Merge tag 'x86_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167         trace_rss_stat(mm, member);
168 }
169
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175                            unsigned long addr)
176 {
177         pgtable_t token = pmd_pgtable(*pmd);
178         pmd_clear(pmd);
179         pte_free_tlb(tlb, token, addr);
180         mm_dec_nr_ptes(tlb->mm);
181 }
182
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184                                 unsigned long addr, unsigned long end,
185                                 unsigned long floor, unsigned long ceiling)
186 {
187         pmd_t *pmd;
188         unsigned long next;
189         unsigned long start;
190
191         start = addr;
192         pmd = pmd_offset(pud, addr);
193         do {
194                 next = pmd_addr_end(addr, end);
195                 if (pmd_none_or_clear_bad(pmd))
196                         continue;
197                 free_pte_range(tlb, pmd, addr);
198         } while (pmd++, addr = next, addr != end);
199
200         start &= PUD_MASK;
201         if (start < floor)
202                 return;
203         if (ceiling) {
204                 ceiling &= PUD_MASK;
205                 if (!ceiling)
206                         return;
207         }
208         if (end - 1 > ceiling - 1)
209                 return;
210
211         pmd = pmd_offset(pud, start);
212         pud_clear(pud);
213         pmd_free_tlb(tlb, pmd, start);
214         mm_dec_nr_pmds(tlb->mm);
215 }
216
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218                                 unsigned long addr, unsigned long end,
219                                 unsigned long floor, unsigned long ceiling)
220 {
221         pud_t *pud;
222         unsigned long next;
223         unsigned long start;
224
225         start = addr;
226         pud = pud_offset(p4d, addr);
227         do {
228                 next = pud_addr_end(addr, end);
229                 if (pud_none_or_clear_bad(pud))
230                         continue;
231                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232         } while (pud++, addr = next, addr != end);
233
234         start &= P4D_MASK;
235         if (start < floor)
236                 return;
237         if (ceiling) {
238                 ceiling &= P4D_MASK;
239                 if (!ceiling)
240                         return;
241         }
242         if (end - 1 > ceiling - 1)
243                 return;
244
245         pud = pud_offset(p4d, start);
246         p4d_clear(p4d);
247         pud_free_tlb(tlb, pud, start);
248         mm_dec_nr_puds(tlb->mm);
249 }
250
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252                                 unsigned long addr, unsigned long end,
253                                 unsigned long floor, unsigned long ceiling)
254 {
255         p4d_t *p4d;
256         unsigned long next;
257         unsigned long start;
258
259         start = addr;
260         p4d = p4d_offset(pgd, addr);
261         do {
262                 next = p4d_addr_end(addr, end);
263                 if (p4d_none_or_clear_bad(p4d))
264                         continue;
265                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266         } while (p4d++, addr = next, addr != end);
267
268         start &= PGDIR_MASK;
269         if (start < floor)
270                 return;
271         if (ceiling) {
272                 ceiling &= PGDIR_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 return;
278
279         p4d = p4d_offset(pgd, start);
280         pgd_clear(pgd);
281         p4d_free_tlb(tlb, p4d, start);
282 }
283
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288                         unsigned long addr, unsigned long end,
289                         unsigned long floor, unsigned long ceiling)
290 {
291         pgd_t *pgd;
292         unsigned long next;
293
294         /*
295          * The next few lines have given us lots of grief...
296          *
297          * Why are we testing PMD* at this top level?  Because often
298          * there will be no work to do at all, and we'd prefer not to
299          * go all the way down to the bottom just to discover that.
300          *
301          * Why all these "- 1"s?  Because 0 represents both the bottom
302          * of the address space and the top of it (using -1 for the
303          * top wouldn't help much: the masks would do the wrong thing).
304          * The rule is that addr 0 and floor 0 refer to the bottom of
305          * the address space, but end 0 and ceiling 0 refer to the top
306          * Comparisons need to use "end - 1" and "ceiling - 1" (though
307          * that end 0 case should be mythical).
308          *
309          * Wherever addr is brought up or ceiling brought down, we must
310          * be careful to reject "the opposite 0" before it confuses the
311          * subsequent tests.  But what about where end is brought down
312          * by PMD_SIZE below? no, end can't go down to 0 there.
313          *
314          * Whereas we round start (addr) and ceiling down, by different
315          * masks at different levels, in order to test whether a table
316          * now has no other vmas using it, so can be freed, we don't
317          * bother to round floor or end up - the tests don't need that.
318          */
319
320         addr &= PMD_MASK;
321         if (addr < floor) {
322                 addr += PMD_SIZE;
323                 if (!addr)
324                         return;
325         }
326         if (ceiling) {
327                 ceiling &= PMD_MASK;
328                 if (!ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 end -= PMD_SIZE;
333         if (addr > end - 1)
334                 return;
335         /*
336          * We add page table cache pages with PAGE_SIZE,
337          * (see pte_free_tlb()), flush the tlb if we need
338          */
339         tlb_change_page_size(tlb, PAGE_SIZE);
340         pgd = pgd_offset(tlb->mm, addr);
341         do {
342                 next = pgd_addr_end(addr, end);
343                 if (pgd_none_or_clear_bad(pgd))
344                         continue;
345                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346         } while (pgd++, addr = next, addr != end);
347 }
348
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350                    struct vm_area_struct *vma, unsigned long floor,
351                    unsigned long ceiling)
352 {
353         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355         do {
356                 unsigned long addr = vma->vm_start;
357                 struct vm_area_struct *next;
358
359                 /*
360                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361                  * be 0.  This will underflow and is okay.
362                  */
363                 next = mas_find(&mas, ceiling - 1);
364
365                 /*
366                  * Hide vma from rmap and truncate_pagecache before freeing
367                  * pgtables
368                  */
369                 unlink_anon_vmas(vma);
370                 unlink_file_vma(vma);
371
372                 if (is_vm_hugetlb_page(vma)) {
373                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374                                 floor, next ? next->vm_start : ceiling);
375                 } else {
376                         /*
377                          * Optimization: gather nearby vmas into one call down
378                          */
379                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380                                && !is_vm_hugetlb_page(next)) {
381                                 vma = next;
382                                 next = mas_find(&mas, ceiling - 1);
383                                 unlink_anon_vmas(vma);
384                                 unlink_file_vma(vma);
385                         }
386                         free_pgd_range(tlb, addr, vma->vm_end,
387                                 floor, next ? next->vm_start : ceiling);
388                 }
389                 vma = next;
390         } while (vma);
391 }
392
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395         spinlock_t *ptl = pmd_lock(mm, pmd);
396
397         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
398                 mm_inc_nr_ptes(mm);
399                 /*
400                  * Ensure all pte setup (eg. pte page lock and page clearing) are
401                  * visible before the pte is made visible to other CPUs by being
402                  * put into page tables.
403                  *
404                  * The other side of the story is the pointer chasing in the page
405                  * table walking code (when walking the page table without locking;
406                  * ie. most of the time). Fortunately, these data accesses consist
407                  * of a chain of data-dependent loads, meaning most CPUs (alpha
408                  * being the notable exception) will already guarantee loads are
409                  * seen in-order. See the alpha page table accessors for the
410                  * smp_rmb() barriers in page table walking code.
411                  */
412                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413                 pmd_populate(mm, pmd, *pte);
414                 *pte = NULL;
415         }
416         spin_unlock(ptl);
417 }
418
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421         pgtable_t new = pte_alloc_one(mm);
422         if (!new)
423                 return -ENOMEM;
424
425         pmd_install(mm, pmd, &new);
426         if (new)
427                 pte_free(mm, new);
428         return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433         pte_t *new = pte_alloc_one_kernel(&init_mm);
434         if (!new)
435                 return -ENOMEM;
436
437         spin_lock(&init_mm.page_table_lock);
438         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
439                 smp_wmb(); /* See comment in pmd_install() */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         p4d_t *p4d = p4d_offset(pgd, addr);
477         pud_t *pud = pud_offset(p4d, addr);
478         pmd_t *pmd = pmd_offset(pud, addr);
479         struct address_space *mapping;
480         pgoff_t index;
481         static unsigned long resume;
482         static unsigned long nr_shown;
483         static unsigned long nr_unshown;
484
485         /*
486          * Allow a burst of 60 reports, then keep quiet for that minute;
487          * or allow a steady drip of one report per second.
488          */
489         if (nr_shown == 60) {
490                 if (time_before(jiffies, resume)) {
491                         nr_unshown++;
492                         return;
493                 }
494                 if (nr_unshown) {
495                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496                                  nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508                  current->comm,
509                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
510         if (page)
511                 dump_page(page, "bad pte");
512         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515                  vma->vm_file,
516                  vma->vm_ops ? vma->vm_ops->fault : NULL,
517                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518                  mapping ? mapping->a_ops->read_folio : NULL);
519         dump_stack();
520         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566                             pte_t pte)
567 {
568         unsigned long pfn = pte_pfn(pte);
569
570         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571                 if (likely(!pte_special(pte)))
572                         goto check_pfn;
573                 if (vma->vm_ops && vma->vm_ops->find_special_page)
574                         return vma->vm_ops->find_special_page(vma, addr);
575                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576                         return NULL;
577                 if (is_zero_pfn(pfn))
578                         return NULL;
579                 if (pte_devmap(pte))
580                 /*
581                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582                  * and will have refcounts incremented on their struct pages
583                  * when they are inserted into PTEs, thus they are safe to
584                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585                  * do not have refcounts. Example of legacy ZONE_DEVICE is
586                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587                  */
588                         return NULL;
589
590                 print_bad_pte(vma, addr, pte, NULL);
591                 return NULL;
592         }
593
594         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595
596         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597                 if (vma->vm_flags & VM_MIXEDMAP) {
598                         if (!pfn_valid(pfn))
599                                 return NULL;
600                         goto out;
601                 } else {
602                         unsigned long off;
603                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
604                         if (pfn == vma->vm_pgoff + off)
605                                 return NULL;
606                         if (!is_cow_mapping(vma->vm_flags))
607                                 return NULL;
608                 }
609         }
610
611         if (is_zero_pfn(pfn))
612                 return NULL;
613
614 check_pfn:
615         if (unlikely(pfn > highest_memmap_pfn)) {
616                 print_bad_pte(vma, addr, pte, NULL);
617                 return NULL;
618         }
619
620         /*
621          * NOTE! We still have PageReserved() pages in the page tables.
622          * eg. VDSO mappings can cause them to exist.
623          */
624 out:
625         return pfn_to_page(pfn);
626 }
627
628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629                             pte_t pte)
630 {
631         struct page *page = vm_normal_page(vma, addr, pte);
632
633         if (page)
634                 return page_folio(page);
635         return NULL;
636 }
637
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640                                 pmd_t pmd)
641 {
642         unsigned long pfn = pmd_pfn(pmd);
643
644         /*
645          * There is no pmd_special() but there may be special pmds, e.g.
646          * in a direct-access (dax) mapping, so let's just replicate the
647          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
648          */
649         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650                 if (vma->vm_flags & VM_MIXEDMAP) {
651                         if (!pfn_valid(pfn))
652                                 return NULL;
653                         goto out;
654                 } else {
655                         unsigned long off;
656                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
657                         if (pfn == vma->vm_pgoff + off)
658                                 return NULL;
659                         if (!is_cow_mapping(vma->vm_flags))
660                                 return NULL;
661                 }
662         }
663
664         if (pmd_devmap(pmd))
665                 return NULL;
666         if (is_huge_zero_pmd(pmd))
667                 return NULL;
668         if (unlikely(pfn > highest_memmap_pfn))
669                 return NULL;
670
671         /*
672          * NOTE! We still have PageReserved() pages in the page tables.
673          * eg. VDSO mappings can cause them to exist.
674          */
675 out:
676         return pfn_to_page(pfn);
677 }
678 #endif
679
680 static void restore_exclusive_pte(struct vm_area_struct *vma,
681                                   struct page *page, unsigned long address,
682                                   pte_t *ptep)
683 {
684         pte_t pte;
685         swp_entry_t entry;
686
687         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688         if (pte_swp_soft_dirty(*ptep))
689                 pte = pte_mksoft_dirty(pte);
690
691         entry = pte_to_swp_entry(*ptep);
692         if (pte_swp_uffd_wp(*ptep))
693                 pte = pte_mkuffd_wp(pte);
694         else if (is_writable_device_exclusive_entry(entry))
695                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696
697         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698
699         /*
700          * No need to take a page reference as one was already
701          * created when the swap entry was made.
702          */
703         if (PageAnon(page))
704                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
705         else
706                 /*
707                  * Currently device exclusive access only supports anonymous
708                  * memory so the entry shouldn't point to a filebacked page.
709                  */
710                 WARN_ON_ONCE(1);
711
712         set_pte_at(vma->vm_mm, address, ptep, pte);
713
714         /*
715          * No need to invalidate - it was non-present before. However
716          * secondary CPUs may have mappings that need invalidating.
717          */
718         update_mmu_cache(vma, address, ptep);
719 }
720
721 /*
722  * Tries to restore an exclusive pte if the page lock can be acquired without
723  * sleeping.
724  */
725 static int
726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727                         unsigned long addr)
728 {
729         swp_entry_t entry = pte_to_swp_entry(*src_pte);
730         struct page *page = pfn_swap_entry_to_page(entry);
731
732         if (trylock_page(page)) {
733                 restore_exclusive_pte(vma, page, addr, src_pte);
734                 unlock_page(page);
735                 return 0;
736         }
737
738         return -EBUSY;
739 }
740
741 /*
742  * copy one vm_area from one task to the other. Assumes the page tables
743  * already present in the new task to be cleared in the whole range
744  * covered by this vma.
745  */
746
747 static unsigned long
748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
749                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
751 {
752         unsigned long vm_flags = dst_vma->vm_flags;
753         pte_t pte = *src_pte;
754         struct page *page;
755         swp_entry_t entry = pte_to_swp_entry(pte);
756
757         if (likely(!non_swap_entry(entry))) {
758                 if (swap_duplicate(entry) < 0)
759                         return -EIO;
760
761                 /* make sure dst_mm is on swapoff's mmlist. */
762                 if (unlikely(list_empty(&dst_mm->mmlist))) {
763                         spin_lock(&mmlist_lock);
764                         if (list_empty(&dst_mm->mmlist))
765                                 list_add(&dst_mm->mmlist,
766                                                 &src_mm->mmlist);
767                         spin_unlock(&mmlist_lock);
768                 }
769                 /* Mark the swap entry as shared. */
770                 if (pte_swp_exclusive(*src_pte)) {
771                         pte = pte_swp_clear_exclusive(*src_pte);
772                         set_pte_at(src_mm, addr, src_pte, pte);
773                 }
774                 rss[MM_SWAPENTS]++;
775         } else if (is_migration_entry(entry)) {
776                 page = pfn_swap_entry_to_page(entry);
777
778                 rss[mm_counter(page)]++;
779
780                 if (!is_readable_migration_entry(entry) &&
781                                 is_cow_mapping(vm_flags)) {
782                         /*
783                          * COW mappings require pages in both parent and child
784                          * to be set to read. A previously exclusive entry is
785                          * now shared.
786                          */
787                         entry = make_readable_migration_entry(
788                                                         swp_offset(entry));
789                         pte = swp_entry_to_pte(entry);
790                         if (pte_swp_soft_dirty(*src_pte))
791                                 pte = pte_swp_mksoft_dirty(pte);
792                         if (pte_swp_uffd_wp(*src_pte))
793                                 pte = pte_swp_mkuffd_wp(pte);
794                         set_pte_at(src_mm, addr, src_pte, pte);
795                 }
796         } else if (is_device_private_entry(entry)) {
797                 page = pfn_swap_entry_to_page(entry);
798
799                 /*
800                  * Update rss count even for unaddressable pages, as
801                  * they should treated just like normal pages in this
802                  * respect.
803                  *
804                  * We will likely want to have some new rss counters
805                  * for unaddressable pages, at some point. But for now
806                  * keep things as they are.
807                  */
808                 get_page(page);
809                 rss[mm_counter(page)]++;
810                 /* Cannot fail as these pages cannot get pinned. */
811                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
812
813                 /*
814                  * We do not preserve soft-dirty information, because so
815                  * far, checkpoint/restore is the only feature that
816                  * requires that. And checkpoint/restore does not work
817                  * when a device driver is involved (you cannot easily
818                  * save and restore device driver state).
819                  */
820                 if (is_writable_device_private_entry(entry) &&
821                     is_cow_mapping(vm_flags)) {
822                         entry = make_readable_device_private_entry(
823                                                         swp_offset(entry));
824                         pte = swp_entry_to_pte(entry);
825                         if (pte_swp_uffd_wp(*src_pte))
826                                 pte = pte_swp_mkuffd_wp(pte);
827                         set_pte_at(src_mm, addr, src_pte, pte);
828                 }
829         } else if (is_device_exclusive_entry(entry)) {
830                 /*
831                  * Make device exclusive entries present by restoring the
832                  * original entry then copying as for a present pte. Device
833                  * exclusive entries currently only support private writable
834                  * (ie. COW) mappings.
835                  */
836                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838                         return -EBUSY;
839                 return -ENOENT;
840         } else if (is_pte_marker_entry(entry)) {
841                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
842                         set_pte_at(dst_mm, addr, dst_pte, pte);
843                 return 0;
844         }
845         if (!userfaultfd_wp(dst_vma))
846                 pte = pte_swp_clear_uffd_wp(pte);
847         set_pte_at(dst_mm, addr, dst_pte, pte);
848         return 0;
849 }
850
851 /*
852  * Copy a present and normal page.
853  *
854  * NOTE! The usual case is that this isn't required;
855  * instead, the caller can just increase the page refcount
856  * and re-use the pte the traditional way.
857  *
858  * And if we need a pre-allocated page but don't yet have
859  * one, return a negative error to let the preallocation
860  * code know so that it can do so outside the page table
861  * lock.
862  */
863 static inline int
864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
866                   struct folio **prealloc, struct page *page)
867 {
868         struct folio *new_folio;
869         pte_t pte;
870
871         new_folio = *prealloc;
872         if (!new_folio)
873                 return -EAGAIN;
874
875         /*
876          * We have a prealloc page, all good!  Take it
877          * over and copy the page & arm it.
878          */
879         *prealloc = NULL;
880         copy_user_highpage(&new_folio->page, page, addr, src_vma);
881         __folio_mark_uptodate(new_folio);
882         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
883         folio_add_lru_vma(new_folio, dst_vma);
884         rss[MM_ANONPAGES]++;
885
886         /* All done, just insert the new page copy in the child */
887         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
888         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
889         if (userfaultfd_pte_wp(dst_vma, *src_pte))
890                 /* Uffd-wp needs to be delivered to dest pte as well */
891                 pte = pte_mkuffd_wp(pte);
892         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
893         return 0;
894 }
895
896 /*
897  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
898  * is required to copy this pte.
899  */
900 static inline int
901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903                  struct folio **prealloc)
904 {
905         struct mm_struct *src_mm = src_vma->vm_mm;
906         unsigned long vm_flags = src_vma->vm_flags;
907         pte_t pte = *src_pte;
908         struct page *page;
909         struct folio *folio;
910
911         page = vm_normal_page(src_vma, addr, pte);
912         if (page)
913                 folio = page_folio(page);
914         if (page && folio_test_anon(folio)) {
915                 /*
916                  * If this page may have been pinned by the parent process,
917                  * copy the page immediately for the child so that we'll always
918                  * guarantee the pinned page won't be randomly replaced in the
919                  * future.
920                  */
921                 folio_get(folio);
922                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
923                         /* Page may be pinned, we have to copy. */
924                         folio_put(folio);
925                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
926                                                  addr, rss, prealloc, page);
927                 }
928                 rss[MM_ANONPAGES]++;
929         } else if (page) {
930                 folio_get(folio);
931                 page_dup_file_rmap(page, false);
932                 rss[mm_counter_file(page)]++;
933         }
934
935         /*
936          * If it's a COW mapping, write protect it both
937          * in the parent and the child
938          */
939         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
940                 ptep_set_wrprotect(src_mm, addr, src_pte);
941                 pte = pte_wrprotect(pte);
942         }
943         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
944
945         /*
946          * If it's a shared mapping, mark it clean in
947          * the child
948          */
949         if (vm_flags & VM_SHARED)
950                 pte = pte_mkclean(pte);
951         pte = pte_mkold(pte);
952
953         if (!userfaultfd_wp(dst_vma))
954                 pte = pte_clear_uffd_wp(pte);
955
956         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
957         return 0;
958 }
959
960 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
961                 struct vm_area_struct *vma, unsigned long addr)
962 {
963         struct folio *new_folio;
964
965         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
966         if (!new_folio)
967                 return NULL;
968
969         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
970                 folio_put(new_folio);
971                 return NULL;
972         }
973         cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
974
975         return new_folio;
976 }
977
978 static int
979 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
981                unsigned long end)
982 {
983         struct mm_struct *dst_mm = dst_vma->vm_mm;
984         struct mm_struct *src_mm = src_vma->vm_mm;
985         pte_t *orig_src_pte, *orig_dst_pte;
986         pte_t *src_pte, *dst_pte;
987         spinlock_t *src_ptl, *dst_ptl;
988         int progress, ret = 0;
989         int rss[NR_MM_COUNTERS];
990         swp_entry_t entry = (swp_entry_t){0};
991         struct folio *prealloc = NULL;
992
993 again:
994         progress = 0;
995         init_rss_vec(rss);
996
997         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
998         if (!dst_pte) {
999                 ret = -ENOMEM;
1000                 goto out;
1001         }
1002         src_pte = pte_offset_map(src_pmd, addr);
1003         src_ptl = pte_lockptr(src_mm, src_pmd);
1004         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1005         orig_src_pte = src_pte;
1006         orig_dst_pte = dst_pte;
1007         arch_enter_lazy_mmu_mode();
1008
1009         do {
1010                 /*
1011                  * We are holding two locks at this point - either of them
1012                  * could generate latencies in another task on another CPU.
