1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return pte_marker_uffd_wp(vmf->orig_pte);
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
130 EXPORT_SYMBOL(high_memory);
133 * Randomize the address space (stacks, mmaps, brk, etc.).
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
157 static int __init disable_randmaps(char *s)
159 randomize_va_space = 0;
162 __setup("norandmaps", disable_randmaps);
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
167 unsigned long highest_memmap_pfn __read_mostly;
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 static int __init init_zero_pfn(void)
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 early_initcall(init_zero_pfn);
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 trace_rss_stat(mm, member);
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 pgtable_t token = pmd_pgtable(*pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
206 pmd = pmd_offset(pud, addr);
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
222 if (end - 1 > ceiling - 1)
225 pmd = pmd_offset(pud, start);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
240 pud = pud_offset(p4d, addr);
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
256 if (end - 1 > ceiling - 1)
259 pud = pud_offset(p4d, start);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
274 p4d = p4d_offset(pgd, addr);
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
286 ceiling &= PGDIR_MASK;
290 if (end - 1 > ceiling - 1)
293 p4d = p4d_offset(pgd, start);
295 p4d_free_tlb(tlb, p4d, start);
299 * This function frees user-level page tables of a process.
301 void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
309 * The next few lines have given us lots of grief...
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
345 if (end - 1 > ceiling - 1)
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
363 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
367 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
377 next = mas_find(&mas, ceiling - 1);
380 * Hide vma from rmap and truncate_pagecache before freeing
384 vma_start_write(vma);
385 unlink_anon_vmas(vma);
386 unlink_file_vma(vma);
388 if (is_vm_hugetlb_page(vma)) {
389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 floor, next ? next->vm_start : ceiling);
393 * Optimization: gather nearby vmas into one call down
395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 && !is_vm_hugetlb_page(next)) {
398 next = mas_find(&mas, ceiling - 1);
400 vma_start_write(vma);
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
404 free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 spinlock_t *ptl = pmd_lock(mm, pmd);
415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
418 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 * visible before the pte is made visible to other CPUs by being
420 * put into page tables.
422 * The other side of the story is the pointer chasing in the page
423 * table walking code (when walking the page table without locking;
424 * ie. most of the time). Fortunately, these data accesses consist
425 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 * being the notable exception) will already guarantee loads are
427 * seen in-order. See the alpha page table accessors for the
428 * smp_rmb() barriers in page table walking code.
430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 pmd_populate(mm, pmd, *pte);
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 pgtable_t new = pte_alloc_one(mm);
443 pmd_install(mm, pmd, &new);
449 int __pte_alloc_kernel(pmd_t *pmd)
451 pte_t *new = pte_alloc_one_kernel(&init_mm);
455 spin_lock(&init_mm.page_table_lock);
456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
457 smp_wmb(); /* See comment in pmd_install() */
458 pmd_populate_kernel(&init_mm, pmd, new);
461 spin_unlock(&init_mm.page_table_lock);
463 pte_free_kernel(&init_mm, new);
467 static inline void init_rss_vec(int *rss)
469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 if (current->mm == mm)
478 for (i = 0; i < NR_MM_COUNTERS; i++)
480 add_mm_counter(mm, i, rss[i]);
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
488 * The calling function must still handle the error.
490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 resume = jiffies + 60 * HZ;
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 dump_page(page, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 mapping ? mapping->a_ops->read_folio : NULL);
538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542 * vm_normal_page -- This function gets the "struct page" associated with a pte.
544 * "Special" mappings do not wish to be associated with a "struct page" (either
545 * it doesn't exist, or it exists but they don't want to touch it). In this
546 * case, NULL is returned here. "Normal" mappings do have a struct page.
548 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549 * pte bit, in which case this function is trivial. Secondly, an architecture
550 * may not have a spare pte bit, which requires a more complicated scheme,
553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554 * special mapping (even if there are underlying and valid "struct pages").
555 * COWed pages of a VM_PFNMAP are always normal.
557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560 * mapping will always honor the rule
562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564 * And for normal mappings this is false.
566 * This restricts such mappings to be a linear translation from virtual address
567 * to pfn. To get around this restriction, we allow arbitrary mappings so long
568 * as the vma is not a COW mapping; in that case, we know that all ptes are
569 * special (because none can have been COWed).
572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575 * page" backing, however the difference is that _all_ pages with a struct
576 * page (that is, those where pfn_valid is true) are refcounted and considered
577 * normal pages by the VM. The disadvantage is that pages are refcounted
578 * (which can be slower and simply not an option for some PFNMAP users). The
579 * advantage is that we don't have to follow the strict linearity rule of
580 * PFNMAP mappings in order to support COWable mappings.
583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
586 unsigned long pfn = pte_pfn(pte);
588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 if (likely(!pte_special(pte)))
591 if (vma->vm_ops && vma->vm_ops->find_special_page)
592 return vma->vm_ops->find_special_page(vma, addr);
593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 if (is_zero_pfn(pfn))
599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 * and will have refcounts incremented on their struct pages
601 * when they are inserted into PTEs, thus they are safe to
602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
608 print_bad_pte(vma, addr, pte, NULL);
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
624 if (!is_cow_mapping(vma->vm_flags))
629 if (is_zero_pfn(pfn))
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
643 return pfn_to_page(pfn);
646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
649 struct page *page = vm_normal_page(vma, addr, pte);
652 return page_folio(page);
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
660 unsigned long pfn = pmd_pfn(pmd);
663 * There is no pmd_special() but there may be special pmds, e.g.
664 * in a direct-access (dax) mapping, so let's just replicate the
665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 if (vma->vm_flags & VM_MIXEDMAP) {
674 off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 if (pfn == vma->vm_pgoff + off)
677 if (!is_cow_mapping(vma->vm_flags))
684 if (is_huge_zero_pmd(pmd))
686 if (unlikely(pfn > highest_memmap_pfn))
690 * NOTE! We still have PageReserved() pages in the page tables.
691 * eg. VDSO mappings can cause them to exist.
694 return pfn_to_page(pfn);
698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 struct page *page, unsigned long address,
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(*ptep))
707 pte = pte_mksoft_dirty(pte);
709 entry = pte_to_swp_entry(*ptep);
710 if (pte_swp_uffd_wp(*ptep))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
730 set_pte_at(vma->vm_mm, address, ptep, pte);
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
736 update_mmu_cache(vma, address, ptep);
740 * Tries to restore an exclusive pte if the page lock can be acquired without
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 swp_entry_t entry = pte_to_swp_entry(*src_pte);
748 struct page *page = pfn_swap_entry_to_page(entry);
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
770 unsigned long vm_flags = dst_vma->vm_flags;
771 pte_t pte = *src_pte;
773 swp_entry_t entry = pte_to_swp_entry(pte);
775 if (likely(!non_swap_entry(entry))) {
776 if (swap_duplicate(entry) < 0)
779 /* make sure dst_mm is on swapoff's mmlist. */
780 if (unlikely(list_empty(&dst_mm->mmlist))) {
781 spin_lock(&mmlist_lock);
782 if (list_empty(&dst_mm->mmlist))
783 list_add(&dst_mm->mmlist,
785 spin_unlock(&mmlist_lock);
787 /* Mark the swap entry as shared. */
788 if (pte_swp_exclusive(*src_pte)) {
789 pte = pte_swp_clear_exclusive(*src_pte);
790 set_pte_at(src_mm, addr, src_pte, pte);
793 } else if (is_migration_entry(entry)) {
794 page = pfn_swap_entry_to_page(entry);
796 rss[mm_counter(page)]++;
798 if (!is_readable_migration_entry(entry) &&
799 is_cow_mapping(vm_flags)) {
801 * COW mappings require pages in both parent and child
802 * to be set to read. A previously exclusive entry is
805 entry = make_readable_migration_entry(
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
814 } else if (is_device_private_entry(entry)) {
815 page = pfn_swap_entry_to_page(entry);
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
827 rss[mm_counter(page)]++;
828 /* Cannot fail as these pages cannot get pinned. */
829 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
832 * We do not preserve soft-dirty information, because so
833 * far, checkpoint/restore is the only feature that
834 * requires that. And checkpoint/restore does not work
835 * when a device driver is involved (you cannot easily
836 * save and restore device driver state).
838 if (is_writable_device_private_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
840 entry = make_readable_device_private_entry(
842 pte = swp_entry_to_pte(entry);
843 if (pte_swp_uffd_wp(*src_pte))
844 pte = pte_swp_mkuffd_wp(pte);
845 set_pte_at(src_mm, addr, src_pte, pte);
847 } else if (is_device_exclusive_entry(entry)) {
849 * Make device exclusive entries present by restoring the
850 * original entry then copying as for a present pte. Device
851 * exclusive entries currently only support private writable
852 * (ie. COW) mappings.
854 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858 } else if (is_pte_marker_entry(entry)) {
859 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
860 set_pte_at(dst_mm, addr, dst_pte, pte);
863 if (!userfaultfd_wp(dst_vma))
864 pte = pte_swp_clear_uffd_wp(pte);
865 set_pte_at(dst_mm, addr, dst_pte, pte);
870 * Copy a present and normal page.
872 * NOTE! The usual case is that this isn't required;
873 * instead, the caller can just increase the page refcount
874 * and re-use the pte the traditional way.
876 * And if we need a pre-allocated page but don't yet have
877 * one, return a negative error to let the preallocation
878 * code know so that it can do so outside the page table
882 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
883 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
884 struct folio **prealloc, struct page *page)
886 struct folio *new_folio;
889 new_folio = *prealloc;
894 * We have a prealloc page, all good! Take it
895 * over and copy the page & arm it.
898 copy_user_highpage(&new_folio->page, page, addr, src_vma);
899 __folio_mark_uptodate(new_folio);
900 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
901 folio_add_lru_vma(new_folio, dst_vma);
904 /* All done, just insert the new page copy in the child */
905 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
906 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
907 if (userfaultfd_pte_wp(dst_vma, *src_pte))
908 /* Uffd-wp needs to be delivered to dest pte as well */
909 pte = pte_mkuffd_wp(pte);
910 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
916 * is required to copy this pte.
919 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
920 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
921 struct folio **prealloc)
923 struct mm_struct *src_mm = src_vma->vm_mm;
924 unsigned long vm_flags = src_vma->vm_flags;
925 pte_t pte = *src_pte;
929 page = vm_normal_page(src_vma, addr, pte);
931 folio = page_folio(page);
932 if (page && folio_test_anon(folio)) {
934 * If this page may have been pinned by the parent process,
935 * copy the page immediately for the child so that we'll always
936 * guarantee the pinned page won't be randomly replaced in the
940 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
941 /* Page may be pinned, we have to copy. */
943 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
944 addr, rss, prealloc, page);
949 page_dup_file_rmap(page, false);
950 rss[mm_counter_file(page)]++;
954 * If it's a COW mapping, write protect it both
955 * in the parent and the child
957 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
958 ptep_set_wrprotect(src_mm, addr, src_pte);
959 pte = pte_wrprotect(pte);
961 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
964 * If it's a shared mapping, mark it clean in
967 if (vm_flags & VM_SHARED)
968 pte = pte_mkclean(pte);
969 pte = pte_mkold(pte);
971 if (!userfaultfd_wp(dst_vma))
972 pte = pte_clear_uffd_wp(pte);
974 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
978 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
979 struct vm_area_struct *vma, unsigned long addr)
981 struct folio *new_folio;
983 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
987 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
988 folio_put(new_folio);
991 folio_throttle_swaprate(new_folio, GFP_KERNEL);
997 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1001 struct mm_struct *dst_mm = dst_vma->vm_mm;
1002 struct mm_struct *src_mm = src_vma->vm_mm;
1003 pte_t *orig_src_pte, *orig_dst_pte;
1004 pte_t *src_pte, *dst_pte;
1005 spinlock_t *src_ptl, *dst_ptl;
1006 int progress, ret = 0;
1007 int rss[NR_MM_COUNTERS];
1008 swp_entry_t entry = (swp_entry_t){0};
1009 struct folio *prealloc = NULL;
1015 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1020 src_pte = pte_offset_map(src_pmd, addr);
1021 src_ptl = pte_lockptr(src_mm, src_pmd);
1022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1023 orig_src_pte = src_pte;
1024 orig_dst_pte = dst_pte;
1025 arch_enter_lazy_mmu_mode();
1029 * We are holding two locks at this point - either of them
1030 * could generate latencies in another task on another CPU.
1032 if (progress >= 32) {
1034 if (need_resched() ||
1035 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1038 if (pte_none(*src_pte)) {
1042 if (unlikely(!pte_present(*src_pte))) {
1043 ret = copy_nonpresent_pte(dst_mm, src_mm,
1048 entry = pte_to_swp_entry(*src_pte);
1050 } else if (ret == -EBUSY) {
1058 * Device exclusive entry restored, continue by copying
1059 * the now present pte.
1061 WARN_ON_ONCE(ret != -ENOENT);
1063 /* copy_present_pte() will clear `*prealloc' if consumed */
1064 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1065 addr, rss, &prealloc);
1067 * If we need a pre-allocated page for this pte, drop the
1068 * locks, allocate, and try again.
1070 if (unlikely(ret == -EAGAIN))
1072 if (unlikely(prealloc)) {
1074 * pre-alloc page cannot be reused by next time so as
1075 * to strictly follow mempolicy (e.g., alloc_page_vma()
1076 * will allocate page according to address). This
1077 * could only happen if one pinned pte changed.
1079 folio_put(prealloc);
1083 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1085 arch_leave_lazy_mmu_mode();
1086 spin_unlock(src_ptl);
1087 pte_unmap(orig_src_pte);
1088 add_mm_rss_vec(dst_mm, rss);
1089 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1093 VM_WARN_ON_ONCE(!entry.val);
1094 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1099 } else if (ret == -EBUSY) {
1101 } else if (ret == -EAGAIN) {
1102 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109 /* We've captured and resolved the error. Reset, try again. */
1115 if (unlikely(prealloc))
1116 folio_put(prealloc);
1121 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1122 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1125 struct mm_struct *dst_mm = dst_vma->vm_mm;
1126 struct mm_struct *src_mm = src_vma->vm_mm;
1127 pmd_t *src_pmd, *dst_pmd;
1130 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133 src_pmd = pmd_offset(src_pud, addr);
1135 next = pmd_addr_end(addr, end);
1136 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1137 || pmd_devmap(*src_pmd)) {
1139 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1140 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1141 addr, dst_vma, src_vma);
1148 if (pmd_none_or_clear_bad(src_pmd))
1150 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1153 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1158 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1162 struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 struct mm_struct *src_mm = src_vma->vm_mm;
1164 pud_t *src_pud, *dst_pud;
1167 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1170 src_pud = pud_offset(src_p4d, addr);
1172 next = pud_addr_end(addr, end);
1173 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1176 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1177 err = copy_huge_pud(dst_mm, src_mm,
1178 dst_pud, src_pud, addr, src_vma);
1185 if (pud_none_or_clear_bad(src_pud))
1187 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1190 } while (dst_pud++, src_pud++, addr = next, addr != end);
1195 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1199 struct mm_struct *dst_mm = dst_vma->vm_mm;
1200 p4d_t *src_p4d, *dst_p4d;
1203 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1206 src_p4d = p4d_offset(src_pgd, addr);
1208 next = p4d_addr_end(addr, end);
1209 if (p4d_none_or_clear_bad(src_p4d))
1211 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1214 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1219 * Return true if the vma needs to copy the pgtable during this fork(). Return
1220 * false when we can speed up fork() by allowing lazy page faults later until
1221 * when the child accesses the memory range.
