Revert "swap: fix do_swap_page() race with swapoff"
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139         randomize_va_space = 0;
140         return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154         zero_pfn = page_to_pfn(ZERO_PAGE(0));
155         return 0;
156 }
157 early_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161         trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168         int i;
169
170         for (i = 0; i < NR_MM_COUNTERS; i++) {
171                 if (current->rss_stat.count[i]) {
172                         add_mm_counter(mm, i, current->rss_stat.count[i]);
173                         current->rss_stat.count[i] = 0;
174                 }
175         }
176         current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181         struct task_struct *task = current;
182
183         if (likely(task->mm == mm))
184                 task->rss_stat.count[member] += val;
185         else
186                 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH  (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195         if (unlikely(task != current))
196                 return;
197         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198                 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216                            unsigned long addr)
217 {
218         pgtable_t token = pmd_pgtable(*pmd);
219         pmd_clear(pmd);
220         pte_free_tlb(tlb, token, addr);
221         mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225                                 unsigned long addr, unsigned long end,
226                                 unsigned long floor, unsigned long ceiling)
227 {
228         pmd_t *pmd;
229         unsigned long next;
230         unsigned long start;
231
232         start = addr;
233         pmd = pmd_offset(pud, addr);
234         do {
235                 next = pmd_addr_end(addr, end);
236                 if (pmd_none_or_clear_bad(pmd))
237                         continue;
238                 free_pte_range(tlb, pmd, addr);
239         } while (pmd++, addr = next, addr != end);
240
241         start &= PUD_MASK;
242         if (start < floor)
243                 return;
244         if (ceiling) {
245                 ceiling &= PUD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 return;
251
252         pmd = pmd_offset(pud, start);
253         pud_clear(pud);
254         pmd_free_tlb(tlb, pmd, start);
255         mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259                                 unsigned long addr, unsigned long end,
260                                 unsigned long floor, unsigned long ceiling)
261 {
262         pud_t *pud;
263         unsigned long next;
264         unsigned long start;
265
266         start = addr;
267         pud = pud_offset(p4d, addr);
268         do {
269                 next = pud_addr_end(addr, end);
270                 if (pud_none_or_clear_bad(pud))
271                         continue;
272                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273         } while (pud++, addr = next, addr != end);
274
275         start &= P4D_MASK;
276         if (start < floor)
277                 return;
278         if (ceiling) {
279                 ceiling &= P4D_MASK;
280                 if (!ceiling)
281                         return;
282         }
283         if (end - 1 > ceiling - 1)
284                 return;
285
286         pud = pud_offset(p4d, start);
287         p4d_clear(p4d);
288         pud_free_tlb(tlb, pud, start);
289         mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293                                 unsigned long addr, unsigned long end,
294                                 unsigned long floor, unsigned long ceiling)
295 {
296         p4d_t *p4d;
297         unsigned long next;
298         unsigned long start;
299
300         start = addr;
301         p4d = p4d_offset(pgd, addr);
302         do {
303                 next = p4d_addr_end(addr, end);
304                 if (p4d_none_or_clear_bad(p4d))
305                         continue;
306                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307         } while (p4d++, addr = next, addr != end);
308
309         start &= PGDIR_MASK;
310         if (start < floor)
311                 return;
312         if (ceiling) {
313                 ceiling &= PGDIR_MASK;
314                 if (!ceiling)
315                         return;
316         }
317         if (end - 1 > ceiling - 1)
318                 return;
319
320         p4d = p4d_offset(pgd, start);
321         pgd_clear(pgd);
322         p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329                         unsigned long addr, unsigned long end,
330                         unsigned long floor, unsigned long ceiling)
331 {
332         pgd_t *pgd;
333         unsigned long next;
334
335         /*
336          * The next few lines have given us lots of grief...
337          *
338          * Why are we testing PMD* at this top level?  Because often
339          * there will be no work to do at all, and we'd prefer not to
340          * go all the way down to the bottom just to discover that.
341          *
342          * Why all these "- 1"s?  Because 0 represents both the bottom
343          * of the address space and the top of it (using -1 for the
344          * top wouldn't help much: the masks would do the wrong thing).
345          * The rule is that addr 0 and floor 0 refer to the bottom of
346          * the address space, but end 0 and ceiling 0 refer to the top
347          * Comparisons need to use "end - 1" and "ceiling - 1" (though
348          * that end 0 case should be mythical).
349          *
350          * Wherever addr is brought up or ceiling brought down, we must
351          * be careful to reject "the opposite 0" before it confuses the
352          * subsequent tests.  But what about where end is brought down
353          * by PMD_SIZE below? no, end can't go down to 0 there.
354          *
355          * Whereas we round start (addr) and ceiling down, by different
356          * masks at different levels, in order to test whether a table
357          * now has no other vmas using it, so can be freed, we don't
358          * bother to round floor or end up - the tests don't need that.
359          */
360
361         addr &= PMD_MASK;
362         if (addr < floor) {
363                 addr += PMD_SIZE;
364                 if (!addr)
365                         return;
366         }
367         if (ceiling) {
368                 ceiling &= PMD_MASK;
369                 if (!ceiling)
370                         return;
371         }
372         if (end - 1 > ceiling - 1)
373                 end -= PMD_SIZE;
374         if (addr > end - 1)
375                 return;
376         /*
377          * We add page table cache pages with PAGE_SIZE,
378          * (see pte_free_tlb()), flush the tlb if we need
379          */
380         tlb_change_page_size(tlb, PAGE_SIZE);
381         pgd = pgd_offset(tlb->mm, addr);
382         do {
383                 next = pgd_addr_end(addr, end);
384                 if (pgd_none_or_clear_bad(pgd))
385                         continue;
386                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387         } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391                 unsigned long floor, unsigned long ceiling)
392 {
393         while (vma) {
394                 struct vm_area_struct *next = vma->vm_next;
395                 unsigned long addr = vma->vm_start;
396
397                 /*
398                  * Hide vma from rmap and truncate_pagecache before freeing
399                  * pgtables
400                  */
401                 unlink_anon_vmas(vma);
402                 unlink_file_vma(vma);
403
404                 if (is_vm_hugetlb_page(vma)) {
405                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 } else {
408                         /*
409                          * Optimization: gather nearby vmas into one call down
410                          */
411                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412                                && !is_vm_hugetlb_page(next)) {
413                                 vma = next;
414                                 next = vma->vm_next;
415                                 unlink_anon_vmas(vma);
416                                 unlink_file_vma(vma);
417                         }
418                         free_pgd_range(tlb, addr, vma->vm_end,
419                                 floor, next ? next->vm_start : ceiling);
420                 }
421                 vma = next;
422         }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427         spinlock_t *ptl;
428         pgtable_t new = pte_alloc_one(mm);
429         if (!new)
430                 return -ENOMEM;
431
432         /*
433          * Ensure all pte setup (eg. pte page lock and page clearing) are
434          * visible before the pte is made visible to other CPUs by being
435          * put into page tables.
436          *
437          * The other side of the story is the pointer chasing in the page
438          * table walking code (when walking the page table without locking;
439          * ie. most of the time). Fortunately, these data accesses consist
440          * of a chain of data-dependent loads, meaning most CPUs (alpha
441          * being the notable exception) will already guarantee loads are
442          * seen in-order. See the alpha page table accessors for the
443          * smp_rmb() barriers in page table walking code.
444          */
445         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447         ptl = pmd_lock(mm, pmd);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 mm_inc_nr_ptes(mm);
450                 pmd_populate(mm, pmd, new);
451                 new = NULL;
452         }
453         spin_unlock(ptl);
454         if (new)
455                 pte_free(mm, new);
456         return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461         pte_t *new = pte_alloc_one_kernel(&init_mm);
462         if (!new)
463                 return -ENOMEM;
464
465         smp_wmb(); /* See comment in __pte_alloc */
466
467         spin_lock(&init_mm.page_table_lock);
468         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
469                 pmd_populate_kernel(&init_mm, pmd, new);
470                 new = NULL;
471         }
472         spin_unlock(&init_mm.page_table_lock);
473         if (new)
474                 pte_free_kernel(&init_mm, new);
475         return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485         int i;
486
487         if (current->mm == mm)
488                 sync_mm_rss(mm);
489         for (i = 0; i < NR_MM_COUNTERS; i++)
490                 if (rss[i])
491                         add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502                           pte_t pte, struct page *page)
503 {
504         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505         p4d_t *p4d = p4d_offset(pgd, addr);
506         pud_t *pud = pud_offset(p4d, addr);
507         pmd_t *pmd = pmd_offset(pud, addr);
508         struct address_space *mapping;
509         pgoff_t index;
510         static unsigned long resume;
511         static unsigned long nr_shown;
512         static unsigned long nr_unshown;
513
514         /*
515          * Allow a burst of 60 reports, then keep quiet for that minute;
516          * or allow a steady drip of one report per second.
517          */
518         if (nr_shown == 60) {
519                 if (time_before(jiffies, resume)) {
520                         nr_unshown++;
521                         return;
522                 }
523                 if (nr_unshown) {
524                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525                                  nr_unshown);
526                         nr_unshown = 0;
527                 }
528                 nr_shown = 0;
529         }
530         if (nr_shown++ == 0)
531                 resume = jiffies + 60 * HZ;
532
533         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534         index = linear_page_index(vma, addr);
535
536         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537                  current->comm,
538                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
539         if (page)
540                 dump_page(page, "bad pte");
541         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544                  vma->vm_file,
545                  vma->vm_ops ? vma->vm_ops->fault : NULL,
546                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547                  mapping ? mapping->a_ops->readpage : NULL);
548         dump_stack();
549         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595                             pte_t pte)
596 {
597         unsigned long pfn = pte_pfn(pte);
598
599         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600                 if (likely(!pte_special(pte)))
601                         goto check_pfn;
602                 if (vma->vm_ops && vma->vm_ops->find_special_page)
603                         return vma->vm_ops->find_special_page(vma, addr);
604                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605                         return NULL;
606                 if (is_zero_pfn(pfn))
607                         return NULL;
608                 if (pte_devmap(pte))
609                         return NULL;
610
611                 print_bad_pte(vma, addr, pte, NULL);
612                 return NULL;
613         }
614
615         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618                 if (vma->vm_flags & VM_MIXEDMAP) {
619                         if (!pfn_valid(pfn))
620                                 return NULL;
621                         goto out;
622                 } else {
623                         unsigned long off;
624                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
625                         if (pfn == vma->vm_pgoff + off)
626                                 return NULL;
627                         if (!is_cow_mapping(vma->vm_flags))
628                                 return NULL;
629                 }
630         }
631
632         if (is_zero_pfn(pfn))
633                 return NULL;
634
635 check_pfn:
636         if (unlikely(pfn > highest_memmap_pfn)) {
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /*
642          * NOTE! We still have PageReserved() pages in the page tables.
643          * eg. VDSO mappings can cause them to exist.
644          */
645 out:
646         return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651                                 pmd_t pmd)
652 {
653         unsigned long pfn = pmd_pfn(pmd);
654
655         /*
656          * There is no pmd_special() but there may be special pmds, e.g.
657          * in a direct-access (dax) mapping, so let's just replicate the
658          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659          */
660         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661                 if (vma->vm_flags & VM_MIXEDMAP) {
662                         if (!pfn_valid(pfn))
663                                 return NULL;
664                         goto out;
665                 } else {
666                         unsigned long off;
667                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
668                         if (pfn == vma->vm_pgoff + off)
669                                 return NULL;
670                         if (!is_cow_mapping(vma->vm_flags))
671                                 return NULL;
672                 }
673         }
674
675         if (pmd_devmap(pmd))
676                 return NULL;
677         if (is_huge_zero_pmd(pmd))
678                 return NULL;
679         if (unlikely(pfn > highest_memmap_pfn))
680                 return NULL;
681
682         /*
683          * NOTE! We still have PageReserved() pages in the page tables.
684          * eg. VDSO mappings can cause them to exist.
685          */
686 out:
687         return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700                 unsigned long addr, int *rss)
701 {
702         unsigned long vm_flags = vma->vm_flags;
703         pte_t pte = *src_pte;
704         struct page *page;
705         swp_entry_t entry = pte_to_swp_entry(pte);
706
707         if (likely(!non_swap_entry(entry))) {
708                 if (swap_duplicate(entry) < 0)
709                         return entry.val;
710
711                 /* make sure dst_mm is on swapoff's mmlist. */
712                 if (unlikely(list_empty(&dst_mm->mmlist))) {
713                         spin_lock(&mmlist_lock);
714                         if (list_empty(&dst_mm->mmlist))
715                                 list_add(&dst_mm->mmlist,
716                                                 &src_mm->mmlist);
717                         spin_unlock(&mmlist_lock);
718                 }
719                 rss[MM_SWAPENTS]++;
720         } else if (is_migration_entry(entry)) {
721                 page = migration_entry_to_page(entry);
722
723                 rss[mm_counter(page)]++;
724
725                 if (is_write_migration_entry(entry) &&
726                                 is_cow_mapping(vm_flags)) {
727                         /*
728                          * COW mappings require pages in both
729                          * parent and child to be set to read.
730                          */
731                         make_migration_entry_read(&entry);
732                         pte = swp_entry_to_pte(entry);
733                         if (pte_swp_soft_dirty(*src_pte))
734                                 pte = pte_swp_mksoft_dirty(pte);
735                         if (pte_swp_uffd_wp(*src_pte))
736                                 pte = pte_swp_mkuffd_wp(pte);
737                         set_pte_at(src_mm, addr, src_pte, pte);
738                 }
739         } else if (is_device_private_entry(entry)) {
740                 page = device_private_entry_to_page(entry);
741
742                 /*
743                  * Update rss count even for unaddressable pages, as
744                  * they should treated just like normal pages in this
745                  * respect.
746                  *
747                  * We will likely want to have some new rss counters
748                  * for unaddressable pages, at some point. But for now
749                  * keep things as they are.
750                  */
751                 get_page(page);
752                 rss[mm_counter(page)]++;
753                 page_dup_rmap(page, false);
754
755                 /*
756                  * We do not preserve soft-dirty information, because so
757                  * far, checkpoint/restore is the only feature that
758                  * requires that. And checkpoint/restore does not work
759                  * when a device driver is involved (you cannot easily
760                  * save and restore device driver state).
761                  */
762                 if (is_write_device_private_entry(entry) &&
763                     is_cow_mapping(vm_flags)) {
764                         make_device_private_entry_read(&entry);
765                         pte = swp_entry_to_pte(entry);
766                         if (pte_swp_uffd_wp(*src_pte))
767                                 pte = pte_swp_mkuffd_wp(pte);
768                         set_pte_at(src_mm, addr, src_pte, pte);
769                 }
770         }
771         set_pte_at(dst_mm, addr, dst_pte, pte);
772         return 0;
773 }
774
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798                   struct page **prealloc, pte_t pte, struct page *page)
799 {
800         struct mm_struct *src_mm = src_vma->vm_mm;
801         struct page *new_page;
802
803         if (!is_cow_mapping(src_vma->vm_flags))
804                 return 1;
805
806         /*
807          * What we want to do is to check whether this page may
808          * have been pinned by the parent process.  If so,
809          * instead of wrprotect the pte on both sides, we copy
810          * the page immediately so that we'll always guarantee
811          * the pinned page won't be randomly replaced in the
812          * future.
813          *
814          * The page pinning checks are just "has this mm ever
815          * seen pinning", along with the (inexact) check of
816          * the page count. That might give false positives for
817          * for pinning, but it will work correctly.
818          */
819         if (likely(!atomic_read(&src_mm->has_pinned)))
820                 return 1;
821         if (likely(!page_maybe_dma_pinned(page)))
822                 return 1;
823
824         new_page = *prealloc;
825         if (!new_page)
826                 return -EAGAIN;
827
828         /*
829          * We have a prealloc page, all good!  Take it
830          * over and copy the page & arm it.
831          */
832         *prealloc = NULL;
833         copy_user_highpage(new_page, page, addr, src_vma);
834         __SetPageUptodate(new_page);
835         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837         rss[mm_counter(new_page)]++;
838
839         /* All done, just insert the new page copy in the child */
840         pte = mk_pte(new_page, dst_vma->vm_page_prot);
841         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843         return 0;
844 }
845
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853                  struct page **prealloc)
854 {
855         struct mm_struct *src_mm = src_vma->vm_mm;
856         unsigned long vm_flags = src_vma->vm_flags;
857         pte_t pte = *src_pte;
858         struct page *page;
859
860         page = vm_normal_page(src_vma, addr, pte);
861         if (page) {
862                 int retval;
863
864                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865                                            addr, rss, prealloc, pte, page);
866                 if (retval <= 0)
867                         return retval;
868
869                 get_page(page);
870                 page_dup_rmap(page, false);
871                 rss[mm_counter(page)]++;
872         }
873
874         /*
875          * If it's a COW mapping, write protect it both
876          * in the parent and the child
877          */
878         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879                 ptep_set_wrprotect(src_mm, addr, src_pte);
880                 pte = pte_wrprotect(pte);
881         }
882
883         /*
884          * If it's a shared mapping, mark it clean in
885          * the child
886          */
887         if (vm_flags & VM_SHARED)
888                 pte = pte_mkclean(pte);
889         pte = pte_mkold(pte);
890
891         /*
892          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893          * does not have the VM_UFFD_WP, which means that the uffd
894          * fork event is not enabled.
895          */
896         if (!(vm_flags & VM_UFFD_WP))
897                 pte = pte_clear_uffd_wp(pte);
898
899         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900         return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905                    unsigned long addr)
906 {
907         struct page *new_page;
908
909         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910         if (!new_page)
911                 return NULL;
912
913         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914                 put_page(new_page);
915                 return NULL;
916         }
917         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919         return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925                unsigned long end)
926 {
927         struct mm_struct *dst_mm = dst_vma->vm_mm;
928         struct mm_struct *src_mm = src_vma->vm_mm;
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress, ret = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935         struct page *prealloc = NULL;
936
937 again:
938         progress = 0;
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte) {
943                 ret = -ENOMEM;
944                 goto out;
945         }
946         src_pte = pte_offset_map(src_pmd, addr);
947         src_ptl = pte_lockptr(src_mm, src_pmd);
948         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949         orig_src_pte = src_pte;
950         orig_dst_pte = dst_pte;
951         arch_enter_lazy_mmu_mode();
952
953         do {
954                 /*
955                  * We are holding two locks at this point - either of them
956                  * could generate latencies in another task on another CPU.
957                  */
958                 if (progress >= 32) {
959                         progress = 0;
960                         if (need_resched() ||
961                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962                                 break;
963                 }
964                 if (pte_none(*src_pte)) {
965                         progress++;
966                         continue;
967                 }
968                 if (unlikely(!pte_present(*src_pte))) {
969                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970                                                         dst_pte, src_pte,
971                                                         src_vma, addr, rss);
972                         if (entry.val)
973                                 break;
974                         progress += 8;
975                         continue;
976                 }
977                 /* copy_present_pte() will clear `*prealloc' if consumed */
978                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979                                        addr, rss, &prealloc);
980                 /*
981                  * If we need a pre-allocated page for this pte, drop the
982                  * locks, allocate, and try again.