1013                  */
1014                 if (progress >= 32) {
1015                         progress = 0;
1016                         if (need_resched() ||
1017                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1018                                 break;
1019                 }
1020                 if (pte_none(*src_pte)) {
1021                         progress++;
1022                         continue;
1023                 }
1024                 if (unlikely(!pte_present(*src_pte))) {
1025                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1026                                                   dst_pte, src_pte,
1027                                                   dst_vma, src_vma,
1028                                                   addr, rss);
1029                         if (ret == -EIO) {
1030                                 entry = pte_to_swp_entry(*src_pte);
1031                                 break;
1032                         } else if (ret == -EBUSY) {
1033                                 break;
1034                         } else if (!ret) {
1035                                 progress += 8;
1036                                 continue;
1037                         }
1038
1039                         /*
1040                          * Device exclusive entry restored, continue by copying
1041                          * the now present pte.
1042                          */
1043                         WARN_ON_ONCE(ret != -ENOENT);
1044                 }
1045                 /* copy_present_pte() will clear `*prealloc' if consumed */
1046                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1047                                        addr, rss, &prealloc);
1048                 /*
1049                  * If we need a pre-allocated page for this pte, drop the
1050                  * locks, allocate, and try again.
1051                  */
1052                 if (unlikely(ret == -EAGAIN))
1053                         break;
1054                 if (unlikely(prealloc)) {
1055                         /*
1056                          * pre-alloc page cannot be reused by next time so as
1057                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1058                          * will allocate page according to address).  This
1059                          * could only happen if one pinned pte changed.
1060                          */
1061                         folio_put(prealloc);
1062                         prealloc = NULL;
1063                 }
1064                 progress += 8;
1065         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1066
1067         arch_leave_lazy_mmu_mode();
1068         spin_unlock(src_ptl);
1069         pte_unmap(orig_src_pte);
1070         add_mm_rss_vec(dst_mm, rss);
1071         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1072         cond_resched();
1073
1074         if (ret == -EIO) {
1075                 VM_WARN_ON_ONCE(!entry.val);
1076                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1077                         ret = -ENOMEM;
1078                         goto out;
1079                 }
1080                 entry.val = 0;
1081         } else if (ret == -EBUSY) {
1082                 goto out;
1083         } else if (ret ==  -EAGAIN) {
1084                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1085                 if (!prealloc)
1086                         return -ENOMEM;
1087         } else if (ret) {
1088                 VM_WARN_ON_ONCE(1);
1089         }
1090
1091         /* We've captured and resolved the error. Reset, try again. */
1092         ret = 0;
1093
1094         if (addr != end)
1095                 goto again;
1096 out:
1097         if (unlikely(prealloc))
1098                 folio_put(prealloc);
1099         return ret;
1100 }
1101
1102 static inline int
1103 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1105                unsigned long end)
1106 {
1107         struct mm_struct *dst_mm = dst_vma->vm_mm;
1108         struct mm_struct *src_mm = src_vma->vm_mm;
1109         pmd_t *src_pmd, *dst_pmd;
1110         unsigned long next;
1111
1112         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1113         if (!dst_pmd)
1114                 return -ENOMEM;
1115         src_pmd = pmd_offset(src_pud, addr);
1116         do {
1117                 next = pmd_addr_end(addr, end);
1118                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1119                         || pmd_devmap(*src_pmd)) {
1120                         int err;
1121                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1122                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1123                                             addr, dst_vma, src_vma);
1124                         if (err == -ENOMEM)
1125                                 return -ENOMEM;
1126                         if (!err)
1127                                 continue;
1128                         /* fall through */
1129                 }
1130                 if (pmd_none_or_clear_bad(src_pmd))
1131                         continue;
1132                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1133                                    addr, next))
1134                         return -ENOMEM;
1135         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1136         return 0;
1137 }
1138
1139 static inline int
1140 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1142                unsigned long end)
1143 {
1144         struct mm_struct *dst_mm = dst_vma->vm_mm;
1145         struct mm_struct *src_mm = src_vma->vm_mm;
1146         pud_t *src_pud, *dst_pud;
1147         unsigned long next;
1148
1149         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1150         if (!dst_pud)
1151                 return -ENOMEM;
1152         src_pud = pud_offset(src_p4d, addr);
1153         do {
1154                 next = pud_addr_end(addr, end);
1155                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1156                         int err;
1157
1158                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1159                         err = copy_huge_pud(dst_mm, src_mm,
1160                                             dst_pud, src_pud, addr, src_vma);
1161                         if (err == -ENOMEM)
1162                                 return -ENOMEM;
1163                         if (!err)
1164                                 continue;
1165                         /* fall through */
1166                 }
1167                 if (pud_none_or_clear_bad(src_pud))
1168                         continue;
1169                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1170                                    addr, next))
1171                         return -ENOMEM;
1172         } while (dst_pud++, src_pud++, addr = next, addr != end);
1173         return 0;
1174 }
1175
1176 static inline int
1177 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1179                unsigned long end)
1180 {
1181         struct mm_struct *dst_mm = dst_vma->vm_mm;
1182         p4d_t *src_p4d, *dst_p4d;
1183         unsigned long next;
1184
1185         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1186         if (!dst_p4d)
1187                 return -ENOMEM;
1188         src_p4d = p4d_offset(src_pgd, addr);
1189         do {
1190                 next = p4d_addr_end(addr, end);
1191                 if (p4d_none_or_clear_bad(src_p4d))
1192                         continue;
1193                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1194                                    addr, next))
1195                         return -ENOMEM;
1196         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1197         return 0;
1198 }
1199
1200 /*
1201  * Return true if the vma needs to copy the pgtable during this fork().  Return
1202  * false when we can speed up fork() by allowing lazy page faults later until
1203  * when the child accesses the memory range.
1204  */
1205 static bool
1206 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1207 {
1208         /*
1209          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1210          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1211          * contains uffd-wp protection information, that's something we can't
1212          * retrieve from page cache, and skip copying will lose those info.
1213          */
1214         if (userfaultfd_wp(dst_vma))
1215                 return true;
1216
1217         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1218                 return true;
1219
1220         if (src_vma->anon_vma)
1221                 return true;
1222
1223         /*
1224          * Don't copy ptes where a page fault will fill them correctly.  Fork
1225          * becomes much lighter when there are big shared or private readonly
1226          * mappings. The tradeoff is that copy_page_range is more efficient
1227          * than faulting.
1228          */
1229         return false;
1230 }
1231
1232 int
1233 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1234 {
1235         pgd_t *src_pgd, *dst_pgd;
1236         unsigned long next;
1237         unsigned long addr = src_vma->vm_start;
1238         unsigned long end = src_vma->vm_end;
1239         struct mm_struct *dst_mm = dst_vma->vm_mm;
1240         struct mm_struct *src_mm = src_vma->vm_mm;
1241         struct mmu_notifier_range range;
1242         bool is_cow;
1243         int ret;
1244
1245         if (!vma_needs_copy(dst_vma, src_vma))
1246                 return 0;
1247
1248         if (is_vm_hugetlb_page(src_vma))
1249                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1250
1251         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252                 /*
1253                  * We do not free on error cases below as remove_vma
1254                  * gets called on error from higher level routine
1255                  */
1256                 ret = track_pfn_copy(src_vma);
1257                 if (ret)
1258                         return ret;
1259         }
1260
1261         /*
1262          * We need to invalidate the secondary MMU mappings only when
1263          * there could be a permission downgrade on the ptes of the
1264          * parent mm. And a permission downgrade will only happen if
1265          * is_cow_mapping() returns true.
1266          */
1267         is_cow = is_cow_mapping(src_vma->vm_flags);
1268
1269         if (is_cow) {
1270                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271                                         0, src_mm, addr, end);
1272                 mmu_notifier_invalidate_range_start(&range);
1273                 /*
1274                  * Disabling preemption is not needed for the write side, as
1275                  * the read side doesn't spin, but goes to the mmap_lock.
1276                  *
1277                  * Use the raw variant of the seqcount_t write API to avoid
1278                  * lockdep complaining about preemptibility.
1279                  */
1280                 mmap_assert_write_locked(src_mm);
1281                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282         }
1283
1284         ret = 0;
1285         dst_pgd = pgd_offset(dst_mm, addr);
1286         src_pgd = pgd_offset(src_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(src_pgd))
1290                         continue;
1291                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292                                             addr, next))) {
1293                         ret = -ENOMEM;
1294                         break;
1295                 }
1296         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1297
1298         if (is_cow) {
1299                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1300                 mmu_notifier_invalidate_range_end(&range);
1301         }
1302         return ret;
1303 }
1304
1305 /* Whether we should zap all COWed (private) pages too */
1306 static inline bool should_zap_cows(struct zap_details *details)
1307 {
1308         /* By default, zap all pages */
1309         if (!details)
1310                 return true;
1311
1312         /* Or, we zap COWed pages only if the caller wants to */
1313         return details->even_cows;
1314 }
1315
1316 /* Decides whether we should zap this page with the page pointer specified */
1317 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1318 {
1319         /* If we can make a decision without *page.. */
1320         if (should_zap_cows(details))
1321                 return true;
1322
1323         /* E.g. the caller passes NULL for the case of a zero page */
1324         if (!page)
1325                 return true;
1326
1327         /* Otherwise we should only zap non-anon pages */
1328         return !PageAnon(page);
1329 }
1330
1331 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1332 {
1333         if (!details)
1334                 return false;
1335
1336         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1337 }
1338
1339 /*
1340  * This function makes sure that we'll replace the none pte with an uffd-wp
1341  * swap special pte marker when necessary. Must be with the pgtable lock held.
1342  */
1343 static inline void
1344 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1345                               unsigned long addr, pte_t *pte,
1346                               struct zap_details *details, pte_t pteval)
1347 {
1348         if (zap_drop_file_uffd_wp(details))
1349                 return;
1350
1351         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1352 }
1353
1354 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1355                                 struct vm_area_struct *vma, pmd_t *pmd,
1356                                 unsigned long addr, unsigned long end,
1357                                 struct zap_details *details)
1358 {
1359         struct mm_struct *mm = tlb->mm;
1360         int force_flush = 0;
1361         int rss[NR_MM_COUNTERS];
1362         spinlock_t *ptl;
1363         pte_t *start_pte;
1364         pte_t *pte;
1365         swp_entry_t entry;
1366
1367         tlb_change_page_size(tlb, PAGE_SIZE);
1368 again:
1369         init_rss_vec(rss);
1370         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1371         pte = start_pte;
1372         flush_tlb_batched_pending(mm);
1373         arch_enter_lazy_mmu_mode();
1374         do {
1375                 pte_t ptent = *pte;
1376                 struct page *page;
1377
1378                 if (pte_none(ptent))
1379                         continue;
1380
1381                 if (need_resched())
1382                         break;
1383
1384                 if (pte_present(ptent)) {
1385                         unsigned int delay_rmap;
1386
1387                         page = vm_normal_page(vma, addr, ptent);
1388                         if (unlikely(!should_zap_page(details, page)))
1389                                 continue;
1390                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1391                                                         tlb->fullmm);
1392                         tlb_remove_tlb_entry(tlb, pte, addr);
1393                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1394                                                       ptent);
1395                         if (unlikely(!page))
1396                                 continue;
1397
1398                         delay_rmap = 0;
1399                         if (!PageAnon(page)) {
1400                                 if (pte_dirty(ptent)) {
1401                                         set_page_dirty(page);
1402                                         if (tlb_delay_rmap(tlb)) {
1403                                                 delay_rmap = 1;
1404                                                 force_flush = 1;
1405                                         }
1406                                 }
1407                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1408                                         mark_page_accessed(page);
1409                         }
1410                         rss[mm_counter(page)]--;
1411                         if (!delay_rmap) {
1412                                 page_remove_rmap(page, vma, false);
1413                                 if (unlikely(page_mapcount(page) < 0))
1414                                         print_bad_pte(vma, addr, ptent, page);
1415                         }
1416                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1417                                 force_flush = 1;
1418                                 addr += PAGE_SIZE;
1419                                 break;
1420                         }
1421                         continue;
1422                 }
1423
1424                 entry = pte_to_swp_entry(ptent);
1425                 if (is_device_private_entry(entry) ||
1426                     is_device_exclusive_entry(entry)) {
1427                         page = pfn_swap_entry_to_page(entry);
1428                         if (unlikely(!should_zap_page(details, page)))
1429                                 continue;
1430                         /*
1431                          * Both device private/exclusive mappings should only
1432                          * work with anonymous page so far, so we don't need to
1433                          * consider uffd-wp bit when zap. For more information,
1434                          * see zap_install_uffd_wp_if_needed().
1435                          */
1436                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1437                         rss[mm_counter(page)]--;
1438                         if (is_device_private_entry(entry))
1439                                 page_remove_rmap(page, vma, false);
1440                         put_page(page);
1441                 } else if (!non_swap_entry(entry)) {
1442                         /* Genuine swap entry, hence a private anon page */
1443                         if (!should_zap_cows(details))
1444                                 continue;
1445                         rss[MM_SWAPENTS]--;
1446                         if (unlikely(!free_swap_and_cache(entry)))
1447                                 print_bad_pte(vma, addr, ptent, NULL);
1448                 } else if (is_migration_entry(entry)) {
1449                         page = pfn_swap_entry_to_page(entry);
1450                         if (!should_zap_page(details, page))
1451                                 continue;
1452                         rss[mm_counter(page)]--;
1453                 } else if (pte_marker_entry_uffd_wp(entry)) {
1454                         /* Only drop the uffd-wp marker if explicitly requested */
1455                         if (!zap_drop_file_uffd_wp(details))
1456                                 continue;
1457                 } else if (is_hwpoison_entry(entry) ||
1458                            is_swapin_error_entry(entry)) {
1459                         if (!should_zap_cows(details))
1460                                 continue;
1461                 } else {
1462                         /* We should have covered all the swap entry types */
1463                         WARN_ON_ONCE(1);
1464                 }
1465                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1466                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1467         } while (pte++, addr += PAGE_SIZE, addr != end);
1468
1469         add_mm_rss_vec(mm, rss);
1470         arch_leave_lazy_mmu_mode();
1471
1472         /* Do the actual TLB flush before dropping ptl */
1473         if (force_flush) {
1474                 tlb_flush_mmu_tlbonly(tlb);
1475                 tlb_flush_rmaps(tlb, vma);
1476         }
1477         pte_unmap_unlock(start_pte, ptl);
1478
1479         /*
1480          * If we forced a TLB flush (either due to running out of
1481          * batch buffers or because we needed to flush dirty TLB
1482          * entries before releasing the ptl), free the batched
1483          * memory too. Restart if we didn't do everything.
1484          */
1485         if (force_flush) {
1486                 force_flush = 0;
1487                 tlb_flush_mmu(tlb);
1488         }
1489
1490         if (addr != end) {
1491                 cond_resched();
1492                 goto again;
1493         }
1494
1495         return addr;
1496 }
1497
1498 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1499                                 struct vm_area_struct *vma, pud_t *pud,
1500                                 unsigned long addr, unsigned long end,
1501                                 struct zap_details *details)
1502 {
1503         pmd_t *pmd;
1504         unsigned long next;
1505
1506         pmd = pmd_offset(pud, addr);
1507         do {
1508                 next = pmd_addr_end(addr, end);
1509                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1510                         if (next - addr != HPAGE_PMD_SIZE)
1511                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1512                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1513                                 goto next;
1514                         /* fall through */
1515                 } else if (details && details->single_folio &&
1516                            folio_test_pmd_mappable(details->single_folio) &&
1517                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1518                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1519                         /*
1520                          * Take and drop THP pmd lock so that we cannot return
1521                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1522                          * but not yet decremented compound_mapcount().
1523                          */
1524                         spin_unlock(ptl);
1525                 }
1526
1527                 /*
1528                  * Here there can be other concurrent MADV_DONTNEED or
1529                  * trans huge page faults running, and if the pmd is
1530                  * none or trans huge it can change under us. This is
1531                  * because MADV_DONTNEED holds the mmap_lock in read
1532                  * mode.
1533                  */
1534                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1535                         goto next;
1536                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1537 next:
1538                 cond_resched();
1539         } while (pmd++, addr = next, addr != end);
1540
1541         return addr;
1542 }
1543
1544 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1545                                 struct vm_area_struct *vma, p4d_t *p4d,
1546                                 unsigned long addr, unsigned long end,
1547                                 struct zap_details *details)
1548 {
1549         pud_t *pud;
1550         unsigned long next;
1551
1552         pud = pud_offset(p4d, addr);
1553         do {
1554                 next = pud_addr_end(addr, end);
1555                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1556                         if (next - addr != HPAGE_PUD_SIZE) {
1557                                 mmap_assert_locked(tlb->mm);
1558                                 split_huge_pud(vma, pud, addr);
1559                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1560                                 goto next;
1561                         /* fall through */
1562                 }
1563                 if (pud_none_or_clear_bad(pud))
1564                         continue;
1565                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1566 next:
1567                 cond_resched();
1568         } while (pud++, addr = next, addr != end);
1569
1570         return addr;
1571 }
1572
1573 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1574                                 struct vm_area_struct *vma, pgd_t *pgd,
1575                                 unsigned long addr, unsigned long end,
1576                                 struct zap_details *details)
1577 {
1578         p4d_t *p4d;
1579         unsigned long next;
1580
1581         p4d = p4d_offset(pgd, addr);
1582         do {
1583                 next = p4d_addr_end(addr, end);
1584                 if (p4d_none_or_clear_bad(p4d))
1585                         continue;
1586                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1587         } while (p4d++, addr = next, addr != end);
1588
1589         return addr;
1590 }
1591
1592 void unmap_page_range(struct mmu_gather *tlb,
1593                              struct vm_area_struct *vma,
1594                              unsigned long addr, unsigned long end,
1595                              struct zap_details *details)
1596 {
1597         pgd_t *pgd;
1598         unsigned long next;
1599
1600         BUG_ON(addr >= end);
1601         tlb_start_vma(tlb, vma);
1602         pgd = pgd_offset(vma->vm_mm, addr);
1603         do {
1604                 next = pgd_addr_end(addr, end);
1605                 if (pgd_none_or_clear_bad(pgd))
1606                         continue;
1607                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1608         } while (pgd++, addr = next, addr != end);
1609         tlb_end_vma(tlb, vma);
1610 }
1611
1612
1613 static void unmap_single_vma(struct mmu_gather *tlb,
1614                 struct vm_area_struct *vma, unsigned long start_addr,
1615                 unsigned long end_addr,
1616                 struct zap_details *details, bool mm_wr_locked)
1617 {
1618         unsigned long start = max(vma->vm_start, start_addr);
1619         unsigned long end;
1620
1621         if (start >= vma->vm_end)
1622                 return;
1623         end = min(vma->vm_end, end_addr);
1624         if (end <= vma->vm_start)
1625                 return;
1626
1627         if (vma->vm_file)
1628                 uprobe_munmap(vma, start, end);
1629
1630         if (unlikely(vma->vm_flags & VM_PFNMAP))
1631                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1632
1633         if (start != end) {
1634                 if (unlikely(is_vm_hugetlb_page(vma))) {
1635                         /*
1636                          * It is undesirable to test vma->vm_file as it
1637                          * should be non-null for valid hugetlb area.
1638                          * However, vm_file will be NULL in the error
1639                          * cleanup path of mmap_region. When
1640                          * hugetlbfs ->mmap method fails,
1641                          * mmap_region() nullifies vma->vm_file
1642                          * before calling this function to clean up.
1643                          * Since no pte has actually been setup, it is
1644                          * safe to do nothing in this case.
1645                          */
1646                         if (vma->vm_file) {
1647                                 zap_flags_t zap_flags = details ?
1648                                     details->zap_flags : 0;
1649                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1650                                                              NULL, zap_flags);
1651                         }
1652                 } else
1653                         unmap_page_range(tlb, vma, start, end, details);
1654         }
1655 }
1656
1657 /**
1658  * unmap_vmas - unmap a range of memory covered by a list of vma's
1659  * @tlb: address of the caller's struct mmu_gather
1660  * @mt: the maple tree
1661  * @vma: the starting vma
1662  * @start_addr: virtual address at which to start unmapping
1663  * @end_addr: virtual address at which to end unmapping
1664  *
1665  * Unmap all pages in the vma list.
1666  *
1667  * Only addresses between `start' and `end' will be unmapped.
1668  *
1669  * The VMA list must be sorted in ascending virtual address order.
1670  *
1671  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1672  * range after unmap_vmas() returns.  So the only responsibility here is to
1673  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1674  * drops the lock and schedules.