1224 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1227 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1228 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1229 * contains uffd-wp protection information, that's something we can't
1230 * retrieve from page cache, and skip copying will lose those info.
1232 if (userfaultfd_wp(dst_vma))
1235 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1238 if (src_vma->anon_vma)
1242 * Don't copy ptes where a page fault will fill them correctly. Fork
1243 * becomes much lighter when there are big shared or private readonly
1244 * mappings. The tradeoff is that copy_page_range is more efficient
1251 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1253 pgd_t *src_pgd, *dst_pgd;
1255 unsigned long addr = src_vma->vm_start;
1256 unsigned long end = src_vma->vm_end;
1257 struct mm_struct *dst_mm = dst_vma->vm_mm;
1258 struct mm_struct *src_mm = src_vma->vm_mm;
1259 struct mmu_notifier_range range;
1263 if (!vma_needs_copy(dst_vma, src_vma))
1266 if (is_vm_hugetlb_page(src_vma))
1267 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1269 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1271 * We do not free on error cases below as remove_vma
1272 * gets called on error from higher level routine
1274 ret = track_pfn_copy(src_vma);
1280 * We need to invalidate the secondary MMU mappings only when
1281 * there could be a permission downgrade on the ptes of the
1282 * parent mm. And a permission downgrade will only happen if
1283 * is_cow_mapping() returns true.
1285 is_cow = is_cow_mapping(src_vma->vm_flags);
1288 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1289 0, src_mm, addr, end);
1290 mmu_notifier_invalidate_range_start(&range);
1292 * Disabling preemption is not needed for the write side, as
1293 * the read side doesn't spin, but goes to the mmap_lock.
1295 * Use the raw variant of the seqcount_t write API to avoid
1296 * lockdep complaining about preemptibility.
1298 mmap_assert_write_locked(src_mm);
1299 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1303 dst_pgd = pgd_offset(dst_mm, addr);
1304 src_pgd = pgd_offset(src_mm, addr);
1306 next = pgd_addr_end(addr, end);
1307 if (pgd_none_or_clear_bad(src_pgd))
1309 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1311 untrack_pfn_clear(dst_vma);
1315 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1318 raw_write_seqcount_end(&src_mm->write_protect_seq);
1319 mmu_notifier_invalidate_range_end(&range);
1324 /* Whether we should zap all COWed (private) pages too */
1325 static inline bool should_zap_cows(struct zap_details *details)
1327 /* By default, zap all pages */
1331 /* Or, we zap COWed pages only if the caller wants to */
1332 return details->even_cows;
1335 /* Decides whether we should zap this page with the page pointer specified */
1336 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1338 /* If we can make a decision without *page.. */
1339 if (should_zap_cows(details))
1342 /* E.g. the caller passes NULL for the case of a zero page */
1346 /* Otherwise we should only zap non-anon pages */
1347 return !PageAnon(page);
1350 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1355 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1359 * This function makes sure that we'll replace the none pte with an uffd-wp
1360 * swap special pte marker when necessary. Must be with the pgtable lock held.
1363 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1364 unsigned long addr, pte_t *pte,
1365 struct zap_details *details, pte_t pteval)
1367 /* Zap on anonymous always means dropping everything */
1368 if (vma_is_anonymous(vma))
1371 if (zap_drop_file_uffd_wp(details))
1374 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1377 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1378 struct vm_area_struct *vma, pmd_t *pmd,
1379 unsigned long addr, unsigned long end,
1380 struct zap_details *details)
1382 struct mm_struct *mm = tlb->mm;
1383 int force_flush = 0;
1384 int rss[NR_MM_COUNTERS];
1390 tlb_change_page_size(tlb, PAGE_SIZE);
1393 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1395 flush_tlb_batched_pending(mm);
1396 arch_enter_lazy_mmu_mode();
1401 if (pte_none(ptent))
1407 if (pte_present(ptent)) {
1408 unsigned int delay_rmap;
1410 page = vm_normal_page(vma, addr, ptent);
1411 if (unlikely(!should_zap_page(details, page)))
1413 ptent = ptep_get_and_clear_full(mm, addr, pte,
1415 tlb_remove_tlb_entry(tlb, pte, addr);
1416 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1418 if (unlikely(!page))
1422 if (!PageAnon(page)) {
1423 if (pte_dirty(ptent)) {
1424 set_page_dirty(page);
1425 if (tlb_delay_rmap(tlb)) {
1430 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1431 mark_page_accessed(page);
1433 rss[mm_counter(page)]--;
1435 page_remove_rmap(page, vma, false);
1436 if (unlikely(page_mapcount(page) < 0))
1437 print_bad_pte(vma, addr, ptent, page);
1439 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1447 entry = pte_to_swp_entry(ptent);
1448 if (is_device_private_entry(entry) ||
1449 is_device_exclusive_entry(entry)) {
1450 page = pfn_swap_entry_to_page(entry);
1451 if (unlikely(!should_zap_page(details, page)))
1454 * Both device private/exclusive mappings should only
1455 * work with anonymous page so far, so we don't need to
1456 * consider uffd-wp bit when zap. For more information,
1457 * see zap_install_uffd_wp_if_needed().
1459 WARN_ON_ONCE(!vma_is_anonymous(vma));
1460 rss[mm_counter(page)]--;
1461 if (is_device_private_entry(entry))
1462 page_remove_rmap(page, vma, false);
1464 } else if (!non_swap_entry(entry)) {
1465 /* Genuine swap entry, hence a private anon page */
1466 if (!should_zap_cows(details))
1469 if (unlikely(!free_swap_and_cache(entry)))
1470 print_bad_pte(vma, addr, ptent, NULL);
1471 } else if (is_migration_entry(entry)) {
1472 page = pfn_swap_entry_to_page(entry);
1473 if (!should_zap_page(details, page))
1475 rss[mm_counter(page)]--;
1476 } else if (pte_marker_entry_uffd_wp(entry)) {
1478 * For anon: always drop the marker; for file: only
1479 * drop the marker if explicitly requested.
1481 if (!vma_is_anonymous(vma) &&
1482 !zap_drop_file_uffd_wp(details))
1484 } else if (is_hwpoison_entry(entry) ||
1485 is_swapin_error_entry(entry)) {
1486 if (!should_zap_cows(details))
1489 /* We should have covered all the swap entry types */
1492 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1493 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1494 } while (pte++, addr += PAGE_SIZE, addr != end);
1496 add_mm_rss_vec(mm, rss);
1497 arch_leave_lazy_mmu_mode();
1499 /* Do the actual TLB flush before dropping ptl */
1501 tlb_flush_mmu_tlbonly(tlb);
1502 tlb_flush_rmaps(tlb, vma);
1504 pte_unmap_unlock(start_pte, ptl);
1507 * If we forced a TLB flush (either due to running out of
1508 * batch buffers or because we needed to flush dirty TLB
1509 * entries before releasing the ptl), free the batched
1510 * memory too. Restart if we didn't do everything.
1525 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1526 struct vm_area_struct *vma, pud_t *pud,
1527 unsigned long addr, unsigned long end,
1528 struct zap_details *details)
1533 pmd = pmd_offset(pud, addr);
1535 next = pmd_addr_end(addr, end);
1536 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1537 if (next - addr != HPAGE_PMD_SIZE)
1538 __split_huge_pmd(vma, pmd, addr, false, NULL);
1539 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1542 } else if (details && details->single_folio &&
1543 folio_test_pmd_mappable(details->single_folio) &&
1544 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1545 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1547 * Take and drop THP pmd lock so that we cannot return
1548 * prematurely, while zap_huge_pmd() has cleared *pmd,
1549 * but not yet decremented compound_mapcount().
1555 * Here there can be other concurrent MADV_DONTNEED or
1556 * trans huge page faults running, and if the pmd is
1557 * none or trans huge it can change under us. This is
1558 * because MADV_DONTNEED holds the mmap_lock in read
1561 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1563 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1566 } while (pmd++, addr = next, addr != end);
1571 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1572 struct vm_area_struct *vma, p4d_t *p4d,
1573 unsigned long addr, unsigned long end,
1574 struct zap_details *details)
1579 pud = pud_offset(p4d, addr);
1581 next = pud_addr_end(addr, end);
1582 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1583 if (next - addr != HPAGE_PUD_SIZE) {
1584 mmap_assert_locked(tlb->mm);
1585 split_huge_pud(vma, pud, addr);
1586 } else if (zap_huge_pud(tlb, vma, pud, addr))
1590 if (pud_none_or_clear_bad(pud))
1592 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1595 } while (pud++, addr = next, addr != end);
1600 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1601 struct vm_area_struct *vma, pgd_t *pgd,
1602 unsigned long addr, unsigned long end,
1603 struct zap_details *details)
1608 p4d = p4d_offset(pgd, addr);
1610 next = p4d_addr_end(addr, end);
1611 if (p4d_none_or_clear_bad(p4d))
1613 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1614 } while (p4d++, addr = next, addr != end);
1619 void unmap_page_range(struct mmu_gather *tlb,
1620 struct vm_area_struct *vma,
1621 unsigned long addr, unsigned long end,
1622 struct zap_details *details)
1627 BUG_ON(addr >= end);
1628 tlb_start_vma(tlb, vma);
1629 pgd = pgd_offset(vma->vm_mm, addr);
1631 next = pgd_addr_end(addr, end);
1632 if (pgd_none_or_clear_bad(pgd))
1634 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1635 } while (pgd++, addr = next, addr != end);
1636 tlb_end_vma(tlb, vma);
1640 static void unmap_single_vma(struct mmu_gather *tlb,
1641 struct vm_area_struct *vma, unsigned long start_addr,
1642 unsigned long end_addr,
1643 struct zap_details *details, bool mm_wr_locked)
1645 unsigned long start = max(vma->vm_start, start_addr);
1648 if (start >= vma->vm_end)
1650 end = min(vma->vm_end, end_addr);
1651 if (end <= vma->vm_start)
1655 uprobe_munmap(vma, start, end);
1657 if (unlikely(vma->vm_flags & VM_PFNMAP))
1658 untrack_pfn(vma, 0, 0, mm_wr_locked);
1661 if (unlikely(is_vm_hugetlb_page(vma))) {
1663 * It is undesirable to test vma->vm_file as it
1664 * should be non-null for valid hugetlb area.
1665 * However, vm_file will be NULL in the error
1666 * cleanup path of mmap_region. When
1667 * hugetlbfs ->mmap method fails,
1668 * mmap_region() nullifies vma->vm_file
1669 * before calling this function to clean up.
1670 * Since no pte has actually been setup, it is
1671 * safe to do nothing in this case.
1674 zap_flags_t zap_flags = details ?
1675 details->zap_flags : 0;
1676 __unmap_hugepage_range_final(tlb, vma, start, end,
1680 unmap_page_range(tlb, vma, start, end, details);
1685 * unmap_vmas - unmap a range of memory covered by a list of vma's
1686 * @tlb: address of the caller's struct mmu_gather
1687 * @mt: the maple tree
1688 * @vma: the starting vma
1689 * @start_addr: virtual address at which to start unmapping
1690 * @end_addr: virtual address at which to end unmapping
1692 * Unmap all pages in the vma list.
1694 * Only addresses between `start' and `end' will be unmapped.
1696 * The VMA list must be sorted in ascending virtual address order.
1698 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1699 * range after unmap_vmas() returns. So the only responsibility here is to
1700 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1701 * drops the lock and schedules.
1703 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1704 struct vm_area_struct *vma, unsigned long start_addr,
1705 unsigned long end_addr, bool mm_wr_locked)
1707 struct mmu_notifier_range range;
1708 struct zap_details details = {
1709 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1710 /* Careful - we need to zap private pages too! */
1713 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1715 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1716 start_addr, end_addr);
1717 mmu_notifier_invalidate_range_start(&range);
1719 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1721 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722 mmu_notifier_invalidate_range_end(&range);
1726 * zap_page_range_single - remove user pages in a given range
1727 * @vma: vm_area_struct holding the applicable pages
1728 * @address: starting address of pages to zap
1729 * @size: number of bytes to zap
1730 * @details: details of shared cache invalidation
1732 * The range must fit into one VMA.
1734 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1735 unsigned long size, struct zap_details *details)
1737 const unsigned long end = address + size;
1738 struct mmu_notifier_range range;
1739 struct mmu_gather tlb;
1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1744 if (is_vm_hugetlb_page(vma))
1745 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1747 tlb_gather_mmu(&tlb, vma->vm_mm);
1748 update_hiwater_rss(vma->vm_mm);
1749 mmu_notifier_invalidate_range_start(&range);
1751 * unmap 'address-end' not 'range.start-range.end' as range
1752 * could have been expanded for hugetlb pmd sharing.
1754 unmap_single_vma(&tlb, vma, address, end, details, false);
1755 mmu_notifier_invalidate_range_end(&range);
1756 tlb_finish_mmu(&tlb);
1760 * zap_vma_ptes - remove ptes mapping the vma
1761 * @vma: vm_area_struct holding ptes to be zapped
1762 * @address: starting address of pages to zap
1763 * @size: number of bytes to zap
1765 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1767 * The entire address range must be fully contained within the vma.
1770 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1773 if (!range_in_vma(vma, address, address + size) ||
1774 !(vma->vm_flags & VM_PFNMAP))
1777 zap_page_range_single(vma, address, size, NULL);
1779 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1781 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1788 pgd = pgd_offset(mm, addr);
1789 p4d = p4d_alloc(mm, pgd, addr);
1792 pud = pud_alloc(mm, p4d, addr);
1795 pmd = pmd_alloc(mm, pud, addr);
1799 VM_BUG_ON(pmd_trans_huge(*pmd));
1803 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1806 pmd_t *pmd = walk_to_pmd(mm, addr);
1810 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1813 static int validate_page_before_insert(struct page *page)
1815 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1817 flush_dcache_page(page);
1821 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1822 unsigned long addr, struct page *page, pgprot_t prot)
1824 if (!pte_none(*pte))
1826 /* Ok, finally just insert the thing.. */
1828 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1829 page_add_file_rmap(page, vma, false);
1830 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1835 * This is the old fallback for page remapping.
1837 * For historical reasons, it only allows reserved pages. Only
1838 * old drivers should use this, and they needed to mark their
1839 * pages reserved for the old functions anyway.
1841 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1842 struct page *page, pgprot_t prot)
1848 retval = validate_page_before_insert(page);
1852 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1855 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1856 pte_unmap_unlock(pte, ptl);
1862 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1863 unsigned long addr, struct page *page, pgprot_t prot)
1867 if (!page_count(page))
1869 err = validate_page_before_insert(page);
1872 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1875 /* insert_pages() amortizes the cost of spinlock operations
1876 * when inserting pages in a loop. Arch *must* define pte_index.
