1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
116 EXPORT_SYMBOL(high_memory);
119 * Randomize the address space (stacks, mmaps, brk, etc.).
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
143 static int __init disable_randmaps(char *s)
145 randomize_va_space = 0;
148 __setup("norandmaps", disable_randmaps);
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
153 unsigned long highest_memmap_pfn __read_mostly;
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
158 static int __init init_zero_pfn(void)
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
163 early_initcall(init_zero_pfn);
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
167 trace_rss_stat(mm, member);
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
177 pgtable_t token = pmd_pgtable(*pmd);
179 pte_free_tlb(tlb, token, addr);
180 mm_dec_nr_ptes(tlb->mm);
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
192 pmd = pmd_offset(pud, addr);
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
197 free_pte_range(tlb, pmd, addr);
198 } while (pmd++, addr = next, addr != end);
208 if (end - 1 > ceiling - 1)
211 pmd = pmd_offset(pud, start);
213 pmd_free_tlb(tlb, pmd, start);
214 mm_dec_nr_pmds(tlb->mm);
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
226 pud = pud_offset(p4d, addr);
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 } while (pud++, addr = next, addr != end);
242 if (end - 1 > ceiling - 1)
245 pud = pud_offset(p4d, start);
247 pud_free_tlb(tlb, pud, start);
248 mm_dec_nr_puds(tlb->mm);
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
260 p4d = p4d_offset(pgd, addr);
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
272 ceiling &= PGDIR_MASK;
276 if (end - 1 > ceiling - 1)
279 p4d = p4d_offset(pgd, start);
281 p4d_free_tlb(tlb, p4d, start);
285 * This function frees user-level page tables of a process.
287 void free_pgd_range(struct mmu_gather *tlb,
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
295 * The next few lines have given us lots of grief...
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
331 if (end - 1 > ceiling - 1)
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
339 tlb_change_page_size(tlb, PAGE_SIZE);
340 pgd = pgd_offset(tlb->mm, addr);
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 } while (pgd++, addr = next, addr != end);
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
356 unsigned long addr = vma->vm_start;
357 struct vm_area_struct *next;
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
363 next = mas_find(&mas, ceiling - 1);
366 * Hide vma from rmap and truncate_pagecache before freeing
369 unlink_anon_vmas(vma);
370 unlink_file_vma(vma);
372 if (is_vm_hugetlb_page(vma)) {
373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 floor, next ? next->vm_start : ceiling);
377 * Optimization: gather nearby vmas into one call down
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 && !is_vm_hugetlb_page(next)) {
382 next = mas_find(&mas, ceiling - 1);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
386 free_pgd_range(tlb, addr, vma->vm_end,
387 floor, next ? next->vm_start : ceiling);
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
395 spinlock_t *ptl = pmd_lock(mm, pmd);
397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 pmd_populate(mm, pmd, *pte);
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
421 pgtable_t new = pte_alloc_one(mm);
425 pmd_install(mm, pmd, &new);
431 int __pte_alloc_kernel(pmd_t *pmd)
433 pte_t *new = pte_alloc_one_kernel(&init_mm);
437 spin_lock(&init_mm.page_table_lock);
438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
439 smp_wmb(); /* See comment in pmd_install() */
440 pmd_populate_kernel(&init_mm, pmd, new);
443 spin_unlock(&init_mm.page_table_lock);
445 pte_free_kernel(&init_mm, new);
449 static inline void init_rss_vec(int *rss)
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 if (current->mm == mm)
460 for (i = 0; i < NR_MM_COUNTERS; i++)
462 add_mm_counter(mm, i, rss[i]);
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
470 * The calling function must still handle the error.
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
502 resume = jiffies + 60 * HZ;
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
511 dump_page(page, "bad pte");
512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 mapping ? mapping->a_ops->read_folio : NULL);
520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
546 * And for normal mappings this is false.
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
568 unsigned long pfn = pte_pfn(pte);
570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 if (likely(!pte_special(pte)))
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
577 if (is_zero_pfn(pfn))
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
590 print_bad_pte(vma, addr, pte, NULL);
594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 if (pfn == vma->vm_pgoff + off)
606 if (!is_cow_mapping(vma->vm_flags))
611 if (is_zero_pfn(pfn))
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
621 * NOTE! We still have PageReserved() pages in the page tables.
622 * eg. VDSO mappings can cause them to exist.
625 return pfn_to_page(pfn);
628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
631 struct page *page = vm_normal_page(vma, addr, pte);
634 return page_folio(page);
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
642 unsigned long pfn = pmd_pfn(pmd);
645 * There is no pmd_special() but there may be special pmds, e.g.
646 * in a direct-access (dax) mapping, so let's just replicate the
647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650 if (vma->vm_flags & VM_MIXEDMAP) {
656 off = (addr - vma->vm_start) >> PAGE_SHIFT;
657 if (pfn == vma->vm_pgoff + off)
659 if (!is_cow_mapping(vma->vm_flags))
666 if (is_huge_zero_pmd(pmd))
668 if (unlikely(pfn > highest_memmap_pfn))
672 * NOTE! We still have PageReserved() pages in the page tables.
673 * eg. VDSO mappings can cause them to exist.
676 return pfn_to_page(pfn);
680 static void restore_exclusive_pte(struct vm_area_struct *vma,
681 struct page *page, unsigned long address,
687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688 if (pte_swp_soft_dirty(*ptep))
689 pte = pte_mksoft_dirty(pte);
691 entry = pte_to_swp_entry(*ptep);
692 if (pte_swp_uffd_wp(*ptep))
693 pte = pte_mkuffd_wp(pte);
694 else if (is_writable_device_exclusive_entry(entry))
695 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
700 * No need to take a page reference as one was already
701 * created when the swap entry was made.
704 page_add_anon_rmap(page, vma, address, RMAP_NONE);
707 * Currently device exclusive access only supports anonymous
708 * memory so the entry shouldn't point to a filebacked page.
712 set_pte_at(vma->vm_mm, address, ptep, pte);
715 * No need to invalidate - it was non-present before. However
716 * secondary CPUs may have mappings that need invalidating.
718 update_mmu_cache(vma, address, ptep);
722 * Tries to restore an exclusive pte if the page lock can be acquired without
726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
729 swp_entry_t entry = pte_to_swp_entry(*src_pte);
730 struct page *page = pfn_swap_entry_to_page(entry);
732 if (trylock_page(page)) {
733 restore_exclusive_pte(vma, page, addr, src_pte);
742 * copy one vm_area from one task to the other. Assumes the page tables
743 * already present in the new task to be cleared in the whole range
744 * covered by this vma.
748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
752 unsigned long vm_flags = dst_vma->vm_flags;
753 pte_t pte = *src_pte;
755 swp_entry_t entry = pte_to_swp_entry(pte);
757 if (likely(!non_swap_entry(entry))) {
758 if (swap_duplicate(entry) < 0)
761 /* make sure dst_mm is on swapoff's mmlist. */
762 if (unlikely(list_empty(&dst_mm->mmlist))) {
763 spin_lock(&mmlist_lock);
764 if (list_empty(&dst_mm->mmlist))
765 list_add(&dst_mm->mmlist,
767 spin_unlock(&mmlist_lock);
769 /* Mark the swap entry as shared. */
770 if (pte_swp_exclusive(*src_pte)) {
771 pte = pte_swp_clear_exclusive(*src_pte);
772 set_pte_at(src_mm, addr, src_pte, pte);
775 } else if (is_migration_entry(entry)) {
776 page = pfn_swap_entry_to_page(entry);
778 rss[mm_counter(page)]++;
780 if (!is_readable_migration_entry(entry) &&
781 is_cow_mapping(vm_flags)) {
783 * COW mappings require pages in both parent and child
784 * to be set to read. A previously exclusive entry is
787 entry = make_readable_migration_entry(
789 pte = swp_entry_to_pte(entry);
790 if (pte_swp_soft_dirty(*src_pte))
791 pte = pte_swp_mksoft_dirty(pte);
792 if (pte_swp_uffd_wp(*src_pte))
793 pte = pte_swp_mkuffd_wp(pte);
794 set_pte_at(src_mm, addr, src_pte, pte);
796 } else if (is_device_private_entry(entry)) {
797 page = pfn_swap_entry_to_page(entry);
800 * Update rss count even for unaddressable pages, as
801 * they should treated just like normal pages in this
804 * We will likely want to have some new rss counters
805 * for unaddressable pages, at some point. But for now
806 * keep things as they are.
809 rss[mm_counter(page)]++;
810 /* Cannot fail as these pages cannot get pinned. */
811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
814 * We do not preserve soft-dirty information, because so
815 * far, checkpoint/restore is the only feature that
816 * requires that. And checkpoint/restore does not work
817 * when a device driver is involved (you cannot easily
818 * save and restore device driver state).
820 if (is_writable_device_private_entry(entry) &&
821 is_cow_mapping(vm_flags)) {
822 entry = make_readable_device_private_entry(
824 pte = swp_entry_to_pte(entry);
825 if (pte_swp_uffd_wp(*src_pte))
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
829 } else if (is_device_exclusive_entry(entry)) {
831 * Make device exclusive entries present by restoring the
832 * original entry then copying as for a present pte. Device
833 * exclusive entries currently only support private writable
834 * (ie. COW) mappings.
836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
840 } else if (is_pte_marker_entry(entry)) {
841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
842 set_pte_at(dst_mm, addr, dst_pte, pte);
845 if (!userfaultfd_wp(dst_vma))
846 pte = pte_swp_clear_uffd_wp(pte);
847 set_pte_at(dst_mm, addr, dst_pte, pte);
852 * Copy a present and normal page.
854 * NOTE! The usual case is that this isn't required;
855 * instead, the caller can just increase the page refcount
856 * and re-use the pte the traditional way.
858 * And if we need a pre-allocated page but don't yet have
859 * one, return a negative error to let the preallocation
860 * code know so that it can do so outside the page table
864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
866 struct folio **prealloc, struct page *page)
868 struct folio *new_folio;
871 new_folio = *prealloc;
876 * We have a prealloc page, all good! Take it
877 * over and copy the page & arm it.
880 copy_user_highpage(&new_folio->page, page, addr, src_vma);
881 __folio_mark_uptodate(new_folio);
882 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
883 folio_add_lru_vma(new_folio, dst_vma);
886 /* All done, just insert the new page copy in the child */
887 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
889 if (userfaultfd_pte_wp(dst_vma, *src_pte))
890 /* Uffd-wp needs to be delivered to dest pte as well */
891 pte = pte_mkuffd_wp(pte);
892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
898 * is required to copy this pte.
901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 struct folio **prealloc)
905 struct mm_struct *src_mm = src_vma->vm_mm;
906 unsigned long vm_flags = src_vma->vm_flags;
907 pte_t pte = *src_pte;
911 page = vm_normal_page(src_vma, addr, pte);
913 folio = page_folio(page);
914 if (page && folio_test_anon(folio)) {
916 * If this page may have been pinned by the parent process,
917 * copy the page immediately for the child so that we'll always
918 * guarantee the pinned page won't be randomly replaced in the
922 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
923 /* Page may be pinned, we have to copy. */
925 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
926 addr, rss, prealloc, page);
931 page_dup_file_rmap(page, false);
932 rss[mm_counter_file(page)]++;
936 * If it's a COW mapping, write protect it both
937 * in the parent and the child
939 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
940 ptep_set_wrprotect(src_mm, addr, src_pte);
941 pte = pte_wrprotect(pte);
943 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
946 * If it's a shared mapping, mark it clean in
949 if (vm_flags & VM_SHARED)
950 pte = pte_mkclean(pte);
951 pte = pte_mkold(pte);
953 if (!userfaultfd_wp(dst_vma))
954 pte = pte_clear_uffd_wp(pte);
956 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
960 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
961 struct vm_area_struct *vma, unsigned long addr)
963 struct folio *new_folio;
965 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
969 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
970 folio_put(new_folio);
973 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
979 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
983 struct mm_struct *dst_mm = dst_vma->vm_mm;
984 struct mm_struct *src_mm = src_vma->vm_mm;
985 pte_t *orig_src_pte, *orig_dst_pte;
986 pte_t *src_pte, *dst_pte;
987 spinlock_t *src_ptl, *dst_ptl;
988 int progress, ret = 0;
989 int rss[NR_MM_COUNTERS];
990 swp_entry_t entry = (swp_entry_t){0};
991 struct folio *prealloc = NULL;
997 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1002 src_pte = pte_offset_map(src_pmd, addr);
1003 src_ptl = pte_lockptr(src_mm, src_pmd);
1004 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1005 orig_src_pte = src_pte;
1006 orig_dst_pte = dst_pte;
1007 arch_enter_lazy_mmu_mode();
1011 * We are holding two locks at this point - either of them
1012 * could generate latencies in another task on another CPU.
1014 if (progress >= 32) {
1016 if (need_resched() ||
1017 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1020 if (pte_none(*src_pte)) {
1024 if (unlikely(!pte_present(*src_pte))) {
1025 ret = copy_nonpresent_pte(dst_mm, src_mm,
1030 entry = pte_to_swp_entry(*src_pte);
1032 } else if (ret == -EBUSY) {
1040 * Device exclusive entry restored, continue by copying
1041 * the now present pte.
1043 WARN_ON_ONCE(ret != -ENOENT);
1045 /* copy_present_pte() will clear `*prealloc' if consumed */
1046 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1047 addr, rss, &prealloc);
1049 * If we need a pre-allocated page for this pte, drop the
1050 * locks, allocate, and try again.
1052 if (unlikely(ret == -EAGAIN))
1054 if (unlikely(prealloc)) {
1056 * pre-alloc page cannot be reused by next time so as
1057 * to strictly follow mempolicy (e.g., alloc_page_vma()
1058 * will allocate page according to address). This
1059 * could only happen if one pinned pte changed.
1061 folio_put(prealloc);
1065 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1067 arch_leave_lazy_mmu_mode();
1068 spin_unlock(src_ptl);
1069 pte_unmap(orig_src_pte);
1070 add_mm_rss_vec(dst_mm, rss);
1071 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1075 VM_WARN_ON_ONCE(!entry.val);
1076 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1081 } else if (ret == -EBUSY) {
1083 } else if (ret == -EAGAIN) {
1084 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1091 /* We've captured and resolved the error. Reset, try again. */
1097 if (unlikely(prealloc))
1098 folio_put(prealloc);
1103 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 struct mm_struct *src_mm = src_vma->vm_mm;
1109 pmd_t *src_pmd, *dst_pmd;
1112 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1115 src_pmd = pmd_offset(src_pud, addr);
1117 next = pmd_addr_end(addr, end);
1118 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1119 || pmd_devmap(*src_pmd)) {
1121 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1122 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1123 addr, dst_vma, src_vma);
1130 if (pmd_none_or_clear_bad(src_pmd))
1132 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1135 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1140 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1144 struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 struct mm_struct *src_mm = src_vma->vm_mm;
1146 pud_t *src_pud, *dst_pud;
1149 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1152 src_pud = pud_offset(src_p4d, addr);
1154 next = pud_addr_end(addr, end);
1155 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1158 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1159 err = copy_huge_pud(dst_mm, src_mm,
1160 dst_pud, src_pud, addr, src_vma);
1167 if (pud_none_or_clear_bad(src_pud))
1169 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1172 } while (dst_pud++, src_pud++, addr = next, addr != end);
1177 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1181 struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 p4d_t *src_p4d, *dst_p4d;
1185 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1188 src_p4d = p4d_offset(src_pgd, addr);
1190 next = p4d_addr_end(addr, end);
1191 if (p4d_none_or_clear_bad(src_p4d))
1193 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1196 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1201 * Return true if the vma needs to copy the pgtable during this fork(). Return
1202 * false when we can speed up fork() by allowing lazy page faults later until
1203 * when the child accesses the memory range.