1675  */
1676 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1677                 struct vm_area_struct *vma, unsigned long start_addr,
1678                 unsigned long end_addr, bool mm_wr_locked)
1679 {
1680         struct mmu_notifier_range range;
1681         struct zap_details details = {
1682                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1683                 /* Careful - we need to zap private pages too! */
1684                 .even_cows = true,
1685         };
1686         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1687
1688         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1689                                 start_addr, end_addr);
1690         mmu_notifier_invalidate_range_start(&range);
1691         do {
1692                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1693                                  mm_wr_locked);
1694         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1695         mmu_notifier_invalidate_range_end(&range);
1696 }
1697
1698 /**
1699  * zap_page_range_single - remove user pages in a given range
1700  * @vma: vm_area_struct holding the applicable pages
1701  * @address: starting address of pages to zap
1702  * @size: number of bytes to zap
1703  * @details: details of shared cache invalidation
1704  *
1705  * The range must fit into one VMA.
1706  */
1707 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1708                 unsigned long size, struct zap_details *details)
1709 {
1710         const unsigned long end = address + size;
1711         struct mmu_notifier_range range;
1712         struct mmu_gather tlb;
1713
1714         lru_add_drain();
1715         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1716                                 address, end);
1717         if (is_vm_hugetlb_page(vma))
1718                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1719                                                      &range.end);
1720         tlb_gather_mmu(&tlb, vma->vm_mm);
1721         update_hiwater_rss(vma->vm_mm);
1722         mmu_notifier_invalidate_range_start(&range);
1723         /*
1724          * unmap 'address-end' not 'range.start-range.end' as range
1725          * could have been expanded for hugetlb pmd sharing.
1726          */
1727         unmap_single_vma(&tlb, vma, address, end, details, false);
1728         mmu_notifier_invalidate_range_end(&range);
1729         tlb_finish_mmu(&tlb);
1730 }
1731
1732 /**
1733  * zap_vma_ptes - remove ptes mapping the vma
1734  * @vma: vm_area_struct holding ptes to be zapped
1735  * @address: starting address of pages to zap
1736  * @size: number of bytes to zap
1737  *
1738  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1739  *
1740  * The entire address range must be fully contained within the vma.
1741  *
1742  */
1743 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1744                 unsigned long size)
1745 {
1746         if (!range_in_vma(vma, address, address + size) ||
1747                         !(vma->vm_flags & VM_PFNMAP))
1748                 return;
1749
1750         zap_page_range_single(vma, address, size, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1753
1754 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1755 {
1756         pgd_t *pgd;
1757         p4d_t *p4d;
1758         pud_t *pud;
1759         pmd_t *pmd;
1760
1761         pgd = pgd_offset(mm, addr);
1762         p4d = p4d_alloc(mm, pgd, addr);
1763         if (!p4d)
1764                 return NULL;
1765         pud = pud_alloc(mm, p4d, addr);
1766         if (!pud)
1767                 return NULL;
1768         pmd = pmd_alloc(mm, pud, addr);
1769         if (!pmd)
1770                 return NULL;
1771
1772         VM_BUG_ON(pmd_trans_huge(*pmd));
1773         return pmd;
1774 }
1775
1776 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1777                         spinlock_t **ptl)
1778 {
1779         pmd_t *pmd = walk_to_pmd(mm, addr);
1780
1781         if (!pmd)
1782                 return NULL;
1783         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1784 }
1785
1786 static int validate_page_before_insert(struct page *page)
1787 {
1788         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1789                 return -EINVAL;
1790         flush_dcache_page(page);
1791         return 0;
1792 }
1793
1794 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1795                         unsigned long addr, struct page *page, pgprot_t prot)
1796 {
1797         if (!pte_none(*pte))
1798                 return -EBUSY;
1799         /* Ok, finally just insert the thing.. */
1800         get_page(page);
1801         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1802         page_add_file_rmap(page, vma, false);
1803         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1804         return 0;
1805 }
1806
1807 /*
1808  * This is the old fallback for page remapping.
1809  *
1810  * For historical reasons, it only allows reserved pages. Only
1811  * old drivers should use this, and they needed to mark their
1812  * pages reserved for the old functions anyway.
1813  */
1814 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1815                         struct page *page, pgprot_t prot)
1816 {
1817         int retval;
1818         pte_t *pte;
1819         spinlock_t *ptl;
1820
1821         retval = validate_page_before_insert(page);
1822         if (retval)
1823                 goto out;
1824         retval = -ENOMEM;
1825         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1826         if (!pte)
1827                 goto out;
1828         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1829         pte_unmap_unlock(pte, ptl);
1830 out:
1831         return retval;
1832 }
1833
1834 #ifdef pte_index
1835 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1836                         unsigned long addr, struct page *page, pgprot_t prot)
1837 {
1838         int err;
1839
1840         if (!page_count(page))
1841                 return -EINVAL;
1842         err = validate_page_before_insert(page);
1843         if (err)
1844                 return err;
1845         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1846 }
1847
1848 /* insert_pages() amortizes the cost of spinlock operations
1849  * when inserting pages in a loop. Arch *must* define pte_index.
1850  */
1851 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1852                         struct page **pages, unsigned long *num, pgprot_t prot)
1853 {
1854         pmd_t *pmd = NULL;
1855         pte_t *start_pte, *pte;
1856         spinlock_t *pte_lock;
1857         struct mm_struct *const mm = vma->vm_mm;
1858         unsigned long curr_page_idx = 0;
1859         unsigned long remaining_pages_total = *num;
1860         unsigned long pages_to_write_in_pmd;
1861         int ret;
1862 more:
1863         ret = -EFAULT;
1864         pmd = walk_to_pmd(mm, addr);
1865         if (!pmd)
1866                 goto out;
1867
1868         pages_to_write_in_pmd = min_t(unsigned long,
1869                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1870
1871         /* Allocate the PTE if necessary; takes PMD lock once only. */
1872         ret = -ENOMEM;
1873         if (pte_alloc(mm, pmd))
1874                 goto out;
1875
1876         while (pages_to_write_in_pmd) {
1877                 int pte_idx = 0;
1878                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1879
1880                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1881                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1882                         int err = insert_page_in_batch_locked(vma, pte,
1883                                 addr, pages[curr_page_idx], prot);
1884                         if (unlikely(err)) {
1885                                 pte_unmap_unlock(start_pte, pte_lock);
1886                                 ret = err;
1887                                 remaining_pages_total -= pte_idx;
1888                                 goto out;
1889                         }
1890                         addr += PAGE_SIZE;
1891                         ++curr_page_idx;
1892                 }
1893                 pte_unmap_unlock(start_pte, pte_lock);
1894                 pages_to_write_in_pmd -= batch_size;
1895                 remaining_pages_total -= batch_size;
1896         }
1897         if (remaining_pages_total)
1898                 goto more;
1899         ret = 0;
1900 out:
1901         *num = remaining_pages_total;
1902         return ret;
1903 }
1904 #endif  /* ifdef pte_index */
1905
1906 /**
1907  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1908  * @vma: user vma to map to
1909  * @addr: target start user address of these pages
1910  * @pages: source kernel pages
1911  * @num: in: number of pages to map. out: number of pages that were *not*
1912  * mapped. (0 means all pages were successfully mapped).
1913  *
1914  * Preferred over vm_insert_page() when inserting multiple pages.
1915  *
1916  * In case of error, we may have mapped a subset of the provided
1917  * pages. It is the caller's responsibility to account for this case.
1918  *
1919  * The same restrictions apply as in vm_insert_page().
1920  */
1921 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1922                         struct page **pages, unsigned long *num)
1923 {
1924 #ifdef pte_index
1925         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1926
1927         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1928                 return -EFAULT;
1929         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1930                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1931                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1932                 vm_flags_set(vma, VM_MIXEDMAP);
1933         }
1934         /* Defer page refcount checking till we're about to map that page. */
1935         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1936 #else
1937         unsigned long idx = 0, pgcount = *num;
1938         int err = -EINVAL;
1939
1940         for (; idx < pgcount; ++idx) {
1941                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1942                 if (err)
1943                         break;
1944         }
1945         *num = pgcount - idx;
1946         return err;
1947 #endif  /* ifdef pte_index */
1948 }
1949 EXPORT_SYMBOL(vm_insert_pages);
1950
1951 /**
1952  * vm_insert_page - insert single page into user vma
1953  * @vma: user vma to map to
1954  * @addr: target user address of this page
1955  * @page: source kernel page
1956  *
1957  * This allows drivers to insert individual pages they've allocated
1958  * into a user vma.
1959  *
1960  * The page has to be a nice clean _individual_ kernel allocation.
1961  * If you allocate a compound page, you need to have marked it as
1962  * such (__GFP_COMP), or manually just split the page up yourself
1963  * (see split_page()).
1964  *
1965  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1966  * took an arbitrary page protection parameter. This doesn't allow
1967  * that. Your vma protection will have to be set up correctly, which
1968  * means that if you want a shared writable mapping, you'd better
1969  * ask for a shared writable mapping!
1970  *
1971  * The page does not need to be reserved.
1972  *
1973  * Usually this function is called from f_op->mmap() handler
1974  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1975  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1976  * function from other places, for example from page-fault handler.
1977  *
1978  * Return: %0 on success, negative error code otherwise.
1979  */
1980 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1981                         struct page *page)
1982 {
1983         if (addr < vma->vm_start || addr >= vma->vm_end)
1984                 return -EFAULT;
1985         if (!page_count(page))
1986                 return -EINVAL;
1987         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1988                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1989                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1990                 vm_flags_set(vma, VM_MIXEDMAP);
1991         }
1992         return insert_page(vma, addr, page, vma->vm_page_prot);
1993 }
1994 EXPORT_SYMBOL(vm_insert_page);
1995
1996 /*
1997  * __vm_map_pages - maps range of kernel pages into user vma
1998  * @vma: user vma to map to
1999  * @pages: pointer to array of source kernel pages
2000  * @num: number of pages in page array
2001  * @offset: user's requested vm_pgoff
2002  *
2003  * This allows drivers to map range of kernel pages into a user vma.
2004  *
2005  * Return: 0 on success and error code otherwise.
2006  */
2007 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2008                                 unsigned long num, unsigned long offset)
2009 {
2010         unsigned long count = vma_pages(vma);
2011         unsigned long uaddr = vma->vm_start;
2012         int ret, i;
2013
2014         /* Fail if the user requested offset is beyond the end of the object */
2015         if (offset >= num)
2016                 return -ENXIO;
2017
2018         /* Fail if the user requested size exceeds available object size */
2019         if (count > num - offset)
2020                 return -ENXIO;
2021
2022         for (i = 0; i < count; i++) {
2023                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2024                 if (ret < 0)
2025                         return ret;
2026                 uaddr += PAGE_SIZE;
2027         }
2028
2029         return 0;
2030 }
2031
2032 /**
2033  * vm_map_pages - maps range of kernel pages starts with non zero offset
2034  * @vma: user vma to map to
2035  * @pages: pointer to array of source kernel pages
2036  * @num: number of pages in page array
2037  *
2038  * Maps an object consisting of @num pages, catering for the user's
2039  * requested vm_pgoff
2040  *
2041  * If we fail to insert any page into the vma, the function will return
2042  * immediately leaving any previously inserted pages present.  Callers
2043  * from the mmap handler may immediately return the error as their caller
2044  * will destroy the vma, removing any successfully inserted pages. Other
2045  * callers should make their own arrangements for calling unmap_region().
2046  *
2047  * Context: Process context. Called by mmap handlers.
2048  * Return: 0 on success and error code otherwise.
2049  */
2050 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2051                                 unsigned long num)
2052 {
2053         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2054 }
2055 EXPORT_SYMBOL(vm_map_pages);
2056
2057 /**
2058  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2059  * @vma: user vma to map to
2060  * @pages: pointer to array of source kernel pages
2061  * @num: number of pages in page array
2062  *
2063  * Similar to vm_map_pages(), except that it explicitly sets the offset
2064  * to 0. This function is intended for the drivers that did not consider
2065  * vm_pgoff.
2066  *
2067  * Context: Process context. Called by mmap handlers.
2068  * Return: 0 on success and error code otherwise.
2069  */
2070 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2071                                 unsigned long num)
2072 {
2073         return __vm_map_pages(vma, pages, num, 0);
2074 }
2075 EXPORT_SYMBOL(vm_map_pages_zero);
2076
2077 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2078                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2079 {
2080         struct mm_struct *mm = vma->vm_mm;
2081         pte_t *pte, entry;
2082         spinlock_t *ptl;
2083
2084         pte = get_locked_pte(mm, addr, &ptl);
2085         if (!pte)
2086                 return VM_FAULT_OOM;
2087         if (!pte_none(*pte)) {
2088                 if (mkwrite) {
2089                         /*
2090                          * For read faults on private mappings the PFN passed
2091                          * in may not match the PFN we have mapped if the
2092                          * mapped PFN is a writeable COW page.  In the mkwrite
2093                          * case we are creating a writable PTE for a shared
2094                          * mapping and we expect the PFNs to match. If they
2095                          * don't match, we are likely racing with block
2096                          * allocation and mapping invalidation so just skip the
2097                          * update.
2098                          */
2099                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2100                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2101                                 goto out_unlock;
2102                         }
2103                         entry = pte_mkyoung(*pte);
2104                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2105                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2106                                 update_mmu_cache(vma, addr, pte);
2107                 }
2108                 goto out_unlock;
2109         }
2110
2111         /* Ok, finally just insert the thing.. */
2112         if (pfn_t_devmap(pfn))
2113                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2114         else
2115                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2116
2117         if (mkwrite) {
2118                 entry = pte_mkyoung(entry);
2119                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2120         }
2121
2122         set_pte_at(mm, addr, pte, entry);
2123         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2124
2125 out_unlock:
2126         pte_unmap_unlock(pte, ptl);
2127         return VM_FAULT_NOPAGE;
2128 }
2129
2130 /**
2131  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2132  * @vma: user vma to map to
2133  * @addr: target user address of this page
2134  * @pfn: source kernel pfn
2135  * @pgprot: pgprot flags for the inserted page
2136  *
2137  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2138  * to override pgprot on a per-page basis.
2139  *
2140  * This only makes sense for IO mappings, and it makes no sense for
2141  * COW mappings.  In general, using multiple vmas is preferable;
2142  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2143  * impractical.
2144  *
2145  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2146  * a value of @pgprot different from that of @vma->vm_page_prot.
2147  *
2148  * Context: Process context.  May allocate using %GFP_KERNEL.
2149  * Return: vm_fault_t value.
2150  */
2151 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2152                         unsigned long pfn, pgprot_t pgprot)
2153 {
2154         /*
2155          * Technically, architectures with pte_special can avoid all these
2156          * restrictions (same for remap_pfn_range).  However we would like
2157          * consistency in testing and feature parity among all, so we should
2158          * try to keep these invariants in place for everybody.
2159          */
2160         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2161         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2162                                                 (VM_PFNMAP|VM_MIXEDMAP));
2163         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2164         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2165
2166         if (addr < vma->vm_start || addr >= vma->vm_end)
2167                 return VM_FAULT_SIGBUS;
2168
2169         if (!pfn_modify_allowed(pfn, pgprot))
2170                 return VM_FAULT_SIGBUS;
2171
2172         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2173
2174         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2175                         false);
2176 }
2177 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2178
2179 /**
2180  * vmf_insert_pfn - insert single pfn into user vma
2181  * @vma: user vma to map to
2182  * @addr: target user address of this page
2183  * @pfn: source kernel pfn
2184  *
2185  * Similar to vm_insert_page, this allows drivers to insert individual pages
2186  * they've allocated into a user vma. Same comments apply.
2187  *
2188  * This function should only be called from a vm_ops->fault handler, and
2189  * in that case the handler should return the result of this function.
2190  *
2191  * vma cannot be a COW mapping.
2192  *
2193  * As this is called only for pages that do not currently exist, we
2194  * do not need to flush old virtual caches or the TLB.
2195  *
2196  * Context: Process context.  May allocate using %GFP_KERNEL.
2197  * Return: vm_fault_t value.
2198  */
2199 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200                         unsigned long pfn)
2201 {
2202         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2203 }
2204 EXPORT_SYMBOL(vmf_insert_pfn);
2205
2206 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2207 {
2208         /* these checks mirror the abort conditions in vm_normal_page */
2209         if (vma->vm_flags & VM_MIXEDMAP)
2210                 return true;
2211         if (pfn_t_devmap(pfn))
2212                 return true;
2213         if (pfn_t_special(pfn))
2214                 return true;
2215         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2216                 return true;
2217         return false;
2218 }
2219
2220 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2221                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2222                 bool mkwrite)
2223 {
2224         int err;
2225
2226         BUG_ON(!vm_mixed_ok(vma, pfn));
2227
2228         if (addr < vma->vm_start || addr >= vma->vm_end)
2229                 return VM_FAULT_SIGBUS;
2230
2231         track_pfn_insert(vma, &pgprot, pfn);
2232
2233         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2234                 return VM_FAULT_SIGBUS;
2235
2236         /*
2237          * If we don't have pte special, then we have to use the pfn_valid()
2238          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239          * refcount the page if pfn_valid is true (hence insert_page rather
2240          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2241          * without pte special, it would there be refcounted as a normal page.
2242          */
2243         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2244             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2245                 struct page *page;
2246
2247                 /*
2248                  * At this point we are committed to insert_page()
2249                  * regardless of whether the caller specified flags that
2250                  * result in pfn_t_has_page() == false.
2251                  */
2252                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2253                 err = insert_page(vma, addr, page, pgprot);
2254         } else {
2255                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2256         }
2257
2258         if (err == -ENOMEM)
2259                 return VM_FAULT_OOM;
2260         if (err < 0 && err != -EBUSY)
2261                 return VM_FAULT_SIGBUS;
2262
2263         return VM_FAULT_NOPAGE;
2264 }
2265
2266 /**
2267  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2268  * @vma: user vma to map to
2269  * @addr: target user address of this page
2270  * @pfn: source kernel pfn
2271  * @pgprot: pgprot flags for the inserted page
2272  *
2273  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2274  * to override pgprot on a per-page basis.
2275  *
2276  * Typically this function should be used by drivers to set caching- and
2277  * encryption bits different than those of @vma->vm_page_prot, because
2278  * the caching- or encryption mode may not be known at mmap() time.
2279  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2280  * to set caching and encryption bits for those vmas (except for COW pages).
2281  * This is ensured by core vm only modifying these page table entries using
2282  * functions that don't touch caching- or encryption bits, using pte_modify()
2283  * if needed. (See for example mprotect()).
2284  * Also when new page-table entries are created, this is only done using the
2285  * fault() callback, and never using the value of vma->vm_page_prot,
2286  * except for page-table entries that point to anonymous pages as the result
2287  * of COW.
2288  *
2289  * Context: Process context.  May allocate using %GFP_KERNEL.
2290  * Return: vm_fault_t value.
2291  */
2292 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2293                                  pfn_t pfn, pgprot_t pgprot)
2294 {
2295         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2296 }
2297 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2298
2299 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2300                 pfn_t pfn)
2301 {
2302         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2303 }
2304 EXPORT_SYMBOL(vmf_insert_mixed);
2305
2306 /*
2307  *  If the insertion of PTE failed because someone else already added a
2308  *  different entry in the mean time, we treat that as success as we assume
2309  *  the same entry was actually inserted.
2310  */
2311 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2312                 unsigned long addr, pfn_t pfn)
2313 {
2314         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2315 }
2316 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2317
2318 /*
2319  * maps a range of physical memory into the requested pages. the old
2320  * mappings are removed. any references to nonexistent pages results
2321  * in null mappings (currently treated as "copy-on-access")
2322  */
2323 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2324                         unsigned long addr, unsigned long end,
2325                         unsigned long pfn, pgprot_t prot)
2326 {
2327         pte_t *pte, *mapped_pte;
2328         spinlock_t *ptl;
2329         int err = 0;
2330
2331         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2332         if (!pte)
2333                 return -ENOMEM;
2334         arch_enter_lazy_mmu_mode();
2335         do {
2336                 BUG_ON(!pte_none(*pte));
2337                 if (!pfn_modify_allowed(pfn, prot)) {
2338                         err = -EACCES;
2339                         break;
2340                 }
2341                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2342                 pfn++;
2343         } while (pte++, addr += PAGE_SIZE, addr != end);
2344         arch_leave_lazy_mmu_mode();
2345         pte_unmap_unlock(mapped_pte, ptl);
2346         return err;
2347 }
2348
2349 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2350                         unsigned long addr, unsigned long end,
2351                         unsigned long pfn, pgprot_t prot)
2352 {
2353         pmd_t *pmd;
2354         unsigned long next;
2355         int err;
2356
2357         pfn -= addr >> PAGE_SHIFT;
2358         pmd = pmd_alloc(mm, pud, addr);
2359         if (!pmd)
2360                 return -ENOMEM;
2361         VM_BUG_ON(pmd_trans_huge(*pmd));
2362         do {
2363                 next = pmd_addr_end(addr, end);
2364                 err = remap_pte_range(mm, pmd, addr, next,
2365                                 pfn + (addr >> PAGE_SHIFT), prot);
2366                 if (err)
2367                         return err;
2368         } while (pmd++, addr = next, addr != end);
2369         return 0;
2370 }
2371
2372 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2373                         unsigned long addr, unsigned long end,
2374                         unsigned long pfn, pgprot_t prot)
2375 {
2376         pud_t *pud;
2377         unsigned long next;
2378         int err;
2379
2380         pfn -= addr >> PAGE_SHIFT;
2381         pud = pud_alloc(mm, p4d, addr);
2382         if (!pud)
2383                 return -ENOMEM;
2384         do {
2385                 next = pud_addr_end(addr, end);
2386                 err = remap_pmd_range(mm, pud, addr, next,
2387                                 pfn + (addr >> PAGE_SHIFT), prot);
2388                 if (err)
2389                         return err;
2390         } while (pud++, addr = next, addr != end);
2391         return 0;
2392 }
2393
2394 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2395                         unsigned long addr, unsigned long end,
2396                         unsigned long pfn, pgprot_t prot)
2397 {
2398         p4d_t *p4d;
2399         unsigned long next;
2400         int err;
2401
2402         pfn -= addr >> PAGE_SHIFT;
2403         p4d = p4d_alloc(mm, pgd, addr);
2404         if (!p4d)
2405                 return -ENOMEM;
2406         do {
2407                 next = p4d_addr_end(addr, end);
2408                 err = remap_pud_range(mm, p4d, addr, next,
2409                                 pfn + (addr >> PAGE_SHIFT), prot);
2410                 if (err)
2411                         return err;
2412         } while (p4d++, addr = next, addr != end);
2413         return 0;
2414 }
2415
2416 /*
2417  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2418  * must have pre-validated the caching bits of the pgprot_t.