1878 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879 struct page **pages, unsigned long *num, pgprot_t prot)
1882 pte_t *start_pte, *pte;
1883 spinlock_t *pte_lock;
1884 struct mm_struct *const mm = vma->vm_mm;
1885 unsigned long curr_page_idx = 0;
1886 unsigned long remaining_pages_total = *num;
1887 unsigned long pages_to_write_in_pmd;
1891 pmd = walk_to_pmd(mm, addr);
1895 pages_to_write_in_pmd = min_t(unsigned long,
1896 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1898 /* Allocate the PTE if necessary; takes PMD lock once only. */
1900 if (pte_alloc(mm, pmd))
1903 while (pages_to_write_in_pmd) {
1905 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1907 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1908 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1909 int err = insert_page_in_batch_locked(vma, pte,
1910 addr, pages[curr_page_idx], prot);
1911 if (unlikely(err)) {
1912 pte_unmap_unlock(start_pte, pte_lock);
1914 remaining_pages_total -= pte_idx;
1920 pte_unmap_unlock(start_pte, pte_lock);
1921 pages_to_write_in_pmd -= batch_size;
1922 remaining_pages_total -= batch_size;
1924 if (remaining_pages_total)
1928 *num = remaining_pages_total;
1931 #endif /* ifdef pte_index */
1934 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1935 * @vma: user vma to map to
1936 * @addr: target start user address of these pages
1937 * @pages: source kernel pages
1938 * @num: in: number of pages to map. out: number of pages that were *not*
1939 * mapped. (0 means all pages were successfully mapped).
1941 * Preferred over vm_insert_page() when inserting multiple pages.
1943 * In case of error, we may have mapped a subset of the provided
1944 * pages. It is the caller's responsibility to account for this case.
1946 * The same restrictions apply as in vm_insert_page().
1948 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1949 struct page **pages, unsigned long *num)
1952 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1954 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1956 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957 BUG_ON(mmap_read_trylock(vma->vm_mm));
1958 BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 vm_flags_set(vma, VM_MIXEDMAP);
1961 /* Defer page refcount checking till we're about to map that page. */
1962 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1964 unsigned long idx = 0, pgcount = *num;
1967 for (; idx < pgcount; ++idx) {
1968 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1972 *num = pgcount - idx;
1974 #endif /* ifdef pte_index */
1976 EXPORT_SYMBOL(vm_insert_pages);
1979 * vm_insert_page - insert single page into user vma
1980 * @vma: user vma to map to
1981 * @addr: target user address of this page
1982 * @page: source kernel page
1984 * This allows drivers to insert individual pages they've allocated
1987 * The page has to be a nice clean _individual_ kernel allocation.
1988 * If you allocate a compound page, you need to have marked it as
1989 * such (__GFP_COMP), or manually just split the page up yourself
1990 * (see split_page()).
1992 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993 * took an arbitrary page protection parameter. This doesn't allow
1994 * that. Your vma protection will have to be set up correctly, which
1995 * means that if you want a shared writable mapping, you'd better
1996 * ask for a shared writable mapping!
1998 * The page does not need to be reserved.
2000 * Usually this function is called from f_op->mmap() handler
2001 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2002 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003 * function from other places, for example from page-fault handler.
2005 * Return: %0 on success, negative error code otherwise.
2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2010 if (addr < vma->vm_start || addr >= vma->vm_end)
2012 if (!page_count(page))
2014 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2015 BUG_ON(mmap_read_trylock(vma->vm_mm));
2016 BUG_ON(vma->vm_flags & VM_PFNMAP);
2017 vm_flags_set(vma, VM_MIXEDMAP);
2019 return insert_page(vma, addr, page, vma->vm_page_prot);
2021 EXPORT_SYMBOL(vm_insert_page);
2024 * __vm_map_pages - maps range of kernel pages into user vma
2025 * @vma: user vma to map to
2026 * @pages: pointer to array of source kernel pages
2027 * @num: number of pages in page array
2028 * @offset: user's requested vm_pgoff
2030 * This allows drivers to map range of kernel pages into a user vma.
2032 * Return: 0 on success and error code otherwise.
2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035 unsigned long num, unsigned long offset)
2037 unsigned long count = vma_pages(vma);
2038 unsigned long uaddr = vma->vm_start;
2041 /* Fail if the user requested offset is beyond the end of the object */
2045 /* Fail if the user requested size exceeds available object size */
2046 if (count > num - offset)
2049 for (i = 0; i < count; i++) {
2050 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2060 * vm_map_pages - maps range of kernel pages starts with non zero offset
2061 * @vma: user vma to map to
2062 * @pages: pointer to array of source kernel pages
2063 * @num: number of pages in page array
2065 * Maps an object consisting of @num pages, catering for the user's
2066 * requested vm_pgoff
2068 * If we fail to insert any page into the vma, the function will return
2069 * immediately leaving any previously inserted pages present. Callers
2070 * from the mmap handler may immediately return the error as their caller
2071 * will destroy the vma, removing any successfully inserted pages. Other
2072 * callers should make their own arrangements for calling unmap_region().
2074 * Context: Process context. Called by mmap handlers.
2075 * Return: 0 on success and error code otherwise.
2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2080 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082 EXPORT_SYMBOL(vm_map_pages);
2085 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086 * @vma: user vma to map to
2087 * @pages: pointer to array of source kernel pages
2088 * @num: number of pages in page array
2090 * Similar to vm_map_pages(), except that it explicitly sets the offset
2091 * to 0. This function is intended for the drivers that did not consider
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2100 return __vm_map_pages(vma, pages, num, 0);
2102 EXPORT_SYMBOL(vm_map_pages_zero);
2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2105 pfn_t pfn, pgprot_t prot, bool mkwrite)
2107 struct mm_struct *mm = vma->vm_mm;
2111 pte = get_locked_pte(mm, addr, &ptl);
2113 return VM_FAULT_OOM;
2114 if (!pte_none(*pte)) {
2117 * For read faults on private mappings the PFN passed
2118 * in may not match the PFN we have mapped if the
2119 * mapped PFN is a writeable COW page. In the mkwrite
2120 * case we are creating a writable PTE for a shared
2121 * mapping and we expect the PFNs to match. If they
2122 * don't match, we are likely racing with block
2123 * allocation and mapping invalidation so just skip the
2126 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2127 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2130 entry = pte_mkyoung(*pte);
2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2133 update_mmu_cache(vma, addr, pte);
2138 /* Ok, finally just insert the thing.. */
2139 if (pfn_t_devmap(pfn))
2140 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2142 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2145 entry = pte_mkyoung(entry);
2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149 set_pte_at(mm, addr, pte, entry);
2150 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2153 pte_unmap_unlock(pte, ptl);
2154 return VM_FAULT_NOPAGE;
2158 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @pfn: source kernel pfn
2162 * @pgprot: pgprot flags for the inserted page
2164 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2165 * to override pgprot on a per-page basis.
2167 * This only makes sense for IO mappings, and it makes no sense for
2168 * COW mappings. In general, using multiple vmas is preferable;
2169 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2172 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2173 * caching- and encryption bits different than those of @vma->vm_page_prot,
2174 * because the caching- or encryption mode may not be known at mmap() time.
2176 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2177 * to set caching and encryption bits for those vmas (except for COW pages).
2178 * This is ensured by core vm only modifying these page table entries using
2179 * functions that don't touch caching- or encryption bits, using pte_modify()
2180 * if needed. (See for example mprotect()).
2182 * Also when new page-table entries are created, this is only done using the
2183 * fault() callback, and never using the value of vma->vm_page_prot,
2184 * except for page-table entries that point to anonymous pages as the result
2187 * Context: Process context. May allocate using %GFP_KERNEL.
2188 * Return: vm_fault_t value.
2190 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2191 unsigned long pfn, pgprot_t pgprot)
2194 * Technically, architectures with pte_special can avoid all these
2195 * restrictions (same for remap_pfn_range). However we would like
2196 * consistency in testing and feature parity among all, so we should
2197 * try to keep these invariants in place for everybody.
2199 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2200 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2201 (VM_PFNMAP|VM_MIXEDMAP));
2202 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2203 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2205 if (addr < vma->vm_start || addr >= vma->vm_end)
2206 return VM_FAULT_SIGBUS;
2208 if (!pfn_modify_allowed(pfn, pgprot))
2209 return VM_FAULT_SIGBUS;
2211 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2213 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2216 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2219 * vmf_insert_pfn - insert single pfn into user vma
2220 * @vma: user vma to map to
2221 * @addr: target user address of this page
2222 * @pfn: source kernel pfn
2224 * Similar to vm_insert_page, this allows drivers to insert individual pages
2225 * they've allocated into a user vma. Same comments apply.
2227 * This function should only be called from a vm_ops->fault handler, and
2228 * in that case the handler should return the result of this function.
2230 * vma cannot be a COW mapping.
2232 * As this is called only for pages that do not currently exist, we
2233 * do not need to flush old virtual caches or the TLB.
2235 * Context: Process context. May allocate using %GFP_KERNEL.
2236 * Return: vm_fault_t value.
2238 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2241 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2243 EXPORT_SYMBOL(vmf_insert_pfn);
2245 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2247 /* these checks mirror the abort conditions in vm_normal_page */
2248 if (vma->vm_flags & VM_MIXEDMAP)
2250 if (pfn_t_devmap(pfn))
2252 if (pfn_t_special(pfn))
2254 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2259 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2260 unsigned long addr, pfn_t pfn, bool mkwrite)
2262 pgprot_t pgprot = vma->vm_page_prot;
2265 BUG_ON(!vm_mixed_ok(vma, pfn));
2267 if (addr < vma->vm_start || addr >= vma->vm_end)
2268 return VM_FAULT_SIGBUS;
2270 track_pfn_insert(vma, &pgprot, pfn);
2272 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2273 return VM_FAULT_SIGBUS;
2276 * If we don't have pte special, then we have to use the pfn_valid()
2277 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2278 * refcount the page if pfn_valid is true (hence insert_page rather
2279 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2280 * without pte special, it would there be refcounted as a normal page.
2282 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2283 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2287 * At this point we are committed to insert_page()
2288 * regardless of whether the caller specified flags that
2289 * result in pfn_t_has_page() == false.
2291 page = pfn_to_page(pfn_t_to_pfn(pfn));
2292 err = insert_page(vma, addr, page, pgprot);
2294 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2298 return VM_FAULT_OOM;
2299 if (err < 0 && err != -EBUSY)
2300 return VM_FAULT_SIGBUS;
2302 return VM_FAULT_NOPAGE;
2305 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2308 return __vm_insert_mixed(vma, addr, pfn, false);
2310 EXPORT_SYMBOL(vmf_insert_mixed);
2313 * If the insertion of PTE failed because someone else already added a
2314 * different entry in the mean time, we treat that as success as we assume
2315 * the same entry was actually inserted.
2317 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2318 unsigned long addr, pfn_t pfn)
2320 return __vm_insert_mixed(vma, addr, pfn, true);
2322 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2325 * maps a range of physical memory into the requested pages. the old
2326 * mappings are removed. any references to nonexistent pages results
2327 * in null mappings (currently treated as "copy-on-access")
2329 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2330 unsigned long addr, unsigned long end,
2331 unsigned long pfn, pgprot_t prot)
2333 pte_t *pte, *mapped_pte;
2337 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2340 arch_enter_lazy_mmu_mode();
2342 BUG_ON(!pte_none(*pte));
2343 if (!pfn_modify_allowed(pfn, prot)) {
2347 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2349 } while (pte++, addr += PAGE_SIZE, addr != end);
2350 arch_leave_lazy_mmu_mode();
2351 pte_unmap_unlock(mapped_pte, ptl);
2355 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2356 unsigned long addr, unsigned long end,
2357 unsigned long pfn, pgprot_t prot)
2363 pfn -= addr >> PAGE_SHIFT;
2364 pmd = pmd_alloc(mm, pud, addr);
2367 VM_BUG_ON(pmd_trans_huge(*pmd));
2369 next = pmd_addr_end(addr, end);
2370 err = remap_pte_range(mm, pmd, addr, next,
2371 pfn + (addr >> PAGE_SHIFT), prot);
2374 } while (pmd++, addr = next, addr != end);
2378 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2379 unsigned long addr, unsigned long end,
2380 unsigned long pfn, pgprot_t prot)
2386 pfn -= addr >> PAGE_SHIFT;
2387 pud = pud_alloc(mm, p4d, addr);
2391 next = pud_addr_end(addr, end);
2392 err = remap_pmd_range(mm, pud, addr, next,
2393 pfn + (addr >> PAGE_SHIFT), prot);
2396 } while (pud++, addr = next, addr != end);
2400 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2401 unsigned long addr, unsigned long end,
2402 unsigned long pfn, pgprot_t prot)
2408 pfn -= addr >> PAGE_SHIFT;
2409 p4d = p4d_alloc(mm, pgd, addr);
2413 next = p4d_addr_end(addr, end);
2414 err = remap_pud_range(mm, p4d, addr, next,
2415 pfn + (addr >> PAGE_SHIFT), prot);
2418 } while (p4d++, addr = next, addr != end);
2423 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2424 * must have pre-validated the caching bits of the pgprot_t.
2426 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2427 unsigned long pfn, unsigned long size, pgprot_t prot)
2431 unsigned long end = addr + PAGE_ALIGN(size);
2432 struct mm_struct *mm = vma->vm_mm;
2435 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2439 * Physically remapped pages are special. Tell the
2440 * rest of the world about it:
2441 * VM_IO tells people not to look at these pages
2442 * (accesses can have side effects).
2443 * VM_PFNMAP tells the core MM that the base pages are just
2444 * raw PFN mappings, and do not have a "struct page" associated
2447 * Disable vma merging and expanding with mremap().
2449 * Omit vma from core dump, even when VM_IO turned off.
2451 * There's a horrible special case to handle copy-on-write
2452 * behaviour that some programs depend on. We mark the "original"
2453 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2454 * See vm_normal_page() for details.
2456 if (is_cow_mapping(vma->vm_flags)) {
2457 if (addr != vma->vm_start || end != vma->vm_end)
2459 vma->vm_pgoff = pfn;
2462 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2464 BUG_ON(addr >= end);
2465 pfn -= addr >> PAGE_SHIFT;
2466 pgd = pgd_offset(mm, addr);
2467 flush_cache_range(vma, addr, end);
2469 next = pgd_addr_end(addr, end);
2470 err = remap_p4d_range(mm, pgd, addr, next,
2471 pfn + (addr >> PAGE_SHIFT), prot);
2474 } while (pgd++, addr = next, addr != end);
2480 * remap_pfn_range - remap kernel memory to userspace
2481 * @vma: user vma to map to
2482 * @addr: target page aligned user address to start at
2483 * @pfn: page frame number of kernel physical memory address
2484 * @size: size of mapping area
2485 * @prot: page protection flags for this mapping
2487 * Note: this is only safe if the mm semaphore is held when called.
2489 * Return: %0 on success, negative error code otherwise.
2491 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2492 unsigned long pfn, unsigned long size, pgprot_t prot)
2496 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2500 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2502 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2505 EXPORT_SYMBOL(remap_pfn_range);
2508 * vm_iomap_memory - remap memory to userspace
2509 * @vma: user vma to map to
2510 * @start: start of the physical memory to be mapped
2511 * @len: size of area
2513 * This is a simplified io_remap_pfn_range() for common driver use. The
2514 * driver just needs to give us the physical memory range to be mapped,
2515 * we'll figure out the rest from the vma information.
2517 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2518 * whatever write-combining details or similar.
2520 * Return: %0 on success, negative error code otherwise.
2522 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2524 unsigned long vm_len, pfn, pages;
2526 /* Check that the physical memory area passed in looks valid */
2527 if (start + len < start)
2530 * You *really* shouldn't map things that aren't page-aligned,
2531 * but we've historically allowed it because IO memory might
2532 * just have smaller alignment.