1206 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1209 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1210 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1211 * contains uffd-wp protection information, that's something we can't
1212 * retrieve from page cache, and skip copying will lose those info.
1214 if (userfaultfd_wp(dst_vma))
1217 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1220 if (src_vma->anon_vma)
1224 * Don't copy ptes where a page fault will fill them correctly. Fork
1225 * becomes much lighter when there are big shared or private readonly
1226 * mappings. The tradeoff is that copy_page_range is more efficient
1233 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1235 pgd_t *src_pgd, *dst_pgd;
1237 unsigned long addr = src_vma->vm_start;
1238 unsigned long end = src_vma->vm_end;
1239 struct mm_struct *dst_mm = dst_vma->vm_mm;
1240 struct mm_struct *src_mm = src_vma->vm_mm;
1241 struct mmu_notifier_range range;
1245 if (!vma_needs_copy(dst_vma, src_vma))
1248 if (is_vm_hugetlb_page(src_vma))
1249 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1253 * We do not free on error cases below as remove_vma
1254 * gets called on error from higher level routine
1256 ret = track_pfn_copy(src_vma);
1262 * We need to invalidate the secondary MMU mappings only when
1263 * there could be a permission downgrade on the ptes of the
1264 * parent mm. And a permission downgrade will only happen if
1265 * is_cow_mapping() returns true.
1267 is_cow = is_cow_mapping(src_vma->vm_flags);
1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271 0, src_mm, addr, end);
1272 mmu_notifier_invalidate_range_start(&range);
1274 * Disabling preemption is not needed for the write side, as
1275 * the read side doesn't spin, but goes to the mmap_lock.
1277 * Use the raw variant of the seqcount_t write API to avoid
1278 * lockdep complaining about preemptibility.
1280 mmap_assert_write_locked(src_mm);
1281 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1285 dst_pgd = pgd_offset(dst_mm, addr);
1286 src_pgd = pgd_offset(src_mm, addr);
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(src_pgd))
1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299 raw_write_seqcount_end(&src_mm->write_protect_seq);
1300 mmu_notifier_invalidate_range_end(&range);
1305 /* Whether we should zap all COWed (private) pages too */
1306 static inline bool should_zap_cows(struct zap_details *details)
1308 /* By default, zap all pages */
1312 /* Or, we zap COWed pages only if the caller wants to */
1313 return details->even_cows;
1316 /* Decides whether we should zap this page with the page pointer specified */
1317 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1319 /* If we can make a decision without *page.. */
1320 if (should_zap_cows(details))
1323 /* E.g. the caller passes NULL for the case of a zero page */
1327 /* Otherwise we should only zap non-anon pages */
1328 return !PageAnon(page);
1331 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1336 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1340 * This function makes sure that we'll replace the none pte with an uffd-wp
1341 * swap special pte marker when necessary. Must be with the pgtable lock held.
1344 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1345 unsigned long addr, pte_t *pte,
1346 struct zap_details *details, pte_t pteval)
1348 if (zap_drop_file_uffd_wp(details))
1351 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1354 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1355 struct vm_area_struct *vma, pmd_t *pmd,
1356 unsigned long addr, unsigned long end,
1357 struct zap_details *details)
1359 struct mm_struct *mm = tlb->mm;
1360 int force_flush = 0;
1361 int rss[NR_MM_COUNTERS];
1367 tlb_change_page_size(tlb, PAGE_SIZE);
1370 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1372 flush_tlb_batched_pending(mm);
1373 arch_enter_lazy_mmu_mode();
1378 if (pte_none(ptent))
1384 if (pte_present(ptent)) {
1385 unsigned int delay_rmap;
1387 page = vm_normal_page(vma, addr, ptent);
1388 if (unlikely(!should_zap_page(details, page)))
1390 ptent = ptep_get_and_clear_full(mm, addr, pte,
1392 tlb_remove_tlb_entry(tlb, pte, addr);
1393 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1395 if (unlikely(!page))
1399 if (!PageAnon(page)) {
1400 if (pte_dirty(ptent)) {
1401 set_page_dirty(page);
1402 if (tlb_delay_rmap(tlb)) {
1407 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1408 mark_page_accessed(page);
1410 rss[mm_counter(page)]--;
1412 page_remove_rmap(page, vma, false);
1413 if (unlikely(page_mapcount(page) < 0))
1414 print_bad_pte(vma, addr, ptent, page);
1416 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1424 entry = pte_to_swp_entry(ptent);
1425 if (is_device_private_entry(entry) ||
1426 is_device_exclusive_entry(entry)) {
1427 page = pfn_swap_entry_to_page(entry);
1428 if (unlikely(!should_zap_page(details, page)))
1431 * Both device private/exclusive mappings should only
1432 * work with anonymous page so far, so we don't need to
1433 * consider uffd-wp bit when zap. For more information,
1434 * see zap_install_uffd_wp_if_needed().
1436 WARN_ON_ONCE(!vma_is_anonymous(vma));
1437 rss[mm_counter(page)]--;
1438 if (is_device_private_entry(entry))
1439 page_remove_rmap(page, vma, false);
1441 } else if (!non_swap_entry(entry)) {
1442 /* Genuine swap entry, hence a private anon page */
1443 if (!should_zap_cows(details))
1446 if (unlikely(!free_swap_and_cache(entry)))
1447 print_bad_pte(vma, addr, ptent, NULL);
1448 } else if (is_migration_entry(entry)) {
1449 page = pfn_swap_entry_to_page(entry);
1450 if (!should_zap_page(details, page))
1452 rss[mm_counter(page)]--;
1453 } else if (pte_marker_entry_uffd_wp(entry)) {
1454 /* Only drop the uffd-wp marker if explicitly requested */
1455 if (!zap_drop_file_uffd_wp(details))
1457 } else if (is_hwpoison_entry(entry) ||
1458 is_swapin_error_entry(entry)) {
1459 if (!should_zap_cows(details))
1462 /* We should have covered all the swap entry types */
1465 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1466 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1467 } while (pte++, addr += PAGE_SIZE, addr != end);
1469 add_mm_rss_vec(mm, rss);
1470 arch_leave_lazy_mmu_mode();
1472 /* Do the actual TLB flush before dropping ptl */
1474 tlb_flush_mmu_tlbonly(tlb);
1475 tlb_flush_rmaps(tlb, vma);
1477 pte_unmap_unlock(start_pte, ptl);
1480 * If we forced a TLB flush (either due to running out of
1481 * batch buffers or because we needed to flush dirty TLB
1482 * entries before releasing the ptl), free the batched
1483 * memory too. Restart if we didn't do everything.
1498 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1499 struct vm_area_struct *vma, pud_t *pud,
1500 unsigned long addr, unsigned long end,
1501 struct zap_details *details)
1506 pmd = pmd_offset(pud, addr);
1508 next = pmd_addr_end(addr, end);
1509 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1510 if (next - addr != HPAGE_PMD_SIZE)
1511 __split_huge_pmd(vma, pmd, addr, false, NULL);
1512 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1515 } else if (details && details->single_folio &&
1516 folio_test_pmd_mappable(details->single_folio) &&
1517 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1518 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1520 * Take and drop THP pmd lock so that we cannot return
1521 * prematurely, while zap_huge_pmd() has cleared *pmd,
1522 * but not yet decremented compound_mapcount().
1528 * Here there can be other concurrent MADV_DONTNEED or
1529 * trans huge page faults running, and if the pmd is
1530 * none or trans huge it can change under us. This is
1531 * because MADV_DONTNEED holds the mmap_lock in read
1534 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1536 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1539 } while (pmd++, addr = next, addr != end);
1544 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1545 struct vm_area_struct *vma, p4d_t *p4d,
1546 unsigned long addr, unsigned long end,
1547 struct zap_details *details)
1552 pud = pud_offset(p4d, addr);
1554 next = pud_addr_end(addr, end);
1555 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1556 if (next - addr != HPAGE_PUD_SIZE) {
1557 mmap_assert_locked(tlb->mm);
1558 split_huge_pud(vma, pud, addr);
1559 } else if (zap_huge_pud(tlb, vma, pud, addr))
1563 if (pud_none_or_clear_bad(pud))
1565 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1568 } while (pud++, addr = next, addr != end);
1573 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1574 struct vm_area_struct *vma, pgd_t *pgd,
1575 unsigned long addr, unsigned long end,
1576 struct zap_details *details)
1581 p4d = p4d_offset(pgd, addr);
1583 next = p4d_addr_end(addr, end);
1584 if (p4d_none_or_clear_bad(p4d))
1586 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1587 } while (p4d++, addr = next, addr != end);
1592 void unmap_page_range(struct mmu_gather *tlb,
1593 struct vm_area_struct *vma,
1594 unsigned long addr, unsigned long end,
1595 struct zap_details *details)
1600 BUG_ON(addr >= end);
1601 tlb_start_vma(tlb, vma);
1602 pgd = pgd_offset(vma->vm_mm, addr);
1604 next = pgd_addr_end(addr, end);
1605 if (pgd_none_or_clear_bad(pgd))
1607 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1608 } while (pgd++, addr = next, addr != end);
1609 tlb_end_vma(tlb, vma);
1613 static void unmap_single_vma(struct mmu_gather *tlb,
1614 struct vm_area_struct *vma, unsigned long start_addr,
1615 unsigned long end_addr,
1616 struct zap_details *details, bool mm_wr_locked)
1618 unsigned long start = max(vma->vm_start, start_addr);
1621 if (start >= vma->vm_end)
1623 end = min(vma->vm_end, end_addr);
1624 if (end <= vma->vm_start)
1628 uprobe_munmap(vma, start, end);
1630 if (unlikely(vma->vm_flags & VM_PFNMAP))
1631 untrack_pfn(vma, 0, 0, mm_wr_locked);
1634 if (unlikely(is_vm_hugetlb_page(vma))) {
1636 * It is undesirable to test vma->vm_file as it
1637 * should be non-null for valid hugetlb area.
1638 * However, vm_file will be NULL in the error
1639 * cleanup path of mmap_region. When
1640 * hugetlbfs ->mmap method fails,
1641 * mmap_region() nullifies vma->vm_file
1642 * before calling this function to clean up.
1643 * Since no pte has actually been setup, it is
1644 * safe to do nothing in this case.
1647 zap_flags_t zap_flags = details ?
1648 details->zap_flags : 0;
1649 __unmap_hugepage_range_final(tlb, vma, start, end,
1653 unmap_page_range(tlb, vma, start, end, details);
1658 * unmap_vmas - unmap a range of memory covered by a list of vma's
1659 * @tlb: address of the caller's struct mmu_gather
1660 * @mt: the maple tree
1661 * @vma: the starting vma
1662 * @start_addr: virtual address at which to start unmapping
1663 * @end_addr: virtual address at which to end unmapping
1665 * Unmap all pages in the vma list.
1667 * Only addresses between `start' and `end' will be unmapped.
1669 * The VMA list must be sorted in ascending virtual address order.
1671 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1672 * range after unmap_vmas() returns. So the only responsibility here is to
1673 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1674 * drops the lock and schedules.
1676 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1677 struct vm_area_struct *vma, unsigned long start_addr,
1678 unsigned long end_addr, bool mm_wr_locked)
1680 struct mmu_notifier_range range;
1681 struct zap_details details = {
1682 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1683 /* Careful - we need to zap private pages too! */
1686 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1688 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1689 start_addr, end_addr);
1690 mmu_notifier_invalidate_range_start(&range);
1692 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1694 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1695 mmu_notifier_invalidate_range_end(&range);
1699 * zap_page_range_single - remove user pages in a given range
1700 * @vma: vm_area_struct holding the applicable pages
1701 * @address: starting address of pages to zap
1702 * @size: number of bytes to zap
1703 * @details: details of shared cache invalidation
1705 * The range must fit into one VMA.
1707 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1708 unsigned long size, struct zap_details *details)
1710 const unsigned long end = address + size;
1711 struct mmu_notifier_range range;
1712 struct mmu_gather tlb;
1715 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1717 if (is_vm_hugetlb_page(vma))
1718 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1720 tlb_gather_mmu(&tlb, vma->vm_mm);
1721 update_hiwater_rss(vma->vm_mm);
1722 mmu_notifier_invalidate_range_start(&range);
1724 * unmap 'address-end' not 'range.start-range.end' as range
1725 * could have been expanded for hugetlb pmd sharing.
1727 unmap_single_vma(&tlb, vma, address, end, details, false);
1728 mmu_notifier_invalidate_range_end(&range);
1729 tlb_finish_mmu(&tlb);
1733 * zap_vma_ptes - remove ptes mapping the vma
1734 * @vma: vm_area_struct holding ptes to be zapped
1735 * @address: starting address of pages to zap
1736 * @size: number of bytes to zap
1738 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1740 * The entire address range must be fully contained within the vma.
1743 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1746 if (!range_in_vma(vma, address, address + size) ||
1747 !(vma->vm_flags & VM_PFNMAP))
1750 zap_page_range_single(vma, address, size, NULL);
1752 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1754 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1761 pgd = pgd_offset(mm, addr);
1762 p4d = p4d_alloc(mm, pgd, addr);
1765 pud = pud_alloc(mm, p4d, addr);
1768 pmd = pmd_alloc(mm, pud, addr);
1772 VM_BUG_ON(pmd_trans_huge(*pmd));
1776 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1779 pmd_t *pmd = walk_to_pmd(mm, addr);
1783 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1786 static int validate_page_before_insert(struct page *page)
1788 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1790 flush_dcache_page(page);
1794 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1795 unsigned long addr, struct page *page, pgprot_t prot)
1797 if (!pte_none(*pte))
1799 /* Ok, finally just insert the thing.. */
1801 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1802 page_add_file_rmap(page, vma, false);
1803 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1808 * This is the old fallback for page remapping.
1810 * For historical reasons, it only allows reserved pages. Only
1811 * old drivers should use this, and they needed to mark their
1812 * pages reserved for the old functions anyway.
1814 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1815 struct page *page, pgprot_t prot)
1821 retval = validate_page_before_insert(page);
1825 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1828 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1829 pte_unmap_unlock(pte, ptl);
1835 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1836 unsigned long addr, struct page *page, pgprot_t prot)
1840 if (!page_count(page))
1842 err = validate_page_before_insert(page);
1845 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1848 /* insert_pages() amortizes the cost of spinlock operations
1849 * when inserting pages in a loop. Arch *must* define pte_index.
