mm: replace all open encodings for NUMA_NO_NODE
[platform/kernel/linux-starfive.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115                                         1;
116 #else
117                                         2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122         randomize_va_space = 0;
123         return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137         zero_pfn = page_to_pfn(ZERO_PAGE(0));
138         return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147         int i;
148
149         for (i = 0; i < NR_MM_COUNTERS; i++) {
150                 if (current->rss_stat.count[i]) {
151                         add_mm_counter(mm, i, current->rss_stat.count[i]);
152                         current->rss_stat.count[i] = 0;
153                 }
154         }
155         current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160         struct task_struct *task = current;
161
162         if (likely(task->mm == mm))
163                 task->rss_stat.count[member] += val;
164         else
165                 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH  (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174         if (unlikely(task != current))
175                 return;
176         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177                 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 /*
191  * Note: this doesn't free the actual pages themselves. That
192  * has been handled earlier when unmapping all the memory regions.
193  */
194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195                            unsigned long addr)
196 {
197         pgtable_t token = pmd_pgtable(*pmd);
198         pmd_clear(pmd);
199         pte_free_tlb(tlb, token, addr);
200         mm_dec_nr_ptes(tlb->mm);
201 }
202
203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204                                 unsigned long addr, unsigned long end,
205                                 unsigned long floor, unsigned long ceiling)
206 {
207         pmd_t *pmd;
208         unsigned long next;
209         unsigned long start;
210
211         start = addr;
212         pmd = pmd_offset(pud, addr);
213         do {
214                 next = pmd_addr_end(addr, end);
215                 if (pmd_none_or_clear_bad(pmd))
216                         continue;
217                 free_pte_range(tlb, pmd, addr);
218         } while (pmd++, addr = next, addr != end);
219
220         start &= PUD_MASK;
221         if (start < floor)
222                 return;
223         if (ceiling) {
224                 ceiling &= PUD_MASK;
225                 if (!ceiling)
226                         return;
227         }
228         if (end - 1 > ceiling - 1)
229                 return;
230
231         pmd = pmd_offset(pud, start);
232         pud_clear(pud);
233         pmd_free_tlb(tlb, pmd, start);
234         mm_dec_nr_pmds(tlb->mm);
235 }
236
237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238                                 unsigned long addr, unsigned long end,
239                                 unsigned long floor, unsigned long ceiling)
240 {
241         pud_t *pud;
242         unsigned long next;
243         unsigned long start;
244
245         start = addr;
246         pud = pud_offset(p4d, addr);
247         do {
248                 next = pud_addr_end(addr, end);
249                 if (pud_none_or_clear_bad(pud))
250                         continue;
251                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
252         } while (pud++, addr = next, addr != end);
253
254         start &= P4D_MASK;
255         if (start < floor)
256                 return;
257         if (ceiling) {
258                 ceiling &= P4D_MASK;
259                 if (!ceiling)
260                         return;
261         }
262         if (end - 1 > ceiling - 1)
263                 return;
264
265         pud = pud_offset(p4d, start);
266         p4d_clear(p4d);
267         pud_free_tlb(tlb, pud, start);
268         mm_dec_nr_puds(tlb->mm);
269 }
270
271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272                                 unsigned long addr, unsigned long end,
273                                 unsigned long floor, unsigned long ceiling)
274 {
275         p4d_t *p4d;
276         unsigned long next;
277         unsigned long start;
278
279         start = addr;
280         p4d = p4d_offset(pgd, addr);
281         do {
282                 next = p4d_addr_end(addr, end);
283                 if (p4d_none_or_clear_bad(p4d))
284                         continue;
285                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286         } while (p4d++, addr = next, addr != end);
287
288         start &= PGDIR_MASK;
289         if (start < floor)
290                 return;
291         if (ceiling) {
292                 ceiling &= PGDIR_MASK;
293                 if (!ceiling)
294                         return;
295         }
296         if (end - 1 > ceiling - 1)
297                 return;
298
299         p4d = p4d_offset(pgd, start);
300         pgd_clear(pgd);
301         p4d_free_tlb(tlb, p4d, start);
302 }
303
304 /*
305  * This function frees user-level page tables of a process.
306  */
307 void free_pgd_range(struct mmu_gather *tlb,
308                         unsigned long addr, unsigned long end,
309                         unsigned long floor, unsigned long ceiling)
310 {
311         pgd_t *pgd;
312         unsigned long next;
313
314         /*
315          * The next few lines have given us lots of grief...
316          *
317          * Why are we testing PMD* at this top level?  Because often
318          * there will be no work to do at all, and we'd prefer not to
319          * go all the way down to the bottom just to discover that.
320          *
321          * Why all these "- 1"s?  Because 0 represents both the bottom
322          * of the address space and the top of it (using -1 for the
323          * top wouldn't help much: the masks would do the wrong thing).
324          * The rule is that addr 0 and floor 0 refer to the bottom of
325          * the address space, but end 0 and ceiling 0 refer to the top
326          * Comparisons need to use "end - 1" and "ceiling - 1" (though
327          * that end 0 case should be mythical).
328          *
329          * Wherever addr is brought up or ceiling brought down, we must
330          * be careful to reject "the opposite 0" before it confuses the
331          * subsequent tests.  But what about where end is brought down
332          * by PMD_SIZE below? no, end can't go down to 0 there.
333          *
334          * Whereas we round start (addr) and ceiling down, by different
335          * masks at different levels, in order to test whether a table
336          * now has no other vmas using it, so can be freed, we don't
337          * bother to round floor or end up - the tests don't need that.
338          */
339
340         addr &= PMD_MASK;
341         if (addr < floor) {
342                 addr += PMD_SIZE;
343                 if (!addr)
344                         return;
345         }
346         if (ceiling) {
347                 ceiling &= PMD_MASK;
348                 if (!ceiling)
349                         return;
350         }
351         if (end - 1 > ceiling - 1)
352                 end -= PMD_SIZE;
353         if (addr > end - 1)
354                 return;
355         /*
356          * We add page table cache pages with PAGE_SIZE,
357          * (see pte_free_tlb()), flush the tlb if we need
358          */
359         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
360         pgd = pgd_offset(tlb->mm, addr);
361         do {
362                 next = pgd_addr_end(addr, end);
363                 if (pgd_none_or_clear_bad(pgd))
364                         continue;
365                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
366         } while (pgd++, addr = next, addr != end);
367 }
368
369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370                 unsigned long floor, unsigned long ceiling)
371 {
372         while (vma) {
373                 struct vm_area_struct *next = vma->vm_next;
374                 unsigned long addr = vma->vm_start;
375
376                 /*
377                  * Hide vma from rmap and truncate_pagecache before freeing
378                  * pgtables
379                  */
380                 unlink_anon_vmas(vma);
381                 unlink_file_vma(vma);
382
383                 if (is_vm_hugetlb_page(vma)) {
384                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
385                                 floor, next ? next->vm_start : ceiling);
386                 } else {
387                         /*
388                          * Optimization: gather nearby vmas into one call down
389                          */
390                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391                                && !is_vm_hugetlb_page(next)) {
392                                 vma = next;
393                                 next = vma->vm_next;
394                                 unlink_anon_vmas(vma);
395                                 unlink_file_vma(vma);
396                         }
397                         free_pgd_range(tlb, addr, vma->vm_end,
398                                 floor, next ? next->vm_start : ceiling);
399                 }
400                 vma = next;
401         }
402 }
403
404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 {
406         spinlock_t *ptl;
407         pgtable_t new = pte_alloc_one(mm);
408         if (!new)
409                 return -ENOMEM;
410
411         /*
412          * Ensure all pte setup (eg. pte page lock and page clearing) are
413          * visible before the pte is made visible to other CPUs by being
414          * put into page tables.
415          *
416          * The other side of the story is the pointer chasing in the page
417          * table walking code (when walking the page table without locking;
418          * ie. most of the time). Fortunately, these data accesses consist
419          * of a chain of data-dependent loads, meaning most CPUs (alpha
420          * being the notable exception) will already guarantee loads are
421          * seen in-order. See the alpha page table accessors for the
422          * smp_read_barrier_depends() barriers in page table walking code.
423          */
424         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
426         ptl = pmd_lock(mm, pmd);
427         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
428                 mm_inc_nr_ptes(mm);
429                 pmd_populate(mm, pmd, new);
430                 new = NULL;
431         }
432         spin_unlock(ptl);
433         if (new)
434                 pte_free(mm, new);
435         return 0;
436 }
437
438 int __pte_alloc_kernel(pmd_t *pmd)
439 {
440         pte_t *new = pte_alloc_one_kernel(&init_mm);
441         if (!new)
442                 return -ENOMEM;
443
444         smp_wmb(); /* See comment in __pte_alloc */
445
446         spin_lock(&init_mm.page_table_lock);
447         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
448                 pmd_populate_kernel(&init_mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(&init_mm.page_table_lock);
452         if (new)
453                 pte_free_kernel(&init_mm, new);
454         return 0;
455 }
456
457 static inline void init_rss_vec(int *rss)
458 {
459         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460 }
461
462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 {
464         int i;
465
466         if (current->mm == mm)
467                 sync_mm_rss(mm);
468         for (i = 0; i < NR_MM_COUNTERS; i++)
469                 if (rss[i])
470                         add_mm_counter(mm, i, rss[i]);
471 }
472
473 /*
474  * This function is called to print an error when a bad pte
475  * is found. For example, we might have a PFN-mapped pte in
476  * a region that doesn't allow it.
477  *
478  * The calling function must still handle the error.
479  */
480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481                           pte_t pte, struct page *page)
482 {
483         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484         p4d_t *p4d = p4d_offset(pgd, addr);
485         pud_t *pud = pud_offset(p4d, addr);
486         pmd_t *pmd = pmd_offset(pud, addr);
487         struct address_space *mapping;
488         pgoff_t index;
489         static unsigned long resume;
490         static unsigned long nr_shown;
491         static unsigned long nr_unshown;
492
493         /*
494          * Allow a burst of 60 reports, then keep quiet for that minute;
495          * or allow a steady drip of one report per second.
496          */
497         if (nr_shown == 60) {
498                 if (time_before(jiffies, resume)) {
499                         nr_unshown++;
500                         return;
501                 }
502                 if (nr_unshown) {
503                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504                                  nr_unshown);
505                         nr_unshown = 0;
506                 }
507                 nr_shown = 0;
508         }
509         if (nr_shown++ == 0)
510                 resume = jiffies + 60 * HZ;
511
512         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513         index = linear_page_index(vma, addr);
514
515         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516                  current->comm,
517                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
518         if (page)
519                 dump_page(page, "bad pte");
520         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523                  vma->vm_file,
524                  vma->vm_ops ? vma->vm_ops->fault : NULL,
525                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526                  mapping ? mapping->a_ops->readpage : NULL);
527         dump_stack();
528         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530
531 /*
532  * vm_normal_page -- This function gets the "struct page" associated with a pte.
533  *
534  * "Special" mappings do not wish to be associated with a "struct page" (either
535  * it doesn't exist, or it exists but they don't want to touch it). In this
536  * case, NULL is returned here. "Normal" mappings do have a struct page.
537  *
538  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539  * pte bit, in which case this function is trivial. Secondly, an architecture
540  * may not have a spare pte bit, which requires a more complicated scheme,
541  * described below.
542  *
543  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544  * special mapping (even if there are underlying and valid "struct pages").
545  * COWed pages of a VM_PFNMAP are always normal.
546  *
547  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550  * mapping will always honor the rule
551  *
552  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553  *
554  * And for normal mappings this is false.
555  *
556  * This restricts such mappings to be a linear translation from virtual address
557  * to pfn. To get around this restriction, we allow arbitrary mappings so long
558  * as the vma is not a COW mapping; in that case, we know that all ptes are
559  * special (because none can have been COWed).
560  *
561  *
562  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563  *
564  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565  * page" backing, however the difference is that _all_ pages with a struct
566  * page (that is, those where pfn_valid is true) are refcounted and considered
567  * normal pages by the VM. The disadvantage is that pages are refcounted
568  * (which can be slower and simply not an option for some PFNMAP users). The
569  * advantage is that we don't have to follow the strict linearity rule of
570  * PFNMAP mappings in order to support COWable mappings.
571  *
572  */
573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574                              pte_t pte, bool with_public_device)
575 {
576         unsigned long pfn = pte_pfn(pte);
577
578         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579                 if (likely(!pte_special(pte)))
580                         goto check_pfn;
581                 if (vma->vm_ops && vma->vm_ops->find_special_page)
582                         return vma->vm_ops->find_special_page(vma, addr);
583                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584                         return NULL;
585                 if (is_zero_pfn(pfn))
586                         return NULL;
587
588                 /*
589                  * Device public pages are special pages (they are ZONE_DEVICE
590                  * pages but different from persistent memory). They behave
591                  * allmost like normal pages. The difference is that they are
592                  * not on the lru and thus should never be involve with any-
593                  * thing that involve lru manipulation (mlock, numa balancing,
594                  * ...).
595                  *
596                  * This is why we still want to return NULL for such page from
597                  * vm_normal_page() so that we do not have to special case all
598                  * call site of vm_normal_page().
599                  */
600                 if (likely(pfn <= highest_memmap_pfn)) {
601                         struct page *page = pfn_to_page(pfn);
602
603                         if (is_device_public_page(page)) {
604                                 if (with_public_device)
605                                         return page;
606                                 return NULL;
607                         }
608                 }
609
610                 if (pte_devmap(pte))
611                         return NULL;
612
613                 print_bad_pte(vma, addr, pte, NULL);
614                 return NULL;
615         }
616
617         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618
619         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620                 if (vma->vm_flags & VM_MIXEDMAP) {
621                         if (!pfn_valid(pfn))
622                                 return NULL;
623                         goto out;
624                 } else {
625                         unsigned long off;
626                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
627                         if (pfn == vma->vm_pgoff + off)
628                                 return NULL;
629                         if (!is_cow_mapping(vma->vm_flags))
630                                 return NULL;
631                 }
632         }
633
634         if (is_zero_pfn(pfn))
635                 return NULL;
636
637 check_pfn:
638         if (unlikely(pfn > highest_memmap_pfn)) {
639                 print_bad_pte(vma, addr, pte, NULL);
640                 return NULL;
641         }
642
643         /*
644          * NOTE! We still have PageReserved() pages in the page tables.
645          * eg. VDSO mappings can cause them to exist.
646          */
647 out:
648         return pfn_to_page(pfn);
649 }
650
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653                                 pmd_t pmd)
654 {
655         unsigned long pfn = pmd_pfn(pmd);
656
657         /*
658          * There is no pmd_special() but there may be special pmds, e.g.
659          * in a direct-access (dax) mapping, so let's just replicate the
660          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661          */
662         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663                 if (vma->vm_flags & VM_MIXEDMAP) {
664                         if (!pfn_valid(pfn))
665                                 return NULL;
666                         goto out;
667                 } else {
668                         unsigned long off;
669                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
670                         if (pfn == vma->vm_pgoff + off)
671                                 return NULL;
672                         if (!is_cow_mapping(vma->vm_flags))
673                                 return NULL;
674                 }
675         }
676
677         if (pmd_devmap(pmd))
678                 return NULL;
679         if (is_zero_pfn(pfn))
680                 return NULL;
681         if (unlikely(pfn > highest_memmap_pfn))
682                 return NULL;
683
684         /*
685          * NOTE! We still have PageReserved() pages in the page tables.
686          * eg. VDSO mappings can cause them to exist.
687          */
688 out:
689         return pfn_to_page(pfn);
690 }
691 #endif
692
693 /*
694  * copy one vm_area from one task to the other. Assumes the page tables
695  * already present in the new task to be cleared in the whole range
696  * covered by this vma.
697  */
698
699 static inline unsigned long
700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702                 unsigned long addr, int *rss)
703 {
704         unsigned long vm_flags = vma->vm_flags;
705         pte_t pte = *src_pte;
706         struct page *page;
707
708         /* pte contains position in swap or file, so copy. */
709         if (unlikely(!pte_present(pte))) {
710                 swp_entry_t entry = pte_to_swp_entry(pte);
711
712                 if (likely(!non_swap_entry(entry))) {
713                         if (swap_duplicate(entry) < 0)
714                                 return entry.val;
715
716                         /* make sure dst_mm is on swapoff's mmlist. */
717                         if (unlikely(list_empty(&dst_mm->mmlist))) {
718                                 spin_lock(&mmlist_lock);
719                                 if (list_empty(&dst_mm->mmlist))
720                                         list_add(&dst_mm->mmlist,
721                                                         &src_mm->mmlist);
722                                 spin_unlock(&mmlist_lock);
723                         }
724                         rss[MM_SWAPENTS]++;
725                 } else if (is_migration_entry(entry)) {
726                         page = migration_entry_to_page(entry);
727
728                         rss[mm_counter(page)]++;
729
730                         if (is_write_migration_entry(entry) &&
731                                         is_cow_mapping(vm_flags)) {
732                                 /*
733                                  * COW mappings require pages in both
734                                  * parent and child to be set to read.
