hsr: avoid to create proc file after unregister
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83
84 #include "internal.h"
85
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
89
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
94
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
98
99 /*
100  * A number of key systems in x86 including ioremap() rely on the assumption
101  * that high_memory defines the upper bound on direct map memory, then end
102  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
103  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104  * and ZONE_HIGHMEM.
105  */
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
108
109 /*
110  * Randomize the address space (stacks, mmaps, brk, etc.).
111  *
112  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113  *   as ancient (libc5 based) binaries can segfault. )
114  */
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
117                                         1;
118 #else
119                                         2;
120 #endif
121
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
124 {
125         /*
126          * Those arches which don't have hw access flag feature need to
127          * implement their own helper. By default, "true" means pagefault
128          * will be hit on old pte.
129          */
130         return true;
131 }
132 #endif
133
134 static int __init disable_randmaps(char *s)
135 {
136         randomize_va_space = 0;
137         return 1;
138 }
139 __setup("norandmaps", disable_randmaps);
140
141 unsigned long zero_pfn __read_mostly;
142 EXPORT_SYMBOL(zero_pfn);
143
144 unsigned long highest_memmap_pfn __read_mostly;
145
146 /*
147  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148  */
149 static int __init init_zero_pfn(void)
150 {
151         zero_pfn = page_to_pfn(ZERO_PAGE(0));
152         return 0;
153 }
154 core_initcall(init_zero_pfn);
155
156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
157 {
158         trace_rss_stat(mm, member, count);
159 }
160
161 #if defined(SPLIT_RSS_COUNTING)
162
163 void sync_mm_rss(struct mm_struct *mm)
164 {
165         int i;
166
167         for (i = 0; i < NR_MM_COUNTERS; i++) {
168                 if (current->rss_stat.count[i]) {
169                         add_mm_counter(mm, i, current->rss_stat.count[i]);
170                         current->rss_stat.count[i] = 0;
171                 }
172         }
173         current->rss_stat.events = 0;
174 }
175
176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177 {
178         struct task_struct *task = current;
179
180         if (likely(task->mm == mm))
181                 task->rss_stat.count[member] += val;
182         else
183                 add_mm_counter(mm, member, val);
184 }
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH  (64)
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192         if (unlikely(task != current))
193                 return;
194         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195                 sync_mm_rss(task->mm);
196 }
197 #else /* SPLIT_RSS_COUNTING */
198
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201
202 static void check_sync_rss_stat(struct task_struct *task)
203 {
204 }
205
206 #endif /* SPLIT_RSS_COUNTING */
207
208 /*
209  * Note: this doesn't free the actual pages themselves. That
210  * has been handled earlier when unmapping all the memory regions.
211  */
212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213                            unsigned long addr)
214 {
215         pgtable_t token = pmd_pgtable(*pmd);
216         pmd_clear(pmd);
217         pte_free_tlb(tlb, token, addr);
218         mm_dec_nr_ptes(tlb->mm);
219 }
220
221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222                                 unsigned long addr, unsigned long end,
223                                 unsigned long floor, unsigned long ceiling)
224 {
225         pmd_t *pmd;
226         unsigned long next;
227         unsigned long start;
228
229         start = addr;
230         pmd = pmd_offset(pud, addr);
231         do {
232                 next = pmd_addr_end(addr, end);
233                 if (pmd_none_or_clear_bad(pmd))
234                         continue;
235                 free_pte_range(tlb, pmd, addr);
236         } while (pmd++, addr = next, addr != end);
237
238         start &= PUD_MASK;
239         if (start < floor)
240                 return;
241         if (ceiling) {
242                 ceiling &= PUD_MASK;
243                 if (!ceiling)
244                         return;
245         }
246         if (end - 1 > ceiling - 1)
247                 return;
248
249         pmd = pmd_offset(pud, start);
250         pud_clear(pud);
251         pmd_free_tlb(tlb, pmd, start);
252         mm_dec_nr_pmds(tlb->mm);
253 }
254
255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256                                 unsigned long addr, unsigned long end,
257                                 unsigned long floor, unsigned long ceiling)
258 {
259         pud_t *pud;
260         unsigned long next;
261         unsigned long start;
262
263         start = addr;
264         pud = pud_offset(p4d, addr);
265         do {
266                 next = pud_addr_end(addr, end);
267                 if (pud_none_or_clear_bad(pud))
268                         continue;
269                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270         } while (pud++, addr = next, addr != end);
271
272         start &= P4D_MASK;
273         if (start < floor)
274                 return;
275         if (ceiling) {
276                 ceiling &= P4D_MASK;
277                 if (!ceiling)
278                         return;
279         }
280         if (end - 1 > ceiling - 1)
281                 return;
282
283         pud = pud_offset(p4d, start);
284         p4d_clear(p4d);
285         pud_free_tlb(tlb, pud, start);
286         mm_dec_nr_puds(tlb->mm);
287 }
288
289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290                                 unsigned long addr, unsigned long end,
291                                 unsigned long floor, unsigned long ceiling)
292 {
293         p4d_t *p4d;
294         unsigned long next;
295         unsigned long start;
296
297         start = addr;
298         p4d = p4d_offset(pgd, addr);
299         do {
300                 next = p4d_addr_end(addr, end);
301                 if (p4d_none_or_clear_bad(p4d))
302                         continue;
303                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304         } while (p4d++, addr = next, addr != end);
305
306         start &= PGDIR_MASK;
307         if (start < floor)
308                 return;
309         if (ceiling) {
310                 ceiling &= PGDIR_MASK;
311                 if (!ceiling)
312                         return;
313         }
314         if (end - 1 > ceiling - 1)
315                 return;
316
317         p4d = p4d_offset(pgd, start);
318         pgd_clear(pgd);
319         p4d_free_tlb(tlb, p4d, start);
320 }
321
322 /*
323  * This function frees user-level page tables of a process.
324  */
325 void free_pgd_range(struct mmu_gather *tlb,
326                         unsigned long addr, unsigned long end,
327                         unsigned long floor, unsigned long ceiling)
328 {
329         pgd_t *pgd;
330         unsigned long next;
331
332         /*
333          * The next few lines have given us lots of grief...
334          *
335          * Why are we testing PMD* at this top level?  Because often
336          * there will be no work to do at all, and we'd prefer not to
337          * go all the way down to the bottom just to discover that.
338          *
339          * Why all these "- 1"s?  Because 0 represents both the bottom
340          * of the address space and the top of it (using -1 for the
341          * top wouldn't help much: the masks would do the wrong thing).
342          * The rule is that addr 0 and floor 0 refer to the bottom of
343          * the address space, but end 0 and ceiling 0 refer to the top
344          * Comparisons need to use "end - 1" and "ceiling - 1" (though
345          * that end 0 case should be mythical).
346          *
347          * Wherever addr is brought up or ceiling brought down, we must
348          * be careful to reject "the opposite 0" before it confuses the
349          * subsequent tests.  But what about where end is brought down
350          * by PMD_SIZE below? no, end can't go down to 0 there.
351          *
352          * Whereas we round start (addr) and ceiling down, by different
353          * masks at different levels, in order to test whether a table
354          * now has no other vmas using it, so can be freed, we don't
355          * bother to round floor or end up - the tests don't need that.
