_fault(mm, regs, address, flags, ret);
5260
5261         return ret;
5262 }
5263 EXPORT_SYMBOL_GPL(handle_mm_fault);
5264
5265 #ifdef CONFIG_PER_VMA_LOCK
5266 /*
5267  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5268  * stable and not isolated. If the VMA is not found or is being modified the
5269  * function returns NULL.
5270  */
5271 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5272                                           unsigned long address)
5273 {
5274         MA_STATE(mas, &mm->mm_mt, address, address);
5275         struct vm_area_struct *vma;
5276
5277         rcu_read_lock();
5278 retry:
5279         vma = mas_walk(&mas);
5280         if (!vma)
5281                 goto inval;
5282
5283         /* Only anonymous vmas are supported for now */
5284         if (!vma_is_anonymous(vma))
5285                 goto inval;
5286
5287         /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5288         if (!vma->anon_vma)
5289                 goto inval;
5290
5291         if (!vma_start_read(vma))
5292                 goto inval;
5293
5294         /*
5295          * Due to the possibility of userfault handler dropping mmap_lock, avoid
5296          * it for now and fall back to page fault handling under mmap_lock.
5297          */
5298         if (userfaultfd_armed(vma)) {
5299                 vma_end_read(vma);
5300                 goto inval;
5301         }
5302
5303         /* Check since vm_start/vm_end might change before we lock the VMA */
5304         if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5305                 vma_end_read(vma);
5306                 goto inval;
5307         }
5308
5309         /* Check if the VMA got isolated after we found it */
5310         if (vma->detached) {
5311                 vma_end_read(vma);
5312                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5313                 /* The area was replaced with another one */
5314                 goto retry;
5315         }
5316
5317         rcu_read_unlock();
5318         return vma;
5319 inval:
5320         rcu_read_unlock();
5321         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5322         return NULL;
5323 }
5324 #endif /* CONFIG_PER_VMA_LOCK */
5325
5326 #ifndef __PAGETABLE_P4D_FOLDED
5327 /*
5328  * Allocate p4d page table.
5329  * We've already handled the fast-path in-line.
5330  */
5331 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5332 {
5333         p4d_t *new = p4d_alloc_one(mm, address);
5334         if (!new)
5335                 return -ENOMEM;
5336
5337         spin_lock(&mm->page_table_lock);
5338         if (pgd_present(*pgd)) {        /* Another has populated it */
5339                 p4d_free(mm, new);
5340         } else {
5341                 smp_wmb(); /* See comment in pmd_install() */
5342                 pgd_populate(mm, pgd, new);
5343         }
5344         spin_unlock(&mm->page_table_lock);
5345         return 0;
5346 }
5347 #endif /* __PAGETABLE_P4D_FOLDED */
5348
5349 #ifndef __PAGETABLE_PUD_FOLDED
5350 /*
5351  * Allocate page upper directory.
5352  * We've already handled the fast-path in-line.
5353  */
5354 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5355 {
5356         pud_t *new = pud_alloc_one(mm, address);
5357         if (!new)
5358                 return -ENOMEM;
5359
5360         spin_lock(&mm->page_table_lock);
5361         if (!p4d_present(*p4d)) {
5362                 mm_inc_nr_puds(mm);
5363                 smp_wmb(); /* See comment in pmd_install() */
5364                 p4d_populate(mm, p4d, new);
5365         } else  /* Another has populated it */
5366                 pud_free(mm, new);
5367         spin_unlock(&mm->page_table_lock);
5368         return 0;
5369 }
5370 #endif /* __PAGETABLE_PUD_FOLDED */
5371
5372 #ifndef __PAGETABLE_PMD_FOLDED
5373 /*
5374  * Allocate page middle directory.
5375  * We've already handled the fast-path in-line.