735                                  */
736                                 make_migration_entry_read(&entry);
737                                 pte = swp_entry_to_pte(entry);
738                                 if (pte_swp_soft_dirty(*src_pte))
739                                         pte = pte_swp_mksoft_dirty(pte);
740                                 set_pte_at(src_mm, addr, src_pte, pte);
741                         }
742                 } else if (is_device_private_entry(entry)) {
743                         page = device_private_entry_to_page(entry);
744
745                         /*
746                          * Update rss count even for unaddressable pages, as
747                          * they should treated just like normal pages in this
748                          * respect.
749                          *
750                          * We will likely want to have some new rss counters
751                          * for unaddressable pages, at some point. But for now
752                          * keep things as they are.
753                          */
754                         get_page(page);
755                         rss[mm_counter(page)]++;
756                         page_dup_rmap(page, false);
757
758                         /*
759                          * We do not preserve soft-dirty information, because so
760                          * far, checkpoint/restore is the only feature that
761                          * requires that. And checkpoint/restore does not work
762                          * when a device driver is involved (you cannot easily
763                          * save and restore device driver state).
764                          */
765                         if (is_write_device_private_entry(entry) &&
766                             is_cow_mapping(vm_flags)) {
767                                 make_device_private_entry_read(&entry);
768                                 pte = swp_entry_to_pte(entry);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         page = vm_normal_page(vma, addr, pte);
793         if (page) {
794                 get_page(page);
795                 page_dup_rmap(page, false);
796                 rss[mm_counter(page)]++;
797         } else if (pte_devmap(pte)) {
798                 page = pte_page(pte);
799
800                 /*
801                  * Cache coherent device memory behave like regular page and
802                  * not like persistent memory page. For more informations see
803                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804                  */
805                 if (is_device_public_page(page)) {
806                         get_page(page);
807                         page_dup_rmap(page, false);
808                         rss[mm_counter(page)]++;
809                 }
810         }
811
812 out_set_pte:
813         set_pte_at(dst_mm, addr, dst_pte, pte);
814         return 0;
815 }
816
817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819                    unsigned long addr, unsigned long end)
820 {
821         pte_t *orig_src_pte, *orig_dst_pte;
822         pte_t *src_pte, *dst_pte;
823         spinlock_t *src_ptl, *dst_ptl;
824         int progress = 0;
825         int rss[NR_MM_COUNTERS];
826         swp_entry_t entry = (swp_entry_t){0};
827
828 again:
829         init_rss_vec(rss);
830
831         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
832         if (!dst_pte)
833                 return -ENOMEM;
834         src_pte = pte_offset_map(src_pmd, addr);
835         src_ptl = pte_lockptr(src_mm, src_pmd);
836         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837         orig_src_pte = src_pte;
838         orig_dst_pte = dst_pte;
839         arch_enter_lazy_mmu_mode();
840
841         do {
842                 /*
843                  * We are holding two locks at this point - either of them
844                  * could generate latencies in another task on another CPU.
845                  */
846                 if (progress >= 32) {
847                         progress = 0;
848                         if (need_resched() ||
849                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850                                 break;
851                 }
852                 if (pte_none(*src_pte)) {
853                         progress++;
854                         continue;
855                 }
856                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857                                                         vma, addr, rss);
858                 if (entry.val)
859                         break;
860                 progress += 8;
861         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862
863         arch_leave_lazy_mmu_mode();
864         spin_unlock(src_ptl);
865         pte_unmap(orig_src_pte);
866         add_mm_rss_vec(dst_mm, rss);
867         pte_unmap_unlock(orig_dst_pte, dst_ptl);
868         cond_resched();
869
870         if (entry.val) {
871                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872                         return -ENOMEM;
873                 progress = 0;
874         }
875         if (addr != end)
876                 goto again;
877         return 0;
878 }
879
880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882                 unsigned long addr, unsigned long end)
883 {
884         pmd_t *src_pmd, *dst_pmd;
885         unsigned long next;
886
887         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888         if (!dst_pmd)
889                 return -ENOMEM;
890         src_pmd = pmd_offset(src_pud, addr);
891         do {
892                 next = pmd_addr_end(addr, end);
893                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894                         || pmd_devmap(*src_pmd)) {
895                         int err;
896                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897                         err = copy_huge_pmd(dst_mm, src_mm,
898                                             dst_pmd, src_pmd, addr, vma);
899                         if (err == -ENOMEM)
900                                 return -ENOMEM;
901                         if (!err)
902                                 continue;
903                         /* fall through */
904                 }
905                 if (pmd_none_or_clear_bad(src_pmd))
906                         continue;
907                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908                                                 vma, addr, next))
909                         return -ENOMEM;
910         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911         return 0;
912 }
913
914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
916                 unsigned long addr, unsigned long end)
917 {
918         pud_t *src_pud, *dst_pud;
919         unsigned long next;
920
921         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
922         if (!dst_pud)
923                 return -ENOMEM;
924         src_pud = pud_offset(src_p4d, addr);
925         do {
926                 next = pud_addr_end(addr, end);
927                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928                         int err;
929
930                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931                         err = copy_huge_pud(dst_mm, src_mm,
932                                             dst_pud, src_pud, addr, vma);
933                         if (err == -ENOMEM)
934                                 return -ENOMEM;
935                         if (!err)
936                                 continue;
937                         /* fall through */
938                 }
939                 if (pud_none_or_clear_bad(src_pud))
940                         continue;
941                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942                                                 vma, addr, next))
943                         return -ENOMEM;
944         } while (dst_pud++, src_pud++, addr = next, addr != end);
945         return 0;
946 }
947
948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950                 unsigned long addr, unsigned long end)
951 {
952         p4d_t *src_p4d, *dst_p4d;
953         unsigned long next;
954
955         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956         if (!dst_p4d)
957                 return -ENOMEM;
958         src_p4d = p4d_offset(src_pgd, addr);
959         do {
960                 next = p4d_addr_end(addr, end);
961                 if (p4d_none_or_clear_bad(src_p4d))
962                         continue;
963                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964                                                 vma, addr, next))
965                         return -ENOMEM;
966         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967         return 0;
968 }
969
970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971                 struct vm_area_struct *vma)
972 {
973         pgd_t *src_pgd, *dst_pgd;
974         unsigned long next;
975         unsigned long addr = vma->vm_start;
976         unsigned long end = vma->vm_end;
977         struct mmu_notifier_range range;
978         bool is_cow;
979         int ret;
980
981         /*
982          * Don't copy ptes where a page fault will fill them correctly.
983          * Fork becomes much lighter when there are big shared or private
984          * readonly mappings. The tradeoff is that copy_page_range is more
985          * efficient than faulting.
986          */
987         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988                         !vma->anon_vma)
989                 return 0;
990
991         if (is_vm_hugetlb_page(vma))
992                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
994         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995                 /*
996                  * We do not free on error cases below as remove_vma
997                  * gets called on error from higher level routine
998                  */
999                 ret = track_pfn_copy(vma);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         /*
1005          * We need to invalidate the secondary MMU mappings only when
1006          * there could be a permission downgrade on the ptes of the
1007          * parent mm. And a permission downgrade will only happen if
1008          * is_cow_mapping() returns true.
1009          */
1010         is_cow = is_cow_mapping(vma->vm_flags);
1011
1012         if (is_cow) {
1013                 mmu_notifier_range_init(&range, src_mm, addr, end);
1014                 mmu_notifier_invalidate_range_start(&range);
1015         }
1016
1017         ret = 0;
1018         dst_pgd = pgd_offset(dst_mm, addr);
1019         src_pgd = pgd_offset(src_mm, addr);
1020         do {
1021                 next = pgd_addr_end(addr, end);
1022                 if (pgd_none_or_clear_bad(src_pgd))
1023                         continue;
1024                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025                                             vma, addr, next))) {
1026                         ret = -ENOMEM;
1027                         break;
1028                 }
1029         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030
1031         if (is_cow)
1032                 mmu_notifier_invalidate_range_end(&range);
1033         return ret;
1034 }
1035
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037                                 struct vm_area_struct *vma, pmd_t *pmd,
1038                                 unsigned long addr, unsigned long end,
1039                                 struct zap_details *details)
1040 {
1041         struct mm_struct *mm = tlb->mm;
1042         int force_flush = 0;
1043         int rss[NR_MM_COUNTERS];
1044         spinlock_t *ptl;
1045         pte_t *start_pte;
1046         pte_t *pte;
1047         swp_entry_t entry;
1048
1049         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051         init_rss_vec(rss);
1052         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053         pte = start_pte;
1054         flush_tlb_batched_pending(mm);
1055         arch_enter_lazy_mmu_mode();
1056         do {
1057                 pte_t ptent = *pte;
1058                 if (pte_none(ptent))
1059                         continue;
1060
1061                 if (pte_present(ptent)) {
1062                         struct page *page;
1063
1064                         page = _vm_normal_page(vma, addr, ptent, true);
1065                         if (unlikely(details) && page) {
1066                                 /*
1067                                  * unmap_shared_mapping_pages() wants to
1068                                  * invalidate cache without truncating:
1069                                  * unmap shared but keep private pages.
1070                                  */
1071                                 if (details->check_mapping &&
1072                                     details->check_mapping != page_rmapping(page))
1073                                         continue;
1074                         }
1075                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1076                                                         tlb->fullmm);
1077                         tlb_remove_tlb_entry(tlb, pte, addr);
1078                         if (unlikely(!page))
1079                                 continue;
1080
1081                         if (!PageAnon(page)) {
1082                                 if (pte_dirty(ptent)) {
1083                                         force_flush = 1;
1084                                         set_page_dirty(page);
1085                                 }
1086                                 if (pte_young(ptent) &&
1087                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1088                                         mark_page_accessed(page);
1089                         }
1090                         rss[mm_counter(page)]--;
1091                         page_remove_rmap(page, false);
1092                         if (unlikely(page_mapcount(page) < 0))
1093                                 print_bad_pte(vma, addr, ptent, page);
1094                         if (unlikely(__tlb_remove_page(tlb, page))) {
1095                                 force_flush = 1;
1096                                 addr += PAGE_SIZE;
1097                                 break;
1098                         }
1099                         continue;
1100                 }
1101
1102                 entry = pte_to_swp_entry(ptent);
1103                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104                         struct page *page = device_private_entry_to_page(entry);
1105
1106                         if (unlikely(details && details->check_mapping)) {
1107                                 /*
1108                                  * unmap_shared_mapping_pages() wants to
1109                                  * invalidate cache without truncating:
1110                                  * unmap shared but keep private pages.
1111                                  */
1112                                 if (details->check_mapping !=
1113                                     page_rmapping(page))
1114                                         continue;
1115                         }
1116
1117                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118                         rss[mm_counter(page)]--;
1119                         page_remove_rmap(page, false);
1120                         put_page(page);
1121                         continue;
1122                 }
1123
1124                 /* If details->check_mapping, we leave swap entries. */
1125                 if (unlikely(details))
1126                         continue;
1127
1128                 entry = pte_to_swp_entry(ptent);
1129                 if (!non_swap_entry(entry))
1130                         rss[MM_SWAPENTS]--;
1131                 else if (is_migration_entry(entry)) {
1132                         struct page *page;
1133
1134                         page = migration_entry_to_page(entry);
1135                         rss[mm_counter(page)]--;
1136                 }
1137                 if (unlikely(!free_swap_and_cache(entry)))
1138                         print_bad_pte(vma, addr, ptent, NULL);
1139                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140         } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142         add_mm_rss_vec(mm, rss);
1143         arch_leave_lazy_mmu_mode();
1144
1145         /* Do the actual TLB flush before dropping ptl */
1146         if (force_flush)
1147                 tlb_flush_mmu_tlbonly(tlb);
1148         pte_unmap_unlock(start_pte, ptl);
1149
1150         /*
1151          * If we forced a TLB flush (either due to running out of
1152          * batch buffers or because we needed to flush dirty TLB
1153          * entries before releasing the ptl), free the batched
1154          * memory too. Restart if we didn't do everything.
1155          */
1156         if (force_flush) {
1157                 force_flush = 0;
1158                 tlb_flush_mmu_free(tlb);
1159                 if (addr != end)
1160                         goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE)
1179                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181                                 goto next;
1182                         /* fall through */
1183                 }
1184                 /*
1185                  * Here there can be other concurrent MADV_DONTNEED or
1186                  * trans huge page faults running, and if the pmd is
1187                  * none or trans huge it can change under us. This is
1188                  * because MADV_DONTNEED holds the mmap_sem in read
1189                  * mode.
1190                  */
1191                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192                         goto next;
1193                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195                 cond_resched();
1196         } while (pmd++, addr = next, addr != end);
1197
1198         return addr;
1199 }
1200
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202                                 struct vm_area_struct *vma, p4d_t *p4d,
1203                                 unsigned long addr, unsigned long end,
1204                                 struct zap_details *details)
1205 {
1206         pud_t *pud;
1207         unsigned long next;
1208
1209         pud = pud_offset(p4d, addr);
1210         do {
1211                 next = pud_addr_end(addr, end);
1212                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213                         if (next - addr != HPAGE_PUD_SIZE) {
1214                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215                                 split_huge_pud(vma, pud, addr);
1216                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1217                                 goto next;
1218                         /* fall through */
1219                 }
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pud++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         p4d_t *p4d;
1236         unsigned long next;
1237
1238         p4d = p4d_offset(pgd, addr);
1239         do {
1240                 next = p4d_addr_end(addr, end);
1241                 if (p4d_none_or_clear_bad(p4d))
1242                         continue;
1243                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244         } while (p4d++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         BUG_ON(addr >= end);
1258         tlb_start_vma(tlb, vma);
1259         pgd = pgd_offset(vma->vm_mm, addr);
1260         do {
1261                 next = pgd_addr_end(addr, end);
1262                 if (pgd_none_or_clear_bad(pgd))
1263                         continue;
1264                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265         } while (pgd++, addr = next, addr != end);
1266         tlb_end_vma(tlb, vma);
1267 }
1268
1269
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271                 struct vm_area_struct *vma, unsigned long start_addr,
1272                 unsigned long end_addr,
1273                 struct zap_details *details)
1274 {
1275         unsigned long start = max(vma->vm_start, start_addr);
1276         unsigned long end;
1277
1278         if (start >= vma->vm_end)
1279                 return;
1280         end = min(vma->vm_end, end_addr);
1281         if (end <= vma->vm_start)
1282                 return;
1283
1284         if (vma->vm_file)
1285                 uprobe_munmap(vma, start, end);
1286
1287         if (unlikely(vma->vm_flags & VM_PFNMAP))
1288                 untrack_pfn(vma, 0, 0);
1289
1290         if (start != end) {
1291                 if (unlikely(is_vm_hugetlb_page(vma))) {
1292                         /*
1293                          * It is undesirable to test vma->vm_file as it
1294                          * should be non-null for valid hugetlb area.
1295                          * However, vm_file will be NULL in the error
1296                          * cleanup path of mmap_region. When
1297                          * hugetlbfs ->mmap method fails,
1298                          * mmap_region() nullifies vma->vm_file
1299                          * before calling this function to clean up.
1300                          * Since no pte has actually been setup, it is
1301                          * safe to do nothing in this case.
1302                          */
1303                         if (vma->vm_file) {
1304                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1305                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307                         }
1308                 } else
1309                         unmap_page_range(tlb, vma, start, end, details);
1310         }
1311 }
1312
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332                 struct vm_area_struct *vma, unsigned long start_addr,
1333                 unsigned long end_addr)
1334 {
1335         struct mmu_notifier_range range;
1336
1337         mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1338         mmu_notifier_invalidate_range_start(&range);
1339         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341         mmu_notifier_invalidate_range_end(&range);
1342 }
1343
1344 /**
1345  * zap_page_range - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @start: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  *
1350  * Caller must protect the VMA list
1351  */
1352 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1353                 unsigned long size)
1354 {
1355         struct mmu_notifier_range range;
1356         struct mmu_gather tlb;
1357
1358         lru_add_drain();
1359         mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1360         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1361         update_hiwater_rss(vma->vm_mm);
1362         mmu_notifier_invalidate_range_start(&range);
1363         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1364                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1365         mmu_notifier_invalidate_range_end(&range);
1366         tlb_finish_mmu(&tlb, start, range.end);
1367 }
1368
1369 /**
1370  * zap_page_range_single - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @address: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of shared cache invalidation
1375  *
1376  * The range must fit into one VMA.