356          */
357
358         addr &= PMD_MASK;
359         if (addr < floor) {
360                 addr += PMD_SIZE;
361                 if (!addr)
362                         return;
363         }
364         if (ceiling) {
365                 ceiling &= PMD_MASK;
366                 if (!ceiling)
367                         return;
368         }
369         if (end - 1 > ceiling - 1)
370                 end -= PMD_SIZE;
371         if (addr > end - 1)
372                 return;
373         /*
374          * We add page table cache pages with PAGE_SIZE,
375          * (see pte_free_tlb()), flush the tlb if we need
376          */
377         tlb_change_page_size(tlb, PAGE_SIZE);
378         pgd = pgd_offset(tlb->mm, addr);
379         do {
380                 next = pgd_addr_end(addr, end);
381                 if (pgd_none_or_clear_bad(pgd))
382                         continue;
383                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384         } while (pgd++, addr = next, addr != end);
385 }
386
387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388                 unsigned long floor, unsigned long ceiling)
389 {
390         while (vma) {
391                 struct vm_area_struct *next = vma->vm_next;
392                 unsigned long addr = vma->vm_start;
393
394                 /*
395                  * Hide vma from rmap and truncate_pagecache before freeing
396                  * pgtables
397                  */
398                 unlink_anon_vmas(vma);
399                 unlink_file_vma(vma);
400
401                 if (is_vm_hugetlb_page(vma)) {
402                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 } else {
405                         /*
406                          * Optimization: gather nearby vmas into one call down
407                          */
408                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409                                && !is_vm_hugetlb_page(next)) {
410                                 vma = next;
411                                 next = vma->vm_next;
412                                 unlink_anon_vmas(vma);
413                                 unlink_file_vma(vma);
414                         }
415                         free_pgd_range(tlb, addr, vma->vm_end,
416                                 floor, next ? next->vm_start : ceiling);
417                 }
418                 vma = next;
419         }
420 }
421
422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
423 {
424         spinlock_t *ptl;
425         pgtable_t new = pte_alloc_one(mm);
426         if (!new)
427                 return -ENOMEM;
428
429         /*
430          * Ensure all pte setup (eg. pte page lock and page clearing) are
431          * visible before the pte is made visible to other CPUs by being
432          * put into page tables.
433          *
434          * The other side of the story is the pointer chasing in the page
435          * table walking code (when walking the page table without locking;
436          * ie. most of the time). Fortunately, these data accesses consist
437          * of a chain of data-dependent loads, meaning most CPUs (alpha
438          * being the notable exception) will already guarantee loads are
439          * seen in-order. See the alpha page table accessors for the
440          * smp_read_barrier_depends() barriers in page table walking code.
441          */
442         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443
444         ptl = pmd_lock(mm, pmd);
445         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
446                 mm_inc_nr_ptes(mm);
447                 pmd_populate(mm, pmd, new);
448                 new = NULL;
449         }
450         spin_unlock(ptl);
451         if (new)
452                 pte_free(mm, new);
453         return 0;
454 }
455
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458         pte_t *new = pte_alloc_one_kernel(&init_mm);
459         if (!new)
460                 return -ENOMEM;
461
462         smp_wmb(); /* See comment in __pte_alloc */
463
464         spin_lock(&init_mm.page_table_lock);
465         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
466                 pmd_populate_kernel(&init_mm, pmd, new);
467                 new = NULL;
468         }
469         spin_unlock(&init_mm.page_table_lock);
470         if (new)
471                 pte_free_kernel(&init_mm, new);
472         return 0;
473 }
474
475 static inline void init_rss_vec(int *rss)
476 {
477         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482         int i;
483
484         if (current->mm == mm)
485                 sync_mm_rss(mm);
486         for (i = 0; i < NR_MM_COUNTERS; i++)
487                 if (rss[i])
488                         add_mm_counter(mm, i, rss[i]);
489 }
490
491 /*
492  * This function is called to print an error when a bad pte
493  * is found. For example, we might have a PFN-mapped pte in
494  * a region that doesn't allow it.
495  *
496  * The calling function must still handle the error.
497  */
498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499                           pte_t pte, struct page *page)
500 {
501         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502         p4d_t *p4d = p4d_offset(pgd, addr);
503         pud_t *pud = pud_offset(p4d, addr);
504         pmd_t *pmd = pmd_offset(pud, addr);
505         struct address_space *mapping;
506         pgoff_t index;
507         static unsigned long resume;
508         static unsigned long nr_shown;
509         static unsigned long nr_unshown;
510
511         /*
512          * Allow a burst of 60 reports, then keep quiet for that minute;
513          * or allow a steady drip of one report per second.
514          */
515         if (nr_shown == 60) {
516                 if (time_before(jiffies, resume)) {
517                         nr_unshown++;
518                         return;
519                 }
520                 if (nr_unshown) {
521                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522                                  nr_unshown);
523                         nr_unshown = 0;
524                 }
525                 nr_shown = 0;
526         }
527         if (nr_shown++ == 0)
528                 resume = jiffies + 60 * HZ;
529
530         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531         index = linear_page_index(vma, addr);
532
533         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
534                  current->comm,
535                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
536         if (page)
537                 dump_page(page, "bad pte");
538         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541                  vma->vm_file,
542                  vma->vm_ops ? vma->vm_ops->fault : NULL,
543                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544                  mapping ? mapping->a_ops->readpage : NULL);
545         dump_stack();
546         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548
549 /*
550  * vm_normal_page -- This function gets the "struct page" associated with a pte.
551  *
552  * "Special" mappings do not wish to be associated with a "struct page" (either
553  * it doesn't exist, or it exists but they don't want to touch it). In this
554  * case, NULL is returned here. "Normal" mappings do have a struct page.
555  *
556  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557  * pte bit, in which case this function is trivial. Secondly, an architecture
558  * may not have a spare pte bit, which requires a more complicated scheme,
559  * described below.
560  *
561  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562  * special mapping (even if there are underlying and valid "struct pages").
563  * COWed pages of a VM_PFNMAP are always normal.
564  *
565  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568  * mapping will always honor the rule
569  *
570  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571  *
572  * And for normal mappings this is false.
573  *
574  * This restricts such mappings to be a linear translation from virtual address
575  * to pfn. To get around this restriction, we allow arbitrary mappings so long
576  * as the vma is not a COW mapping; in that case, we know that all ptes are
577  * special (because none can have been COWed).
578  *
579  *
580  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581  *
582  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583  * page" backing, however the difference is that _all_ pages with a struct
584  * page (that is, those where pfn_valid is true) are refcounted and considered
585  * normal pages by the VM. The disadvantage is that pages are refcounted
586  * (which can be slower and simply not an option for some PFNMAP users). The
587  * advantage is that we don't have to follow the strict linearity rule of
588  * PFNMAP mappings in order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592                             pte_t pte)
593 {
594         unsigned long pfn = pte_pfn(pte);
595
596         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597                 if (likely(!pte_special(pte)))
598                         goto check_pfn;
599                 if (vma->vm_ops && vma->vm_ops->find_special_page)
600                         return vma->vm_ops->find_special_page(vma, addr);
601                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602                         return NULL;
603                 if (is_zero_pfn(pfn))
604                         return NULL;
605                 if (pte_devmap(pte))
606                         return NULL;
607
608                 print_bad_pte(vma, addr, pte, NULL);
609                 return NULL;
610         }
611
612         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615                 if (vma->vm_flags & VM_MIXEDMAP) {
616                         if (!pfn_valid(pfn))
617                                 return NULL;
618                         goto out;
619                 } else {
620                         unsigned long off;
621                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
622                         if (pfn == vma->vm_pgoff + off)
623                                 return NULL;
624                         if (!is_cow_mapping(vma->vm_flags))
625                                 return NULL;
626                 }
627         }
628
629         if (is_zero_pfn(pfn))
630                 return NULL;
631
632 check_pfn:
633         if (unlikely(pfn > highest_memmap_pfn)) {
634                 print_bad_pte(vma, addr, pte, NULL);
635                 return NULL;
636         }
637
638         /*
639          * NOTE! We still have PageReserved() pages in the page tables.
640          * eg. VDSO mappings can cause them to exist.