1851 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1852 struct page **pages, unsigned long *num, pgprot_t prot)
1855 pte_t *start_pte, *pte;
1856 spinlock_t *pte_lock;
1857 struct mm_struct *const mm = vma->vm_mm;
1858 unsigned long curr_page_idx = 0;
1859 unsigned long remaining_pages_total = *num;
1860 unsigned long pages_to_write_in_pmd;
1864 pmd = walk_to_pmd(mm, addr);
1868 pages_to_write_in_pmd = min_t(unsigned long,
1869 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1871 /* Allocate the PTE if necessary; takes PMD lock once only. */
1873 if (pte_alloc(mm, pmd))
1876 while (pages_to_write_in_pmd) {
1878 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1880 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1881 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1882 int err = insert_page_in_batch_locked(vma, pte,
1883 addr, pages[curr_page_idx], prot);
1884 if (unlikely(err)) {
1885 pte_unmap_unlock(start_pte, pte_lock);
1887 remaining_pages_total -= pte_idx;
1893 pte_unmap_unlock(start_pte, pte_lock);
1894 pages_to_write_in_pmd -= batch_size;
1895 remaining_pages_total -= batch_size;
1897 if (remaining_pages_total)
1901 *num = remaining_pages_total;
1904 #endif /* ifdef pte_index */
1907 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1908 * @vma: user vma to map to
1909 * @addr: target start user address of these pages
1910 * @pages: source kernel pages
1911 * @num: in: number of pages to map. out: number of pages that were *not*
1912 * mapped. (0 means all pages were successfully mapped).
1914 * Preferred over vm_insert_page() when inserting multiple pages.
1916 * In case of error, we may have mapped a subset of the provided
1917 * pages. It is the caller's responsibility to account for this case.
1919 * The same restrictions apply as in vm_insert_page().
1921 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1922 struct page **pages, unsigned long *num)
1925 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1927 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1929 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1930 BUG_ON(mmap_read_trylock(vma->vm_mm));
1931 BUG_ON(vma->vm_flags & VM_PFNMAP);
1932 vm_flags_set(vma, VM_MIXEDMAP);
1934 /* Defer page refcount checking till we're about to map that page. */
1935 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1937 unsigned long idx = 0, pgcount = *num;
1940 for (; idx < pgcount; ++idx) {
1941 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1945 *num = pgcount - idx;
1947 #endif /* ifdef pte_index */
1949 EXPORT_SYMBOL(vm_insert_pages);
1952 * vm_insert_page - insert single page into user vma
1953 * @vma: user vma to map to
1954 * @addr: target user address of this page
1955 * @page: source kernel page
1957 * This allows drivers to insert individual pages they've allocated
1960 * The page has to be a nice clean _individual_ kernel allocation.
1961 * If you allocate a compound page, you need to have marked it as
1962 * such (__GFP_COMP), or manually just split the page up yourself
1963 * (see split_page()).
1965 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1966 * took an arbitrary page protection parameter. This doesn't allow
1967 * that. Your vma protection will have to be set up correctly, which
1968 * means that if you want a shared writable mapping, you'd better
1969 * ask for a shared writable mapping!
1971 * The page does not need to be reserved.
1973 * Usually this function is called from f_op->mmap() handler
1974 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1975 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1976 * function from other places, for example from page-fault handler.
1978 * Return: %0 on success, negative error code otherwise.
1980 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1983 if (addr < vma->vm_start || addr >= vma->vm_end)
1985 if (!page_count(page))
1987 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1988 BUG_ON(mmap_read_trylock(vma->vm_mm));
1989 BUG_ON(vma->vm_flags & VM_PFNMAP);
1990 vm_flags_set(vma, VM_MIXEDMAP);
1992 return insert_page(vma, addr, page, vma->vm_page_prot);
1994 EXPORT_SYMBOL(vm_insert_page);
1997 * __vm_map_pages - maps range of kernel pages into user vma
1998 * @vma: user vma to map to
1999 * @pages: pointer to array of source kernel pages
2000 * @num: number of pages in page array
2001 * @offset: user's requested vm_pgoff
2003 * This allows drivers to map range of kernel pages into a user vma.
2005 * Return: 0 on success and error code otherwise.
2007 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2008 unsigned long num, unsigned long offset)
2010 unsigned long count = vma_pages(vma);
2011 unsigned long uaddr = vma->vm_start;
2014 /* Fail if the user requested offset is beyond the end of the object */
2018 /* Fail if the user requested size exceeds available object size */
2019 if (count > num - offset)
2022 for (i = 0; i < count; i++) {
2023 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2033 * vm_map_pages - maps range of kernel pages starts with non zero offset
2034 * @vma: user vma to map to
2035 * @pages: pointer to array of source kernel pages
2036 * @num: number of pages in page array
2038 * Maps an object consisting of @num pages, catering for the user's
2039 * requested vm_pgoff
2041 * If we fail to insert any page into the vma, the function will return
2042 * immediately leaving any previously inserted pages present. Callers
2043 * from the mmap handler may immediately return the error as their caller
2044 * will destroy the vma, removing any successfully inserted pages. Other
2045 * callers should make their own arrangements for calling unmap_region().
2047 * Context: Process context. Called by mmap handlers.
2048 * Return: 0 on success and error code otherwise.
2050 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2053 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2055 EXPORT_SYMBOL(vm_map_pages);
2058 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2059 * @vma: user vma to map to
2060 * @pages: pointer to array of source kernel pages
2061 * @num: number of pages in page array
2063 * Similar to vm_map_pages(), except that it explicitly sets the offset
2064 * to 0. This function is intended for the drivers that did not consider
2067 * Context: Process context. Called by mmap handlers.
2068 * Return: 0 on success and error code otherwise.
2070 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2073 return __vm_map_pages(vma, pages, num, 0);
2075 EXPORT_SYMBOL(vm_map_pages_zero);
2077 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2078 pfn_t pfn, pgprot_t prot, bool mkwrite)
2080 struct mm_struct *mm = vma->vm_mm;
2084 pte = get_locked_pte(mm, addr, &ptl);
2086 return VM_FAULT_OOM;
2087 if (!pte_none(*pte)) {
2090 * For read faults on private mappings the PFN passed
2091 * in may not match the PFN we have mapped if the
2092 * mapped PFN is a writeable COW page. In the mkwrite
2093 * case we are creating a writable PTE for a shared
2094 * mapping and we expect the PFNs to match. If they
2095 * don't match, we are likely racing with block
2096 * allocation and mapping invalidation so just skip the
2099 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2100 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2103 entry = pte_mkyoung(*pte);
2104 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2105 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2106 update_mmu_cache(vma, addr, pte);
2111 /* Ok, finally just insert the thing.. */
2112 if (pfn_t_devmap(pfn))
2113 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2115 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2118 entry = pte_mkyoung(entry);
2119 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2122 set_pte_at(mm, addr, pte, entry);
2123 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2126 pte_unmap_unlock(pte, ptl);
2127 return VM_FAULT_NOPAGE;
2131 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2132 * @vma: user vma to map to
2133 * @addr: target user address of this page
2134 * @pfn: source kernel pfn
2135 * @pgprot: pgprot flags for the inserted page
2137 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2138 * to override pgprot on a per-page basis.
2140 * This only makes sense for IO mappings, and it makes no sense for
2141 * COW mappings. In general, using multiple vmas is preferable;
2142 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2145 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2146 * a value of @pgprot different from that of @vma->vm_page_prot.
2148 * Context: Process context. May allocate using %GFP_KERNEL.
2149 * Return: vm_fault_t value.
2151 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2152 unsigned long pfn, pgprot_t pgprot)
2155 * Technically, architectures with pte_special can avoid all these
2156 * restrictions (same for remap_pfn_range). However we would like
2157 * consistency in testing and feature parity among all, so we should
2158 * try to keep these invariants in place for everybody.
2160 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2161 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2162 (VM_PFNMAP|VM_MIXEDMAP));
2163 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2164 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2166 if (addr < vma->vm_start || addr >= vma->vm_end)
2167 return VM_FAULT_SIGBUS;
2169 if (!pfn_modify_allowed(pfn, pgprot))
2170 return VM_FAULT_SIGBUS;
2172 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2174 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2177 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2180 * vmf_insert_pfn - insert single pfn into user vma
2181 * @vma: user vma to map to
2182 * @addr: target user address of this page
2183 * @pfn: source kernel pfn
2185 * Similar to vm_insert_page, this allows drivers to insert individual pages
2186 * they've allocated into a user vma. Same comments apply.
2188 * This function should only be called from a vm_ops->fault handler, and
2189 * in that case the handler should return the result of this function.
2191 * vma cannot be a COW mapping.
2193 * As this is called only for pages that do not currently exist, we
2194 * do not need to flush old virtual caches or the TLB.
2196 * Context: Process context. May allocate using %GFP_KERNEL.
2197 * Return: vm_fault_t value.
2199 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2202 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2204 EXPORT_SYMBOL(vmf_insert_pfn);
2206 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2208 /* these checks mirror the abort conditions in vm_normal_page */
2209 if (vma->vm_flags & VM_MIXEDMAP)
2211 if (pfn_t_devmap(pfn))
2213 if (pfn_t_special(pfn))
2215 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2220 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2221 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2226 BUG_ON(!vm_mixed_ok(vma, pfn));
2228 if (addr < vma->vm_start || addr >= vma->vm_end)
2229 return VM_FAULT_SIGBUS;
2231 track_pfn_insert(vma, &pgprot, pfn);
2233 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2234 return VM_FAULT_SIGBUS;
2237 * If we don't have pte special, then we have to use the pfn_valid()
2238 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 * refcount the page if pfn_valid is true (hence insert_page rather
2240 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2241 * without pte special, it would there be refcounted as a normal page.
2243 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2244 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2248 * At this point we are committed to insert_page()
2249 * regardless of whether the caller specified flags that
2250 * result in pfn_t_has_page() == false.
2252 page = pfn_to_page(pfn_t_to_pfn(pfn));
2253 err = insert_page(vma, addr, page, pgprot);
2255 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2259 return VM_FAULT_OOM;
2260 if (err < 0 && err != -EBUSY)
2261 return VM_FAULT_SIGBUS;
2263 return VM_FAULT_NOPAGE;
2267 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2268 * @vma: user vma to map to
2269 * @addr: target user address of this page
2270 * @pfn: source kernel pfn
2271 * @pgprot: pgprot flags for the inserted page
2273 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2274 * to override pgprot on a per-page basis.
2276 * Typically this function should be used by drivers to set caching- and
2277 * encryption bits different than those of @vma->vm_page_prot, because
2278 * the caching- or encryption mode may not be known at mmap() time.
2279 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2280 * to set caching and encryption bits for those vmas (except for COW pages).
2281 * This is ensured by core vm only modifying these page table entries using
2282 * functions that don't touch caching- or encryption bits, using pte_modify()
2283 * if needed. (See for example mprotect()).
2284 * Also when new page-table entries are created, this is only done using the
2285 * fault() callback, and never using the value of vma->vm_page_prot,
2286 * except for page-table entries that point to anonymous pages as the result
2289 * Context: Process context. May allocate using %GFP_KERNEL.
2290 * Return: vm_fault_t value.
2292 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2293 pfn_t pfn, pgprot_t pgprot)
2295 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2297 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2299 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2302 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2304 EXPORT_SYMBOL(vmf_insert_mixed);
2307 * If the insertion of PTE failed because someone else already added a
2308 * different entry in the mean time, we treat that as success as we assume
2309 * the same entry was actually inserted.
2311 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2312 unsigned long addr, pfn_t pfn)
2314 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2316 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2319 * maps a range of physical memory into the requested pages. the old
2320 * mappings are removed. any references to nonexistent pages results
2321 * in null mappings (currently treated as "copy-on-access")
2323 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2324 unsigned long addr, unsigned long end,
2325 unsigned long pfn, pgprot_t prot)
2327 pte_t *pte, *mapped_pte;
2331 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2334 arch_enter_lazy_mmu_mode();
2336 BUG_ON(!pte_none(*pte));
2337 if (!pfn_modify_allowed(pfn, prot)) {
2341 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2343 } while (pte++, addr += PAGE_SIZE, addr != end);
2344 arch_leave_lazy_mmu_mode();
2345 pte_unmap_unlock(mapped_pte, ptl);
2349 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2350 unsigned long addr, unsigned long end,
2351 unsigned long pfn, pgprot_t prot)
2357 pfn -= addr >> PAGE_SHIFT;
2358 pmd = pmd_alloc(mm, pud, addr);
2361 VM_BUG_ON(pmd_trans_huge(*pmd));
2363 next = pmd_addr_end(addr, end);
2364 err = remap_pte_range(mm, pmd, addr, next,
2365 pfn + (addr >> PAGE_SHIFT), prot);
2368 } while (pmd++, addr = next, addr != end);
2372 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2373 unsigned long addr, unsigned long end,
2374 unsigned long pfn, pgprot_t prot)
2380 pfn -= addr >> PAGE_SHIFT;
2381 pud = pud_alloc(mm, p4d, addr);
2385 next = pud_addr_end(addr, end);
2386 err = remap_pmd_range(mm, pud, addr, next,
2387 pfn + (addr >> PAGE_SHIFT), prot);
2390 } while (pud++, addr = next, addr != end);
2394 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2395 unsigned long addr, unsigned long end,
2396 unsigned long pfn, pgprot_t prot)
2402 pfn -= addr >> PAGE_SHIFT;
2403 p4d = p4d_alloc(mm, pgd, addr);
2407 next = p4d_addr_end(addr, end);
2408 err = remap_pud_range(mm, p4d, addr, next,
2409 pfn + (addr >> PAGE_SHIFT), prot);
2412 } while (p4d++, addr = next, addr != end);
2417 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2418 * must have pre-validated the caching bits of the pgprot_t.
2420 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2421 unsigned long pfn, unsigned long size, pgprot_t prot)
2425 unsigned long end = addr + PAGE_ALIGN(size);
2426 struct mm_struct *mm = vma->vm_mm;
2429 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2433 * Physically remapped pages are special. Tell the
2434 * rest of the world about it:
2435 * VM_IO tells people not to look at these pages
2436 * (accesses can have side effects).
2437 * VM_PFNMAP tells the core MM that the base pages are just
2438 * raw PFN mappings, and do not have a "struct page" associated
2441 * Disable vma merging and expanding with mremap().
2443 * Omit vma from core dump, even when VM_IO turned off.
2445 * There's a horrible special case to handle copy-on-write
2446 * behaviour that some programs depend on. We mark the "original"
2447 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2448 * See vm_normal_page() for details.
2450 if (is_cow_mapping(vma->vm_flags)) {
2451 if (addr != vma->vm_start || end != vma->vm_end)
2453 vma->vm_pgoff = pfn;
2456 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2458 BUG_ON(addr >= end);
2459 pfn -= addr >> PAGE_SHIFT;
2460 pgd = pgd_offset(mm, addr);
2461 flush_cache_range(vma, addr, end);
2463 next = pgd_addr_end(addr, end);
2464 err = remap_p4d_range(mm, pgd, addr, next,
2465 pfn + (addr >> PAGE_SHIFT), prot);
2468 } while (pgd++, addr = next, addr != end);
2474 * remap_pfn_range - remap kernel memory to userspace
2475 * @vma: user vma to map to
2476 * @addr: target page aligned user address to start at
2477 * @pfn: page frame number of kernel physical memory address
2478 * @size: size of mapping area
2479 * @prot: page protection flags for this mapping
2481 * Note: this is only safe if the mm semaphore is held when called.
2483 * Return: %0 on success, negative error code otherwise.