1377  */
1378 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1379                 unsigned long size, struct zap_details *details)
1380 {
1381         struct mmu_notifier_range range;
1382         struct mmu_gather tlb;
1383
1384         lru_add_drain();
1385         mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1386         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387         update_hiwater_rss(vma->vm_mm);
1388         mmu_notifier_invalidate_range_start(&range);
1389         unmap_single_vma(&tlb, vma, address, range.end, details);
1390         mmu_notifier_invalidate_range_end(&range);
1391         tlb_finish_mmu(&tlb, address, range.end);
1392 }
1393
1394 /**
1395  * zap_vma_ptes - remove ptes mapping the vma
1396  * @vma: vm_area_struct holding ptes to be zapped
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  *
1400  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401  *
1402  * The entire address range must be fully contained within the vma.
1403  *
1404  */
1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1406                 unsigned long size)
1407 {
1408         if (address < vma->vm_start || address + size > vma->vm_end ||
1409                         !(vma->vm_flags & VM_PFNMAP))
1410                 return;
1411
1412         zap_page_range_single(vma, address, size, NULL);
1413 }
1414 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415
1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1417                         spinlock_t **ptl)
1418 {
1419         pgd_t *pgd;
1420         p4d_t *p4d;
1421         pud_t *pud;
1422         pmd_t *pmd;
1423
1424         pgd = pgd_offset(mm, addr);
1425         p4d = p4d_alloc(mm, pgd, addr);
1426         if (!p4d)
1427                 return NULL;
1428         pud = pud_alloc(mm, p4d, addr);
1429         if (!pud)
1430                 return NULL;
1431         pmd = pmd_alloc(mm, pud, addr);
1432         if (!pmd)
1433                 return NULL;
1434
1435         VM_BUG_ON(pmd_trans_huge(*pmd));
1436         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1437 }
1438
1439 /*
1440  * This is the old fallback for page remapping.
1441  *
1442  * For historical reasons, it only allows reserved pages. Only
1443  * old drivers should use this, and they needed to mark their
1444  * pages reserved for the old functions anyway.
1445  */
1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447                         struct page *page, pgprot_t prot)
1448 {
1449         struct mm_struct *mm = vma->vm_mm;
1450         int retval;
1451         pte_t *pte;
1452         spinlock_t *ptl;
1453
1454         retval = -EINVAL;
1455         if (PageAnon(page))
1456                 goto out;
1457         retval = -ENOMEM;
1458         flush_dcache_page(page);
1459         pte = get_locked_pte(mm, addr, &ptl);
1460         if (!pte)
1461                 goto out;
1462         retval = -EBUSY;
1463         if (!pte_none(*pte))
1464                 goto out_unlock;
1465
1466         /* Ok, finally just insert the thing.. */
1467         get_page(page);
1468         inc_mm_counter_fast(mm, mm_counter_file(page));
1469         page_add_file_rmap(page, false);
1470         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471
1472         retval = 0;
1473         pte_unmap_unlock(pte, ptl);
1474         return retval;
1475 out_unlock:
1476         pte_unmap_unlock(pte, ptl);
1477 out:
1478         return retval;
1479 }
1480
1481 /**
1482  * vm_insert_page - insert single page into user vma
1483  * @vma: user vma to map to
1484  * @addr: target user address of this page
1485  * @page: source kernel page
1486  *
1487  * This allows drivers to insert individual pages they've allocated
1488  * into a user vma.
1489  *
1490  * The page has to be a nice clean _individual_ kernel allocation.
1491  * If you allocate a compound page, you need to have marked it as
1492  * such (__GFP_COMP), or manually just split the page up yourself
1493  * (see split_page()).
1494  *
1495  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1496  * took an arbitrary page protection parameter. This doesn't allow
1497  * that. Your vma protection will have to be set up correctly, which
1498  * means that if you want a shared writable mapping, you'd better
1499  * ask for a shared writable mapping!
1500  *
1501  * The page does not need to be reserved.
1502  *
1503  * Usually this function is called from f_op->mmap() handler
1504  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1505  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1506  * function from other places, for example from page-fault handler.
1507  */
1508 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1509                         struct page *page)
1510 {
1511         if (addr < vma->vm_start || addr >= vma->vm_end)
1512                 return -EFAULT;
1513         if (!page_count(page))
1514                 return -EINVAL;
1515         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1516                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1517                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1518                 vma->vm_flags |= VM_MIXEDMAP;
1519         }
1520         return insert_page(vma, addr, page, vma->vm_page_prot);
1521 }
1522 EXPORT_SYMBOL(vm_insert_page);
1523
1524 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1525                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1526 {
1527         struct mm_struct *mm = vma->vm_mm;
1528         pte_t *pte, entry;
1529         spinlock_t *ptl;
1530
1531         pte = get_locked_pte(mm, addr, &ptl);
1532         if (!pte)
1533                 return VM_FAULT_OOM;
1534         if (!pte_none(*pte)) {
1535                 if (mkwrite) {
1536                         /*
1537                          * For read faults on private mappings the PFN passed
1538                          * in may not match the PFN we have mapped if the
1539                          * mapped PFN is a writeable COW page.  In the mkwrite
1540                          * case we are creating a writable PTE for a shared
1541                          * mapping and we expect the PFNs to match. If they
1542                          * don't match, we are likely racing with block
1543                          * allocation and mapping invalidation so just skip the
1544                          * update.
1545                          */
1546                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1547                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1548                                 goto out_unlock;
1549                         }
1550                         entry = *pte;
1551                         goto out_mkwrite;
1552                 } else
1553                         goto out_unlock;
1554         }
1555
1556         /* Ok, finally just insert the thing.. */
1557         if (pfn_t_devmap(pfn))
1558                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1559         else
1560                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1561
1562 out_mkwrite:
1563         if (mkwrite) {
1564                 entry = pte_mkyoung(entry);
1565                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1566         }
1567
1568         set_pte_at(mm, addr, pte, entry);
1569         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1570
1571 out_unlock:
1572         pte_unmap_unlock(pte, ptl);
1573         return VM_FAULT_NOPAGE;
1574 }
1575
1576 /**
1577  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1578  * @vma: user vma to map to
1579  * @addr: target user address of this page
1580  * @pfn: source kernel pfn
1581  * @pgprot: pgprot flags for the inserted page
1582  *
1583  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1584  * to override pgprot on a per-page basis.
1585  *
1586  * This only makes sense for IO mappings, and it makes no sense for
1587  * COW mappings.  In general, using multiple vmas is preferable;
1588  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1589  * impractical.
1590  *
1591  * Context: Process context.  May allocate using %GFP_KERNEL.
1592  * Return: vm_fault_t value.
1593  */
1594 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1595                         unsigned long pfn, pgprot_t pgprot)
1596 {
1597         /*
1598          * Technically, architectures with pte_special can avoid all these
1599          * restrictions (same for remap_pfn_range).  However we would like
1600          * consistency in testing and feature parity among all, so we should
1601          * try to keep these invariants in place for everybody.
1602          */
1603         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1604         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1605                                                 (VM_PFNMAP|VM_MIXEDMAP));
1606         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1607         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1608
1609         if (addr < vma->vm_start || addr >= vma->vm_end)
1610                 return VM_FAULT_SIGBUS;
1611
1612         if (!pfn_modify_allowed(pfn, pgprot))
1613                 return VM_FAULT_SIGBUS;
1614
1615         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1616
1617         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1618                         false);
1619 }
1620 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1621
1622 /**
1623  * vmf_insert_pfn - insert single pfn into user vma
1624  * @vma: user vma to map to
1625  * @addr: target user address of this page
1626  * @pfn: source kernel pfn
1627  *
1628  * Similar to vm_insert_page, this allows drivers to insert individual pages
1629  * they've allocated into a user vma. Same comments apply.
1630  *
1631  * This function should only be called from a vm_ops->fault handler, and
1632  * in that case the handler should return the result of this function.
1633  *
1634  * vma cannot be a COW mapping.
1635  *
1636  * As this is called only for pages that do not currently exist, we
1637  * do not need to flush old virtual caches or the TLB.
1638  *
1639  * Context: Process context.  May allocate using %GFP_KERNEL.
1640  * Return: vm_fault_t value.
1641  */
1642 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1643                         unsigned long pfn)
1644 {
1645         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1646 }
1647 EXPORT_SYMBOL(vmf_insert_pfn);
1648
1649 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1650 {
1651         /* these checks mirror the abort conditions in vm_normal_page */
1652         if (vma->vm_flags & VM_MIXEDMAP)
1653                 return true;
1654         if (pfn_t_devmap(pfn))
1655                 return true;
1656         if (pfn_t_special(pfn))
1657                 return true;
1658         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1659                 return true;
1660         return false;
1661 }
1662
1663 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1664                 unsigned long addr, pfn_t pfn, bool mkwrite)
1665 {
1666         pgprot_t pgprot = vma->vm_page_prot;
1667         int err;
1668
1669         BUG_ON(!vm_mixed_ok(vma, pfn));
1670
1671         if (addr < vma->vm_start || addr >= vma->vm_end)
1672                 return VM_FAULT_SIGBUS;
1673
1674         track_pfn_insert(vma, &pgprot, pfn);
1675
1676         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1677                 return VM_FAULT_SIGBUS;
1678
1679         /*
1680          * If we don't have pte special, then we have to use the pfn_valid()
1681          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1682          * refcount the page if pfn_valid is true (hence insert_page rather
1683          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1684          * without pte special, it would there be refcounted as a normal page.
1685          */
1686         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1687             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1688                 struct page *page;
1689
1690                 /*
1691                  * At this point we are committed to insert_page()
1692                  * regardless of whether the caller specified flags that
1693                  * result in pfn_t_has_page() == false.
1694                  */
1695                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1696                 err = insert_page(vma, addr, page, pgprot);
1697         } else {
1698                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1699         }
1700
1701         if (err == -ENOMEM)
1702                 return VM_FAULT_OOM;
1703         if (err < 0 && err != -EBUSY)
1704                 return VM_FAULT_SIGBUS;
1705
1706         return VM_FAULT_NOPAGE;
1707 }
1708
1709 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1710                 pfn_t pfn)
1711 {
1712         return __vm_insert_mixed(vma, addr, pfn, false);
1713 }
1714 EXPORT_SYMBOL(vmf_insert_mixed);
1715
1716 /*
1717  *  If the insertion of PTE failed because someone else already added a
1718  *  different entry in the mean time, we treat that as success as we assume
1719  *  the same entry was actually inserted.
1720  */
1721 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1722                 unsigned long addr, pfn_t pfn)
1723 {
1724         return __vm_insert_mixed(vma, addr, pfn, true);
1725 }
1726 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1727
1728 /*
1729  * maps a range of physical memory into the requested pages. the old
1730  * mappings are removed. any references to nonexistent pages results
1731  * in null mappings (currently treated as "copy-on-access")
1732  */
1733 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1734                         unsigned long addr, unsigned long end,
1735                         unsigned long pfn, pgprot_t prot)
1736 {
1737         pte_t *pte;
1738         spinlock_t *ptl;
1739         int err = 0;
1740
1741         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1742         if (!pte)
1743                 return -ENOMEM;
1744         arch_enter_lazy_mmu_mode();
1745         do {
1746                 BUG_ON(!pte_none(*pte));
1747                 if (!pfn_modify_allowed(pfn, prot)) {
1748                         err = -EACCES;
1749                         break;
1750                 }
1751                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1752                 pfn++;
1753         } while (pte++, addr += PAGE_SIZE, addr != end);
1754         arch_leave_lazy_mmu_mode();
1755         pte_unmap_unlock(pte - 1, ptl);
1756         return err;
1757 }
1758
1759 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1760                         unsigned long addr, unsigned long end,
1761                         unsigned long pfn, pgprot_t prot)
1762 {
1763         pmd_t *pmd;
1764         unsigned long next;
1765         int err;
1766
1767         pfn -= addr >> PAGE_SHIFT;
1768         pmd = pmd_alloc(mm, pud, addr);
1769         if (!pmd)
1770                 return -ENOMEM;
1771         VM_BUG_ON(pmd_trans_huge(*pmd));
1772         do {
1773                 next = pmd_addr_end(addr, end);
1774                 err = remap_pte_range(mm, pmd, addr, next,
1775                                 pfn + (addr >> PAGE_SHIFT), prot);
1776                 if (err)
1777                         return err;
1778         } while (pmd++, addr = next, addr != end);
1779         return 0;
1780 }
1781
1782 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1783                         unsigned long addr, unsigned long end,
1784                         unsigned long pfn, pgprot_t prot)
1785 {
1786         pud_t *pud;
1787         unsigned long next;
1788         int err;
1789
1790         pfn -= addr >> PAGE_SHIFT;
1791         pud = pud_alloc(mm, p4d, addr);
1792         if (!pud)
1793                 return -ENOMEM;
1794         do {
1795                 next = pud_addr_end(addr, end);
1796                 err = remap_pmd_range(mm, pud, addr, next,
1797                                 pfn + (addr >> PAGE_SHIFT), prot);
1798                 if (err)
1799                         return err;
1800         } while (pud++, addr = next, addr != end);
1801         return 0;
1802 }
1803
1804 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1805                         unsigned long addr, unsigned long end,
1806                         unsigned long pfn, pgprot_t prot)
1807 {
1808         p4d_t *p4d;
1809         unsigned long next;
1810         int err;
1811
1812         pfn -= addr >> PAGE_SHIFT;
1813         p4d = p4d_alloc(mm, pgd, addr);
1814         if (!p4d)
1815                 return -ENOMEM;
1816         do {
1817                 next = p4d_addr_end(addr, end);
1818                 err = remap_pud_range(mm, p4d, addr, next,
1819                                 pfn + (addr >> PAGE_SHIFT), prot);
1820                 if (err)
1821                         return err;
1822         } while (p4d++, addr = next, addr != end);
1823         return 0;
1824 }
1825
1826 /**
1827  * remap_pfn_range - remap kernel memory to userspace
1828  * @vma: user vma to map to
1829  * @addr: target user address to start at
1830  * @pfn: physical address of kernel memory
1831  * @size: size of map area
1832  * @prot: page protection flags for this mapping
1833  *
1834  *  Note: this is only safe if the mm semaphore is held when called.
1835  */
1836 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1837                     unsigned long pfn, unsigned long size, pgprot_t prot)
1838 {
1839         pgd_t *pgd;
1840         unsigned long next;
1841         unsigned long end = addr + PAGE_ALIGN(size);
1842         struct mm_struct *mm = vma->vm_mm;
1843         unsigned long remap_pfn = pfn;
1844         int err;
1845
1846         /*
1847          * Physically remapped pages are special. Tell the
1848          * rest of the world about it:
1849          *   VM_IO tells people not to look at these pages
1850          *      (accesses can have side effects).
1851          *   VM_PFNMAP tells the core MM that the base pages are just
1852          *      raw PFN mappings, and do not have a "struct page" associated
1853          *      with them.
1854          *   VM_DONTEXPAND
1855          *      Disable vma merging and expanding with mremap().
1856          *   VM_DONTDUMP
1857          *      Omit vma from core dump, even when VM_IO turned off.
1858          *
1859          * There's a horrible special case to handle copy-on-write
1860          * behaviour that some programs depend on. We mark the "original"
1861          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1862          * See vm_normal_page() for details.