983                  */
984                 if (unlikely(ret == -EAGAIN))
985                         break;
986                 if (unlikely(prealloc)) {
987                         /*
988                          * pre-alloc page cannot be reused by next time so as
989                          * to strictly follow mempolicy (e.g., alloc_page_vma()
990                          * will allocate page according to address).  This
991                          * could only happen if one pinned pte changed.
992                          */
993                         put_page(prealloc);
994                         prealloc = NULL;
995                 }
996                 progress += 8;
997         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999         arch_leave_lazy_mmu_mode();
1000         spin_unlock(src_ptl);
1001         pte_unmap(orig_src_pte);
1002         add_mm_rss_vec(dst_mm, rss);
1003         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004         cond_resched();
1005
1006         if (entry.val) {
1007                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008                         ret = -ENOMEM;
1009                         goto out;
1010                 }
1011                 entry.val = 0;
1012         } else if (ret) {
1013                 WARN_ON_ONCE(ret != -EAGAIN);
1014                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015                 if (!prealloc)
1016                         return -ENOMEM;
1017                 /* We've captured and resolved the error. Reset, try again. */
1018                 ret = 0;
1019         }
1020         if (addr != end)
1021                 goto again;
1022 out:
1023         if (unlikely(prealloc))
1024                 put_page(prealloc);
1025         return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031                unsigned long end)
1032 {
1033         struct mm_struct *dst_mm = dst_vma->vm_mm;
1034         struct mm_struct *src_mm = src_vma->vm_mm;
1035         pmd_t *src_pmd, *dst_pmd;
1036         unsigned long next;
1037
1038         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039         if (!dst_pmd)
1040                 return -ENOMEM;
1041         src_pmd = pmd_offset(src_pud, addr);
1042         do {
1043                 next = pmd_addr_end(addr, end);
1044                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045                         || pmd_devmap(*src_pmd)) {
1046                         int err;
1047                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048                         err = copy_huge_pmd(dst_mm, src_mm,
1049                                             dst_pmd, src_pmd, addr, src_vma);
1050                         if (err == -ENOMEM)
1051                                 return -ENOMEM;
1052                         if (!err)
1053                                 continue;
1054                         /* fall through */
1055                 }
1056                 if (pmd_none_or_clear_bad(src_pmd))
1057                         continue;
1058                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059                                    addr, next))
1060                         return -ENOMEM;
1061         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062         return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068                unsigned long end)
1069 {
1070         struct mm_struct *dst_mm = dst_vma->vm_mm;
1071         struct mm_struct *src_mm = src_vma->vm_mm;
1072         pud_t *src_pud, *dst_pud;
1073         unsigned long next;
1074
1075         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076         if (!dst_pud)
1077                 return -ENOMEM;
1078         src_pud = pud_offset(src_p4d, addr);
1079         do {
1080                 next = pud_addr_end(addr, end);
1081                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082                         int err;
1083
1084                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085                         err = copy_huge_pud(dst_mm, src_mm,
1086                                             dst_pud, src_pud, addr, src_vma);
1087                         if (err == -ENOMEM)
1088                                 return -ENOMEM;
1089                         if (!err)
1090                                 continue;
1091                         /* fall through */
1092                 }
1093                 if (pud_none_or_clear_bad(src_pud))
1094                         continue;
1095                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096                                    addr, next))
1097                         return -ENOMEM;
1098         } while (dst_pud++, src_pud++, addr = next, addr != end);
1099         return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105                unsigned long end)
1106 {
1107         struct mm_struct *dst_mm = dst_vma->vm_mm;
1108         p4d_t *src_p4d, *dst_p4d;
1109         unsigned long next;
1110
1111         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112         if (!dst_p4d)
1113                 return -ENOMEM;
1114         src_p4d = p4d_offset(src_pgd, addr);
1115         do {
1116                 next = p4d_addr_end(addr, end);
1117                 if (p4d_none_or_clear_bad(src_p4d))
1118                         continue;
1119                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120                                    addr, next))
1121                         return -ENOMEM;
1122         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123         return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129         pgd_t *src_pgd, *dst_pgd;
1130         unsigned long next;
1131         unsigned long addr = src_vma->vm_start;
1132         unsigned long end = src_vma->vm_end;
1133         struct mm_struct *dst_mm = dst_vma->vm_mm;
1134         struct mm_struct *src_mm = src_vma->vm_mm;
1135         struct mmu_notifier_range range;
1136         bool is_cow;
1137         int ret;
1138
1139         /*
1140          * Don't copy ptes where a page fault will fill them correctly.
1141          * Fork becomes much lighter when there are big shared or private
1142          * readonly mappings. The tradeoff is that copy_page_range is more
1143          * efficient than faulting.
1144          */
1145         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146             !src_vma->anon_vma)
1147                 return 0;
1148
1149         if (is_vm_hugetlb_page(src_vma))
1150                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153                 /*
1154                  * We do not free on error cases below as remove_vma
1155                  * gets called on error from higher level routine
1156                  */
1157                 ret = track_pfn_copy(src_vma);
1158                 if (ret)
1159                         return ret;
1160         }
1161
1162         /*
1163          * We need to invalidate the secondary MMU mappings only when
1164          * there could be a permission downgrade on the ptes of the
1165          * parent mm. And a permission downgrade will only happen if
1166          * is_cow_mapping() returns true.
1167          */
1168         is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170         if (is_cow) {
1171                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172                                         0, src_vma, src_mm, addr, end);
1173                 mmu_notifier_invalidate_range_start(&range);
1174                 /*
1175                  * Disabling preemption is not needed for the write side, as
1176                  * the read side doesn't spin, but goes to the mmap_lock.
1177                  *
1178                  * Use the raw variant of the seqcount_t write API to avoid
1179                  * lockdep complaining about preemptibility.
1180                  */
1181                 mmap_assert_write_locked(src_mm);
1182                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1183         }
1184
1185         ret = 0;
1186         dst_pgd = pgd_offset(dst_mm, addr);
1187         src_pgd = pgd_offset(src_mm, addr);
1188         do {
1189                 next = pgd_addr_end(addr, end);
1190                 if (pgd_none_or_clear_bad(src_pgd))
1191                         continue;
1192                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1193                                             addr, next))) {
1194                         ret = -ENOMEM;
1195                         break;
1196                 }
1197         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1198
1199         if (is_cow) {
1200                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1201                 mmu_notifier_invalidate_range_end(&range);
1202         }
1203         return ret;
1204 }
1205
1206 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1207                                 struct vm_area_struct *vma, pmd_t *pmd,
1208                                 unsigned long addr, unsigned long end,
1209                                 struct zap_details *details)
1210 {
1211         struct mm_struct *mm = tlb->mm;
1212         int force_flush = 0;
1213         int rss[NR_MM_COUNTERS];
1214         spinlock_t *ptl;
1215         pte_t *start_pte;
1216         pte_t *pte;
1217         swp_entry_t entry;
1218
1219         tlb_change_page_size(tlb, PAGE_SIZE);
1220 again:
1221         init_rss_vec(rss);
1222         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1223         pte = start_pte;
1224         flush_tlb_batched_pending(mm);
1225         arch_enter_lazy_mmu_mode();
1226         do {
1227                 pte_t ptent = *pte;
1228                 if (pte_none(ptent))
1229                         continue;
1230
1231                 if (need_resched())
1232                         break;
1233
1234                 if (pte_present(ptent)) {
1235                         struct page *page;
1236
1237                         page = vm_normal_page(vma, addr, ptent);
1238                         if (unlikely(details) && page) {
1239                                 /*
1240                                  * unmap_shared_mapping_pages() wants to
1241                                  * invalidate cache without truncating:
1242                                  * unmap shared but keep private pages.
1243                                  */
1244                                 if (details->check_mapping &&
1245                                     details->check_mapping != page_rmapping(page))
1246                                         continue;
1247                         }
1248                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1249                                                         tlb->fullmm);
1250                         tlb_remove_tlb_entry(tlb, pte, addr);
1251                         if (unlikely(!page))
1252                                 continue;
1253
1254                         if (!PageAnon(page)) {
1255                                 if (pte_dirty(ptent)) {
1256                                         force_flush = 1;
1257                                         set_page_dirty(page);
1258                                 }
1259                                 if (pte_young(ptent) &&
1260                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1261                                         mark_page_accessed(page);
1262                         }
1263                         rss[mm_counter(page)]--;
1264                         page_remove_rmap(page, false);
1265                         if (unlikely(page_mapcount(page) < 0))
1266                                 print_bad_pte(vma, addr, ptent, page);
1267                         if (unlikely(__tlb_remove_page(tlb, page))) {
1268                                 force_flush = 1;
1269                                 addr += PAGE_SIZE;
1270                                 break;
1271                         }
1272                         continue;
1273                 }
1274
1275                 entry = pte_to_swp_entry(ptent);
1276                 if (is_device_private_entry(entry)) {
1277                         struct page *page = device_private_entry_to_page(entry);
1278
1279                         if (unlikely(details && details->check_mapping)) {
1280                                 /*
1281                                  * unmap_shared_mapping_pages() wants to
1282                                  * invalidate cache without truncating:
1283                                  * unmap shared but keep private pages.
1284                                  */
1285                                 if (details->check_mapping !=
1286                                     page_rmapping(page))
1287                                         continue;
1288                         }
1289
1290                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291                         rss[mm_counter(page)]--;
1292                         page_remove_rmap(page, false);
1293                         put_page(page);
1294                         continue;
1295                 }
1296
1297                 /* If details->check_mapping, we leave swap entries. */
1298                 if (unlikely(details))
1299                         continue;
1300
1301                 if (!non_swap_entry(entry))
1302                         rss[MM_SWAPENTS]--;
1303                 else if (is_migration_entry(entry)) {
1304                         struct page *page;
1305
1306                         page = migration_entry_to_page(entry);
1307                         rss[mm_counter(page)]--;
1308                 }
1309                 if (unlikely(!free_swap_and_cache(entry)))
1310                         print_bad_pte(vma, addr, ptent, NULL);
1311                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1312         } while (pte++, addr += PAGE_SIZE, addr != end);
1313
1314         add_mm_rss_vec(mm, rss);
1315         arch_leave_lazy_mmu_mode();
1316
1317         /* Do the actual TLB flush before dropping ptl */
1318         if (force_flush)
1319                 tlb_flush_mmu_tlbonly(tlb);
1320         pte_unmap_unlock(start_pte, ptl);
1321
1322         /*
1323          * If we forced a TLB flush (either due to running out of
1324          * batch buffers or because we needed to flush dirty TLB
1325          * entries before releasing the ptl), free the batched
1326          * memory too. Restart if we didn't do everything.
1327          */
1328         if (force_flush) {
1329                 force_flush = 0;
1330                 tlb_flush_mmu(tlb);
1331         }
1332
1333         if (addr != end) {
1334                 cond_resched();
1335                 goto again;
1336         }
1337
1338         return addr;
1339 }
1340
1341 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1342                                 struct vm_area_struct *vma, pud_t *pud,
1343                                 unsigned long addr, unsigned long end,
1344                                 struct zap_details *details)
1345 {
1346         pmd_t *pmd;
1347         unsigned long next;
1348
1349         pmd = pmd_offset(pud, addr);
1350         do {
1351                 next = pmd_addr_end(addr, end);
1352                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1353                         if (next - addr != HPAGE_PMD_SIZE)
1354                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1355                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1356                                 goto next;
1357                         /* fall through */
1358                 } else if (details && details->single_page &&
1359                            PageTransCompound(details->single_page) &&
1360                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1361                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1362                         /*
1363                          * Take and drop THP pmd lock so that we cannot return
1364                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1365                          * but not yet decremented compound_mapcount().
1366                          */
1367                         spin_unlock(ptl);
1368                 }
1369
1370                 /*
1371                  * Here there can be other concurrent MADV_DONTNEED or
1372                  * trans huge page faults running, and if the pmd is
1373                  * none or trans huge it can change under us. This is
1374                  * because MADV_DONTNEED holds the mmap_lock in read
1375                  * mode.
1376                  */
1377                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1378                         goto next;
1379                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1380 next:
1381                 cond_resched();
1382         } while (pmd++, addr = next, addr != end);
1383
1384         return addr;
1385 }
1386
1387 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1388                                 struct vm_area_struct *vma, p4d_t *p4d,
1389                                 unsigned long addr, unsigned long end,
1390                                 struct zap_details *details)
1391 {
1392         pud_t *pud;
1393         unsigned long next;
1394
1395         pud = pud_offset(p4d, addr);
1396         do {
1397                 next = pud_addr_end(addr, end);
1398                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1399                         if (next - addr != HPAGE_PUD_SIZE) {
1400                                 mmap_assert_locked(tlb->mm);
1401                                 split_huge_pud(vma, pud, addr);
1402                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1403                                 goto next;
1404                         /* fall through */
1405                 }
1406                 if (pud_none_or_clear_bad(pud))
1407                         continue;
1408                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1409 next:
1410                 cond_resched();
1411         } while (pud++, addr = next, addr != end);
1412
1413         return addr;
1414 }
1415
1416 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1417                                 struct vm_area_struct *vma, pgd_t *pgd,
1418                                 unsigned long addr, unsigned long end,
1419                                 struct zap_details *details)
1420 {
1421         p4d_t *p4d;
1422         unsigned long next;
1423
1424         p4d = p4d_offset(pgd, addr);
1425         do {
1426                 next = p4d_addr_end(addr, end);
1427                 if (p4d_none_or_clear_bad(p4d))
1428                         continue;
1429                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1430         } while (p4d++, addr = next, addr != end);
1431
1432         return addr;
1433 }
1434
1435 void unmap_page_range(struct mmu_gather *tlb,
1436                              struct vm_area_struct *vma,
1437                              unsigned long addr, unsigned long end,
1438                              struct zap_details *details)
1439 {
1440         pgd_t *pgd;
1441         unsigned long next;
1442
1443         BUG_ON(addr >= end);
1444         tlb_start_vma(tlb, vma);
1445         pgd = pgd_offset(vma->vm_mm, addr);
1446         do {
1447                 next = pgd_addr_end(addr, end);
1448                 if (pgd_none_or_clear_bad(pgd))
1449                         continue;
1450                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1451         } while (pgd++, addr = next, addr != end);
1452         tlb_end_vma(tlb, vma);
1453 }
1454
1455
1456 static void unmap_single_vma(struct mmu_gather *tlb,
1457                 struct vm_area_struct *vma, unsigned long start_addr,
1458                 unsigned long end_addr,
1459                 struct zap_details *details)
1460 {
1461         unsigned long start = max(vma->vm_start, start_addr);
1462         unsigned long end;
1463
1464         if (start >= vma->vm_end)
1465                 return;
1466         end = min(vma->vm_end, end_addr);
1467         if (end <= vma->vm_start)
1468                 return;
1469
1470         if (vma->vm_file)
1471                 uprobe_munmap(vma, start, end);
1472
1473         if (unlikely(vma->vm_flags & VM_PFNMAP))
1474                 untrack_pfn(vma, 0, 0);
1475
1476         if (start != end) {
1477                 if (unlikely(is_vm_hugetlb_page(vma))) {
1478                         /*
1479                          * It is undesirable to test vma->vm_file as it
1480                          * should be non-null for valid hugetlb area.
1481                          * However, vm_file will be NULL in the error
1482                          * cleanup path of mmap_region. When
1483                          * hugetlbfs ->mmap method fails,
1484                          * mmap_region() nullifies vma->vm_file
1485                          * before calling this function to clean up.
1486                          * Since no pte has actually been setup, it is
1487                          * safe to do nothing in this case.
1488                          */
1489                         if (vma->vm_file) {
1490                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1491                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1492                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1493                         }
1494                 } else
1495                         unmap_page_range(tlb, vma, start, end, details);
1496         }
1497 }
1498
1499 /**
1500  * unmap_vmas - unmap a range of memory covered by a list of vma's
1501  * @tlb: address of the caller's struct mmu_gather
1502  * @vma: the starting vma
1503  * @start_addr: virtual address at which to start unmapping
1504  * @end_addr: virtual address at which to end unmapping
1505  *
1506  * Unmap all pages in the vma list.
1507  *
1508  * Only addresses between `start' and `end' will be unmapped.
1509  *
1510  * The VMA list must be sorted in ascending virtual address order.
1511  *
1512  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1513  * range after unmap_vmas() returns.  So the only responsibility here is to
1514  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1515  * drops the lock and schedules.
1516  */
1517 void unmap_vmas(struct mmu_gather *tlb,
1518                 struct vm_area_struct *vma, unsigned long start_addr,
1519                 unsigned long end_addr)
1520 {
1521         struct mmu_notifier_range range;
1522
1523         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1524                                 start_addr, end_addr);
1525         mmu_notifier_invalidate_range_start(&range);
1526         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1527                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1528         mmu_notifier_invalidate_range_end(&range);
1529 }
1530
1531 /**
1532  * zap_page_range - remove user pages in a given range
1533  * @vma: vm_area_struct holding the applicable pages
1534  * @start: starting address of pages to zap
1535  * @size: number of bytes to zap
1536  *
1537  * Caller must protect the VMA list
1538  */
1539 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1540                 unsigned long size)
1541 {
1542         struct mmu_notifier_range range;
1543         struct mmu_gather tlb;
1544
1545         lru_add_drain();
1546         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1547                                 start, start + size);
1548         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1549         update_hiwater_rss(vma->vm_mm);
1550         mmu_notifier_invalidate_range_start(&range);
1551         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1552                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1553         mmu_notifier_invalidate_range_end(&range);
1554         tlb_finish_mmu(&tlb, start, range.end);
1555 }
1556
1557 /**
1558  * zap_page_range_single - remove user pages in a given range
1559  * @vma: vm_area_struct holding the applicable pages
1560  * @address: starting address of pages to zap
1561  * @size: number of bytes to zap
1562  * @details: details of shared cache invalidation
1563  *
1564  * The range must fit into one VMA.
1565  */
1566 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1567                 unsigned long size, struct zap_details *details)
1568 {
1569         struct mmu_notifier_range range;
1570         struct mmu_gather tlb;
1571
1572         lru_add_drain();
1573         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1574                                 address, address + size);
1575         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1576         update_hiwater_rss(vma->vm_mm);
1577         mmu_notifier_invalidate_range_start(&range);
1578         unmap_single_vma(&tlb, vma, address, range.end, details);
1579         mmu_notifier_invalidate_range_end(&range);
1580         tlb_finish_mmu(&tlb, address, range.end);
1581 }
1582
1583 /**
1584  * zap_vma_ptes - remove ptes mapping the vma
1585  * @vma: vm_area_struct holding ptes to be zapped
1586  * @address: starting address of pages to zap
1587  * @size: number of bytes to zap
1588  *
1589  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1590  *
1591  * The entire address range must be fully contained within the vma.