2485 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2486 unsigned long pfn, unsigned long size, pgprot_t prot)
2490 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2494 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2496 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2499 EXPORT_SYMBOL(remap_pfn_range);
2502 * vm_iomap_memory - remap memory to userspace
2503 * @vma: user vma to map to
2504 * @start: start of the physical memory to be mapped
2505 * @len: size of area
2507 * This is a simplified io_remap_pfn_range() for common driver use. The
2508 * driver just needs to give us the physical memory range to be mapped,
2509 * we'll figure out the rest from the vma information.
2511 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2512 * whatever write-combining details or similar.
2514 * Return: %0 on success, negative error code otherwise.
2516 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2518 unsigned long vm_len, pfn, pages;
2520 /* Check that the physical memory area passed in looks valid */
2521 if (start + len < start)
2524 * You *really* shouldn't map things that aren't page-aligned,
2525 * but we've historically allowed it because IO memory might
2526 * just have smaller alignment.
2528 len += start & ~PAGE_MASK;
2529 pfn = start >> PAGE_SHIFT;
2530 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2531 if (pfn + pages < pfn)
2534 /* We start the mapping 'vm_pgoff' pages into the area */
2535 if (vma->vm_pgoff > pages)
2537 pfn += vma->vm_pgoff;
2538 pages -= vma->vm_pgoff;
2540 /* Can we fit all of the mapping? */
2541 vm_len = vma->vm_end - vma->vm_start;
2542 if (vm_len >> PAGE_SHIFT > pages)
2545 /* Ok, let it rip */
2546 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2548 EXPORT_SYMBOL(vm_iomap_memory);
2550 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2551 unsigned long addr, unsigned long end,
2552 pte_fn_t fn, void *data, bool create,
2553 pgtbl_mod_mask *mask)
2555 pte_t *pte, *mapped_pte;
2560 mapped_pte = pte = (mm == &init_mm) ?
2561 pte_alloc_kernel_track(pmd, addr, mask) :
2562 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2566 mapped_pte = pte = (mm == &init_mm) ?
2567 pte_offset_kernel(pmd, addr) :
2568 pte_offset_map_lock(mm, pmd, addr, &ptl);
2571 BUG_ON(pmd_huge(*pmd));
2573 arch_enter_lazy_mmu_mode();
2577 if (create || !pte_none(*pte)) {
2578 err = fn(pte++, addr, data);
2582 } while (addr += PAGE_SIZE, addr != end);
2584 *mask |= PGTBL_PTE_MODIFIED;
2586 arch_leave_lazy_mmu_mode();
2589 pte_unmap_unlock(mapped_pte, ptl);
2593 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2594 unsigned long addr, unsigned long end,
2595 pte_fn_t fn, void *data, bool create,
2596 pgtbl_mod_mask *mask)
2602 BUG_ON(pud_huge(*pud));
2605 pmd = pmd_alloc_track(mm, pud, addr, mask);
2609 pmd = pmd_offset(pud, addr);
2612 next = pmd_addr_end(addr, end);
2613 if (pmd_none(*pmd) && !create)
2615 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2617 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2622 err = apply_to_pte_range(mm, pmd, addr, next,
2623 fn, data, create, mask);
2626 } while (pmd++, addr = next, addr != end);
2631 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2632 unsigned long addr, unsigned long end,
2633 pte_fn_t fn, void *data, bool create,
2634 pgtbl_mod_mask *mask)
2641 pud = pud_alloc_track(mm, p4d, addr, mask);
2645 pud = pud_offset(p4d, addr);
2648 next = pud_addr_end(addr, end);
2649 if (pud_none(*pud) && !create)
2651 if (WARN_ON_ONCE(pud_leaf(*pud)))
2653 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2658 err = apply_to_pmd_range(mm, pud, addr, next,
2659 fn, data, create, mask);
2662 } while (pud++, addr = next, addr != end);
2667 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2668 unsigned long addr, unsigned long end,
2669 pte_fn_t fn, void *data, bool create,
2670 pgtbl_mod_mask *mask)
2677 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2681 p4d = p4d_offset(pgd, addr);
2684 next = p4d_addr_end(addr, end);
2685 if (p4d_none(*p4d) && !create)
2687 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2689 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2694 err = apply_to_pud_range(mm, p4d, addr, next,
2695 fn, data, create, mask);
2698 } while (p4d++, addr = next, addr != end);
2703 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2704 unsigned long size, pte_fn_t fn,
2705 void *data, bool create)
2708 unsigned long start = addr, next;
2709 unsigned long end = addr + size;
2710 pgtbl_mod_mask mask = 0;
2713 if (WARN_ON(addr >= end))
2716 pgd = pgd_offset(mm, addr);
2718 next = pgd_addr_end(addr, end);
2719 if (pgd_none(*pgd) && !create)
2721 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2723 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2728 err = apply_to_p4d_range(mm, pgd, addr, next,
2729 fn, data, create, &mask);
2732 } while (pgd++, addr = next, addr != end);
2734 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2735 arch_sync_kernel_mappings(start, start + size);
2741 * Scan a region of virtual memory, filling in page tables as necessary
2742 * and calling a provided function on each leaf page table.
2744 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2745 unsigned long size, pte_fn_t fn, void *data)
2747 return __apply_to_page_range(mm, addr, size, fn, data, true);
2749 EXPORT_SYMBOL_GPL(apply_to_page_range);
2752 * Scan a region of virtual memory, calling a provided function on
2753 * each leaf page table where it exists.
2755 * Unlike apply_to_page_range, this does _not_ fill in page tables
2756 * where they are absent.
2758 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2759 unsigned long size, pte_fn_t fn, void *data)
2761 return __apply_to_page_range(mm, addr, size, fn, data, false);
2763 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2766 * handle_pte_fault chooses page fault handler according to an entry which was
2767 * read non-atomically. Before making any commitment, on those architectures
2768 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2769 * parts, do_swap_page must check under lock before unmapping the pte and
2770 * proceeding (but do_wp_page is only called after already making such a check;
2771 * and do_anonymous_page can safely check later on).
2773 static inline int pte_unmap_same(struct vm_fault *vmf)
2776 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2777 if (sizeof(pte_t) > sizeof(unsigned long)) {
2778 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2780 same = pte_same(*vmf->pte, vmf->orig_pte);
2784 pte_unmap(vmf->pte);
2791 * 0: copied succeeded
2792 * -EHWPOISON: copy failed due to hwpoison in source page
2793 * -EAGAIN: copied failed (some other reason)
2795 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2796 struct vm_fault *vmf)
2801 bool locked = false;
2802 struct vm_area_struct *vma = vmf->vma;
2803 struct mm_struct *mm = vma->vm_mm;
2804 unsigned long addr = vmf->address;
2807 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2808 memory_failure_queue(page_to_pfn(src), 0);
2815 * If the source page was a PFN mapping, we don't have
2816 * a "struct page" for it. We do a best-effort copy by
2817 * just copying from the original user address. If that
2818 * fails, we just zero-fill it. Live with it.
2820 kaddr = kmap_atomic(dst);
2821 uaddr = (void __user *)(addr & PAGE_MASK);
2824 * On architectures with software "accessed" bits, we would
2825 * take a double page fault, so mark it accessed here.
2827 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2830 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2832 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2834 * Other thread has already handled the fault
2835 * and update local tlb only
2837 update_mmu_tlb(vma, addr, vmf->pte);
2842 entry = pte_mkyoung(vmf->orig_pte);
2843 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2844 update_mmu_cache(vma, addr, vmf->pte);
2848 * This really shouldn't fail, because the page is there
2849 * in the page tables. But it might just be unreadable,
2850 * in which case we just give up and fill the result with
2853 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2857 /* Re-validate under PTL if the page is still mapped */
2858 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2860 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2861 /* The PTE changed under us, update local tlb */
2862 update_mmu_tlb(vma, addr, vmf->pte);
2868 * The same page can be mapped back since last copy attempt.
2869 * Try to copy again under PTL.
2871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873 * Give a warn in case there can be some obscure
2886 pte_unmap_unlock(vmf->pte, vmf->ptl);
2887 kunmap_atomic(kaddr);
2888 flush_dcache_page(dst);
2893 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2895 struct file *vm_file = vma->vm_file;
2898 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2901 * Special mappings (e.g. VDSO) do not have any file so fake
2902 * a default GFP_KERNEL for them.
2908 * Notify the address space that the page is about to become writable so that
2909 * it can prohibit this or wait for the page to get into an appropriate state.
2911 * We do this without the lock held, so that it can sleep if it needs to.
2913 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2916 struct page *page = vmf->page;
2917 unsigned int old_flags = vmf->flags;
2919 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2921 if (vmf->vma->vm_file &&
2922 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2923 return VM_FAULT_SIGBUS;
2925 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2926 /* Restore original flags so that caller is not surprised */
2927 vmf->flags = old_flags;
2928 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2930 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2932 if (!page->mapping) {
2934 return 0; /* retry */
2936 ret |= VM_FAULT_LOCKED;
2938 VM_BUG_ON_PAGE(!PageLocked(page), page);
2943 * Handle dirtying of a page in shared file mapping on a write fault.
2945 * The function expects the page to be locked and unlocks it.
2947 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2949 struct vm_area_struct *vma = vmf->vma;
2950 struct address_space *mapping;
2951 struct page *page = vmf->page;
2953 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2955 dirtied = set_page_dirty(page);
2956 VM_BUG_ON_PAGE(PageAnon(page), page);
2958 * Take a local copy of the address_space - page.mapping may be zeroed
2959 * by truncate after unlock_page(). The address_space itself remains
2960 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2961 * release semantics to prevent the compiler from undoing this copying.
2963 mapping = page_rmapping(page);
2967 file_update_time(vma->vm_file);
2970 * Throttle page dirtying rate down to writeback speed.
2972 * mapping may be NULL here because some device drivers do not
2973 * set page.mapping but still dirty their pages
2975 * Drop the mmap_lock before waiting on IO, if we can. The file
2976 * is pinning the mapping, as per above.
2978 if ((dirtied || page_mkwrite) && mapping) {
2981 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2982 balance_dirty_pages_ratelimited(mapping);
2985 return VM_FAULT_COMPLETED;
2993 * Handle write page faults for pages that can be reused in the current vma
2995 * This can happen either due to the mapping being with the VM_SHARED flag,
2996 * or due to us being the last reference standing to the page. In either
2997 * case, all we need to do here is to mark the page as writable and update
2998 * any related book-keeping.
3000 static inline void wp_page_reuse(struct vm_fault *vmf)
3001 __releases(vmf->ptl)
3003 struct vm_area_struct *vma = vmf->vma;
3004 struct page *page = vmf->page;
3007 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3008 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3011 * Clear the pages cpupid information as the existing
3012 * information potentially belongs to a now completely
3013 * unrelated process.
3016 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3018 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3019 entry = pte_mkyoung(vmf->orig_pte);
3020 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3021 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3022 update_mmu_cache(vma, vmf->address, vmf->pte);
3023 pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 count_vm_event(PGREUSE);
3028 * Handle the case of a page which we actually need to copy to a new page,
3029 * either due to COW or unsharing.
3031 * Called with mmap_lock locked and the old page referenced, but
3032 * without the ptl held.
3034 * High level logic flow:
3036 * - Allocate a page, copy the content of the old page to the new one.
3037 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3038 * - Take the PTL. If the pte changed, bail out and release the allocated page
3039 * - If the pte is still the way we remember it, update the page table and all
3040 * relevant references. This includes dropping the reference the page-table
3041 * held to the old page, as well as updating the rmap.
3042 * - In any case, unlock the PTL and drop the reference we took to the old page.
3044 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3046 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3047 struct vm_area_struct *vma = vmf->vma;
3048 struct mm_struct *mm = vma->vm_mm;
3049 struct folio *old_folio = NULL;
3050 struct folio *new_folio = NULL;
3052 int page_copied = 0;
3053 struct mmu_notifier_range range;
3056 delayacct_wpcopy_start();
3059 old_folio = page_folio(vmf->page);
3060 if (unlikely(anon_vma_prepare(vma)))
3063 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3064 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3068 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3069 vmf->address, false);
3073 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3076 * COW failed, if the fault was solved by other,
3077 * it's fine. If not, userspace would re-fault on
3078 * the same address and we will handle the fault
3079 * from the second attempt.
3080 * The -EHWPOISON case will not be retried.
3082 folio_put(new_folio);
3084 folio_put(old_folio);
3086 delayacct_wpcopy_end();
3087 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3089 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3092 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3094 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
3096 __folio_mark_uptodate(new_folio);
3098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3099 vmf->address & PAGE_MASK,
3100 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3101 mmu_notifier_invalidate_range_start(&range);
3104 * Re-check the pte - we dropped the lock
3106 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3107 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3109 if (!folio_test_anon(old_folio)) {
3110 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3111 inc_mm_counter(mm, MM_ANONPAGES);
3114 inc_mm_counter(mm, MM_ANONPAGES);
3116 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3117 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3118 entry = pte_sw_mkyoung(entry);
3119 if (unlikely(unshare)) {
3120 if (pte_soft_dirty(vmf->orig_pte))
3121 entry = pte_mksoft_dirty(entry);
3122 if (pte_uffd_wp(vmf->orig_pte))
3123 entry = pte_mkuffd_wp(entry);
3125 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3129 * Clear the pte entry and flush it first, before updating the
3130 * pte with the new entry, to keep TLBs on different CPUs in
3131 * sync. This code used to set the new PTE then flush TLBs, but
3132 * that left a window where the new PTE could be loaded into
3133 * some TLBs while the old PTE remains in others.
3135 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3136 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3137 folio_add_lru_vma(new_folio, vma);
3139 * We call the notify macro here because, when using secondary
3140 * mmu page tables (such as kvm shadow page tables), we want the
3141 * new page to be mapped directly into the secondary page table.
3143 BUG_ON(unshare && pte_write(entry));
3144 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3145 update_mmu_cache(vma, vmf->address, vmf->pte);
3148 * Only after switching the pte to the new page may
3149 * we remove the mapcount here. Otherwise another
3150 * process may come and find the rmap count decremented
3151 * before the pte is switched to the new page, and
3152 * "reuse" the old page writing into it while our pte
3153 * here still points into it and can be read by other
3156 * The critical issue is to order this
3157 * page_remove_rmap with the ptp_clear_flush above.
3158 * Those stores are ordered by (if nothing else,)
3159 * the barrier present in the atomic_add_negative
3160 * in page_remove_rmap.
3162 * Then the TLB flush in ptep_clear_flush ensures that
3163 * no process can access the old page before the
3164 * decremented mapcount is visible. And the old page
3165 * cannot be reused until after the decremented
3166 * mapcount is visible. So transitively, TLBs to
3167 * old page will be flushed before it can be reused.
3169 page_remove_rmap(vmf->page, vma, false);
3172 /* Free the old page.. */
3173 new_folio = old_folio;
3176 update_mmu_tlb(vma, vmf->address, vmf->pte);
3180 folio_put(new_folio);
3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
3184 * No need to double call mmu_notifier->invalidate_range() callback as
3185 * the above ptep_clear_flush_notify() did already call it.
3187 mmu_notifier_invalidate_range_only_end(&range);
3190 free_swap_cache(&old_folio->page);
3191 folio_put(old_folio);
3194 delayacct_wpcopy_end();
3197 folio_put(new_folio);
3200 folio_put(old_folio);
3202 delayacct_wpcopy_end();
3203 return VM_FAULT_OOM;
3207 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3208 * writeable once the page is prepared
3210 * @vmf: structure describing the fault
3212 * This function handles all that is needed to finish a write page fault in a
3213 * shared mapping due to PTE being read-only once the mapped page is prepared.