1863          */
1864         if (is_cow_mapping(vma->vm_flags)) {
1865                 if (addr != vma->vm_start || end != vma->vm_end)
1866                         return -EINVAL;
1867                 vma->vm_pgoff = pfn;
1868         }
1869
1870         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1871         if (err)
1872                 return -EINVAL;
1873
1874         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1875
1876         BUG_ON(addr >= end);
1877         pfn -= addr >> PAGE_SHIFT;
1878         pgd = pgd_offset(mm, addr);
1879         flush_cache_range(vma, addr, end);
1880         do {
1881                 next = pgd_addr_end(addr, end);
1882                 err = remap_p4d_range(mm, pgd, addr, next,
1883                                 pfn + (addr >> PAGE_SHIFT), prot);
1884                 if (err)
1885                         break;
1886         } while (pgd++, addr = next, addr != end);
1887
1888         if (err)
1889                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1890
1891         return err;
1892 }
1893 EXPORT_SYMBOL(remap_pfn_range);
1894
1895 /**
1896  * vm_iomap_memory - remap memory to userspace
1897  * @vma: user vma to map to
1898  * @start: start of area
1899  * @len: size of area
1900  *
1901  * This is a simplified io_remap_pfn_range() for common driver use. The
1902  * driver just needs to give us the physical memory range to be mapped,
1903  * we'll figure out the rest from the vma information.
1904  *
1905  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1906  * whatever write-combining details or similar.
1907  */
1908 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1909 {
1910         unsigned long vm_len, pfn, pages;
1911
1912         /* Check that the physical memory area passed in looks valid */
1913         if (start + len < start)
1914                 return -EINVAL;
1915         /*
1916          * You *really* shouldn't map things that aren't page-aligned,
1917          * but we've historically allowed it because IO memory might
1918          * just have smaller alignment.
1919          */
1920         len += start & ~PAGE_MASK;
1921         pfn = start >> PAGE_SHIFT;
1922         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1923         if (pfn + pages < pfn)
1924                 return -EINVAL;
1925
1926         /* We start the mapping 'vm_pgoff' pages into the area */
1927         if (vma->vm_pgoff > pages)
1928                 return -EINVAL;
1929         pfn += vma->vm_pgoff;
1930         pages -= vma->vm_pgoff;
1931
1932         /* Can we fit all of the mapping? */
1933         vm_len = vma->vm_end - vma->vm_start;
1934         if (vm_len >> PAGE_SHIFT > pages)
1935                 return -EINVAL;
1936
1937         /* Ok, let it rip */
1938         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1939 }
1940 EXPORT_SYMBOL(vm_iomap_memory);
1941
1942 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1943                                      unsigned long addr, unsigned long end,
1944                                      pte_fn_t fn, void *data)
1945 {
1946         pte_t *pte;
1947         int err;
1948         pgtable_t token;
1949         spinlock_t *uninitialized_var(ptl);
1950
1951         pte = (mm == &init_mm) ?
1952                 pte_alloc_kernel(pmd, addr) :
1953                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1954         if (!pte)
1955                 return -ENOMEM;
1956
1957         BUG_ON(pmd_huge(*pmd));
1958
1959         arch_enter_lazy_mmu_mode();
1960
1961         token = pmd_pgtable(*pmd);
1962
1963         do {
1964                 err = fn(pte++, token, addr, data);
1965                 if (err)
1966                         break;
1967         } while (addr += PAGE_SIZE, addr != end);
1968
1969         arch_leave_lazy_mmu_mode();
1970
1971         if (mm != &init_mm)
1972                 pte_unmap_unlock(pte-1, ptl);
1973         return err;
1974 }
1975
1976 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1977                                      unsigned long addr, unsigned long end,
1978                                      pte_fn_t fn, void *data)
1979 {
1980         pmd_t *pmd;
1981         unsigned long next;
1982         int err;
1983
1984         BUG_ON(pud_huge(*pud));
1985
1986         pmd = pmd_alloc(mm, pud, addr);
1987         if (!pmd)
1988                 return -ENOMEM;
1989         do {
1990                 next = pmd_addr_end(addr, end);
1991                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1992                 if (err)
1993                         break;
1994         } while (pmd++, addr = next, addr != end);
1995         return err;
1996 }
1997
1998 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1999                                      unsigned long addr, unsigned long end,
2000                                      pte_fn_t fn, void *data)
2001 {
2002         pud_t *pud;
2003         unsigned long next;
2004         int err;
2005
2006         pud = pud_alloc(mm, p4d, addr);
2007         if (!pud)
2008                 return -ENOMEM;
2009         do {
2010                 next = pud_addr_end(addr, end);
2011                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2012                 if (err)
2013                         break;
2014         } while (pud++, addr = next, addr != end);
2015         return err;
2016 }
2017
2018 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2019                                      unsigned long addr, unsigned long end,
2020                                      pte_fn_t fn, void *data)
2021 {
2022         p4d_t *p4d;
2023         unsigned long next;
2024         int err;
2025
2026         p4d = p4d_alloc(mm, pgd, addr);
2027         if (!p4d)
2028                 return -ENOMEM;
2029         do {
2030                 next = p4d_addr_end(addr, end);
2031                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2032                 if (err)
2033                         break;
2034         } while (p4d++, addr = next, addr != end);
2035         return err;
2036 }
2037
2038 /*
2039  * Scan a region of virtual memory, filling in page tables as necessary
2040  * and calling a provided function on each leaf page table.
2041  */
2042 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2043                         unsigned long size, pte_fn_t fn, void *data)
2044 {
2045         pgd_t *pgd;
2046         unsigned long next;
2047         unsigned long end = addr + size;
2048         int err;
2049
2050         if (WARN_ON(addr >= end))
2051                 return -EINVAL;
2052
2053         pgd = pgd_offset(mm, addr);
2054         do {
2055                 next = pgd_addr_end(addr, end);
2056                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2057                 if (err)
2058                         break;
2059         } while (pgd++, addr = next, addr != end);
2060
2061         return err;
2062 }
2063 EXPORT_SYMBOL_GPL(apply_to_page_range);
2064
2065 /*
2066  * handle_pte_fault chooses page fault handler according to an entry which was
2067  * read non-atomically.  Before making any commitment, on those architectures
2068  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2069  * parts, do_swap_page must check under lock before unmapping the pte and
2070  * proceeding (but do_wp_page is only called after already making such a check;
2071  * and do_anonymous_page can safely check later on).
2072  */
2073 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2074                                 pte_t *page_table, pte_t orig_pte)
2075 {
2076         int same = 1;
2077 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2078         if (sizeof(pte_t) > sizeof(unsigned long)) {
2079                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2080                 spin_lock(ptl);
2081                 same = pte_same(*page_table, orig_pte);
2082                 spin_unlock(ptl);
2083         }
2084 #endif
2085         pte_unmap(page_table);
2086         return same;
2087 }
2088
2089 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2090 {
2091         debug_dma_assert_idle(src);
2092
2093         /*
2094          * If the source page was a PFN mapping, we don't have
2095          * a "struct page" for it. We do a best-effort copy by
2096          * just copying from the original user address. If that
2097          * fails, we just zero-fill it. Live with it.
2098          */
2099         if (unlikely(!src)) {
2100                 void *kaddr = kmap_atomic(dst);
2101                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2102
2103                 /*
2104                  * This really shouldn't fail, because the page is there
2105                  * in the page tables. But it might just be unreadable,
2106                  * in which case we just give up and fill the result with
2107                  * zeroes.
2108                  */
2109                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2110                         clear_page(kaddr);
2111                 kunmap_atomic(kaddr);
2112                 flush_dcache_page(dst);
2113         } else
2114                 copy_user_highpage(dst, src, va, vma);
2115 }
2116
2117 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2118 {
2119         struct file *vm_file = vma->vm_file;
2120
2121         if (vm_file)
2122                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2123
2124         /*
2125          * Special mappings (e.g. VDSO) do not have any file so fake
2126          * a default GFP_KERNEL for them.
2127          */
2128         return GFP_KERNEL;
2129 }
2130
2131 /*
2132  * Notify the address space that the page is about to become writable so that
2133  * it can prohibit this or wait for the page to get into an appropriate state.
2134  *
2135  * We do this without the lock held, so that it can sleep if it needs to.
2136  */
2137 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2138 {
2139         vm_fault_t ret;
2140         struct page *page = vmf->page;
2141         unsigned int old_flags = vmf->flags;
2142
2143         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2144
2145         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2146         /* Restore original flags so that caller is not surprised */
2147         vmf->flags = old_flags;
2148         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2149                 return ret;
2150         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2151                 lock_page(page);
2152                 if (!page->mapping) {
2153                         unlock_page(page);
2154                         return 0; /* retry */
2155                 }
2156                 ret |= VM_FAULT_LOCKED;
2157         } else
2158                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2159         return ret;
2160 }
2161
2162 /*
2163  * Handle dirtying of a page in shared file mapping on a write fault.
2164  *
2165  * The function expects the page to be locked and unlocks it.
2166  */
2167 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2168                                     struct page *page)
2169 {
2170         struct address_space *mapping;
2171         bool dirtied;
2172         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2173
2174         dirtied = set_page_dirty(page);
2175         VM_BUG_ON_PAGE(PageAnon(page), page);
2176         /*
2177          * Take a local copy of the address_space - page.mapping may be zeroed
2178          * by truncate after unlock_page().   The address_space itself remains
2179          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2180          * release semantics to prevent the compiler from undoing this copying.
2181          */
2182         mapping = page_rmapping(page);
2183         unlock_page(page);
2184
2185         if ((dirtied || page_mkwrite) && mapping) {
2186                 /*
2187                  * Some device drivers do not set page.mapping
2188                  * but still dirty their pages
2189                  */
2190                 balance_dirty_pages_ratelimited(mapping);
2191         }
2192
2193         if (!page_mkwrite)
2194                 file_update_time(vma->vm_file);
2195 }
2196
2197 /*
2198  * Handle write page faults for pages that can be reused in the current vma
2199  *
2200  * This can happen either due to the mapping being with the VM_SHARED flag,
2201  * or due to us being the last reference standing to the page. In either
2202  * case, all we need to do here is to mark the page as writable and update
2203  * any related book-keeping.
2204  */
2205 static inline void wp_page_reuse(struct vm_fault *vmf)
2206         __releases(vmf->ptl)
2207 {
2208         struct vm_area_struct *vma = vmf->vma;
2209         struct page *page = vmf->page;
2210         pte_t entry;
2211         /*
2212          * Clear the pages cpupid information as the existing
2213          * information potentially belongs to a now completely
2214          * unrelated process.
2215          */
2216         if (page)
2217                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2218
2219         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2220         entry = pte_mkyoung(vmf->orig_pte);
2221         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2222         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2223                 update_mmu_cache(vma, vmf->address, vmf->pte);
2224         pte_unmap_unlock(vmf->pte, vmf->ptl);
2225 }
2226
2227 /*
2228  * Handle the case of a page which we actually need to copy to a new page.
2229  *
2230  * Called with mmap_sem locked and the old page referenced, but
2231  * without the ptl held.
2232  *
2233  * High level logic flow:
2234  *
2235  * - Allocate a page, copy the content of the old page to the new one.
2236  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2237  * - Take the PTL. If the pte changed, bail out and release the allocated page
2238  * - If the pte is still the way we remember it, update the page table and all
2239  *   relevant references. This includes dropping the reference the page-table
2240  *   held to the old page, as well as updating the rmap.
2241  * - In any case, unlock the PTL and drop the reference we took to the old page.
2242  */
2243 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2244 {
2245         struct vm_area_struct *vma = vmf->vma;
2246         struct mm_struct *mm = vma->vm_mm;
2247         struct page *old_page = vmf->page;
2248         struct page *new_page = NULL;
2249         pte_t entry;
2250         int page_copied = 0;
2251         struct mem_cgroup *memcg;
2252         struct mmu_notifier_range range;
2253
2254         if (unlikely(anon_vma_prepare(vma)))
2255                 goto oom;
2256
2257         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2258                 new_page = alloc_zeroed_user_highpage_movable(vma,
2259                                                               vmf->address);
2260                 if (!new_page)
2261                         goto oom;
2262         } else {
2263                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2264                                 vmf->address);
2265                 if (!new_page)
2266                         goto oom;
2267                 cow_user_page(new_page, old_page, vmf->address, vma);
2268         }
2269
2270         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2271                 goto oom_free_new;
2272
2273         __SetPageUptodate(new_page);
2274
2275         mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2276                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2277         mmu_notifier_invalidate_range_start(&range);
2278
2279         /*
2280          * Re-check the pte - we dropped the lock
2281          */
2282         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2283         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2284                 if (old_page) {
2285                         if (!PageAnon(old_page)) {
2286                                 dec_mm_counter_fast(mm,
2287                                                 mm_counter_file(old_page));
2288                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2289                         }
2290                 } else {
2291                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2292                 }
2293                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2294                 entry = mk_pte(new_page, vma->vm_page_prot);
2295                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2296                 /*
2297                  * Clear the pte entry and flush it first, before updating the
2298                  * pte with the new entry. This will avoid a race condition
2299                  * seen in the presence of one thread doing SMC and another
2300                  * thread doing COW.
2301                  */
2302                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2303                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2304                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2305                 lru_cache_add_active_or_unevictable(new_page, vma);
2306                 /*
2307                  * We call the notify macro here because, when using secondary
2308                  * mmu page tables (such as kvm shadow page tables), we want the
2309                  * new page to be mapped directly into the secondary page table.
2310                  */
2311                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2312                 update_mmu_cache(vma, vmf->address, vmf->pte);
2313                 if (old_page) {
2314                         /*
2315                          * Only after switching the pte to the new page may
2316                          * we remove the mapcount here. Otherwise another
2317                          * process may come and find the rmap count decremented
2318                          * before the pte is switched to the new page, and
2319                          * "reuse" the old page writing into it while our pte
2320                          * here still points into it and can be read by other
2321                          * threads.
2322                          *
2323                          * The critical issue is to order this
2324                          * page_remove_rmap with the ptp_clear_flush above.
2325                          * Those stores are ordered by (if nothing else,)
2326                          * the barrier present in the atomic_add_negative
2327                          * in page_remove_rmap.
2328                          *
2329                          * Then the TLB flush in ptep_clear_flush ensures that
2330                          * no process can access the old page before the
2331                          * decremented mapcount is visible. And the old page
2332                          * cannot be reused until after the decremented
2333                          * mapcount is visible. So transitively, TLBs to
2334                          * old page will be flushed before it can be reused.
2335                          */
2336                         page_remove_rmap(old_page, false);
2337                 }
2338
2339                 /* Free the old page.. */
2340                 new_page = old_page;
2341                 page_copied = 1;
2342         } else {
2343                 mem_cgroup_cancel_charge(new_page, memcg, false);
2344         }
2345
2346         if (new_page)
2347                 put_page(new_page);
2348
2349         pte_unmap_unlock(vmf->pte, vmf->ptl);
2350         /*
2351          * No need to double call mmu_notifier->invalidate_range() callback as
2352          * the above ptep_clear_flush_notify() did already call it.
2353          */
2354         mmu_notifier_invalidate_range_only_end(&range);
2355         if (old_page) {
2356                 /*
2357                  * Don't let another task, with possibly unlocked vma,
2358                  * keep the mlocked page.
2359                  */
2360                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2361                         lock_page(old_page);    /* LRU manipulation */
2362                         if (PageMlocked(old_page))
2363                                 munlock_vma_page(old_page);
2364                         unlock_page(old_page);
2365                 }
2366                 put_page(old_page);
2367         }
2368         return page_copied ? VM_FAULT_WRITE : 0;
2369 oom_free_new:
2370         put_page(new_page);
2371 oom:
2372         if (old_page)
2373                 put_page(old_page);
2374         return VM_FAULT_OOM;
2375 }
2376
2377 /**
2378  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2379  *                        writeable once the page is prepared
2380  *
2381  * @vmf: structure describing the fault
2382  *
2383  * This function handles all that is needed to finish a write page fault in a
2384  * shared mapping due to PTE being read-only once the mapped page is prepared.
2385  * It handles locking of PTE and modifying it. The function returns
2386  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2387  * lock.
2388  *
2389  * The function expects the page to be locked or other protection against
2390  * concurrent faults / writeback (such as DAX radix tree locks).
2391  */
2392 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2393 {
2394         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2395         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2396                                        &vmf->ptl);
2397         /*
2398          * We might have raced with another page fault while we released the
2399          * pte_offset_map_lock.