2419  */
2420 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2421                 unsigned long pfn, unsigned long size, pgprot_t prot)
2422 {
2423         pgd_t *pgd;
2424         unsigned long next;
2425         unsigned long end = addr + PAGE_ALIGN(size);
2426         struct mm_struct *mm = vma->vm_mm;
2427         int err;
2428
2429         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2430                 return -EINVAL;
2431
2432         /*
2433          * Physically remapped pages are special. Tell the
2434          * rest of the world about it:
2435          *   VM_IO tells people not to look at these pages
2436          *      (accesses can have side effects).
2437          *   VM_PFNMAP tells the core MM that the base pages are just
2438          *      raw PFN mappings, and do not have a "struct page" associated
2439          *      with them.
2440          *   VM_DONTEXPAND
2441          *      Disable vma merging and expanding with mremap().
2442          *   VM_DONTDUMP
2443          *      Omit vma from core dump, even when VM_IO turned off.
2444          *
2445          * There's a horrible special case to handle copy-on-write
2446          * behaviour that some programs depend on. We mark the "original"
2447          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2448          * See vm_normal_page() for details.
2449          */
2450         if (is_cow_mapping(vma->vm_flags)) {
2451                 if (addr != vma->vm_start || end != vma->vm_end)
2452                         return -EINVAL;
2453                 vma->vm_pgoff = pfn;
2454         }
2455
2456         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2457
2458         BUG_ON(addr >= end);
2459         pfn -= addr >> PAGE_SHIFT;
2460         pgd = pgd_offset(mm, addr);
2461         flush_cache_range(vma, addr, end);
2462         do {
2463                 next = pgd_addr_end(addr, end);
2464                 err = remap_p4d_range(mm, pgd, addr, next,
2465                                 pfn + (addr >> PAGE_SHIFT), prot);
2466                 if (err)
2467                         return err;
2468         } while (pgd++, addr = next, addr != end);
2469
2470         return 0;
2471 }
2472
2473 /**
2474  * remap_pfn_range - remap kernel memory to userspace
2475  * @vma: user vma to map to
2476  * @addr: target page aligned user address to start at
2477  * @pfn: page frame number of kernel physical memory address
2478  * @size: size of mapping area
2479  * @prot: page protection flags for this mapping
2480  *
2481  * Note: this is only safe if the mm semaphore is held when called.
2482  *
2483  * Return: %0 on success, negative error code otherwise.
2484  */
2485 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2486                     unsigned long pfn, unsigned long size, pgprot_t prot)
2487 {
2488         int err;
2489
2490         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2491         if (err)
2492                 return -EINVAL;
2493
2494         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2495         if (err)
2496                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2497         return err;
2498 }
2499 EXPORT_SYMBOL(remap_pfn_range);
2500
2501 /**
2502  * vm_iomap_memory - remap memory to userspace
2503  * @vma: user vma to map to
2504  * @start: start of the physical memory to be mapped
2505  * @len: size of area
2506  *
2507  * This is a simplified io_remap_pfn_range() for common driver use. The
2508  * driver just needs to give us the physical memory range to be mapped,
2509  * we'll figure out the rest from the vma information.
2510  *
2511  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2512  * whatever write-combining details or similar.
2513  *
2514  * Return: %0 on success, negative error code otherwise.
2515  */
2516 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2517 {
2518         unsigned long vm_len, pfn, pages;
2519
2520         /* Check that the physical memory area passed in looks valid */
2521         if (start + len < start)
2522                 return -EINVAL;
2523         /*
2524          * You *really* shouldn't map things that aren't page-aligned,
2525          * but we've historically allowed it because IO memory might
2526          * just have smaller alignment.
2527          */
2528         len += start & ~PAGE_MASK;
2529         pfn = start >> PAGE_SHIFT;
2530         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2531         if (pfn + pages < pfn)
2532                 return -EINVAL;
2533
2534         /* We start the mapping 'vm_pgoff' pages into the area */
2535         if (vma->vm_pgoff > pages)
2536                 return -EINVAL;
2537         pfn += vma->vm_pgoff;
2538         pages -= vma->vm_pgoff;
2539
2540         /* Can we fit all of the mapping? */
2541         vm_len = vma->vm_end - vma->vm_start;
2542         if (vm_len >> PAGE_SHIFT > pages)
2543                 return -EINVAL;
2544
2545         /* Ok, let it rip */
2546         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2547 }
2548 EXPORT_SYMBOL(vm_iomap_memory);
2549
2550 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2551                                      unsigned long addr, unsigned long end,
2552                                      pte_fn_t fn, void *data, bool create,
2553                                      pgtbl_mod_mask *mask)
2554 {
2555         pte_t *pte, *mapped_pte;
2556         int err = 0;
2557         spinlock_t *ptl;
2558
2559         if (create) {
2560                 mapped_pte = pte = (mm == &init_mm) ?
2561                         pte_alloc_kernel_track(pmd, addr, mask) :
2562                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2563                 if (!pte)
2564                         return -ENOMEM;
2565         } else {
2566                 mapped_pte = pte = (mm == &init_mm) ?
2567                         pte_offset_kernel(pmd, addr) :
2568                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2569         }
2570
2571         BUG_ON(pmd_huge(*pmd));
2572
2573         arch_enter_lazy_mmu_mode();
2574
2575         if (fn) {
2576                 do {
2577                         if (create || !pte_none(*pte)) {
2578                                 err = fn(pte++, addr, data);
2579                                 if (err)
2580                                         break;
2581                         }
2582                 } while (addr += PAGE_SIZE, addr != end);
2583         }
2584         *mask |= PGTBL_PTE_MODIFIED;
2585
2586         arch_leave_lazy_mmu_mode();
2587
2588         if (mm != &init_mm)
2589                 pte_unmap_unlock(mapped_pte, ptl);
2590         return err;
2591 }
2592
2593 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2594                                      unsigned long addr, unsigned long end,
2595                                      pte_fn_t fn, void *data, bool create,
2596                                      pgtbl_mod_mask *mask)
2597 {
2598         pmd_t *pmd;
2599         unsigned long next;
2600         int err = 0;
2601
2602         BUG_ON(pud_huge(*pud));
2603
2604         if (create) {
2605                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2606                 if (!pmd)
2607                         return -ENOMEM;
2608         } else {
2609                 pmd = pmd_offset(pud, addr);
2610         }
2611         do {
2612                 next = pmd_addr_end(addr, end);
2613                 if (pmd_none(*pmd) && !create)
2614                         continue;
2615                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2616                         return -EINVAL;
2617                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2618                         if (!create)
2619                                 continue;
2620                         pmd_clear_bad(pmd);
2621                 }
2622                 err = apply_to_pte_range(mm, pmd, addr, next,
2623                                          fn, data, create, mask);
2624                 if (err)
2625                         break;
2626         } while (pmd++, addr = next, addr != end);
2627
2628         return err;
2629 }
2630
2631 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2632                                      unsigned long addr, unsigned long end,
2633                                      pte_fn_t fn, void *data, bool create,
2634                                      pgtbl_mod_mask *mask)
2635 {
2636         pud_t *pud;
2637         unsigned long next;
2638         int err = 0;
2639
2640         if (create) {
2641                 pud = pud_alloc_track(mm, p4d, addr, mask);
2642                 if (!pud)
2643                         return -ENOMEM;
2644         } else {
2645                 pud = pud_offset(p4d, addr);
2646         }
2647         do {
2648                 next = pud_addr_end(addr, end);
2649                 if (pud_none(*pud) && !create)
2650                         continue;
2651                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2652                         return -EINVAL;
2653                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2654                         if (!create)
2655                                 continue;
2656                         pud_clear_bad(pud);
2657                 }
2658                 err = apply_to_pmd_range(mm, pud, addr, next,
2659                                          fn, data, create, mask);
2660                 if (err)
2661                         break;
2662         } while (pud++, addr = next, addr != end);
2663
2664         return err;
2665 }
2666
2667 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2668                                      unsigned long addr, unsigned long end,
2669                                      pte_fn_t fn, void *data, bool create,
2670                                      pgtbl_mod_mask *mask)
2671 {
2672         p4d_t *p4d;
2673         unsigned long next;
2674         int err = 0;
2675
2676         if (create) {
2677                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2678                 if (!p4d)
2679                         return -ENOMEM;
2680         } else {
2681                 p4d = p4d_offset(pgd, addr);
2682         }
2683         do {
2684                 next = p4d_addr_end(addr, end);
2685                 if (p4d_none(*p4d) && !create)
2686                         continue;
2687                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2688                         return -EINVAL;
2689                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2690                         if (!create)
2691                                 continue;
2692                         p4d_clear_bad(p4d);
2693                 }
2694                 err = apply_to_pud_range(mm, p4d, addr, next,
2695                                          fn, data, create, mask);
2696                 if (err)
2697                         break;
2698         } while (p4d++, addr = next, addr != end);
2699
2700         return err;
2701 }
2702
2703 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2704                                  unsigned long size, pte_fn_t fn,
2705                                  void *data, bool create)
2706 {
2707         pgd_t *pgd;
2708         unsigned long start = addr, next;
2709         unsigned long end = addr + size;
2710         pgtbl_mod_mask mask = 0;
2711         int err = 0;
2712
2713         if (WARN_ON(addr >= end))
2714                 return -EINVAL;
2715
2716         pgd = pgd_offset(mm, addr);
2717         do {
2718                 next = pgd_addr_end(addr, end);
2719                 if (pgd_none(*pgd) && !create)
2720                         continue;
2721                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2722                         return -EINVAL;
2723                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2724                         if (!create)
2725                                 continue;
2726                         pgd_clear_bad(pgd);
2727                 }
2728                 err = apply_to_p4d_range(mm, pgd, addr, next,
2729                                          fn, data, create, &mask);
2730                 if (err)
2731                         break;
2732         } while (pgd++, addr = next, addr != end);
2733
2734         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2735                 arch_sync_kernel_mappings(start, start + size);
2736
2737         return err;
2738 }
2739
2740 /*
2741  * Scan a region of virtual memory, filling in page tables as necessary
2742  * and calling a provided function on each leaf page table.
2743  */
2744 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2745                         unsigned long size, pte_fn_t fn, void *data)
2746 {
2747         return __apply_to_page_range(mm, addr, size, fn, data, true);
2748 }
2749 EXPORT_SYMBOL_GPL(apply_to_page_range);
2750
2751 /*
2752  * Scan a region of virtual memory, calling a provided function on
2753  * each leaf page table where it exists.
2754  *
2755  * Unlike apply_to_page_range, this does _not_ fill in page tables
2756  * where they are absent.
2757  */
2758 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2759                                  unsigned long size, pte_fn_t fn, void *data)
2760 {
2761         return __apply_to_page_range(mm, addr, size, fn, data, false);
2762 }
2763 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2764
2765 /*
2766  * handle_pte_fault chooses page fault handler according to an entry which was
2767  * read non-atomically.  Before making any commitment, on those architectures
2768  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2769  * parts, do_swap_page must check under lock before unmapping the pte and
2770  * proceeding (but do_wp_page is only called after already making such a check;
2771  * and do_anonymous_page can safely check later on).
2772  */
2773 static inline int pte_unmap_same(struct vm_fault *vmf)
2774 {
2775         int same = 1;
2776 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2777         if (sizeof(pte_t) > sizeof(unsigned long)) {
2778                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2779                 spin_lock(ptl);
2780                 same = pte_same(*vmf->pte, vmf->orig_pte);
2781                 spin_unlock(ptl);
2782         }
2783 #endif
2784         pte_unmap(vmf->pte);
2785         vmf->pte = NULL;
2786         return same;
2787 }
2788
2789 /*
2790  * Return:
2791  *      0:              copied succeeded
2792  *      -EHWPOISON:     copy failed due to hwpoison in source page
2793  *      -EAGAIN:        copied failed (some other reason)
2794  */
2795 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2796                                       struct vm_fault *vmf)
2797 {
2798         int ret;
2799         void *kaddr;
2800         void __user *uaddr;
2801         bool locked = false;
2802         struct vm_area_struct *vma = vmf->vma;
2803         struct mm_struct *mm = vma->vm_mm;
2804         unsigned long addr = vmf->address;
2805
2806         if (likely(src)) {
2807                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2808                         memory_failure_queue(page_to_pfn(src), 0);
2809                         return -EHWPOISON;
2810                 }
2811                 return 0;
2812         }
2813
2814         /*
2815          * If the source page was a PFN mapping, we don't have
2816          * a "struct page" for it. We do a best-effort copy by
2817          * just copying from the original user address. If that
2818          * fails, we just zero-fill it. Live with it.
2819          */
2820         kaddr = kmap_atomic(dst);
2821         uaddr = (void __user *)(addr & PAGE_MASK);
2822
2823         /*
2824          * On architectures with software "accessed" bits, we would
2825          * take a double page fault, so mark it accessed here.
2826          */
2827         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2828                 pte_t entry;
2829
2830                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2831                 locked = true;
2832                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2833                         /*
2834                          * Other thread has already handled the fault
2835                          * and update local tlb only
2836                          */
2837                         update_mmu_tlb(vma, addr, vmf->pte);
2838                         ret = -EAGAIN;
2839                         goto pte_unlock;
2840                 }
2841
2842                 entry = pte_mkyoung(vmf->orig_pte);
2843                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2844                         update_mmu_cache(vma, addr, vmf->pte);
2845         }
2846
2847         /*
2848          * This really shouldn't fail, because the page is there
2849          * in the page tables. But it might just be unreadable,
2850          * in which case we just give up and fill the result with
2851          * zeroes.
2852          */
2853         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2854                 if (locked)
2855                         goto warn;
2856
2857                 /* Re-validate under PTL if the page is still mapped */
2858                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2859                 locked = true;
2860                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2861                         /* The PTE changed under us, update local tlb */
2862                         update_mmu_tlb(vma, addr, vmf->pte);
2863                         ret = -EAGAIN;
2864                         goto pte_unlock;
2865                 }
2866
2867                 /*
2868                  * The same page can be mapped back since last copy attempt.
2869                  * Try to copy again under PTL.
2870                  */
2871                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2872                         /*
2873                          * Give a warn in case there can be some obscure
2874                          * use-case
2875                          */
2876 warn:
2877                         WARN_ON_ONCE(1);
2878                         clear_page(kaddr);
2879                 }
2880         }
2881
2882         ret = 0;
2883
2884 pte_unlock:
2885         if (locked)
2886                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2887         kunmap_atomic(kaddr);
2888         flush_dcache_page(dst);
2889
2890         return ret;
2891 }
2892
2893 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2894 {
2895         struct file *vm_file = vma->vm_file;
2896
2897         if (vm_file)
2898                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2899
2900         /*
2901          * Special mappings (e.g. VDSO) do not have any file so fake
2902          * a default GFP_KERNEL for them.
2903          */
2904         return GFP_KERNEL;
2905 }
2906
2907 /*
2908  * Notify the address space that the page is about to become writable so that
2909  * it can prohibit this or wait for the page to get into an appropriate state.
2910  *
2911  * We do this without the lock held, so that it can sleep if it needs to.
2912  */
2913 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2914 {
2915         vm_fault_t ret;
2916         struct page *page = vmf->page;
2917         unsigned int old_flags = vmf->flags;
2918
2919         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2920
2921         if (vmf->vma->vm_file &&
2922             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2923                 return VM_FAULT_SIGBUS;
2924
2925         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2926         /* Restore original flags so that caller is not surprised */
2927         vmf->flags = old_flags;
2928         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2929                 return ret;
2930         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2931                 lock_page(page);
2932                 if (!page->mapping) {
2933                         unlock_page(page);
2934                         return 0; /* retry */
2935                 }
2936                 ret |= VM_FAULT_LOCKED;
2937         } else
2938                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2939         return ret;
2940 }
2941
2942 /*
2943  * Handle dirtying of a page in shared file mapping on a write fault.
2944  *
2945  * The function expects the page to be locked and unlocks it.
2946  */
2947 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2948 {
2949         struct vm_area_struct *vma = vmf->vma;
2950         struct address_space *mapping;
2951         struct page *page = vmf->page;
2952         bool dirtied;
2953         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2954
2955         dirtied = set_page_dirty(page);
2956         VM_BUG_ON_PAGE(PageAnon(page), page);
2957         /*
2958          * Take a local copy of the address_space - page.mapping may be zeroed
2959          * by truncate after unlock_page().   The address_space itself remains
2960          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2961          * release semantics to prevent the compiler from undoing this copying.
2962          */
2963         mapping = page_rmapping(page);
2964         unlock_page(page);
2965
2966         if (!page_mkwrite)
2967                 file_update_time(vma->vm_file);
2968
2969         /*
2970          * Throttle page dirtying rate down to writeback speed.
2971          *
2972          * mapping may be NULL here because some device drivers do not
2973          * set page.mapping but still dirty their pages
2974          *
2975          * Drop the mmap_lock before waiting on IO, if we can. The file
2976          * is pinning the mapping, as per above.
2977          */
2978         if ((dirtied || page_mkwrite) && mapping) {
2979                 struct file *fpin;
2980
2981                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2982                 balance_dirty_pages_ratelimited(mapping);
2983                 if (fpin) {
2984                         fput(fpin);
2985                         return VM_FAULT_COMPLETED;
2986                 }
2987         }
2988
2989         return 0;
2990 }
2991
2992 /*
2993  * Handle write page faults for pages that can be reused in the current vma
2994  *
2995  * This can happen either due to the mapping being with the VM_SHARED flag,
2996  * or due to us being the last reference standing to the page. In either
2997  * case, all we need to do here is to mark the page as writable and update
2998  * any related book-keeping.
2999  */
3000 static inline void wp_page_reuse(struct vm_fault *vmf)
3001         __releases(vmf->ptl)
3002 {
3003         struct vm_area_struct *vma = vmf->vma;
3004         struct page *page = vmf->page;
3005         pte_t entry;
3006
3007         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3008         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3009
3010         /*
3011          * Clear the pages cpupid information as the existing
3012          * information potentially belongs to a now completely
3013          * unrelated process.
3014          */
3015         if (page)
3016                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3017
3018         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3019         entry = pte_mkyoung(vmf->orig_pte);
3020         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3021         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3022                 update_mmu_cache(vma, vmf->address, vmf->pte);
3023         pte_unmap_unlock(vmf->pte, vmf->ptl);
3024         count_vm_event(PGREUSE);
3025 }
3026
3027 /*
3028  * Handle the case of a page which we actually need to copy to a new page,
3029  * either due to COW or unsharing.
3030  *
3031  * Called with mmap_lock locked and the old page referenced, but
3032  * without the ptl held.
3033  *
3034  * High level logic flow:
3035  *
3036  * - Allocate a page, copy the content of the old page to the new one.
3037  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3038  * - Take the PTL. If the pte changed, bail out and release the allocated page
3039  * - If the pte is still the way we remember it, update the page table and all
3040  *   relevant references. This includes dropping the reference the page-table
3041  *   held to the old page, as well as updating the rmap.
3042  * - In any case, unlock the PTL and drop the reference we took to the old page.
3043  */
3044 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3045 {
3046         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3047         struct vm_area_struct *vma = vmf->vma;
3048         struct mm_struct *mm = vma->vm_mm;
3049         struct folio *old_folio = NULL;
3050         struct folio *new_folio = NULL;
3051         pte_t entry;
3052         int page_copied = 0;
3053         struct mmu_notifier_range range;
3054         int ret;
3055
3056         delayacct_wpcopy_start();
3057
3058         if (vmf->page)
3059                 old_folio = page_folio(vmf->page);
3060         if (unlikely(anon_vma_prepare(vma)))
3061                 goto oom;
3062
3063         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3064                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3065                 if (!new_folio)
3066                         goto oom;
3067         } else {
3068                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3069                                 vmf->address, false);
3070                 if (!new_folio)
3071                         goto oom;
3072
3073                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3074                 if (ret) {
3075                         /*
3076                          * COW failed, if the fault was solved by other,
3077                          * it's fine. If not, userspace would re-fault on
3078                          * the same address and we will handle the fault
3079                          * from the second attempt.