641          */
642 out:
643         return pfn_to_page(pfn);
644 }
645
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648                                 pmd_t pmd)
649 {
650         unsigned long pfn = pmd_pfn(pmd);
651
652         /*
653          * There is no pmd_special() but there may be special pmds, e.g.
654          * in a direct-access (dax) mapping, so let's just replicate the
655          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
656          */
657         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658                 if (vma->vm_flags & VM_MIXEDMAP) {
659                         if (!pfn_valid(pfn))
660                                 return NULL;
661                         goto out;
662                 } else {
663                         unsigned long off;
664                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
665                         if (pfn == vma->vm_pgoff + off)
666                                 return NULL;
667                         if (!is_cow_mapping(vma->vm_flags))
668                                 return NULL;
669                 }
670         }
671
672         if (pmd_devmap(pmd))
673                 return NULL;
674         if (is_huge_zero_pmd(pmd))
675                 return NULL;
676         if (unlikely(pfn > highest_memmap_pfn))
677                 return NULL;
678
679         /*
680          * NOTE! We still have PageReserved() pages in the page tables.
681          * eg. VDSO mappings can cause them to exist.
682          */
683 out:
684         return pfn_to_page(pfn);
685 }
686 #endif
687
688 /*
689  * copy one vm_area from one task to the other. Assumes the page tables
690  * already present in the new task to be cleared in the whole range
691  * covered by this vma.
692  */
693
694 static inline unsigned long
695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697                 unsigned long addr, int *rss)
698 {
699         unsigned long vm_flags = vma->vm_flags;
700         pte_t pte = *src_pte;
701         struct page *page;
702
703         /* pte contains position in swap or file, so copy. */
704         if (unlikely(!pte_present(pte))) {
705                 swp_entry_t entry = pte_to_swp_entry(pte);
706
707                 if (likely(!non_swap_entry(entry))) {
708                         if (swap_duplicate(entry) < 0)
709                                 return entry.val;
710
711                         /* make sure dst_mm is on swapoff's mmlist. */
712                         if (unlikely(list_empty(&dst_mm->mmlist))) {
713                                 spin_lock(&mmlist_lock);
714                                 if (list_empty(&dst_mm->mmlist))
715                                         list_add(&dst_mm->mmlist,
716                                                         &src_mm->mmlist);
717                                 spin_unlock(&mmlist_lock);
718                         }
719                         rss[MM_SWAPENTS]++;
720                 } else if (is_migration_entry(entry)) {
721                         page = migration_entry_to_page(entry);
722
723                         rss[mm_counter(page)]++;
724
725                         if (is_write_migration_entry(entry) &&
726                                         is_cow_mapping(vm_flags)) {
727                                 /*
728                                  * COW mappings require pages in both
729                                  * parent and child to be set to read.
730                                  */
731                                 make_migration_entry_read(&entry);
732                                 pte = swp_entry_to_pte(entry);
733                                 if (pte_swp_soft_dirty(*src_pte))
734                                         pte = pte_swp_mksoft_dirty(pte);
735                                 if (pte_swp_uffd_wp(*src_pte))
736                                         pte = pte_swp_mkuffd_wp(pte);
737                                 set_pte_at(src_mm, addr, src_pte, pte);
738                         }
739                 } else if (is_device_private_entry(entry)) {
740                         page = device_private_entry_to_page(entry);
741
742                         /*
743                          * Update rss count even for unaddressable pages, as
744                          * they should treated just like normal pages in this
745                          * respect.
746                          *
747                          * We will likely want to have some new rss counters
748                          * for unaddressable pages, at some point. But for now
749                          * keep things as they are.
750                          */
751                         get_page(page);
752                         rss[mm_counter(page)]++;
753                         page_dup_rmap(page, false);
754
755                         /*
756                          * We do not preserve soft-dirty information, because so
757                          * far, checkpoint/restore is the only feature that
758                          * requires that. And checkpoint/restore does not work
759                          * when a device driver is involved (you cannot easily
760                          * save and restore device driver state).
761                          */
762                         if (is_write_device_private_entry(entry) &&
763                             is_cow_mapping(vm_flags)) {
764                                 make_device_private_entry_read(&entry);
765                                 pte = swp_entry_to_pte(entry);
766                                 if (pte_swp_uffd_wp(*src_pte))
767                                         pte = pte_swp_mkuffd_wp(pte);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         /*
792          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793          * does not have the VM_UFFD_WP, which means that the uffd
794          * fork event is not enabled.
795          */
796         if (!(vm_flags & VM_UFFD_WP))
797                 pte = pte_clear_uffd_wp(pte);
798
799         page = vm_normal_page(vma, addr, pte);
800         if (page) {
801                 get_page(page);
802                 page_dup_rmap(page, false);
803                 rss[mm_counter(page)]++;
804         }
805
806 out_set_pte:
807         set_pte_at(dst_mm, addr, dst_pte, pte);
808         return 0;
809 }
810
811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813                    unsigned long addr, unsigned long end)
814 {
815         pte_t *orig_src_pte, *orig_dst_pte;
816         pte_t *src_pte, *dst_pte;
817         spinlock_t *src_ptl, *dst_ptl;
818         int progress = 0;
819         int rss[NR_MM_COUNTERS];
820         swp_entry_t entry = (swp_entry_t){0};
821
822 again:
823         init_rss_vec(rss);
824
825         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826         if (!dst_pte)
827                 return -ENOMEM;
828         src_pte = pte_offset_map(src_pmd, addr);
829         src_ptl = pte_lockptr(src_mm, src_pmd);
830         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831         orig_src_pte = src_pte;
832         orig_dst_pte = dst_pte;
833         arch_enter_lazy_mmu_mode();
834
835         do {
836                 /*
837                  * We are holding two locks at this point - either of them
838                  * could generate latencies in another task on another CPU.
839                  */
840                 if (progress >= 32) {
841                         progress = 0;
842                         if (need_resched() ||
843                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844                                 break;
845                 }
846                 if (pte_none(*src_pte)) {
847                         progress++;
848                         continue;
849                 }
850                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851                                                         vma, addr, rss);
852                 if (entry.val)
853                         break;
854                 progress += 8;
855         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
856
857         arch_leave_lazy_mmu_mode();
858         spin_unlock(src_ptl);
859         pte_unmap(orig_src_pte);
860         add_mm_rss_vec(dst_mm, rss);
861         pte_unmap_unlock(orig_dst_pte, dst_ptl);
862         cond_resched();
863
864         if (entry.val) {
865                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866                         return -ENOMEM;
867                 progress = 0;
868         }
869         if (addr != end)
870                 goto again;
871         return 0;
872 }
873
874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876                 unsigned long addr, unsigned long end)
877 {
878         pmd_t *src_pmd, *dst_pmd;
879         unsigned long next;
880
881         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882         if (!dst_pmd)
883                 return -ENOMEM;
884         src_pmd = pmd_offset(src_pud, addr);
885         do {
886                 next = pmd_addr_end(addr, end);
887                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888                         || pmd_devmap(*src_pmd)) {
889                         int err;
890                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891                         err = copy_huge_pmd(dst_mm, src_mm,
892                                             dst_pmd, src_pmd, addr, vma);
893                         if (err == -ENOMEM)
894                                 return -ENOMEM;
895                         if (!err)
896                                 continue;
897                         /* fall through */
898                 }
899                 if (pmd_none_or_clear_bad(src_pmd))
900                         continue;
901                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902                                                 vma, addr, next))
903                         return -ENOMEM;
904         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
905         return 0;
906 }
907
908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910                 unsigned long addr, unsigned long end)
911 {
912         pud_t *src_pud, *dst_pud;
913         unsigned long next;
914
915         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916         if (!dst_pud)
917                 return -ENOMEM;
918         src_pud = pud_offset(src_p4d, addr);
919         do {
920                 next = pud_addr_end(addr, end);
921                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922                         int err;
923
924                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925                         err = copy_huge_pud(dst_mm, src_mm,
926                                             dst_pud, src_pud, addr, vma);
927                         if (err == -ENOMEM)
928                                 return -ENOMEM;
929                         if (!err)
930                                 continue;
931                         /* fall through */
932                 }
933                 if (pud_none_or_clear_bad(src_pud))
934                         continue;
935                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936                                                 vma, addr, next))
937                         return -ENOMEM;
938         } while (dst_pud++, src_pud++, addr = next, addr != end);
939         return 0;
940 }
941
942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944                 unsigned long addr, unsigned long end)
945 {
946         p4d_t *src_p4d, *dst_p4d;
947         unsigned long next;
948
949         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950         if (!dst_p4d)
951                 return -ENOMEM;
952         src_p4d = p4d_offset(src_pgd, addr);
953         do {
954                 next = p4d_addr_end(addr, end);
955                 if (p4d_none_or_clear_bad(src_p4d))
956                         continue;
957                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958                                                 vma, addr, next))
959                         return -ENOMEM;
960         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
961         return 0;
962 }
963
964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965                 struct vm_area_struct *vma)
966 {
967         pgd_t *src_pgd, *dst_pgd;
968         unsigned long next;
969         unsigned long addr = vma->vm_start;
970         unsigned long end = vma->vm_end;
971         struct mmu_notifier_range range;
972         bool is_cow;
973         int ret;
974
975         /*
976          * Don't copy ptes where a page fault will fill them correctly.