1592  *
1593  */
1594 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1595                 unsigned long size)
1596 {
1597         if (address < vma->vm_start || address + size > vma->vm_end ||
1598                         !(vma->vm_flags & VM_PFNMAP))
1599                 return;
1600
1601         zap_page_range_single(vma, address, size, NULL);
1602 }
1603 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1604
1605 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1606 {
1607         pgd_t *pgd;
1608         p4d_t *p4d;
1609         pud_t *pud;
1610         pmd_t *pmd;
1611
1612         pgd = pgd_offset(mm, addr);
1613         p4d = p4d_alloc(mm, pgd, addr);
1614         if (!p4d)
1615                 return NULL;
1616         pud = pud_alloc(mm, p4d, addr);
1617         if (!pud)
1618                 return NULL;
1619         pmd = pmd_alloc(mm, pud, addr);
1620         if (!pmd)
1621                 return NULL;
1622
1623         VM_BUG_ON(pmd_trans_huge(*pmd));
1624         return pmd;
1625 }
1626
1627 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1628                         spinlock_t **ptl)
1629 {
1630         pmd_t *pmd = walk_to_pmd(mm, addr);
1631
1632         if (!pmd)
1633                 return NULL;
1634         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1635 }
1636
1637 static int validate_page_before_insert(struct page *page)
1638 {
1639         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1640                 return -EINVAL;
1641         flush_dcache_page(page);
1642         return 0;
1643 }
1644
1645 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1646                         unsigned long addr, struct page *page, pgprot_t prot)
1647 {
1648         if (!pte_none(*pte))
1649                 return -EBUSY;
1650         /* Ok, finally just insert the thing.. */
1651         get_page(page);
1652         inc_mm_counter_fast(mm, mm_counter_file(page));
1653         page_add_file_rmap(page, false);
1654         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1655         return 0;
1656 }
1657
1658 /*
1659  * This is the old fallback for page remapping.
1660  *
1661  * For historical reasons, it only allows reserved pages. Only
1662  * old drivers should use this, and they needed to mark their
1663  * pages reserved for the old functions anyway.
1664  */
1665 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1666                         struct page *page, pgprot_t prot)
1667 {
1668         struct mm_struct *mm = vma->vm_mm;
1669         int retval;
1670         pte_t *pte;
1671         spinlock_t *ptl;
1672
1673         retval = validate_page_before_insert(page);
1674         if (retval)
1675                 goto out;
1676         retval = -ENOMEM;
1677         pte = get_locked_pte(mm, addr, &ptl);
1678         if (!pte)
1679                 goto out;
1680         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1681         pte_unmap_unlock(pte, ptl);
1682 out:
1683         return retval;
1684 }
1685
1686 #ifdef pte_index
1687 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1688                         unsigned long addr, struct page *page, pgprot_t prot)
1689 {
1690         int err;
1691
1692         if (!page_count(page))
1693                 return -EINVAL;
1694         err = validate_page_before_insert(page);
1695         if (err)
1696                 return err;
1697         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1698 }
1699
1700 /* insert_pages() amortizes the cost of spinlock operations
1701  * when inserting pages in a loop. Arch *must* define pte_index.
1702  */
1703 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1704                         struct page **pages, unsigned long *num, pgprot_t prot)
1705 {
1706         pmd_t *pmd = NULL;
1707         pte_t *start_pte, *pte;
1708         spinlock_t *pte_lock;
1709         struct mm_struct *const mm = vma->vm_mm;
1710         unsigned long curr_page_idx = 0;
1711         unsigned long remaining_pages_total = *num;
1712         unsigned long pages_to_write_in_pmd;
1713         int ret;
1714 more:
1715         ret = -EFAULT;
1716         pmd = walk_to_pmd(mm, addr);
1717         if (!pmd)
1718                 goto out;
1719
1720         pages_to_write_in_pmd = min_t(unsigned long,
1721                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1722
1723         /* Allocate the PTE if necessary; takes PMD lock once only. */
1724         ret = -ENOMEM;
1725         if (pte_alloc(mm, pmd))
1726                 goto out;
1727
1728         while (pages_to_write_in_pmd) {
1729                 int pte_idx = 0;
1730                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1731
1732                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1733                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1734                         int err = insert_page_in_batch_locked(mm, pte,
1735                                 addr, pages[curr_page_idx], prot);
1736                         if (unlikely(err)) {
1737                                 pte_unmap_unlock(start_pte, pte_lock);
1738                                 ret = err;
1739                                 remaining_pages_total -= pte_idx;
1740                                 goto out;
1741                         }
1742                         addr += PAGE_SIZE;
1743                         ++curr_page_idx;
1744                 }
1745                 pte_unmap_unlock(start_pte, pte_lock);
1746                 pages_to_write_in_pmd -= batch_size;
1747                 remaining_pages_total -= batch_size;
1748         }
1749         if (remaining_pages_total)
1750                 goto more;
1751         ret = 0;
1752 out:
1753         *num = remaining_pages_total;
1754         return ret;
1755 }
1756 #endif  /* ifdef pte_index */
1757
1758 /**
1759  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1760  * @vma: user vma to map to
1761  * @addr: target start user address of these pages
1762  * @pages: source kernel pages
1763  * @num: in: number of pages to map. out: number of pages that were *not*
1764  * mapped. (0 means all pages were successfully mapped).
1765  *
1766  * Preferred over vm_insert_page() when inserting multiple pages.
1767  *
1768  * In case of error, we may have mapped a subset of the provided
1769  * pages. It is the caller's responsibility to account for this case.
1770  *
1771  * The same restrictions apply as in vm_insert_page().
1772  */
1773 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1774                         struct page **pages, unsigned long *num)
1775 {
1776 #ifdef pte_index
1777         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1778
1779         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1780                 return -EFAULT;
1781         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1782                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1783                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1784                 vma->vm_flags |= VM_MIXEDMAP;
1785         }
1786         /* Defer page refcount checking till we're about to map that page. */
1787         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1788 #else
1789         unsigned long idx = 0, pgcount = *num;
1790         int err = -EINVAL;
1791
1792         for (; idx < pgcount; ++idx) {
1793                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1794                 if (err)
1795                         break;
1796         }
1797         *num = pgcount - idx;
1798         return err;
1799 #endif  /* ifdef pte_index */
1800 }
1801 EXPORT_SYMBOL(vm_insert_pages);
1802
1803 /**
1804  * vm_insert_page - insert single page into user vma
1805  * @vma: user vma to map to
1806  * @addr: target user address of this page
1807  * @page: source kernel page
1808  *
1809  * This allows drivers to insert individual pages they've allocated
1810  * into a user vma.
1811  *
1812  * The page has to be a nice clean _individual_ kernel allocation.
1813  * If you allocate a compound page, you need to have marked it as
1814  * such (__GFP_COMP), or manually just split the page up yourself
1815  * (see split_page()).
1816  *
1817  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1818  * took an arbitrary page protection parameter. This doesn't allow
1819  * that. Your vma protection will have to be set up correctly, which
1820  * means that if you want a shared writable mapping, you'd better
1821  * ask for a shared writable mapping!
1822  *
1823  * The page does not need to be reserved.
1824  *
1825  * Usually this function is called from f_op->mmap() handler
1826  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1827  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1828  * function from other places, for example from page-fault handler.
1829  *
1830  * Return: %0 on success, negative error code otherwise.
1831  */
1832 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1833                         struct page *page)
1834 {
1835         if (addr < vma->vm_start || addr >= vma->vm_end)
1836                 return -EFAULT;
1837         if (!page_count(page))
1838                 return -EINVAL;
1839         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1840                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1841                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1842                 vma->vm_flags |= VM_MIXEDMAP;
1843         }
1844         return insert_page(vma, addr, page, vma->vm_page_prot);
1845 }
1846 EXPORT_SYMBOL(vm_insert_page);
1847
1848 /*
1849  * __vm_map_pages - maps range of kernel pages into user vma
1850  * @vma: user vma to map to
1851  * @pages: pointer to array of source kernel pages
1852  * @num: number of pages in page array
1853  * @offset: user's requested vm_pgoff
1854  *
1855  * This allows drivers to map range of kernel pages into a user vma.
1856  *
1857  * Return: 0 on success and error code otherwise.
1858  */
1859 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1860                                 unsigned long num, unsigned long offset)
1861 {
1862         unsigned long count = vma_pages(vma);
1863         unsigned long uaddr = vma->vm_start;
1864         int ret, i;
1865
1866         /* Fail if the user requested offset is beyond the end of the object */
1867         if (offset >= num)
1868                 return -ENXIO;
1869
1870         /* Fail if the user requested size exceeds available object size */
1871         if (count > num - offset)
1872                 return -ENXIO;
1873
1874         for (i = 0; i < count; i++) {
1875                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1876                 if (ret < 0)
1877                         return ret;
1878                 uaddr += PAGE_SIZE;
1879         }
1880
1881         return 0;
1882 }
1883
1884 /**
1885  * vm_map_pages - maps range of kernel pages starts with non zero offset
1886  * @vma: user vma to map to
1887  * @pages: pointer to array of source kernel pages
1888  * @num: number of pages in page array
1889  *
1890  * Maps an object consisting of @num pages, catering for the user's
1891  * requested vm_pgoff
1892  *
1893  * If we fail to insert any page into the vma, the function will return
1894  * immediately leaving any previously inserted pages present.  Callers
1895  * from the mmap handler may immediately return the error as their caller
1896  * will destroy the vma, removing any successfully inserted pages. Other
1897  * callers should make their own arrangements for calling unmap_region().
1898  *
1899  * Context: Process context. Called by mmap handlers.
1900  * Return: 0 on success and error code otherwise.
1901  */
1902 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1903                                 unsigned long num)
1904 {
1905         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1906 }
1907 EXPORT_SYMBOL(vm_map_pages);
1908
1909 /**
1910  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1911  * @vma: user vma to map to
1912  * @pages: pointer to array of source kernel pages
1913  * @num: number of pages in page array
1914  *
1915  * Similar to vm_map_pages(), except that it explicitly sets the offset
1916  * to 0. This function is intended for the drivers that did not consider
1917  * vm_pgoff.
1918  *
1919  * Context: Process context. Called by mmap handlers.
1920  * Return: 0 on success and error code otherwise.
1921  */
1922 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1923                                 unsigned long num)
1924 {
1925         return __vm_map_pages(vma, pages, num, 0);
1926 }
1927 EXPORT_SYMBOL(vm_map_pages_zero);
1928
1929 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1930                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1931 {
1932         struct mm_struct *mm = vma->vm_mm;
1933         pte_t *pte, entry;
1934         spinlock_t *ptl;
1935
1936         pte = get_locked_pte(mm, addr, &ptl);
1937         if (!pte)
1938                 return VM_FAULT_OOM;
1939         if (!pte_none(*pte)) {
1940                 if (mkwrite) {
1941                         /*
1942                          * For read faults on private mappings the PFN passed
1943                          * in may not match the PFN we have mapped if the
1944                          * mapped PFN is a writeable COW page.  In the mkwrite
1945                          * case we are creating a writable PTE for a shared
1946                          * mapping and we expect the PFNs to match. If they
1947                          * don't match, we are likely racing with block
1948                          * allocation and mapping invalidation so just skip the
1949                          * update.
1950                          */
1951                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1952                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1953                                 goto out_unlock;
1954                         }
1955                         entry = pte_mkyoung(*pte);
1956                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1957                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1958                                 update_mmu_cache(vma, addr, pte);
1959                 }
1960                 goto out_unlock;
1961         }
1962
1963         /* Ok, finally just insert the thing.. */
1964         if (pfn_t_devmap(pfn))
1965                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1966         else
1967                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1968
1969         if (mkwrite) {
1970                 entry = pte_mkyoung(entry);
1971                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1972         }
1973
1974         set_pte_at(mm, addr, pte, entry);
1975         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1976
1977 out_unlock:
1978         pte_unmap_unlock(pte, ptl);
1979         return VM_FAULT_NOPAGE;
1980 }
1981
1982 /**
1983  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1984  * @vma: user vma to map to
1985  * @addr: target user address of this page
1986  * @pfn: source kernel pfn
1987  * @pgprot: pgprot flags for the inserted page
1988  *
1989  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1990  * to override pgprot on a per-page basis.
1991  *
1992  * This only makes sense for IO mappings, and it makes no sense for
1993  * COW mappings.  In general, using multiple vmas is preferable;
1994  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1995  * impractical.
1996  *
1997  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1998  * a value of @pgprot different from that of @vma->vm_page_prot.
1999  *
2000  * Context: Process context.  May allocate using %GFP_KERNEL.
2001  * Return: vm_fault_t value.
2002  */
2003 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2004                         unsigned long pfn, pgprot_t pgprot)
2005 {
2006         /*
2007          * Technically, architectures with pte_special can avoid all these
2008          * restrictions (same for remap_pfn_range).  However we would like
2009          * consistency in testing and feature parity among all, so we should
2010          * try to keep these invariants in place for everybody.
2011          */
2012         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2013         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2014                                                 (VM_PFNMAP|VM_MIXEDMAP));
2015         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2016         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2017
2018         if (addr < vma->vm_start || addr >= vma->vm_end)
2019                 return VM_FAULT_SIGBUS;
2020
2021         if (!pfn_modify_allowed(pfn, pgprot))
2022                 return VM_FAULT_SIGBUS;
2023
2024         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2025
2026         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2027                         false);
2028 }
2029 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2030
2031 /**
2032  * vmf_insert_pfn - insert single pfn into user vma
2033  * @vma: user vma to map to
2034  * @addr: target user address of this page
2035  * @pfn: source kernel pfn
2036  *
2037  * Similar to vm_insert_page, this allows drivers to insert individual pages
2038  * they've allocated into a user vma. Same comments apply.
2039  *
2040  * This function should only be called from a vm_ops->fault handler, and
2041  * in that case the handler should return the result of this function.
2042  *
2043  * vma cannot be a COW mapping.
2044  *
2045  * As this is called only for pages that do not currently exist, we
2046  * do not need to flush old virtual caches or the TLB.
2047  *
2048  * Context: Process context.  May allocate using %GFP_KERNEL.
2049  * Return: vm_fault_t value.
2050  */
2051 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2052                         unsigned long pfn)
2053 {
2054         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vmf_insert_pfn);
2057
2058 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2059 {
2060         /* these checks mirror the abort conditions in vm_normal_page */
2061         if (vma->vm_flags & VM_MIXEDMAP)
2062                 return true;
2063         if (pfn_t_devmap(pfn))
2064                 return true;
2065         if (pfn_t_special(pfn))
2066                 return true;
2067         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2068                 return true;
2069         return false;
2070 }
2071
2072 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2073                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2074                 bool mkwrite)
2075 {
2076         int err;
2077
2078         BUG_ON(!vm_mixed_ok(vma, pfn));
2079
2080         if (addr < vma->vm_start || addr >= vma->vm_end)
2081                 return VM_FAULT_SIGBUS;
2082
2083         track_pfn_insert(vma, &pgprot, pfn);
2084
2085         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2086                 return VM_FAULT_SIGBUS;
2087
2088         /*
2089          * If we don't have pte special, then we have to use the pfn_valid()
2090          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2091          * refcount the page if pfn_valid is true (hence insert_page rather
2092          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2093          * without pte special, it would there be refcounted as a normal page.
2094          */
2095         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2096             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2097                 struct page *page;
2098
2099                 /*
2100                  * At this point we are committed to insert_page()
2101                  * regardless of whether the caller specified flags that
2102                  * result in pfn_t_has_page() == false.
2103                  */
2104                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2105                 err = insert_page(vma, addr, page, pgprot);
2106         } else {
2107                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2108         }
2109
2110         if (err == -ENOMEM)
2111                 return VM_FAULT_OOM;
2112         if (err < 0 && err != -EBUSY)
2113                 return VM_FAULT_SIGBUS;
2114
2115         return VM_FAULT_NOPAGE;
2116 }
2117
2118 /**
2119  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2120  * @vma: user vma to map to
2121  * @addr: target user address of this page
2122  * @pfn: source kernel pfn
2123  * @pgprot: pgprot flags for the inserted page
2124  *
2125  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2126  * to override pgprot on a per-page basis.
2127  *
2128  * Typically this function should be used by drivers to set caching- and
2129  * encryption bits different than those of @vma->vm_page_prot, because
2130  * the caching- or encryption mode may not be known at mmap() time.
2131  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2132  * to set caching and encryption bits for those vmas (except for COW pages).
2133  * This is ensured by core vm only modifying these page table entries using
2134  * functions that don't touch caching- or encryption bits, using pte_modify()
2135  * if needed. (See for example mprotect()).
2136  * Also when new page-table entries are created, this is only done using the
2137  * fault() callback, and never using the value of vma->vm_page_prot,
2138  * except for page-table entries that point to anonymous pages as the result
2139  * of COW.
2140  *
2141  * Context: Process context.  May allocate using %GFP_KERNEL.
2142  * Return: vm_fault_t value.
2143  */
2144 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2145                                  pfn_t pfn, pgprot_t pgprot)
2146 {
2147         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2148 }
2149 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2150
2151 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2152                 pfn_t pfn)
2153 {
2154         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2155 }
2156 EXPORT_SYMBOL(vmf_insert_mixed);
2157
2158 /*
2159  *  If the insertion of PTE failed because someone else already added a
2160  *  different entry in the mean time, we treat that as success as we assume
2161  *  the same entry was actually inserted.