3080                          * The -EHWPOISON case will not be retried.
3081                          */
3082                         folio_put(new_folio);
3083                         if (old_folio)
3084                                 folio_put(old_folio);
3085
3086                         delayacct_wpcopy_end();
3087                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3088                 }
3089                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3090         }
3091
3092         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3093                 goto oom_free_new;
3094         cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
3095
3096         __folio_mark_uptodate(new_folio);
3097
3098         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3099                                 vmf->address & PAGE_MASK,
3100                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3101         mmu_notifier_invalidate_range_start(&range);
3102
3103         /*
3104          * Re-check the pte - we dropped the lock
3105          */
3106         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3107         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3108                 if (old_folio) {
3109                         if (!folio_test_anon(old_folio)) {
3110                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3111                                 inc_mm_counter(mm, MM_ANONPAGES);
3112                         }
3113                 } else {
3114                         inc_mm_counter(mm, MM_ANONPAGES);
3115                 }
3116                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3117                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3118                 entry = pte_sw_mkyoung(entry);
3119                 if (unlikely(unshare)) {
3120                         if (pte_soft_dirty(vmf->orig_pte))
3121                                 entry = pte_mksoft_dirty(entry);
3122                         if (pte_uffd_wp(vmf->orig_pte))
3123                                 entry = pte_mkuffd_wp(entry);
3124                 } else {
3125                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3126                 }
3127
3128                 /*
3129                  * Clear the pte entry and flush it first, before updating the
3130                  * pte with the new entry, to keep TLBs on different CPUs in
3131                  * sync. This code used to set the new PTE then flush TLBs, but
3132                  * that left a window where the new PTE could be loaded into
3133                  * some TLBs while the old PTE remains in others.
3134                  */
3135                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3136                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3137                 folio_add_lru_vma(new_folio, vma);
3138                 /*
3139                  * We call the notify macro here because, when using secondary
3140                  * mmu page tables (such as kvm shadow page tables), we want the
3141                  * new page to be mapped directly into the secondary page table.
3142                  */
3143                 BUG_ON(unshare && pte_write(entry));
3144                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3145                 update_mmu_cache(vma, vmf->address, vmf->pte);
3146                 if (old_folio) {
3147                         /*
3148                          * Only after switching the pte to the new page may
3149                          * we remove the mapcount here. Otherwise another
3150                          * process may come and find the rmap count decremented
3151                          * before the pte is switched to the new page, and
3152                          * "reuse" the old page writing into it while our pte
3153                          * here still points into it and can be read by other
3154                          * threads.
3155                          *
3156                          * The critical issue is to order this
3157                          * page_remove_rmap with the ptp_clear_flush above.
3158                          * Those stores are ordered by (if nothing else,)
3159                          * the barrier present in the atomic_add_negative
3160                          * in page_remove_rmap.
3161                          *
3162                          * Then the TLB flush in ptep_clear_flush ensures that
3163                          * no process can access the old page before the
3164                          * decremented mapcount is visible. And the old page
3165                          * cannot be reused until after the decremented
3166                          * mapcount is visible. So transitively, TLBs to
3167                          * old page will be flushed before it can be reused.
3168                          */
3169                         page_remove_rmap(vmf->page, vma, false);
3170                 }
3171
3172                 /* Free the old page.. */
3173                 new_folio = old_folio;
3174                 page_copied = 1;
3175         } else {
3176                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3177         }
3178
3179         if (new_folio)
3180                 folio_put(new_folio);
3181
3182         pte_unmap_unlock(vmf->pte, vmf->ptl);
3183         /*
3184          * No need to double call mmu_notifier->invalidate_range() callback as
3185          * the above ptep_clear_flush_notify() did already call it.
3186          */
3187         mmu_notifier_invalidate_range_only_end(&range);
3188         if (old_folio) {
3189                 if (page_copied)
3190                         free_swap_cache(&old_folio->page);
3191                 folio_put(old_folio);
3192         }
3193
3194         delayacct_wpcopy_end();
3195         return 0;
3196 oom_free_new:
3197         folio_put(new_folio);
3198 oom:
3199         if (old_folio)
3200                 folio_put(old_folio);
3201
3202         delayacct_wpcopy_end();
3203         return VM_FAULT_OOM;
3204 }
3205
3206 /**
3207  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3208  *                        writeable once the page is prepared
3209  *
3210  * @vmf: structure describing the fault
3211  *
3212  * This function handles all that is needed to finish a write page fault in a
3213  * shared mapping due to PTE being read-only once the mapped page is prepared.
3214  * It handles locking of PTE and modifying it.
3215  *
3216  * The function expects the page to be locked or other protection against
3217  * concurrent faults / writeback (such as DAX radix tree locks).
3218  *
3219  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3220  * we acquired PTE lock.
3221  */
3222 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3223 {
3224         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3225         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3226                                        &vmf->ptl);
3227         /*
3228          * We might have raced with another page fault while we released the
3229          * pte_offset_map_lock.
3230          */
3231         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3232                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3233                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3234                 return VM_FAULT_NOPAGE;
3235         }
3236         wp_page_reuse(vmf);
3237         return 0;
3238 }
3239
3240 /*
3241  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3242  * mapping
3243  */
3244 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3245 {
3246         struct vm_area_struct *vma = vmf->vma;
3247
3248         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3249                 vm_fault_t ret;
3250
3251                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3252                 vmf->flags |= FAULT_FLAG_MKWRITE;
3253                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3254                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3255                         return ret;
3256                 return finish_mkwrite_fault(vmf);
3257         }
3258         wp_page_reuse(vmf);
3259         return 0;
3260 }
3261
3262 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3263         __releases(vmf->ptl)
3264 {
3265         struct vm_area_struct *vma = vmf->vma;
3266         vm_fault_t ret = 0;
3267
3268         get_page(vmf->page);
3269
3270         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3271                 vm_fault_t tmp;
3272
3273                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3274                 tmp = do_page_mkwrite(vmf);
3275                 if (unlikely(!tmp || (tmp &
3276                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3277                         put_page(vmf->page);
3278                         return tmp;
3279                 }
3280                 tmp = finish_mkwrite_fault(vmf);
3281                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3282                         unlock_page(vmf->page);
3283                         put_page(vmf->page);
3284                         return tmp;
3285                 }
3286         } else {
3287                 wp_page_reuse(vmf);
3288                 lock_page(vmf->page);
3289         }
3290         ret |= fault_dirty_shared_page(vmf);
3291         put_page(vmf->page);
3292
3293         return ret;
3294 }
3295
3296 /*
3297  * This routine handles present pages, when
3298  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3299  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3300  *   (FAULT_FLAG_UNSHARE)
3301  *
3302  * It is done by copying the page to a new address and decrementing the
3303  * shared-page counter for the old page.
3304  *
3305  * Note that this routine assumes that the protection checks have been
3306  * done by the caller (the low-level page fault routine in most cases).
3307  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3308  * done any necessary COW.
3309  *
3310  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3311  * though the page will change only once the write actually happens. This
3312  * avoids a few races, and potentially makes it more efficient.
3313  *
3314  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3315  * but allow concurrent faults), with pte both mapped and locked.
3316  * We return with mmap_lock still held, but pte unmapped and unlocked.
3317  */
3318 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3319         __releases(vmf->ptl)
3320 {
3321         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3322         struct vm_area_struct *vma = vmf->vma;
3323         struct folio *folio = NULL;
3324
3325         if (likely(!unshare)) {
3326                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3327                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3328                         return handle_userfault(vmf, VM_UFFD_WP);
3329                 }
3330
3331                 /*
3332                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3333                  * is flushed in this case before copying.
3334                  */
3335                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3336                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3337                         flush_tlb_page(vmf->vma, vmf->address);
3338         }
3339
3340         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3341
3342         /*
3343          * Shared mapping: we are guaranteed to have VM_WRITE and
3344          * FAULT_FLAG_WRITE set at this point.
3345          */
3346         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3347                 /*
3348                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3349                  * VM_PFNMAP VMA.
3350                  *
3351                  * We should not cow pages in a shared writeable mapping.
3352                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3353                  */
3354                 if (!vmf->page)
3355                         return wp_pfn_shared(vmf);
3356                 return wp_page_shared(vmf);
3357         }
3358
3359         if (vmf->page)
3360                 folio = page_folio(vmf->page);
3361
3362         /*
3363          * Private mapping: create an exclusive anonymous page copy if reuse
3364          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3365          */
3366         if (folio && folio_test_anon(folio)) {
3367                 /*
3368                  * If the page is exclusive to this process we must reuse the
3369                  * page without further checks.
3370                  */
3371                 if (PageAnonExclusive(vmf->page))
3372                         goto reuse;
3373
3374                 /*
3375                  * We have to verify under folio lock: these early checks are
3376                  * just an optimization to avoid locking the folio and freeing
3377                  * the swapcache if there is little hope that we can reuse.
3378                  *
3379                  * KSM doesn't necessarily raise the folio refcount.
3380                  */
3381                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3382                         goto copy;
3383                 if (!folio_test_lru(folio))
3384                         /*
3385                          * Note: We cannot easily detect+handle references from
3386                          * remote LRU pagevecs or references to LRU folios.
3387                          */
3388                         lru_add_drain();
3389                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3390                         goto copy;
3391                 if (!folio_trylock(folio))
3392                         goto copy;
3393                 if (folio_test_swapcache(folio))
3394                         folio_free_swap(folio);
3395                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3396                         folio_unlock(folio);
3397                         goto copy;
3398                 }
3399                 /*
3400                  * Ok, we've got the only folio reference from our mapping
3401                  * and the folio is locked, it's dark out, and we're wearing
3402                  * sunglasses. Hit it.
3403                  */
3404                 page_move_anon_rmap(vmf->page, vma);
3405                 folio_unlock(folio);
3406 reuse:
3407                 if (unlikely(unshare)) {
3408                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3409                         return 0;
3410                 }
3411                 wp_page_reuse(vmf);
3412                 return 0;
3413         }
3414 copy:
3415         /*
3416          * Ok, we need to copy. Oh, well..
3417          */
3418         if (folio)
3419                 folio_get(folio);
3420
3421         pte_unmap_unlock(vmf->pte, vmf->ptl);
3422 #ifdef CONFIG_KSM
3423         if (folio && folio_test_ksm(folio))
3424                 count_vm_event(COW_KSM);
3425 #endif
3426         return wp_page_copy(vmf);
3427 }
3428
3429 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3430                 unsigned long start_addr, unsigned long end_addr,
3431                 struct zap_details *details)
3432 {
3433         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3434 }
3435
3436 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3437                                             pgoff_t first_index,
3438                                             pgoff_t last_index,
3439                                             struct zap_details *details)
3440 {
3441         struct vm_area_struct *vma;
3442         pgoff_t vba, vea, zba, zea;
3443
3444         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3445                 vba = vma->vm_pgoff;
3446                 vea = vba + vma_pages(vma) - 1;
3447                 zba = max(first_index, vba);
3448                 zea = min(last_index, vea);
3449
3450                 unmap_mapping_range_vma(vma,
3451                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3452                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3453                                 details);
3454         }
3455 }
3456
3457 /**
3458  * unmap_mapping_folio() - Unmap single folio from processes.
3459  * @folio: The locked folio to be unmapped.
3460  *
3461  * Unmap this folio from any userspace process which still has it mmaped.
3462  * Typically, for efficiency, the range of nearby pages has already been
3463  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3464  * truncation or invalidation holds the lock on a folio, it may find that
3465  * the page has been remapped again: and then uses unmap_mapping_folio()
3466  * to unmap it finally.
3467  */
3468 void unmap_mapping_folio(struct folio *folio)
3469 {
3470         struct address_space *mapping = folio->mapping;
3471         struct zap_details details = { };
3472         pgoff_t first_index;
3473         pgoff_t last_index;
3474
3475         VM_BUG_ON(!folio_test_locked(folio));
3476
3477         first_index = folio->index;
3478         last_index = folio->index + folio_nr_pages(folio) - 1;
3479
3480         details.even_cows = false;
3481         details.single_folio = folio;
3482         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3483
3484         i_mmap_lock_read(mapping);
3485         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3486                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3487                                          last_index, &details);
3488         i_mmap_unlock_read(mapping);
3489 }
3490
3491 /**
3492  * unmap_mapping_pages() - Unmap pages from processes.
3493  * @mapping: The address space containing pages to be unmapped.
3494  * @start: Index of first page to be unmapped.
3495  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3496  * @even_cows: Whether to unmap even private COWed pages.
3497  *
3498  * Unmap the pages in this address space from any userspace process which
3499  * has them mmaped.  Generally, you want to remove COWed pages as well when
3500  * a file is being truncated, but not when invalidating pages from the page
3501  * cache.
3502  */
3503 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3504                 pgoff_t nr, bool even_cows)
3505 {
3506         struct zap_details details = { };
3507         pgoff_t first_index = start;
3508         pgoff_t last_index = start + nr - 1;
3509
3510         details.even_cows = even_cows;
3511         if (last_index < first_index)
3512                 last_index = ULONG_MAX;
3513
3514         i_mmap_lock_read(mapping);
3515         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3516                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3517                                          last_index, &details);
3518         i_mmap_unlock_read(mapping);
3519 }
3520 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3521
3522 /**
3523  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3524  * address_space corresponding to the specified byte range in the underlying
3525  * file.
3526  *
3527  * @mapping: the address space containing mmaps to be unmapped.
3528  * @holebegin: byte in first page to unmap, relative to the start of
3529  * the underlying file.  This will be rounded down to a PAGE_SIZE
3530  * boundary.  Note that this is different from truncate_pagecache(), which
3531  * must keep the partial page.  In contrast, we must get rid of
3532  * partial pages.
3533  * @holelen: size of prospective hole in bytes.  This will be rounded
3534  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3535  * end of the file.
3536  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3537  * but 0 when invalidating pagecache, don't throw away private data.
3538  */
3539 void unmap_mapping_range(struct address_space *mapping,
3540                 loff_t const holebegin, loff_t const holelen, int even_cows)
3541 {
3542         pgoff_t hba = holebegin >> PAGE_SHIFT;
3543         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3544
3545         /* Check for overflow. */
3546         if (sizeof(holelen) > sizeof(hlen)) {
3547                 long long holeend =
3548                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3549                 if (holeend & ~(long long)ULONG_MAX)
3550                         hlen = ULONG_MAX - hba + 1;
3551         }
3552
3553         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3554 }
3555 EXPORT_SYMBOL(unmap_mapping_range);
3556
3557 /*
3558  * Restore a potential device exclusive pte to a working pte entry
3559  */
3560 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3561 {
3562         struct folio *folio = page_folio(vmf->page);
3563         struct vm_area_struct *vma = vmf->vma;
3564         struct mmu_notifier_range range;
3565
3566         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3567                 return VM_FAULT_RETRY;
3568         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3569                                 vma->vm_mm, vmf->address & PAGE_MASK,
3570                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3571         mmu_notifier_invalidate_range_start(&range);
3572
3573         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3574                                 &vmf->ptl);
3575         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3576                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3577
3578         pte_unmap_unlock(vmf->pte, vmf->ptl);
3579         folio_unlock(folio);
3580
3581         mmu_notifier_invalidate_range_end(&range);
3582         return 0;
3583 }
3584
3585 static inline bool should_try_to_free_swap(struct folio *folio,
3586                                            struct vm_area_struct *vma,
3587                                            unsigned int fault_flags)
3588 {
3589         if (!folio_test_swapcache(folio))
3590                 return false;
3591         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3592             folio_test_mlocked(folio))
3593                 return true;
3594         /*
3595          * If we want to map a page that's in the swapcache writable, we
3596          * have to detect via the refcount if we're really the exclusive
3597          * user. Try freeing the swapcache to get rid of the swapcache
3598          * reference only in case it's likely that we'll be the exlusive user.
3599          */
3600         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3601                 folio_ref_count(folio) == 2;
3602 }
3603
3604 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3605 {
3606         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3607                                        vmf->address, &vmf->ptl);
3608         /*
3609          * Be careful so that we will only recover a special uffd-wp pte into a
3610          * none pte.  Otherwise it means the pte could have changed, so retry.
3611          *
3612          * This should also cover the case where e.g. the pte changed
3613          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3614          * So is_pte_marker() check is not enough to safely drop the pte.
3615          */
3616         if (pte_same(vmf->orig_pte, *vmf->pte))
3617                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3618         pte_unmap_unlock(vmf->pte, vmf->ptl);
3619         return 0;
3620 }
3621
3622 /*
3623  * This is actually a page-missing access, but with uffd-wp special pte
3624  * installed.  It means this pte was wr-protected before being unmapped.
3625  */
3626 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3627 {
3628         /*
3629          * Just in case there're leftover special ptes even after the region
3630          * got unregistered - we can simply clear them.
3631          */
3632         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3633                 return pte_marker_clear(vmf);
3634
3635         /* do_fault() can handle pte markers too like none pte */
3636         return do_fault(vmf);
3637 }
3638
3639 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3640 {
3641         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3642         unsigned long marker = pte_marker_get(entry);
3643
3644         /*
3645          * PTE markers should never be empty.  If anything weird happened,
3646          * the best thing to do is to kill the process along with its mm.
3647          */
3648         if (WARN_ON_ONCE(!marker))
3649                 return VM_FAULT_SIGBUS;
3650
3651         /* Higher priority than uffd-wp when data corrupted */
3652         if (marker & PTE_MARKER_SWAPIN_ERROR)
3653                 return VM_FAULT_SIGBUS;
3654
3655         if (pte_marker_entry_uffd_wp(entry))
3656                 return pte_marker_handle_uffd_wp(vmf);
3657
3658         /* This is an unknown pte marker */
3659         return VM_FAULT_SIGBUS;
3660 }
3661
3662 /*
3663  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3664  * but allow concurrent faults), and pte mapped but not yet locked.
3665  * We return with pte unmapped and unlocked.
3666  *
3667  * We return with the mmap_lock locked or unlocked in the same cases
3668  * as does filemap_fault().
3669  */
3670 vm_fault_t do_swap_page(struct vm_fault *vmf)
3671 {
3672         struct vm_area_struct *vma = vmf->vma;
3673         struct folio *swapcache, *folio = NULL;
3674         struct page *page;
3675         struct swap_info_struct *si = NULL;
3676         rmap_t rmap_flags = RMAP_NONE;
3677         bool exclusive = false;
3678         swp_entry_t entry;
3679         pte_t pte;
3680         int locked;
3681         vm_fault_t ret = 0;
3682         void *shadow = NULL;
3683
3684         if (!pte_unmap_same(vmf))
3685                 goto out;
3686
3687         entry = pte_to_swp_entry(vmf->orig_pte);
3688         if (unlikely(non_swap_entry(entry))) {
3689                 if (is_migration_entry(entry)) {
3690                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3691                                              vmf->address);
3692                 } else if (is_device_exclusive_entry(entry)) {
3693                         vmf->page = pfn_swap_entry_to_page(entry);
3694                         ret = remove_device_exclusive_entry(vmf);
3695                 } else if (is_device_private_entry(entry)) {
3696                         vmf->page = pfn_swap_entry_to_page(entry);
3697                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3698                                         vmf->address, &vmf->ptl);
3699                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3700                                 spin_unlock(vmf->ptl);
3701                                 goto out;
3702                         }
3703
3704                         /*
3705                          * Get a page reference while we know the page can't be
3706                          * freed.
3707                          */
3708                         get_page(vmf->page);
3709                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3710                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3711                         put_page(vmf->page);
3712                 } else if (is_hwpoison_entry(entry)) {
3713                         ret = VM_FAULT_HWPOISON;
3714                 } else if (is_pte_marker_entry(entry)) {
3715                         ret = handle_pte_marker(vmf);
3716                 } else {
3717                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3718                         ret = VM_FAULT_SIGBUS;
3719                 }
3720                 goto out;
3721         }
3722
3723         /* Prevent swapoff from happening to us. */
3724         si = get_swap_device(entry);
3725         if (unlikely(!si))
3726                 goto out;
3727
3728         folio = swap_cache_get_folio(entry, vma, vmf->address);
3729         if (folio)
3730                 page = folio_file_page(folio, swp_offset(entry));
3731         swapcache = folio;
3732
3733         if (!folio) {
3734                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3735                     __swap_count(entry) == 1) {
3736                         /* skip swapcache */
3737                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3738                                                 vma, vmf->address, false);
3739                         page = &folio->page;
3740                         if (folio) {
3741                                 __folio_set_locked(folio);
3742                                 __folio_set_swapbacked(folio);
3743
3744                                 if (mem_cgroup_swapin_charge_folio(folio,
3745                                                         vma->vm_mm, GFP_KERNEL,
3746                                                         entry)) {
3747                                         ret = VM_FAULT_OOM;
3748                                         goto out_page;
3749                                 }
3750                                 mem_cgroup_swapin_uncharge_swap(entry);
3751
3752                                 shadow = get_shadow_from_swap_cache(entry);
3753                                 if (shadow)
3754                                         workingset_refault(folio, shadow);
3755
3756                                 folio_add_lru(folio);
3757
3758                                 /* To provide entry to swap_readpage() */
3759                                 folio_set_swap_entry(folio, entry);
3760                                 swap_readpage(page, true, NULL);
3761                                 folio->private = NULL;
3762                         }
3763                 } else {
3764                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3765                                                 vmf);
3766                         if (page)
3767                                 folio = page_folio(page);
3768                         swapcache = folio;
3769                 }
3770
3771                 if (!folio) {
3772                         /*
3773                          * Back out if somebody else faulted in this pte
3774                          * while we released the pte lock.