977          * Fork becomes much lighter when there are big shared or private
978          * readonly mappings. The tradeoff is that copy_page_range is more
979          * efficient than faulting.
980          */
981         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982                         !vma->anon_vma)
983                 return 0;
984
985         if (is_vm_hugetlb_page(vma))
986                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987
988         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
989                 /*
990                  * We do not free on error cases below as remove_vma
991                  * gets called on error from higher level routine
992                  */
993                 ret = track_pfn_copy(vma);
994                 if (ret)
995                         return ret;
996         }
997
998         /*
999          * We need to invalidate the secondary MMU mappings only when
1000          * there could be a permission downgrade on the ptes of the
1001          * parent mm. And a permission downgrade will only happen if
1002          * is_cow_mapping() returns true.
1003          */
1004         is_cow = is_cow_mapping(vma->vm_flags);
1005
1006         if (is_cow) {
1007                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008                                         0, vma, src_mm, addr, end);
1009                 mmu_notifier_invalidate_range_start(&range);
1010         }
1011
1012         ret = 0;
1013         dst_pgd = pgd_offset(dst_mm, addr);
1014         src_pgd = pgd_offset(src_mm, addr);
1015         do {
1016                 next = pgd_addr_end(addr, end);
1017                 if (pgd_none_or_clear_bad(src_pgd))
1018                         continue;
1019                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020                                             vma, addr, next))) {
1021                         ret = -ENOMEM;
1022                         break;
1023                 }
1024         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1025
1026         if (is_cow)
1027                 mmu_notifier_invalidate_range_end(&range);
1028         return ret;
1029 }
1030
1031 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032                                 struct vm_area_struct *vma, pmd_t *pmd,
1033                                 unsigned long addr, unsigned long end,
1034                                 struct zap_details *details)
1035 {
1036         struct mm_struct *mm = tlb->mm;
1037         int force_flush = 0;
1038         int rss[NR_MM_COUNTERS];
1039         spinlock_t *ptl;
1040         pte_t *start_pte;
1041         pte_t *pte;
1042         swp_entry_t entry;
1043
1044         tlb_change_page_size(tlb, PAGE_SIZE);
1045 again:
1046         init_rss_vec(rss);
1047         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048         pte = start_pte;
1049         flush_tlb_batched_pending(mm);
1050         arch_enter_lazy_mmu_mode();
1051         do {
1052                 pte_t ptent = *pte;
1053                 if (pte_none(ptent))
1054                         continue;
1055
1056                 if (need_resched())
1057                         break;
1058
1059                 if (pte_present(ptent)) {
1060                         struct page *page;
1061
1062                         page = vm_normal_page(vma, addr, ptent);
1063                         if (unlikely(details) && page) {
1064                                 /*
1065                                  * unmap_shared_mapping_pages() wants to
1066                                  * invalidate cache without truncating:
1067                                  * unmap shared but keep private pages.
1068                                  */
1069                                 if (details->check_mapping &&
1070                                     details->check_mapping != page_rmapping(page))
1071                                         continue;
1072                         }
1073                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1074                                                         tlb->fullmm);
1075                         tlb_remove_tlb_entry(tlb, pte, addr);
1076                         if (unlikely(!page))
1077                                 continue;
1078
1079                         if (!PageAnon(page)) {
1080                                 if (pte_dirty(ptent)) {
1081                                         force_flush = 1;
1082                                         set_page_dirty(page);
1083                                 }
1084                                 if (pte_young(ptent) &&
1085                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1086                                         mark_page_accessed(page);
1087                         }
1088                         rss[mm_counter(page)]--;
1089                         page_remove_rmap(page, false);
1090                         if (unlikely(page_mapcount(page) < 0))
1091                                 print_bad_pte(vma, addr, ptent, page);
1092                         if (unlikely(__tlb_remove_page(tlb, page))) {
1093                                 force_flush = 1;
1094                                 addr += PAGE_SIZE;
1095                                 break;
1096                         }
1097                         continue;
1098                 }
1099
1100                 entry = pte_to_swp_entry(ptent);
1101                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102                         struct page *page = device_private_entry_to_page(entry);
1103
1104                         if (unlikely(details && details->check_mapping)) {
1105                                 /*
1106                                  * unmap_shared_mapping_pages() wants to
1107                                  * invalidate cache without truncating:
1108                                  * unmap shared but keep private pages.
1109                                  */
1110                                 if (details->check_mapping !=
1111                                     page_rmapping(page))
1112                                         continue;
1113                         }
1114
1115                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116                         rss[mm_counter(page)]--;
1117                         page_remove_rmap(page, false);
1118                         put_page(page);
1119                         continue;
1120                 }
1121
1122                 /* If details->check_mapping, we leave swap entries. */
1123                 if (unlikely(details))
1124                         continue;
1125
1126                 if (!non_swap_entry(entry))
1127                         rss[MM_SWAPENTS]--;
1128                 else if (is_migration_entry(entry)) {
1129                         struct page *page;
1130
1131                         page = migration_entry_to_page(entry);
1132                         rss[mm_counter(page)]--;
1133                 }
1134                 if (unlikely(!free_swap_and_cache(entry)))
1135                         print_bad_pte(vma, addr, ptent, NULL);
1136                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137         } while (pte++, addr += PAGE_SIZE, addr != end);
1138
1139         add_mm_rss_vec(mm, rss);
1140         arch_leave_lazy_mmu_mode();
1141
1142         /* Do the actual TLB flush before dropping ptl */
1143         if (force_flush)
1144                 tlb_flush_mmu_tlbonly(tlb);
1145         pte_unmap_unlock(start_pte, ptl);
1146
1147         /*
1148          * If we forced a TLB flush (either due to running out of
1149          * batch buffers or because we needed to flush dirty TLB
1150          * entries before releasing the ptl), free the batched
1151          * memory too. Restart if we didn't do everything.
1152          */
1153         if (force_flush) {
1154                 force_flush = 0;
1155                 tlb_flush_mmu(tlb);
1156         }
1157
1158         if (addr != end) {
1159                 cond_resched();
1160                 goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE)
1179                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181                                 goto next;
1182                         /* fall through */
1183                 }
1184                 /*
1185                  * Here there can be other concurrent MADV_DONTNEED or
1186                  * trans huge page faults running, and if the pmd is
1187                  * none or trans huge it can change under us. This is
1188                  * because MADV_DONTNEED holds the mmap_lock in read
1189                  * mode.