3214 * It handles locking of PTE and modifying it.
3216 * The function expects the page to be locked or other protection against
3217 * concurrent faults / writeback (such as DAX radix tree locks).
3219 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3220 * we acquired PTE lock.
3222 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3224 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3225 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3228 * We might have raced with another page fault while we released the
3229 * pte_offset_map_lock.
3231 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3232 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3233 pte_unmap_unlock(vmf->pte, vmf->ptl);
3234 return VM_FAULT_NOPAGE;
3241 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3244 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3246 struct vm_area_struct *vma = vmf->vma;
3248 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3251 pte_unmap_unlock(vmf->pte, vmf->ptl);
3252 vmf->flags |= FAULT_FLAG_MKWRITE;
3253 ret = vma->vm_ops->pfn_mkwrite(vmf);
3254 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3256 return finish_mkwrite_fault(vmf);
3262 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3263 __releases(vmf->ptl)
3265 struct vm_area_struct *vma = vmf->vma;
3268 get_page(vmf->page);
3270 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3273 pte_unmap_unlock(vmf->pte, vmf->ptl);
3274 tmp = do_page_mkwrite(vmf);
3275 if (unlikely(!tmp || (tmp &
3276 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3277 put_page(vmf->page);
3280 tmp = finish_mkwrite_fault(vmf);
3281 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3282 unlock_page(vmf->page);
3283 put_page(vmf->page);
3288 lock_page(vmf->page);
3290 ret |= fault_dirty_shared_page(vmf);
3291 put_page(vmf->page);
3297 * This routine handles present pages, when
3298 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3299 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3300 * (FAULT_FLAG_UNSHARE)
3302 * It is done by copying the page to a new address and decrementing the
3303 * shared-page counter for the old page.
3305 * Note that this routine assumes that the protection checks have been
3306 * done by the caller (the low-level page fault routine in most cases).
3307 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3308 * done any necessary COW.
3310 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3311 * though the page will change only once the write actually happens. This
3312 * avoids a few races, and potentially makes it more efficient.
3314 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3315 * but allow concurrent faults), with pte both mapped and locked.
3316 * We return with mmap_lock still held, but pte unmapped and unlocked.
3318 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3319 __releases(vmf->ptl)
3321 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3322 struct vm_area_struct *vma = vmf->vma;
3323 struct folio *folio = NULL;
3325 if (likely(!unshare)) {
3326 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3327 pte_unmap_unlock(vmf->pte, vmf->ptl);
3328 return handle_userfault(vmf, VM_UFFD_WP);
3332 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3333 * is flushed in this case before copying.
3335 if (unlikely(userfaultfd_wp(vmf->vma) &&
3336 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3337 flush_tlb_page(vmf->vma, vmf->address);
3340 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3343 * Shared mapping: we are guaranteed to have VM_WRITE and
3344 * FAULT_FLAG_WRITE set at this point.
3346 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3348 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3351 * We should not cow pages in a shared writeable mapping.
3352 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3355 return wp_pfn_shared(vmf);
3356 return wp_page_shared(vmf);
3360 folio = page_folio(vmf->page);
3363 * Private mapping: create an exclusive anonymous page copy if reuse
3364 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3366 if (folio && folio_test_anon(folio)) {
3368 * If the page is exclusive to this process we must reuse the
3369 * page without further checks.
3371 if (PageAnonExclusive(vmf->page))
3375 * We have to verify under folio lock: these early checks are
3376 * just an optimization to avoid locking the folio and freeing
3377 * the swapcache if there is little hope that we can reuse.
3379 * KSM doesn't necessarily raise the folio refcount.
3381 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3383 if (!folio_test_lru(folio))
3385 * Note: We cannot easily detect+handle references from
3386 * remote LRU pagevecs or references to LRU folios.
3389 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3391 if (!folio_trylock(folio))
3393 if (folio_test_swapcache(folio))
3394 folio_free_swap(folio);
3395 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3396 folio_unlock(folio);
3400 * Ok, we've got the only folio reference from our mapping
3401 * and the folio is locked, it's dark out, and we're wearing
3402 * sunglasses. Hit it.
3404 page_move_anon_rmap(vmf->page, vma);
3405 folio_unlock(folio);
3407 if (unlikely(unshare)) {
3408 pte_unmap_unlock(vmf->pte, vmf->ptl);
3416 * Ok, we need to copy. Oh, well..
3421 pte_unmap_unlock(vmf->pte, vmf->ptl);
3423 if (folio && folio_test_ksm(folio))
3424 count_vm_event(COW_KSM);
3426 return wp_page_copy(vmf);
3429 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3430 unsigned long start_addr, unsigned long end_addr,
3431 struct zap_details *details)
3433 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3436 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3437 pgoff_t first_index,
3439 struct zap_details *details)
3441 struct vm_area_struct *vma;
3442 pgoff_t vba, vea, zba, zea;
3444 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3445 vba = vma->vm_pgoff;
3446 vea = vba + vma_pages(vma) - 1;
3447 zba = max(first_index, vba);
3448 zea = min(last_index, vea);
3450 unmap_mapping_range_vma(vma,
3451 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3452 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3458 * unmap_mapping_folio() - Unmap single folio from processes.
3459 * @folio: The locked folio to be unmapped.
3461 * Unmap this folio from any userspace process which still has it mmaped.
3462 * Typically, for efficiency, the range of nearby pages has already been
3463 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3464 * truncation or invalidation holds the lock on a folio, it may find that
3465 * the page has been remapped again: and then uses unmap_mapping_folio()
3466 * to unmap it finally.
3468 void unmap_mapping_folio(struct folio *folio)
3470 struct address_space *mapping = folio->mapping;
3471 struct zap_details details = { };
3472 pgoff_t first_index;
3475 VM_BUG_ON(!folio_test_locked(folio));
3477 first_index = folio->index;
3478 last_index = folio->index + folio_nr_pages(folio) - 1;
3480 details.even_cows = false;
3481 details.single_folio = folio;
3482 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3484 i_mmap_lock_read(mapping);
3485 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3486 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3487 last_index, &details);
3488 i_mmap_unlock_read(mapping);
3492 * unmap_mapping_pages() - Unmap pages from processes.
3493 * @mapping: The address space containing pages to be unmapped.
3494 * @start: Index of first page to be unmapped.
3495 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3496 * @even_cows: Whether to unmap even private COWed pages.
3498 * Unmap the pages in this address space from any userspace process which
3499 * has them mmaped. Generally, you want to remove COWed pages as well when
3500 * a file is being truncated, but not when invalidating pages from the page
3503 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3504 pgoff_t nr, bool even_cows)
3506 struct zap_details details = { };
3507 pgoff_t first_index = start;
3508 pgoff_t last_index = start + nr - 1;
3510 details.even_cows = even_cows;
3511 if (last_index < first_index)
3512 last_index = ULONG_MAX;
3514 i_mmap_lock_read(mapping);
3515 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3516 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3517 last_index, &details);
3518 i_mmap_unlock_read(mapping);
3520 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3523 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3524 * address_space corresponding to the specified byte range in the underlying
3527 * @mapping: the address space containing mmaps to be unmapped.
3528 * @holebegin: byte in first page to unmap, relative to the start of
3529 * the underlying file. This will be rounded down to a PAGE_SIZE
3530 * boundary. Note that this is different from truncate_pagecache(), which
3531 * must keep the partial page. In contrast, we must get rid of
3533 * @holelen: size of prospective hole in bytes. This will be rounded
3534 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3536 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3537 * but 0 when invalidating pagecache, don't throw away private data.
3539 void unmap_mapping_range(struct address_space *mapping,
3540 loff_t const holebegin, loff_t const holelen, int even_cows)
3542 pgoff_t hba = holebegin >> PAGE_SHIFT;
3543 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3545 /* Check for overflow. */
3546 if (sizeof(holelen) > sizeof(hlen)) {
3548 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3549 if (holeend & ~(long long)ULONG_MAX)
3550 hlen = ULONG_MAX - hba + 1;
3553 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3555 EXPORT_SYMBOL(unmap_mapping_range);
3558 * Restore a potential device exclusive pte to a working pte entry
3560 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3562 struct folio *folio = page_folio(vmf->page);
3563 struct vm_area_struct *vma = vmf->vma;
3564 struct mmu_notifier_range range;
3566 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3567 return VM_FAULT_RETRY;
3568 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3569 vma->vm_mm, vmf->address & PAGE_MASK,
3570 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3571 mmu_notifier_invalidate_range_start(&range);
3573 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3575 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3576 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3578 pte_unmap_unlock(vmf->pte, vmf->ptl);
3579 folio_unlock(folio);
3581 mmu_notifier_invalidate_range_end(&range);
3585 static inline bool should_try_to_free_swap(struct folio *folio,
3586 struct vm_area_struct *vma,
3587 unsigned int fault_flags)
3589 if (!folio_test_swapcache(folio))
3591 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3592 folio_test_mlocked(folio))
3595 * If we want to map a page that's in the swapcache writable, we
3596 * have to detect via the refcount if we're really the exclusive
3597 * user. Try freeing the swapcache to get rid of the swapcache
3598 * reference only in case it's likely that we'll be the exlusive user.
3600 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3601 folio_ref_count(folio) == 2;
3604 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3606 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3607 vmf->address, &vmf->ptl);
3609 * Be careful so that we will only recover a special uffd-wp pte into a
3610 * none pte. Otherwise it means the pte could have changed, so retry.
3612 * This should also cover the case where e.g. the pte changed
3613 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3614 * So is_pte_marker() check is not enough to safely drop the pte.
3616 if (pte_same(vmf->orig_pte, *vmf->pte))
3617 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3618 pte_unmap_unlock(vmf->pte, vmf->ptl);
3623 * This is actually a page-missing access, but with uffd-wp special pte
3624 * installed. It means this pte was wr-protected before being unmapped.
3626 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3629 * Just in case there're leftover special ptes even after the region
3630 * got unregistered - we can simply clear them.
3632 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3633 return pte_marker_clear(vmf);
3635 /* do_fault() can handle pte markers too like none pte */
3636 return do_fault(vmf);
3639 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3641 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3642 unsigned long marker = pte_marker_get(entry);
3645 * PTE markers should never be empty. If anything weird happened,
3646 * the best thing to do is to kill the process along with its mm.
3648 if (WARN_ON_ONCE(!marker))
3649 return VM_FAULT_SIGBUS;
3651 /* Higher priority than uffd-wp when data corrupted */
3652 if (marker & PTE_MARKER_SWAPIN_ERROR)
3653 return VM_FAULT_SIGBUS;
3655 if (pte_marker_entry_uffd_wp(entry))
3656 return pte_marker_handle_uffd_wp(vmf);
3658 /* This is an unknown pte marker */
3659 return VM_FAULT_SIGBUS;
3663 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3664 * but allow concurrent faults), and pte mapped but not yet locked.
3665 * We return with pte unmapped and unlocked.
3667 * We return with the mmap_lock locked or unlocked in the same cases
3668 * as does filemap_fault().
3670 vm_fault_t do_swap_page(struct vm_fault *vmf)
3672 struct vm_area_struct *vma = vmf->vma;
3673 struct folio *swapcache, *folio = NULL;
3675 struct swap_info_struct *si = NULL;
3676 rmap_t rmap_flags = RMAP_NONE;
3677 bool exclusive = false;
3682 void *shadow = NULL;
3684 if (!pte_unmap_same(vmf))
3687 entry = pte_to_swp_entry(vmf->orig_pte);
3688 if (unlikely(non_swap_entry(entry))) {
3689 if (is_migration_entry(entry)) {
3690 migration_entry_wait(vma->vm_mm, vmf->pmd,
3692 } else if (is_device_exclusive_entry(entry)) {
3693 vmf->page = pfn_swap_entry_to_page(entry);
3694 ret = remove_device_exclusive_entry(vmf);
3695 } else if (is_device_private_entry(entry)) {
3696 vmf->page = pfn_swap_entry_to_page(entry);
3697 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3698 vmf->address, &vmf->ptl);
3699 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3700 spin_unlock(vmf->ptl);
3705 * Get a page reference while we know the page can't be
3708 get_page(vmf->page);
3709 pte_unmap_unlock(vmf->pte, vmf->ptl);
3710 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3711 put_page(vmf->page);
3712 } else if (is_hwpoison_entry(entry)) {
3713 ret = VM_FAULT_HWPOISON;
3714 } else if (is_pte_marker_entry(entry)) {
3715 ret = handle_pte_marker(vmf);
3717 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3718 ret = VM_FAULT_SIGBUS;
3723 /* Prevent swapoff from happening to us. */
3724 si = get_swap_device(entry);
3728 folio = swap_cache_get_folio(entry, vma, vmf->address);
3730 page = folio_file_page(folio, swp_offset(entry));
3734 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3735 __swap_count(entry) == 1) {
3736 /* skip swapcache */
3737 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3738 vma, vmf->address, false);
3739 page = &folio->page;
3741 __folio_set_locked(folio);
3742 __folio_set_swapbacked(folio);
3744 if (mem_cgroup_swapin_charge_folio(folio,
3745 vma->vm_mm, GFP_KERNEL,
3750 mem_cgroup_swapin_uncharge_swap(entry);
3752 shadow = get_shadow_from_swap_cache(entry);
3754 workingset_refault(folio, shadow);
3756 folio_add_lru(folio);
3758 /* To provide entry to swap_readpage() */
3759 folio_set_swap_entry(folio, entry);
3760 swap_readpage(page, true, NULL);
3761 folio->private = NULL;
3764 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3767 folio = page_folio(page);
3773 * Back out if somebody else faulted in this pte
3774 * while we released the pte lock.
3776 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3777 vmf->address, &vmf->ptl);
3778 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3783 /* Had to read the page from swap area: Major fault */
3784 ret = VM_FAULT_MAJOR;
3785 count_vm_event(PGMAJFAULT);
3786 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3787 } else if (PageHWPoison(page)) {
3789 * hwpoisoned dirty swapcache pages are kept for killing
3790 * owner processes (which may be unknown at hwpoison time)
3792 ret = VM_FAULT_HWPOISON;
3796 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3799 ret |= VM_FAULT_RETRY;
3805 * Make sure folio_free_swap() or swapoff did not release the
3806 * swapcache from under us. The page pin, and pte_same test
3807 * below, are not enough to exclude that. Even if it is still
3808 * swapcache, we need to check that the page's swap has not
3811 if (unlikely(!folio_test_swapcache(folio) ||
3812 page_private(page) != entry.val))
3816 * KSM sometimes has to copy on read faults, for example, if
3817 * page->index of !PageKSM() pages would be nonlinear inside the
3818 * anon VMA -- PageKSM() is lost on actual swapout.
3820 page = ksm_might_need_to_copy(page, vma, vmf->address);
3821 if (unlikely(!page)) {
3824 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3825 ret = VM_FAULT_HWPOISON;
3828 folio = page_folio(page);
3831 * If we want to map a page that's in the swapcache writable, we
3832 * have to detect via the refcount if we're really the exclusive
3833 * owner. Try removing the extra reference from the local LRU
3834 * pagevecs if required.