2534 len += start & ~PAGE_MASK;
2535 pfn = start >> PAGE_SHIFT;
2536 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2537 if (pfn + pages < pfn)
2540 /* We start the mapping 'vm_pgoff' pages into the area */
2541 if (vma->vm_pgoff > pages)
2543 pfn += vma->vm_pgoff;
2544 pages -= vma->vm_pgoff;
2546 /* Can we fit all of the mapping? */
2547 vm_len = vma->vm_end - vma->vm_start;
2548 if (vm_len >> PAGE_SHIFT > pages)
2551 /* Ok, let it rip */
2552 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2554 EXPORT_SYMBOL(vm_iomap_memory);
2556 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2557 unsigned long addr, unsigned long end,
2558 pte_fn_t fn, void *data, bool create,
2559 pgtbl_mod_mask *mask)
2561 pte_t *pte, *mapped_pte;
2566 mapped_pte = pte = (mm == &init_mm) ?
2567 pte_alloc_kernel_track(pmd, addr, mask) :
2568 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2572 mapped_pte = pte = (mm == &init_mm) ?
2573 pte_offset_kernel(pmd, addr) :
2574 pte_offset_map_lock(mm, pmd, addr, &ptl);
2577 BUG_ON(pmd_huge(*pmd));
2579 arch_enter_lazy_mmu_mode();
2583 if (create || !pte_none(*pte)) {
2584 err = fn(pte++, addr, data);
2588 } while (addr += PAGE_SIZE, addr != end);
2590 *mask |= PGTBL_PTE_MODIFIED;
2592 arch_leave_lazy_mmu_mode();
2595 pte_unmap_unlock(mapped_pte, ptl);
2599 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2600 unsigned long addr, unsigned long end,
2601 pte_fn_t fn, void *data, bool create,
2602 pgtbl_mod_mask *mask)
2608 BUG_ON(pud_huge(*pud));
2611 pmd = pmd_alloc_track(mm, pud, addr, mask);
2615 pmd = pmd_offset(pud, addr);
2618 next = pmd_addr_end(addr, end);
2619 if (pmd_none(*pmd) && !create)
2621 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2623 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2628 err = apply_to_pte_range(mm, pmd, addr, next,
2629 fn, data, create, mask);
2632 } while (pmd++, addr = next, addr != end);
2637 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2638 unsigned long addr, unsigned long end,
2639 pte_fn_t fn, void *data, bool create,
2640 pgtbl_mod_mask *mask)
2647 pud = pud_alloc_track(mm, p4d, addr, mask);
2651 pud = pud_offset(p4d, addr);
2654 next = pud_addr_end(addr, end);
2655 if (pud_none(*pud) && !create)
2657 if (WARN_ON_ONCE(pud_leaf(*pud)))
2659 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2664 err = apply_to_pmd_range(mm, pud, addr, next,
2665 fn, data, create, mask);
2668 } while (pud++, addr = next, addr != end);
2673 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2674 unsigned long addr, unsigned long end,
2675 pte_fn_t fn, void *data, bool create,
2676 pgtbl_mod_mask *mask)
2683 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2687 p4d = p4d_offset(pgd, addr);
2690 next = p4d_addr_end(addr, end);
2691 if (p4d_none(*p4d) && !create)
2693 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2695 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2700 err = apply_to_pud_range(mm, p4d, addr, next,
2701 fn, data, create, mask);
2704 } while (p4d++, addr = next, addr != end);
2709 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2710 unsigned long size, pte_fn_t fn,
2711 void *data, bool create)
2714 unsigned long start = addr, next;
2715 unsigned long end = addr + size;
2716 pgtbl_mod_mask mask = 0;
2719 if (WARN_ON(addr >= end))
2722 pgd = pgd_offset(mm, addr);
2724 next = pgd_addr_end(addr, end);
2725 if (pgd_none(*pgd) && !create)
2727 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2729 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2734 err = apply_to_p4d_range(mm, pgd, addr, next,
2735 fn, data, create, &mask);
2738 } while (pgd++, addr = next, addr != end);
2740 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2741 arch_sync_kernel_mappings(start, start + size);
2747 * Scan a region of virtual memory, filling in page tables as necessary
2748 * and calling a provided function on each leaf page table.
2750 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 unsigned long size, pte_fn_t fn, void *data)
2753 return __apply_to_page_range(mm, addr, size, fn, data, true);
2755 EXPORT_SYMBOL_GPL(apply_to_page_range);
2758 * Scan a region of virtual memory, calling a provided function on
2759 * each leaf page table where it exists.
2761 * Unlike apply_to_page_range, this does _not_ fill in page tables
2762 * where they are absent.
2764 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2765 unsigned long size, pte_fn_t fn, void *data)
2767 return __apply_to_page_range(mm, addr, size, fn, data, false);
2769 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2772 * handle_pte_fault chooses page fault handler according to an entry which was
2773 * read non-atomically. Before making any commitment, on those architectures
2774 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2775 * parts, do_swap_page must check under lock before unmapping the pte and
2776 * proceeding (but do_wp_page is only called after already making such a check;
2777 * and do_anonymous_page can safely check later on).
2779 static inline int pte_unmap_same(struct vm_fault *vmf)
2782 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2783 if (sizeof(pte_t) > sizeof(unsigned long)) {
2784 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2786 same = pte_same(*vmf->pte, vmf->orig_pte);
2790 pte_unmap(vmf->pte);
2797 * 0: copied succeeded
2798 * -EHWPOISON: copy failed due to hwpoison in source page
2799 * -EAGAIN: copied failed (some other reason)
2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802 struct vm_fault *vmf)
2807 bool locked = false;
2808 struct vm_area_struct *vma = vmf->vma;
2809 struct mm_struct *mm = vma->vm_mm;
2810 unsigned long addr = vmf->address;
2813 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814 memory_failure_queue(page_to_pfn(src), 0);
2821 * If the source page was a PFN mapping, we don't have
2822 * a "struct page" for it. We do a best-effort copy by
2823 * just copying from the original user address. If that
2824 * fails, we just zero-fill it. Live with it.
2826 kaddr = kmap_atomic(dst);
2827 uaddr = (void __user *)(addr & PAGE_MASK);
2830 * On architectures with software "accessed" bits, we would
2831 * take a double page fault, so mark it accessed here.
2833 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2836 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2838 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2840 * Other thread has already handled the fault
2841 * and update local tlb only
2843 update_mmu_tlb(vma, addr, vmf->pte);
2848 entry = pte_mkyoung(vmf->orig_pte);
2849 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850 update_mmu_cache(vma, addr, vmf->pte);
2854 * This really shouldn't fail, because the page is there
2855 * in the page tables. But it might just be unreadable,
2856 * in which case we just give up and fill the result with
2859 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2863 /* Re-validate under PTL if the page is still mapped */
2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2867 /* The PTE changed under us, update local tlb */
2868 update_mmu_tlb(vma, addr, vmf->pte);
2874 * The same page can be mapped back since last copy attempt.
2875 * Try to copy again under PTL.
2877 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2879 * Give a warn in case there can be some obscure
2892 pte_unmap_unlock(vmf->pte, vmf->ptl);
2893 kunmap_atomic(kaddr);
2894 flush_dcache_page(dst);
2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2901 struct file *vm_file = vma->vm_file;
2904 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2907 * Special mappings (e.g. VDSO) do not have any file so fake
2908 * a default GFP_KERNEL for them.
2914 * Notify the address space that the page is about to become writable so that
2915 * it can prohibit this or wait for the page to get into an appropriate state.
2917 * We do this without the lock held, so that it can sleep if it needs to.
2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2922 struct page *page = vmf->page;
2923 unsigned int old_flags = vmf->flags;
2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2927 if (vmf->vma->vm_file &&
2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929 return VM_FAULT_SIGBUS;
2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2932 /* Restore original flags so that caller is not surprised */
2933 vmf->flags = old_flags;
2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2938 if (!page->mapping) {
2940 return 0; /* retry */
2942 ret |= VM_FAULT_LOCKED;
2944 VM_BUG_ON_PAGE(!PageLocked(page), page);
2949 * Handle dirtying of a page in shared file mapping on a write fault.
2951 * The function expects the page to be locked and unlocks it.
2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2955 struct vm_area_struct *vma = vmf->vma;
2956 struct address_space *mapping;
2957 struct page *page = vmf->page;
2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2961 dirtied = set_page_dirty(page);
2962 VM_BUG_ON_PAGE(PageAnon(page), page);
2964 * Take a local copy of the address_space - page.mapping may be zeroed
2965 * by truncate after unlock_page(). The address_space itself remains
2966 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2967 * release semantics to prevent the compiler from undoing this copying.
2969 mapping = page_rmapping(page);
2973 file_update_time(vma->vm_file);
2976 * Throttle page dirtying rate down to writeback speed.
2978 * mapping may be NULL here because some device drivers do not
2979 * set page.mapping but still dirty their pages
2981 * Drop the mmap_lock before waiting on IO, if we can. The file
2982 * is pinning the mapping, as per above.
2984 if ((dirtied || page_mkwrite) && mapping) {
2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2988 balance_dirty_pages_ratelimited(mapping);
2991 return VM_FAULT_COMPLETED;
2999 * Handle write page faults for pages that can be reused in the current vma
3001 * This can happen either due to the mapping being with the VM_SHARED flag,
3002 * or due to us being the last reference standing to the page. In either
3003 * case, all we need to do here is to mark the page as writable and update
3004 * any related book-keeping.
3006 static inline void wp_page_reuse(struct vm_fault *vmf)
3007 __releases(vmf->ptl)
3009 struct vm_area_struct *vma = vmf->vma;
3010 struct page *page = vmf->page;
3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3017 * Clear the pages cpupid information as the existing
3018 * information potentially belongs to a now completely
3019 * unrelated process.
3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025 entry = pte_mkyoung(vmf->orig_pte);
3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028 update_mmu_cache(vma, vmf->address, vmf->pte);
3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 count_vm_event(PGREUSE);
3034 * Handle the case of a page which we actually need to copy to a new page,
3035 * either due to COW or unsharing.
3037 * Called with mmap_lock locked and the old page referenced, but
3038 * without the ptl held.
3040 * High level logic flow:
3042 * - Allocate a page, copy the content of the old page to the new one.
3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044 * - Take the PTL. If the pte changed, bail out and release the allocated page
3045 * - If the pte is still the way we remember it, update the page table and all
3046 * relevant references. This includes dropping the reference the page-table
3047 * held to the old page, as well as updating the rmap.
3048 * - In any case, unlock the PTL and drop the reference we took to the old page.
3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3053 struct vm_area_struct *vma = vmf->vma;
3054 struct mm_struct *mm = vma->vm_mm;
3055 struct folio *old_folio = NULL;
3056 struct folio *new_folio = NULL;
3058 int page_copied = 0;
3059 struct mmu_notifier_range range;
3062 delayacct_wpcopy_start();
3065 old_folio = page_folio(vmf->page);
3066 if (unlikely(anon_vma_prepare(vma)))
3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075 vmf->address, false);
3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3082 * COW failed, if the fault was solved by other,
3083 * it's fine. If not, userspace would re-fault on
3084 * the same address and we will handle the fault
3085 * from the second attempt.
3086 * The -EHWPOISON case will not be retried.
3088 folio_put(new_folio);
3090 folio_put(old_folio);
3092 delayacct_wpcopy_end();
3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3095 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3100 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3102 __folio_mark_uptodate(new_folio);
3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3105 vmf->address & PAGE_MASK,
3106 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107 mmu_notifier_invalidate_range_start(&range);
3110 * Re-check the pte - we dropped the lock
3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3113 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3115 if (!folio_test_anon(old_folio)) {
3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3117 inc_mm_counter(mm, MM_ANONPAGES);
3120 inc_mm_counter(mm, MM_ANONPAGES);
3122 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3123 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3124 entry = pte_sw_mkyoung(entry);
3125 if (unlikely(unshare)) {
3126 if (pte_soft_dirty(vmf->orig_pte))
3127 entry = pte_mksoft_dirty(entry);
3128 if (pte_uffd_wp(vmf->orig_pte))
3129 entry = pte_mkuffd_wp(entry);
3131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3135 * Clear the pte entry and flush it first, before updating the
3136 * pte with the new entry, to keep TLBs on different CPUs in
3137 * sync. This code used to set the new PTE then flush TLBs, but
3138 * that left a window where the new PTE could be loaded into
3139 * some TLBs while the old PTE remains in others.
3141 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3142 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143 folio_add_lru_vma(new_folio, vma);
3145 * We call the notify macro here because, when using secondary
3146 * mmu page tables (such as kvm shadow page tables), we want the
3147 * new page to be mapped directly into the secondary page table.
3149 BUG_ON(unshare && pte_write(entry));
3150 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151 update_mmu_cache(vma, vmf->address, vmf->pte);
3154 * Only after switching the pte to the new page may
3155 * we remove the mapcount here. Otherwise another
3156 * process may come and find the rmap count decremented
3157 * before the pte is switched to the new page, and
3158 * "reuse" the old page writing into it while our pte
3159 * here still points into it and can be read by other
3162 * The critical issue is to order this
3163 * page_remove_rmap with the ptp_clear_flush above.
3164 * Those stores are ordered by (if nothing else,)
3165 * the barrier present in the atomic_add_negative
3166 * in page_remove_rmap.
3168 * Then the TLB flush in ptep_clear_flush ensures that
3169 * no process can access the old page before the
3170 * decremented mapcount is visible. And the old page
3171 * cannot be reused until after the decremented
3172 * mapcount is visible. So transitively, TLBs to
3173 * old page will be flushed before it can be reused.
3175 page_remove_rmap(vmf->page, vma, false);
3178 /* Free the old page.. */
3179 new_folio = old_folio;
3182 update_mmu_tlb(vma, vmf->address, vmf->pte);
3186 folio_put(new_folio);
3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
3190 * No need to double call mmu_notifier->invalidate_range() callback as
3191 * the above ptep_clear_flush_notify() did already call it.
3193 mmu_notifier_invalidate_range_only_end(&range);
3196 free_swap_cache(&old_folio->page);
3197 folio_put(old_folio);
3200 delayacct_wpcopy_end();
3203 folio_put(new_folio);
3206 folio_put(old_folio);
3208 delayacct_wpcopy_end();
3209 return VM_FAULT_OOM;
3213 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3214 * writeable once the page is prepared
3216 * @vmf: structure describing the fault
3218 * This function handles all that is needed to finish a write page fault in a
3219 * shared mapping due to PTE being read-only once the mapped page is prepared.
3220 * It handles locking of PTE and modifying it.
3222 * The function expects the page to be locked or other protection against
3223 * concurrent faults / writeback (such as DAX radix tree locks).
3225 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3226 * we acquired PTE lock.
3228 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3230 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3231 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3234 * We might have raced with another page fault while we released the
3235 * pte_offset_map_lock.
3237 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3239 pte_unmap_unlock(vmf->pte, vmf->ptl);
3240 return VM_FAULT_NOPAGE;
3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3252 struct vm_area_struct *vma = vmf->vma;
3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3257 pte_unmap_unlock(vmf->pte, vmf->ptl);
3258 vmf->flags |= FAULT_FLAG_MKWRITE;
3259 ret = vma->vm_ops->pfn_mkwrite(vmf);
3260 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3262 return finish_mkwrite_fault(vmf);
3268 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3269 __releases(vmf->ptl)
3271 struct vm_area_struct *vma = vmf->vma;
3274 get_page(vmf->page);
3276 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3279 pte_unmap_unlock(vmf->pte, vmf->ptl);
3280 tmp = do_page_mkwrite(vmf);
3281 if (unlikely(!tmp || (tmp &
3282 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3283 put_page(vmf->page);
3286 tmp = finish_mkwrite_fault(vmf);
3287 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3288 unlock_page(vmf->page);
3289 put_page(vmf->page);
3294 lock_page(vmf->page);
3296 ret |= fault_dirty_shared_page(vmf);
3297 put_page(vmf->page);
3303 * This routine handles present pages, when
3304 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3305 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3306 * (FAULT_FLAG_UNSHARE)
3308 * It is done by copying the page to a new address and decrementing the
3309 * shared-page counter for the old page.