5376  */
5377 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5378 {
5379         spinlock_t *ptl;
5380         pmd_t *new = pmd_alloc_one(mm, address);
5381         if (!new)
5382                 return -ENOMEM;
5383
5384         ptl = pud_lock(mm, pud);
5385         if (!pud_present(*pud)) {
5386                 mm_inc_nr_pmds(mm);
5387                 smp_wmb(); /* See comment in pmd_install() */
5388                 pud_populate(mm, pud, new);
5389         } else {        /* Another has populated it */
5390                 pmd_free(mm, new);
5391         }
5392         spin_unlock(ptl);
5393         return 0;
5394 }
5395 #endif /* __PAGETABLE_PMD_FOLDED */
5396
5397 /**
5398  * follow_pte - look up PTE at a user virtual address
5399  * @mm: the mm_struct of the target address space
5400  * @address: user virtual address
5401  * @ptepp: location to store found PTE
5402  * @ptlp: location to store the lock for the PTE
5403  *
5404  * On a successful return, the pointer to the PTE is stored in @ptepp;
5405  * the corresponding lock is taken and its location is stored in @ptlp.
5406  * The contents of the PTE are only stable until @ptlp is released;
5407  * any further use, if any, must be protected against invalidation
5408  * with MMU notifiers.
5409  *
5410  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5411  * should be taken for read.
5412  *
5413  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5414  * it is not a good general-purpose API.
5415  *
5416  * Return: zero on success, -ve otherwise.
5417  */
5418 int follow_pte(struct mm_struct *mm, unsigned long address,
5419                pte_t **ptepp, spinlock_t **ptlp)
5420 {
5421         pgd_t *pgd;
5422         p4d_t *p4d;
5423         pud_t *pud;
5424         pmd_t *pmd;
5425         pte_t *ptep;
5426
5427         pgd = pgd_offset(mm, address);
5428         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5429                 goto out;
5430
5431         p4d = p4d_offset(pgd, address);
5432         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5433                 goto out;
5434
5435         pud = pud_offset(p4d, address);
5436         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5437                 goto out;
5438
5439         pmd = pmd_offset(pud, address);
5440         VM_BUG_ON(pmd_trans_huge(*pmd));
5441
5442         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5443                 goto out;
5444
5445         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5446         if (!pte_present(*ptep))
5447                 goto unlock;
5448         *ptepp = ptep;
5449         return 0;
5450 unlock:
5451         pte_unmap_unlock(ptep, *ptlp);
5452 out:
5453         return -EINVAL;
5454 }
5455 EXPORT_SYMBOL_GPL(follow_pte);
5456
5457 /**
5458  * follow_pfn - look up PFN at a user virtual address
5459  * @vma: memory mapping
5460  * @address: user virtual address
5461  * @pfn: location to store found PFN
5462  *
5463  * Only IO mappings and raw PFN mappings are allowed.
5464  *
5465  * This function does not allow the caller to read the permissions
5466  * of the PTE.  Do not use it.
5467  *
5468  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5469  */
5470 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5471         unsigned long *pfn)
5472 {
5473         int ret = -EINVAL;
5474         spinlock_t *ptl;
5475         pte_t *ptep;
5476
5477         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5478                 return ret;
5479
5480         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5481         if (ret)
5482                 return ret;
5483         *pfn = pte_pfn(*ptep);
5484         pte_unmap_unlock(ptep, ptl);
5485         return 0;
5486 }
5487 EXPORT_SYMBOL(follow_pfn);
5488
5489 #ifdef CONFIG_HAVE_IOREMAP_PROT
5490 int follow_phys(struct vm_area_struct *vma,
5491                 unsigned long address, unsigned int flags,
5492                 unsigned long *prot, resource_size_t *phys)
5493 {
5494         int ret = -EINVAL;
5495         pte_t *ptep, pte;
5496         spinlock_t *ptl;
5497
5498         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5499                 goto out;
5500
5501         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5502                 goto out;
5503         pte = *ptep;
5504
5505         if ((flags & FOLL_WRITE) && !pte_write(pte))
5506                 goto unlock;
5507
5508         *prot = pgprot_val(pte_pgprot(pte));
5509         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5510
5511         ret = 0;
5512 unlock:
5513         pte_unmap_unlock(ptep, ptl);
5514 out:
5515         return ret;
5516 }
5517
5518 /**
5519  * generic_access_phys - generic implementation for iomem mmap access
5520  * @vma: the vma to access
5521  * @addr: userspace address, not relative offset within @vma
5522  * @buf: buffer to read/write
5523  * @len: length of transfer
5524  * @write: set to FOLL_WRITE when writing, otherwise reading
5525  *
5526  * This is a generic implementation for &vm_operations_struct.access for an
5527  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5528  * not page based.