3836 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3837 !folio_test_ksm(folio) && !folio_test_lru(folio))
3841 cgroup_throttle_swaprate(page, GFP_KERNEL);
3844 * Back out if somebody else already faulted in this pte.
3846 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3848 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3851 if (unlikely(!folio_test_uptodate(folio))) {
3852 ret = VM_FAULT_SIGBUS;
3857 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3858 * must never point at an anonymous page in the swapcache that is
3859 * PG_anon_exclusive. Sanity check that this holds and especially, that
3860 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3861 * check after taking the PT lock and making sure that nobody
3862 * concurrently faulted in this page and set PG_anon_exclusive.
3864 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3865 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3868 * Check under PT lock (to protect against concurrent fork() sharing
3869 * the swap entry concurrently) for certainly exclusive pages.
3871 if (!folio_test_ksm(folio)) {
3872 exclusive = pte_swp_exclusive(vmf->orig_pte);
3873 if (folio != swapcache) {
3875 * We have a fresh page that is not exposed to the
3876 * swapcache -> certainly exclusive.
3879 } else if (exclusive && folio_test_writeback(folio) &&
3880 data_race(si->flags & SWP_STABLE_WRITES)) {
3882 * This is tricky: not all swap backends support
3883 * concurrent page modifications while under writeback.
3885 * So if we stumble over such a page in the swapcache
3886 * we must not set the page exclusive, otherwise we can
3887 * map it writable without further checks and modify it
3888 * while still under writeback.
3890 * For these problematic swap backends, simply drop the
3891 * exclusive marker: this is perfectly fine as we start
3892 * writeback only if we fully unmapped the page and
3893 * there are no unexpected references on the page after
3894 * unmapping succeeded. After fully unmapped, no
3895 * further GUP references (FOLL_GET and FOLL_PIN) can
3896 * appear, so dropping the exclusive marker and mapping
3897 * it only R/O is fine.
3904 * Remove the swap entry and conditionally try to free up the swapcache.
3905 * We're already holding a reference on the page but haven't mapped it
3909 if (should_try_to_free_swap(folio, vma, vmf->flags))
3910 folio_free_swap(folio);
3912 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3913 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3914 pte = mk_pte(page, vma->vm_page_prot);
3917 * Same logic as in do_wp_page(); however, optimize for pages that are
3918 * certainly not shared either because we just allocated them without
3919 * exposing them to the swapcache or because the swap entry indicates
3922 if (!folio_test_ksm(folio) &&
3923 (exclusive || folio_ref_count(folio) == 1)) {
3924 if (vmf->flags & FAULT_FLAG_WRITE) {
3925 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3926 vmf->flags &= ~FAULT_FLAG_WRITE;
3928 rmap_flags |= RMAP_EXCLUSIVE;
3930 flush_icache_page(vma, page);
3931 if (pte_swp_soft_dirty(vmf->orig_pte))
3932 pte = pte_mksoft_dirty(pte);
3933 if (pte_swp_uffd_wp(vmf->orig_pte))
3934 pte = pte_mkuffd_wp(pte);
3935 vmf->orig_pte = pte;
3937 /* ksm created a completely new copy */
3938 if (unlikely(folio != swapcache && swapcache)) {
3939 page_add_new_anon_rmap(page, vma, vmf->address);
3940 folio_add_lru_vma(folio, vma);
3942 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3945 VM_BUG_ON(!folio_test_anon(folio) ||
3946 (pte_write(pte) && !PageAnonExclusive(page)));
3947 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3948 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3950 folio_unlock(folio);
3951 if (folio != swapcache && swapcache) {
3953 * Hold the lock to avoid the swap entry to be reused
3954 * until we take the PT lock for the pte_same() check
3955 * (to avoid false positives from pte_same). For
3956 * further safety release the lock after the swap_free
3957 * so that the swap count won't change under a
3958 * parallel locked swapcache.
3960 folio_unlock(swapcache);
3961 folio_put(swapcache);
3964 if (vmf->flags & FAULT_FLAG_WRITE) {
3965 ret |= do_wp_page(vmf);
3966 if (ret & VM_FAULT_ERROR)
3967 ret &= VM_FAULT_ERROR;
3971 /* No need to invalidate - it was non-present before */
3972 update_mmu_cache(vma, vmf->address, vmf->pte);
3974 pte_unmap_unlock(vmf->pte, vmf->ptl);
3977 put_swap_device(si);
3980 pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 folio_unlock(folio);
3985 if (folio != swapcache && swapcache) {
3986 folio_unlock(swapcache);
3987 folio_put(swapcache);
3990 put_swap_device(si);
3995 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3996 * but allow concurrent faults), and pte mapped but not yet locked.
3997 * We return with mmap_lock still held, but pte unmapped and unlocked.
3999 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4001 struct vm_area_struct *vma = vmf->vma;
4002 struct folio *folio;
4006 /* File mapping without ->vm_ops ? */
4007 if (vma->vm_flags & VM_SHARED)
4008 return VM_FAULT_SIGBUS;
4011 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4012 * pte_offset_map() on pmds where a huge pmd might be created
4013 * from a different thread.
4015 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4016 * parallel threads are excluded by other means.
4018 * Here we only have mmap_read_lock(mm).
4020 if (pte_alloc(vma->vm_mm, vmf->pmd))
4021 return VM_FAULT_OOM;
4023 /* See comment in handle_pte_fault() */
4024 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4027 /* Use the zero-page for reads */
4028 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4029 !mm_forbids_zeropage(vma->vm_mm)) {
4030 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4031 vma->vm_page_prot));
4032 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4033 vmf->address, &vmf->ptl);
4034 if (!pte_none(*vmf->pte)) {
4035 update_mmu_tlb(vma, vmf->address, vmf->pte);
4038 ret = check_stable_address_space(vma->vm_mm);
4041 /* Deliver the page fault to userland, check inside PT lock */
4042 if (userfaultfd_missing(vma)) {
4043 pte_unmap_unlock(vmf->pte, vmf->ptl);
4044 return handle_userfault(vmf, VM_UFFD_MISSING);
4049 /* Allocate our own private page. */
4050 if (unlikely(anon_vma_prepare(vma)))
4052 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4056 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4058 cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
4061 * The memory barrier inside __folio_mark_uptodate makes sure that
4062 * preceding stores to the page contents become visible before
4063 * the set_pte_at() write.
4065 __folio_mark_uptodate(folio);
4067 entry = mk_pte(&folio->page, vma->vm_page_prot);
4068 entry = pte_sw_mkyoung(entry);
4069 if (vma->vm_flags & VM_WRITE)
4070 entry = pte_mkwrite(pte_mkdirty(entry));
4072 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4074 if (!pte_none(*vmf->pte)) {
4075 update_mmu_tlb(vma, vmf->address, vmf->pte);
4079 ret = check_stable_address_space(vma->vm_mm);
4083 /* Deliver the page fault to userland, check inside PT lock */
4084 if (userfaultfd_missing(vma)) {
4085 pte_unmap_unlock(vmf->pte, vmf->ptl);
4087 return handle_userfault(vmf, VM_UFFD_MISSING);
4090 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4091 folio_add_new_anon_rmap(folio, vma, vmf->address);
4092 folio_add_lru_vma(folio, vma);
4094 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4096 /* No need to invalidate - it was non-present before */
4097 update_mmu_cache(vma, vmf->address, vmf->pte);
4099 pte_unmap_unlock(vmf->pte, vmf->ptl);
4107 return VM_FAULT_OOM;
4111 * The mmap_lock must have been held on entry, and may have been
4112 * released depending on flags and vma->vm_ops->fault() return value.
4113 * See filemap_fault() and __lock_page_retry().
4115 static vm_fault_t __do_fault(struct vm_fault *vmf)
4117 struct vm_area_struct *vma = vmf->vma;
4121 * Preallocate pte before we take page_lock because this might lead to
4122 * deadlocks for memcg reclaim which waits for pages under writeback:
4124 * SetPageWriteback(A)
4130 * wait_on_page_writeback(A)
4131 * SetPageWriteback(B)
4133 * # flush A, B to clear the writeback
4135 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4136 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4137 if (!vmf->prealloc_pte)
4138 return VM_FAULT_OOM;
4141 ret = vma->vm_ops->fault(vmf);
4142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4143 VM_FAULT_DONE_COW)))
4146 if (unlikely(PageHWPoison(vmf->page))) {
4147 struct page *page = vmf->page;
4148 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4149 if (ret & VM_FAULT_LOCKED) {
4150 if (page_mapped(page))
4151 unmap_mapping_pages(page_mapping(page),
4152 page->index, 1, false);
4153 /* Retry if a clean page was removed from the cache. */
4154 if (invalidate_inode_page(page))
4155 poisonret = VM_FAULT_NOPAGE;
4163 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4164 lock_page(vmf->page);
4166 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4172 static void deposit_prealloc_pte(struct vm_fault *vmf)
4174 struct vm_area_struct *vma = vmf->vma;
4176 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4178 * We are going to consume the prealloc table,
4179 * count that as nr_ptes.
4181 mm_inc_nr_ptes(vma->vm_mm);
4182 vmf->prealloc_pte = NULL;
4185 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4187 struct vm_area_struct *vma = vmf->vma;
4188 bool write = vmf->flags & FAULT_FLAG_WRITE;
4189 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4192 vm_fault_t ret = VM_FAULT_FALLBACK;
4194 if (!transhuge_vma_suitable(vma, haddr))
4197 page = compound_head(page);
4198 if (compound_order(page) != HPAGE_PMD_ORDER)
4202 * Just backoff if any subpage of a THP is corrupted otherwise
4203 * the corrupted page may mapped by PMD silently to escape the
4204 * check. This kind of THP just can be PTE mapped. Access to
4205 * the corrupted subpage should trigger SIGBUS as expected.
4207 if (unlikely(PageHasHWPoisoned(page)))
4211 * Archs like ppc64 need additional space to store information
4212 * related to pte entry. Use the preallocated table for that.
4214 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4215 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4216 if (!vmf->prealloc_pte)
4217 return VM_FAULT_OOM;
4220 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4221 if (unlikely(!pmd_none(*vmf->pmd)))
4224 for (i = 0; i < HPAGE_PMD_NR; i++)
4225 flush_icache_page(vma, page + i);
4227 entry = mk_huge_pmd(page, vma->vm_page_prot);
4229 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4231 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4232 page_add_file_rmap(page, vma, true);
4235 * deposit and withdraw with pmd lock held
4237 if (arch_needs_pgtable_deposit())
4238 deposit_prealloc_pte(vmf);
4240 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4242 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4244 /* fault is handled */
4246 count_vm_event(THP_FILE_MAPPED);
4248 spin_unlock(vmf->ptl);
4252 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4254 return VM_FAULT_FALLBACK;
4258 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4260 struct vm_area_struct *vma = vmf->vma;
4261 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4262 bool write = vmf->flags & FAULT_FLAG_WRITE;
4263 bool prefault = vmf->address != addr;
4266 flush_icache_page(vma, page);
4267 entry = mk_pte(page, vma->vm_page_prot);
4269 if (prefault && arch_wants_old_prefaulted_pte())
4270 entry = pte_mkold(entry);
4272 entry = pte_sw_mkyoung(entry);
4275 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4276 if (unlikely(uffd_wp))
4277 entry = pte_mkuffd_wp(entry);
4278 /* copy-on-write page */
4279 if (write && !(vma->vm_flags & VM_SHARED)) {
4280 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4281 page_add_new_anon_rmap(page, vma, addr);
4282 lru_cache_add_inactive_or_unevictable(page, vma);
4284 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4285 page_add_file_rmap(page, vma, false);
4287 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4290 static bool vmf_pte_changed(struct vm_fault *vmf)
4292 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4293 return !pte_same(*vmf->pte, vmf->orig_pte);
4295 return !pte_none(*vmf->pte);
4299 * finish_fault - finish page fault once we have prepared the page to fault
4301 * @vmf: structure describing the fault
4303 * This function handles all that is needed to finish a page fault once the
4304 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4305 * given page, adds reverse page mapping, handles memcg charges and LRU
4308 * The function expects the page to be locked and on success it consumes a
4309 * reference of a page being mapped (for the PTE which maps it).
4311 * Return: %0 on success, %VM_FAULT_ code in case of error.
4313 vm_fault_t finish_fault(struct vm_fault *vmf)
4315 struct vm_area_struct *vma = vmf->vma;
4319 /* Did we COW the page? */
4320 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4321 page = vmf->cow_page;
4326 * check even for read faults because we might have lost our CoWed
4329 if (!(vma->vm_flags & VM_SHARED)) {
4330 ret = check_stable_address_space(vma->vm_mm);
4335 if (pmd_none(*vmf->pmd)) {
4336 if (PageTransCompound(page)) {
4337 ret = do_set_pmd(vmf, page);
4338 if (ret != VM_FAULT_FALLBACK)
4342 if (vmf->prealloc_pte)
4343 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4344 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4345 return VM_FAULT_OOM;
4349 * See comment in handle_pte_fault() for how this scenario happens, we
4350 * need to return NOPAGE so that we drop this page.
4352 if (pmd_devmap_trans_unstable(vmf->pmd))
4353 return VM_FAULT_NOPAGE;
4355 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4356 vmf->address, &vmf->ptl);
4358 /* Re-check under ptl */
4359 if (likely(!vmf_pte_changed(vmf))) {
4360 do_set_pte(vmf, page, vmf->address);
4362 /* no need to invalidate: a not-present page won't be cached */
4363 update_mmu_cache(vma, vmf->address, vmf->pte);
4367 update_mmu_tlb(vma, vmf->address, vmf->pte);
4368 ret = VM_FAULT_NOPAGE;
4371 pte_unmap_unlock(vmf->pte, vmf->ptl);
4375 static unsigned long fault_around_bytes __read_mostly =
4376 rounddown_pow_of_two(65536);
4378 #ifdef CONFIG_DEBUG_FS
4379 static int fault_around_bytes_get(void *data, u64 *val)
4381 *val = fault_around_bytes;
4386 * fault_around_bytes must be rounded down to the nearest page order as it's
4387 * what do_fault_around() expects to see.
4389 static int fault_around_bytes_set(void *data, u64 val)
4391 if (val / PAGE_SIZE > PTRS_PER_PTE)
4393 if (val > PAGE_SIZE)
4394 fault_around_bytes = rounddown_pow_of_two(val);
4396 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4399 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4400 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4402 static int __init fault_around_debugfs(void)
4404 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4405 &fault_around_bytes_fops);
4408 late_initcall(fault_around_debugfs);
4412 * do_fault_around() tries to map few pages around the fault address. The hope
4413 * is that the pages will be needed soon and this will lower the number of
4416 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4417 * not ready to be mapped: not up-to-date, locked, etc.
4419 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4422 * fault_around_bytes defines how many bytes we'll try to map.
4423 * do_fault_around() expects it to be set to a power of two less than or equal
4426 * The virtual address of the area that we map is naturally aligned to
4427 * fault_around_bytes rounded down to the machine page size
4428 * (and therefore to page order). This way it's easier to guarantee
4429 * that we don't cross page table boundaries.
4431 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4433 unsigned long address = vmf->address, nr_pages, mask;
4434 pgoff_t start_pgoff = vmf->pgoff;
4438 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4439 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4441 address = max(address & mask, vmf->vma->vm_start);
4442 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4446 * end_pgoff is either the end of the page table, the end of
4447 * the vma or nr_pages from start_pgoff, depending what is nearest.