3775                          */
3776                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3777                                         vmf->address, &vmf->ptl);
3778                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3779                                 ret = VM_FAULT_OOM;
3780                         goto unlock;
3781                 }
3782
3783                 /* Had to read the page from swap area: Major fault */
3784                 ret = VM_FAULT_MAJOR;
3785                 count_vm_event(PGMAJFAULT);
3786                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3787         } else if (PageHWPoison(page)) {
3788                 /*
3789                  * hwpoisoned dirty swapcache pages are kept for killing
3790                  * owner processes (which may be unknown at hwpoison time)
3791                  */
3792                 ret = VM_FAULT_HWPOISON;
3793                 goto out_release;
3794         }
3795
3796         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3797
3798         if (!locked) {
3799                 ret |= VM_FAULT_RETRY;
3800                 goto out_release;
3801         }
3802
3803         if (swapcache) {
3804                 /*
3805                  * Make sure folio_free_swap() or swapoff did not release the
3806                  * swapcache from under us.  The page pin, and pte_same test
3807                  * below, are not enough to exclude that.  Even if it is still
3808                  * swapcache, we need to check that the page's swap has not
3809                  * changed.
3810                  */
3811                 if (unlikely(!folio_test_swapcache(folio) ||
3812                              page_private(page) != entry.val))
3813                         goto out_page;
3814
3815                 /*
3816                  * KSM sometimes has to copy on read faults, for example, if
3817                  * page->index of !PageKSM() pages would be nonlinear inside the
3818                  * anon VMA -- PageKSM() is lost on actual swapout.
3819                  */
3820                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3821                 if (unlikely(!page)) {
3822                         ret = VM_FAULT_OOM;
3823                         goto out_page;
3824                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3825                         ret = VM_FAULT_HWPOISON;
3826                         goto out_page;
3827                 }
3828                 folio = page_folio(page);
3829
3830                 /*
3831                  * If we want to map a page that's in the swapcache writable, we
3832                  * have to detect via the refcount if we're really the exclusive
3833                  * owner. Try removing the extra reference from the local LRU
3834                  * pagevecs if required.
3835                  */
3836                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3837                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3838                         lru_add_drain();
3839         }
3840
3841         cgroup_throttle_swaprate(page, GFP_KERNEL);
3842
3843         /*
3844          * Back out if somebody else already faulted in this pte.
3845          */
3846         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3847                         &vmf->ptl);
3848         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3849                 goto out_nomap;
3850
3851         if (unlikely(!folio_test_uptodate(folio))) {
3852                 ret = VM_FAULT_SIGBUS;
3853                 goto out_nomap;
3854         }
3855
3856         /*
3857          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3858          * must never point at an anonymous page in the swapcache that is
3859          * PG_anon_exclusive. Sanity check that this holds and especially, that
3860          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3861          * check after taking the PT lock and making sure that nobody
3862          * concurrently faulted in this page and set PG_anon_exclusive.
3863          */
3864         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3865         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3866
3867         /*
3868          * Check under PT lock (to protect against concurrent fork() sharing
3869          * the swap entry concurrently) for certainly exclusive pages.
3870          */
3871         if (!folio_test_ksm(folio)) {
3872                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3873                 if (folio != swapcache) {
3874                         /*
3875                          * We have a fresh page that is not exposed to the
3876                          * swapcache -> certainly exclusive.
3877                          */
3878                         exclusive = true;
3879                 } else if (exclusive && folio_test_writeback(folio) &&
3880                           data_race(si->flags & SWP_STABLE_WRITES)) {
3881                         /*
3882                          * This is tricky: not all swap backends support
3883                          * concurrent page modifications while under writeback.
3884                          *
3885                          * So if we stumble over such a page in the swapcache
3886                          * we must not set the page exclusive, otherwise we can
3887                          * map it writable without further checks and modify it
3888                          * while still under writeback.
3889                          *
3890                          * For these problematic swap backends, simply drop the
3891                          * exclusive marker: this is perfectly fine as we start
3892                          * writeback only if we fully unmapped the page and
3893                          * there are no unexpected references on the page after
3894                          * unmapping succeeded. After fully unmapped, no
3895                          * further GUP references (FOLL_GET and FOLL_PIN) can
3896                          * appear, so dropping the exclusive marker and mapping
3897                          * it only R/O is fine.
3898                          */
3899                         exclusive = false;
3900                 }
3901         }
3902
3903         /*
3904          * Remove the swap entry and conditionally try to free up the swapcache.
3905          * We're already holding a reference on the page but haven't mapped it
3906          * yet.
3907          */
3908         swap_free(entry);
3909         if (should_try_to_free_swap(folio, vma, vmf->flags))
3910                 folio_free_swap(folio);
3911
3912         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3913         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3914         pte = mk_pte(page, vma->vm_page_prot);
3915
3916         /*
3917          * Same logic as in do_wp_page(); however, optimize for pages that are
3918          * certainly not shared either because we just allocated them without
3919          * exposing them to the swapcache or because the swap entry indicates
3920          * exclusivity.
3921          */
3922         if (!folio_test_ksm(folio) &&
3923             (exclusive || folio_ref_count(folio) == 1)) {
3924                 if (vmf->flags & FAULT_FLAG_WRITE) {
3925                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3926                         vmf->flags &= ~FAULT_FLAG_WRITE;
3927                 }
3928                 rmap_flags |= RMAP_EXCLUSIVE;
3929         }
3930         flush_icache_page(vma, page);
3931         if (pte_swp_soft_dirty(vmf->orig_pte))
3932                 pte = pte_mksoft_dirty(pte);
3933         if (pte_swp_uffd_wp(vmf->orig_pte))
3934                 pte = pte_mkuffd_wp(pte);
3935         vmf->orig_pte = pte;
3936
3937         /* ksm created a completely new copy */
3938         if (unlikely(folio != swapcache && swapcache)) {
3939                 page_add_new_anon_rmap(page, vma, vmf->address);
3940                 folio_add_lru_vma(folio, vma);
3941         } else {
3942                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3943         }
3944
3945         VM_BUG_ON(!folio_test_anon(folio) ||
3946                         (pte_write(pte) && !PageAnonExclusive(page)));
3947         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3948         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3949
3950         folio_unlock(folio);
3951         if (folio != swapcache && swapcache) {
3952                 /*
3953                  * Hold the lock to avoid the swap entry to be reused
3954                  * until we take the PT lock for the pte_same() check
3955                  * (to avoid false positives from pte_same). For
3956                  * further safety release the lock after the swap_free
3957                  * so that the swap count won't change under a
3958                  * parallel locked swapcache.
3959                  */
3960                 folio_unlock(swapcache);
3961                 folio_put(swapcache);
3962         }
3963
3964         if (vmf->flags & FAULT_FLAG_WRITE) {
3965                 ret |= do_wp_page(vmf);
3966                 if (ret & VM_FAULT_ERROR)
3967                         ret &= VM_FAULT_ERROR;
3968                 goto out;
3969         }
3970
3971         /* No need to invalidate - it was non-present before */
3972         update_mmu_cache(vma, vmf->address, vmf->pte);
3973 unlock:
3974         pte_unmap_unlock(vmf->pte, vmf->ptl);
3975 out:
3976         if (si)
3977                 put_swap_device(si);
3978         return ret;
3979 out_nomap:
3980         pte_unmap_unlock(vmf->pte, vmf->ptl);
3981 out_page:
3982         folio_unlock(folio);
3983 out_release:
3984         folio_put(folio);
3985         if (folio != swapcache && swapcache) {
3986                 folio_unlock(swapcache);
3987                 folio_put(swapcache);
3988         }
3989         if (si)
3990                 put_swap_device(si);
3991         return ret;
3992 }
3993
3994 /*
3995  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3996  * but allow concurrent faults), and pte mapped but not yet locked.
3997  * We return with mmap_lock still held, but pte unmapped and unlocked.
3998  */
3999 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4000 {
4001         struct vm_area_struct *vma = vmf->vma;
4002         struct folio *folio;
4003         vm_fault_t ret = 0;
4004         pte_t entry;
4005
4006         /* File mapping without ->vm_ops ? */
4007         if (vma->vm_flags & VM_SHARED)
4008                 return VM_FAULT_SIGBUS;
4009
4010         /*
4011          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4012          * pte_offset_map() on pmds where a huge pmd might be created
4013          * from a different thread.
4014          *
4015          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4016          * parallel threads are excluded by other means.
4017          *
4018          * Here we only have mmap_read_lock(mm).
4019          */
4020         if (pte_alloc(vma->vm_mm, vmf->pmd))
4021                 return VM_FAULT_OOM;
4022
4023         /* See comment in handle_pte_fault() */
4024         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4025                 return 0;
4026
4027         /* Use the zero-page for reads */
4028         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4029                         !mm_forbids_zeropage(vma->vm_mm)) {
4030                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4031                                                 vma->vm_page_prot));
4032                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4033                                 vmf->address, &vmf->ptl);
4034                 if (!pte_none(*vmf->pte)) {
4035                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4036                         goto unlock;
4037                 }
4038                 ret = check_stable_address_space(vma->vm_mm);
4039                 if (ret)
4040                         goto unlock;
4041                 /* Deliver the page fault to userland, check inside PT lock */
4042                 if (userfaultfd_missing(vma)) {
4043                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4044                         return handle_userfault(vmf, VM_UFFD_MISSING);
4045                 }
4046                 goto setpte;
4047         }
4048
4049         /* Allocate our own private page. */
4050         if (unlikely(anon_vma_prepare(vma)))
4051                 goto oom;
4052         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4053         if (!folio)
4054                 goto oom;
4055
4056         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4057                 goto oom_free_page;
4058         cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
4059
4060         /*
4061          * The memory barrier inside __folio_mark_uptodate makes sure that
4062          * preceding stores to the page contents become visible before
4063          * the set_pte_at() write.
4064          */
4065         __folio_mark_uptodate(folio);
4066
4067         entry = mk_pte(&folio->page, vma->vm_page_prot);
4068         entry = pte_sw_mkyoung(entry);
4069         if (vma->vm_flags & VM_WRITE)
4070                 entry = pte_mkwrite(pte_mkdirty(entry));
4071
4072         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4073                         &vmf->ptl);
4074         if (!pte_none(*vmf->pte)) {
4075                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4076                 goto release;
4077         }
4078
4079         ret = check_stable_address_space(vma->vm_mm);
4080         if (ret)
4081                 goto release;
4082
4083         /* Deliver the page fault to userland, check inside PT lock */
4084         if (userfaultfd_missing(vma)) {
4085                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4086                 folio_put(folio);
4087                 return handle_userfault(vmf, VM_UFFD_MISSING);
4088         }
4089
4090         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4091         folio_add_new_anon_rmap(folio, vma, vmf->address);
4092         folio_add_lru_vma(folio, vma);
4093 setpte:
4094         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4095
4096         /* No need to invalidate - it was non-present before */
4097         update_mmu_cache(vma, vmf->address, vmf->pte);
4098 unlock:
4099         pte_unmap_unlock(vmf->pte, vmf->ptl);
4100         return ret;
4101 release:
4102         folio_put(folio);
4103         goto unlock;
4104 oom_free_page:
4105         folio_put(folio);
4106 oom:
4107         return VM_FAULT_OOM;
4108 }
4109
4110 /*
4111  * The mmap_lock must have been held on entry, and may have been
4112  * released depending on flags and vma->vm_ops->fault() return value.
4113  * See filemap_fault() and __lock_page_retry().
4114  */
4115 static vm_fault_t __do_fault(struct vm_fault *vmf)
4116 {
4117         struct vm_area_struct *vma = vmf->vma;
4118         vm_fault_t ret;
4119
4120         /*
4121          * Preallocate pte before we take page_lock because this might lead to
4122          * deadlocks for memcg reclaim which waits for pages under writeback:
4123          *                              lock_page(A)
4124          *                              SetPageWriteback(A)
4125          *                              unlock_page(A)
4126          * lock_page(B)
4127          *                              lock_page(B)
4128          * pte_alloc_one
4129          *   shrink_page_list
4130          *     wait_on_page_writeback(A)
4131          *                              SetPageWriteback(B)
4132          *                              unlock_page(B)
4133          *                              # flush A, B to clear the writeback
4134          */
4135         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4136                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4137                 if (!vmf->prealloc_pte)
4138                         return VM_FAULT_OOM;
4139         }
4140
4141         ret = vma->vm_ops->fault(vmf);
4142         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4143                             VM_FAULT_DONE_COW)))
4144                 return ret;
4145
4146         if (unlikely(PageHWPoison(vmf->page))) {
4147                 struct page *page = vmf->page;
4148                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4149                 if (ret & VM_FAULT_LOCKED) {
4150                         if (page_mapped(page))
4151                                 unmap_mapping_pages(page_mapping(page),
4152                                                     page->index, 1, false);
4153                         /* Retry if a clean page was removed from the cache. */
4154                         if (invalidate_inode_page(page))
4155                                 poisonret = VM_FAULT_NOPAGE;
4156                         unlock_page(page);
4157                 }
4158                 put_page(page);
4159                 vmf->page = NULL;
4160                 return poisonret;
4161         }
4162
4163         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4164                 lock_page(vmf->page);
4165         else
4166                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4167
4168         return ret;
4169 }
4170
4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4172 static void deposit_prealloc_pte(struct vm_fault *vmf)
4173 {
4174         struct vm_area_struct *vma = vmf->vma;
4175
4176         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4177         /*
4178          * We are going to consume the prealloc table,
4179          * count that as nr_ptes.
4180          */
4181         mm_inc_nr_ptes(vma->vm_mm);
4182         vmf->prealloc_pte = NULL;
4183 }
4184
4185 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4186 {
4187         struct vm_area_struct *vma = vmf->vma;
4188         bool write = vmf->flags & FAULT_FLAG_WRITE;
4189         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4190         pmd_t entry;
4191         int i;
4192         vm_fault_t ret = VM_FAULT_FALLBACK;
4193
4194         if (!transhuge_vma_suitable(vma, haddr))
4195                 return ret;
4196
4197         page = compound_head(page);
4198         if (compound_order(page) != HPAGE_PMD_ORDER)
4199                 return ret;
4200
4201         /*
4202          * Just backoff if any subpage of a THP is corrupted otherwise
4203          * the corrupted page may mapped by PMD silently to escape the
4204          * check.  This kind of THP just can be PTE mapped.  Access to
4205          * the corrupted subpage should trigger SIGBUS as expected.
4206          */
4207         if (unlikely(PageHasHWPoisoned(page)))
4208                 return ret;
4209
4210         /*
4211          * Archs like ppc64 need additional space to store information
4212          * related to pte entry. Use the preallocated table for that.
4213          */
4214         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4215                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4216                 if (!vmf->prealloc_pte)
4217                         return VM_FAULT_OOM;
4218         }
4219
4220         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4221         if (unlikely(!pmd_none(*vmf->pmd)))
4222                 goto out;
4223
4224         for (i = 0; i < HPAGE_PMD_NR; i++)
4225                 flush_icache_page(vma, page + i);
4226
4227         entry = mk_huge_pmd(page, vma->vm_page_prot);
4228         if (write)
4229                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4230
4231         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4232         page_add_file_rmap(page, vma, true);
4233
4234         /*
4235          * deposit and withdraw with pmd lock held
4236          */
4237         if (arch_needs_pgtable_deposit())
4238                 deposit_prealloc_pte(vmf);
4239
4240         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4241
4242         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4243
4244         /* fault is handled */
4245         ret = 0;
4246         count_vm_event(THP_FILE_MAPPED);
4247 out:
4248         spin_unlock(vmf->ptl);
4249         return ret;
4250 }
4251 #else
4252 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4253 {
4254         return VM_FAULT_FALLBACK;
4255 }
4256 #endif
4257
4258 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4259 {
4260         struct vm_area_struct *vma = vmf->vma;
4261         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4262         bool write = vmf->flags & FAULT_FLAG_WRITE;
4263         bool prefault = vmf->address != addr;
4264         pte_t entry;
4265
4266         flush_icache_page(vma, page);
4267         entry = mk_pte(page, vma->vm_page_prot);
4268
4269         if (prefault && arch_wants_old_prefaulted_pte())
4270                 entry = pte_mkold(entry);
4271         else
4272                 entry = pte_sw_mkyoung(entry);
4273
4274         if (write)
4275                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4276         if (unlikely(uffd_wp))
4277                 entry = pte_mkuffd_wp(entry);
4278         /* copy-on-write page */
4279         if (write && !(vma->vm_flags & VM_SHARED)) {
4280                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4281                 page_add_new_anon_rmap(page, vma, addr);
4282                 lru_cache_add_inactive_or_unevictable(page, vma);
4283         } else {
4284                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4285                 page_add_file_rmap(page, vma, false);
4286         }
4287         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4288 }
4289
4290 static bool vmf_pte_changed(struct vm_fault *vmf)
4291 {
4292         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4293                 return !pte_same(*vmf->pte, vmf->orig_pte);
4294
4295         return !pte_none(*vmf->pte);
4296 }
4297
4298 /**
4299  * finish_fault - finish page fault once we have prepared the page to fault
4300  *
4301  * @vmf: structure describing the fault
4302  *
4303  * This function handles all that is needed to finish a page fault once the
4304  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4305  * given page, adds reverse page mapping, handles memcg charges and LRU
4306  * addition.
4307  *
4308  * The function expects the page to be locked and on success it consumes a
4309  * reference of a page being mapped (for the PTE which maps it).
4310  *
4311  * Return: %0 on success, %VM_FAULT_ code in case of error.
4312  */
4313 vm_fault_t finish_fault(struct vm_fault *vmf)
4314 {
4315         struct vm_area_struct *vma = vmf->vma;
4316         struct page *page;
4317         vm_fault_t ret;
4318
4319         /* Did we COW the page? */
4320         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4321                 page = vmf->cow_page;
4322         else
4323                 page = vmf->page;
4324
4325         /*
4326          * check even for read faults because we might have lost our CoWed
4327          * page
4328          */
4329         if (!(vma->vm_flags & VM_SHARED)) {
4330                 ret = check_stable_address_space(vma->vm_mm);
4331                 if (ret)
4332                         return ret;
4333         }
4334
4335         if (pmd_none(*vmf->pmd)) {
4336                 if (PageTransCompound(page)) {
4337                         ret = do_set_pmd(vmf, page);
4338                         if (ret != VM_FAULT_FALLBACK)
4339                                 return ret;
4340                 }
4341
4342                 if (vmf->prealloc_pte)
4343                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4344                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4345                         return VM_FAULT_OOM;
4346         }
4347
4348         /*
4349          * See comment in handle_pte_fault() for how this scenario happens, we
4350          * need to return NOPAGE so that we drop this page.
4351          */
4352         if (pmd_devmap_trans_unstable(vmf->pmd))
4353                 return VM_FAULT_NOPAGE;
4354
4355         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4356                                       vmf->address, &vmf->ptl);
4357
4358         /* Re-check under ptl */
4359         if (likely(!vmf_pte_changed(vmf))) {
4360                 do_set_pte(vmf, page, vmf->address);
4361
4362                 /* no need to invalidate: a not-present page won't be cached */
4363                 update_mmu_cache(vma, vmf->address, vmf->pte);
4364
4365                 ret = 0;
4366         } else {
4367                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4368                 ret = VM_FAULT_NOPAGE;
4369         }
4370
4371         pte_unmap_unlock(vmf->pte, vmf->ptl);
4372         return ret;
4373 }
4374
4375 static unsigned long fault_around_bytes __read_mostly =
4376         rounddown_pow_of_two(65536);
4377
4378 #ifdef CONFIG_DEBUG_FS
4379 static int fault_around_bytes_get(void *data, u64 *val)
4380 {
4381         *val = fault_around_bytes;
4382         return 0;
4383 }
4384
4385 /*
4386  * fault_around_bytes must be rounded down to the nearest page order as it's
4387  * what do_fault_around() expects to see.
4388  */
4389 static int fault_around_bytes_set(void *data, u64 val)
4390 {
4391         if (val / PAGE_SIZE > PTRS_PER_PTE)
4392                 return -EINVAL;
4393         if (val > PAGE_SIZE)
4394                 fault_around_bytes = rounddown_pow_of_two(val);
4395         else
4396                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4397         return 0;
4398 }
4399 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4400                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4401
4402 static int __init fault_around_debugfs(void)
4403 {
4404         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4405                                    &fault_around_bytes_fops);
4406         return 0;
4407 }
4408 late_initcall(fault_around_debugfs);
4409 #endif
4410
4411 /*
4412  * do_fault_around() tries to map few pages around the fault address. The hope
4413  * is that the pages will be needed soon and this will lower the number of
4414  * faults to handle.
4415  *
4416  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4417  * not ready to be mapped: not up-to-date, locked, etc.
4418  *
4419  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4420  * only once.
4421  *
4422  * fault_around_bytes defines how many bytes we'll try to map.