3311 * Note that this routine assumes that the protection checks have been
3312 * done by the caller (the low-level page fault routine in most cases).
3313 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3314 * done any necessary COW.
3316 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3317 * though the page will change only once the write actually happens. This
3318 * avoids a few races, and potentially makes it more efficient.
3320 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3321 * but allow concurrent faults), with pte both mapped and locked.
3322 * We return with mmap_lock still held, but pte unmapped and unlocked.
3324 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3325 __releases(vmf->ptl)
3327 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3328 struct vm_area_struct *vma = vmf->vma;
3329 struct folio *folio = NULL;
3331 if (likely(!unshare)) {
3332 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3333 pte_unmap_unlock(vmf->pte, vmf->ptl);
3334 return handle_userfault(vmf, VM_UFFD_WP);
3338 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3339 * is flushed in this case before copying.
3341 if (unlikely(userfaultfd_wp(vmf->vma) &&
3342 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3343 flush_tlb_page(vmf->vma, vmf->address);
3346 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3349 * Shared mapping: we are guaranteed to have VM_WRITE and
3350 * FAULT_FLAG_WRITE set at this point.
3352 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3354 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3357 * We should not cow pages in a shared writeable mapping.
3358 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3361 return wp_pfn_shared(vmf);
3362 return wp_page_shared(vmf);
3366 folio = page_folio(vmf->page);
3369 * Private mapping: create an exclusive anonymous page copy if reuse
3370 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3372 if (folio && folio_test_anon(folio)) {
3374 * If the page is exclusive to this process we must reuse the
3375 * page without further checks.
3377 if (PageAnonExclusive(vmf->page))
3381 * We have to verify under folio lock: these early checks are
3382 * just an optimization to avoid locking the folio and freeing
3383 * the swapcache if there is little hope that we can reuse.
3385 * KSM doesn't necessarily raise the folio refcount.
3387 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3389 if (!folio_test_lru(folio))
3391 * Note: We cannot easily detect+handle references from
3392 * remote LRU pagevecs or references to LRU folios.
3395 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3397 if (!folio_trylock(folio))
3399 if (folio_test_swapcache(folio))
3400 folio_free_swap(folio);
3401 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3402 folio_unlock(folio);
3406 * Ok, we've got the only folio reference from our mapping
3407 * and the folio is locked, it's dark out, and we're wearing
3408 * sunglasses. Hit it.
3410 page_move_anon_rmap(vmf->page, vma);
3411 folio_unlock(folio);
3413 if (unlikely(unshare)) {
3414 pte_unmap_unlock(vmf->pte, vmf->ptl);
3422 * Ok, we need to copy. Oh, well..
3427 pte_unmap_unlock(vmf->pte, vmf->ptl);
3429 if (folio && folio_test_ksm(folio))
3430 count_vm_event(COW_KSM);
3432 return wp_page_copy(vmf);
3435 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3436 unsigned long start_addr, unsigned long end_addr,
3437 struct zap_details *details)
3439 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3442 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3443 pgoff_t first_index,
3445 struct zap_details *details)
3447 struct vm_area_struct *vma;
3448 pgoff_t vba, vea, zba, zea;
3450 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3451 vba = vma->vm_pgoff;
3452 vea = vba + vma_pages(vma) - 1;
3453 zba = max(first_index, vba);
3454 zea = min(last_index, vea);
3456 unmap_mapping_range_vma(vma,
3457 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3458 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3464 * unmap_mapping_folio() - Unmap single folio from processes.
3465 * @folio: The locked folio to be unmapped.
3467 * Unmap this folio from any userspace process which still has it mmaped.
3468 * Typically, for efficiency, the range of nearby pages has already been
3469 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3470 * truncation or invalidation holds the lock on a folio, it may find that
3471 * the page has been remapped again: and then uses unmap_mapping_folio()
3472 * to unmap it finally.
3474 void unmap_mapping_folio(struct folio *folio)
3476 struct address_space *mapping = folio->mapping;
3477 struct zap_details details = { };
3478 pgoff_t first_index;
3481 VM_BUG_ON(!folio_test_locked(folio));
3483 first_index = folio->index;
3484 last_index = folio->index + folio_nr_pages(folio) - 1;
3486 details.even_cows = false;
3487 details.single_folio = folio;
3488 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3490 i_mmap_lock_read(mapping);
3491 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3492 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3493 last_index, &details);
3494 i_mmap_unlock_read(mapping);
3498 * unmap_mapping_pages() - Unmap pages from processes.
3499 * @mapping: The address space containing pages to be unmapped.
3500 * @start: Index of first page to be unmapped.
3501 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3502 * @even_cows: Whether to unmap even private COWed pages.
3504 * Unmap the pages in this address space from any userspace process which
3505 * has them mmaped. Generally, you want to remove COWed pages as well when
3506 * a file is being truncated, but not when invalidating pages from the page
3509 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3510 pgoff_t nr, bool even_cows)
3512 struct zap_details details = { };
3513 pgoff_t first_index = start;
3514 pgoff_t last_index = start + nr - 1;
3516 details.even_cows = even_cows;
3517 if (last_index < first_index)
3518 last_index = ULONG_MAX;
3520 i_mmap_lock_read(mapping);
3521 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3522 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3523 last_index, &details);
3524 i_mmap_unlock_read(mapping);
3526 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3529 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3530 * address_space corresponding to the specified byte range in the underlying
3533 * @mapping: the address space containing mmaps to be unmapped.
3534 * @holebegin: byte in first page to unmap, relative to the start of
3535 * the underlying file. This will be rounded down to a PAGE_SIZE
3536 * boundary. Note that this is different from truncate_pagecache(), which
3537 * must keep the partial page. In contrast, we must get rid of
3539 * @holelen: size of prospective hole in bytes. This will be rounded
3540 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3542 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3543 * but 0 when invalidating pagecache, don't throw away private data.
3545 void unmap_mapping_range(struct address_space *mapping,
3546 loff_t const holebegin, loff_t const holelen, int even_cows)
3548 pgoff_t hba = holebegin >> PAGE_SHIFT;
3549 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3551 /* Check for overflow. */
3552 if (sizeof(holelen) > sizeof(hlen)) {
3554 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3555 if (holeend & ~(long long)ULONG_MAX)
3556 hlen = ULONG_MAX - hba + 1;
3559 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3561 EXPORT_SYMBOL(unmap_mapping_range);
3564 * Restore a potential device exclusive pte to a working pte entry
3566 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3568 struct folio *folio = page_folio(vmf->page);
3569 struct vm_area_struct *vma = vmf->vma;
3570 struct mmu_notifier_range range;
3573 * We need a reference to lock the folio because we don't hold
3574 * the PTL so a racing thread can remove the device-exclusive
3575 * entry and unmap it. If the folio is free the entry must
3576 * have been removed already. If it happens to have already
3577 * been re-allocated after being freed all we do is lock and
3580 if (!folio_try_get(folio))
3583 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3585 return VM_FAULT_RETRY;
3587 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3588 vma->vm_mm, vmf->address & PAGE_MASK,
3589 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3590 mmu_notifier_invalidate_range_start(&range);
3592 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3594 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3595 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3597 pte_unmap_unlock(vmf->pte, vmf->ptl);
3598 folio_unlock(folio);
3601 mmu_notifier_invalidate_range_end(&range);
3605 static inline bool should_try_to_free_swap(struct folio *folio,
3606 struct vm_area_struct *vma,
3607 unsigned int fault_flags)
3609 if (!folio_test_swapcache(folio))
3611 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3612 folio_test_mlocked(folio))
3615 * If we want to map a page that's in the swapcache writable, we
3616 * have to detect via the refcount if we're really the exclusive
3617 * user. Try freeing the swapcache to get rid of the swapcache
3618 * reference only in case it's likely that we'll be the exlusive user.
3620 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3621 folio_ref_count(folio) == 2;
3624 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3626 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3627 vmf->address, &vmf->ptl);
3629 * Be careful so that we will only recover a special uffd-wp pte into a
3630 * none pte. Otherwise it means the pte could have changed, so retry.
3632 * This should also cover the case where e.g. the pte changed
3633 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3634 * So is_pte_marker() check is not enough to safely drop the pte.
3636 if (pte_same(vmf->orig_pte, *vmf->pte))
3637 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3638 pte_unmap_unlock(vmf->pte, vmf->ptl);
3642 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3644 if (vma_is_anonymous(vmf->vma))
3645 return do_anonymous_page(vmf);
3647 return do_fault(vmf);
3651 * This is actually a page-missing access, but with uffd-wp special pte
3652 * installed. It means this pte was wr-protected before being unmapped.
3654 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3657 * Just in case there're leftover special ptes even after the region
3658 * got unregistered - we can simply clear them.
3660 if (unlikely(!userfaultfd_wp(vmf->vma)))
3661 return pte_marker_clear(vmf);
3663 return do_pte_missing(vmf);
3666 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3668 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3669 unsigned long marker = pte_marker_get(entry);
3672 * PTE markers should never be empty. If anything weird happened,
3673 * the best thing to do is to kill the process along with its mm.
3675 if (WARN_ON_ONCE(!marker))
3676 return VM_FAULT_SIGBUS;
3678 /* Higher priority than uffd-wp when data corrupted */
3679 if (marker & PTE_MARKER_SWAPIN_ERROR)
3680 return VM_FAULT_SIGBUS;
3682 if (pte_marker_entry_uffd_wp(entry))
3683 return pte_marker_handle_uffd_wp(vmf);
3685 /* This is an unknown pte marker */
3686 return VM_FAULT_SIGBUS;
3690 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3691 * but allow concurrent faults), and pte mapped but not yet locked.
3692 * We return with pte unmapped and unlocked.
3694 * We return with the mmap_lock locked or unlocked in the same cases
3695 * as does filemap_fault().
3697 vm_fault_t do_swap_page(struct vm_fault *vmf)
3699 struct vm_area_struct *vma = vmf->vma;
3700 struct folio *swapcache, *folio = NULL;
3702 struct swap_info_struct *si = NULL;
3703 rmap_t rmap_flags = RMAP_NONE;
3704 bool exclusive = false;
3709 void *shadow = NULL;
3711 if (!pte_unmap_same(vmf))
3714 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3715 ret = VM_FAULT_RETRY;
3719 entry = pte_to_swp_entry(vmf->orig_pte);
3720 if (unlikely(non_swap_entry(entry))) {
3721 if (is_migration_entry(entry)) {
3722 migration_entry_wait(vma->vm_mm, vmf->pmd,
3724 } else if (is_device_exclusive_entry(entry)) {
3725 vmf->page = pfn_swap_entry_to_page(entry);
3726 ret = remove_device_exclusive_entry(vmf);
3727 } else if (is_device_private_entry(entry)) {
3728 vmf->page = pfn_swap_entry_to_page(entry);
3729 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3730 vmf->address, &vmf->ptl);
3731 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3732 spin_unlock(vmf->ptl);
3737 * Get a page reference while we know the page can't be
3740 get_page(vmf->page);
3741 pte_unmap_unlock(vmf->pte, vmf->ptl);
3742 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3743 put_page(vmf->page);
3744 } else if (is_hwpoison_entry(entry)) {
3745 ret = VM_FAULT_HWPOISON;
3746 } else if (is_pte_marker_entry(entry)) {
3747 ret = handle_pte_marker(vmf);
3749 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3750 ret = VM_FAULT_SIGBUS;
3755 /* Prevent swapoff from happening to us. */
3756 si = get_swap_device(entry);
3760 folio = swap_cache_get_folio(entry, vma, vmf->address);
3762 page = folio_file_page(folio, swp_offset(entry));
3766 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3767 __swap_count(entry) == 1) {
3768 /* skip swapcache */
3769 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3770 vma, vmf->address, false);
3771 page = &folio->page;
3773 __folio_set_locked(folio);
3774 __folio_set_swapbacked(folio);
3776 if (mem_cgroup_swapin_charge_folio(folio,
3777 vma->vm_mm, GFP_KERNEL,
3782 mem_cgroup_swapin_uncharge_swap(entry);
3784 shadow = get_shadow_from_swap_cache(entry);
3786 workingset_refault(folio, shadow);
3788 folio_add_lru(folio);
3790 /* To provide entry to swap_readpage() */
3791 folio_set_swap_entry(folio, entry);
3792 swap_readpage(page, true, NULL);
3793 folio->private = NULL;
3796 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3799 folio = page_folio(page);
3805 * Back out if somebody else faulted in this pte
3806 * while we released the pte lock.
3808 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3809 vmf->address, &vmf->ptl);
3810 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3815 /* Had to read the page from swap area: Major fault */
3816 ret = VM_FAULT_MAJOR;
3817 count_vm_event(PGMAJFAULT);
3818 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3819 } else if (PageHWPoison(page)) {
3821 * hwpoisoned dirty swapcache pages are kept for killing
3822 * owner processes (which may be unknown at hwpoison time)
3824 ret = VM_FAULT_HWPOISON;
3828 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3831 ret |= VM_FAULT_RETRY;
3837 * Make sure folio_free_swap() or swapoff did not release the
3838 * swapcache from under us. The page pin, and pte_same test
3839 * below, are not enough to exclude that. Even if it is still
3840 * swapcache, we need to check that the page's swap has not
3843 if (unlikely(!folio_test_swapcache(folio) ||
3844 page_private(page) != entry.val))
3848 * KSM sometimes has to copy on read faults, for example, if
3849 * page->index of !PageKSM() pages would be nonlinear inside the
3850 * anon VMA -- PageKSM() is lost on actual swapout.
3852 page = ksm_might_need_to_copy(page, vma, vmf->address);
3853 if (unlikely(!page)) {
3856 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3857 ret = VM_FAULT_HWPOISON;
3860 folio = page_folio(page);
3863 * If we want to map a page that's in the swapcache writable, we
3864 * have to detect via the refcount if we're really the exclusive
3865 * owner. Try removing the extra reference from the local LRU
3866 * pagevecs if required.
3868 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3869 !folio_test_ksm(folio) && !folio_test_lru(folio))
3873 folio_throttle_swaprate(folio, GFP_KERNEL);
3876 * Back out if somebody else already faulted in this pte.
3878 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3880 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3883 if (unlikely(!folio_test_uptodate(folio))) {
3884 ret = VM_FAULT_SIGBUS;
3889 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3890 * must never point at an anonymous page in the swapcache that is
3891 * PG_anon_exclusive. Sanity check that this holds and especially, that
3892 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3893 * check after taking the PT lock and making sure that nobody
3894 * concurrently faulted in this page and set PG_anon_exclusive.
3896 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3897 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3900 * Check under PT lock (to protect against concurrent fork() sharing
3901 * the swap entry concurrently) for certainly exclusive pages.
3903 if (!folio_test_ksm(folio)) {
3904 exclusive = pte_swp_exclusive(vmf->orig_pte);
3905 if (folio != swapcache) {
3907 * We have a fresh page that is not exposed to the
3908 * swapcache -> certainly exclusive.
3911 } else if (exclusive && folio_test_writeback(folio) &&
3912 data_race(si->flags & SWP_STABLE_WRITES)) {
3914 * This is tricky: not all swap backends support
3915 * concurrent page modifications while under writeback.