1190                  */
1191                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192                         goto next;
1193                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195                 cond_resched();
1196         } while (pmd++, addr = next, addr != end);
1197
1198         return addr;
1199 }
1200
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202                                 struct vm_area_struct *vma, p4d_t *p4d,
1203                                 unsigned long addr, unsigned long end,
1204                                 struct zap_details *details)
1205 {
1206         pud_t *pud;
1207         unsigned long next;
1208
1209         pud = pud_offset(p4d, addr);
1210         do {
1211                 next = pud_addr_end(addr, end);
1212                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213                         if (next - addr != HPAGE_PUD_SIZE) {
1214                                 mmap_assert_locked(tlb->mm);
1215                                 split_huge_pud(vma, pud, addr);
1216                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1217                                 goto next;
1218                         /* fall through */
1219                 }
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pud++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         p4d_t *p4d;
1236         unsigned long next;
1237
1238         p4d = p4d_offset(pgd, addr);
1239         do {
1240                 next = p4d_addr_end(addr, end);
1241                 if (p4d_none_or_clear_bad(p4d))
1242                         continue;
1243                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244         } while (p4d++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         BUG_ON(addr >= end);
1258         tlb_start_vma(tlb, vma);
1259         pgd = pgd_offset(vma->vm_mm, addr);
1260         do {
1261                 next = pgd_addr_end(addr, end);
1262                 if (pgd_none_or_clear_bad(pgd))
1263                         continue;
1264                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265         } while (pgd++, addr = next, addr != end);
1266         tlb_end_vma(tlb, vma);
1267 }
1268
1269
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271                 struct vm_area_struct *vma, unsigned long start_addr,
1272                 unsigned long end_addr,
1273                 struct zap_details *details)
1274 {
1275         unsigned long start = max(vma->vm_start, start_addr);
1276         unsigned long end;
1277
1278         if (start >= vma->vm_end)
1279                 return;
1280         end = min(vma->vm_end, end_addr);
1281         if (end <= vma->vm_start)
1282                 return;
1283
1284         if (vma->vm_file)
1285                 uprobe_munmap(vma, start, end);
1286
1287         if (unlikely(vma->vm_flags & VM_PFNMAP))
1288                 untrack_pfn(vma, 0, 0);
1289
1290         if (start != end) {
1291                 if (unlikely(is_vm_hugetlb_page(vma))) {
1292                         /*
1293                          * It is undesirable to test vma->vm_file as it
1294                          * should be non-null for valid hugetlb area.
1295                          * However, vm_file will be NULL in the error
1296                          * cleanup path of mmap_region. When
1297                          * hugetlbfs ->mmap method fails,
1298                          * mmap_region() nullifies vma->vm_file
1299                          * before calling this function to clean up.
1300                          * Since no pte has actually been setup, it is
1301                          * safe to do nothing in this case.
1302                          */
1303                         if (vma->vm_file) {
1304                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1305                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307                         }
1308                 } else
1309                         unmap_page_range(tlb, vma, start, end, details);
1310         }
1311 }
1312
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332                 struct vm_area_struct *vma, unsigned long start_addr,
1333                 unsigned long end_addr)
1334 {
1335         struct mmu_notifier_range range;
1336
1337         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338                                 start_addr, end_addr);
1339         mmu_notifier_invalidate_range_start(&range);
1340         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342         mmu_notifier_invalidate_range_end(&range);
1343 }
1344
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354                 unsigned long size)
1355 {
1356         struct mmu_notifier_range range;
1357         struct mmu_gather tlb;
1358
1359         lru_add_drain();
1360         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361                                 start, start + size);
1362         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363         update_hiwater_rss(vma->vm_mm);
1364         mmu_notifier_invalidate_range_start(&range);
1365         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367         mmu_notifier_invalidate_range_end(&range);
1368         tlb_finish_mmu(&tlb, start, range.end);
1369 }
1370
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mmu_notifier_range range;
1384         struct mmu_gather tlb;
1385
1386         lru_add_drain();
1387         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388                                 address, address + size);
1389         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390         update_hiwater_rss(vma->vm_mm);
1391         mmu_notifier_invalidate_range_start(&range);
1392         unmap_single_vma(&tlb, vma, address, range.end, details);
1393         mmu_notifier_invalidate_range_end(&range);
1394         tlb_finish_mmu(&tlb, address, range.end);
1395 }
1396
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  */
1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409                 unsigned long size)
1410 {
1411         if (address < vma->vm_start || address + size > vma->vm_end ||
1412                         !(vma->vm_flags & VM_PFNMAP))
1413                 return;
1414
1415         zap_page_range_single(vma, address, size, NULL);
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1420 {
1421         pgd_t *pgd;
1422         p4d_t *p4d;
1423         pud_t *pud;
1424         pmd_t *pmd;
1425
1426         pgd = pgd_offset(mm, addr);
1427         p4d = p4d_alloc(mm, pgd, addr);
1428         if (!p4d)
1429                 return NULL;
1430         pud = pud_alloc(mm, p4d, addr);
1431         if (!pud)
1432                 return NULL;
1433         pmd = pmd_alloc(mm, pud, addr);
1434         if (!pmd)
1435                 return NULL;
1436
1437         VM_BUG_ON(pmd_trans_huge(*pmd));
1438         return pmd;
1439 }
1440
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442                         spinlock_t **ptl)
1443 {
1444         pmd_t *pmd = walk_to_pmd(mm, addr);
1445
1446         if (!pmd)
1447                 return NULL;
1448         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449 }
1450
1451 static int validate_page_before_insert(struct page *page)
1452 {
1453         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454                 return -EINVAL;
1455         flush_dcache_page(page);
1456         return 0;
1457 }
1458
1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460                         unsigned long addr, struct page *page, pgprot_t prot)
1461 {
1462         if (!pte_none(*pte))
1463                 return -EBUSY;
1464         /* Ok, finally just insert the thing.. */
1465         get_page(page);
1466         inc_mm_counter_fast(mm, mm_counter_file(page));
1467         page_add_file_rmap(page, false);
1468         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469         return 0;
1470 }
1471
1472 /*
1473  * This is the old fallback for page remapping.
1474  *
1475  * For historical reasons, it only allows reserved pages. Only
1476  * old drivers should use this, and they needed to mark their
1477  * pages reserved for the old functions anyway.
1478  */
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                         struct page *page, pgprot_t prot)
1481 {
1482         struct mm_struct *mm = vma->vm_mm;
1483         int retval;
1484         pte_t *pte;
1485         spinlock_t *ptl;
1486
1487         retval = validate_page_before_insert(page);
1488         if (retval)
1489                 goto out;
1490         retval = -ENOMEM;
1491         pte = get_locked_pte(mm, addr, &ptl);
1492         if (!pte)
1493                 goto out;
1494         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495         pte_unmap_unlock(pte, ptl);
1496 out:
1497         return retval;
1498 }
1499
1500 #ifdef pte_index
1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1502                         unsigned long addr, struct page *page, pgprot_t prot)
1503 {
1504         int err;
1505
1506         if (!page_count(page))
1507                 return -EINVAL;
1508         err = validate_page_before_insert(page);
1509         return err ? err : insert_page_into_pte_locked(
1510                 mm, pte_offset_map(pmd, addr), addr, page, prot);
1511 }
1512
1513 /* insert_pages() amortizes the cost of spinlock operations
1514  * when inserting pages in a loop. Arch *must* define pte_index.