2400          */
2401         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2402                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2403                 return VM_FAULT_NOPAGE;
2404         }
2405         wp_page_reuse(vmf);
2406         return 0;
2407 }
2408
2409 /*
2410  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2411  * mapping
2412  */
2413 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2414 {
2415         struct vm_area_struct *vma = vmf->vma;
2416
2417         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2418                 vm_fault_t ret;
2419
2420                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2421                 vmf->flags |= FAULT_FLAG_MKWRITE;
2422                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2423                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2424                         return ret;
2425                 return finish_mkwrite_fault(vmf);
2426         }
2427         wp_page_reuse(vmf);
2428         return VM_FAULT_WRITE;
2429 }
2430
2431 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2432         __releases(vmf->ptl)
2433 {
2434         struct vm_area_struct *vma = vmf->vma;
2435
2436         get_page(vmf->page);
2437
2438         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2439                 vm_fault_t tmp;
2440
2441                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2442                 tmp = do_page_mkwrite(vmf);
2443                 if (unlikely(!tmp || (tmp &
2444                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2445                         put_page(vmf->page);
2446                         return tmp;
2447                 }
2448                 tmp = finish_mkwrite_fault(vmf);
2449                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2450                         unlock_page(vmf->page);
2451                         put_page(vmf->page);
2452                         return tmp;
2453                 }
2454         } else {
2455                 wp_page_reuse(vmf);
2456                 lock_page(vmf->page);
2457         }
2458         fault_dirty_shared_page(vma, vmf->page);
2459         put_page(vmf->page);
2460
2461         return VM_FAULT_WRITE;
2462 }
2463
2464 /*
2465  * This routine handles present pages, when users try to write
2466  * to a shared page. It is done by copying the page to a new address
2467  * and decrementing the shared-page counter for the old page.
2468  *
2469  * Note that this routine assumes that the protection checks have been
2470  * done by the caller (the low-level page fault routine in most cases).
2471  * Thus we can safely just mark it writable once we've done any necessary
2472  * COW.
2473  *
2474  * We also mark the page dirty at this point even though the page will
2475  * change only once the write actually happens. This avoids a few races,
2476  * and potentially makes it more efficient.
2477  *
2478  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2479  * but allow concurrent faults), with pte both mapped and locked.
2480  * We return with mmap_sem still held, but pte unmapped and unlocked.
2481  */
2482 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2483         __releases(vmf->ptl)
2484 {
2485         struct vm_area_struct *vma = vmf->vma;
2486
2487         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2488         if (!vmf->page) {
2489                 /*
2490                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2491                  * VM_PFNMAP VMA.
2492                  *
2493                  * We should not cow pages in a shared writeable mapping.
2494                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2495                  */
2496                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2497                                      (VM_WRITE|VM_SHARED))
2498                         return wp_pfn_shared(vmf);
2499
2500                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2501                 return wp_page_copy(vmf);
2502         }
2503
2504         /*
2505          * Take out anonymous pages first, anonymous shared vmas are
2506          * not dirty accountable.
2507          */
2508         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2509                 int total_map_swapcount;
2510                 if (!trylock_page(vmf->page)) {
2511                         get_page(vmf->page);
2512                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2513                         lock_page(vmf->page);
2514                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2515                                         vmf->address, &vmf->ptl);
2516                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2517                                 unlock_page(vmf->page);
2518                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2519                                 put_page(vmf->page);
2520                                 return 0;
2521                         }
2522                         put_page(vmf->page);
2523                 }
2524                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2525                         if (total_map_swapcount == 1) {
2526                                 /*
2527                                  * The page is all ours. Move it to
2528                                  * our anon_vma so the rmap code will
2529                                  * not search our parent or siblings.
2530                                  * Protected against the rmap code by
2531                                  * the page lock.
2532                                  */
2533                                 page_move_anon_rmap(vmf->page, vma);
2534                         }
2535                         unlock_page(vmf->page);
2536                         wp_page_reuse(vmf);
2537                         return VM_FAULT_WRITE;
2538                 }
2539                 unlock_page(vmf->page);
2540         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2541                                         (VM_WRITE|VM_SHARED))) {
2542                 return wp_page_shared(vmf);
2543         }
2544
2545         /*
2546          * Ok, we need to copy. Oh, well..
2547          */
2548         get_page(vmf->page);
2549
2550         pte_unmap_unlock(vmf->pte, vmf->ptl);
2551         return wp_page_copy(vmf);
2552 }
2553
2554 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2555                 unsigned long start_addr, unsigned long end_addr,
2556                 struct zap_details *details)
2557 {
2558         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2559 }
2560
2561 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2562                                             struct zap_details *details)
2563 {
2564         struct vm_area_struct *vma;
2565         pgoff_t vba, vea, zba, zea;
2566
2567         vma_interval_tree_foreach(vma, root,
2568                         details->first_index, details->last_index) {
2569
2570                 vba = vma->vm_pgoff;
2571                 vea = vba + vma_pages(vma) - 1;
2572                 zba = details->first_index;
2573                 if (zba < vba)
2574                         zba = vba;
2575                 zea = details->last_index;
2576                 if (zea > vea)
2577                         zea = vea;
2578
2579                 unmap_mapping_range_vma(vma,
2580                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2581                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2582                                 details);
2583         }
2584 }
2585
2586 /**
2587  * unmap_mapping_pages() - Unmap pages from processes.
2588  * @mapping: The address space containing pages to be unmapped.
2589  * @start: Index of first page to be unmapped.
2590  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2591  * @even_cows: Whether to unmap even private COWed pages.
2592  *
2593  * Unmap the pages in this address space from any userspace process which
2594  * has them mmaped.  Generally, you want to remove COWed pages as well when
2595  * a file is being truncated, but not when invalidating pages from the page
2596  * cache.
2597  */
2598 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2599                 pgoff_t nr, bool even_cows)
2600 {
2601         struct zap_details details = { };
2602
2603         details.check_mapping = even_cows ? NULL : mapping;
2604         details.first_index = start;
2605         details.last_index = start + nr - 1;
2606         if (details.last_index < details.first_index)
2607                 details.last_index = ULONG_MAX;
2608
2609         i_mmap_lock_write(mapping);
2610         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2611                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2612         i_mmap_unlock_write(mapping);
2613 }
2614
2615 /**
2616  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2617  * address_space corresponding to the specified byte range in the underlying
2618  * file.
2619  *
2620  * @mapping: the address space containing mmaps to be unmapped.
2621  * @holebegin: byte in first page to unmap, relative to the start of
2622  * the underlying file.  This will be rounded down to a PAGE_SIZE
2623  * boundary.  Note that this is different from truncate_pagecache(), which
2624  * must keep the partial page.  In contrast, we must get rid of
2625  * partial pages.
2626  * @holelen: size of prospective hole in bytes.  This will be rounded
2627  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2628  * end of the file.
2629  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2630  * but 0 when invalidating pagecache, don't throw away private data.
2631  */
2632 void unmap_mapping_range(struct address_space *mapping,
2633                 loff_t const holebegin, loff_t const holelen, int even_cows)
2634 {
2635         pgoff_t hba = holebegin >> PAGE_SHIFT;
2636         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2637
2638         /* Check for overflow. */
2639         if (sizeof(holelen) > sizeof(hlen)) {
2640                 long long holeend =
2641                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2642                 if (holeend & ~(long long)ULONG_MAX)
2643                         hlen = ULONG_MAX - hba + 1;
2644         }
2645
2646         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2647 }
2648 EXPORT_SYMBOL(unmap_mapping_range);
2649
2650 /*
2651  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2652  * but allow concurrent faults), and pte mapped but not yet locked.
2653  * We return with pte unmapped and unlocked.
2654  *
2655  * We return with the mmap_sem locked or unlocked in the same cases
2656  * as does filemap_fault().
2657  */
2658 vm_fault_t do_swap_page(struct vm_fault *vmf)
2659 {
2660         struct vm_area_struct *vma = vmf->vma;
2661         struct page *page = NULL, *swapcache;
2662         struct mem_cgroup *memcg;
2663         swp_entry_t entry;
2664         pte_t pte;
2665         int locked;
2666         int exclusive = 0;
2667         vm_fault_t ret = 0;
2668
2669         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2670                 goto out;
2671
2672         entry = pte_to_swp_entry(vmf->orig_pte);
2673         if (unlikely(non_swap_entry(entry))) {
2674                 if (is_migration_entry(entry)) {
2675                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2676                                              vmf->address);
2677                 } else if (is_device_private_entry(entry)) {
2678                         /*
2679                          * For un-addressable device memory we call the pgmap
2680                          * fault handler callback. The callback must migrate
2681                          * the page back to some CPU accessible page.
2682                          */
2683                         ret = device_private_entry_fault(vma, vmf->address, entry,
2684                                                  vmf->flags, vmf->pmd);
2685                 } else if (is_hwpoison_entry(entry)) {
2686                         ret = VM_FAULT_HWPOISON;
2687                 } else {
2688                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2689                         ret = VM_FAULT_SIGBUS;
2690                 }
2691                 goto out;
2692         }
2693
2694
2695         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2696         page = lookup_swap_cache(entry, vma, vmf->address);
2697         swapcache = page;
2698
2699         if (!page) {
2700                 struct swap_info_struct *si = swp_swap_info(entry);
2701
2702                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2703                                 __swap_count(si, entry) == 1) {
2704                         /* skip swapcache */
2705                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2706                                                         vmf->address);
2707                         if (page) {
2708                                 __SetPageLocked(page);
2709                                 __SetPageSwapBacked(page);
2710                                 set_page_private(page, entry.val);
2711                                 lru_cache_add_anon(page);
2712                                 swap_readpage(page, true);
2713                         }
2714                 } else {
2715                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2716                                                 vmf);
2717                         swapcache = page;
2718                 }
2719
2720                 if (!page) {
2721                         /*
2722                          * Back out if somebody else faulted in this pte
2723                          * while we released the pte lock.
2724                          */
2725                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2726                                         vmf->address, &vmf->ptl);
2727                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2728                                 ret = VM_FAULT_OOM;
2729                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2730                         goto unlock;
2731                 }
2732
2733                 /* Had to read the page from swap area: Major fault */
2734                 ret = VM_FAULT_MAJOR;
2735                 count_vm_event(PGMAJFAULT);
2736                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2737         } else if (PageHWPoison(page)) {
2738                 /*
2739                  * hwpoisoned dirty swapcache pages are kept for killing
2740                  * owner processes (which may be unknown at hwpoison time)
2741                  */
2742                 ret = VM_FAULT_HWPOISON;
2743                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2744                 goto out_release;
2745         }
2746
2747         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2748
2749         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2750         if (!locked) {
2751                 ret |= VM_FAULT_RETRY;
2752                 goto out_release;
2753         }
2754
2755         /*
2756          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2757          * release the swapcache from under us.  The page pin, and pte_same
2758          * test below, are not enough to exclude that.  Even if it is still
2759          * swapcache, we need to check that the page's swap has not changed.
2760          */
2761         if (unlikely((!PageSwapCache(page) ||
2762                         page_private(page) != entry.val)) && swapcache)
2763                 goto out_page;
2764
2765         page = ksm_might_need_to_copy(page, vma, vmf->address);
2766         if (unlikely(!page)) {
2767                 ret = VM_FAULT_OOM;
2768                 page = swapcache;
2769                 goto out_page;
2770         }
2771
2772         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2773                                         &memcg, false)) {
2774                 ret = VM_FAULT_OOM;
2775                 goto out_page;
2776         }
2777
2778         /*
2779          * Back out if somebody else already faulted in this pte.
2780          */
2781         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2782                         &vmf->ptl);
2783         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2784                 goto out_nomap;
2785
2786         if (unlikely(!PageUptodate(page))) {
2787                 ret = VM_FAULT_SIGBUS;
2788                 goto out_nomap;
2789         }
2790
2791         /*
2792          * The page isn't present yet, go ahead with the fault.
2793          *
2794          * Be careful about the sequence of operations here.
2795          * To get its accounting right, reuse_swap_page() must be called
2796          * while the page is counted on swap but not yet in mapcount i.e.
2797          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2798          * must be called after the swap_free(), or it will never succeed.
2799          */
2800
2801         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2802         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2803         pte = mk_pte(page, vma->vm_page_prot);
2804         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2805                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2806                 vmf->flags &= ~FAULT_FLAG_WRITE;
2807                 ret |= VM_FAULT_WRITE;
2808                 exclusive = RMAP_EXCLUSIVE;
2809         }
2810         flush_icache_page(vma, page);
2811         if (pte_swp_soft_dirty(vmf->orig_pte))
2812                 pte = pte_mksoft_dirty(pte);
2813         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2814         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2815         vmf->orig_pte = pte;
2816
2817         /* ksm created a completely new copy */
2818         if (unlikely(page != swapcache && swapcache)) {
2819                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2820                 mem_cgroup_commit_charge(page, memcg, false, false);
2821                 lru_cache_add_active_or_unevictable(page, vma);
2822         } else {
2823                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2824                 mem_cgroup_commit_charge(page, memcg, true, false);
2825                 activate_page(page);
2826         }
2827
2828         swap_free(entry);
2829         if (mem_cgroup_swap_full(page) ||
2830             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2831                 try_to_free_swap(page);
2832         unlock_page(page);
2833         if (page != swapcache && swapcache) {
2834                 /*
2835                  * Hold the lock to avoid the swap entry to be reused
2836                  * until we take the PT lock for the pte_same() check
2837                  * (to avoid false positives from pte_same). For
2838                  * further safety release the lock after the swap_free
2839                  * so that the swap count won't change under a
2840                  * parallel locked swapcache.
2841                  */
2842                 unlock_page(swapcache);
2843                 put_page(swapcache);
2844         }
2845
2846         if (vmf->flags & FAULT_FLAG_WRITE) {
2847                 ret |= do_wp_page(vmf);
2848                 if (ret & VM_FAULT_ERROR)
2849                         ret &= VM_FAULT_ERROR;
2850                 goto out;
2851         }
2852
2853         /* No need to invalidate - it was non-present before */
2854         update_mmu_cache(vma, vmf->address, vmf->pte);
2855 unlock:
2856         pte_unmap_unlock(vmf->pte, vmf->ptl);
2857 out:
2858         return ret;
2859 out_nomap:
2860         mem_cgroup_cancel_charge(page, memcg, false);
2861         pte_unmap_unlock(vmf->pte, vmf->ptl);
2862 out_page:
2863         unlock_page(page);
2864 out_release:
2865         put_page(page);
2866         if (page != swapcache && swapcache) {
2867                 unlock_page(swapcache);
2868                 put_page(swapcache);
2869         }
2870         return ret;
2871 }
2872
2873 /*
2874  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2875  * but allow concurrent faults), and pte mapped but not yet locked.
2876  * We return with mmap_sem still held, but pte unmapped and unlocked.
2877  */
2878 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2879 {
2880         struct vm_area_struct *vma = vmf->vma;
2881         struct mem_cgroup *memcg;
2882         struct page *page;
2883         vm_fault_t ret = 0;
2884         pte_t entry;
2885
2886         /* File mapping without ->vm_ops ? */
2887         if (vma->vm_flags & VM_SHARED)
2888                 return VM_FAULT_SIGBUS;
2889
2890         /*
2891          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2892          * pte_offset_map() on pmds where a huge pmd might be created
2893          * from a different thread.
2894          *
2895          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2896          * parallel threads are excluded by other means.
2897          *
2898          * Here we only have down_read(mmap_sem).
2899          */
2900         if (pte_alloc(vma->vm_mm, vmf->pmd))
2901                 return VM_FAULT_OOM;
2902
2903         /* See the comment in pte_alloc_one_map() */
2904         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2905                 return 0;
2906
2907         /* Use the zero-page for reads */
2908         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2909                         !mm_forbids_zeropage(vma->vm_mm)) {
2910                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2911                                                 vma->vm_page_prot));
2912                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2913                                 vmf->address, &vmf->ptl);
2914                 if (!pte_none(*vmf->pte))
2915                         goto unlock;
2916                 ret = check_stable_address_space(vma->vm_mm);
2917                 if (ret)
2918                         goto unlock;
2919                 /* Deliver the page fault to userland, check inside PT lock */
2920                 if (userfaultfd_missing(vma)) {
2921                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2922                         return handle_userfault(vmf, VM_UFFD_MISSING);
2923                 }
2924                 goto setpte;
2925         }
2926
2927         /* Allocate our own private page. */
2928         if (unlikely(anon_vma_prepare(vma)))
2929                 goto oom;
2930         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2931         if (!page)
2932                 goto oom;
2933
2934         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2935                                         false))
2936                 goto oom_free_page;
2937
2938         /*
2939          * The memory barrier inside __SetPageUptodate makes sure that
2940          * preceeding stores to the page contents become visible before
2941          * the set_pte_at() write.