4449 end_pgoff = start_pgoff -
4450 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4452 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4453 start_pgoff + nr_pages - 1);
4455 if (pmd_none(*vmf->pmd)) {
4456 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4457 if (!vmf->prealloc_pte)
4458 return VM_FAULT_OOM;
4461 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4464 /* Return true if we should do read fault-around, false otherwise */
4465 static inline bool should_fault_around(struct vm_fault *vmf)
4467 /* No ->map_pages? No way to fault around... */
4468 if (!vmf->vma->vm_ops->map_pages)
4471 if (uffd_disable_fault_around(vmf->vma))
4474 return fault_around_bytes >> PAGE_SHIFT > 1;
4477 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4482 * Let's call ->map_pages() first and use ->fault() as fallback
4483 * if page by the offset is not ready to be mapped (cold cache or
4486 if (should_fault_around(vmf)) {
4487 ret = do_fault_around(vmf);
4492 ret = __do_fault(vmf);
4493 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4496 ret |= finish_fault(vmf);
4497 unlock_page(vmf->page);
4498 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4499 put_page(vmf->page);
4503 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4505 struct vm_area_struct *vma = vmf->vma;
4508 if (unlikely(anon_vma_prepare(vma)))
4509 return VM_FAULT_OOM;
4511 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4513 return VM_FAULT_OOM;
4515 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4517 put_page(vmf->cow_page);
4518 return VM_FAULT_OOM;
4520 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4522 ret = __do_fault(vmf);
4523 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4525 if (ret & VM_FAULT_DONE_COW)
4528 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4529 __SetPageUptodate(vmf->cow_page);
4531 ret |= finish_fault(vmf);
4532 unlock_page(vmf->page);
4533 put_page(vmf->page);
4534 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4538 put_page(vmf->cow_page);
4542 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4544 struct vm_area_struct *vma = vmf->vma;
4545 vm_fault_t ret, tmp;
4547 ret = __do_fault(vmf);
4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4552 * Check if the backing address space wants to know that the page is
4553 * about to become writable
4555 if (vma->vm_ops->page_mkwrite) {
4556 unlock_page(vmf->page);
4557 tmp = do_page_mkwrite(vmf);
4558 if (unlikely(!tmp ||
4559 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4560 put_page(vmf->page);
4565 ret |= finish_fault(vmf);
4566 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4568 unlock_page(vmf->page);
4569 put_page(vmf->page);
4573 ret |= fault_dirty_shared_page(vmf);
4578 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4579 * but allow concurrent faults).
4580 * The mmap_lock may have been released depending on flags and our
4581 * return value. See filemap_fault() and __folio_lock_or_retry().
4582 * If mmap_lock is released, vma may become invalid (for example
4583 * by other thread calling munmap()).
4585 static vm_fault_t do_fault(struct vm_fault *vmf)
4587 struct vm_area_struct *vma = vmf->vma;
4588 struct mm_struct *vm_mm = vma->vm_mm;
4592 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4594 if (!vma->vm_ops->fault) {
4596 * If we find a migration pmd entry or a none pmd entry, which
4597 * should never happen, return SIGBUS
4599 if (unlikely(!pmd_present(*vmf->pmd)))
4600 ret = VM_FAULT_SIGBUS;
4602 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4607 * Make sure this is not a temporary clearing of pte
4608 * by holding ptl and checking again. A R/M/W update
4609 * of pte involves: take ptl, clearing the pte so that
4610 * we don't have concurrent modification by hardware
4611 * followed by an update.
4613 if (unlikely(pte_none(*vmf->pte)))
4614 ret = VM_FAULT_SIGBUS;
4616 ret = VM_FAULT_NOPAGE;
4618 pte_unmap_unlock(vmf->pte, vmf->ptl);
4620 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4621 ret = do_read_fault(vmf);
4622 else if (!(vma->vm_flags & VM_SHARED))
4623 ret = do_cow_fault(vmf);
4625 ret = do_shared_fault(vmf);
4627 /* preallocated pagetable is unused: free it */
4628 if (vmf->prealloc_pte) {
4629 pte_free(vm_mm, vmf->prealloc_pte);
4630 vmf->prealloc_pte = NULL;
4635 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4636 unsigned long addr, int page_nid, int *flags)
4640 count_vm_numa_event(NUMA_HINT_FAULTS);
4641 if (page_nid == numa_node_id()) {
4642 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4643 *flags |= TNF_FAULT_LOCAL;
4646 return mpol_misplaced(page, vma, addr);
4649 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4651 struct vm_area_struct *vma = vmf->vma;
4652 struct page *page = NULL;
4653 int page_nid = NUMA_NO_NODE;
4654 bool writable = false;
4661 * The "pte" at this point cannot be used safely without
4662 * validation through pte_unmap_same(). It's of NUMA type but
4663 * the pfn may be screwed if the read is non atomic.
4665 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4666 spin_lock(vmf->ptl);
4667 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4668 pte_unmap_unlock(vmf->pte, vmf->ptl);
4672 /* Get the normal PTE */
4673 old_pte = ptep_get(vmf->pte);
4674 pte = pte_modify(old_pte, vma->vm_page_prot);
4677 * Detect now whether the PTE could be writable; this information
4678 * is only valid while holding the PT lock.
4680 writable = pte_write(pte);
4681 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4682 can_change_pte_writable(vma, vmf->address, pte))
4685 page = vm_normal_page(vma, vmf->address, pte);
4686 if (!page || is_zone_device_page(page))
4689 /* TODO: handle PTE-mapped THP */
4690 if (PageCompound(page))
4694 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4695 * much anyway since they can be in shared cache state. This misses
4696 * the case where a mapping is writable but the process never writes
4697 * to it but pte_write gets cleared during protection updates and
4698 * pte_dirty has unpredictable behaviour between PTE scan updates,
4699 * background writeback, dirty balancing and application behaviour.
4702 flags |= TNF_NO_GROUP;
4705 * Flag if the page is shared between multiple address spaces. This
4706 * is later used when determining whether to group tasks together
4708 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4709 flags |= TNF_SHARED;
4711 page_nid = page_to_nid(page);
4713 * For memory tiering mode, cpupid of slow memory page is used
4714 * to record page access time. So use default value.
4716 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4717 !node_is_toptier(page_nid))
4718 last_cpupid = (-1 & LAST_CPUPID_MASK);
4720 last_cpupid = page_cpupid_last(page);
4721 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4723 if (target_nid == NUMA_NO_NODE) {
4727 pte_unmap_unlock(vmf->pte, vmf->ptl);
4730 /* Migrate to the requested node */
4731 if (migrate_misplaced_page(page, vma, target_nid)) {
4732 page_nid = target_nid;
4733 flags |= TNF_MIGRATED;
4735 flags |= TNF_MIGRATE_FAIL;
4736 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4737 spin_lock(vmf->ptl);
4738 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4739 pte_unmap_unlock(vmf->pte, vmf->ptl);
4746 if (page_nid != NUMA_NO_NODE)
4747 task_numa_fault(last_cpupid, page_nid, 1, flags);
4751 * Make it present again, depending on how arch implements
4752 * non-accessible ptes, some can allow access by kernel mode.
4754 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4755 pte = pte_modify(old_pte, vma->vm_page_prot);
4756 pte = pte_mkyoung(pte);
4758 pte = pte_mkwrite(pte);
4759 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4760 update_mmu_cache(vma, vmf->address, vmf->pte);
4761 pte_unmap_unlock(vmf->pte, vmf->ptl);
4765 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4767 if (vma_is_anonymous(vmf->vma))
4768 return do_huge_pmd_anonymous_page(vmf);
4769 if (vmf->vma->vm_ops->huge_fault)
4770 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4771 return VM_FAULT_FALLBACK;
4774 /* `inline' is required to avoid gcc 4.1.2 build error */
4775 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4777 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4780 if (vma_is_anonymous(vmf->vma)) {
4781 if (likely(!unshare) &&
4782 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4783 return handle_userfault(vmf, VM_UFFD_WP);
4784 return do_huge_pmd_wp_page(vmf);
4787 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4788 if (vmf->vma->vm_ops->huge_fault) {
4789 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4790 if (!(ret & VM_FAULT_FALLBACK))
4795 /* COW or write-notify handled on pte level: split pmd. */
4796 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4798 return VM_FAULT_FALLBACK;
4801 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4803 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4804 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4805 /* No support for anonymous transparent PUD pages yet */
4806 if (vma_is_anonymous(vmf->vma))
4807 return VM_FAULT_FALLBACK;
4808 if (vmf->vma->vm_ops->huge_fault)
4809 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4811 return VM_FAULT_FALLBACK;
4814 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4817 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4820 /* No support for anonymous transparent PUD pages yet */
4821 if (vma_is_anonymous(vmf->vma))
4823 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4824 if (vmf->vma->vm_ops->huge_fault) {
4825 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4826 if (!(ret & VM_FAULT_FALLBACK))
4831 /* COW or write-notify not handled on PUD level: split pud.*/
4832 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4834 return VM_FAULT_FALLBACK;
4838 * These routines also need to handle stuff like marking pages dirty
4839 * and/or accessed for architectures that don't do it in hardware (most
4840 * RISC architectures). The early dirtying is also good on the i386.
4842 * There is also a hook called "update_mmu_cache()" that architectures
4843 * with external mmu caches can use to update those (ie the Sparc or
4844 * PowerPC hashed page tables that act as extended TLBs).
4846 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4847 * concurrent faults).
4849 * The mmap_lock may have been released depending on flags and our return value.
4850 * See filemap_fault() and __folio_lock_or_retry().
4852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4856 if (unlikely(pmd_none(*vmf->pmd))) {
4858 * Leave __pte_alloc() until later: because vm_ops->fault may
4859 * want to allocate huge page, and if we expose page table
4860 * for an instant, it will be difficult to retract from
4861 * concurrent faults and from rmap lookups.
4864 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4867 * If a huge pmd materialized under us just retry later. Use
4868 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4869 * of pmd_trans_huge() to ensure the pmd didn't become
4870 * pmd_trans_huge under us and then back to pmd_none, as a
4871 * result of MADV_DONTNEED running immediately after a huge pmd
4872 * fault in a different thread of this mm, in turn leading to a
4873 * misleading pmd_trans_huge() retval. All we have to ensure is
4874 * that it is a regular pmd that we can walk with
4875 * pte_offset_map() and we can do that through an atomic read
4876 * in C, which is what pmd_trans_unstable() provides.
4878 if (pmd_devmap_trans_unstable(vmf->pmd))
4881 * A regular pmd is established and it can't morph into a huge
4882 * pmd from under us anymore at this point because we hold the
4883 * mmap_lock read mode and khugepaged takes it in write mode.
4884 * So now it's safe to run pte_offset_map().
4886 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4887 vmf->orig_pte = *vmf->pte;
4888 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4891 * some architectures can have larger ptes than wordsize,
4892 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4893 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4894 * accesses. The code below just needs a consistent view
4895 * for the ifs and we later double check anyway with the
4896 * ptl lock held. So here a barrier will do.
4899 if (pte_none(vmf->orig_pte)) {
4900 pte_unmap(vmf->pte);
4906 if (vma_is_anonymous(vmf->vma))
4907 return do_anonymous_page(vmf);
4909 return do_fault(vmf);
4912 if (!pte_present(vmf->orig_pte))
4913 return do_swap_page(vmf);
4915 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4916 return do_numa_page(vmf);
4918 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4919 spin_lock(vmf->ptl);
4920 entry = vmf->orig_pte;
4921 if (unlikely(!pte_same(*vmf->pte, entry))) {
4922 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4925 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4926 if (!pte_write(entry))
4927 return do_wp_page(vmf);
4928 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4929 entry = pte_mkdirty(entry);
4931 entry = pte_mkyoung(entry);
4932 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4933 vmf->flags & FAULT_FLAG_WRITE)) {
4934 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4936 /* Skip spurious TLB flush for retried page fault */
4937 if (vmf->flags & FAULT_FLAG_TRIED)
4940 * This is needed only for protection faults but the arch code
4941 * is not yet telling us if this is a protection fault or not.
4942 * This still avoids useless tlb flushes for .text page faults
4945 if (vmf->flags & FAULT_FLAG_WRITE)
4946 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4949 pte_unmap_unlock(vmf->pte, vmf->ptl);
4954 * By the time we get here, we already hold the mm semaphore
4956 * The mmap_lock may have been released depending on flags and our
4957 * return value. See filemap_fault() and __folio_lock_or_retry().
4959 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4960 unsigned long address, unsigned int flags)
4962 struct vm_fault vmf = {
4964 .address = address & PAGE_MASK,
4965 .real_address = address,
4967 .pgoff = linear_page_index(vma, address),
4968 .gfp_mask = __get_fault_gfp_mask(vma),
4970 struct mm_struct *mm = vma->vm_mm;
4971 unsigned long vm_flags = vma->vm_flags;
4976 pgd = pgd_offset(mm, address);
4977 p4d = p4d_alloc(mm, pgd, address);
4979 return VM_FAULT_OOM;
4981 vmf.pud = pud_alloc(mm, p4d, address);
4983 return VM_FAULT_OOM;
4985 if (pud_none(*vmf.pud) &&
4986 hugepage_vma_check(vma, vm_flags, false, true, true)) {
4987 ret = create_huge_pud(&vmf);
4988 if (!(ret & VM_FAULT_FALLBACK))
4991 pud_t orig_pud = *vmf.pud;
4994 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4997 * TODO once we support anonymous PUDs: NUMA case and
4998 * FAULT_FLAG_UNSHARE handling.
5000 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5001 ret = wp_huge_pud(&vmf, orig_pud);
5002 if (!(ret & VM_FAULT_FALLBACK))
5005 huge_pud_set_accessed(&vmf, orig_pud);
5011 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5013 return VM_FAULT_OOM;
5015 /* Huge pud page fault raced with pmd_alloc? */
5016 if (pud_trans_unstable(vmf.pud))
5019 if (pmd_none(*vmf.pmd) &&
5020 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5021 ret = create_huge_pmd(&vmf);
5022 if (!(ret & VM_FAULT_FALLBACK))
5025 vmf.orig_pmd = *vmf.pmd;
5028 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5029 VM_BUG_ON(thp_migration_supported() &&
5030 !is_pmd_migration_entry(vmf.orig_pmd));
5031 if (is_pmd_migration_entry(vmf.orig_pmd))
5032 pmd_migration_entry_wait(mm, vmf.pmd);
5035 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5036 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5037 return do_huge_pmd_numa_page(&vmf);
5039 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5040 !pmd_write(vmf.orig_pmd)) {
5041 ret = wp_huge_pmd(&vmf);
5042 if (!(ret & VM_FAULT_FALLBACK))
5045 huge_pmd_set_accessed(&vmf);
5051 return handle_pte_fault(&vmf);
5055 * mm_account_fault - Do page fault accounting
5057 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5058 * of perf event counters, but we'll still do the per-task accounting to
5059 * the task who triggered this page fault.
5060 * @address: the faulted address.
5061 * @flags: the fault flags.
5062 * @ret: the fault retcode.
5064 * This will take care of most of the page fault accounting. Meanwhile, it
5065 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5066 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5067 * still be in per-arch page fault handlers at the entry of page fault.