5529  */
5530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5531                         void *buf, int len, int write)
5532 {
5533         resource_size_t phys_addr;
5534         unsigned long prot = 0;
5535         void __iomem *maddr;
5536         pte_t *ptep, pte;
5537         spinlock_t *ptl;
5538         int offset = offset_in_page(addr);
5539         int ret = -EINVAL;
5540
5541         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5542                 return -EINVAL;
5543
5544 retry:
5545         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5546                 return -EINVAL;
5547         pte = *ptep;
5548         pte_unmap_unlock(ptep, ptl);
5549
5550         prot = pgprot_val(pte_pgprot(pte));
5551         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5552
5553         if ((write & FOLL_WRITE) && !pte_write(pte))
5554                 return -EINVAL;
5555
5556         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5557         if (!maddr)
5558                 return -ENOMEM;
5559
5560         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5561                 goto out_unmap;
5562
5563         if (!pte_same(pte, *ptep)) {
5564                 pte_unmap_unlock(ptep, ptl);
5565                 iounmap(maddr);
5566
5567                 goto retry;
5568         }
5569
5570         if (write)
5571                 memcpy_toio(maddr + offset, buf, len);
5572         else
5573                 memcpy_fromio(buf, maddr + offset, len);
5574         ret = len;
5575         pte_unmap_unlock(ptep, ptl);
5576 out_unmap:
5577         iounmap(maddr);
5578
5579         return ret;
5580 }
5581 EXPORT_SYMBOL_GPL(generic_access_phys);
5582 #endif
5583
5584 /*
5585  * Access another process' address space as given in mm.
5586  */
5587 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5588                        int len, unsigned int gup_flags)
5589 {
5590         struct vm_area_struct *vma;
5591         void *old_buf = buf;
5592         int write = gup_flags & FOLL_WRITE;
5593
5594         if (mmap_read_lock_killable(mm))
5595                 return 0;
5596
5597         /* ignore errors, just check how much was successfully transferred */
5598         while (len) {
5599                 int bytes, ret, offset;
5600                 void *maddr;
5601                 struct page *page = NULL;
5602
5603                 ret = get_user_pages_remote(mm, addr, 1,
5604                                 gup_flags, &page, &vma, NULL);
5605                 if (ret <= 0) {
5606 #ifndef CONFIG_HAVE_IOREMAP_PROT
5607                         break;
5608 #else
5609                         /*
5610                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5611                          * we can access using slightly different code.
5612                          */
5613                         vma = vma_lookup(mm, addr);
5614                         if (!vma)
5615                                 break;
5616                         if (vma->vm_ops && vma->vm_ops->access)
5617                                 ret = vma->vm_ops->access(vma, addr, buf,
5618                                                           len, write);
5619                         if (ret <= 0)
5620                                 break;
5621                         bytes = ret;
5622 #endif
5623                 } else {
5624                         bytes = len;
5625                         offset = addr & (PAGE_SIZE-1);
5626                         if (bytes > PAGE_SIZE-offset)
5627                                 bytes = PAGE_SIZE-offset;
5628
5629                         maddr = kmap(page);
5630                         if (write) {
5631                                 copy_to_user_page(vma, page, addr,
5632                                                   maddr + offset, buf, bytes);
5633                                 set_page_dirty_lock(page);
5634                         } else {
5635                                 copy_from_user_page(vma, page, addr,
5636                                                     buf, maddr + offset, bytes);
5637                         }
5638                         kunmap(page);
5639                         put_page(page);
5640                 }
5641                 len -= bytes;
5642                 buf += bytes;
5643                 addr += bytes;
5644         }
5645         mmap_read_unlock(mm);
5646
5647         return buf - old_buf;
5648 }
5649
5650 /**
5651  * access_remote_vm - access another process' address space
5652  * @mm:         the mm_struct of the target address space
5653  * @addr:       start address to access
5654  * @buf:        source or destination buffer
5655  * @len:        number of bytes to transfer
5656  * @gup_flags:  flags modifying lookup behaviour
5657  *
5658  * The caller must hold a reference on @mm.