2162  */
2163 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2164                 unsigned long addr, pfn_t pfn)
2165 {
2166         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2167 }
2168 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2169
2170 /*
2171  * maps a range of physical memory into the requested pages. the old
2172  * mappings are removed. any references to nonexistent pages results
2173  * in null mappings (currently treated as "copy-on-access")
2174  */
2175 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2176                         unsigned long addr, unsigned long end,
2177                         unsigned long pfn, pgprot_t prot)
2178 {
2179         pte_t *pte, *mapped_pte;
2180         spinlock_t *ptl;
2181         int err = 0;
2182
2183         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2184         if (!pte)
2185                 return -ENOMEM;
2186         arch_enter_lazy_mmu_mode();
2187         do {
2188                 BUG_ON(!pte_none(*pte));
2189                 if (!pfn_modify_allowed(pfn, prot)) {
2190                         err = -EACCES;
2191                         break;
2192                 }
2193                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2194                 pfn++;
2195         } while (pte++, addr += PAGE_SIZE, addr != end);
2196         arch_leave_lazy_mmu_mode();
2197         pte_unmap_unlock(mapped_pte, ptl);
2198         return err;
2199 }
2200
2201 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2202                         unsigned long addr, unsigned long end,
2203                         unsigned long pfn, pgprot_t prot)
2204 {
2205         pmd_t *pmd;
2206         unsigned long next;
2207         int err;
2208
2209         pfn -= addr >> PAGE_SHIFT;
2210         pmd = pmd_alloc(mm, pud, addr);
2211         if (!pmd)
2212                 return -ENOMEM;
2213         VM_BUG_ON(pmd_trans_huge(*pmd));
2214         do {
2215                 next = pmd_addr_end(addr, end);
2216                 err = remap_pte_range(mm, pmd, addr, next,
2217                                 pfn + (addr >> PAGE_SHIFT), prot);
2218                 if (err)
2219                         return err;
2220         } while (pmd++, addr = next, addr != end);
2221         return 0;
2222 }
2223
2224 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225                         unsigned long addr, unsigned long end,
2226                         unsigned long pfn, pgprot_t prot)
2227 {
2228         pud_t *pud;
2229         unsigned long next;
2230         int err;
2231
2232         pfn -= addr >> PAGE_SHIFT;
2233         pud = pud_alloc(mm, p4d, addr);
2234         if (!pud)
2235                 return -ENOMEM;
2236         do {
2237                 next = pud_addr_end(addr, end);
2238                 err = remap_pmd_range(mm, pud, addr, next,
2239                                 pfn + (addr >> PAGE_SHIFT), prot);
2240                 if (err)
2241                         return err;
2242         } while (pud++, addr = next, addr != end);
2243         return 0;
2244 }
2245
2246 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2247                         unsigned long addr, unsigned long end,
2248                         unsigned long pfn, pgprot_t prot)
2249 {
2250         p4d_t *p4d;
2251         unsigned long next;
2252         int err;
2253
2254         pfn -= addr >> PAGE_SHIFT;
2255         p4d = p4d_alloc(mm, pgd, addr);
2256         if (!p4d)
2257                 return -ENOMEM;
2258         do {
2259                 next = p4d_addr_end(addr, end);
2260                 err = remap_pud_range(mm, p4d, addr, next,
2261                                 pfn + (addr >> PAGE_SHIFT), prot);
2262                 if (err)
2263                         return err;
2264         } while (p4d++, addr = next, addr != end);
2265         return 0;
2266 }
2267
2268 /**
2269  * remap_pfn_range - remap kernel memory to userspace
2270  * @vma: user vma to map to
2271  * @addr: target page aligned user address to start at
2272  * @pfn: page frame number of kernel physical memory address
2273  * @size: size of mapping area
2274  * @prot: page protection flags for this mapping
2275  *
2276  * Note: this is only safe if the mm semaphore is held when called.
2277  *
2278  * Return: %0 on success, negative error code otherwise.
2279  */
2280 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2281                     unsigned long pfn, unsigned long size, pgprot_t prot)
2282 {
2283         pgd_t *pgd;
2284         unsigned long next;
2285         unsigned long end = addr + PAGE_ALIGN(size);
2286         struct mm_struct *mm = vma->vm_mm;
2287         unsigned long remap_pfn = pfn;
2288         int err;
2289
2290         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2291                 return -EINVAL;
2292
2293         /*
2294          * Physically remapped pages are special. Tell the
2295          * rest of the world about it:
2296          *   VM_IO tells people not to look at these pages
2297          *      (accesses can have side effects).
2298          *   VM_PFNMAP tells the core MM that the base pages are just
2299          *      raw PFN mappings, and do not have a "struct page" associated
2300          *      with them.
2301          *   VM_DONTEXPAND
2302          *      Disable vma merging and expanding with mremap().
2303          *   VM_DONTDUMP
2304          *      Omit vma from core dump, even when VM_IO turned off.
2305          *
2306          * There's a horrible special case to handle copy-on-write
2307          * behaviour that some programs depend on. We mark the "original"
2308          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2309          * See vm_normal_page() for details.
2310          */
2311         if (is_cow_mapping(vma->vm_flags)) {
2312                 if (addr != vma->vm_start || end != vma->vm_end)
2313                         return -EINVAL;
2314                 vma->vm_pgoff = pfn;
2315         }
2316
2317         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2318         if (err)
2319                 return -EINVAL;
2320
2321         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2322
2323         BUG_ON(addr >= end);
2324         pfn -= addr >> PAGE_SHIFT;
2325         pgd = pgd_offset(mm, addr);
2326         flush_cache_range(vma, addr, end);
2327         do {
2328                 next = pgd_addr_end(addr, end);
2329                 err = remap_p4d_range(mm, pgd, addr, next,
2330                                 pfn + (addr >> PAGE_SHIFT), prot);
2331                 if (err)
2332                         break;
2333         } while (pgd++, addr = next, addr != end);
2334
2335         if (err)
2336                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2337
2338         return err;
2339 }
2340 EXPORT_SYMBOL(remap_pfn_range);
2341
2342 /**
2343  * vm_iomap_memory - remap memory to userspace
2344  * @vma: user vma to map to
2345  * @start: start of the physical memory to be mapped
2346  * @len: size of area
2347  *
2348  * This is a simplified io_remap_pfn_range() for common driver use. The
2349  * driver just needs to give us the physical memory range to be mapped,
2350  * we'll figure out the rest from the vma information.
2351  *
2352  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2353  * whatever write-combining details or similar.
2354  *
2355  * Return: %0 on success, negative error code otherwise.
2356  */
2357 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2358 {
2359         unsigned long vm_len, pfn, pages;
2360
2361         /* Check that the physical memory area passed in looks valid */
2362         if (start + len < start)
2363                 return -EINVAL;
2364         /*
2365          * You *really* shouldn't map things that aren't page-aligned,
2366          * but we've historically allowed it because IO memory might
2367          * just have smaller alignment.
2368          */
2369         len += start & ~PAGE_MASK;
2370         pfn = start >> PAGE_SHIFT;
2371         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2372         if (pfn + pages < pfn)
2373                 return -EINVAL;
2374
2375         /* We start the mapping 'vm_pgoff' pages into the area */
2376         if (vma->vm_pgoff > pages)
2377                 return -EINVAL;
2378         pfn += vma->vm_pgoff;
2379         pages -= vma->vm_pgoff;
2380
2381         /* Can we fit all of the mapping? */
2382         vm_len = vma->vm_end - vma->vm_start;
2383         if (vm_len >> PAGE_SHIFT > pages)
2384                 return -EINVAL;
2385
2386         /* Ok, let it rip */
2387         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2388 }
2389 EXPORT_SYMBOL(vm_iomap_memory);
2390
2391 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2392                                      unsigned long addr, unsigned long end,
2393                                      pte_fn_t fn, void *data, bool create,
2394                                      pgtbl_mod_mask *mask)
2395 {
2396         pte_t *pte;
2397         int err = 0;
2398         spinlock_t *ptl;
2399
2400         if (create) {
2401                 pte = (mm == &init_mm) ?
2402                         pte_alloc_kernel_track(pmd, addr, mask) :
2403                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2404                 if (!pte)
2405                         return -ENOMEM;
2406         } else {
2407                 pte = (mm == &init_mm) ?
2408                         pte_offset_kernel(pmd, addr) :
2409                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2410         }
2411
2412         BUG_ON(pmd_huge(*pmd));
2413
2414         arch_enter_lazy_mmu_mode();
2415
2416         if (fn) {
2417                 do {
2418                         if (create || !pte_none(*pte)) {
2419                                 err = fn(pte++, addr, data);
2420                                 if (err)
2421                                         break;
2422                         }
2423                 } while (addr += PAGE_SIZE, addr != end);
2424         }
2425         *mask |= PGTBL_PTE_MODIFIED;
2426
2427         arch_leave_lazy_mmu_mode();
2428
2429         if (mm != &init_mm)
2430                 pte_unmap_unlock(pte-1, ptl);
2431         return err;
2432 }
2433
2434 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2435                                      unsigned long addr, unsigned long end,
2436                                      pte_fn_t fn, void *data, bool create,
2437                                      pgtbl_mod_mask *mask)
2438 {
2439         pmd_t *pmd;
2440         unsigned long next;
2441         int err = 0;
2442
2443         BUG_ON(pud_huge(*pud));
2444
2445         if (create) {
2446                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2447                 if (!pmd)
2448                         return -ENOMEM;
2449         } else {
2450                 pmd = pmd_offset(pud, addr);
2451         }
2452         do {
2453                 next = pmd_addr_end(addr, end);
2454                 if (create || !pmd_none_or_clear_bad(pmd)) {
2455                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2456                                                  create, mask);
2457                         if (err)
2458                                 break;
2459                 }
2460         } while (pmd++, addr = next, addr != end);
2461         return err;
2462 }
2463
2464 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2465                                      unsigned long addr, unsigned long end,
2466                                      pte_fn_t fn, void *data, bool create,
2467                                      pgtbl_mod_mask *mask)
2468 {
2469         pud_t *pud;
2470         unsigned long next;
2471         int err = 0;
2472
2473         if (create) {
2474                 pud = pud_alloc_track(mm, p4d, addr, mask);
2475                 if (!pud)
2476                         return -ENOMEM;
2477         } else {
2478                 pud = pud_offset(p4d, addr);
2479         }
2480         do {
2481                 next = pud_addr_end(addr, end);
2482                 if (create || !pud_none_or_clear_bad(pud)) {
2483                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2484                                                  create, mask);
2485                         if (err)
2486                                 break;
2487                 }
2488         } while (pud++, addr = next, addr != end);
2489         return err;
2490 }
2491
2492 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2493                                      unsigned long addr, unsigned long end,
2494                                      pte_fn_t fn, void *data, bool create,
2495                                      pgtbl_mod_mask *mask)
2496 {
2497         p4d_t *p4d;
2498         unsigned long next;
2499         int err = 0;
2500
2501         if (create) {
2502                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2503                 if (!p4d)
2504                         return -ENOMEM;
2505         } else {
2506                 p4d = p4d_offset(pgd, addr);
2507         }
2508         do {
2509                 next = p4d_addr_end(addr, end);
2510                 if (create || !p4d_none_or_clear_bad(p4d)) {
2511                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2512                                                  create, mask);
2513                         if (err)
2514                                 break;
2515                 }
2516         } while (p4d++, addr = next, addr != end);
2517         return err;
2518 }
2519
2520 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2521                                  unsigned long size, pte_fn_t fn,
2522                                  void *data, bool create)
2523 {
2524         pgd_t *pgd;
2525         unsigned long start = addr, next;
2526         unsigned long end = addr + size;
2527         pgtbl_mod_mask mask = 0;
2528         int err = 0;
2529
2530         if (WARN_ON(addr >= end))
2531                 return -EINVAL;
2532
2533         pgd = pgd_offset(mm, addr);
2534         do {
2535                 next = pgd_addr_end(addr, end);
2536                 if (!create && pgd_none_or_clear_bad(pgd))
2537                         continue;
2538                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2539                 if (err)
2540                         break;
2541         } while (pgd++, addr = next, addr != end);
2542
2543         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2544                 arch_sync_kernel_mappings(start, start + size);
2545
2546         return err;
2547 }
2548
2549 /*
2550  * Scan a region of virtual memory, filling in page tables as necessary
2551  * and calling a provided function on each leaf page table.
2552  */
2553 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2554                         unsigned long size, pte_fn_t fn, void *data)
2555 {
2556         return __apply_to_page_range(mm, addr, size, fn, data, true);
2557 }
2558 EXPORT_SYMBOL_GPL(apply_to_page_range);
2559
2560 /*
2561  * Scan a region of virtual memory, calling a provided function on
2562  * each leaf page table where it exists.
2563  *
2564  * Unlike apply_to_page_range, this does _not_ fill in page tables
2565  * where they are absent.
2566  */
2567 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2568                                  unsigned long size, pte_fn_t fn, void *data)
2569 {
2570         return __apply_to_page_range(mm, addr, size, fn, data, false);
2571 }
2572 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2573
2574 /*
2575  * handle_pte_fault chooses page fault handler according to an entry which was
2576  * read non-atomically.  Before making any commitment, on those architectures
2577  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2578  * parts, do_swap_page must check under lock before unmapping the pte and
2579  * proceeding (but do_wp_page is only called after already making such a check;
2580  * and do_anonymous_page can safely check later on).
2581  */
2582 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2583                                 pte_t *page_table, pte_t orig_pte)
2584 {
2585         int same = 1;
2586 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2587         if (sizeof(pte_t) > sizeof(unsigned long)) {
2588                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2589                 spin_lock(ptl);
2590                 same = pte_same(*page_table, orig_pte);
2591                 spin_unlock(ptl);
2592         }
2593 #endif
2594         pte_unmap(page_table);
2595         return same;
2596 }
2597
2598 static inline bool cow_user_page(struct page *dst, struct page *src,
2599                                  struct vm_fault *vmf)
2600 {
2601         bool ret;
2602         void *kaddr;
2603         void __user *uaddr;
2604         bool locked = false;
2605         struct vm_area_struct *vma = vmf->vma;
2606         struct mm_struct *mm = vma->vm_mm;
2607         unsigned long addr = vmf->address;
2608
2609         if (likely(src)) {
2610                 copy_user_highpage(dst, src, addr, vma);
2611                 return true;
2612         }
2613
2614         /*
2615          * If the source page was a PFN mapping, we don't have
2616          * a "struct page" for it. We do a best-effort copy by
2617          * just copying from the original user address. If that
2618          * fails, we just zero-fill it. Live with it.
2619          */
2620         kaddr = kmap_atomic(dst);
2621         uaddr = (void __user *)(addr & PAGE_MASK);
2622
2623         /*
2624          * On architectures with software "accessed" bits, we would
2625          * take a double page fault, so mark it accessed here.
2626          */
2627         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2628                 pte_t entry;
2629
2630                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2631                 locked = true;
2632                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2633                         /*
2634                          * Other thread has already handled the fault
2635                          * and update local tlb only
2636                          */
2637                         update_mmu_tlb(vma, addr, vmf->pte);
2638                         ret = false;
2639                         goto pte_unlock;
2640                 }
2641
2642                 entry = pte_mkyoung(vmf->orig_pte);
2643                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2644                         update_mmu_cache(vma, addr, vmf->pte);
2645         }
2646
2647         /*
2648          * This really shouldn't fail, because the page is there
2649          * in the page tables. But it might just be unreadable,
2650          * in which case we just give up and fill the result with
2651          * zeroes.
2652          */
2653         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2654                 if (locked)
2655                         goto warn;
2656
2657                 /* Re-validate under PTL if the page is still mapped */
2658                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2659                 locked = true;
2660                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2661                         /* The PTE changed under us, update local tlb */
2662                         update_mmu_tlb(vma, addr, vmf->pte);
2663                         ret = false;
2664                         goto pte_unlock;
2665                 }
2666
2667                 /*
2668                  * The same page can be mapped back since last copy attempt.
2669                  * Try to copy again under PTL.
2670                  */
2671                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2672                         /*
2673                          * Give a warn in case there can be some obscure
2674                          * use-case
2675                          */
2676 warn:
2677                         WARN_ON_ONCE(1);
2678                         clear_page(kaddr);
2679                 }
2680         }
2681
2682         ret = true;
2683
2684 pte_unlock:
2685         if (locked)
2686                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2687         kunmap_atomic(kaddr);
2688         flush_dcache_page(dst);
2689
2690         return ret;
2691 }
2692
2693 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2694 {
2695         struct file *vm_file = vma->vm_file;
2696
2697         if (vm_file)
2698                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2699
2700         /*
2701          * Special mappings (e.g. VDSO) do not have any file so fake
2702          * a default GFP_KERNEL for them.
2703          */
2704         return GFP_KERNEL;
2705 }
2706
2707 /*
2708  * Notify the address space that the page is about to become writable so that
2709  * it can prohibit this or wait for the page to get into an appropriate state.
2710  *
2711  * We do this without the lock held, so that it can sleep if it needs to.
2712  */
2713 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2714 {
2715         vm_fault_t ret;
2716         struct page *page = vmf->page;
2717         unsigned int old_flags = vmf->flags;
2718
2719         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2720
2721         if (vmf->vma->vm_file &&
2722             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2723                 return VM_FAULT_SIGBUS;
2724
2725         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2726         /* Restore original flags so that caller is not surprised */
2727         vmf->flags = old_flags;
2728         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2729                 return ret;
2730         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2731                 lock_page(page);
2732                 if (!page->mapping) {
2733                         unlock_page(page);
2734                         return 0; /* retry */
2735                 }
2736                 ret |= VM_FAULT_LOCKED;
2737         } else
2738                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2739         return ret;
2740 }
2741
2742 /*
2743  * Handle dirtying of a page in shared file mapping on a write fault.
2744  *
2745  * The function expects the page to be locked and unlocks it.
2746  */
2747 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2748 {
2749         struct vm_area_struct *vma = vmf->vma;
2750         struct address_space *mapping;
2751         struct page *page = vmf->page;
2752         bool dirtied;
2753         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2754
2755         dirtied = set_page_dirty(page);
2756         VM_BUG_ON_PAGE(PageAnon(page), page);
2757         /*
2758          * Take a local copy of the address_space - page.mapping may be zeroed
2759          * by truncate after unlock_page().   The address_space itself remains
2760          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2761          * release semantics to prevent the compiler from undoing this copying.
2762          */
2763         mapping = page_rmapping(page);
2764         unlock_page(page);
2765
2766         if (!page_mkwrite)
2767                 file_update_time(vma->vm_file);
2768
2769         /*
2770          * Throttle page dirtying rate down to writeback speed.
2771          *
2772          * mapping may be NULL here because some device drivers do not
2773          * set page.mapping but still dirty their pages
2774          *
2775          * Drop the mmap_lock before waiting on IO, if we can. The file
2776          * is pinning the mapping, as per above.
2777          */
2778         if ((dirtied || page_mkwrite) && mapping) {
2779                 struct file *fpin;
2780
2781                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2782                 balance_dirty_pages_ratelimited(mapping);
2783                 if (fpin) {
2784                         fput(fpin);
2785                         return VM_FAULT_RETRY;
2786                 }
2787         }
2788
2789         return 0;
2790 }
2791
2792 /*
2793  * Handle write page faults for pages that can be reused in the current vma
2794  *
2795  * This can happen either due to the mapping being with the VM_SHARED flag,
2796  * or due to us being the last reference standing to the page. In either
2797  * case, all we need to do here is to mark the page as writable and update
2798  * any related book-keeping.
2799  */
2800 static inline void wp_page_reuse(struct vm_fault *vmf)
2801         __releases(vmf->ptl)
2802 {
2803         struct vm_area_struct *vma = vmf->vma;
2804         struct page *page = vmf->page;
2805         pte_t entry;
2806         /*
2807          * Clear the pages cpupid information as the existing
2808          * information potentially belongs to a now completely
2809          * unrelated process.
2810          */
2811         if (page)
2812                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2813
2814         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2815         entry = pte_mkyoung(vmf->orig_pte);
2816         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2817         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2818                 update_mmu_cache(vma, vmf->address, vmf->pte);
2819         pte_unmap_unlock(vmf->pte, vmf->ptl);
2820         count_vm_event(PGREUSE);
2821 }
2822
2823 /*
2824  * Handle the case of a page which we actually need to copy to a new page.