5069 static inline void mm_account_fault(struct pt_regs *regs,
5070 unsigned long address, unsigned int flags,
5076 * We don't do accounting for some specific faults:
5078 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5079 * includes arch_vma_access_permitted() failing before reaching here.
5080 * So this is not a "this many hardware page faults" counter. We
5081 * should use the hw profiling for that.
5083 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5084 * once they're completed.
5086 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5090 * We define the fault as a major fault when the final successful fault
5091 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5092 * handle it immediately previously).
5094 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5102 * If the fault is done for GUP, regs will be NULL. We only do the
5103 * accounting for the per thread fault counters who triggered the
5104 * fault, and we skip the perf event updates.
5110 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5112 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5115 #ifdef CONFIG_LRU_GEN
5116 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5118 /* the LRU algorithm only applies to accesses with recency */
5119 current->in_lru_fault = vma_has_recency(vma);
5122 static void lru_gen_exit_fault(void)
5124 current->in_lru_fault = false;
5127 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5131 static void lru_gen_exit_fault(void)
5134 #endif /* CONFIG_LRU_GEN */
5136 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5137 unsigned int *flags)
5139 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5140 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5141 return VM_FAULT_SIGSEGV;
5143 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5144 * just treat it like an ordinary read-fault otherwise.
5146 if (!is_cow_mapping(vma->vm_flags))
5147 *flags &= ~FAULT_FLAG_UNSHARE;
5148 } else if (*flags & FAULT_FLAG_WRITE) {
5149 /* Write faults on read-only mappings are impossible ... */
5150 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5151 return VM_FAULT_SIGSEGV;
5152 /* ... and FOLL_FORCE only applies to COW mappings. */
5153 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5154 !is_cow_mapping(vma->vm_flags)))
5155 return VM_FAULT_SIGSEGV;
5161 * By the time we get here, we already hold the mm semaphore
5163 * The mmap_lock may have been released depending on flags and our
5164 * return value. See filemap_fault() and __folio_lock_or_retry().
5166 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5167 unsigned int flags, struct pt_regs *regs)
5171 __set_current_state(TASK_RUNNING);
5173 count_vm_event(PGFAULT);
5174 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5176 ret = sanitize_fault_flags(vma, &flags);
5180 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5181 flags & FAULT_FLAG_INSTRUCTION,
5182 flags & FAULT_FLAG_REMOTE))
5183 return VM_FAULT_SIGSEGV;
5186 * Enable the memcg OOM handling for faults triggered in user
5187 * space. Kernel faults are handled more gracefully.
5189 if (flags & FAULT_FLAG_USER)
5190 mem_cgroup_enter_user_fault();
5192 lru_gen_enter_fault(vma);
5194 if (unlikely(is_vm_hugetlb_page(vma)))
5195 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5197 ret = __handle_mm_fault(vma, address, flags);
5199 lru_gen_exit_fault();
5201 if (flags & FAULT_FLAG_USER) {
5202 mem_cgroup_exit_user_fault();
5204 * The task may have entered a memcg OOM situation but
5205 * if the allocation error was handled gracefully (no
5206 * VM_FAULT_OOM), there is no need to kill anything.
5207 * Just clean up the OOM state peacefully.
5209 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5210 mem_cgroup_oom_synchronize(false);
5213 mm_account_fault(regs, address, flags, ret);
5217 EXPORT_SYMBOL_GPL(handle_mm_fault);
5219 #ifndef __PAGETABLE_P4D_FOLDED
5221 * Allocate p4d page table.
5222 * We've already handled the fast-path in-line.
5224 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5226 p4d_t *new = p4d_alloc_one(mm, address);
5230 spin_lock(&mm->page_table_lock);
5231 if (pgd_present(*pgd)) { /* Another has populated it */
5234 smp_wmb(); /* See comment in pmd_install() */
5235 pgd_populate(mm, pgd, new);
5237 spin_unlock(&mm->page_table_lock);
5240 #endif /* __PAGETABLE_P4D_FOLDED */
5242 #ifndef __PAGETABLE_PUD_FOLDED
5244 * Allocate page upper directory.
5245 * We've already handled the fast-path in-line.
5247 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5249 pud_t *new = pud_alloc_one(mm, address);
5253 spin_lock(&mm->page_table_lock);
5254 if (!p4d_present(*p4d)) {
5256 smp_wmb(); /* See comment in pmd_install() */
5257 p4d_populate(mm, p4d, new);
5258 } else /* Another has populated it */
5260 spin_unlock(&mm->page_table_lock);
5263 #endif /* __PAGETABLE_PUD_FOLDED */
5265 #ifndef __PAGETABLE_PMD_FOLDED
5267 * Allocate page middle directory.
5268 * We've already handled the fast-path in-line.
5270 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5273 pmd_t *new = pmd_alloc_one(mm, address);
5277 ptl = pud_lock(mm, pud);
5278 if (!pud_present(*pud)) {
5280 smp_wmb(); /* See comment in pmd_install() */
5281 pud_populate(mm, pud, new);
5282 } else { /* Another has populated it */
5288 #endif /* __PAGETABLE_PMD_FOLDED */
5291 * follow_pte - look up PTE at a user virtual address
5292 * @mm: the mm_struct of the target address space
5293 * @address: user virtual address
5294 * @ptepp: location to store found PTE
5295 * @ptlp: location to store the lock for the PTE
5297 * On a successful return, the pointer to the PTE is stored in @ptepp;
5298 * the corresponding lock is taken and its location is stored in @ptlp.
5299 * The contents of the PTE are only stable until @ptlp is released;
5300 * any further use, if any, must be protected against invalidation
5301 * with MMU notifiers.
5303 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5304 * should be taken for read.
5306 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5307 * it is not a good general-purpose API.
5309 * Return: zero on success, -ve otherwise.
5311 int follow_pte(struct mm_struct *mm, unsigned long address,
5312 pte_t **ptepp, spinlock_t **ptlp)
5320 pgd = pgd_offset(mm, address);
5321 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5324 p4d = p4d_offset(pgd, address);
5325 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5328 pud = pud_offset(p4d, address);
5329 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5332 pmd = pmd_offset(pud, address);
5333 VM_BUG_ON(pmd_trans_huge(*pmd));
5335 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5338 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5339 if (!pte_present(*ptep))
5344 pte_unmap_unlock(ptep, *ptlp);
5348 EXPORT_SYMBOL_GPL(follow_pte);
5351 * follow_pfn - look up PFN at a user virtual address
5352 * @vma: memory mapping
5353 * @address: user virtual address
5354 * @pfn: location to store found PFN
5356 * Only IO mappings and raw PFN mappings are allowed.
5358 * This function does not allow the caller to read the permissions
5359 * of the PTE. Do not use it.
5361 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5363 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5370 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5373 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5376 *pfn = pte_pfn(*ptep);
5377 pte_unmap_unlock(ptep, ptl);
5380 EXPORT_SYMBOL(follow_pfn);
5382 #ifdef CONFIG_HAVE_IOREMAP_PROT
5383 int follow_phys(struct vm_area_struct *vma,
5384 unsigned long address, unsigned int flags,
5385 unsigned long *prot, resource_size_t *phys)
5391 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5394 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5398 if ((flags & FOLL_WRITE) && !pte_write(pte))
5401 *prot = pgprot_val(pte_pgprot(pte));
5402 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5406 pte_unmap_unlock(ptep, ptl);
5412 * generic_access_phys - generic implementation for iomem mmap access
5413 * @vma: the vma to access
5414 * @addr: userspace address, not relative offset within @vma
5415 * @buf: buffer to read/write
5416 * @len: length of transfer
5417 * @write: set to FOLL_WRITE when writing, otherwise reading
5419 * This is a generic implementation for &vm_operations_struct.access for an
5420 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5424 void *buf, int len, int write)
5426 resource_size_t phys_addr;
5427 unsigned long prot = 0;
5428 void __iomem *maddr;
5431 int offset = offset_in_page(addr);
5434 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5438 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5441 pte_unmap_unlock(ptep, ptl);
5443 prot = pgprot_val(pte_pgprot(pte));
5444 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5446 if ((write & FOLL_WRITE) && !pte_write(pte))
5449 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5453 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5456 if (!pte_same(pte, *ptep)) {
5457 pte_unmap_unlock(ptep, ptl);
5464 memcpy_toio(maddr + offset, buf, len);
5466 memcpy_fromio(buf, maddr + offset, len);
5468 pte_unmap_unlock(ptep, ptl);
5474 EXPORT_SYMBOL_GPL(generic_access_phys);
5478 * Access another process' address space as given in mm.
5480 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5481 int len, unsigned int gup_flags)
5483 struct vm_area_struct *vma;
5484 void *old_buf = buf;
5485 int write = gup_flags & FOLL_WRITE;
5487 if (mmap_read_lock_killable(mm))
5490 /* ignore errors, just check how much was successfully transferred */
5492 int bytes, ret, offset;
5494 struct page *page = NULL;
5496 ret = get_user_pages_remote(mm, addr, 1,
5497 gup_flags, &page, &vma, NULL);
5499 #ifndef CONFIG_HAVE_IOREMAP_PROT
5503 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5504 * we can access using slightly different code.
5506 vma = vma_lookup(mm, addr);
5509 if (vma->vm_ops && vma->vm_ops->access)
5510 ret = vma->vm_ops->access(vma, addr, buf,
5518 offset = addr & (PAGE_SIZE-1);
5519 if (bytes > PAGE_SIZE-offset)
5520 bytes = PAGE_SIZE-offset;
5524 copy_to_user_page(vma, page, addr,
5525 maddr + offset, buf, bytes);
5526 set_page_dirty_lock(page);
5528 copy_from_user_page(vma, page, addr,
5529 buf, maddr + offset, bytes);
5538 mmap_read_unlock(mm);
5540 return buf - old_buf;
5544 * access_remote_vm - access another process' address space
5545 * @mm: the mm_struct of the target address space
5546 * @addr: start address to access
5547 * @buf: source or destination buffer
5548 * @len: number of bytes to transfer
5549 * @gup_flags: flags modifying lookup behaviour
5551 * The caller must hold a reference on @mm.
5553 * Return: number of bytes copied from source to destination.
5555 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5556 void *buf, int len, unsigned int gup_flags)
5558 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5562 * Access another process' address space.
5563 * Source/target buffer must be kernel space,
5564 * Do not walk the page table directly, use get_user_pages
5566 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5567 void *buf, int len, unsigned int gup_flags)
5569 struct mm_struct *mm;
5572 mm = get_task_mm(tsk);
5576 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5582 EXPORT_SYMBOL_GPL(access_process_vm);
5585 * Print the name of a VMA.
5587 void print_vma_addr(char *prefix, unsigned long ip)
5589 struct mm_struct *mm = current->mm;
5590 struct vm_area_struct *vma;
5593 * we might be running from an atomic context so we cannot sleep
5595 if (!mmap_read_trylock(mm))
5598 vma = find_vma(mm, ip);
5599 if (vma && vma->vm_file) {
5600 struct file *f = vma->vm_file;
5601 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5605 p = file_path(f, buf, PAGE_SIZE);
5608 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5610 vma->vm_end - vma->vm_start);
5611 free_page((unsigned long)buf);
5614 mmap_read_unlock(mm);
5617 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5618 void __might_fault(const char *file, int line)
5620 if (pagefault_disabled())
5622 __might_sleep(file, line);
5623 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5625 might_lock_read(¤t->mm->mmap_lock);
5628 EXPORT_SYMBOL(__might_fault);
5631 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5633 * Process all subpages of the specified huge page with the specified
5634 * operation. The target subpage will be processed last to keep its
5637 static inline void process_huge_page(
5638 unsigned long addr_hint, unsigned int pages_per_huge_page,
5639 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5643 unsigned long addr = addr_hint &
5644 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5646 /* Process target subpage last to keep its cache lines hot */
5648 n = (addr_hint - addr) / PAGE_SIZE;
5649 if (2 * n <= pages_per_huge_page) {
5650 /* If target subpage in first half of huge page */
5653 /* Process subpages at the end of huge page */
5654 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5656 process_subpage(addr + i * PAGE_SIZE, i, arg);
5659 /* If target subpage in second half of huge page */
5660 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5661 l = pages_per_huge_page - n;
5662 /* Process subpages at the begin of huge page */
5663 for (i = 0; i < base; i++) {
5665 process_subpage(addr + i * PAGE_SIZE, i, arg);
5669 * Process remaining subpages in left-right-left-right pattern
5670 * towards the target subpage
5672 for (i = 0; i < l; i++) {
5673 int left_idx = base + i;
5674 int right_idx = base + 2 * l - 1 - i;
5677 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5679 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5683 static void clear_gigantic_page(struct page *page,
5685 unsigned int pages_per_huge_page)
5691 for (i = 0; i < pages_per_huge_page; i++) {
5692 p = nth_page(page, i);
5694 clear_user_highpage(p, addr + i * PAGE_SIZE);
5698 static void clear_subpage(unsigned long addr, int idx, void *arg)
5700 struct page *page = arg;
5702 clear_user_highpage(page + idx, addr);
5705 void clear_huge_page(struct page *page,
5706 unsigned long addr_hint, unsigned int pages_per_huge_page)
5708 unsigned long addr = addr_hint &
5709 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5711 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5712 clear_gigantic_page(page, addr, pages_per_huge_page);
5716 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5719 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5721 struct vm_area_struct *vma,
5722 unsigned int pages_per_huge_page)
5725 struct page *dst_base = dst;
5726 struct page *src_base = src;
5728 for (i = 0; i < pages_per_huge_page; i++) {
5729 dst = nth_page(dst_base, i);
5730 src = nth_page(src_base, i);
5733 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5737 struct copy_subpage_arg {
5740 struct vm_area_struct *vma;
5743 static void copy_subpage(unsigned long addr, int idx, void *arg)
5745 struct copy_subpage_arg *copy_arg = arg;
5747 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5748 addr, copy_arg->vma);
5751 void copy_user_huge_page(struct page *dst, struct page *src,
5752 unsigned long addr_hint, struct vm_area_struct *vma,
5753 unsigned int pages_per_huge_page)
5755 unsigned long addr = addr_hint &
5756 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5757 struct copy_subpage_arg arg = {
5763 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5764 copy_user_gigantic_page(dst, src, addr, vma,
5765 pages_per_huge_page);
5769 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5772 long copy_huge_page_from_user(struct page *dst_page,
5773 const void __user *usr_src,
5774 unsigned int pages_per_huge_page,
5775 bool allow_pagefault)
5778 unsigned long i, rc = 0;
5779 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5780 struct page *subpage;
5782 for (i = 0; i < pages_per_huge_page; i++) {
5783 subpage = nth_page(dst_page, i);
5784 if (allow_pagefault)
5785 page_kaddr = kmap(subpage);
5787 page_kaddr = kmap_atomic(subpage);
5788 rc = copy_from_user(page_kaddr,
5789 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5790 if (allow_pagefault)
5793 kunmap_atomic(page_kaddr);
5795 ret_val -= (PAGE_SIZE - rc);
5799 flush_dcache_page(subpage);
5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5807 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5809 static struct kmem_cache *page_ptl_cachep;
5811 void __init ptlock_cache_init(void)
5813 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5817 bool ptlock_alloc(struct page *page)
5821 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5828 void ptlock_free(struct page *page)
5830 kmem_cache_free(page_ptl_cachep, page->ptl);