2942          */
2943         __SetPageUptodate(page);
2944
2945         entry = mk_pte(page, vma->vm_page_prot);
2946         if (vma->vm_flags & VM_WRITE)
2947                 entry = pte_mkwrite(pte_mkdirty(entry));
2948
2949         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2950                         &vmf->ptl);
2951         if (!pte_none(*vmf->pte))
2952                 goto release;
2953
2954         ret = check_stable_address_space(vma->vm_mm);
2955         if (ret)
2956                 goto release;
2957
2958         /* Deliver the page fault to userland, check inside PT lock */
2959         if (userfaultfd_missing(vma)) {
2960                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2961                 mem_cgroup_cancel_charge(page, memcg, false);
2962                 put_page(page);
2963                 return handle_userfault(vmf, VM_UFFD_MISSING);
2964         }
2965
2966         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2967         page_add_new_anon_rmap(page, vma, vmf->address, false);
2968         mem_cgroup_commit_charge(page, memcg, false, false);
2969         lru_cache_add_active_or_unevictable(page, vma);
2970 setpte:
2971         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2972
2973         /* No need to invalidate - it was non-present before */
2974         update_mmu_cache(vma, vmf->address, vmf->pte);
2975 unlock:
2976         pte_unmap_unlock(vmf->pte, vmf->ptl);
2977         return ret;
2978 release:
2979         mem_cgroup_cancel_charge(page, memcg, false);
2980         put_page(page);
2981         goto unlock;
2982 oom_free_page:
2983         put_page(page);
2984 oom:
2985         return VM_FAULT_OOM;
2986 }
2987
2988 /*
2989  * The mmap_sem must have been held on entry, and may have been
2990  * released depending on flags and vma->vm_ops->fault() return value.
2991  * See filemap_fault() and __lock_page_retry().
2992  */
2993 static vm_fault_t __do_fault(struct vm_fault *vmf)
2994 {
2995         struct vm_area_struct *vma = vmf->vma;
2996         vm_fault_t ret;
2997
2998         /*
2999          * Preallocate pte before we take page_lock because this might lead to
3000          * deadlocks for memcg reclaim which waits for pages under writeback:
3001          *                              lock_page(A)
3002          *                              SetPageWriteback(A)
3003          *                              unlock_page(A)
3004          * lock_page(B)
3005          *                              lock_page(B)
3006          * pte_alloc_pne
3007          *   shrink_page_list
3008          *     wait_on_page_writeback(A)
3009          *                              SetPageWriteback(B)
3010          *                              unlock_page(B)
3011          *                              # flush A, B to clear the writeback
3012          */
3013         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3014                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3015                 if (!vmf->prealloc_pte)
3016                         return VM_FAULT_OOM;
3017                 smp_wmb(); /* See comment in __pte_alloc() */
3018         }
3019
3020         ret = vma->vm_ops->fault(vmf);
3021         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3022                             VM_FAULT_DONE_COW)))
3023                 return ret;
3024
3025         if (unlikely(PageHWPoison(vmf->page))) {
3026                 if (ret & VM_FAULT_LOCKED)
3027                         unlock_page(vmf->page);
3028                 put_page(vmf->page);
3029                 vmf->page = NULL;
3030                 return VM_FAULT_HWPOISON;
3031         }
3032
3033         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3034                 lock_page(vmf->page);
3035         else
3036                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3037
3038         return ret;
3039 }
3040
3041 /*
3042  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3043  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3044  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3045  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3046  */
3047 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3048 {
3049         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3050 }
3051
3052 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3053 {
3054         struct vm_area_struct *vma = vmf->vma;
3055
3056         if (!pmd_none(*vmf->pmd))
3057                 goto map_pte;
3058         if (vmf->prealloc_pte) {
3059                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3060                 if (unlikely(!pmd_none(*vmf->pmd))) {
3061                         spin_unlock(vmf->ptl);
3062                         goto map_pte;
3063                 }
3064
3065                 mm_inc_nr_ptes(vma->vm_mm);
3066                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3067                 spin_unlock(vmf->ptl);
3068                 vmf->prealloc_pte = NULL;
3069         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3070                 return VM_FAULT_OOM;
3071         }
3072 map_pte:
3073         /*
3074          * If a huge pmd materialized under us just retry later.  Use
3075          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3076          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3077          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3078          * running immediately after a huge pmd fault in a different thread of
3079          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3080          * All we have to ensure is that it is a regular pmd that we can walk
3081          * with pte_offset_map() and we can do that through an atomic read in
3082          * C, which is what pmd_trans_unstable() provides.
3083          */
3084         if (pmd_devmap_trans_unstable(vmf->pmd))
3085                 return VM_FAULT_NOPAGE;
3086
3087         /*
3088          * At this point we know that our vmf->pmd points to a page of ptes
3089          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3090          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3091          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3092          * be valid and we will re-check to make sure the vmf->pte isn't
3093          * pte_none() under vmf->ptl protection when we return to
3094          * alloc_set_pte().
3095          */
3096         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3097                         &vmf->ptl);
3098         return 0;
3099 }
3100
3101 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3102
3103 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3104 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3105                 unsigned long haddr)
3106 {
3107         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3108                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3109                 return false;
3110         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3111                 return false;
3112         return true;
3113 }
3114
3115 static void deposit_prealloc_pte(struct vm_fault *vmf)
3116 {
3117         struct vm_area_struct *vma = vmf->vma;
3118
3119         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3120         /*
3121          * We are going to consume the prealloc table,
3122          * count that as nr_ptes.
3123          */
3124         mm_inc_nr_ptes(vma->vm_mm);
3125         vmf->prealloc_pte = NULL;
3126 }
3127
3128 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3129 {
3130         struct vm_area_struct *vma = vmf->vma;
3131         bool write = vmf->flags & FAULT_FLAG_WRITE;
3132         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3133         pmd_t entry;
3134         int i;
3135         vm_fault_t ret;
3136
3137         if (!transhuge_vma_suitable(vma, haddr))
3138                 return VM_FAULT_FALLBACK;
3139
3140         ret = VM_FAULT_FALLBACK;
3141         page = compound_head(page);
3142
3143         /*
3144          * Archs like ppc64 need additonal space to store information
3145          * related to pte entry. Use the preallocated table for that.
3146          */
3147         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3148                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3149                 if (!vmf->prealloc_pte)
3150                         return VM_FAULT_OOM;
3151                 smp_wmb(); /* See comment in __pte_alloc() */
3152         }
3153
3154         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3155         if (unlikely(!pmd_none(*vmf->pmd)))
3156                 goto out;
3157
3158         for (i = 0; i < HPAGE_PMD_NR; i++)
3159                 flush_icache_page(vma, page + i);
3160
3161         entry = mk_huge_pmd(page, vma->vm_page_prot);
3162         if (write)
3163                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3164
3165         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3166         page_add_file_rmap(page, true);
3167         /*
3168          * deposit and withdraw with pmd lock held
3169          */
3170         if (arch_needs_pgtable_deposit())
3171                 deposit_prealloc_pte(vmf);
3172
3173         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3174
3175         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3176
3177         /* fault is handled */
3178         ret = 0;
3179         count_vm_event(THP_FILE_MAPPED);
3180 out:
3181         spin_unlock(vmf->ptl);
3182         return ret;
3183 }
3184 #else
3185 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3186 {
3187         BUILD_BUG();
3188         return 0;
3189 }
3190 #endif
3191
3192 /**
3193  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3194  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3195  *
3196  * @vmf: fault environment
3197  * @memcg: memcg to charge page (only for private mappings)
3198  * @page: page to map
3199  *
3200  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3201  * return.
3202  *
3203  * Target users are page handler itself and implementations of
3204  * vm_ops->map_pages.
3205  */
3206 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3207                 struct page *page)
3208 {
3209         struct vm_area_struct *vma = vmf->vma;
3210         bool write = vmf->flags & FAULT_FLAG_WRITE;
3211         pte_t entry;
3212         vm_fault_t ret;
3213
3214         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3215                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3216                 /* THP on COW? */
3217                 VM_BUG_ON_PAGE(memcg, page);
3218
3219                 ret = do_set_pmd(vmf, page);
3220                 if (ret != VM_FAULT_FALLBACK)
3221                         return ret;
3222         }
3223
3224         if (!vmf->pte) {
3225                 ret = pte_alloc_one_map(vmf);
3226                 if (ret)
3227                         return ret;
3228         }
3229
3230         /* Re-check under ptl */
3231         if (unlikely(!pte_none(*vmf->pte)))
3232                 return VM_FAULT_NOPAGE;
3233
3234         flush_icache_page(vma, page);
3235         entry = mk_pte(page, vma->vm_page_prot);
3236         if (write)
3237                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3238         /* copy-on-write page */
3239         if (write && !(vma->vm_flags & VM_SHARED)) {
3240                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3241                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3242                 mem_cgroup_commit_charge(page, memcg, false, false);
3243                 lru_cache_add_active_or_unevictable(page, vma);
3244         } else {
3245                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3246                 page_add_file_rmap(page, false);
3247         }
3248         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3249
3250         /* no need to invalidate: a not-present page won't be cached */
3251         update_mmu_cache(vma, vmf->address, vmf->pte);
3252
3253         return 0;
3254 }
3255
3256
3257 /**
3258  * finish_fault - finish page fault once we have prepared the page to fault
3259  *
3260  * @vmf: structure describing the fault
3261  *
3262  * This function handles all that is needed to finish a page fault once the
3263  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3264  * given page, adds reverse page mapping, handles memcg charges and LRU
3265  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3266  * error.
3267  *
3268  * The function expects the page to be locked and on success it consumes a
3269  * reference of a page being mapped (for the PTE which maps it).
3270  */
3271 vm_fault_t finish_fault(struct vm_fault *vmf)
3272 {
3273         struct page *page;
3274         vm_fault_t ret = 0;
3275
3276         /* Did we COW the page? */
3277         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3278             !(vmf->vma->vm_flags & VM_SHARED))
3279                 page = vmf->cow_page;
3280         else
3281                 page = vmf->page;
3282
3283         /*
3284          * check even for read faults because we might have lost our CoWed
3285          * page
3286          */
3287         if (!(vmf->vma->vm_flags & VM_SHARED))
3288                 ret = check_stable_address_space(vmf->vma->vm_mm);
3289         if (!ret)
3290                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3291         if (vmf->pte)
3292                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3293         return ret;
3294 }
3295
3296 static unsigned long fault_around_bytes __read_mostly =
3297         rounddown_pow_of_two(65536);
3298
3299 #ifdef CONFIG_DEBUG_FS
3300 static int fault_around_bytes_get(void *data, u64 *val)
3301 {
3302         *val = fault_around_bytes;
3303         return 0;
3304 }
3305
3306 /*
3307  * fault_around_bytes must be rounded down to the nearest page order as it's
3308  * what do_fault_around() expects to see.
3309  */
3310 static int fault_around_bytes_set(void *data, u64 val)
3311 {
3312         if (val / PAGE_SIZE > PTRS_PER_PTE)
3313                 return -EINVAL;
3314         if (val > PAGE_SIZE)
3315                 fault_around_bytes = rounddown_pow_of_two(val);
3316         else
3317                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3318         return 0;
3319 }
3320 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3321                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3322
3323 static int __init fault_around_debugfs(void)
3324 {
3325         void *ret;
3326
3327         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3328                         &fault_around_bytes_fops);
3329         if (!ret)
3330                 pr_warn("Failed to create fault_around_bytes in debugfs");
3331         return 0;
3332 }
3333 late_initcall(fault_around_debugfs);
3334 #endif
3335
3336 /*
3337  * do_fault_around() tries to map few pages around the fault address. The hope
3338  * is that the pages will be needed soon and this will lower the number of
3339  * faults to handle.
3340  *
3341  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3342  * not ready to be mapped: not up-to-date, locked, etc.
3343  *
3344  * This function is called with the page table lock taken. In the split ptlock
3345  * case the page table lock only protects only those entries which belong to
3346  * the page table corresponding to the fault address.
3347  *
3348  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3349  * only once.
3350  *
3351  * fault_around_bytes defines how many bytes we'll try to map.
3352  * do_fault_around() expects it to be set to a power of two less than or equal
3353  * to PTRS_PER_PTE.
3354  *
3355  * The virtual address of the area that we map is naturally aligned to
3356  * fault_around_bytes rounded down to the machine page size
3357  * (and therefore to page order).  This way it's easier to guarantee
3358  * that we don't cross page table boundaries.
3359  */
3360 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3361 {
3362         unsigned long address = vmf->address, nr_pages, mask;
3363         pgoff_t start_pgoff = vmf->pgoff;
3364         pgoff_t end_pgoff;
3365         int off;
3366         vm_fault_t ret = 0;
3367
3368         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3369         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3370
3371         vmf->address = max(address & mask, vmf->vma->vm_start);
3372         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3373         start_pgoff -= off;
3374
3375         /*
3376          *  end_pgoff is either the end of the page table, the end of
3377          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3378          */
3379         end_pgoff = start_pgoff -
3380                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3381                 PTRS_PER_PTE - 1;
3382         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3383                         start_pgoff + nr_pages - 1);
3384
3385         if (pmd_none(*vmf->pmd)) {
3386                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3387                 if (!vmf->prealloc_pte)
3388                         goto out;
3389                 smp_wmb(); /* See comment in __pte_alloc() */
3390         }
3391
3392         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3393
3394         /* Huge page is mapped? Page fault is solved */
3395         if (pmd_trans_huge(*vmf->pmd)) {
3396                 ret = VM_FAULT_NOPAGE;
3397                 goto out;
3398         }
3399
3400         /* ->map_pages() haven't done anything useful. Cold page cache? */
3401         if (!vmf->pte)
3402                 goto out;
3403
3404         /* check if the page fault is solved */
3405         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3406         if (!pte_none(*vmf->pte))
3407                 ret = VM_FAULT_NOPAGE;
3408         pte_unmap_unlock(vmf->pte, vmf->ptl);
3409 out:
3410         vmf->address = address;
3411         vmf->pte = NULL;
3412         return ret;
3413 }
3414
3415 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3416 {
3417         struct vm_area_struct *vma = vmf->vma;
3418         vm_fault_t ret = 0;
3419
3420         /*
3421          * Let's call ->map_pages() first and use ->fault() as fallback
3422          * if page by the offset is not ready to be mapped (cold cache or
3423          * something).
3424          */
3425         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3426                 ret = do_fault_around(vmf);
3427                 if (ret)
3428                         return ret;
3429         }
3430
3431         ret = __do_fault(vmf);
3432         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3433                 return ret;
3434
3435         ret |= finish_fault(vmf);
3436         unlock_page(vmf->page);
3437         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3438                 put_page(vmf->page);
3439         return ret;
3440 }
3441
3442 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3443 {
3444         struct vm_area_struct *vma = vmf->vma;
3445         vm_fault_t ret;
3446
3447         if (unlikely(anon_vma_prepare(vma)))
3448                 return VM_FAULT_OOM;
3449
3450         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3451         if (!vmf->cow_page)
3452                 return VM_FAULT_OOM;
3453
3454         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3455                                 &vmf->memcg, false)) {
3456                 put_page(vmf->cow_page);
3457                 return VM_FAULT_OOM;
3458         }
3459
3460         ret = __do_fault(vmf);
3461         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3462                 goto uncharge_out;
3463         if (ret & VM_FAULT_DONE_COW)
3464                 return ret;
3465
3466         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3467         __SetPageUptodate(vmf->cow_page);
3468
3469         ret |= finish_fault(vmf);
3470         unlock_page(vmf->page);
3471         put_page(vmf->page);
3472         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3473                 goto uncharge_out;
3474         return ret;
3475 uncharge_out:
3476         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3477         put_page(vmf->cow_page);
3478         return ret;
3479 }
3480
3481 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3482 {
3483         struct vm_area_struct *vma = vmf->vma;
3484         vm_fault_t ret, tmp;
3485
3486         ret = __do_fault(vmf);
3487         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3488                 return ret;
3489
3490         /*
3491          * Check if the backing address space wants to know that the page is
3492          * about to become writable
3493          */
3494         if (vma->vm_ops->page_mkwrite) {
3495                 unlock_page(vmf->page);
3496                 tmp = do_page_mkwrite(vmf);
3497                 if (unlikely(!tmp ||
3498                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3499                         put_page(vmf->page);
3500                         return tmp;
3501                 }
3502         }
3503
3504         ret |= finish_fault(vmf);
3505         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3506                                         VM_FAULT_RETRY))) {
3507                 unlock_page(vmf->page);
3508                 put_page(vmf->page);
3509                 return ret;
3510         }
3511
3512         fault_dirty_shared_page(vma, vmf->page);
3513         return ret;
3514 }
3515
3516 /*
3517  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3518  * but allow concurrent faults).