2825  *
2826  * Called with mmap_lock locked and the old page referenced, but
2827  * without the ptl held.
2828  *
2829  * High level logic flow:
2830  *
2831  * - Allocate a page, copy the content of the old page to the new one.
2832  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2833  * - Take the PTL. If the pte changed, bail out and release the allocated page
2834  * - If the pte is still the way we remember it, update the page table and all
2835  *   relevant references. This includes dropping the reference the page-table
2836  *   held to the old page, as well as updating the rmap.
2837  * - In any case, unlock the PTL and drop the reference we took to the old page.
2838  */
2839 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2840 {
2841         struct vm_area_struct *vma = vmf->vma;
2842         struct mm_struct *mm = vma->vm_mm;
2843         struct page *old_page = vmf->page;
2844         struct page *new_page = NULL;
2845         pte_t entry;
2846         int page_copied = 0;
2847         struct mmu_notifier_range range;
2848
2849         if (unlikely(anon_vma_prepare(vma)))
2850                 goto oom;
2851
2852         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2853                 new_page = alloc_zeroed_user_highpage_movable(vma,
2854                                                               vmf->address);
2855                 if (!new_page)
2856                         goto oom;
2857         } else {
2858                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2859                                 vmf->address);
2860                 if (!new_page)
2861                         goto oom;
2862
2863                 if (!cow_user_page(new_page, old_page, vmf)) {
2864                         /*
2865                          * COW failed, if the fault was solved by other,
2866                          * it's fine. If not, userspace would re-fault on
2867                          * the same address and we will handle the fault
2868                          * from the second attempt.
2869                          */
2870                         put_page(new_page);
2871                         if (old_page)
2872                                 put_page(old_page);
2873                         return 0;
2874                 }
2875         }
2876
2877         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2878                 goto oom_free_new;
2879         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2880
2881         __SetPageUptodate(new_page);
2882
2883         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2884                                 vmf->address & PAGE_MASK,
2885                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2886         mmu_notifier_invalidate_range_start(&range);
2887
2888         /*
2889          * Re-check the pte - we dropped the lock
2890          */
2891         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2892         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2893                 if (old_page) {
2894                         if (!PageAnon(old_page)) {
2895                                 dec_mm_counter_fast(mm,
2896                                                 mm_counter_file(old_page));
2897                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2898                         }
2899                 } else {
2900                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2901                 }
2902                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2903                 entry = mk_pte(new_page, vma->vm_page_prot);
2904                 entry = pte_sw_mkyoung(entry);
2905                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2906                 /*
2907                  * Clear the pte entry and flush it first, before updating the
2908                  * pte with the new entry. This will avoid a race condition
2909                  * seen in the presence of one thread doing SMC and another
2910                  * thread doing COW.
2911                  */
2912                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2913                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2914                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2915                 /*
2916                  * We call the notify macro here because, when using secondary
2917                  * mmu page tables (such as kvm shadow page tables), we want the
2918                  * new page to be mapped directly into the secondary page table.
2919                  */
2920                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2921                 update_mmu_cache(vma, vmf->address, vmf->pte);
2922                 if (old_page) {
2923                         /*
2924                          * Only after switching the pte to the new page may
2925                          * we remove the mapcount here. Otherwise another
2926                          * process may come and find the rmap count decremented
2927                          * before the pte is switched to the new page, and
2928                          * "reuse" the old page writing into it while our pte
2929                          * here still points into it and can be read by other
2930                          * threads.
2931                          *
2932                          * The critical issue is to order this
2933                          * page_remove_rmap with the ptp_clear_flush above.
2934                          * Those stores are ordered by (if nothing else,)
2935                          * the barrier present in the atomic_add_negative
2936                          * in page_remove_rmap.
2937                          *
2938                          * Then the TLB flush in ptep_clear_flush ensures that
2939                          * no process can access the old page before the
2940                          * decremented mapcount is visible. And the old page
2941                          * cannot be reused until after the decremented
2942                          * mapcount is visible. So transitively, TLBs to
2943                          * old page will be flushed before it can be reused.
2944                          */
2945                         page_remove_rmap(old_page, false);
2946                 }
2947
2948                 /* Free the old page.. */
2949                 new_page = old_page;
2950                 page_copied = 1;
2951         } else {
2952                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2953         }
2954
2955         if (new_page)
2956                 put_page(new_page);
2957
2958         pte_unmap_unlock(vmf->pte, vmf->ptl);
2959         /*
2960          * No need to double call mmu_notifier->invalidate_range() callback as
2961          * the above ptep_clear_flush_notify() did already call it.
2962          */
2963         mmu_notifier_invalidate_range_only_end(&range);
2964         if (old_page) {
2965                 /*
2966                  * Don't let another task, with possibly unlocked vma,
2967                  * keep the mlocked page.
2968                  */
2969                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2970                         lock_page(old_page);    /* LRU manipulation */
2971                         if (PageMlocked(old_page))
2972                                 munlock_vma_page(old_page);
2973                         unlock_page(old_page);
2974                 }
2975                 put_page(old_page);
2976         }
2977         return page_copied ? VM_FAULT_WRITE : 0;
2978 oom_free_new:
2979         put_page(new_page);
2980 oom:
2981         if (old_page)
2982                 put_page(old_page);
2983         return VM_FAULT_OOM;
2984 }
2985
2986 /**
2987  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2988  *                        writeable once the page is prepared
2989  *
2990  * @vmf: structure describing the fault
2991  *
2992  * This function handles all that is needed to finish a write page fault in a
2993  * shared mapping due to PTE being read-only once the mapped page is prepared.
2994  * It handles locking of PTE and modifying it.
2995  *
2996  * The function expects the page to be locked or other protection against
2997  * concurrent faults / writeback (such as DAX radix tree locks).
2998  *
2999  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3000  * we acquired PTE lock.
3001  */
3002 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3003 {
3004         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3005         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3006                                        &vmf->ptl);
3007         /*
3008          * We might have raced with another page fault while we released the
3009          * pte_offset_map_lock.
3010          */
3011         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3012                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3013                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3014                 return VM_FAULT_NOPAGE;
3015         }
3016         wp_page_reuse(vmf);
3017         return 0;
3018 }
3019
3020 /*
3021  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3022  * mapping
3023  */
3024 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3025 {
3026         struct vm_area_struct *vma = vmf->vma;
3027
3028         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3029                 vm_fault_t ret;
3030
3031                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3032                 vmf->flags |= FAULT_FLAG_MKWRITE;
3033                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3034                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3035                         return ret;
3036                 return finish_mkwrite_fault(vmf);
3037         }
3038         wp_page_reuse(vmf);
3039         return VM_FAULT_WRITE;
3040 }
3041
3042 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3043         __releases(vmf->ptl)
3044 {
3045         struct vm_area_struct *vma = vmf->vma;
3046         vm_fault_t ret = VM_FAULT_WRITE;
3047
3048         get_page(vmf->page);
3049
3050         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3051                 vm_fault_t tmp;
3052
3053                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3054                 tmp = do_page_mkwrite(vmf);
3055                 if (unlikely(!tmp || (tmp &
3056                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3057                         put_page(vmf->page);
3058                         return tmp;
3059                 }
3060                 tmp = finish_mkwrite_fault(vmf);
3061                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3062                         unlock_page(vmf->page);
3063                         put_page(vmf->page);
3064                         return tmp;
3065                 }
3066         } else {
3067                 wp_page_reuse(vmf);
3068                 lock_page(vmf->page);
3069         }
3070         ret |= fault_dirty_shared_page(vmf);
3071         put_page(vmf->page);
3072
3073         return ret;
3074 }
3075
3076 /*
3077  * This routine handles present pages, when users try to write
3078  * to a shared page. It is done by copying the page to a new address
3079  * and decrementing the shared-page counter for the old page.
3080  *
3081  * Note that this routine assumes that the protection checks have been
3082  * done by the caller (the low-level page fault routine in most cases).
3083  * Thus we can safely just mark it writable once we've done any necessary
3084  * COW.
3085  *
3086  * We also mark the page dirty at this point even though the page will
3087  * change only once the write actually happens. This avoids a few races,
3088  * and potentially makes it more efficient.
3089  *
3090  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3091  * but allow concurrent faults), with pte both mapped and locked.
3092  * We return with mmap_lock still held, but pte unmapped and unlocked.
3093  */
3094 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3095         __releases(vmf->ptl)
3096 {
3097         struct vm_area_struct *vma = vmf->vma;
3098
3099         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3100                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3101                 return handle_userfault(vmf, VM_UFFD_WP);
3102         }
3103
3104         /*
3105          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3106          * is flushed in this case before copying.
3107          */
3108         if (unlikely(userfaultfd_wp(vmf->vma) &&
3109                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3110                 flush_tlb_page(vmf->vma, vmf->address);
3111
3112         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3113         if (!vmf->page) {
3114                 /*
3115                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3116                  * VM_PFNMAP VMA.
3117                  *
3118                  * We should not cow pages in a shared writeable mapping.
3119                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3120                  */
3121                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3122                                      (VM_WRITE|VM_SHARED))
3123                         return wp_pfn_shared(vmf);
3124
3125                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3126                 return wp_page_copy(vmf);
3127         }
3128
3129         /*
3130          * Take out anonymous pages first, anonymous shared vmas are
3131          * not dirty accountable.
3132          */
3133         if (PageAnon(vmf->page)) {
3134                 struct page *page = vmf->page;
3135
3136                 /* PageKsm() doesn't necessarily raise the page refcount */
3137                 if (PageKsm(page) || page_count(page) != 1)
3138                         goto copy;
3139                 if (!trylock_page(page))
3140                         goto copy;
3141                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3142                         unlock_page(page);
3143                         goto copy;
3144                 }
3145                 /*
3146                  * Ok, we've got the only map reference, and the only
3147                  * page count reference, and the page is locked,
3148                  * it's dark out, and we're wearing sunglasses. Hit it.
3149                  */
3150                 unlock_page(page);
3151                 wp_page_reuse(vmf);
3152                 return VM_FAULT_WRITE;
3153         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3154                                         (VM_WRITE|VM_SHARED))) {
3155                 return wp_page_shared(vmf);
3156         }
3157 copy:
3158         /*
3159          * Ok, we need to copy. Oh, well..
3160          */
3161         get_page(vmf->page);
3162
3163         pte_unmap_unlock(vmf->pte, vmf->ptl);
3164         return wp_page_copy(vmf);
3165 }
3166
3167 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3168                 unsigned long start_addr, unsigned long end_addr,
3169                 struct zap_details *details)
3170 {
3171         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3172 }
3173
3174 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3175                                             struct zap_details *details)
3176 {
3177         struct vm_area_struct *vma;
3178         pgoff_t vba, vea, zba, zea;
3179
3180         vma_interval_tree_foreach(vma, root,
3181                         details->first_index, details->last_index) {
3182
3183                 vba = vma->vm_pgoff;
3184                 vea = vba + vma_pages(vma) - 1;
3185                 zba = details->first_index;
3186                 if (zba < vba)
3187                         zba = vba;
3188                 zea = details->last_index;
3189                 if (zea > vea)
3190                         zea = vea;
3191
3192                 unmap_mapping_range_vma(vma,
3193                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3194                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3195                                 details);
3196         }
3197 }
3198
3199 /**
3200  * unmap_mapping_page() - Unmap single page from processes.
3201  * @page: The locked page to be unmapped.
3202  *
3203  * Unmap this page from any userspace process which still has it mmaped.
3204  * Typically, for efficiency, the range of nearby pages has already been
3205  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3206  * truncation or invalidation holds the lock on a page, it may find that
3207  * the page has been remapped again: and then uses unmap_mapping_page()
3208  * to unmap it finally.
3209  */
3210 void unmap_mapping_page(struct page *page)
3211 {
3212         struct address_space *mapping = page->mapping;
3213         struct zap_details details = { };
3214
3215         VM_BUG_ON(!PageLocked(page));
3216         VM_BUG_ON(PageTail(page));
3217
3218         details.check_mapping = mapping;
3219         details.first_index = page->index;
3220         details.last_index = page->index + thp_nr_pages(page) - 1;
3221         details.single_page = page;
3222
3223         i_mmap_lock_write(mapping);
3224         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3225                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3226         i_mmap_unlock_write(mapping);
3227 }
3228
3229 /**
3230  * unmap_mapping_pages() - Unmap pages from processes.
3231  * @mapping: The address space containing pages to be unmapped.
3232  * @start: Index of first page to be unmapped.
3233  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3234  * @even_cows: Whether to unmap even private COWed pages.
3235  *
3236  * Unmap the pages in this address space from any userspace process which
3237  * has them mmaped.  Generally, you want to remove COWed pages as well when
3238  * a file is being truncated, but not when invalidating pages from the page
3239  * cache.
3240  */
3241 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3242                 pgoff_t nr, bool even_cows)
3243 {
3244         struct zap_details details = { };
3245
3246         details.check_mapping = even_cows ? NULL : mapping;
3247         details.first_index = start;
3248         details.last_index = start + nr - 1;
3249         if (details.last_index < details.first_index)
3250                 details.last_index = ULONG_MAX;
3251
3252         i_mmap_lock_write(mapping);
3253         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3254                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3255         i_mmap_unlock_write(mapping);
3256 }
3257
3258 /**
3259  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3260  * address_space corresponding to the specified byte range in the underlying
3261  * file.
3262  *
3263  * @mapping: the address space containing mmaps to be unmapped.
3264  * @holebegin: byte in first page to unmap, relative to the start of
3265  * the underlying file.  This will be rounded down to a PAGE_SIZE
3266  * boundary.  Note that this is different from truncate_pagecache(), which
3267  * must keep the partial page.  In contrast, we must get rid of
3268  * partial pages.
3269  * @holelen: size of prospective hole in bytes.  This will be rounded
3270  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3271  * end of the file.
3272  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3273  * but 0 when invalidating pagecache, don't throw away private data.
3274  */
3275 void unmap_mapping_range(struct address_space *mapping,
3276                 loff_t const holebegin, loff_t const holelen, int even_cows)
3277 {
3278         pgoff_t hba = holebegin >> PAGE_SHIFT;
3279         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3280
3281         /* Check for overflow. */
3282         if (sizeof(holelen) > sizeof(hlen)) {
3283                 long long holeend =
3284                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3285                 if (holeend & ~(long long)ULONG_MAX)
3286                         hlen = ULONG_MAX - hba + 1;
3287         }
3288
3289         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3290 }
3291 EXPORT_SYMBOL(unmap_mapping_range);
3292
3293 /*
3294  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3295  * but allow concurrent faults), and pte mapped but not yet locked.
3296  * We return with pte unmapped and unlocked.
3297  *
3298  * We return with the mmap_lock locked or unlocked in the same cases
3299  * as does filemap_fault().
3300  */
3301 vm_fault_t do_swap_page(struct vm_fault *vmf)
3302 {
3303         struct vm_area_struct *vma = vmf->vma;
3304         struct page *page = NULL, *swapcache;
3305         swp_entry_t entry;
3306         pte_t pte;
3307         int locked;
3308         int exclusive = 0;
3309         vm_fault_t ret = 0;
3310         void *shadow = NULL;
3311
3312         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3313                 goto out;
3314
3315         entry = pte_to_swp_entry(vmf->orig_pte);
3316         if (unlikely(non_swap_entry(entry))) {
3317                 if (is_migration_entry(entry)) {
3318                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3319                                              vmf->address);
3320                 } else if (is_device_private_entry(entry)) {
3321                         vmf->page = device_private_entry_to_page(entry);
3322                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3323                 } else if (is_hwpoison_entry(entry)) {
3324                         ret = VM_FAULT_HWPOISON;
3325                 } else {
3326                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3327                         ret = VM_FAULT_SIGBUS;
3328                 }
3329                 goto out;
3330         }
3331
3332
3333         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3334         page = lookup_swap_cache(entry, vma, vmf->address);
3335         swapcache = page;
3336
3337         if (!page) {
3338                 struct swap_info_struct *si = swp_swap_info(entry);
3339
3340                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3341                     __swap_count(entry) == 1) {
3342                         /* skip swapcache */
3343                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3344                                                         vmf->address);
3345                         if (page) {
3346                                 int err;
3347
3348                                 __SetPageLocked(page);
3349                                 __SetPageSwapBacked(page);
3350                                 set_page_private(page, entry.val);
3351
3352                                 /* Tell memcg to use swap ownership records */
3353                                 SetPageSwapCache(page);
3354                                 err = mem_cgroup_charge(page, vma->vm_mm,
3355                                                         GFP_KERNEL);
3356                                 ClearPageSwapCache(page);
3357                                 if (err) {
3358                                         ret = VM_FAULT_OOM;
3359                                         goto out_page;
3360                                 }
3361
3362                                 shadow = get_shadow_from_swap_cache(entry);
3363                                 if (shadow)
3364                                         workingset_refault(page, shadow);
3365
3366                                 lru_cache_add(page);
3367                                 swap_readpage(page, true);
3368                         }
3369                 } else {
3370                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3371                                                 vmf);
3372                         swapcache = page;
3373                 }
3374
3375                 if (!page) {
3376                         /*
3377                          * Back out if somebody else faulted in this pte
3378                          * while we released the pte lock.
3379                          */
3380                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3381                                         vmf->address, &vmf->ptl);
3382                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3383                                 ret = VM_FAULT_OOM;
3384                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3385                         goto unlock;
3386                 }
3387
3388                 /* Had to read the page from swap area: Major fault */
3389                 ret = VM_FAULT_MAJOR;
3390                 count_vm_event(PGMAJFAULT);
3391                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3392         } else if (PageHWPoison(page)) {
3393                 /*
3394                  * hwpoisoned dirty swapcache pages are kept for killing
3395                  * owner processes (which may be unknown at hwpoison time)
3396                  */
3397                 ret = VM_FAULT_HWPOISON;
3398                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3399                 goto out_release;
3400         }
3401
3402         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3403
3404         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3405         if (!locked) {
3406                 ret |= VM_FAULT_RETRY;
3407                 goto out_release;
3408         }
3409
3410         /*
3411          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3412          * release the swapcache from under us.  The page pin, and pte_same
3413          * test below, are not enough to exclude that.  Even if it is still
3414          * swapcache, we need to check that the page's swap has not changed.
3415          */
3416         if (unlikely((!PageSwapCache(page) ||
3417                         page_private(page) != entry.val)) && swapcache)
3418                 goto out_page;
3419
3420         page = ksm_might_need_to_copy(page, vma, vmf->address);
3421         if (unlikely(!page)) {
3422                 ret = VM_FAULT_OOM;
3423                 page = swapcache;
3424                 goto out_page;
3425         }
3426
3427         cgroup_throttle_swaprate(page, GFP_KERNEL);
3428
3429         /*
3430          * Back out if somebody else already faulted in this pte.