3917 * So if we stumble over such a page in the swapcache
3918 * we must not set the page exclusive, otherwise we can
3919 * map it writable without further checks and modify it
3920 * while still under writeback.
3922 * For these problematic swap backends, simply drop the
3923 * exclusive marker: this is perfectly fine as we start
3924 * writeback only if we fully unmapped the page and
3925 * there are no unexpected references on the page after
3926 * unmapping succeeded. After fully unmapped, no
3927 * further GUP references (FOLL_GET and FOLL_PIN) can
3928 * appear, so dropping the exclusive marker and mapping
3929 * it only R/O is fine.
3936 * Remove the swap entry and conditionally try to free up the swapcache.
3937 * We're already holding a reference on the page but haven't mapped it
3941 if (should_try_to_free_swap(folio, vma, vmf->flags))
3942 folio_free_swap(folio);
3944 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3945 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3946 pte = mk_pte(page, vma->vm_page_prot);
3949 * Same logic as in do_wp_page(); however, optimize for pages that are
3950 * certainly not shared either because we just allocated them without
3951 * exposing them to the swapcache or because the swap entry indicates
3954 if (!folio_test_ksm(folio) &&
3955 (exclusive || folio_ref_count(folio) == 1)) {
3956 if (vmf->flags & FAULT_FLAG_WRITE) {
3957 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3958 vmf->flags &= ~FAULT_FLAG_WRITE;
3960 rmap_flags |= RMAP_EXCLUSIVE;
3962 flush_icache_page(vma, page);
3963 if (pte_swp_soft_dirty(vmf->orig_pte))
3964 pte = pte_mksoft_dirty(pte);
3965 if (pte_swp_uffd_wp(vmf->orig_pte))
3966 pte = pte_mkuffd_wp(pte);
3967 vmf->orig_pte = pte;
3969 /* ksm created a completely new copy */
3970 if (unlikely(folio != swapcache && swapcache)) {
3971 page_add_new_anon_rmap(page, vma, vmf->address);
3972 folio_add_lru_vma(folio, vma);
3974 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3977 VM_BUG_ON(!folio_test_anon(folio) ||
3978 (pte_write(pte) && !PageAnonExclusive(page)));
3979 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3982 folio_unlock(folio);
3983 if (folio != swapcache && swapcache) {
3985 * Hold the lock to avoid the swap entry to be reused
3986 * until we take the PT lock for the pte_same() check
3987 * (to avoid false positives from pte_same). For
3988 * further safety release the lock after the swap_free
3989 * so that the swap count won't change under a
3990 * parallel locked swapcache.
3992 folio_unlock(swapcache);
3993 folio_put(swapcache);
3996 if (vmf->flags & FAULT_FLAG_WRITE) {
3997 ret |= do_wp_page(vmf);
3998 if (ret & VM_FAULT_ERROR)
3999 ret &= VM_FAULT_ERROR;
4003 /* No need to invalidate - it was non-present before */
4004 update_mmu_cache(vma, vmf->address, vmf->pte);
4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
4009 put_swap_device(si);
4012 pte_unmap_unlock(vmf->pte, vmf->ptl);
4014 folio_unlock(folio);
4017 if (folio != swapcache && swapcache) {
4018 folio_unlock(swapcache);
4019 folio_put(swapcache);
4022 put_swap_device(si);
4027 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028 * but allow concurrent faults), and pte mapped but not yet locked.
4029 * We return with mmap_lock still held, but pte unmapped and unlocked.
4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4033 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4034 struct vm_area_struct *vma = vmf->vma;
4035 struct folio *folio;
4039 /* File mapping without ->vm_ops ? */
4040 if (vma->vm_flags & VM_SHARED)
4041 return VM_FAULT_SIGBUS;
4044 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4045 * pte_offset_map() on pmds where a huge pmd might be created
4046 * from a different thread.
4048 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4049 * parallel threads are excluded by other means.
4051 * Here we only have mmap_read_lock(mm).
4053 if (pte_alloc(vma->vm_mm, vmf->pmd))
4054 return VM_FAULT_OOM;
4056 /* See comment in handle_pte_fault() */
4057 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4060 /* Use the zero-page for reads */
4061 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4062 !mm_forbids_zeropage(vma->vm_mm)) {
4063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4064 vma->vm_page_prot));
4065 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4066 vmf->address, &vmf->ptl);
4067 if (vmf_pte_changed(vmf)) {
4068 update_mmu_tlb(vma, vmf->address, vmf->pte);
4071 ret = check_stable_address_space(vma->vm_mm);
4074 /* Deliver the page fault to userland, check inside PT lock */
4075 if (userfaultfd_missing(vma)) {
4076 pte_unmap_unlock(vmf->pte, vmf->ptl);
4077 return handle_userfault(vmf, VM_UFFD_MISSING);
4082 /* Allocate our own private page. */
4083 if (unlikely(anon_vma_prepare(vma)))
4085 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4089 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4091 folio_throttle_swaprate(folio, GFP_KERNEL);
4094 * The memory barrier inside __folio_mark_uptodate makes sure that
4095 * preceding stores to the page contents become visible before
4096 * the set_pte_at() write.
4098 __folio_mark_uptodate(folio);
4100 entry = mk_pte(&folio->page, vma->vm_page_prot);
4101 entry = pte_sw_mkyoung(entry);
4102 if (vma->vm_flags & VM_WRITE)
4103 entry = pte_mkwrite(pte_mkdirty(entry));
4105 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4107 if (vmf_pte_changed(vmf)) {
4108 update_mmu_tlb(vma, vmf->address, vmf->pte);
4112 ret = check_stable_address_space(vma->vm_mm);
4116 /* Deliver the page fault to userland, check inside PT lock */
4117 if (userfaultfd_missing(vma)) {
4118 pte_unmap_unlock(vmf->pte, vmf->ptl);
4120 return handle_userfault(vmf, VM_UFFD_MISSING);
4123 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4124 folio_add_new_anon_rmap(folio, vma, vmf->address);
4125 folio_add_lru_vma(folio, vma);
4128 entry = pte_mkuffd_wp(entry);
4129 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4131 /* No need to invalidate - it was non-present before */
4132 update_mmu_cache(vma, vmf->address, vmf->pte);
4134 pte_unmap_unlock(vmf->pte, vmf->ptl);
4142 return VM_FAULT_OOM;
4146 * The mmap_lock must have been held on entry, and may have been
4147 * released depending on flags and vma->vm_ops->fault() return value.
4148 * See filemap_fault() and __lock_page_retry().
4150 static vm_fault_t __do_fault(struct vm_fault *vmf)
4152 struct vm_area_struct *vma = vmf->vma;
4156 * Preallocate pte before we take page_lock because this might lead to
4157 * deadlocks for memcg reclaim which waits for pages under writeback:
4159 * SetPageWriteback(A)
4165 * wait_on_page_writeback(A)
4166 * SetPageWriteback(B)
4168 * # flush A, B to clear the writeback
4170 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4171 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4172 if (!vmf->prealloc_pte)
4173 return VM_FAULT_OOM;
4176 ret = vma->vm_ops->fault(vmf);
4177 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4178 VM_FAULT_DONE_COW)))
4181 if (unlikely(PageHWPoison(vmf->page))) {
4182 struct page *page = vmf->page;
4183 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4184 if (ret & VM_FAULT_LOCKED) {
4185 if (page_mapped(page))
4186 unmap_mapping_pages(page_mapping(page),
4187 page->index, 1, false);
4188 /* Retry if a clean page was removed from the cache. */
4189 if (invalidate_inode_page(page))
4190 poisonret = VM_FAULT_NOPAGE;
4198 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4199 lock_page(vmf->page);
4201 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4207 static void deposit_prealloc_pte(struct vm_fault *vmf)
4209 struct vm_area_struct *vma = vmf->vma;
4211 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4213 * We are going to consume the prealloc table,
4214 * count that as nr_ptes.
4216 mm_inc_nr_ptes(vma->vm_mm);
4217 vmf->prealloc_pte = NULL;
4220 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4222 struct vm_area_struct *vma = vmf->vma;
4223 bool write = vmf->flags & FAULT_FLAG_WRITE;
4224 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4227 vm_fault_t ret = VM_FAULT_FALLBACK;
4229 if (!transhuge_vma_suitable(vma, haddr))
4232 page = compound_head(page);
4233 if (compound_order(page) != HPAGE_PMD_ORDER)
4237 * Just backoff if any subpage of a THP is corrupted otherwise
4238 * the corrupted page may mapped by PMD silently to escape the
4239 * check. This kind of THP just can be PTE mapped. Access to
4240 * the corrupted subpage should trigger SIGBUS as expected.
4242 if (unlikely(PageHasHWPoisoned(page)))
4246 * Archs like ppc64 need additional space to store information
4247 * related to pte entry. Use the preallocated table for that.
4249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4251 if (!vmf->prealloc_pte)
4252 return VM_FAULT_OOM;
4255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4256 if (unlikely(!pmd_none(*vmf->pmd)))
4259 for (i = 0; i < HPAGE_PMD_NR; i++)
4260 flush_icache_page(vma, page + i);
4262 entry = mk_huge_pmd(page, vma->vm_page_prot);
4264 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4266 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4267 page_add_file_rmap(page, vma, true);
4270 * deposit and withdraw with pmd lock held
4272 if (arch_needs_pgtable_deposit())
4273 deposit_prealloc_pte(vmf);
4275 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4277 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4279 /* fault is handled */
4281 count_vm_event(THP_FILE_MAPPED);
4283 spin_unlock(vmf->ptl);
4287 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4289 return VM_FAULT_FALLBACK;
4293 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4295 struct vm_area_struct *vma = vmf->vma;
4296 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4297 bool write = vmf->flags & FAULT_FLAG_WRITE;
4298 bool prefault = vmf->address != addr;
4301 flush_icache_page(vma, page);
4302 entry = mk_pte(page, vma->vm_page_prot);
4304 if (prefault && arch_wants_old_prefaulted_pte())
4305 entry = pte_mkold(entry);
4307 entry = pte_sw_mkyoung(entry);
4310 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4311 if (unlikely(uffd_wp))
4312 entry = pte_mkuffd_wp(entry);
4313 /* copy-on-write page */
4314 if (write && !(vma->vm_flags & VM_SHARED)) {
4315 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4316 page_add_new_anon_rmap(page, vma, addr);
4317 lru_cache_add_inactive_or_unevictable(page, vma);
4319 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4320 page_add_file_rmap(page, vma, false);
4322 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4325 static bool vmf_pte_changed(struct vm_fault *vmf)
4327 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4328 return !pte_same(*vmf->pte, vmf->orig_pte);
4330 return !pte_none(*vmf->pte);
4334 * finish_fault - finish page fault once we have prepared the page to fault
4336 * @vmf: structure describing the fault
4338 * This function handles all that is needed to finish a page fault once the
4339 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4340 * given page, adds reverse page mapping, handles memcg charges and LRU
4343 * The function expects the page to be locked and on success it consumes a
4344 * reference of a page being mapped (for the PTE which maps it).
4346 * Return: %0 on success, %VM_FAULT_ code in case of error.
4348 vm_fault_t finish_fault(struct vm_fault *vmf)
4350 struct vm_area_struct *vma = vmf->vma;
4354 /* Did we COW the page? */
4355 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4356 page = vmf->cow_page;
4361 * check even for read faults because we might have lost our CoWed
4364 if (!(vma->vm_flags & VM_SHARED)) {
4365 ret = check_stable_address_space(vma->vm_mm);
4370 if (pmd_none(*vmf->pmd)) {
4371 if (PageTransCompound(page)) {
4372 ret = do_set_pmd(vmf, page);
4373 if (ret != VM_FAULT_FALLBACK)
4377 if (vmf->prealloc_pte)
4378 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4379 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4380 return VM_FAULT_OOM;
4384 * See comment in handle_pte_fault() for how this scenario happens, we
4385 * need to return NOPAGE so that we drop this page.
4387 if (pmd_devmap_trans_unstable(vmf->pmd))
4388 return VM_FAULT_NOPAGE;
4390 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4391 vmf->address, &vmf->ptl);
4393 /* Re-check under ptl */
4394 if (likely(!vmf_pte_changed(vmf))) {
4395 do_set_pte(vmf, page, vmf->address);
4397 /* no need to invalidate: a not-present page won't be cached */
4398 update_mmu_cache(vma, vmf->address, vmf->pte);
4402 update_mmu_tlb(vma, vmf->address, vmf->pte);
4403 ret = VM_FAULT_NOPAGE;
4406 pte_unmap_unlock(vmf->pte, vmf->ptl);
4410 static unsigned long fault_around_pages __read_mostly =
4411 65536 >> PAGE_SHIFT;
4413 #ifdef CONFIG_DEBUG_FS
4414 static int fault_around_bytes_get(void *data, u64 *val)
4416 *val = fault_around_pages << PAGE_SHIFT;
4421 * fault_around_bytes must be rounded down to the nearest page order as it's
4422 * what do_fault_around() expects to see.
4424 static int fault_around_bytes_set(void *data, u64 val)
4426 if (val / PAGE_SIZE > PTRS_PER_PTE)
4430 * The minimum value is 1 page, however this results in no fault-around
4431 * at all. See should_fault_around().
4433 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4437 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4438 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4440 static int __init fault_around_debugfs(void)
4442 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4443 &fault_around_bytes_fops);
4446 late_initcall(fault_around_debugfs);
4450 * do_fault_around() tries to map few pages around the fault address. The hope
4451 * is that the pages will be needed soon and this will lower the number of
4454 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4455 * not ready to be mapped: not up-to-date, locked, etc.
4457 * This function doesn't cross VMA or page table boundaries, in order to call
4458 * map_pages() and acquire a PTE lock only once.
4460 * fault_around_pages defines how many pages we'll try to map.
4461 * do_fault_around() expects it to be set to a power of two less than or equal
4464 * The virtual address of the area that we map is naturally aligned to
4465 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4466 * (and therefore to page order). This way it's easier to guarantee
4467 * that we don't cross page table boundaries.
4469 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4471 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4472 pgoff_t pte_off = pte_index(vmf->address);
4473 /* The page offset of vmf->address within the VMA. */
4474 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4475 pgoff_t from_pte, to_pte;
4478 /* The PTE offset of the start address, clamped to the VMA. */
4479 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4480 pte_off - min(pte_off, vma_off));
4482 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4483 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4484 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4486 if (pmd_none(*vmf->pmd)) {
4487 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4488 if (!vmf->prealloc_pte)
4489 return VM_FAULT_OOM;
4493 ret = vmf->vma->vm_ops->map_pages(vmf,
4494 vmf->pgoff + from_pte - pte_off,
4495 vmf->pgoff + to_pte - pte_off);
4501 /* Return true if we should do read fault-around, false otherwise */
4502 static inline bool should_fault_around(struct vm_fault *vmf)
4504 /* No ->map_pages? No way to fault around... */
4505 if (!vmf->vma->vm_ops->map_pages)
4508 if (uffd_disable_fault_around(vmf->vma))
4511 /* A single page implies no faulting 'around' at all. */
4512 return fault_around_pages > 1;
4515 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4520 * Let's call ->map_pages() first and use ->fault() as fallback
4521 * if page by the offset is not ready to be mapped (cold cache or
4524 if (should_fault_around(vmf)) {
4525 ret = do_fault_around(vmf);
4530 ret = __do_fault(vmf);
4531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4534 ret |= finish_fault(vmf);
4535 unlock_page(vmf->page);
4536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4537 put_page(vmf->page);
4541 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4543 struct vm_area_struct *vma = vmf->vma;
4546 if (unlikely(anon_vma_prepare(vma)))
4547 return VM_FAULT_OOM;
4549 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4551 return VM_FAULT_OOM;
4553 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4555 put_page(vmf->cow_page);
4556 return VM_FAULT_OOM;
4558 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4560 ret = __do_fault(vmf);
4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4563 if (ret & VM_FAULT_DONE_COW)
4566 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4567 __SetPageUptodate(vmf->cow_page);
4569 ret |= finish_fault(vmf);
4570 unlock_page(vmf->page);
4571 put_page(vmf->page);
4572 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4576 put_page(vmf->cow_page);
4580 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4582 struct vm_area_struct *vma = vmf->vma;
4583 vm_fault_t ret, tmp;
4585 ret = __do_fault(vmf);
4586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4590 * Check if the backing address space wants to know that the page is
4591 * about to become writable
4593 if (vma->vm_ops->page_mkwrite) {
4594 unlock_page(vmf->page);
4595 tmp = do_page_mkwrite(vmf);
4596 if (unlikely(!tmp ||
4597 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4598 put_page(vmf->page);
4603 ret |= finish_fault(vmf);
4604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4606 unlock_page(vmf->page);
4607 put_page(vmf->page);
4611 ret |= fault_dirty_shared_page(vmf);
4616 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4617 * but allow concurrent faults).