3519  * The mmap_sem may have been released depending on flags and our
3520  * return value.  See filemap_fault() and __lock_page_or_retry().
3521  */
3522 static vm_fault_t do_fault(struct vm_fault *vmf)
3523 {
3524         struct vm_area_struct *vma = vmf->vma;
3525         vm_fault_t ret;
3526
3527         /*
3528          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3529          */
3530         if (!vma->vm_ops->fault) {
3531                 /*
3532                  * If we find a migration pmd entry or a none pmd entry, which
3533                  * should never happen, return SIGBUS
3534                  */
3535                 if (unlikely(!pmd_present(*vmf->pmd)))
3536                         ret = VM_FAULT_SIGBUS;
3537                 else {
3538                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3539                                                        vmf->pmd,
3540                                                        vmf->address,
3541                                                        &vmf->ptl);
3542                         /*
3543                          * Make sure this is not a temporary clearing of pte
3544                          * by holding ptl and checking again. A R/M/W update
3545                          * of pte involves: take ptl, clearing the pte so that
3546                          * we don't have concurrent modification by hardware
3547                          * followed by an update.
3548                          */
3549                         if (unlikely(pte_none(*vmf->pte)))
3550                                 ret = VM_FAULT_SIGBUS;
3551                         else
3552                                 ret = VM_FAULT_NOPAGE;
3553
3554                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3555                 }
3556         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3557                 ret = do_read_fault(vmf);
3558         else if (!(vma->vm_flags & VM_SHARED))
3559                 ret = do_cow_fault(vmf);
3560         else
3561                 ret = do_shared_fault(vmf);
3562
3563         /* preallocated pagetable is unused: free it */
3564         if (vmf->prealloc_pte) {
3565                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3566                 vmf->prealloc_pte = NULL;
3567         }
3568         return ret;
3569 }
3570
3571 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3572                                 unsigned long addr, int page_nid,
3573                                 int *flags)
3574 {
3575         get_page(page);
3576
3577         count_vm_numa_event(NUMA_HINT_FAULTS);
3578         if (page_nid == numa_node_id()) {
3579                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3580                 *flags |= TNF_FAULT_LOCAL;
3581         }
3582
3583         return mpol_misplaced(page, vma, addr);
3584 }
3585
3586 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3587 {
3588         struct vm_area_struct *vma = vmf->vma;
3589         struct page *page = NULL;
3590         int page_nid = NUMA_NO_NODE;
3591         int last_cpupid;
3592         int target_nid;
3593         bool migrated = false;
3594         pte_t pte;
3595         bool was_writable = pte_savedwrite(vmf->orig_pte);
3596         int flags = 0;
3597
3598         /*
3599          * The "pte" at this point cannot be used safely without
3600          * validation through pte_unmap_same(). It's of NUMA type but
3601          * the pfn may be screwed if the read is non atomic.
3602          */
3603         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3604         spin_lock(vmf->ptl);
3605         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3606                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3607                 goto out;
3608         }
3609
3610         /*
3611          * Make it present again, Depending on how arch implementes non
3612          * accessible ptes, some can allow access by kernel mode.
3613          */
3614         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3615         pte = pte_modify(pte, vma->vm_page_prot);
3616         pte = pte_mkyoung(pte);
3617         if (was_writable)
3618                 pte = pte_mkwrite(pte);
3619         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3620         update_mmu_cache(vma, vmf->address, vmf->pte);
3621
3622         page = vm_normal_page(vma, vmf->address, pte);
3623         if (!page) {
3624                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3625                 return 0;
3626         }
3627
3628         /* TODO: handle PTE-mapped THP */
3629         if (PageCompound(page)) {
3630                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3631                 return 0;
3632         }
3633
3634         /*
3635          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3636          * much anyway since they can be in shared cache state. This misses
3637          * the case where a mapping is writable but the process never writes
3638          * to it but pte_write gets cleared during protection updates and
3639          * pte_dirty has unpredictable behaviour between PTE scan updates,
3640          * background writeback, dirty balancing and application behaviour.
3641          */
3642         if (!pte_write(pte))
3643                 flags |= TNF_NO_GROUP;
3644
3645         /*
3646          * Flag if the page is shared between multiple address spaces. This
3647          * is later used when determining whether to group tasks together
3648          */
3649         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3650                 flags |= TNF_SHARED;
3651
3652         last_cpupid = page_cpupid_last(page);
3653         page_nid = page_to_nid(page);
3654         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3655                         &flags);
3656         pte_unmap_unlock(vmf->pte, vmf->ptl);
3657         if (target_nid == NUMA_NO_NODE) {
3658                 put_page(page);
3659                 goto out;
3660         }
3661
3662         /* Migrate to the requested node */
3663         migrated = migrate_misplaced_page(page, vma, target_nid);
3664         if (migrated) {
3665                 page_nid = target_nid;
3666                 flags |= TNF_MIGRATED;
3667         } else
3668                 flags |= TNF_MIGRATE_FAIL;
3669
3670 out:
3671         if (page_nid != NUMA_NO_NODE)
3672                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3673         return 0;
3674 }
3675
3676 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3677 {
3678         if (vma_is_anonymous(vmf->vma))
3679                 return do_huge_pmd_anonymous_page(vmf);
3680         if (vmf->vma->vm_ops->huge_fault)
3681                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3682         return VM_FAULT_FALLBACK;
3683 }
3684
3685 /* `inline' is required to avoid gcc 4.1.2 build error */
3686 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3687 {
3688         if (vma_is_anonymous(vmf->vma))
3689                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3690         if (vmf->vma->vm_ops->huge_fault)
3691                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3692
3693         /* COW handled on pte level: split pmd */
3694         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3695         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3696
3697         return VM_FAULT_FALLBACK;
3698 }
3699
3700 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3701 {
3702         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3703 }
3704
3705 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3706 {
3707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3708         /* No support for anonymous transparent PUD pages yet */
3709         if (vma_is_anonymous(vmf->vma))
3710                 return VM_FAULT_FALLBACK;
3711         if (vmf->vma->vm_ops->huge_fault)
3712                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3714         return VM_FAULT_FALLBACK;
3715 }
3716
3717 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3718 {
3719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3720         /* No support for anonymous transparent PUD pages yet */
3721         if (vma_is_anonymous(vmf->vma))
3722                 return VM_FAULT_FALLBACK;
3723         if (vmf->vma->vm_ops->huge_fault)
3724                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3726         return VM_FAULT_FALLBACK;
3727 }
3728
3729 /*
3730  * These routines also need to handle stuff like marking pages dirty
3731  * and/or accessed for architectures that don't do it in hardware (most
3732  * RISC architectures).  The early dirtying is also good on the i386.
3733  *
3734  * There is also a hook called "update_mmu_cache()" that architectures
3735  * with external mmu caches can use to update those (ie the Sparc or
3736  * PowerPC hashed page tables that act as extended TLBs).
3737  *
3738  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3739  * concurrent faults).
3740  *
3741  * The mmap_sem may have been released depending on flags and our return value.
3742  * See filemap_fault() and __lock_page_or_retry().
3743  */
3744 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3745 {
3746         pte_t entry;
3747
3748         if (unlikely(pmd_none(*vmf->pmd))) {
3749                 /*
3750                  * Leave __pte_alloc() until later: because vm_ops->fault may
3751                  * want to allocate huge page, and if we expose page table
3752                  * for an instant, it will be difficult to retract from
3753                  * concurrent faults and from rmap lookups.
3754                  */
3755                 vmf->pte = NULL;
3756         } else {
3757                 /* See comment in pte_alloc_one_map() */
3758                 if (pmd_devmap_trans_unstable(vmf->pmd))
3759                         return 0;
3760                 /*
3761                  * A regular pmd is established and it can't morph into a huge
3762                  * pmd from under us anymore at this point because we hold the
3763                  * mmap_sem read mode and khugepaged takes it in write mode.
3764                  * So now it's safe to run pte_offset_map().
3765                  */
3766                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3767                 vmf->orig_pte = *vmf->pte;
3768
3769                 /*
3770                  * some architectures can have larger ptes than wordsize,
3771                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3772                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3773                  * accesses.  The code below just needs a consistent view
3774                  * for the ifs and we later double check anyway with the
3775                  * ptl lock held. So here a barrier will do.
3776                  */
3777                 barrier();
3778                 if (pte_none(vmf->orig_pte)) {
3779                         pte_unmap(vmf->pte);
3780                         vmf->pte = NULL;
3781                 }
3782         }
3783
3784         if (!vmf->pte) {
3785                 if (vma_is_anonymous(vmf->vma))
3786                         return do_anonymous_page(vmf);
3787                 else
3788                         return do_fault(vmf);
3789         }
3790
3791         if (!pte_present(vmf->orig_pte))
3792                 return do_swap_page(vmf);
3793
3794         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3795                 return do_numa_page(vmf);
3796
3797         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3798         spin_lock(vmf->ptl);
3799         entry = vmf->orig_pte;
3800         if (unlikely(!pte_same(*vmf->pte, entry)))
3801                 goto unlock;
3802         if (vmf->flags & FAULT_FLAG_WRITE) {
3803                 if (!pte_write(entry))
3804                         return do_wp_page(vmf);
3805                 entry = pte_mkdirty(entry);
3806         }
3807         entry = pte_mkyoung(entry);
3808         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3809                                 vmf->flags & FAULT_FLAG_WRITE)) {
3810                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3811         } else {
3812                 /*
3813                  * This is needed only for protection faults but the arch code
3814                  * is not yet telling us if this is a protection fault or not.
3815                  * This still avoids useless tlb flushes for .text page faults
3816                  * with threads.
3817                  */
3818                 if (vmf->flags & FAULT_FLAG_WRITE)
3819                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3820         }
3821 unlock:
3822         pte_unmap_unlock(vmf->pte, vmf->ptl);
3823         return 0;
3824 }
3825
3826 /*
3827  * By the time we get here, we already hold the mm semaphore
3828  *
3829  * The mmap_sem may have been released depending on flags and our
3830  * return value.  See filemap_fault() and __lock_page_or_retry().
3831  */
3832 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3833                 unsigned long address, unsigned int flags)
3834 {
3835         struct vm_fault vmf = {
3836                 .vma = vma,
3837                 .address = address & PAGE_MASK,
3838                 .flags = flags,
3839                 .pgoff = linear_page_index(vma, address),
3840                 .gfp_mask = __get_fault_gfp_mask(vma),
3841         };
3842         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3843         struct mm_struct *mm = vma->vm_mm;
3844         pgd_t *pgd;
3845         p4d_t *p4d;
3846         vm_fault_t ret;
3847
3848         pgd = pgd_offset(mm, address);
3849         p4d = p4d_alloc(mm, pgd, address);
3850         if (!p4d)
3851                 return VM_FAULT_OOM;
3852
3853         vmf.pud = pud_alloc(mm, p4d, address);
3854         if (!vmf.pud)
3855                 return VM_FAULT_OOM;
3856         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3857                 ret = create_huge_pud(&vmf);
3858                 if (!(ret & VM_FAULT_FALLBACK))
3859                         return ret;
3860         } else {
3861                 pud_t orig_pud = *vmf.pud;
3862
3863                 barrier();
3864                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3865
3866                         /* NUMA case for anonymous PUDs would go here */
3867
3868                         if (dirty && !pud_write(orig_pud)) {
3869                                 ret = wp_huge_pud(&vmf, orig_pud);
3870                                 if (!(ret & VM_FAULT_FALLBACK))
3871                                         return ret;
3872                         } else {
3873                                 huge_pud_set_accessed(&vmf, orig_pud);
3874                                 return 0;
3875                         }
3876                 }
3877         }
3878
3879         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3880         if (!vmf.pmd)
3881                 return VM_FAULT_OOM;
3882         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3883                 ret = create_huge_pmd(&vmf);
3884                 if (!(ret & VM_FAULT_FALLBACK))
3885                         return ret;
3886         } else {
3887                 pmd_t orig_pmd = *vmf.pmd;
3888
3889                 barrier();
3890                 if (unlikely(is_swap_pmd(orig_pmd))) {
3891                         VM_BUG_ON(thp_migration_supported() &&
3892                                           !is_pmd_migration_entry(orig_pmd));
3893                         if (is_pmd_migration_entry(orig_pmd))
3894                                 pmd_migration_entry_wait(mm, vmf.pmd);
3895                         return 0;
3896                 }
3897                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3898                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3899                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3900
3901                         if (dirty && !pmd_write(orig_pmd)) {
3902                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3903                                 if (!(ret & VM_FAULT_FALLBACK))
3904                                         return ret;
3905                         } else {
3906                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3907                                 return 0;
3908                         }
3909                 }
3910         }
3911
3912         return handle_pte_fault(&vmf);
3913 }
3914
3915 /*
3916  * By the time we get here, we already hold the mm semaphore
3917  *
3918  * The mmap_sem may have been released depending on flags and our
3919  * return value.  See filemap_fault() and __lock_page_or_retry().
3920  */
3921 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3922                 unsigned int flags)
3923 {
3924         vm_fault_t ret;
3925
3926         __set_current_state(TASK_RUNNING);
3927
3928         count_vm_event(PGFAULT);
3929         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3930
3931         /* do counter updates before entering really critical section. */
3932         check_sync_rss_stat(current);
3933
3934         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3935                                             flags & FAULT_FLAG_INSTRUCTION,
3936                                             flags & FAULT_FLAG_REMOTE))
3937                 return VM_FAULT_SIGSEGV;
3938
3939         /*
3940          * Enable the memcg OOM handling for faults triggered in user
3941          * space.  Kernel faults are handled more gracefully.
3942          */
3943         if (flags & FAULT_FLAG_USER)
3944                 mem_cgroup_enter_user_fault();
3945
3946         if (unlikely(is_vm_hugetlb_page(vma)))
3947                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3948         else
3949                 ret = __handle_mm_fault(vma, address, flags);
3950
3951         if (flags & FAULT_FLAG_USER) {
3952                 mem_cgroup_exit_user_fault();
3953                 /*
3954                  * The task may have entered a memcg OOM situation but
3955                  * if the allocation error was handled gracefully (no
3956                  * VM_FAULT_OOM), there is no need to kill anything.
3957                  * Just clean up the OOM state peacefully.
3958                  */
3959                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3960                         mem_cgroup_oom_synchronize(false);
3961         }
3962
3963         return ret;
3964 }
3965 EXPORT_SYMBOL_GPL(handle_mm_fault);
3966
3967 #ifndef __PAGETABLE_P4D_FOLDED
3968 /*
3969  * Allocate p4d page table.
3970  * We've already handled the fast-path in-line.
3971  */
3972 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3973 {
3974         p4d_t *new = p4d_alloc_one(mm, address);
3975         if (!new)
3976                 return -ENOMEM;
3977
3978         smp_wmb(); /* See comment in __pte_alloc */
3979
3980         spin_lock(&mm->page_table_lock);
3981         if (pgd_present(*pgd))          /* Another has populated it */
3982                 p4d_free(mm, new);
3983         else
3984                 pgd_populate(mm, pgd, new);
3985         spin_unlock(&mm->page_table_lock);
3986         return 0;
3987 }
3988 #endif /* __PAGETABLE_P4D_FOLDED */
3989
3990 #ifndef __PAGETABLE_PUD_FOLDED
3991 /*
3992  * Allocate page upper directory.
3993  * We've already handled the fast-path in-line.
3994  */
3995 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3996 {
3997         pud_t *new = pud_alloc_one(mm, address);
3998         if (!new)
3999                 return -ENOMEM;
4000
4001         smp_wmb(); /* See comment in __pte_alloc */
4002
4003         spin_lock(&mm->page_table_lock);
4004 #ifndef __ARCH_HAS_5LEVEL_HACK
4005         if (!p4d_present(*p4d)) {
4006                 mm_inc_nr_puds(mm);
4007                 p4d_populate(mm, p4d, new);
4008         } else  /* Another has populated it */
4009                 pud_free(mm, new);
4010 #else
4011         if (!pgd_present(*p4d)) {
4012                 mm_inc_nr_puds(mm);
4013                 pgd_populate(mm, p4d, new);
4014         } else  /* Another has populated it */
4015                 pud_free(mm, new);
4016 #endif /* __ARCH_HAS_5LEVEL_HACK */
4017         spin_unlock(&mm->page_table_lock);
4018         return 0;
4019 }
4020 #endif /* __PAGETABLE_PUD_FOLDED */
4021
4022 #ifndef __PAGETABLE_PMD_FOLDED
4023 /*
4024  * Allocate page middle directory.