3431          */
3432         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3433                         &vmf->ptl);
3434         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3435                 goto out_nomap;
3436
3437         if (unlikely(!PageUptodate(page))) {
3438                 ret = VM_FAULT_SIGBUS;
3439                 goto out_nomap;
3440         }
3441
3442         /*
3443          * The page isn't present yet, go ahead with the fault.
3444          *
3445          * Be careful about the sequence of operations here.
3446          * To get its accounting right, reuse_swap_page() must be called
3447          * while the page is counted on swap but not yet in mapcount i.e.
3448          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3449          * must be called after the swap_free(), or it will never succeed.
3450          */
3451
3452         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3453         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3454         pte = mk_pte(page, vma->vm_page_prot);
3455         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3456                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3457                 vmf->flags &= ~FAULT_FLAG_WRITE;
3458                 ret |= VM_FAULT_WRITE;
3459                 exclusive = RMAP_EXCLUSIVE;
3460         }
3461         flush_icache_page(vma, page);
3462         if (pte_swp_soft_dirty(vmf->orig_pte))
3463                 pte = pte_mksoft_dirty(pte);
3464         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3465                 pte = pte_mkuffd_wp(pte);
3466                 pte = pte_wrprotect(pte);
3467         }
3468         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3469         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3470         vmf->orig_pte = pte;
3471
3472         /* ksm created a completely new copy */
3473         if (unlikely(page != swapcache && swapcache)) {
3474                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3475                 lru_cache_add_inactive_or_unevictable(page, vma);
3476         } else {
3477                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3478         }
3479
3480         swap_free(entry);
3481         if (mem_cgroup_swap_full(page) ||
3482             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3483                 try_to_free_swap(page);
3484         unlock_page(page);
3485         if (page != swapcache && swapcache) {
3486                 /*
3487                  * Hold the lock to avoid the swap entry to be reused
3488                  * until we take the PT lock for the pte_same() check
3489                  * (to avoid false positives from pte_same). For
3490                  * further safety release the lock after the swap_free
3491                  * so that the swap count won't change under a
3492                  * parallel locked swapcache.
3493                  */
3494                 unlock_page(swapcache);
3495                 put_page(swapcache);
3496         }
3497
3498         if (vmf->flags & FAULT_FLAG_WRITE) {
3499                 ret |= do_wp_page(vmf);
3500                 if (ret & VM_FAULT_ERROR)
3501                         ret &= VM_FAULT_ERROR;
3502                 goto out;
3503         }
3504
3505         /* No need to invalidate - it was non-present before */
3506         update_mmu_cache(vma, vmf->address, vmf->pte);
3507 unlock:
3508         pte_unmap_unlock(vmf->pte, vmf->ptl);
3509 out:
3510         return ret;
3511 out_nomap:
3512         pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 out_page:
3514         unlock_page(page);
3515 out_release:
3516         put_page(page);
3517         if (page != swapcache && swapcache) {
3518                 unlock_page(swapcache);
3519                 put_page(swapcache);
3520         }
3521         return ret;
3522 }
3523
3524 /*
3525  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3526  * but allow concurrent faults), and pte mapped but not yet locked.
3527  * We return with mmap_lock still held, but pte unmapped and unlocked.
3528  */
3529 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3530 {
3531         struct vm_area_struct *vma = vmf->vma;
3532         struct page *page;
3533         vm_fault_t ret = 0;
3534         pte_t entry;
3535
3536         /* File mapping without ->vm_ops ? */
3537         if (vma->vm_flags & VM_SHARED)
3538                 return VM_FAULT_SIGBUS;
3539
3540         /*
3541          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3542          * pte_offset_map() on pmds where a huge pmd might be created
3543          * from a different thread.
3544          *
3545          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3546          * parallel threads are excluded by other means.
3547          *
3548          * Here we only have mmap_read_lock(mm).
3549          */
3550         if (pte_alloc(vma->vm_mm, vmf->pmd))
3551                 return VM_FAULT_OOM;
3552
3553         /* See the comment in pte_alloc_one_map() */
3554         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3555                 return 0;
3556
3557         /* Use the zero-page for reads */
3558         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3559                         !mm_forbids_zeropage(vma->vm_mm)) {
3560                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3561                                                 vma->vm_page_prot));
3562                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3563                                 vmf->address, &vmf->ptl);
3564                 if (!pte_none(*vmf->pte)) {
3565                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3566                         goto unlock;
3567                 }
3568                 ret = check_stable_address_space(vma->vm_mm);
3569                 if (ret)
3570                         goto unlock;
3571                 /* Deliver the page fault to userland, check inside PT lock */
3572                 if (userfaultfd_missing(vma)) {
3573                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3574                         return handle_userfault(vmf, VM_UFFD_MISSING);
3575                 }
3576                 goto setpte;
3577         }
3578
3579         /* Allocate our own private page. */
3580         if (unlikely(anon_vma_prepare(vma)))
3581                 goto oom;
3582         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3583         if (!page)
3584                 goto oom;
3585
3586         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3587                 goto oom_free_page;
3588         cgroup_throttle_swaprate(page, GFP_KERNEL);
3589
3590         /*
3591          * The memory barrier inside __SetPageUptodate makes sure that
3592          * preceding stores to the page contents become visible before
3593          * the set_pte_at() write.
3594          */
3595         __SetPageUptodate(page);
3596
3597         entry = mk_pte(page, vma->vm_page_prot);
3598         entry = pte_sw_mkyoung(entry);
3599         if (vma->vm_flags & VM_WRITE)
3600                 entry = pte_mkwrite(pte_mkdirty(entry));
3601
3602         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3603                         &vmf->ptl);
3604         if (!pte_none(*vmf->pte)) {
3605                 update_mmu_cache(vma, vmf->address, vmf->pte);
3606                 goto release;
3607         }
3608
3609         ret = check_stable_address_space(vma->vm_mm);
3610         if (ret)
3611                 goto release;
3612
3613         /* Deliver the page fault to userland, check inside PT lock */
3614         if (userfaultfd_missing(vma)) {
3615                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3616                 put_page(page);
3617                 return handle_userfault(vmf, VM_UFFD_MISSING);
3618         }
3619
3620         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3621         page_add_new_anon_rmap(page, vma, vmf->address, false);
3622         lru_cache_add_inactive_or_unevictable(page, vma);
3623 setpte:
3624         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3625
3626         /* No need to invalidate - it was non-present before */
3627         update_mmu_cache(vma, vmf->address, vmf->pte);
3628 unlock:
3629         pte_unmap_unlock(vmf->pte, vmf->ptl);
3630         return ret;
3631 release:
3632         put_page(page);
3633         goto unlock;
3634 oom_free_page:
3635         put_page(page);
3636 oom:
3637         return VM_FAULT_OOM;
3638 }
3639
3640 /*
3641  * The mmap_lock must have been held on entry, and may have been
3642  * released depending on flags and vma->vm_ops->fault() return value.
3643  * See filemap_fault() and __lock_page_retry().
3644  */
3645 static vm_fault_t __do_fault(struct vm_fault *vmf)
3646 {
3647         struct vm_area_struct *vma = vmf->vma;
3648         vm_fault_t ret;
3649
3650         /*
3651          * Preallocate pte before we take page_lock because this might lead to
3652          * deadlocks for memcg reclaim which waits for pages under writeback:
3653          *                              lock_page(A)
3654          *                              SetPageWriteback(A)
3655          *                              unlock_page(A)
3656          * lock_page(B)
3657          *                              lock_page(B)
3658          * pte_alloc_one
3659          *   shrink_page_list
3660          *     wait_on_page_writeback(A)
3661          *                              SetPageWriteback(B)
3662          *                              unlock_page(B)
3663          *                              # flush A, B to clear the writeback
3664          */
3665         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3666                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3667                 if (!vmf->prealloc_pte)
3668                         return VM_FAULT_OOM;
3669                 smp_wmb(); /* See comment in __pte_alloc() */
3670         }
3671
3672         ret = vma->vm_ops->fault(vmf);
3673         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3674                             VM_FAULT_DONE_COW)))
3675                 return ret;
3676
3677         if (unlikely(PageHWPoison(vmf->page))) {
3678                 if (ret & VM_FAULT_LOCKED)
3679                         unlock_page(vmf->page);
3680                 put_page(vmf->page);
3681                 vmf->page = NULL;
3682                 return VM_FAULT_HWPOISON;
3683         }
3684
3685         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3686                 lock_page(vmf->page);
3687         else
3688                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3689
3690         return ret;
3691 }
3692
3693 /*
3694  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3695  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3696  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3697  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3698  */
3699 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3700 {
3701         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3702 }
3703
3704 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3705 {
3706         struct vm_area_struct *vma = vmf->vma;
3707
3708         if (!pmd_none(*vmf->pmd))
3709                 goto map_pte;
3710         if (vmf->prealloc_pte) {
3711                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3712                 if (unlikely(!pmd_none(*vmf->pmd))) {
3713                         spin_unlock(vmf->ptl);
3714                         goto map_pte;
3715                 }
3716
3717                 mm_inc_nr_ptes(vma->vm_mm);
3718                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3719                 spin_unlock(vmf->ptl);
3720                 vmf->prealloc_pte = NULL;
3721         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3722                 return VM_FAULT_OOM;
3723         }
3724 map_pte:
3725         /*
3726          * If a huge pmd materialized under us just retry later.  Use
3727          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3728          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3729          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3730          * running immediately after a huge pmd fault in a different thread of
3731          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3732          * All we have to ensure is that it is a regular pmd that we can walk
3733          * with pte_offset_map() and we can do that through an atomic read in
3734          * C, which is what pmd_trans_unstable() provides.
3735          */
3736         if (pmd_devmap_trans_unstable(vmf->pmd))
3737                 return VM_FAULT_NOPAGE;
3738
3739         /*
3740          * At this point we know that our vmf->pmd points to a page of ptes
3741          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3742          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3743          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3744          * be valid and we will re-check to make sure the vmf->pte isn't
3745          * pte_none() under vmf->ptl protection when we return to
3746          * alloc_set_pte().
3747          */
3748         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3749                         &vmf->ptl);
3750         return 0;
3751 }
3752
3753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3754 static void deposit_prealloc_pte(struct vm_fault *vmf)
3755 {
3756         struct vm_area_struct *vma = vmf->vma;
3757
3758         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3759         /*
3760          * We are going to consume the prealloc table,
3761          * count that as nr_ptes.
3762          */
3763         mm_inc_nr_ptes(vma->vm_mm);
3764         vmf->prealloc_pte = NULL;
3765 }
3766
3767 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3768 {
3769         struct vm_area_struct *vma = vmf->vma;
3770         bool write = vmf->flags & FAULT_FLAG_WRITE;
3771         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3772         pmd_t entry;
3773         int i;
3774         vm_fault_t ret = VM_FAULT_FALLBACK;
3775
3776         if (!transhuge_vma_suitable(vma, haddr))
3777                 return ret;
3778
3779         page = compound_head(page);
3780         if (compound_order(page) != HPAGE_PMD_ORDER)
3781                 return ret;
3782
3783         /*
3784          * Archs like ppc64 need additonal space to store information
3785          * related to pte entry. Use the preallocated table for that.
3786          */
3787         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3788                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3789                 if (!vmf->prealloc_pte)
3790                         return VM_FAULT_OOM;
3791                 smp_wmb(); /* See comment in __pte_alloc() */
3792         }
3793
3794         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3795         if (unlikely(!pmd_none(*vmf->pmd)))
3796                 goto out;
3797
3798         for (i = 0; i < HPAGE_PMD_NR; i++)
3799                 flush_icache_page(vma, page + i);
3800
3801         entry = mk_huge_pmd(page, vma->vm_page_prot);
3802         if (write)
3803                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3804
3805         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3806         page_add_file_rmap(page, true);
3807         /*
3808          * deposit and withdraw with pmd lock held
3809          */
3810         if (arch_needs_pgtable_deposit())
3811                 deposit_prealloc_pte(vmf);
3812
3813         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3814
3815         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3816
3817         /* fault is handled */
3818         ret = 0;
3819         count_vm_event(THP_FILE_MAPPED);
3820 out:
3821         spin_unlock(vmf->ptl);
3822         return ret;
3823 }
3824 #else
3825 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3826 {
3827         BUILD_BUG();
3828         return 0;
3829 }
3830 #endif
3831
3832 /**
3833  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3834  * mapping. If needed, the function allocates page table or use pre-allocated.
3835  *
3836  * @vmf: fault environment
3837  * @page: page to map
3838  *
3839  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3840  * return.
3841  *
3842  * Target users are page handler itself and implementations of
3843  * vm_ops->map_pages.
3844  *
3845  * Return: %0 on success, %VM_FAULT_ code in case of error.
3846  */
3847 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3848 {
3849         struct vm_area_struct *vma = vmf->vma;
3850         bool write = vmf->flags & FAULT_FLAG_WRITE;
3851         pte_t entry;
3852         vm_fault_t ret;
3853
3854         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3855                 ret = do_set_pmd(vmf, page);
3856                 if (ret != VM_FAULT_FALLBACK)
3857                         return ret;
3858         }
3859
3860         if (!vmf->pte) {
3861                 ret = pte_alloc_one_map(vmf);
3862                 if (ret)
3863                         return ret;
3864         }
3865
3866         /* Re-check under ptl */
3867         if (unlikely(!pte_none(*vmf->pte))) {
3868                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3869                 return VM_FAULT_NOPAGE;
3870         }
3871
3872         flush_icache_page(vma, page);
3873         entry = mk_pte(page, vma->vm_page_prot);
3874         entry = pte_sw_mkyoung(entry);
3875         if (write)
3876                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3877         /* copy-on-write page */
3878         if (write && !(vma->vm_flags & VM_SHARED)) {
3879                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3880                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3881                 lru_cache_add_inactive_or_unevictable(page, vma);
3882         } else {
3883                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3884                 page_add_file_rmap(page, false);
3885         }
3886         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3887
3888         /* no need to invalidate: a not-present page won't be cached */
3889         update_mmu_cache(vma, vmf->address, vmf->pte);
3890
3891         return 0;
3892 }
3893
3894
3895 /**
3896  * finish_fault - finish page fault once we have prepared the page to fault
3897  *
3898  * @vmf: structure describing the fault
3899  *
3900  * This function handles all that is needed to finish a page fault once the
3901  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3902  * given page, adds reverse page mapping, handles memcg charges and LRU
3903  * addition.
3904  *
3905  * The function expects the page to be locked and on success it consumes a
3906  * reference of a page being mapped (for the PTE which maps it).
3907  *
3908  * Return: %0 on success, %VM_FAULT_ code in case of error.
3909  */
3910 vm_fault_t finish_fault(struct vm_fault *vmf)
3911 {
3912         struct page *page;
3913         vm_fault_t ret = 0;
3914
3915         /* Did we COW the page? */
3916         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3917             !(vmf->vma->vm_flags & VM_SHARED))
3918                 page = vmf->cow_page;
3919         else
3920                 page = vmf->page;
3921
3922         /*
3923          * check even for read faults because we might have lost our CoWed
3924          * page
3925          */
3926         if (!(vmf->vma->vm_flags & VM_SHARED))
3927                 ret = check_stable_address_space(vmf->vma->vm_mm);
3928         if (!ret)
3929                 ret = alloc_set_pte(vmf, page);
3930         if (vmf->pte)
3931                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3932         return ret;
3933 }
3934
3935 static unsigned long fault_around_bytes __read_mostly =
3936         rounddown_pow_of_two(65536);
3937
3938 #ifdef CONFIG_DEBUG_FS
3939 static int fault_around_bytes_get(void *data, u64 *val)
3940 {
3941         *val = fault_around_bytes;
3942         return 0;
3943 }
3944
3945 /*
3946  * fault_around_bytes must be rounded down to the nearest page order as it's
3947  * what do_fault_around() expects to see.
3948  */
3949 static int fault_around_bytes_set(void *data, u64 val)
3950 {
3951         if (val / PAGE_SIZE > PTRS_PER_PTE)
3952                 return -EINVAL;
3953         if (val > PAGE_SIZE)
3954                 fault_around_bytes = rounddown_pow_of_two(val);
3955         else
3956                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3957         return 0;
3958 }
3959 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3960                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3961
3962 static int __init fault_around_debugfs(void)
3963 {
3964         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3965                                    &fault_around_bytes_fops);
3966         return 0;
3967 }
3968 late_initcall(fault_around_debugfs);
3969 #endif
3970
3971 /*
3972  * do_fault_around() tries to map few pages around the fault address. The hope
3973  * is that the pages will be needed soon and this will lower the number of
3974  * faults to handle.
3975  *
3976  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3977  * not ready to be mapped: not up-to-date, locked, etc.
3978  *
3979  * This function is called with the page table lock taken. In the split ptlock
3980  * case the page table lock only protects only those entries which belong to
3981  * the page table corresponding to the fault address.
3982  *
3983  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3984  * only once.
3985  *
3986  * fault_around_bytes defines how many bytes we'll try to map.
3987  * do_fault_around() expects it to be set to a power of two less than or equal
3988  * to PTRS_PER_PTE.
3989  *
3990  * The virtual address of the area that we map is naturally aligned to
3991  * fault_around_bytes rounded down to the machine page size
3992  * (and therefore to page order).  This way it's easier to guarantee
3993  * that we don't cross page table boundaries.
3994  */
3995 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3996 {
3997         unsigned long address = vmf->address, nr_pages, mask;
3998         pgoff_t start_pgoff = vmf->pgoff;
3999         pgoff_t end_pgoff;
4000         int off;
4001         vm_fault_t ret = 0;
4002
4003         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4004         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4005
4006         vmf->address = max(address & mask, vmf->vma->vm_start);
4007         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4008         start_pgoff -= off;
4009
4010         /*
4011          *  end_pgoff is either the end of the page table, the end of
4012          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4013          */
4014         end_pgoff = start_pgoff -
4015                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4016                 PTRS_PER_PTE - 1;
4017         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4018                         start_pgoff + nr_pages - 1);
4019
4020         if (pmd_none(*vmf->pmd)) {
4021                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4022                 if (!vmf->prealloc_pte)
4023                         goto out;
4024                 smp_wmb(); /* See comment in __pte_alloc() */
4025         }
4026
4027         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4028
4029         /* Huge page is mapped? Page fault is solved */
4030         if (pmd_trans_huge(*vmf->pmd)) {
4031                 ret = VM_FAULT_NOPAGE;
4032                 goto out;
4033         }
4034
4035         /* ->map_pages() haven't done anything useful. Cold page cache? */
4036         if (!vmf->pte)
4037                 goto out;
4038
4039         /* check if the page fault is solved */
4040         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4041         if (!pte_none(*vmf->pte))
4042                 ret = VM_FAULT_NOPAGE;
4043         pte_unmap_unlock(vmf->pte, vmf->ptl);
4044 out:
4045         vmf->address = address;
4046         vmf->pte = NULL;
4047         return ret;
4048 }
4049
4050 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4051 {
4052         struct vm_area_struct *vma = vmf->vma;
4053         vm_fault_t ret = 0;
4054
4055         /*
4056          * Let's call ->map_pages() first and use ->fault() as fallback
4057          * if page by the offset is not ready to be mapped (cold cache or
4058          * something).