1515  */
1516 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1517                         struct page **pages, unsigned long *num, pgprot_t prot)
1518 {
1519         pmd_t *pmd = NULL;
1520         spinlock_t *pte_lock = NULL;
1521         struct mm_struct *const mm = vma->vm_mm;
1522         unsigned long curr_page_idx = 0;
1523         unsigned long remaining_pages_total = *num;
1524         unsigned long pages_to_write_in_pmd;
1525         int ret;
1526 more:
1527         ret = -EFAULT;
1528         pmd = walk_to_pmd(mm, addr);
1529         if (!pmd)
1530                 goto out;
1531
1532         pages_to_write_in_pmd = min_t(unsigned long,
1533                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1534
1535         /* Allocate the PTE if necessary; takes PMD lock once only. */
1536         ret = -ENOMEM;
1537         if (pte_alloc(mm, pmd))
1538                 goto out;
1539         pte_lock = pte_lockptr(mm, pmd);
1540
1541         while (pages_to_write_in_pmd) {
1542                 int pte_idx = 0;
1543                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1544
1545                 spin_lock(pte_lock);
1546                 for (; pte_idx < batch_size; ++pte_idx) {
1547                         int err = insert_page_in_batch_locked(mm, pmd,
1548                                 addr, pages[curr_page_idx], prot);
1549                         if (unlikely(err)) {
1550                                 spin_unlock(pte_lock);
1551                                 ret = err;
1552                                 remaining_pages_total -= pte_idx;
1553                                 goto out;
1554                         }
1555                         addr += PAGE_SIZE;
1556                         ++curr_page_idx;
1557                 }
1558                 spin_unlock(pte_lock);
1559                 pages_to_write_in_pmd -= batch_size;
1560                 remaining_pages_total -= batch_size;
1561         }
1562         if (remaining_pages_total)
1563                 goto more;
1564         ret = 0;
1565 out:
1566         *num = remaining_pages_total;
1567         return ret;
1568 }
1569 #endif  /* ifdef pte_index */
1570
1571 /**
1572  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1573  * @vma: user vma to map to
1574  * @addr: target start user address of these pages
1575  * @pages: source kernel pages
1576  * @num: in: number of pages to map. out: number of pages that were *not*
1577  * mapped. (0 means all pages were successfully mapped).
1578  *
1579  * Preferred over vm_insert_page() when inserting multiple pages.
1580  *
1581  * In case of error, we may have mapped a subset of the provided
1582  * pages. It is the caller's responsibility to account for this case.
1583  *
1584  * The same restrictions apply as in vm_insert_page().
1585  */
1586 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1587                         struct page **pages, unsigned long *num)
1588 {
1589 #ifdef pte_index
1590         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1591
1592         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1593                 return -EFAULT;
1594         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1595                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1596                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1597                 vma->vm_flags |= VM_MIXEDMAP;
1598         }
1599         /* Defer page refcount checking till we're about to map that page. */
1600         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1601 #else
1602         unsigned long idx = 0, pgcount = *num;
1603         int err;
1604
1605         for (; idx < pgcount; ++idx) {
1606                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1607                 if (err)
1608                         break;
1609         }
1610         *num = pgcount - idx;
1611         return err;
1612 #endif  /* ifdef pte_index */
1613 }
1614 EXPORT_SYMBOL(vm_insert_pages);
1615
1616 /**
1617  * vm_insert_page - insert single page into user vma
1618  * @vma: user vma to map to
1619  * @addr: target user address of this page
1620  * @page: source kernel page
1621  *
1622  * This allows drivers to insert individual pages they've allocated
1623  * into a user vma.
1624  *
1625  * The page has to be a nice clean _individual_ kernel allocation.
1626  * If you allocate a compound page, you need to have marked it as
1627  * such (__GFP_COMP), or manually just split the page up yourself
1628  * (see split_page()).
1629  *
1630  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1631  * took an arbitrary page protection parameter. This doesn't allow
1632  * that. Your vma protection will have to be set up correctly, which
1633  * means that if you want a shared writable mapping, you'd better
1634  * ask for a shared writable mapping!
1635  *
1636  * The page does not need to be reserved.
1637  *
1638  * Usually this function is called from f_op->mmap() handler
1639  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1640  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1641  * function from other places, for example from page-fault handler.
1642  *
1643  * Return: %0 on success, negative error code otherwise.
1644  */
1645 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1646                         struct page *page)
1647 {
1648         if (addr < vma->vm_start || addr >= vma->vm_end)
1649                 return -EFAULT;
1650         if (!page_count(page))
1651                 return -EINVAL;
1652         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1653                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1654                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1655                 vma->vm_flags |= VM_MIXEDMAP;
1656         }
1657         return insert_page(vma, addr, page, vma->vm_page_prot);
1658 }
1659 EXPORT_SYMBOL(vm_insert_page);
1660
1661 /*
1662  * __vm_map_pages - maps range of kernel pages into user vma
1663  * @vma: user vma to map to
1664  * @pages: pointer to array of source kernel pages
1665  * @num: number of pages in page array
1666  * @offset: user's requested vm_pgoff
1667  *
1668  * This allows drivers to map range of kernel pages into a user vma.
1669  *
1670  * Return: 0 on success and error code otherwise.
1671  */
1672 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1673                                 unsigned long num, unsigned long offset)
1674 {
1675         unsigned long count = vma_pages(vma);
1676         unsigned long uaddr = vma->vm_start;
1677         int ret, i;
1678
1679         /* Fail if the user requested offset is beyond the end of the object */
1680         if (offset >= num)
1681                 return -ENXIO;
1682
1683         /* Fail if the user requested size exceeds available object size */
1684         if (count > num - offset)
1685                 return -ENXIO;
1686
1687         for (i = 0; i < count; i++) {
1688                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1689                 if (ret < 0)
1690                         return ret;
1691                 uaddr += PAGE_SIZE;
1692         }
1693
1694         return 0;
1695 }
1696
1697 /**
1698  * vm_map_pages - maps range of kernel pages starts with non zero offset
1699  * @vma: user vma to map to
1700  * @pages: pointer to array of source kernel pages
1701  * @num: number of pages in page array
1702  *
1703  * Maps an object consisting of @num pages, catering for the user's
1704  * requested vm_pgoff
1705  *
1706  * If we fail to insert any page into the vma, the function will return
1707  * immediately leaving any previously inserted pages present.  Callers
1708  * from the mmap handler may immediately return the error as their caller
1709  * will destroy the vma, removing any successfully inserted pages. Other
1710  * callers should make their own arrangements for calling unmap_region().
1711  *
1712  * Context: Process context. Called by mmap handlers.
1713  * Return: 0 on success and error code otherwise.
1714  */
1715 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1716                                 unsigned long num)
1717 {
1718         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1719 }
1720 EXPORT_SYMBOL(vm_map_pages);
1721
1722 /**
1723  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1724  * @vma: user vma to map to
1725  * @pages: pointer to array of source kernel pages
1726  * @num: number of pages in page array
1727  *
1728  * Similar to vm_map_pages(), except that it explicitly sets the offset
1729  * to 0. This function is intended for the drivers that did not consider
1730  * vm_pgoff.
1731  *
1732  * Context: Process context. Called by mmap handlers.
1733  * Return: 0 on success and error code otherwise.
1734  */
1735 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1736                                 unsigned long num)
1737 {
1738         return __vm_map_pages(vma, pages, num, 0);
1739 }
1740 EXPORT_SYMBOL(vm_map_pages_zero);
1741
1742 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1743                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1744 {
1745         struct mm_struct *mm = vma->vm_mm;
1746         pte_t *pte, entry;
1747         spinlock_t *ptl;
1748
1749         pte = get_locked_pte(mm, addr, &ptl);
1750         if (!pte)
1751                 return VM_FAULT_OOM;
1752         if (!pte_none(*pte)) {
1753                 if (mkwrite) {
1754                         /*
1755                          * For read faults on private mappings the PFN passed
1756                          * in may not match the PFN we have mapped if the
1757                          * mapped PFN is a writeable COW page.  In the mkwrite
1758                          * case we are creating a writable PTE for a shared
1759                          * mapping and we expect the PFNs to match. If they
1760                          * don't match, we are likely racing with block
1761                          * allocation and mapping invalidation so just skip the
1762                          * update.