5659  *
5660  * Return: number of bytes copied from source to destination.
5661  */
5662 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5663                 void *buf, int len, unsigned int gup_flags)
5664 {
5665         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5666 }
5667
5668 /*
5669  * Access another process' address space.
5670  * Source/target buffer must be kernel space,
5671  * Do not walk the page table directly, use get_user_pages
5672  */
5673 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5674                 void *buf, int len, unsigned int gup_flags)
5675 {
5676         struct mm_struct *mm;
5677         int ret;
5678
5679         mm = get_task_mm(tsk);
5680         if (!mm)
5681                 return 0;
5682
5683         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5684
5685         mmput(mm);
5686
5687         return ret;
5688 }
5689 EXPORT_SYMBOL_GPL(access_process_vm);
5690
5691 /*
5692  * Print the name of a VMA.
5693  */
5694 void print_vma_addr(char *prefix, unsigned long ip)
5695 {
5696         struct mm_struct *mm = current->mm;
5697         struct vm_area_struct *vma;
5698
5699         /*
5700          * we might be running from an atomic context so we cannot sleep
5701          */
5702         if (!mmap_read_trylock(mm))
5703                 return;
5704
5705         vma = find_vma(mm, ip);
5706         if (vma && vma->vm_file) {
5707                 struct file *f = vma->vm_file;
5708                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5709                 if (buf) {
5710                         char *p;
5711
5712                         p = file_path(f, buf, PAGE_SIZE);
5713                         if (IS_ERR(p))
5714                                 p = "?";
5715                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5716                                         vma->vm_start,
5717                                         vma->vm_end - vma->vm_start);
5718                         free_page((unsigned long)buf);
5719                 }
5720         }
5721         mmap_read_unlock(mm);
5722 }
5723
5724 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5725 void __might_fault(const char *file, int line)
5726 {
5727         if (pagefault_disabled())
5728                 return;
5729         __might_sleep(file, line);
5730 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5731         if (current->mm)
5732                 might_lock_read(&current->mm->mmap_lock);
5733 #endif
5734 }
5735 EXPORT_SYMBOL(__might_fault);
5736 #endif
5737
5738 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5739 /*
5740  * Process all subpages of the specified huge page with the specified
5741  * operation.  The target subpage will be processed last to keep its
5742  * cache lines hot.
5743  */
5744 static inline int process_huge_page(
5745         unsigned long addr_hint, unsigned int pages_per_huge_page,
5746         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5747         void *arg)
5748 {
5749         int i, n, base, l, ret;
5750         unsigned long addr = addr_hint &
5751                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5752
5753         /* Process target subpage last to keep its cache lines hot */
5754         might_sleep();
5755         n = (addr_hint - addr) / PAGE_SIZE;
5756         if (2 * n <= pages_per_huge_page) {
5757                 /* If target subpage in first half of huge page */
5758                 base = 0;
5759                 l = n;
5760                 /* Process subpages at the end of huge page */
5761                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5762                         cond_resched();
5763                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5764                         if (ret)
5765                                 return ret;
5766                 }
5767         } else {
5768                 /* If target subpage in second half of huge page */
5769                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5770                 l = pages_per_huge_page - n;
5771                 /* Process subpages at the begin of huge page */
5772                 for (i = 0; i < base; i++) {
5773                         cond_resched();
5774                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5775                         if (ret)
5776                                 return ret;
5777                 }
5778         }
5779         /*
5780          * Process remaining subpages in left-right-left-right pattern
5781          * towards the target subpage
5782          */
5783         for (i = 0; i < l; i++) {
5784                 int left_idx = base + i;
5785                 int right_idx = base + 2 * l - 1 - i;
5786
5787                 cond_resched();
5788                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5789                 if (ret)
5790                         return ret;
5791                 cond_resched();
5792                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5793                 if (ret)
5794                         return ret;
5795         }
5796         return 0;
5797 }
5798
5799 static void clear_gigantic_page(struct page *page,
5800                                 unsigned long addr,