4059          */
4060         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4061                 ret = do_fault_around(vmf);
4062                 if (ret)
4063                         return ret;
4064         }
4065
4066         ret = __do_fault(vmf);
4067         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4068                 return ret;
4069
4070         ret |= finish_fault(vmf);
4071         unlock_page(vmf->page);
4072         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4073                 put_page(vmf->page);
4074         return ret;
4075 }
4076
4077 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4078 {
4079         struct vm_area_struct *vma = vmf->vma;
4080         vm_fault_t ret;
4081
4082         if (unlikely(anon_vma_prepare(vma)))
4083                 return VM_FAULT_OOM;
4084
4085         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4086         if (!vmf->cow_page)
4087                 return VM_FAULT_OOM;
4088
4089         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4090                 put_page(vmf->cow_page);
4091                 return VM_FAULT_OOM;
4092         }
4093         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4094
4095         ret = __do_fault(vmf);
4096         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4097                 goto uncharge_out;
4098         if (ret & VM_FAULT_DONE_COW)
4099                 return ret;
4100
4101         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4102         __SetPageUptodate(vmf->cow_page);
4103
4104         ret |= finish_fault(vmf);
4105         unlock_page(vmf->page);
4106         put_page(vmf->page);
4107         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4108                 goto uncharge_out;
4109         return ret;
4110 uncharge_out:
4111         put_page(vmf->cow_page);
4112         return ret;
4113 }
4114
4115 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4116 {
4117         struct vm_area_struct *vma = vmf->vma;
4118         vm_fault_t ret, tmp;
4119
4120         ret = __do_fault(vmf);
4121         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4122                 return ret;
4123
4124         /*
4125          * Check if the backing address space wants to know that the page is
4126          * about to become writable
4127          */
4128         if (vma->vm_ops->page_mkwrite) {
4129                 unlock_page(vmf->page);
4130                 tmp = do_page_mkwrite(vmf);
4131                 if (unlikely(!tmp ||
4132                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4133                         put_page(vmf->page);
4134                         return tmp;
4135                 }
4136         }
4137
4138         ret |= finish_fault(vmf);
4139         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4140                                         VM_FAULT_RETRY))) {
4141                 unlock_page(vmf->page);
4142                 put_page(vmf->page);
4143                 return ret;
4144         }
4145
4146         ret |= fault_dirty_shared_page(vmf);
4147         return ret;
4148 }
4149
4150 /*
4151  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4152  * but allow concurrent faults).
4153  * The mmap_lock may have been released depending on flags and our
4154  * return value.  See filemap_fault() and __lock_page_or_retry().
4155  * If mmap_lock is released, vma may become invalid (for example
4156  * by other thread calling munmap()).
4157  */
4158 static vm_fault_t do_fault(struct vm_fault *vmf)
4159 {
4160         struct vm_area_struct *vma = vmf->vma;
4161         struct mm_struct *vm_mm = vma->vm_mm;
4162         vm_fault_t ret;
4163
4164         /*
4165          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4166          */
4167         if (!vma->vm_ops->fault) {
4168                 /*
4169                  * If we find a migration pmd entry or a none pmd entry, which
4170                  * should never happen, return SIGBUS
4171                  */
4172                 if (unlikely(!pmd_present(*vmf->pmd)))
4173                         ret = VM_FAULT_SIGBUS;
4174                 else {
4175                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4176                                                        vmf->pmd,
4177                                                        vmf->address,
4178                                                        &vmf->ptl);
4179                         /*
4180                          * Make sure this is not a temporary clearing of pte
4181                          * by holding ptl and checking again. A R/M/W update
4182                          * of pte involves: take ptl, clearing the pte so that
4183                          * we don't have concurrent modification by hardware
4184                          * followed by an update.
4185                          */
4186                         if (unlikely(pte_none(*vmf->pte)))
4187                                 ret = VM_FAULT_SIGBUS;
4188                         else
4189                                 ret = VM_FAULT_NOPAGE;
4190
4191                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4192                 }
4193         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4194                 ret = do_read_fault(vmf);
4195         else if (!(vma->vm_flags & VM_SHARED))
4196                 ret = do_cow_fault(vmf);
4197         else
4198                 ret = do_shared_fault(vmf);
4199
4200         /* preallocated pagetable is unused: free it */
4201         if (vmf->prealloc_pte) {
4202                 pte_free(vm_mm, vmf->prealloc_pte);
4203                 vmf->prealloc_pte = NULL;
4204         }
4205         return ret;
4206 }
4207
4208 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4209                                 unsigned long addr, int page_nid,
4210                                 int *flags)
4211 {
4212         get_page(page);
4213
4214         count_vm_numa_event(NUMA_HINT_FAULTS);
4215         if (page_nid == numa_node_id()) {
4216                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4217                 *flags |= TNF_FAULT_LOCAL;
4218         }
4219
4220         return mpol_misplaced(page, vma, addr);
4221 }
4222
4223 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4224 {
4225         struct vm_area_struct *vma = vmf->vma;
4226         struct page *page = NULL;
4227         int page_nid = NUMA_NO_NODE;
4228         int last_cpupid;
4229         int target_nid;
4230         bool migrated = false;
4231         pte_t pte, old_pte;
4232         bool was_writable = pte_savedwrite(vmf->orig_pte);
4233         int flags = 0;
4234
4235         /*
4236          * The "pte" at this point cannot be used safely without
4237          * validation through pte_unmap_same(). It's of NUMA type but
4238          * the pfn may be screwed if the read is non atomic.
4239          */
4240         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4241         spin_lock(vmf->ptl);
4242         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4243                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4244                 goto out;
4245         }
4246
4247         /*
4248          * Make it present again, Depending on how arch implementes non
4249          * accessible ptes, some can allow access by kernel mode.
4250          */
4251         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4252         pte = pte_modify(old_pte, vma->vm_page_prot);
4253         pte = pte_mkyoung(pte);
4254         if (was_writable)
4255                 pte = pte_mkwrite(pte);
4256         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4257         update_mmu_cache(vma, vmf->address, vmf->pte);
4258
4259         page = vm_normal_page(vma, vmf->address, pte);
4260         if (!page) {
4261                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4262                 return 0;
4263         }
4264
4265         /* TODO: handle PTE-mapped THP */
4266         if (PageCompound(page)) {
4267                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4268                 return 0;
4269         }
4270
4271         /*
4272          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4273          * much anyway since they can be in shared cache state. This misses
4274          * the case where a mapping is writable but the process never writes
4275          * to it but pte_write gets cleared during protection updates and
4276          * pte_dirty has unpredictable behaviour between PTE scan updates,
4277          * background writeback, dirty balancing and application behaviour.
4278          */
4279         if (!pte_write(pte))
4280                 flags |= TNF_NO_GROUP;
4281
4282         /*
4283          * Flag if the page is shared between multiple address spaces. This
4284          * is later used when determining whether to group tasks together
4285          */
4286         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4287                 flags |= TNF_SHARED;
4288
4289         last_cpupid = page_cpupid_last(page);
4290         page_nid = page_to_nid(page);
4291         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4292                         &flags);
4293         pte_unmap_unlock(vmf->pte, vmf->ptl);
4294         if (target_nid == NUMA_NO_NODE) {
4295                 put_page(page);
4296                 goto out;
4297         }
4298
4299         /* Migrate to the requested node */
4300         migrated = migrate_misplaced_page(page, vma, target_nid);
4301         if (migrated) {
4302                 page_nid = target_nid;
4303                 flags |= TNF_MIGRATED;
4304         } else
4305                 flags |= TNF_MIGRATE_FAIL;
4306
4307 out:
4308         if (page_nid != NUMA_NO_NODE)
4309                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4310         return 0;
4311 }
4312
4313 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4314 {
4315         if (vma_is_anonymous(vmf->vma))
4316                 return do_huge_pmd_anonymous_page(vmf);
4317         if (vmf->vma->vm_ops->huge_fault)
4318                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4319         return VM_FAULT_FALLBACK;
4320 }
4321
4322 /* `inline' is required to avoid gcc 4.1.2 build error */
4323 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4324 {
4325         if (vma_is_anonymous(vmf->vma)) {
4326                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4327                         return handle_userfault(vmf, VM_UFFD_WP);
4328                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4329         }
4330         if (vmf->vma->vm_ops->huge_fault) {
4331                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4332
4333                 if (!(ret & VM_FAULT_FALLBACK))
4334                         return ret;
4335         }
4336
4337         /* COW or write-notify handled on pte level: split pmd. */
4338         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4339
4340         return VM_FAULT_FALLBACK;
4341 }
4342
4343 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4344 {
4345 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4346         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4347         /* No support for anonymous transparent PUD pages yet */
4348         if (vma_is_anonymous(vmf->vma))
4349                 goto split;
4350         if (vmf->vma->vm_ops->huge_fault) {
4351                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4352
4353                 if (!(ret & VM_FAULT_FALLBACK))
4354                         return ret;
4355         }
4356 split:
4357         /* COW or write-notify not handled on PUD level: split pud.*/
4358         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4359 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4360         return VM_FAULT_FALLBACK;
4361 }
4362
4363 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4364 {
4365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4366         /* No support for anonymous transparent PUD pages yet */
4367         if (vma_is_anonymous(vmf->vma))
4368                 return VM_FAULT_FALLBACK;
4369         if (vmf->vma->vm_ops->huge_fault)
4370                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4371 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4372         return VM_FAULT_FALLBACK;
4373 }
4374
4375 /*
4376  * These routines also need to handle stuff like marking pages dirty
4377  * and/or accessed for architectures that don't do it in hardware (most
4378  * RISC architectures).  The early dirtying is also good on the i386.
4379  *
4380  * There is also a hook called "update_mmu_cache()" that architectures
4381  * with external mmu caches can use to update those (ie the Sparc or
4382  * PowerPC hashed page tables that act as extended TLBs).
4383  *
4384  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4385  * concurrent faults).
4386  *
4387  * The mmap_lock may have been released depending on flags and our return value.
4388  * See filemap_fault() and __lock_page_or_retry().
4389  */
4390 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4391 {
4392         pte_t entry;
4393
4394         if (unlikely(pmd_none(*vmf->pmd))) {
4395                 /*
4396                  * Leave __pte_alloc() until later: because vm_ops->fault may
4397                  * want to allocate huge page, and if we expose page table
4398                  * for an instant, it will be difficult to retract from
4399                  * concurrent faults and from rmap lookups.
4400                  */
4401                 vmf->pte = NULL;
4402         } else {
4403                 /* See comment in pte_alloc_one_map() */
4404                 if (pmd_devmap_trans_unstable(vmf->pmd))
4405                         return 0;
4406                 /*
4407                  * A regular pmd is established and it can't morph into a huge
4408                  * pmd from under us anymore at this point because we hold the
4409                  * mmap_lock read mode and khugepaged takes it in write mode.
4410                  * So now it's safe to run pte_offset_map().
4411                  */
4412                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4413                 vmf->orig_pte = *vmf->pte;
4414
4415                 /*
4416                  * some architectures can have larger ptes than wordsize,
4417                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4418                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4419                  * accesses.  The code below just needs a consistent view
4420                  * for the ifs and we later double check anyway with the
4421                  * ptl lock held. So here a barrier will do.
4422                  */
4423                 barrier();
4424                 if (pte_none(vmf->orig_pte)) {
4425                         pte_unmap(vmf->pte);
4426                         vmf->pte = NULL;
4427                 }
4428         }
4429
4430         if (!vmf->pte) {
4431                 if (vma_is_anonymous(vmf->vma))
4432                         return do_anonymous_page(vmf);
4433                 else
4434                         return do_fault(vmf);
4435         }
4436
4437         if (!pte_present(vmf->orig_pte))
4438                 return do_swap_page(vmf);
4439
4440         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4441                 return do_numa_page(vmf);
4442
4443         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4444         spin_lock(vmf->ptl);
4445         entry = vmf->orig_pte;
4446         if (unlikely(!pte_same(*vmf->pte, entry))) {
4447                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4448                 goto unlock;
4449         }
4450         if (vmf->flags & FAULT_FLAG_WRITE) {
4451                 if (!pte_write(entry))
4452                         return do_wp_page(vmf);
4453                 entry = pte_mkdirty(entry);
4454         }
4455         entry = pte_mkyoung(entry);
4456         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4457                                 vmf->flags & FAULT_FLAG_WRITE)) {
4458                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4459         } else {
4460                 /* Skip spurious TLB flush for retried page fault */
4461                 if (vmf->flags & FAULT_FLAG_TRIED)
4462                         goto unlock;
4463                 /*
4464                  * This is needed only for protection faults but the arch code
4465                  * is not yet telling us if this is a protection fault or not.
4466                  * This still avoids useless tlb flushes for .text page faults
4467                  * with threads.
4468                  */
4469                 if (vmf->flags & FAULT_FLAG_WRITE)
4470                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4471         }
4472 unlock:
4473         pte_unmap_unlock(vmf->pte, vmf->ptl);
4474         return 0;
4475 }
4476
4477 /*
4478  * By the time we get here, we already hold the mm semaphore
4479  *
4480  * The mmap_lock may have been released depending on flags and our
4481  * return value.  See filemap_fault() and __lock_page_or_retry().
4482  */
4483 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4484                 unsigned long address, unsigned int flags)
4485 {
4486         struct vm_fault vmf = {
4487                 .vma = vma,
4488                 .address = address & PAGE_MASK,
4489                 .flags = flags,
4490                 .pgoff = linear_page_index(vma, address),
4491                 .gfp_mask = __get_fault_gfp_mask(vma),
4492         };
4493         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4494         struct mm_struct *mm = vma->vm_mm;
4495         pgd_t *pgd;
4496         p4d_t *p4d;
4497         vm_fault_t ret;
4498
4499         pgd = pgd_offset(mm, address);
4500         p4d = p4d_alloc(mm, pgd, address);
4501         if (!p4d)
4502                 return VM_FAULT_OOM;
4503
4504         vmf.pud = pud_alloc(mm, p4d, address);
4505         if (!vmf.pud)
4506                 return VM_FAULT_OOM;
4507 retry_pud:
4508         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4509                 ret = create_huge_pud(&vmf);
4510                 if (!(ret & VM_FAULT_FALLBACK))
4511                         return ret;
4512         } else {
4513                 pud_t orig_pud = *vmf.pud;
4514
4515                 barrier();
4516                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4517
4518                         /* NUMA case for anonymous PUDs would go here */
4519
4520                         if (dirty && !pud_write(orig_pud)) {
4521                                 ret = wp_huge_pud(&vmf, orig_pud);
4522                                 if (!(ret & VM_FAULT_FALLBACK))
4523                                         return ret;
4524                         } else {
4525                                 huge_pud_set_accessed(&vmf, orig_pud);
4526                                 return 0;
4527                         }
4528                 }
4529         }
4530
4531         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4532         if (!vmf.pmd)
4533                 return VM_FAULT_OOM;
4534
4535         /* Huge pud page fault raced with pmd_alloc? */
4536         if (pud_trans_unstable(vmf.pud))
4537                 goto retry_pud;
4538
4539         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4540                 ret = create_huge_pmd(&vmf);
4541                 if (!(ret & VM_FAULT_FALLBACK))
4542                         return ret;
4543         } else {
4544                 pmd_t orig_pmd = *vmf.pmd;
4545
4546                 barrier();
4547                 if (unlikely(is_swap_pmd(orig_pmd))) {
4548                         VM_BUG_ON(thp_migration_supported() &&
4549                                           !is_pmd_migration_entry(orig_pmd));
4550                         if (is_pmd_migration_entry(orig_pmd))
4551                                 pmd_migration_entry_wait(mm, vmf.pmd);
4552                         return 0;
4553                 }
4554                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4555                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4556                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4557
4558                         if (dirty && !pmd_write(orig_pmd)) {
4559                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4560                                 if (!(ret & VM_FAULT_FALLBACK))
4561                                         return ret;
4562                         } else {
4563                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4564                                 return 0;
4565                         }
4566                 }
4567         }
4568
4569         return handle_pte_fault(&vmf);
4570 }
4571
4572 /**
4573  * mm_account_fault - Do page fault accountings
4574  *
4575  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4576  *        of perf event counters, but we'll still do the per-task accounting to
4577  *        the task who triggered this page fault.
4578  * @address: the faulted address.
4579  * @flags: the fault flags.
4580  * @ret: the fault retcode.
4581  *
4582  * This will take care of most of the page fault accountings.  Meanwhile, it
4583  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4584  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4585  * still be in per-arch page fault handlers at the entry of page fault.
4586  */
4587 static inline void mm_account_fault(struct pt_regs *regs,
4588                                     unsigned long address, unsigned int flags,
4589                                     vm_fault_t ret)
4590 {
4591         bool major;
4592
4593         /*
4594          * We don't do accounting for some specific faults:
4595          *
4596          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4597          *   includes arch_vma_access_permitted() failing before reaching here.
4598          *   So this is not a "this many hardware page faults" counter.  We
4599          *   should use the hw profiling for that.
4600          *
4601          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4602          *   once they're completed.
4603          */
4604         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4605                 return;
4606
4607         /*
4608          * We define the fault as a major fault when the final successful fault
4609          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4610          * handle it immediately previously).
4611          */
4612         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4613
4614         if (major)
4615                 current->maj_flt++;
4616         else
4617                 current->min_flt++;
4618
4619         /*
4620          * If the fault is done for GUP, regs will be NULL.  We only do the
4621          * accounting for the per thread fault counters who triggered the
4622          * fault, and we skip the perf event updates.
4623          */
4624         if (!regs)
4625                 return;
4626
4627         if (major)
4628                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4629         else
4630                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4631 }
4632
4633 /*
4634  * By the time we get here, we already hold the mm semaphore
4635  *
4636  * The mmap_lock may have been released depending on flags and our
4637  * return value.  See filemap_fault() and __lock_page_or_retry().
4638  */
4639 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4640                            unsigned int flags, struct pt_regs *regs)
4641 {
4642         vm_fault_t ret;
4643
4644         __set_current_state(TASK_RUNNING);
4645
4646         count_vm_event(PGFAULT);
4647         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4648
4649         /* do counter updates before entering really critical section. */
4650         check_sync_rss_stat(current);
4651
4652         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4653                                             flags & FAULT_FLAG_INSTRUCTION,
4654                                             flags & FAULT_FLAG_REMOTE))
4655                 return VM_FAULT_SIGSEGV;
4656
4657         /*
4658          * Enable the memcg OOM handling for faults triggered in user
4659          * space.  Kernel faults are handled more gracefully.