1763                          */
1764                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1765                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1766                                 goto out_unlock;
1767                         }
1768                         entry = pte_mkyoung(*pte);
1769                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1770                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1771                                 update_mmu_cache(vma, addr, pte);
1772                 }
1773                 goto out_unlock;
1774         }
1775
1776         /* Ok, finally just insert the thing.. */
1777         if (pfn_t_devmap(pfn))
1778                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1779         else
1780                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1781
1782         if (mkwrite) {
1783                 entry = pte_mkyoung(entry);
1784                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1785         }
1786
1787         set_pte_at(mm, addr, pte, entry);
1788         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1789
1790 out_unlock:
1791         pte_unmap_unlock(pte, ptl);
1792         return VM_FAULT_NOPAGE;
1793 }
1794
1795 /**
1796  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1797  * @vma: user vma to map to
1798  * @addr: target user address of this page
1799  * @pfn: source kernel pfn
1800  * @pgprot: pgprot flags for the inserted page
1801  *
1802  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1803  * to override pgprot on a per-page basis.
1804  *
1805  * This only makes sense for IO mappings, and it makes no sense for
1806  * COW mappings.  In general, using multiple vmas is preferable;
1807  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1808  * impractical.
1809  *
1810  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1811  * a value of @pgprot different from that of @vma->vm_page_prot.
1812  *
1813  * Context: Process context.  May allocate using %GFP_KERNEL.
1814  * Return: vm_fault_t value.
1815  */
1816 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1817                         unsigned long pfn, pgprot_t pgprot)
1818 {
1819         /*
1820          * Technically, architectures with pte_special can avoid all these
1821          * restrictions (same for remap_pfn_range).  However we would like
1822          * consistency in testing and feature parity among all, so we should
1823          * try to keep these invariants in place for everybody.
1824          */
1825         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1826         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1827                                                 (VM_PFNMAP|VM_MIXEDMAP));
1828         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1829         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1830
1831         if (addr < vma->vm_start || addr >= vma->vm_end)
1832                 return VM_FAULT_SIGBUS;
1833
1834         if (!pfn_modify_allowed(pfn, pgprot))
1835                 return VM_FAULT_SIGBUS;
1836
1837         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1838
1839         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1840                         false);
1841 }
1842 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1843
1844 /**
1845  * vmf_insert_pfn - insert single pfn into user vma
1846  * @vma: user vma to map to
1847  * @addr: target user address of this page
1848  * @pfn: source kernel pfn
1849  *
1850  * Similar to vm_insert_page, this allows drivers to insert individual pages
1851  * they've allocated into a user vma. Same comments apply.
1852  *
1853  * This function should only be called from a vm_ops->fault handler, and
1854  * in that case the handler should return the result of this function.
1855  *
1856  * vma cannot be a COW mapping.
1857  *
1858  * As this is called only for pages that do not currently exist, we
1859  * do not need to flush old virtual caches or the TLB.
1860  *
1861  * Context: Process context.  May allocate using %GFP_KERNEL.
1862  * Return: vm_fault_t value.
1863  */
1864 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1865                         unsigned long pfn)
1866 {
1867         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1868 }
1869 EXPORT_SYMBOL(vmf_insert_pfn);
1870
1871 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1872 {
1873         /* these checks mirror the abort conditions in vm_normal_page */
1874         if (vma->vm_flags & VM_MIXEDMAP)
1875                 return true;
1876         if (pfn_t_devmap(pfn))
1877                 return true;
1878         if (pfn_t_special(pfn))
1879                 return true;
1880         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1881                 return true;
1882         return false;
1883 }
1884
1885 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1886                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1887                 bool mkwrite)
1888 {
1889         int err;
1890
1891         BUG_ON(!vm_mixed_ok(vma, pfn));
1892
1893         if (addr < vma->vm_start || addr >= vma->vm_end)
1894                 return VM_FAULT_SIGBUS;
1895
1896         track_pfn_insert(vma, &pgprot, pfn);
1897
1898         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1899                 return VM_FAULT_SIGBUS;
1900
1901         /*
1902          * If we don't have pte special, then we have to use the pfn_valid()
1903          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1904          * refcount the page if pfn_valid is true (hence insert_page rather
1905          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1906          * without pte special, it would there be refcounted as a normal page.
1907          */
1908         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1909             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1910                 struct page *page;
1911
1912                 /*
1913                  * At this point we are committed to insert_page()
1914                  * regardless of whether the caller specified flags that
1915                  * result in pfn_t_has_page() == false.
1916                  */
1917                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1918                 err = insert_page(vma, addr, page, pgprot);
1919         } else {
1920                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1921         }
1922
1923         if (err == -ENOMEM)
1924                 return VM_FAULT_OOM;
1925         if (err < 0 && err != -EBUSY)
1926                 return VM_FAULT_SIGBUS;
1927
1928         return VM_FAULT_NOPAGE;
1929 }
1930
1931 /**
1932  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1933  * @vma: user vma to map to
1934  * @addr: target user address of this page
1935  * @pfn: source kernel pfn
1936  * @pgprot: pgprot flags for the inserted page
1937  *
1938  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1939  * to override pgprot on a per-page basis.
1940  *
1941  * Typically this function should be used by drivers to set caching- and
1942  * encryption bits different than those of @vma->vm_page_prot, because
1943  * the caching- or encryption mode may not be known at mmap() time.
1944  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1945  * to set caching and encryption bits for those vmas (except for COW pages).
1946  * This is ensured by core vm only modifying these page table entries using
1947  * functions that don't touch caching- or encryption bits, using pte_modify()
1948  * if needed. (See for example mprotect()).
1949  * Also when new page-table entries are created, this is only done using the
1950  * fault() callback, and never using the value of vma->vm_page_prot,
1951  * except for page-table entries that point to anonymous pages as the result
1952  * of COW.
1953  *
1954  * Context: Process context.  May allocate using %GFP_KERNEL.
1955  * Return: vm_fault_t value.
1956  */
1957 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1958                                  pfn_t pfn, pgprot_t pgprot)
1959 {
1960         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1961 }
1962 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1963
1964 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1965                 pfn_t pfn)
1966 {
1967         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1968 }
1969 EXPORT_SYMBOL(vmf_insert_mixed);
1970
1971 /*
1972  *  If the insertion of PTE failed because someone else already added a
1973  *  different entry in the mean time, we treat that as success as we assume
1974  *  the same entry was actually inserted.