4423  * do_fault_around() expects it to be set to a power of two less than or equal
4424  * to PTRS_PER_PTE.
4425  *
4426  * The virtual address of the area that we map is naturally aligned to
4427  * fault_around_bytes rounded down to the machine page size
4428  * (and therefore to page order).  This way it's easier to guarantee
4429  * that we don't cross page table boundaries.
4430  */
4431 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4432 {
4433         unsigned long address = vmf->address, nr_pages, mask;
4434         pgoff_t start_pgoff = vmf->pgoff;
4435         pgoff_t end_pgoff;
4436         int off;
4437
4438         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4439         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4440
4441         address = max(address & mask, vmf->vma->vm_start);
4442         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4443         start_pgoff -= off;
4444
4445         /*
4446          *  end_pgoff is either the end of the page table, the end of
4447          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4448          */
4449         end_pgoff = start_pgoff -
4450                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4451                 PTRS_PER_PTE - 1;
4452         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4453                         start_pgoff + nr_pages - 1);
4454
4455         if (pmd_none(*vmf->pmd)) {
4456                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4457                 if (!vmf->prealloc_pte)
4458                         return VM_FAULT_OOM;
4459         }
4460
4461         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4462 }
4463
4464 /* Return true if we should do read fault-around, false otherwise */
4465 static inline bool should_fault_around(struct vm_fault *vmf)
4466 {
4467         /* No ->map_pages?  No way to fault around... */
4468         if (!vmf->vma->vm_ops->map_pages)
4469                 return false;
4470
4471         if (uffd_disable_fault_around(vmf->vma))
4472                 return false;
4473
4474         return fault_around_bytes >> PAGE_SHIFT > 1;
4475 }
4476
4477 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4478 {
4479         vm_fault_t ret = 0;
4480
4481         /*
4482          * Let's call ->map_pages() first and use ->fault() as fallback
4483          * if page by the offset is not ready to be mapped (cold cache or
4484          * something).
4485          */
4486         if (should_fault_around(vmf)) {
4487                 ret = do_fault_around(vmf);
4488                 if (ret)
4489                         return ret;
4490         }
4491
4492         ret = __do_fault(vmf);
4493         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4494                 return ret;
4495
4496         ret |= finish_fault(vmf);
4497         unlock_page(vmf->page);
4498         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4499                 put_page(vmf->page);
4500         return ret;
4501 }
4502
4503 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4504 {
4505         struct vm_area_struct *vma = vmf->vma;
4506         vm_fault_t ret;
4507
4508         if (unlikely(anon_vma_prepare(vma)))
4509                 return VM_FAULT_OOM;
4510
4511         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4512         if (!vmf->cow_page)
4513                 return VM_FAULT_OOM;
4514
4515         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4516                                 GFP_KERNEL)) {
4517                 put_page(vmf->cow_page);
4518                 return VM_FAULT_OOM;
4519         }
4520         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4521
4522         ret = __do_fault(vmf);
4523         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4524                 goto uncharge_out;
4525         if (ret & VM_FAULT_DONE_COW)
4526                 return ret;
4527
4528         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4529         __SetPageUptodate(vmf->cow_page);
4530
4531         ret |= finish_fault(vmf);
4532         unlock_page(vmf->page);
4533         put_page(vmf->page);
4534         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4535                 goto uncharge_out;
4536         return ret;
4537 uncharge_out:
4538         put_page(vmf->cow_page);
4539         return ret;
4540 }
4541
4542 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4543 {
4544         struct vm_area_struct *vma = vmf->vma;
4545         vm_fault_t ret, tmp;
4546
4547         ret = __do_fault(vmf);
4548         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549                 return ret;
4550
4551         /*
4552          * Check if the backing address space wants to know that the page is
4553          * about to become writable
4554          */
4555         if (vma->vm_ops->page_mkwrite) {
4556                 unlock_page(vmf->page);
4557                 tmp = do_page_mkwrite(vmf);
4558                 if (unlikely(!tmp ||
4559                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4560                         put_page(vmf->page);
4561                         return tmp;
4562                 }
4563         }
4564
4565         ret |= finish_fault(vmf);
4566         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4567                                         VM_FAULT_RETRY))) {
4568                 unlock_page(vmf->page);
4569                 put_page(vmf->page);
4570                 return ret;
4571         }
4572
4573         ret |= fault_dirty_shared_page(vmf);
4574         return ret;
4575 }
4576
4577 /*
4578  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4579  * but allow concurrent faults).
4580  * The mmap_lock may have been released depending on flags and our
4581  * return value.  See filemap_fault() and __folio_lock_or_retry().
4582  * If mmap_lock is released, vma may become invalid (for example
4583  * by other thread calling munmap()).
4584  */
4585 static vm_fault_t do_fault(struct vm_fault *vmf)
4586 {
4587         struct vm_area_struct *vma = vmf->vma;
4588         struct mm_struct *vm_mm = vma->vm_mm;
4589         vm_fault_t ret;
4590
4591         /*
4592          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4593          */
4594         if (!vma->vm_ops->fault) {
4595                 /*
4596                  * If we find a migration pmd entry or a none pmd entry, which
4597                  * should never happen, return SIGBUS
4598                  */
4599                 if (unlikely(!pmd_present(*vmf->pmd)))
4600                         ret = VM_FAULT_SIGBUS;
4601                 else {
4602                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4603                                                        vmf->pmd,
4604                                                        vmf->address,
4605                                                        &vmf->ptl);
4606                         /*
4607                          * Make sure this is not a temporary clearing of pte
4608                          * by holding ptl and checking again. A R/M/W update
4609                          * of pte involves: take ptl, clearing the pte so that
4610                          * we don't have concurrent modification by hardware
4611                          * followed by an update.
4612                          */
4613                         if (unlikely(pte_none(*vmf->pte)))
4614                                 ret = VM_FAULT_SIGBUS;
4615                         else
4616                                 ret = VM_FAULT_NOPAGE;
4617
4618                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4619                 }
4620         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4621                 ret = do_read_fault(vmf);
4622         else if (!(vma->vm_flags & VM_SHARED))
4623                 ret = do_cow_fault(vmf);
4624         else
4625                 ret = do_shared_fault(vmf);
4626
4627         /* preallocated pagetable is unused: free it */
4628         if (vmf->prealloc_pte) {
4629                 pte_free(vm_mm, vmf->prealloc_pte);
4630                 vmf->prealloc_pte = NULL;
4631         }
4632         return ret;
4633 }
4634
4635 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4636                       unsigned long addr, int page_nid, int *flags)
4637 {
4638         get_page(page);
4639
4640         count_vm_numa_event(NUMA_HINT_FAULTS);
4641         if (page_nid == numa_node_id()) {
4642                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4643                 *flags |= TNF_FAULT_LOCAL;
4644         }
4645
4646         return mpol_misplaced(page, vma, addr);
4647 }
4648
4649 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4650 {
4651         struct vm_area_struct *vma = vmf->vma;
4652         struct page *page = NULL;
4653         int page_nid = NUMA_NO_NODE;
4654         bool writable = false;
4655         int last_cpupid;
4656         int target_nid;
4657         pte_t pte, old_pte;
4658         int flags = 0;
4659
4660         /*
4661          * The "pte" at this point cannot be used safely without
4662          * validation through pte_unmap_same(). It's of NUMA type but
4663          * the pfn may be screwed if the read is non atomic.
4664          */
4665         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4666         spin_lock(vmf->ptl);
4667         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4668                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4669                 goto out;
4670         }
4671
4672         /* Get the normal PTE  */
4673         old_pte = ptep_get(vmf->pte);
4674         pte = pte_modify(old_pte, vma->vm_page_prot);
4675
4676         /*
4677          * Detect now whether the PTE could be writable; this information
4678          * is only valid while holding the PT lock.
4679          */
4680         writable = pte_write(pte);
4681         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4682             can_change_pte_writable(vma, vmf->address, pte))
4683                 writable = true;
4684
4685         page = vm_normal_page(vma, vmf->address, pte);
4686         if (!page || is_zone_device_page(page))
4687                 goto out_map;
4688
4689         /* TODO: handle PTE-mapped THP */
4690         if (PageCompound(page))
4691                 goto out_map;
4692
4693         /*
4694          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4695          * much anyway since they can be in shared cache state. This misses
4696          * the case where a mapping is writable but the process never writes
4697          * to it but pte_write gets cleared during protection updates and
4698          * pte_dirty has unpredictable behaviour between PTE scan updates,
4699          * background writeback, dirty balancing and application behaviour.
4700          */
4701         if (!writable)
4702                 flags |= TNF_NO_GROUP;
4703
4704         /*
4705          * Flag if the page is shared between multiple address spaces. This
4706          * is later used when determining whether to group tasks together
4707          */
4708         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4709                 flags |= TNF_SHARED;
4710
4711         page_nid = page_to_nid(page);
4712         /*
4713          * For memory tiering mode, cpupid of slow memory page is used
4714          * to record page access time.  So use default value.
4715          */
4716         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4717             !node_is_toptier(page_nid))
4718                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4719         else
4720                 last_cpupid = page_cpupid_last(page);
4721         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4722                         &flags);
4723         if (target_nid == NUMA_NO_NODE) {
4724                 put_page(page);
4725                 goto out_map;
4726         }
4727         pte_unmap_unlock(vmf->pte, vmf->ptl);
4728         writable = false;
4729
4730         /* Migrate to the requested node */
4731         if (migrate_misplaced_page(page, vma, target_nid)) {
4732                 page_nid = target_nid;
4733                 flags |= TNF_MIGRATED;
4734         } else {
4735                 flags |= TNF_MIGRATE_FAIL;
4736                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4737                 spin_lock(vmf->ptl);
4738                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4739                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4740                         goto out;
4741                 }
4742                 goto out_map;
4743         }
4744
4745 out:
4746         if (page_nid != NUMA_NO_NODE)
4747                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4748         return 0;
4749 out_map:
4750         /*
4751          * Make it present again, depending on how arch implements
4752          * non-accessible ptes, some can allow access by kernel mode.
4753          */
4754         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4755         pte = pte_modify(old_pte, vma->vm_page_prot);
4756         pte = pte_mkyoung(pte);
4757         if (writable)
4758                 pte = pte_mkwrite(pte);
4759         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4760         update_mmu_cache(vma, vmf->address, vmf->pte);
4761         pte_unmap_unlock(vmf->pte, vmf->ptl);
4762         goto out;
4763 }
4764
4765 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4766 {
4767         if (vma_is_anonymous(vmf->vma))
4768                 return do_huge_pmd_anonymous_page(vmf);
4769         if (vmf->vma->vm_ops->huge_fault)
4770                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4771         return VM_FAULT_FALLBACK;
4772 }
4773
4774 /* `inline' is required to avoid gcc 4.1.2 build error */
4775 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4776 {
4777         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4778         vm_fault_t ret;
4779
4780         if (vma_is_anonymous(vmf->vma)) {
4781                 if (likely(!unshare) &&
4782                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4783                         return handle_userfault(vmf, VM_UFFD_WP);
4784                 return do_huge_pmd_wp_page(vmf);
4785         }
4786
4787         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4788                 if (vmf->vma->vm_ops->huge_fault) {
4789                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4790                         if (!(ret & VM_FAULT_FALLBACK))
4791                                 return ret;
4792                 }
4793         }
4794
4795         /* COW or write-notify handled on pte level: split pmd. */
4796         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4797
4798         return VM_FAULT_FALLBACK;
4799 }
4800
4801 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4802 {
4803 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4804         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4805         /* No support for anonymous transparent PUD pages yet */
4806         if (vma_is_anonymous(vmf->vma))
4807                 return VM_FAULT_FALLBACK;
4808         if (vmf->vma->vm_ops->huge_fault)
4809                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4811         return VM_FAULT_FALLBACK;
4812 }
4813
4814 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4815 {
4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4817         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4818         vm_fault_t ret;
4819
4820         /* No support for anonymous transparent PUD pages yet */
4821         if (vma_is_anonymous(vmf->vma))
4822                 goto split;
4823         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4824                 if (vmf->vma->vm_ops->huge_fault) {
4825                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4826                         if (!(ret & VM_FAULT_FALLBACK))
4827                                 return ret;
4828                 }
4829         }
4830 split:
4831         /* COW or write-notify not handled on PUD level: split pud.*/
4832         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4834         return VM_FAULT_FALLBACK;
4835 }
4836
4837 /*
4838  * These routines also need to handle stuff like marking pages dirty
4839  * and/or accessed for architectures that don't do it in hardware (most
4840  * RISC architectures).  The early dirtying is also good on the i386.
4841  *
4842  * There is also a hook called "update_mmu_cache()" that architectures
4843  * with external mmu caches can use to update those (ie the Sparc or
4844  * PowerPC hashed page tables that act as extended TLBs).
4845  *
4846  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4847  * concurrent faults).
4848  *
4849  * The mmap_lock may have been released depending on flags and our return value.
4850  * See filemap_fault() and __folio_lock_or_retry().
4851  */
4852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4853 {
4854         pte_t entry;
4855
4856         if (unlikely(pmd_none(*vmf->pmd))) {
4857                 /*
4858                  * Leave __pte_alloc() until later: because vm_ops->fault may
4859                  * want to allocate huge page, and if we expose page table
4860                  * for an instant, it will be difficult to retract from
4861                  * concurrent faults and from rmap lookups.
4862                  */
4863                 vmf->pte = NULL;
4864                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4865         } else {
4866                 /*
4867                  * If a huge pmd materialized under us just retry later.  Use
4868                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4869                  * of pmd_trans_huge() to ensure the pmd didn't become
4870                  * pmd_trans_huge under us and then back to pmd_none, as a
4871                  * result of MADV_DONTNEED running immediately after a huge pmd
4872                  * fault in a different thread of this mm, in turn leading to a
4873                  * misleading pmd_trans_huge() retval. All we have to ensure is
4874                  * that it is a regular pmd that we can walk with
4875                  * pte_offset_map() and we can do that through an atomic read
4876                  * in C, which is what pmd_trans_unstable() provides.
4877                  */
4878                 if (pmd_devmap_trans_unstable(vmf->pmd))
4879                         return 0;
4880                 /*
4881                  * A regular pmd is established and it can't morph into a huge
4882                  * pmd from under us anymore at this point because we hold the
4883                  * mmap_lock read mode and khugepaged takes it in write mode.
4884                  * So now it's safe to run pte_offset_map().
4885                  */
4886                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4887                 vmf->orig_pte = *vmf->pte;
4888                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4889
4890                 /*
4891                  * some architectures can have larger ptes than wordsize,
4892                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4893                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4894                  * accesses.  The code below just needs a consistent view
4895                  * for the ifs and we later double check anyway with the
4896                  * ptl lock held. So here a barrier will do.
4897                  */
4898                 barrier();
4899                 if (pte_none(vmf->orig_pte)) {
4900                         pte_unmap(vmf->pte);
4901                         vmf->pte = NULL;
4902                 }
4903         }
4904
4905         if (!vmf->pte) {
4906                 if (vma_is_anonymous(vmf->vma))
4907                         return do_anonymous_page(vmf);
4908                 else
4909                         return do_fault(vmf);
4910         }
4911
4912         if (!pte_present(vmf->orig_pte))
4913                 return do_swap_page(vmf);
4914
4915         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4916                 return do_numa_page(vmf);
4917
4918         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4919         spin_lock(vmf->ptl);
4920         entry = vmf->orig_pte;
4921         if (unlikely(!pte_same(*vmf->pte, entry))) {
4922                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4923                 goto unlock;
4924         }
4925         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4926                 if (!pte_write(entry))
4927                         return do_wp_page(vmf);
4928                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4929                         entry = pte_mkdirty(entry);
4930         }
4931         entry = pte_mkyoung(entry);
4932         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4933                                 vmf->flags & FAULT_FLAG_WRITE)) {
4934                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4935         } else {
4936                 /* Skip spurious TLB flush for retried page fault */
4937                 if (vmf->flags & FAULT_FLAG_TRIED)
4938                         goto unlock;
4939                 /*
4940                  * This is needed only for protection faults but the arch code
4941                  * is not yet telling us if this is a protection fault or not.
4942                  * This still avoids useless tlb flushes for .text page faults
4943                  * with threads.
4944                  */
4945                 if (vmf->flags & FAULT_FLAG_WRITE)
4946                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4947         }
4948 unlock:
4949         pte_unmap_unlock(vmf->pte, vmf->ptl);
4950         return 0;
4951 }
4952
4953 /*
4954  * By the time we get here, we already hold the mm semaphore
4955  *
4956  * The mmap_lock may have been released depending on flags and our
4957  * return value.  See filemap_fault() and __folio_lock_or_retry().
4958  */
4959 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4960                 unsigned long address, unsigned int flags)
4961 {
4962         struct vm_fault vmf = {
4963                 .vma = vma,
4964                 .address = address & PAGE_MASK,
4965                 .real_address = address,
4966                 .flags = flags,
4967                 .pgoff = linear_page_index(vma, address),
4968                 .gfp_mask = __get_fault_gfp_mask(vma),
4969         };
4970         struct mm_struct *mm = vma->vm_mm;
4971         unsigned long vm_flags = vma->vm_flags;
4972         pgd_t *pgd;
4973         p4d_t *p4d;
4974         vm_fault_t ret;
4975
4976         pgd = pgd_offset(mm, address);
4977         p4d = p4d_alloc(mm, pgd, address);
4978         if (!p4d)
4979                 return VM_FAULT_OOM;
4980
4981         vmf.pud = pud_alloc(mm, p4d, address);
4982         if (!vmf.pud)
4983                 return VM_FAULT_OOM;
4984 retry_pud:
4985         if (pud_none(*vmf.pud) &&
4986             hugepage_vma_check(vma, vm_flags, false, true, true)) {
4987                 ret = create_huge_pud(&vmf);
4988                 if (!(ret & VM_FAULT_FALLBACK))
4989                         return ret;
4990         } else {
4991                 pud_t orig_pud = *vmf.pud;
4992
4993                 barrier();
4994                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4995
4996                         /*
4997                          * TODO once we support anonymous PUDs: NUMA case and
4998                          * FAULT_FLAG_UNSHARE handling.
4999                          */
5000                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5001                                 ret = wp_huge_pud(&vmf, orig_pud);
5002                                 if (!(ret & VM_FAULT_FALLBACK))
5003                                         return ret;
5004                         } else {
5005                                 huge_pud_set_accessed(&vmf, orig_pud);
5006                                 return 0;
5007                         }
5008                 }
5009         }
5010
5011         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5012         if (!vmf.pmd)
5013                 return VM_FAULT_OOM;
5014
5015         /* Huge pud page fault raced with pmd_alloc? */
5016         if (pud_trans_unstable(vmf.pud))
5017                 goto retry_pud;
5018
5019         if (pmd_none(*vmf.pmd) &&
5020             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5021                 ret = create_huge_pmd(&vmf);
5022                 if (!(ret & VM_FAULT_FALLBACK))
5023                         return ret;
5024         } else {
5025                 vmf.orig_pmd = *vmf.pmd;
5026
5027                 barrier();
5028                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5029                         VM_BUG_ON(thp_migration_supported() &&
5030                                           !is_pmd_migration_entry(vmf.orig_pmd));
5031                         if (is_pmd_migration_entry(vmf.orig_pmd))
5032                                 pmd_migration_entry_wait(mm, vmf.pmd);
5033                         return 0;
5034                 }
5035                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5036                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5037                                 return do_huge_pmd_numa_page(&vmf);
5038
5039                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5040                             !pmd_write(vmf.orig_pmd)) {
5041                                 ret = wp_huge_pmd(&vmf);
5042                                 if (!(ret & VM_FAULT_FALLBACK))
5043                                         return ret;
5044                         } else {
5045                                 huge_pmd_set_accessed(&vmf);
5046                                 return 0;
5047                         }
5048                 }
5049         }
5050
5051         return handle_pte_fault(&vmf);
5052 }
5053
5054 /**
5055  * mm_account_fault - Do page fault accounting
5056  *
5057  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5058  *        of perf event counters, but we'll still do the per-task accounting to
5059  *        the task who triggered this page fault.
5060  * @address: the faulted address.
5061  * @flags: the fault flags.
5062  * @ret: the fault retcode.
5063  *
5064  * This will take care of most of the page fault accounting.  Meanwhile, it
5065  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5066  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5067  * still be in per-arch page fault handlers at the entry of page fault.
5068  */
5069 static inline void mm_account_fault(struct pt_regs *regs,
5070                                     unsigned long address, unsigned int flags,
5071                                     vm_fault_t ret)
5072 {
5073         bool major;
5074
5075         /*
5076          * We don't do accounting for some specific faults:
5077          *
5078          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5079          *   includes arch_vma_access_permitted() failing before reaching here.
5080          *   So this is not a "this many hardware page faults" counter.  We
5081          *   should use the hw profiling for that.
5082          *
5083          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5084          *   once they're completed.
5085          */
5086         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5087                 return;
5088
5089         /*
5090          * We define the fault as a major fault when the final successful fault
5091          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5092          * handle it immediately previously).
5093          */
5094         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5095
5096         if (major)
5097                 current->maj_flt++;
5098         else
5099                 current->min_flt++;
5100
5101         /*
5102          * If the fault is done for GUP, regs will be NULL.  We only do the
5103          * accounting for the per thread fault counters who triggered the
5104          * fault, and we skip the perf event updates.