4618 * The mmap_lock may have been released depending on flags and our
4619 * return value. See filemap_fault() and __folio_lock_or_retry().
4620 * If mmap_lock is released, vma may become invalid (for example
4621 * by other thread calling munmap()).
4623 static vm_fault_t do_fault(struct vm_fault *vmf)
4625 struct vm_area_struct *vma = vmf->vma;
4626 struct mm_struct *vm_mm = vma->vm_mm;
4630 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4632 if (!vma->vm_ops->fault) {
4634 * If we find a migration pmd entry or a none pmd entry, which
4635 * should never happen, return SIGBUS
4637 if (unlikely(!pmd_present(*vmf->pmd)))
4638 ret = VM_FAULT_SIGBUS;
4640 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4645 * Make sure this is not a temporary clearing of pte
4646 * by holding ptl and checking again. A R/M/W update
4647 * of pte involves: take ptl, clearing the pte so that
4648 * we don't have concurrent modification by hardware
4649 * followed by an update.
4651 if (unlikely(pte_none(*vmf->pte)))
4652 ret = VM_FAULT_SIGBUS;
4654 ret = VM_FAULT_NOPAGE;
4656 pte_unmap_unlock(vmf->pte, vmf->ptl);
4658 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4659 ret = do_read_fault(vmf);
4660 else if (!(vma->vm_flags & VM_SHARED))
4661 ret = do_cow_fault(vmf);
4663 ret = do_shared_fault(vmf);
4665 /* preallocated pagetable is unused: free it */
4666 if (vmf->prealloc_pte) {
4667 pte_free(vm_mm, vmf->prealloc_pte);
4668 vmf->prealloc_pte = NULL;
4673 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4674 unsigned long addr, int page_nid, int *flags)
4678 /* Record the current PID acceesing VMA */
4679 vma_set_access_pid_bit(vma);
4681 count_vm_numa_event(NUMA_HINT_FAULTS);
4682 if (page_nid == numa_node_id()) {
4683 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4684 *flags |= TNF_FAULT_LOCAL;
4687 return mpol_misplaced(page, vma, addr);
4690 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4692 struct vm_area_struct *vma = vmf->vma;
4693 struct page *page = NULL;
4694 int page_nid = NUMA_NO_NODE;
4695 bool writable = false;
4702 * The "pte" at this point cannot be used safely without
4703 * validation through pte_unmap_same(). It's of NUMA type but
4704 * the pfn may be screwed if the read is non atomic.
4706 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4707 spin_lock(vmf->ptl);
4708 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4709 pte_unmap_unlock(vmf->pte, vmf->ptl);
4713 /* Get the normal PTE */
4714 old_pte = ptep_get(vmf->pte);
4715 pte = pte_modify(old_pte, vma->vm_page_prot);
4718 * Detect now whether the PTE could be writable; this information
4719 * is only valid while holding the PT lock.
4721 writable = pte_write(pte);
4722 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4723 can_change_pte_writable(vma, vmf->address, pte))
4726 page = vm_normal_page(vma, vmf->address, pte);
4727 if (!page || is_zone_device_page(page))
4730 /* TODO: handle PTE-mapped THP */
4731 if (PageCompound(page))
4735 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4736 * much anyway since they can be in shared cache state. This misses
4737 * the case where a mapping is writable but the process never writes
4738 * to it but pte_write gets cleared during protection updates and
4739 * pte_dirty has unpredictable behaviour between PTE scan updates,
4740 * background writeback, dirty balancing and application behaviour.
4743 flags |= TNF_NO_GROUP;
4746 * Flag if the page is shared between multiple address spaces. This
4747 * is later used when determining whether to group tasks together
4749 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4750 flags |= TNF_SHARED;
4752 page_nid = page_to_nid(page);
4754 * For memory tiering mode, cpupid of slow memory page is used
4755 * to record page access time. So use default value.
4757 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4758 !node_is_toptier(page_nid))
4759 last_cpupid = (-1 & LAST_CPUPID_MASK);
4761 last_cpupid = page_cpupid_last(page);
4762 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4764 if (target_nid == NUMA_NO_NODE) {
4768 pte_unmap_unlock(vmf->pte, vmf->ptl);
4771 /* Migrate to the requested node */
4772 if (migrate_misplaced_page(page, vma, target_nid)) {
4773 page_nid = target_nid;
4774 flags |= TNF_MIGRATED;
4776 flags |= TNF_MIGRATE_FAIL;
4777 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4778 spin_lock(vmf->ptl);
4779 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4780 pte_unmap_unlock(vmf->pte, vmf->ptl);
4787 if (page_nid != NUMA_NO_NODE)
4788 task_numa_fault(last_cpupid, page_nid, 1, flags);
4792 * Make it present again, depending on how arch implements
4793 * non-accessible ptes, some can allow access by kernel mode.
4795 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4796 pte = pte_modify(old_pte, vma->vm_page_prot);
4797 pte = pte_mkyoung(pte);
4799 pte = pte_mkwrite(pte);
4800 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4801 update_mmu_cache(vma, vmf->address, vmf->pte);
4802 pte_unmap_unlock(vmf->pte, vmf->ptl);
4806 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4808 if (vma_is_anonymous(vmf->vma))
4809 return do_huge_pmd_anonymous_page(vmf);
4810 if (vmf->vma->vm_ops->huge_fault)
4811 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4812 return VM_FAULT_FALLBACK;
4815 /* `inline' is required to avoid gcc 4.1.2 build error */
4816 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4818 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4821 if (vma_is_anonymous(vmf->vma)) {
4822 if (likely(!unshare) &&
4823 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4824 return handle_userfault(vmf, VM_UFFD_WP);
4825 return do_huge_pmd_wp_page(vmf);
4828 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4829 if (vmf->vma->vm_ops->huge_fault) {
4830 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4831 if (!(ret & VM_FAULT_FALLBACK))
4836 /* COW or write-notify handled on pte level: split pmd. */
4837 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4839 return VM_FAULT_FALLBACK;
4842 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4844 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4845 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4846 /* No support for anonymous transparent PUD pages yet */
4847 if (vma_is_anonymous(vmf->vma))
4848 return VM_FAULT_FALLBACK;
4849 if (vmf->vma->vm_ops->huge_fault)
4850 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4852 return VM_FAULT_FALLBACK;
4855 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4858 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4861 /* No support for anonymous transparent PUD pages yet */
4862 if (vma_is_anonymous(vmf->vma))
4864 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4865 if (vmf->vma->vm_ops->huge_fault) {
4866 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4867 if (!(ret & VM_FAULT_FALLBACK))
4872 /* COW or write-notify not handled on PUD level: split pud.*/
4873 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4875 return VM_FAULT_FALLBACK;
4879 * These routines also need to handle stuff like marking pages dirty
4880 * and/or accessed for architectures that don't do it in hardware (most
4881 * RISC architectures). The early dirtying is also good on the i386.
4883 * There is also a hook called "update_mmu_cache()" that architectures
4884 * with external mmu caches can use to update those (ie the Sparc or
4885 * PowerPC hashed page tables that act as extended TLBs).
4887 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4888 * concurrent faults).
4890 * The mmap_lock may have been released depending on flags and our return value.
4891 * See filemap_fault() and __folio_lock_or_retry().
4893 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4897 if (unlikely(pmd_none(*vmf->pmd))) {
4899 * Leave __pte_alloc() until later: because vm_ops->fault may
4900 * want to allocate huge page, and if we expose page table
4901 * for an instant, it will be difficult to retract from
4902 * concurrent faults and from rmap lookups.
4905 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4908 * If a huge pmd materialized under us just retry later. Use
4909 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4910 * of pmd_trans_huge() to ensure the pmd didn't become
4911 * pmd_trans_huge under us and then back to pmd_none, as a
4912 * result of MADV_DONTNEED running immediately after a huge pmd
4913 * fault in a different thread of this mm, in turn leading to a
4914 * misleading pmd_trans_huge() retval. All we have to ensure is
4915 * that it is a regular pmd that we can walk with
4916 * pte_offset_map() and we can do that through an atomic read
4917 * in C, which is what pmd_trans_unstable() provides.
4919 if (pmd_devmap_trans_unstable(vmf->pmd))
4922 * A regular pmd is established and it can't morph into a huge
4923 * pmd from under us anymore at this point because we hold the
4924 * mmap_lock read mode and khugepaged takes it in write mode.
4925 * So now it's safe to run pte_offset_map().
4927 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4928 vmf->orig_pte = *vmf->pte;
4929 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4932 * some architectures can have larger ptes than wordsize,
4933 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4934 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4935 * accesses. The code below just needs a consistent view
4936 * for the ifs and we later double check anyway with the
4937 * ptl lock held. So here a barrier will do.
4940 if (pte_none(vmf->orig_pte)) {
4941 pte_unmap(vmf->pte);
4947 return do_pte_missing(vmf);
4949 if (!pte_present(vmf->orig_pte))
4950 return do_swap_page(vmf);
4952 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4953 return do_numa_page(vmf);
4955 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4956 spin_lock(vmf->ptl);
4957 entry = vmf->orig_pte;
4958 if (unlikely(!pte_same(*vmf->pte, entry))) {
4959 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4962 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4963 if (!pte_write(entry))
4964 return do_wp_page(vmf);
4965 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4966 entry = pte_mkdirty(entry);
4968 entry = pte_mkyoung(entry);
4969 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4970 vmf->flags & FAULT_FLAG_WRITE)) {
4971 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4973 /* Skip spurious TLB flush for retried page fault */
4974 if (vmf->flags & FAULT_FLAG_TRIED)
4977 * This is needed only for protection faults but the arch code
4978 * is not yet telling us if this is a protection fault or not.
4979 * This still avoids useless tlb flushes for .text page faults
4982 if (vmf->flags & FAULT_FLAG_WRITE)
4983 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4987 pte_unmap_unlock(vmf->pte, vmf->ptl);
4992 * By the time we get here, we already hold the mm semaphore
4994 * The mmap_lock may have been released depending on flags and our
4995 * return value. See filemap_fault() and __folio_lock_or_retry().
4997 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4998 unsigned long address, unsigned int flags)
5000 struct vm_fault vmf = {
5002 .address = address & PAGE_MASK,
5003 .real_address = address,
5005 .pgoff = linear_page_index(vma, address),
5006 .gfp_mask = __get_fault_gfp_mask(vma),
5008 struct mm_struct *mm = vma->vm_mm;
5009 unsigned long vm_flags = vma->vm_flags;
5014 pgd = pgd_offset(mm, address);
5015 p4d = p4d_alloc(mm, pgd, address);
5017 return VM_FAULT_OOM;
5019 vmf.pud = pud_alloc(mm, p4d, address);
5021 return VM_FAULT_OOM;
5023 if (pud_none(*vmf.pud) &&
5024 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5025 ret = create_huge_pud(&vmf);
5026 if (!(ret & VM_FAULT_FALLBACK))
5029 pud_t orig_pud = *vmf.pud;
5032 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5035 * TODO once we support anonymous PUDs: NUMA case and
5036 * FAULT_FLAG_UNSHARE handling.
5038 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5039 ret = wp_huge_pud(&vmf, orig_pud);
5040 if (!(ret & VM_FAULT_FALLBACK))
5043 huge_pud_set_accessed(&vmf, orig_pud);
5049 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5051 return VM_FAULT_OOM;
5053 /* Huge pud page fault raced with pmd_alloc? */
5054 if (pud_trans_unstable(vmf.pud))
5057 if (pmd_none(*vmf.pmd) &&
5058 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5059 ret = create_huge_pmd(&vmf);
5060 if (!(ret & VM_FAULT_FALLBACK))
5063 vmf.orig_pmd = *vmf.pmd;
5066 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5067 VM_BUG_ON(thp_migration_supported() &&
5068 !is_pmd_migration_entry(vmf.orig_pmd));
5069 if (is_pmd_migration_entry(vmf.orig_pmd))
5070 pmd_migration_entry_wait(mm, vmf.pmd);
5073 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5074 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5075 return do_huge_pmd_numa_page(&vmf);
5077 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5078 !pmd_write(vmf.orig_pmd)) {
5079 ret = wp_huge_pmd(&vmf);
5080 if (!(ret & VM_FAULT_FALLBACK))
5083 huge_pmd_set_accessed(&vmf);
5089 return handle_pte_fault(&vmf);
5093 * mm_account_fault - Do page fault accounting
5095 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5096 * of perf event counters, but we'll still do the per-task accounting to
5097 * the task who triggered this page fault.
5098 * @address: the faulted address.
5099 * @flags: the fault flags.
5100 * @ret: the fault retcode.
5102 * This will take care of most of the page fault accounting. Meanwhile, it
5103 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5104 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5105 * still be in per-arch page fault handlers at the entry of page fault.
5107 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5108 unsigned long address, unsigned int flags,
5113 /* Incomplete faults will be accounted upon completion. */
5114 if (ret & VM_FAULT_RETRY)
5118 * To preserve the behavior of older kernels, PGFAULT counters record
5119 * both successful and failed faults, as opposed to perf counters,
5120 * which ignore failed cases.
5122 count_vm_event(PGFAULT);
5123 count_memcg_event_mm(mm, PGFAULT);
5126 * Do not account for unsuccessful faults (e.g. when the address wasn't
5127 * valid). That includes arch_vma_access_permitted() failing before
5128 * reaching here. So this is not a "this many hardware page faults"
5129 * counter. We should use the hw profiling for that.
5131 if (ret & VM_FAULT_ERROR)
5135 * We define the fault as a major fault when the final successful fault
5136 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5137 * handle it immediately previously).
5139 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5147 * If the fault is done for GUP, regs will be NULL. We only do the
5148 * accounting for the per thread fault counters who triggered the
5149 * fault, and we skip the perf event updates.
5155 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5157 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5160 #ifdef CONFIG_LRU_GEN
5161 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 /* the LRU algorithm only applies to accesses with recency */
5164 current->in_lru_fault = vma_has_recency(vma);
5167 static void lru_gen_exit_fault(void)
5169 current->in_lru_fault = false;
5172 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5176 static void lru_gen_exit_fault(void)
5179 #endif /* CONFIG_LRU_GEN */
5181 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5182 unsigned int *flags)
5184 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5185 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5186 return VM_FAULT_SIGSEGV;
5188 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5189 * just treat it like an ordinary read-fault otherwise.