4660          */
4661         if (flags & FAULT_FLAG_USER)
4662                 mem_cgroup_enter_user_fault();
4663
4664         if (unlikely(is_vm_hugetlb_page(vma)))
4665                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4666         else
4667                 ret = __handle_mm_fault(vma, address, flags);
4668
4669         if (flags & FAULT_FLAG_USER) {
4670                 mem_cgroup_exit_user_fault();
4671                 /*
4672                  * The task may have entered a memcg OOM situation but
4673                  * if the allocation error was handled gracefully (no
4674                  * VM_FAULT_OOM), there is no need to kill anything.
4675                  * Just clean up the OOM state peacefully.
4676                  */
4677                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4678                         mem_cgroup_oom_synchronize(false);
4679         }
4680
4681         mm_account_fault(regs, address, flags, ret);
4682
4683         return ret;
4684 }
4685 EXPORT_SYMBOL_GPL(handle_mm_fault);
4686
4687 #ifndef __PAGETABLE_P4D_FOLDED
4688 /*
4689  * Allocate p4d page table.
4690  * We've already handled the fast-path in-line.
4691  */
4692 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4693 {
4694         p4d_t *new = p4d_alloc_one(mm, address);
4695         if (!new)
4696                 return -ENOMEM;
4697
4698         smp_wmb(); /* See comment in __pte_alloc */
4699
4700         spin_lock(&mm->page_table_lock);
4701         if (pgd_present(*pgd))          /* Another has populated it */
4702                 p4d_free(mm, new);
4703         else
4704                 pgd_populate(mm, pgd, new);
4705         spin_unlock(&mm->page_table_lock);
4706         return 0;
4707 }
4708 #endif /* __PAGETABLE_P4D_FOLDED */
4709
4710 #ifndef __PAGETABLE_PUD_FOLDED
4711 /*
4712  * Allocate page upper directory.
4713  * We've already handled the fast-path in-line.
4714  */
4715 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4716 {
4717         pud_t *new = pud_alloc_one(mm, address);
4718         if (!new)
4719                 return -ENOMEM;
4720
4721         smp_wmb(); /* See comment in __pte_alloc */
4722
4723         spin_lock(&mm->page_table_lock);
4724         if (!p4d_present(*p4d)) {
4725                 mm_inc_nr_puds(mm);
4726                 p4d_populate(mm, p4d, new);
4727         } else  /* Another has populated it */
4728                 pud_free(mm, new);
4729         spin_unlock(&mm->page_table_lock);
4730         return 0;
4731 }
4732 #endif /* __PAGETABLE_PUD_FOLDED */
4733
4734 #ifndef __PAGETABLE_PMD_FOLDED
4735 /*
4736  * Allocate page middle directory.
4737  * We've already handled the fast-path in-line.
4738  */
4739 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4740 {
4741         spinlock_t *ptl;
4742         pmd_t *new = pmd_alloc_one(mm, address);
4743         if (!new)
4744                 return -ENOMEM;
4745
4746         smp_wmb(); /* See comment in __pte_alloc */
4747
4748         ptl = pud_lock(mm, pud);
4749         if (!pud_present(*pud)) {
4750                 mm_inc_nr_pmds(mm);
4751                 pud_populate(mm, pud, new);
4752         } else  /* Another has populated it */
4753                 pmd_free(mm, new);
4754         spin_unlock(ptl);
4755         return 0;
4756 }
4757 #endif /* __PAGETABLE_PMD_FOLDED */
4758
4759 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4760                           struct mmu_notifier_range *range, pte_t **ptepp,
4761                           pmd_t **pmdpp, spinlock_t **ptlp)
4762 {
4763         pgd_t *pgd;
4764         p4d_t *p4d;
4765         pud_t *pud;
4766         pmd_t *pmd;
4767         pte_t *ptep;
4768
4769         pgd = pgd_offset(mm, address);
4770         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4771                 goto out;
4772
4773         p4d = p4d_offset(pgd, address);
4774         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4775                 goto out;
4776
4777         pud = pud_offset(p4d, address);
4778         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4779                 goto out;
4780
4781         pmd = pmd_offset(pud, address);
4782         VM_BUG_ON(pmd_trans_huge(*pmd));
4783
4784         if (pmd_huge(*pmd)) {
4785                 if (!pmdpp)
4786                         goto out;
4787
4788                 if (range) {
4789                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4790                                                 NULL, mm, address & PMD_MASK,
4791                                                 (address & PMD_MASK) + PMD_SIZE);
4792                         mmu_notifier_invalidate_range_start(range);
4793                 }
4794                 *ptlp = pmd_lock(mm, pmd);
4795                 if (pmd_huge(*pmd)) {
4796                         *pmdpp = pmd;
4797                         return 0;
4798                 }
4799                 spin_unlock(*ptlp);
4800                 if (range)
4801                         mmu_notifier_invalidate_range_end(range);
4802         }
4803
4804         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4805                 goto out;
4806
4807         if (range) {
4808                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4809                                         address & PAGE_MASK,
4810                                         (address & PAGE_MASK) + PAGE_SIZE);
4811                 mmu_notifier_invalidate_range_start(range);
4812         }
4813         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4814         if (!pte_present(*ptep))
4815                 goto unlock;
4816         *ptepp = ptep;
4817         return 0;
4818 unlock:
4819         pte_unmap_unlock(ptep, *ptlp);
4820         if (range)
4821                 mmu_notifier_invalidate_range_end(range);
4822 out:
4823         return -EINVAL;
4824 }
4825
4826 /**
4827  * follow_pte - look up PTE at a user virtual address
4828  * @mm: the mm_struct of the target address space
4829  * @address: user virtual address
4830  * @ptepp: location to store found PTE
4831  * @ptlp: location to store the lock for the PTE
4832  *
4833  * On a successful return, the pointer to the PTE is stored in @ptepp;
4834  * the corresponding lock is taken and its location is stored in @ptlp.
4835  * The contents of the PTE are only stable until @ptlp is released;
4836  * any further use, if any, must be protected against invalidation
4837  * with MMU notifiers.
4838  *
4839  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4840  * should be taken for read.
4841  *
4842  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4843  * it is not a good general-purpose API.
4844  *
4845  * Return: zero on success, -ve otherwise.
4846  */
4847 int follow_pte(struct mm_struct *mm, unsigned long address,
4848                pte_t **ptepp, spinlock_t **ptlp)
4849 {
4850         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4851 }
4852 EXPORT_SYMBOL_GPL(follow_pte);
4853
4854 /**
4855  * follow_pfn - look up PFN at a user virtual address
4856  * @vma: memory mapping
4857  * @address: user virtual address
4858  * @pfn: location to store found PFN
4859  *
4860  * Only IO mappings and raw PFN mappings are allowed.
4861  *
4862  * This function does not allow the caller to read the permissions
4863  * of the PTE.  Do not use it.
4864  *
4865  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4866  */
4867 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4868         unsigned long *pfn)
4869 {
4870         int ret = -EINVAL;
4871         spinlock_t *ptl;
4872         pte_t *ptep;
4873
4874         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4875                 return ret;
4876
4877         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4878         if (ret)
4879                 return ret;
4880         *pfn = pte_pfn(*ptep);
4881         pte_unmap_unlock(ptep, ptl);
4882         return 0;
4883 }
4884 EXPORT_SYMBOL(follow_pfn);
4885
4886 #ifdef CONFIG_HAVE_IOREMAP_PROT
4887 int follow_phys(struct vm_area_struct *vma,
4888                 unsigned long address, unsigned int flags,
4889                 unsigned long *prot, resource_size_t *phys)
4890 {
4891         int ret = -EINVAL;
4892         pte_t *ptep, pte;
4893         spinlock_t *ptl;
4894
4895         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4896                 goto out;
4897
4898         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4899                 goto out;
4900         pte = *ptep;
4901
4902         if ((flags & FOLL_WRITE) && !pte_write(pte))
4903                 goto unlock;
4904
4905         *prot = pgprot_val(pte_pgprot(pte));
4906         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4907
4908         ret = 0;
4909 unlock:
4910         pte_unmap_unlock(ptep, ptl);
4911 out:
4912         return ret;
4913 }
4914
4915 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4916                         void *buf, int len, int write)
4917 {
4918         resource_size_t phys_addr;
4919         unsigned long prot = 0;
4920         void __iomem *maddr;
4921         int offset = addr & (PAGE_SIZE-1);
4922
4923         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4924                 return -EINVAL;
4925
4926         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4927         if (!maddr)
4928                 return -ENOMEM;
4929
4930         if (write)
4931                 memcpy_toio(maddr + offset, buf, len);
4932         else
4933                 memcpy_fromio(buf, maddr + offset, len);
4934         iounmap(maddr);
4935
4936         return len;
4937 }
4938 EXPORT_SYMBOL_GPL(generic_access_phys);
4939 #endif
4940
4941 /*
4942  * Access another process' address space as given in mm.  If non-NULL, use the
4943  * given task for page fault accounting.
4944  */
4945 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4946                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4947 {
4948         struct vm_area_struct *vma;
4949         void *old_buf = buf;
4950         int write = gup_flags & FOLL_WRITE;
4951
4952         if (mmap_read_lock_killable(mm))
4953                 return 0;
4954
4955         /* ignore errors, just check how much was successfully transferred */
4956         while (len) {
4957                 int bytes, ret, offset;
4958                 void *maddr;
4959                 struct page *page = NULL;
4960
4961                 ret = get_user_pages_remote(mm, addr, 1,
4962                                 gup_flags, &page, &vma, NULL);
4963                 if (ret <= 0) {
4964 #ifndef CONFIG_HAVE_IOREMAP_PROT
4965                         break;
4966 #else
4967                         /*
4968                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4969                          * we can access using slightly different code.
4970                          */
4971                         vma = find_vma(mm, addr);
4972                         if (!vma || vma->vm_start > addr)
4973                                 break;
4974                         if (vma->vm_ops && vma->vm_ops->access)
4975                                 ret = vma->vm_ops->access(vma, addr, buf,
4976                                                           len, write);
4977                         if (ret <= 0)
4978                                 break;
4979                         bytes = ret;
4980 #endif
4981                 } else {
4982                         bytes = len;
4983                         offset = addr & (PAGE_SIZE-1);
4984                         if (bytes > PAGE_SIZE-offset)
4985                                 bytes = PAGE_SIZE-offset;
4986
4987                         maddr = kmap(page);
4988                         if (write) {
4989                                 copy_to_user_page(vma, page, addr,
4990                                                   maddr + offset, buf, bytes);
4991                                 set_page_dirty_lock(page);
4992                         } else {
4993                                 copy_from_user_page(vma, page, addr,
4994                                                     buf, maddr + offset, bytes);
4995                         }
4996                         kunmap(page);
4997                         put_page(page);
4998                 }
4999                 len -= bytes;
5000                 buf += bytes;
5001                 addr += bytes;
5002         }
5003         mmap_read_unlock(mm);
5004
5005         return buf - old_buf;
5006 }
5007
5008 /**
5009  * access_remote_vm - access another process' address space
5010  * @mm:         the mm_struct of the target address space
5011  * @addr:       start address to access
5012  * @buf:        source or destination buffer
5013  * @len:        number of bytes to transfer
5014  * @gup_flags:  flags modifying lookup behaviour
5015  *
5016  * The caller must hold a reference on @mm.
5017  *
5018  * Return: number of bytes copied from source to destination.
5019  */
5020 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5021                 void *buf, int len, unsigned int gup_flags)
5022 {
5023         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5024 }
5025
5026 /*
5027  * Access another process' address space.
5028  * Source/target buffer must be kernel space,
5029  * Do not walk the page table directly, use get_user_pages
5030  */
5031 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5032                 void *buf, int len, unsigned int gup_flags)
5033 {
5034         struct mm_struct *mm;
5035         int ret;
5036
5037         mm = get_task_mm(tsk);
5038         if (!mm)
5039                 return 0;
5040
5041         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5042
5043         mmput(mm);
5044
5045         return ret;
5046 }
5047 EXPORT_SYMBOL_GPL(access_process_vm);
5048
5049 /*
5050  * Print the name of a VMA.
5051  */
5052 void print_vma_addr(char *prefix, unsigned long ip)
5053 {
5054         struct mm_struct *mm = current->mm;
5055         struct vm_area_struct *vma;
5056
5057         /*
5058          * we might be running from an atomic context so we cannot sleep
5059          */
5060         if (!mmap_read_trylock(mm))
5061                 return;
5062
5063         vma = find_vma(mm, ip);
5064         if (vma && vma->vm_file) {
5065                 struct file *f = vma->vm_file;
5066                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5067                 if (buf) {
5068                         char *p;
5069
5070                         p = file_path(f, buf, PAGE_SIZE);
5071                         if (IS_ERR(p))
5072                                 p = "?";
5073                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5074                                         vma->vm_start,
5075                                         vma->vm_end - vma->vm_start);
5076                         free_page((unsigned long)buf);
5077                 }
5078         }
5079         mmap_read_unlock(mm);
5080 }
5081
5082 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5083 void __might_fault(const char *file, int line)
5084 {
5085         /*
5086          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5087          * holding the mmap_lock, this is safe because kernel memory doesn't
5088          * get paged out, therefore we'll never actually fault, and the
5089          * below annotations will generate false positives.
5090          */
5091         if (uaccess_kernel())
5092                 return;
5093         if (pagefault_disabled())
5094                 return;
5095         __might_sleep(file, line, 0);
5096 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5097         if (current->mm)
5098                 might_lock_read(&current->mm->mmap_lock);
5099 #endif
5100 }
5101 EXPORT_SYMBOL(__might_fault);
5102 #endif
5103
5104 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5105 /*
5106  * Process all subpages of the specified huge page with the specified
5107  * operation.  The target subpage will be processed last to keep its
5108  * cache lines hot.
5109  */
5110 static inline void process_huge_page(
5111         unsigned long addr_hint, unsigned int pages_per_huge_page,
5112         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5113         void *arg)
5114 {
5115         int i, n, base, l;
5116         unsigned long addr = addr_hint &
5117                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5118
5119         /* Process target subpage last to keep its cache lines hot */
5120         might_sleep();
5121         n = (addr_hint - addr) / PAGE_SIZE;
5122         if (2 * n <= pages_per_huge_page) {
5123                 /* If target subpage in first half of huge page */
5124                 base = 0;
5125                 l = n;
5126                 /* Process subpages at the end of huge page */
5127                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5128                         cond_resched();
5129                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5130                 }
5131         } else {
5132                 /* If target subpage in second half of huge page */
5133                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5134                 l = pages_per_huge_page - n;
5135                 /* Process subpages at the begin of huge page */
5136                 for (i = 0; i < base; i++) {
5137                         cond_resched();
5138                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5139                 }
5140         }
5141         /*
5142          * Process remaining subpages in left-right-left-right pattern
5143          * towards the target subpage
5144          */
5145         for (i = 0; i < l; i++) {
5146                 int left_idx = base + i;
5147                 int right_idx = base + 2 * l - 1 - i;
5148
5149                 cond_resched();
5150                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5151                 cond_resched();
5152                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5153         }
5154 }
5155
5156 static void clear_gigantic_page(struct page *page,
5157                                 unsigned long addr,
5158                                 unsigned int pages_per_huge_page)
5159 {
5160         int i;
5161         struct page *p = page;
5162
5163         might_sleep();
5164         for (i = 0; i < pages_per_huge_page;
5165              i++, p = mem_map_next(p, page, i)) {
5166                 cond_resched();
5167                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5168         }
5169 }
5170
5171 static void clear_subpage(unsigned long addr, int idx, void *arg)
5172 {
5173         struct page *page = arg;
5174
5175         clear_user_highpage(page + idx, addr);
5176 }
5177
5178 void clear_huge_page(struct page *page,
5179                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5180 {
5181         unsigned long addr = addr_hint &
5182                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5183
5184         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5185                 clear_gigantic_page(page, addr, pages_per_huge_page);
5186                 return;
5187         }
5188
5189         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5190 }
5191
5192 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5193                                     unsigned long addr,
5194                                     struct vm_area_struct *vma,
5195                                     unsigned int pages_per_huge_page)
5196 {
5197         int i;
5198         struct page *dst_base = dst;
5199         struct page *src_base = src;
5200
5201         for (i = 0; i < pages_per_huge_page; ) {
5202                 cond_resched();
5203                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5204
5205                 i++;
5206                 dst = mem_map_next(dst, dst_base, i);
5207                 src = mem_map_next(src, src_base, i);
5208         }
5209 }
5210
5211 struct copy_subpage_arg {
5212         struct page *dst;
5213         struct page *src;
5214         struct vm_area_struct *vma;
5215 };
5216
5217 static void copy_subpage(unsigned long addr, int idx, void *arg)
5218 {
5219         struct copy_subpage_arg *copy_arg = arg;
5220
5221         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5222                            addr, copy_arg->vma);
5223 }
5224
5225 void copy_user_huge_page(struct page *dst, struct page *src,
5226                          unsigned long addr_hint, struct vm_area_struct *vma,
5227                          unsigned int pages_per_huge_page)
5228 {
5229         unsigned long addr = addr_hint &
5230                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5231         struct copy_subpage_arg arg = {
5232                 .dst = dst,
5233                 .src = src,
5234                 .vma = vma,
5235         };
5236
5237         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5238                 copy_user_gigantic_page(dst, src, addr, vma,
5239                                         pages_per_huge_page);
5240                 return;
5241         }
5242
5243         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5244 }
5245
5246 long copy_huge_page_from_user(struct page *dst_page,
5247                                 const void __user *usr_src,
5248                                 unsigned int pages_per_huge_page,
5249                                 bool allow_pagefault)
5250 {
5251         void *src = (void *)usr_src;
5252         void *page_kaddr;
5253         unsigned long i, rc = 0;
5254         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5255         struct page *subpage = dst_page;
5256
5257         for (i = 0; i < pages_per_huge_page;
5258              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5259                 if (allow_pagefault)
5260                         page_kaddr = kmap(subpage);
5261                 else
5262                         page_kaddr = kmap_atomic(subpage);
5263                 rc = copy_from_user(page_kaddr,
5264                                 (const void __user *)(src + i * PAGE_SIZE),
5265                                 PAGE_SIZE);
5266                 if (allow_pagefault)
5267                         kunmap(subpage);
5268                 else
5269                         kunmap_atomic(page_kaddr);
5270
5271                 ret_val -= (PAGE_SIZE - rc);
5272                 if (rc)
5273                         break;
5274
5275                 cond_resched();
5276         }
5277         return ret_val;
5278 }
5279 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5280
5281 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5282
5283 static struct kmem_cache *page_ptl_cachep;
5284
5285 void __init ptlock_cache_init(void)
5286 {
5287         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5288                         SLAB_PANIC, NULL);
5289 }
5290
5291 bool ptlock_alloc(struct page *page)
5292 {
5293         spinlock_t *ptl;
5294
5295         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5296         if (!ptl)
5297                 return false;
5298         page->ptl = ptl;
5299         return true;
5300 }
5301
5302 void ptlock_free(struct page *page)
5303 {
5304         kmem_cache_free(page_ptl_cachep, page->ptl);
5305 }
5306 #endif