5801                                 unsigned int pages_per_huge_page)
5802 {
5803         int i;
5804         struct page *p;
5805
5806         might_sleep();
5807         for (i = 0; i < pages_per_huge_page; i++) {
5808                 p = nth_page(page, i);
5809                 cond_resched();
5810                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5811         }
5812 }
5813
5814 static int clear_subpage(unsigned long addr, int idx, void *arg)
5815 {
5816         struct page *page = arg;
5817
5818         clear_user_highpage(page + idx, addr);
5819         return 0;
5820 }
5821
5822 void clear_huge_page(struct page *page,
5823                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5824 {
5825         unsigned long addr = addr_hint &
5826                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5827
5828         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5829                 clear_gigantic_page(page, addr, pages_per_huge_page);
5830                 return;
5831         }
5832
5833         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5834 }
5835
5836 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5837                                      unsigned long addr,
5838                                      struct vm_area_struct *vma,
5839                                      unsigned int pages_per_huge_page)
5840 {
5841         int i;
5842         struct page *dst_page;
5843         struct page *src_page;
5844
5845         for (i = 0; i < pages_per_huge_page; i++) {
5846                 dst_page = folio_page(dst, i);
5847                 src_page = folio_page(src, i);
5848
5849                 cond_resched();
5850                 if (copy_mc_user_highpage(dst_page, src_page,
5851                                           addr + i*PAGE_SIZE, vma)) {
5852                         memory_failure_queue(page_to_pfn(src_page), 0);
5853                         return -EHWPOISON;
5854                 }
5855         }
5856         return 0;
5857 }
5858
5859 struct copy_subpage_arg {
5860         struct page *dst;
5861         struct page *src;
5862         struct vm_area_struct *vma;
5863 };
5864
5865 static int copy_subpage(unsigned long addr, int idx, void *arg)
5866 {
5867         struct copy_subpage_arg *copy_arg = arg;
5868
5869         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5870                                   addr, copy_arg->vma)) {
5871                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5872                 return -EHWPOISON;
5873         }
5874         return 0;
5875 }
5876
5877 int copy_user_large_folio(struct folio *dst, struct folio *src,
5878                           unsigned long addr_hint, struct vm_area_struct *vma)
5879 {
5880         unsigned int pages_per_huge_page = folio_nr_pages(dst);
5881         unsigned long addr = addr_hint &
5882                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5883         struct copy_subpage_arg arg = {
5884                 .dst = &dst->page,
5885                 .src = &src->page,
5886                 .vma = vma,
5887         };
5888
5889         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
5890                 return copy_user_gigantic_page(dst, src, addr, vma,
5891                                                pages_per_huge_page);
5892
5893         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5894 }
5895
5896 long copy_folio_from_user(struct folio *dst_folio,
5897                            const void __user *usr_src,
5898                            bool allow_pagefault)
5899 {
5900         void *kaddr;
5901         unsigned long i, rc = 0;
5902         unsigned int nr_pages = folio_nr_pages(dst_folio);
5903         unsigned long ret_val = nr_pages * PAGE_SIZE;
5904         struct page *subpage;
5905
5906         for (i = 0; i < nr_pages; i++) {
5907                 subpage = folio_page(dst_folio, i);
5908                 kaddr = kmap_local_page(subpage);
5909                 if (!allow_pagefault)
5910                         pagefault_disable();
5911                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
5912                 if (!allow_pagefault)
5913                         pagefault_enable();
5914                 kunmap_local(kaddr);
5915
5916                 ret_val -= (PAGE_SIZE - rc);
5917                 if (rc)
5918                         break;
5919
5920                 flush_dcache_page(subpage);
5921
5922                 cond_resched();
5923         }
5924         return ret_val;
5925 }
5926 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5927
5928 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5929
5930 static struct kmem_cache *page_ptl_cachep;
5931
5932 void __init ptlock_cache_init(void)
5933 {
5934         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5935                         SLAB_PANIC, NULL);
5936 }
5937
5938 bool ptlock_alloc(struct page *page)
5939 {
5940         spinlock_t *ptl;
5941
5942         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5943         if (!ptl)
5944                 return false;
5945         page->ptl = ptl;
5946         return true;
5947 }
5948
5949 void ptlock_free(struct page *page)
5950 {
5951         kmem_cache_free(page_ptl_cachep, page->ptl);
5952 }
5953 #endif