5191 if (!is_cow_mapping(vma->vm_flags))
5192 *flags &= ~FAULT_FLAG_UNSHARE;
5193 } else if (*flags & FAULT_FLAG_WRITE) {
5194 /* Write faults on read-only mappings are impossible ... */
5195 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5196 return VM_FAULT_SIGSEGV;
5197 /* ... and FOLL_FORCE only applies to COW mappings. */
5198 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5199 !is_cow_mapping(vma->vm_flags)))
5200 return VM_FAULT_SIGSEGV;
5206 * By the time we get here, we already hold the mm semaphore
5208 * The mmap_lock may have been released depending on flags and our
5209 * return value. See filemap_fault() and __folio_lock_or_retry().
5211 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5212 unsigned int flags, struct pt_regs *regs)
5214 /* If the fault handler drops the mmap_lock, vma may be freed */
5215 struct mm_struct *mm = vma->vm_mm;
5218 __set_current_state(TASK_RUNNING);
5220 ret = sanitize_fault_flags(vma, &flags);
5224 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5225 flags & FAULT_FLAG_INSTRUCTION,
5226 flags & FAULT_FLAG_REMOTE)) {
5227 ret = VM_FAULT_SIGSEGV;
5232 * Enable the memcg OOM handling for faults triggered in user
5233 * space. Kernel faults are handled more gracefully.
5235 if (flags & FAULT_FLAG_USER)
5236 mem_cgroup_enter_user_fault();
5238 lru_gen_enter_fault(vma);
5240 if (unlikely(is_vm_hugetlb_page(vma)))
5241 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5243 ret = __handle_mm_fault(vma, address, flags);
5245 lru_gen_exit_fault();
5247 if (flags & FAULT_FLAG_USER) {
5248 mem_cgroup_exit_user_fault();
5250 * The task may have entered a memcg OOM situation but
5251 * if the allocation error was handled gracefully (no
5252 * VM_FAULT_OOM), there is no need to kill anything.
5253 * Just clean up the OOM state peacefully.
5255 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5256 mem_cgroup_oom_synchronize(false);
5259 mm_account_fault(mm, regs, address, flags, ret);
5263 EXPORT_SYMBOL_GPL(handle_mm_fault);
5265 #ifdef CONFIG_PER_VMA_LOCK
5267 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5268 * stable and not isolated. If the VMA is not found or is being modified the
5269 * function returns NULL.
5271 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5272 unsigned long address)
5274 MA_STATE(mas, &mm->mm_mt, address, address);
5275 struct vm_area_struct *vma;
5279 vma = mas_walk(&mas);
5283 /* Only anonymous vmas are supported for now */
5284 if (!vma_is_anonymous(vma))
5287 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5291 if (!vma_start_read(vma))
5295 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5296 * it for now and fall back to page fault handling under mmap_lock.
5298 if (userfaultfd_armed(vma)) {
5303 /* Check since vm_start/vm_end might change before we lock the VMA */
5304 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5309 /* Check if the VMA got isolated after we found it */
5310 if (vma->detached) {
5312 count_vm_vma_lock_event(VMA_LOCK_MISS);
5313 /* The area was replaced with another one */
5321 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5324 #endif /* CONFIG_PER_VMA_LOCK */
5326 #ifndef __PAGETABLE_P4D_FOLDED
5328 * Allocate p4d page table.
5329 * We've already handled the fast-path in-line.
5331 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5333 p4d_t *new = p4d_alloc_one(mm, address);
5337 spin_lock(&mm->page_table_lock);
5338 if (pgd_present(*pgd)) { /* Another has populated it */
5341 smp_wmb(); /* See comment in pmd_install() */
5342 pgd_populate(mm, pgd, new);
5344 spin_unlock(&mm->page_table_lock);
5347 #endif /* __PAGETABLE_P4D_FOLDED */
5349 #ifndef __PAGETABLE_PUD_FOLDED
5351 * Allocate page upper directory.
5352 * We've already handled the fast-path in-line.
5354 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5356 pud_t *new = pud_alloc_one(mm, address);
5360 spin_lock(&mm->page_table_lock);
5361 if (!p4d_present(*p4d)) {
5363 smp_wmb(); /* See comment in pmd_install() */
5364 p4d_populate(mm, p4d, new);
5365 } else /* Another has populated it */
5367 spin_unlock(&mm->page_table_lock);
5370 #endif /* __PAGETABLE_PUD_FOLDED */
5372 #ifndef __PAGETABLE_PMD_FOLDED
5374 * Allocate page middle directory.
5375 * We've already handled the fast-path in-line.
5377 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5380 pmd_t *new = pmd_alloc_one(mm, address);
5384 ptl = pud_lock(mm, pud);
5385 if (!pud_present(*pud)) {
5387 smp_wmb(); /* See comment in pmd_install() */
5388 pud_populate(mm, pud, new);
5389 } else { /* Another has populated it */
5395 #endif /* __PAGETABLE_PMD_FOLDED */
5398 * follow_pte - look up PTE at a user virtual address
5399 * @mm: the mm_struct of the target address space
5400 * @address: user virtual address
5401 * @ptepp: location to store found PTE
5402 * @ptlp: location to store the lock for the PTE
5404 * On a successful return, the pointer to the PTE is stored in @ptepp;
5405 * the corresponding lock is taken and its location is stored in @ptlp.
5406 * The contents of the PTE are only stable until @ptlp is released;
5407 * any further use, if any, must be protected against invalidation
5408 * with MMU notifiers.
5410 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5411 * should be taken for read.
5413 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5414 * it is not a good general-purpose API.
5416 * Return: zero on success, -ve otherwise.
5418 int follow_pte(struct mm_struct *mm, unsigned long address,
5419 pte_t **ptepp, spinlock_t **ptlp)
5427 pgd = pgd_offset(mm, address);
5428 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5431 p4d = p4d_offset(pgd, address);
5432 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5435 pud = pud_offset(p4d, address);
5436 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5439 pmd = pmd_offset(pud, address);
5440 VM_BUG_ON(pmd_trans_huge(*pmd));
5442 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5445 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5446 if (!pte_present(*ptep))
5451 pte_unmap_unlock(ptep, *ptlp);
5455 EXPORT_SYMBOL_GPL(follow_pte);
5458 * follow_pfn - look up PFN at a user virtual address
5459 * @vma: memory mapping
5460 * @address: user virtual address
5461 * @pfn: location to store found PFN
5463 * Only IO mappings and raw PFN mappings are allowed.
5465 * This function does not allow the caller to read the permissions
5466 * of the PTE. Do not use it.
5468 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5470 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5477 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5480 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5483 *pfn = pte_pfn(*ptep);
5484 pte_unmap_unlock(ptep, ptl);
5487 EXPORT_SYMBOL(follow_pfn);
5489 #ifdef CONFIG_HAVE_IOREMAP_PROT
5490 int follow_phys(struct vm_area_struct *vma,
5491 unsigned long address, unsigned int flags,
5492 unsigned long *prot, resource_size_t *phys)
5498 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5501 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5505 if ((flags & FOLL_WRITE) && !pte_write(pte))
5508 *prot = pgprot_val(pte_pgprot(pte));
5509 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5513 pte_unmap_unlock(ptep, ptl);
5519 * generic_access_phys - generic implementation for iomem mmap access
5520 * @vma: the vma to access
5521 * @addr: userspace address, not relative offset within @vma
5522 * @buf: buffer to read/write
5523 * @len: length of transfer
5524 * @write: set to FOLL_WRITE when writing, otherwise reading
5526 * This is a generic implementation for &vm_operations_struct.access for an
5527 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5531 void *buf, int len, int write)
5533 resource_size_t phys_addr;
5534 unsigned long prot = 0;
5535 void __iomem *maddr;
5538 int offset = offset_in_page(addr);
5541 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5545 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5548 pte_unmap_unlock(ptep, ptl);
5550 prot = pgprot_val(pte_pgprot(pte));
5551 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5553 if ((write & FOLL_WRITE) && !pte_write(pte))
5556 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5560 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5563 if (!pte_same(pte, *ptep)) {
5564 pte_unmap_unlock(ptep, ptl);
5571 memcpy_toio(maddr + offset, buf, len);
5573 memcpy_fromio(buf, maddr + offset, len);
5575 pte_unmap_unlock(ptep, ptl);
5581 EXPORT_SYMBOL_GPL(generic_access_phys);
5585 * Access another process' address space as given in mm.
5587 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5588 int len, unsigned int gup_flags)
5590 struct vm_area_struct *vma;
5591 void *old_buf = buf;
5592 int write = gup_flags & FOLL_WRITE;
5594 if (mmap_read_lock_killable(mm))
5597 /* ignore errors, just check how much was successfully transferred */
5599 int bytes, ret, offset;
5601 struct page *page = NULL;
5603 ret = get_user_pages_remote(mm, addr, 1,
5604 gup_flags, &page, &vma, NULL);
5606 #ifndef CONFIG_HAVE_IOREMAP_PROT
5610 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5611 * we can access using slightly different code.
5613 vma = vma_lookup(mm, addr);
5616 if (vma->vm_ops && vma->vm_ops->access)
5617 ret = vma->vm_ops->access(vma, addr, buf,
5625 offset = addr & (PAGE_SIZE-1);
5626 if (bytes > PAGE_SIZE-offset)
5627 bytes = PAGE_SIZE-offset;
5631 copy_to_user_page(vma, page, addr,
5632 maddr + offset, buf, bytes);
5633 set_page_dirty_lock(page);
5635 copy_from_user_page(vma, page, addr,
5636 buf, maddr + offset, bytes);
5645 mmap_read_unlock(mm);
5647 return buf - old_buf;
5651 * access_remote_vm - access another process' address space
5652 * @mm: the mm_struct of the target address space
5653 * @addr: start address to access
5654 * @buf: source or destination buffer
5655 * @len: number of bytes to transfer
5656 * @gup_flags: flags modifying lookup behaviour
5658 * The caller must hold a reference on @mm.
5660 * Return: number of bytes copied from source to destination.
5662 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5663 void *buf, int len, unsigned int gup_flags)
5665 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5669 * Access another process' address space.
5670 * Source/target buffer must be kernel space,
5671 * Do not walk the page table directly, use get_user_pages
5673 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5674 void *buf, int len, unsigned int gup_flags)
5676 struct mm_struct *mm;
5679 mm = get_task_mm(tsk);
5683 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5689 EXPORT_SYMBOL_GPL(access_process_vm);
5692 * Print the name of a VMA.
5694 void print_vma_addr(char *prefix, unsigned long ip)
5696 struct mm_struct *mm = current->mm;
5697 struct vm_area_struct *vma;
5700 * we might be running from an atomic context so we cannot sleep
5702 if (!mmap_read_trylock(mm))
5705 vma = find_vma(mm, ip);
5706 if (vma && vma->vm_file) {
5707 struct file *f = vma->vm_file;
5708 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5712 p = file_path(f, buf, PAGE_SIZE);
5715 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5717 vma->vm_end - vma->vm_start);
5718 free_page((unsigned long)buf);
5721 mmap_read_unlock(mm);
5724 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5725 void __might_fault(const char *file, int line)
5727 if (pagefault_disabled())
5729 __might_sleep(file, line);
5730 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5732 might_lock_read(¤t->mm->mmap_lock);
5735 EXPORT_SYMBOL(__might_fault);
5738 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5740 * Process all subpages of the specified huge page with the specified
5741 * operation. The target subpage will be processed last to keep its
5744 static inline int process_huge_page(
5745 unsigned long addr_hint, unsigned int pages_per_huge_page,
5746 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5749 int i, n, base, l, ret;
5750 unsigned long addr = addr_hint &
5751 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5753 /* Process target subpage last to keep its cache lines hot */
5755 n = (addr_hint - addr) / PAGE_SIZE;
5756 if (2 * n <= pages_per_huge_page) {
5757 /* If target subpage in first half of huge page */
5760 /* Process subpages at the end of huge page */
5761 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5763 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5768 /* If target subpage in second half of huge page */
5769 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5770 l = pages_per_huge_page - n;
5771 /* Process subpages at the begin of huge page */
5772 for (i = 0; i < base; i++) {
5774 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5780 * Process remaining subpages in left-right-left-right pattern
5781 * towards the target subpage
5783 for (i = 0; i < l; i++) {
5784 int left_idx = base + i;
5785 int right_idx = base + 2 * l - 1 - i;
5788 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5792 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5799 static void clear_gigantic_page(struct page *page,
5801 unsigned int pages_per_huge_page)
5807 for (i = 0; i < pages_per_huge_page; i++) {
5808 p = nth_page(page, i);
5810 clear_user_highpage(p, addr + i * PAGE_SIZE);
5814 static int clear_subpage(unsigned long addr, int idx, void *arg)
5816 struct page *page = arg;
5818 clear_user_highpage(page + idx, addr);
5822 void clear_huge_page(struct page *page,
5823 unsigned long addr_hint, unsigned int pages_per_huge_page)
5825 unsigned long addr = addr_hint &
5826 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5828 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5829 clear_gigantic_page(page, addr, pages_per_huge_page);
5833 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5836 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5838 struct vm_area_struct *vma,
5839 unsigned int pages_per_huge_page)
5842 struct page *dst_page;
5843 struct page *src_page;
5845 for (i = 0; i < pages_per_huge_page; i++) {
5846 dst_page = folio_page(dst, i);
5847 src_page = folio_page(src, i);
5850 if (copy_mc_user_highpage(dst_page, src_page,
5851 addr + i*PAGE_SIZE, vma)) {
5852 memory_failure_queue(page_to_pfn(src_page), 0);
5859 struct copy_subpage_arg {
5862 struct vm_area_struct *vma;
5865 static int copy_subpage(unsigned long addr, int idx, void *arg)
5867 struct copy_subpage_arg *copy_arg = arg;
5869 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5870 addr, copy_arg->vma)) {
5871 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5877 int copy_user_large_folio(struct folio *dst, struct folio *src,
5878 unsigned long addr_hint, struct vm_area_struct *vma)
5880 unsigned int pages_per_huge_page = folio_nr_pages(dst);
5881 unsigned long addr = addr_hint &
5882 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5883 struct copy_subpage_arg arg = {
5889 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
5890 return copy_user_gigantic_page(dst, src, addr, vma,
5891 pages_per_huge_page);
5893 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5896 long copy_folio_from_user(struct folio *dst_folio,
5897 const void __user *usr_src,
5898 bool allow_pagefault)
5901 unsigned long i, rc = 0;
5902 unsigned int nr_pages = folio_nr_pages(dst_folio);
5903 unsigned long ret_val = nr_pages * PAGE_SIZE;
5904 struct page *subpage;
5906 for (i = 0; i < nr_pages; i++) {
5907 subpage = folio_page(dst_folio, i);
5908 kaddr = kmap_local_page(subpage);
5909 if (!allow_pagefault)
5910 pagefault_disable();
5911 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
5912 if (!allow_pagefault)
5914 kunmap_local(kaddr);
5916 ret_val -= (PAGE_SIZE - rc);
5920 flush_dcache_page(subpage);
5926 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5928 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5930 static struct kmem_cache *page_ptl_cachep;
5932 void __init ptlock_cache_init(void)
5934 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5938 bool ptlock_alloc(struct page *page)
5942 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5949 void ptlock_free(struct page *page)
5951 kmem_cache_free(page_ptl_cachep, page->ptl);