4025  * We've already handled the fast-path in-line.
4026  */
4027 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4028 {
4029         spinlock_t *ptl;
4030         pmd_t *new = pmd_alloc_one(mm, address);
4031         if (!new)
4032                 return -ENOMEM;
4033
4034         smp_wmb(); /* See comment in __pte_alloc */
4035
4036         ptl = pud_lock(mm, pud);
4037 #ifndef __ARCH_HAS_4LEVEL_HACK
4038         if (!pud_present(*pud)) {
4039                 mm_inc_nr_pmds(mm);
4040                 pud_populate(mm, pud, new);
4041         } else  /* Another has populated it */
4042                 pmd_free(mm, new);
4043 #else
4044         if (!pgd_present(*pud)) {
4045                 mm_inc_nr_pmds(mm);
4046                 pgd_populate(mm, pud, new);
4047         } else /* Another has populated it */
4048                 pmd_free(mm, new);
4049 #endif /* __ARCH_HAS_4LEVEL_HACK */
4050         spin_unlock(ptl);
4051         return 0;
4052 }
4053 #endif /* __PAGETABLE_PMD_FOLDED */
4054
4055 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4056                             struct mmu_notifier_range *range,
4057                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4058 {
4059         pgd_t *pgd;
4060         p4d_t *p4d;
4061         pud_t *pud;
4062         pmd_t *pmd;
4063         pte_t *ptep;
4064
4065         pgd = pgd_offset(mm, address);
4066         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4067                 goto out;
4068
4069         p4d = p4d_offset(pgd, address);
4070         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4071                 goto out;
4072
4073         pud = pud_offset(p4d, address);
4074         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4075                 goto out;
4076
4077         pmd = pmd_offset(pud, address);
4078         VM_BUG_ON(pmd_trans_huge(*pmd));
4079
4080         if (pmd_huge(*pmd)) {
4081                 if (!pmdpp)
4082                         goto out;
4083
4084                 if (range) {
4085                         mmu_notifier_range_init(range, mm, address & PMD_MASK,
4086                                              (address & PMD_MASK) + PMD_SIZE);
4087                         mmu_notifier_invalidate_range_start(range);
4088                 }
4089                 *ptlp = pmd_lock(mm, pmd);
4090                 if (pmd_huge(*pmd)) {
4091                         *pmdpp = pmd;
4092                         return 0;
4093                 }
4094                 spin_unlock(*ptlp);
4095                 if (range)
4096                         mmu_notifier_invalidate_range_end(range);
4097         }
4098
4099         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4100                 goto out;
4101
4102         if (range) {
4103                 mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4104                                      (address & PAGE_MASK) + PAGE_SIZE);
4105                 mmu_notifier_invalidate_range_start(range);
4106         }
4107         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4108         if (!pte_present(*ptep))
4109                 goto unlock;
4110         *ptepp = ptep;
4111         return 0;
4112 unlock:
4113         pte_unmap_unlock(ptep, *ptlp);
4114         if (range)
4115                 mmu_notifier_invalidate_range_end(range);
4116 out:
4117         return -EINVAL;
4118 }
4119
4120 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4121                              pte_t **ptepp, spinlock_t **ptlp)
4122 {
4123         int res;
4124
4125         /* (void) is needed to make gcc happy */
4126         (void) __cond_lock(*ptlp,
4127                            !(res = __follow_pte_pmd(mm, address, NULL,
4128                                                     ptepp, NULL, ptlp)));
4129         return res;
4130 }
4131
4132 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4133                    struct mmu_notifier_range *range,
4134                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4135 {
4136         int res;
4137
4138         /* (void) is needed to make gcc happy */
4139         (void) __cond_lock(*ptlp,
4140                            !(res = __follow_pte_pmd(mm, address, range,
4141                                                     ptepp, pmdpp, ptlp)));
4142         return res;
4143 }
4144 EXPORT_SYMBOL(follow_pte_pmd);
4145
4146 /**
4147  * follow_pfn - look up PFN at a user virtual address
4148  * @vma: memory mapping
4149  * @address: user virtual address
4150  * @pfn: location to store found PFN
4151  *
4152  * Only IO mappings and raw PFN mappings are allowed.
4153  *
4154  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4155  */
4156 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4157         unsigned long *pfn)
4158 {
4159         int ret = -EINVAL;
4160         spinlock_t *ptl;
4161         pte_t *ptep;
4162
4163         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4164                 return ret;
4165
4166         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4167         if (ret)
4168                 return ret;
4169         *pfn = pte_pfn(*ptep);
4170         pte_unmap_unlock(ptep, ptl);
4171         return 0;
4172 }
4173 EXPORT_SYMBOL(follow_pfn);
4174
4175 #ifdef CONFIG_HAVE_IOREMAP_PROT
4176 int follow_phys(struct vm_area_struct *vma,
4177                 unsigned long address, unsigned int flags,
4178                 unsigned long *prot, resource_size_t *phys)
4179 {
4180         int ret = -EINVAL;
4181         pte_t *ptep, pte;
4182         spinlock_t *ptl;
4183
4184         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4185                 goto out;
4186
4187         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4188                 goto out;
4189         pte = *ptep;
4190
4191         if ((flags & FOLL_WRITE) && !pte_write(pte))
4192                 goto unlock;
4193
4194         *prot = pgprot_val(pte_pgprot(pte));
4195         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4196
4197         ret = 0;
4198 unlock:
4199         pte_unmap_unlock(ptep, ptl);
4200 out:
4201         return ret;
4202 }
4203
4204 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4205                         void *buf, int len, int write)
4206 {
4207         resource_size_t phys_addr;
4208         unsigned long prot = 0;
4209         void __iomem *maddr;
4210         int offset = addr & (PAGE_SIZE-1);
4211
4212         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4213                 return -EINVAL;
4214
4215         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4216         if (!maddr)
4217                 return -ENOMEM;
4218
4219         if (write)
4220                 memcpy_toio(maddr + offset, buf, len);
4221         else
4222                 memcpy_fromio(buf, maddr + offset, len);
4223         iounmap(maddr);
4224
4225         return len;
4226 }
4227 EXPORT_SYMBOL_GPL(generic_access_phys);
4228 #endif
4229
4230 /*
4231  * Access another process' address space as given in mm.  If non-NULL, use the
4232  * given task for page fault accounting.
4233  */
4234 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4235                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4236 {
4237         struct vm_area_struct *vma;
4238         void *old_buf = buf;
4239         int write = gup_flags & FOLL_WRITE;
4240
4241         down_read(&mm->mmap_sem);
4242         /* ignore errors, just check how much was successfully transferred */
4243         while (len) {
4244                 int bytes, ret, offset;
4245                 void *maddr;
4246                 struct page *page = NULL;
4247
4248                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4249                                 gup_flags, &page, &vma, NULL);
4250                 if (ret <= 0) {
4251 #ifndef CONFIG_HAVE_IOREMAP_PROT
4252                         break;
4253 #else
4254                         /*
4255                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4256                          * we can access using slightly different code.
4257                          */
4258                         vma = find_vma(mm, addr);
4259                         if (!vma || vma->vm_start > addr)
4260                                 break;
4261                         if (vma->vm_ops && vma->vm_ops->access)
4262                                 ret = vma->vm_ops->access(vma, addr, buf,
4263                                                           len, write);
4264                         if (ret <= 0)
4265                                 break;
4266                         bytes = ret;
4267 #endif
4268                 } else {
4269                         bytes = len;
4270                         offset = addr & (PAGE_SIZE-1);
4271                         if (bytes > PAGE_SIZE-offset)
4272                                 bytes = PAGE_SIZE-offset;
4273
4274                         maddr = kmap(page);
4275                         if (write) {
4276                                 copy_to_user_page(vma, page, addr,
4277                                                   maddr + offset, buf, bytes);
4278                                 set_page_dirty_lock(page);
4279                         } else {
4280                                 copy_from_user_page(vma, page, addr,
4281                                                     buf, maddr + offset, bytes);
4282                         }
4283                         kunmap(page);
4284                         put_page(page);
4285                 }
4286                 len -= bytes;
4287                 buf += bytes;
4288                 addr += bytes;
4289         }
4290         up_read(&mm->mmap_sem);
4291
4292         return buf - old_buf;
4293 }
4294
4295 /**
4296  * access_remote_vm - access another process' address space
4297  * @mm:         the mm_struct of the target address space
4298  * @addr:       start address to access
4299  * @buf:        source or destination buffer
4300  * @len:        number of bytes to transfer
4301  * @gup_flags:  flags modifying lookup behaviour
4302  *
4303  * The caller must hold a reference on @mm.
4304  */
4305 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4306                 void *buf, int len, unsigned int gup_flags)
4307 {
4308         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4309 }
4310
4311 /*
4312  * Access another process' address space.
4313  * Source/target buffer must be kernel space,
4314  * Do not walk the page table directly, use get_user_pages
4315  */
4316 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4317                 void *buf, int len, unsigned int gup_flags)
4318 {
4319         struct mm_struct *mm;
4320         int ret;
4321
4322         mm = get_task_mm(tsk);
4323         if (!mm)
4324                 return 0;
4325
4326         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4327
4328         mmput(mm);
4329
4330         return ret;
4331 }
4332 EXPORT_SYMBOL_GPL(access_process_vm);
4333
4334 /*
4335  * Print the name of a VMA.
4336  */
4337 void print_vma_addr(char *prefix, unsigned long ip)
4338 {
4339         struct mm_struct *mm = current->mm;
4340         struct vm_area_struct *vma;
4341
4342         /*
4343          * we might be running from an atomic context so we cannot sleep
4344          */
4345         if (!down_read_trylock(&mm->mmap_sem))
4346                 return;
4347
4348         vma = find_vma(mm, ip);
4349         if (vma && vma->vm_file) {
4350                 struct file *f = vma->vm_file;
4351                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4352                 if (buf) {
4353                         char *p;
4354
4355                         p = file_path(f, buf, PAGE_SIZE);
4356                         if (IS_ERR(p))
4357                                 p = "?";
4358                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4359                                         vma->vm_start,
4360                                         vma->vm_end - vma->vm_start);
4361                         free_page((unsigned long)buf);
4362                 }
4363         }
4364         up_read(&mm->mmap_sem);
4365 }
4366
4367 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4368 void __might_fault(const char *file, int line)
4369 {
4370         /*
4371          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4372          * holding the mmap_sem, this is safe because kernel memory doesn't
4373          * get paged out, therefore we'll never actually fault, and the
4374          * below annotations will generate false positives.
4375          */
4376         if (uaccess_kernel())
4377                 return;
4378         if (pagefault_disabled())
4379                 return;
4380         __might_sleep(file, line, 0);
4381 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4382         if (current->mm)
4383                 might_lock_read(&current->mm->mmap_sem);
4384 #endif
4385 }
4386 EXPORT_SYMBOL(__might_fault);
4387 #endif
4388
4389 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4390 /*
4391  * Process all subpages of the specified huge page with the specified
4392  * operation.  The target subpage will be processed last to keep its
4393  * cache lines hot.
4394  */
4395 static inline void process_huge_page(
4396         unsigned long addr_hint, unsigned int pages_per_huge_page,
4397         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4398         void *arg)
4399 {
4400         int i, n, base, l;
4401         unsigned long addr = addr_hint &
4402                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4403
4404         /* Process target subpage last to keep its cache lines hot */
4405         might_sleep();
4406         n = (addr_hint - addr) / PAGE_SIZE;
4407         if (2 * n <= pages_per_huge_page) {
4408                 /* If target subpage in first half of huge page */
4409                 base = 0;
4410                 l = n;
4411                 /* Process subpages at the end of huge page */
4412                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4413                         cond_resched();
4414                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4415                 }
4416         } else {
4417                 /* If target subpage in second half of huge page */
4418                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4419                 l = pages_per_huge_page - n;
4420                 /* Process subpages at the begin of huge page */
4421                 for (i = 0; i < base; i++) {
4422                         cond_resched();
4423                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4424                 }
4425         }
4426         /*
4427          * Process remaining subpages in left-right-left-right pattern
4428          * towards the target subpage
4429          */
4430         for (i = 0; i < l; i++) {
4431                 int left_idx = base + i;
4432                 int right_idx = base + 2 * l - 1 - i;
4433
4434                 cond_resched();
4435                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4436                 cond_resched();
4437                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4438         }
4439 }
4440
4441 static void clear_gigantic_page(struct page *page,
4442                                 unsigned long addr,
4443                                 unsigned int pages_per_huge_page)
4444 {
4445         int i;
4446         struct page *p = page;
4447
4448         might_sleep();
4449         for (i = 0; i < pages_per_huge_page;
4450              i++, p = mem_map_next(p, page, i)) {
4451                 cond_resched();
4452                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4453         }
4454 }
4455
4456 static void clear_subpage(unsigned long addr, int idx, void *arg)
4457 {
4458         struct page *page = arg;
4459
4460         clear_user_highpage(page + idx, addr);
4461 }
4462
4463 void clear_huge_page(struct page *page,
4464                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4465 {
4466         unsigned long addr = addr_hint &
4467                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4468
4469         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4470                 clear_gigantic_page(page, addr, pages_per_huge_page);
4471                 return;
4472         }
4473
4474         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4475 }
4476
4477 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4478                                     unsigned long addr,
4479                                     struct vm_area_struct *vma,
4480                                     unsigned int pages_per_huge_page)
4481 {
4482         int i;
4483         struct page *dst_base = dst;
4484         struct page *src_base = src;
4485
4486         for (i = 0; i < pages_per_huge_page; ) {
4487                 cond_resched();
4488                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4489
4490                 i++;
4491                 dst = mem_map_next(dst, dst_base, i);
4492                 src = mem_map_next(src, src_base, i);
4493         }
4494 }
4495
4496 struct copy_subpage_arg {
4497         struct page *dst;
4498         struct page *src;
4499         struct vm_area_struct *vma;
4500 };
4501
4502 static void copy_subpage(unsigned long addr, int idx, void *arg)
4503 {
4504         struct copy_subpage_arg *copy_arg = arg;
4505
4506         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4507                            addr, copy_arg->vma);
4508 }
4509
4510 void copy_user_huge_page(struct page *dst, struct page *src,
4511                          unsigned long addr_hint, struct vm_area_struct *vma,
4512                          unsigned int pages_per_huge_page)
4513 {
4514         unsigned long addr = addr_hint &
4515                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4516         struct copy_subpage_arg arg = {
4517                 .dst = dst,
4518                 .src = src,
4519                 .vma = vma,
4520         };
4521
4522         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4523                 copy_user_gigantic_page(dst, src, addr, vma,
4524                                         pages_per_huge_page);
4525                 return;
4526         }
4527
4528         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4529 }
4530
4531 long copy_huge_page_from_user(struct page *dst_page,
4532                                 const void __user *usr_src,
4533                                 unsigned int pages_per_huge_page,
4534                                 bool allow_pagefault)
4535 {
4536         void *src = (void *)usr_src;
4537         void *page_kaddr;
4538         unsigned long i, rc = 0;
4539         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4540
4541         for (i = 0; i < pages_per_huge_page; i++) {
4542                 if (allow_pagefault)
4543                         page_kaddr = kmap(dst_page + i);
4544                 else
4545                         page_kaddr = kmap_atomic(dst_page + i);
4546                 rc = copy_from_user(page_kaddr,
4547                                 (const void __user *)(src + i * PAGE_SIZE),
4548                                 PAGE_SIZE);
4549                 if (allow_pagefault)
4550                         kunmap(dst_page + i);
4551                 else
4552                         kunmap_atomic(page_kaddr);
4553
4554                 ret_val -= (PAGE_SIZE - rc);
4555                 if (rc)
4556                         break;
4557
4558                 cond_resched();
4559         }
4560         return ret_val;
4561 }
4562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4563
4564 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4565
4566 static struct kmem_cache *page_ptl_cachep;
4567
4568 void __init ptlock_cache_init(void)
4569 {
4570         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4571                         SLAB_PANIC, NULL);
4572 }
4573
4574 bool ptlock_alloc(struct page *page)
4575 {
4576         spinlock_t *ptl;
4577
4578         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4579         if (!ptl)
4580                 return false;
4581         page->ptl = ptl;
4582         return true;
4583 }
4584
4585 void ptlock_free(struct page *page)
4586 {
4587         kmem_cache_free(page_ptl_cachep, page->ptl);
4588 }
4589 #endif