5105          */
5106         if (!regs)
5107                 return;
5108
5109         if (major)
5110                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5111         else
5112                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5113 }
5114
5115 #ifdef CONFIG_LRU_GEN
5116 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5117 {
5118         /* the LRU algorithm only applies to accesses with recency */
5119         current->in_lru_fault = vma_has_recency(vma);
5120 }
5121
5122 static void lru_gen_exit_fault(void)
5123 {
5124         current->in_lru_fault = false;
5125 }
5126 #else
5127 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5128 {
5129 }
5130
5131 static void lru_gen_exit_fault(void)
5132 {
5133 }
5134 #endif /* CONFIG_LRU_GEN */
5135
5136 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5137                                        unsigned int *flags)
5138 {
5139         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5140                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5141                         return VM_FAULT_SIGSEGV;
5142                 /*
5143                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5144                  * just treat it like an ordinary read-fault otherwise.
5145                  */
5146                 if (!is_cow_mapping(vma->vm_flags))
5147                         *flags &= ~FAULT_FLAG_UNSHARE;
5148         } else if (*flags & FAULT_FLAG_WRITE) {
5149                 /* Write faults on read-only mappings are impossible ... */
5150                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5151                         return VM_FAULT_SIGSEGV;
5152                 /* ... and FOLL_FORCE only applies to COW mappings. */
5153                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5154                                  !is_cow_mapping(vma->vm_flags)))
5155                         return VM_FAULT_SIGSEGV;
5156         }
5157         return 0;
5158 }
5159
5160 /*
5161  * By the time we get here, we already hold the mm semaphore
5162  *
5163  * The mmap_lock may have been released depending on flags and our
5164  * return value.  See filemap_fault() and __folio_lock_or_retry().
5165  */
5166 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5167                            unsigned int flags, struct pt_regs *regs)
5168 {
5169         vm_fault_t ret;
5170
5171         __set_current_state(TASK_RUNNING);
5172
5173         count_vm_event(PGFAULT);
5174         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5175
5176         ret = sanitize_fault_flags(vma, &flags);
5177         if (ret)
5178                 return ret;
5179
5180         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5181                                             flags & FAULT_FLAG_INSTRUCTION,
5182                                             flags & FAULT_FLAG_REMOTE))
5183                 return VM_FAULT_SIGSEGV;
5184
5185         /*
5186          * Enable the memcg OOM handling for faults triggered in user
5187          * space.  Kernel faults are handled more gracefully.
5188          */
5189         if (flags & FAULT_FLAG_USER)
5190                 mem_cgroup_enter_user_fault();
5191
5192         lru_gen_enter_fault(vma);
5193
5194         if (unlikely(is_vm_hugetlb_page(vma)))
5195                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5196         else
5197                 ret = __handle_mm_fault(vma, address, flags);
5198
5199         lru_gen_exit_fault();
5200
5201         if (flags & FAULT_FLAG_USER) {
5202                 mem_cgroup_exit_user_fault();
5203                 /*
5204                  * The task may have entered a memcg OOM situation but
5205                  * if the allocation error was handled gracefully (no
5206                  * VM_FAULT_OOM), there is no need to kill anything.
5207                  * Just clean up the OOM state peacefully.
5208                  */
5209                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5210                         mem_cgroup_oom_synchronize(false);
5211         }
5212
5213         mm_account_fault(regs, address, flags, ret);
5214
5215         return ret;
5216 }
5217 EXPORT_SYMBOL_GPL(handle_mm_fault);
5218
5219 #ifndef __PAGETABLE_P4D_FOLDED
5220 /*
5221  * Allocate p4d page table.
5222  * We've already handled the fast-path in-line.
5223  */
5224 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5225 {
5226         p4d_t *new = p4d_alloc_one(mm, address);
5227         if (!new)
5228                 return -ENOMEM;
5229
5230         spin_lock(&mm->page_table_lock);
5231         if (pgd_present(*pgd)) {        /* Another has populated it */
5232                 p4d_free(mm, new);
5233         } else {
5234                 smp_wmb(); /* See comment in pmd_install() */
5235                 pgd_populate(mm, pgd, new);
5236         }
5237         spin_unlock(&mm->page_table_lock);
5238         return 0;
5239 }
5240 #endif /* __PAGETABLE_P4D_FOLDED */
5241
5242 #ifndef __PAGETABLE_PUD_FOLDED
5243 /*
5244  * Allocate page upper directory.
5245  * We've already handled the fast-path in-line.
5246  */
5247 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5248 {
5249         pud_t *new = pud_alloc_one(mm, address);
5250         if (!new)
5251                 return -ENOMEM;
5252
5253         spin_lock(&mm->page_table_lock);
5254         if (!p4d_present(*p4d)) {
5255                 mm_inc_nr_puds(mm);
5256                 smp_wmb(); /* See comment in pmd_install() */
5257                 p4d_populate(mm, p4d, new);
5258         } else  /* Another has populated it */
5259                 pud_free(mm, new);
5260         spin_unlock(&mm->page_table_lock);
5261         return 0;
5262 }
5263 #endif /* __PAGETABLE_PUD_FOLDED */
5264
5265 #ifndef __PAGETABLE_PMD_FOLDED
5266 /*
5267  * Allocate page middle directory.
5268  * We've already handled the fast-path in-line.
5269  */
5270 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5271 {
5272         spinlock_t *ptl;
5273         pmd_t *new = pmd_alloc_one(mm, address);
5274         if (!new)
5275                 return -ENOMEM;
5276
5277         ptl = pud_lock(mm, pud);
5278         if (!pud_present(*pud)) {
5279                 mm_inc_nr_pmds(mm);
5280                 smp_wmb(); /* See comment in pmd_install() */
5281                 pud_populate(mm, pud, new);
5282         } else {        /* Another has populated it */
5283                 pmd_free(mm, new);
5284         }
5285         spin_unlock(ptl);
5286         return 0;
5287 }
5288 #endif /* __PAGETABLE_PMD_FOLDED */
5289
5290 /**
5291  * follow_pte - look up PTE at a user virtual address
5292  * @mm: the mm_struct of the target address space
5293  * @address: user virtual address
5294  * @ptepp: location to store found PTE
5295  * @ptlp: location to store the lock for the PTE
5296  *
5297  * On a successful return, the pointer to the PTE is stored in @ptepp;
5298  * the corresponding lock is taken and its location is stored in @ptlp.
5299  * The contents of the PTE are only stable until @ptlp is released;
5300  * any further use, if any, must be protected against invalidation
5301  * with MMU notifiers.
5302  *
5303  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5304  * should be taken for read.
5305  *
5306  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5307  * it is not a good general-purpose API.
5308  *
5309  * Return: zero on success, -ve otherwise.
5310  */
5311 int follow_pte(struct mm_struct *mm, unsigned long address,
5312                pte_t **ptepp, spinlock_t **ptlp)
5313 {
5314         pgd_t *pgd;
5315         p4d_t *p4d;
5316         pud_t *pud;
5317         pmd_t *pmd;
5318         pte_t *ptep;
5319
5320         pgd = pgd_offset(mm, address);
5321         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5322                 goto out;
5323
5324         p4d = p4d_offset(pgd, address);
5325         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5326                 goto out;
5327
5328         pud = pud_offset(p4d, address);
5329         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5330                 goto out;
5331
5332         pmd = pmd_offset(pud, address);
5333         VM_BUG_ON(pmd_trans_huge(*pmd));
5334
5335         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5336                 goto out;
5337
5338         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5339         if (!pte_present(*ptep))
5340                 goto unlock;
5341         *ptepp = ptep;
5342         return 0;
5343 unlock:
5344         pte_unmap_unlock(ptep, *ptlp);
5345 out:
5346         return -EINVAL;
5347 }
5348 EXPORT_SYMBOL_GPL(follow_pte);
5349
5350 /**
5351  * follow_pfn - look up PFN at a user virtual address
5352  * @vma: memory mapping
5353  * @address: user virtual address
5354  * @pfn: location to store found PFN
5355  *
5356  * Only IO mappings and raw PFN mappings are allowed.
5357  *
5358  * This function does not allow the caller to read the permissions
5359  * of the PTE.  Do not use it.
5360  *
5361  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5362  */
5363 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5364         unsigned long *pfn)
5365 {
5366         int ret = -EINVAL;
5367         spinlock_t *ptl;
5368         pte_t *ptep;
5369
5370         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5371                 return ret;
5372
5373         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5374         if (ret)
5375                 return ret;
5376         *pfn = pte_pfn(*ptep);
5377         pte_unmap_unlock(ptep, ptl);
5378         return 0;
5379 }
5380 EXPORT_SYMBOL(follow_pfn);
5381
5382 #ifdef CONFIG_HAVE_IOREMAP_PROT
5383 int follow_phys(struct vm_area_struct *vma,
5384                 unsigned long address, unsigned int flags,
5385                 unsigned long *prot, resource_size_t *phys)
5386 {
5387         int ret = -EINVAL;
5388         pte_t *ptep, pte;
5389         spinlock_t *ptl;
5390
5391         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5392                 goto out;
5393
5394         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5395                 goto out;
5396         pte = *ptep;
5397
5398         if ((flags & FOLL_WRITE) && !pte_write(pte))
5399                 goto unlock;
5400
5401         *prot = pgprot_val(pte_pgprot(pte));
5402         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5403
5404         ret = 0;
5405 unlock:
5406         pte_unmap_unlock(ptep, ptl);
5407 out:
5408         return ret;
5409 }
5410
5411 /**
5412  * generic_access_phys - generic implementation for iomem mmap access
5413  * @vma: the vma to access
5414  * @addr: userspace address, not relative offset within @vma
5415  * @buf: buffer to read/write
5416  * @len: length of transfer
5417  * @write: set to FOLL_WRITE when writing, otherwise reading
5418  *
5419  * This is a generic implementation for &vm_operations_struct.access for an
5420  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5421  * not page based.
5422  */
5423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5424                         void *buf, int len, int write)
5425 {
5426         resource_size_t phys_addr;
5427         unsigned long prot = 0;
5428         void __iomem *maddr;
5429         pte_t *ptep, pte;
5430         spinlock_t *ptl;
5431         int offset = offset_in_page(addr);
5432         int ret = -EINVAL;
5433
5434         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5435                 return -EINVAL;
5436
5437 retry:
5438         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5439                 return -EINVAL;
5440         pte = *ptep;
5441         pte_unmap_unlock(ptep, ptl);
5442
5443         prot = pgprot_val(pte_pgprot(pte));
5444         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5445
5446         if ((write & FOLL_WRITE) && !pte_write(pte))
5447                 return -EINVAL;
5448
5449         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5450         if (!maddr)
5451                 return -ENOMEM;
5452
5453         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5454                 goto out_unmap;
5455
5456         if (!pte_same(pte, *ptep)) {
5457                 pte_unmap_unlock(ptep, ptl);
5458                 iounmap(maddr);
5459
5460                 goto retry;
5461         }
5462
5463         if (write)
5464                 memcpy_toio(maddr + offset, buf, len);
5465         else
5466                 memcpy_fromio(buf, maddr + offset, len);
5467         ret = len;
5468         pte_unmap_unlock(ptep, ptl);
5469 out_unmap:
5470         iounmap(maddr);
5471
5472         return ret;
5473 }
5474 EXPORT_SYMBOL_GPL(generic_access_phys);
5475 #endif
5476
5477 /*
5478  * Access another process' address space as given in mm.
5479  */
5480 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5481                        int len, unsigned int gup_flags)
5482 {
5483         struct vm_area_struct *vma;
5484         void *old_buf = buf;
5485         int write = gup_flags & FOLL_WRITE;
5486
5487         if (mmap_read_lock_killable(mm))
5488                 return 0;
5489
5490         /* ignore errors, just check how much was successfully transferred */
5491         while (len) {
5492                 int bytes, ret, offset;
5493                 void *maddr;
5494                 struct page *page = NULL;
5495
5496                 ret = get_user_pages_remote(mm, addr, 1,
5497                                 gup_flags, &page, &vma, NULL);
5498                 if (ret <= 0) {
5499 #ifndef CONFIG_HAVE_IOREMAP_PROT
5500                         break;
5501 #else
5502                         /*
5503                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5504                          * we can access using slightly different code.
5505                          */
5506                         vma = vma_lookup(mm, addr);
5507                         if (!vma)
5508                                 break;
5509                         if (vma->vm_ops && vma->vm_ops->access)
5510                                 ret = vma->vm_ops->access(vma, addr, buf,
5511                                                           len, write);
5512                         if (ret <= 0)
5513                                 break;
5514                         bytes = ret;
5515 #endif
5516                 } else {
5517                         bytes = len;
5518                         offset = addr & (PAGE_SIZE-1);
5519                         if (bytes > PAGE_SIZE-offset)
5520                                 bytes = PAGE_SIZE-offset;
5521
5522                         maddr = kmap(page);
5523                         if (write) {
5524                                 copy_to_user_page(vma, page, addr,
5525                                                   maddr + offset, buf, bytes);
5526                                 set_page_dirty_lock(page);
5527                         } else {
5528                                 copy_from_user_page(vma, page, addr,
5529                                                     buf, maddr + offset, bytes);
5530                         }
5531                         kunmap(page);
5532                         put_page(page);
5533                 }
5534                 len -= bytes;
5535                 buf += bytes;
5536                 addr += bytes;
5537         }
5538         mmap_read_unlock(mm);
5539
5540         return buf - old_buf;
5541 }
5542
5543 /**
5544  * access_remote_vm - access another process' address space
5545  * @mm:         the mm_struct of the target address space
5546  * @addr:       start address to access
5547  * @buf:        source or destination buffer
5548  * @len:        number of bytes to transfer
5549  * @gup_flags:  flags modifying lookup behaviour
5550  *
5551  * The caller must hold a reference on @mm.
5552  *
5553  * Return: number of bytes copied from source to destination.
5554  */
5555 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5556                 void *buf, int len, unsigned int gup_flags)
5557 {
5558         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5559 }
5560
5561 /*
5562  * Access another process' address space.
5563  * Source/target buffer must be kernel space,
5564  * Do not walk the page table directly, use get_user_pages
5565  */
5566 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5567                 void *buf, int len, unsigned int gup_flags)
5568 {
5569         struct mm_struct *mm;
5570         int ret;
5571
5572         mm = get_task_mm(tsk);
5573         if (!mm)
5574                 return 0;
5575
5576         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5577
5578         mmput(mm);
5579
5580         return ret;
5581 }
5582 EXPORT_SYMBOL_GPL(access_process_vm);
5583
5584 /*
5585  * Print the name of a VMA.
5586  */
5587 void print_vma_addr(char *prefix, unsigned long ip)
5588 {
5589         struct mm_struct *mm = current->mm;
5590         struct vm_area_struct *vma;
5591
5592         /*
5593          * we might be running from an atomic context so we cannot sleep
5594          */
5595         if (!mmap_read_trylock(mm))
5596                 return;
5597
5598         vma = find_vma(mm, ip);
5599         if (vma && vma->vm_file) {
5600                 struct file *f = vma->vm_file;
5601                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5602                 if (buf) {
5603                         char *p;
5604
5605                         p = file_path(f, buf, PAGE_SIZE);
5606                         if (IS_ERR(p))
5607                                 p = "?";
5608                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5609                                         vma->vm_start,
5610                                         vma->vm_end - vma->vm_start);
5611                         free_page((unsigned long)buf);
5612                 }
5613         }
5614         mmap_read_unlock(mm);
5615 }
5616
5617 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5618 void __might_fault(const char *file, int line)
5619 {
5620         if (pagefault_disabled())
5621                 return;
5622         __might_sleep(file, line);
5623 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5624         if (current->mm)
5625                 might_lock_read(&current->mm->mmap_lock);
5626 #endif
5627 }
5628 EXPORT_SYMBOL(__might_fault);
5629 #endif
5630
5631 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5632 /*
5633  * Process all subpages of the specified huge page with the specified
5634  * operation.  The target subpage will be processed last to keep its
5635  * cache lines hot.
5636  */
5637 static inline void process_huge_page(
5638         unsigned long addr_hint, unsigned int pages_per_huge_page,
5639         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5640         void *arg)
5641 {
5642         int i, n, base, l;
5643         unsigned long addr = addr_hint &
5644                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5645
5646         /* Process target subpage last to keep its cache lines hot */
5647         might_sleep();
5648         n = (addr_hint - addr) / PAGE_SIZE;
5649         if (2 * n <= pages_per_huge_page) {
5650                 /* If target subpage in first half of huge page */
5651                 base = 0;
5652                 l = n;
5653                 /* Process subpages at the end of huge page */
5654                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5655                         cond_resched();
5656                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5657                 }
5658         } else {
5659                 /* If target subpage in second half of huge page */
5660                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5661                 l = pages_per_huge_page - n;
5662                 /* Process subpages at the begin of huge page */
5663                 for (i = 0; i < base; i++) {
5664                         cond_resched();
5665                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5666                 }
5667         }
5668         /*
5669          * Process remaining subpages in left-right-left-right pattern
5670          * towards the target subpage
5671          */
5672         for (i = 0; i < l; i++) {
5673                 int left_idx = base + i;
5674                 int right_idx = base + 2 * l - 1 - i;
5675
5676                 cond_resched();
5677                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5678                 cond_resched();
5679                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5680         }
5681 }
5682
5683 static void clear_gigantic_page(struct page *page,
5684                                 unsigned long addr,
5685                                 unsigned int pages_per_huge_page)
5686 {
5687         int i;
5688         struct page *p;
5689
5690         might_sleep();
5691         for (i = 0; i < pages_per_huge_page; i++) {
5692                 p = nth_page(page, i);
5693                 cond_resched();
5694                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5695         }
5696 }
5697
5698 static void clear_subpage(unsigned long addr, int idx, void *arg)
5699 {
5700         struct page *page = arg;
5701
5702         clear_user_highpage(page + idx, addr);
5703 }
5704
5705 void clear_huge_page(struct page *page,
5706                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5707 {
5708         unsigned long addr = addr_hint &
5709                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710
5711         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5712                 clear_gigantic_page(page, addr, pages_per_huge_page);
5713                 return;
5714         }
5715
5716         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5717 }
5718
5719 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5720                                     unsigned long addr,
5721                                     struct vm_area_struct *vma,
5722                                     unsigned int pages_per_huge_page)
5723 {
5724         int i;
5725         struct page *dst_base = dst;
5726         struct page *src_base = src;
5727
5728         for (i = 0; i < pages_per_huge_page; i++) {
5729                 dst = nth_page(dst_base, i);
5730                 src = nth_page(src_base, i);
5731
5732                 cond_resched();
5733                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5734         }
5735 }
5736
5737 struct copy_subpage_arg {
5738         struct page *dst;
5739         struct page *src;
5740         struct vm_area_struct *vma;
5741 };
5742
5743 static void copy_subpage(unsigned long addr, int idx, void *arg)
5744 {
5745         struct copy_subpage_arg *copy_arg = arg;
5746
5747         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5748                            addr, copy_arg->vma);
5749 }
5750
5751 void copy_user_huge_page(struct page *dst, struct page *src,
5752                          unsigned long addr_hint, struct vm_area_struct *vma,
5753                          unsigned int pages_per_huge_page)
5754 {
5755         unsigned long addr = addr_hint &
5756                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5757         struct copy_subpage_arg arg = {
5758                 .dst = dst,
5759                 .src = src,
5760                 .vma = vma,
5761         };
5762
5763         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5764                 copy_user_gigantic_page(dst, src, addr, vma,
5765                                         pages_per_huge_page);
5766                 return;
5767         }
5768
5769         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5770 }
5771
5772 long copy_huge_page_from_user(struct page *dst_page,
5773                                 const void __user *usr_src,
5774                                 unsigned int pages_per_huge_page,
5775                                 bool allow_pagefault)
5776 {
5777         void *page_kaddr;
5778         unsigned long i, rc = 0;
5779         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5780         struct page *subpage;
5781
5782         for (i = 0; i < pages_per_huge_page; i++) {
5783                 subpage = nth_page(dst_page, i);
5784                 if (allow_pagefault)
5785                         page_kaddr = kmap(subpage);
5786                 else
5787                         page_kaddr = kmap_atomic(subpage);
5788                 rc = copy_from_user(page_kaddr,
5789                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5790                 if (allow_pagefault)
5791                         kunmap(subpage);
5792                 else
5793                         kunmap_atomic(page_kaddr);
5794
5795                 ret_val -= (PAGE_SIZE - rc);
5796                 if (rc)
5797                         break;
5798
5799                 flush_dcache_page(subpage);
5800
5801                 cond_resched();
5802         }
5803         return ret_val;
5804 }
5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5806
5807 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5808
5809 static struct kmem_cache *page_ptl_cachep;
5810
5811 void __init ptlock_cache_init(void)
5812 {
5813         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5814                         SLAB_PANIC, NULL);
5815 }
5816
5817 bool ptlock_alloc(struct page *page)
5818 {
5819         spinlock_t *ptl;
5820
5821         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5822         if (!ptl)
5823                 return false;
5824         page->ptl = ptl;
5825         return true;
5826 }
5827
5828 void ptlock_free(struct page *page)
5829 {
5830         kmem_cache_free(page_ptl_cachep, page->ptl);
5831 }
5832 #endif