1975  */
1976 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977                 unsigned long addr, pfn_t pfn)
1978 {
1979         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1980 }
1981 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1982
1983 /*
1984  * maps a range of physical memory into the requested pages. the old
1985  * mappings are removed. any references to nonexistent pages results
1986  * in null mappings (currently treated as "copy-on-access")
1987  */
1988 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1989                         unsigned long addr, unsigned long end,
1990                         unsigned long pfn, pgprot_t prot)
1991 {
1992         pte_t *pte;
1993         spinlock_t *ptl;
1994         int err = 0;
1995
1996         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1997         if (!pte)
1998                 return -ENOMEM;
1999         arch_enter_lazy_mmu_mode();
2000         do {
2001                 BUG_ON(!pte_none(*pte));
2002                 if (!pfn_modify_allowed(pfn, prot)) {
2003                         err = -EACCES;
2004                         break;
2005                 }
2006                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2007                 pfn++;
2008         } while (pte++, addr += PAGE_SIZE, addr != end);
2009         arch_leave_lazy_mmu_mode();
2010         pte_unmap_unlock(pte - 1, ptl);
2011         return err;
2012 }
2013
2014 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2015                         unsigned long addr, unsigned long end,
2016                         unsigned long pfn, pgprot_t prot)
2017 {
2018         pmd_t *pmd;
2019         unsigned long next;
2020         int err;
2021
2022         pfn -= addr >> PAGE_SHIFT;
2023         pmd = pmd_alloc(mm, pud, addr);
2024         if (!pmd)
2025                 return -ENOMEM;
2026         VM_BUG_ON(pmd_trans_huge(*pmd));
2027         do {
2028                 next = pmd_addr_end(addr, end);
2029                 err = remap_pte_range(mm, pmd, addr, next,
2030                                 pfn + (addr >> PAGE_SHIFT), prot);
2031                 if (err)
2032                         return err;
2033         } while (pmd++, addr = next, addr != end);
2034         return 0;
2035 }
2036
2037 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2038                         unsigned long addr, unsigned long end,
2039                         unsigned long pfn, pgprot_t prot)
2040 {
2041         pud_t *pud;
2042         unsigned long next;
2043         int err;
2044
2045         pfn -= addr >> PAGE_SHIFT;
2046         pud = pud_alloc(mm, p4d, addr);
2047         if (!pud)
2048                 return -ENOMEM;
2049         do {
2050                 next = pud_addr_end(addr, end);
2051                 err = remap_pmd_range(mm, pud, addr, next,
2052                                 pfn + (addr >> PAGE_SHIFT), prot);
2053                 if (err)
2054                         return err;
2055         } while (pud++, addr = next, addr != end);
2056         return 0;
2057 }
2058
2059 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2060                         unsigned long addr, unsigned long end,
2061                         unsigned long pfn, pgprot_t prot)
2062 {
2063         p4d_t *p4d;
2064         unsigned long next;
2065         int err;
2066
2067         pfn -= addr >> PAGE_SHIFT;
2068         p4d = p4d_alloc(mm, pgd, addr);
2069         if (!p4d)
2070                 return -ENOMEM;
2071         do {
2072                 next = p4d_addr_end(addr, end);
2073                 err = remap_pud_range(mm, p4d, addr, next,
2074                                 pfn + (addr >> PAGE_SHIFT), prot);
2075                 if (err)
2076                         return err;
2077         } while (p4d++, addr = next, addr != end);
2078         return 0;
2079 }
2080
2081 /**
2082  * remap_pfn_range - remap kernel memory to userspace
2083  * @vma: user vma to map to
2084  * @addr: target user address to start at
2085  * @pfn: page frame number of kernel physical memory address
2086  * @size: size of mapping area
2087  * @prot: page protection flags for this mapping
2088  *
2089  * Note: this is only safe if the mm semaphore is held when called.
2090  *
2091  * Return: %0 on success, negative error code otherwise.
2092  */
2093 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2094                     unsigned long pfn, unsigned long size, pgprot_t prot)
2095 {
2096         pgd_t *pgd;
2097         unsigned long next;
2098         unsigned long end = addr + PAGE_ALIGN(size);
2099         struct mm_struct *mm = vma->vm_mm;
2100         unsigned long remap_pfn = pfn;
2101         int err;
2102
2103         /*
2104          * Physically remapped pages are special. Tell the
2105          * rest of the world about it:
2106          *   VM_IO tells people not to look at these pages
2107          *      (accesses can have side effects).
2108          *   VM_PFNMAP tells the core MM that the base pages are just
2109          *      raw PFN mappings, and do not have a "struct page" associated
2110          *      with them.
2111          *   VM_DONTEXPAND
2112          *      Disable vma merging and expanding with mremap().
2113          *   VM_DONTDUMP
2114          *      Omit vma from core dump, even when VM_IO turned off.
2115          *
2116          * There's a horrible special case to handle copy-on-write
2117          * behaviour that some programs depend on. We mark the "original"
2118          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2119          * See vm_normal_page() for details.
2120          */
2121         if (is_cow_mapping(vma->vm_flags)) {
2122                 if (addr != vma->vm_start || end != vma->vm_end)
2123                         return -EINVAL;
2124                 vma->vm_pgoff = pfn;
2125         }
2126
2127         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2128         if (err)
2129                 return -EINVAL;
2130
2131         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2132
2133         BUG_ON(addr >= end);
2134         pfn -= addr >> PAGE_SHIFT;
2135         pgd = pgd_offset(mm, addr);
2136         flush_cache_range(vma, addr, end);
2137         do {
2138                 next = pgd_addr_end(addr, end);
2139                 err = remap_p4d_range(mm, pgd, addr, next,
2140                                 pfn + (addr >> PAGE_SHIFT), prot);
2141                 if (err)
2142                         break;
2143         } while (pgd++, addr = next, addr != end);
2144
2145         if (err)
2146                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2147
2148         return err;
2149 }
2150 EXPORT_SYMBOL(remap_pfn_range);
2151
2152 /**
2153  * vm_iomap_memory - remap memory to userspace
2154  * @vma: user vma to map to
2155  * @start: start of the physical memory to be mapped
2156  * @len: size of area
2157  *
2158  * This is a simplified io_remap_pfn_range() for common driver use. The
2159  * driver just needs to give us the physical memory range to be mapped,
2160  * we'll figure out the rest from the vma information.
2161  *
2162  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2163  * whatever write-combining details or similar.
2164  *
2165  * Return: %0 on success, negative error code otherwise.
2166  */
2167 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2168 {
2169         unsigned long vm_len, pfn, pages;
2170
2171         /* Check that the physical memory area passed in looks valid */
2172         if (start + len < start)
2173                 return -EINVAL;
2174         /*
2175          * You *really* shouldn't map things that aren't page-aligned,
2176          * but we've historically allowed it because IO memory might
2177          * just have smaller alignment.
2178          */
2179         len += start & ~PAGE_MASK;
2180         pfn = start >> PAGE_SHIFT;
2181         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2182         if (pfn + pages < pfn)
2183                 return -EINVAL;
2184
2185         /* We start the mapping 'vm_pgoff' pages into the area */
2186         if (vma->vm_pgoff > pages)
2187                 return -EINVAL;
2188         pfn += vma->vm_pgoff;
2189         pages -= vma->vm_pgoff;
2190
2191         /* Can we fit all of the mapping? */
2192         vm_len = vma->vm_end - vma->vm_start;
2193         if (vm_len >> PAGE_SHIFT > pages)
2194                 return -EINVAL;
2195
2196         /* Ok, let it rip */
2197         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2198 }
2199 EXPORT_SYMBOL(vm_iomap_memory);
2200
2201 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2202                                      unsigned long addr, unsigned long end,
2203                                      pte_fn_t fn, void *data, bool create)
2204 {
2205         pte_t *pte;
2206         int err = 0;
2207         spinlock_t *uninitialized_var(ptl);
2208
2209         if (create) {
2210                 pte = (mm == &init_mm) ?
2211                         pte_alloc_kernel(pmd, addr) :
2212                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2213                 if (!pte)
2214                         return -ENOMEM;
2215         } else {
2216                 pte = (mm == &init_mm) ?
2217                         pte_offset_kernel(pmd, addr) :
2218                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2219         }
2220
2221         BUG_ON(pmd_huge(*pmd));
2222
2223         arch_enter_lazy_mmu_mode();
2224
2225         do {
2226                 if (create || !pte_none(*pte)) {
2227                         err = fn(pte++, addr, data);
2228                         if (err)
2229                                 break;
2230                 }
2231         } while (addr += PAGE_SIZE, addr != end);
2232
2233         arch_leave_lazy_mmu_mode();
2234
2235         if (mm != &init_mm)
2236                 pte_unmap_unlock(pte-1, ptl);
2237         return err;
2238 }
2239
2240 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2241                                      unsigned long addr, unsigned long end,
2242                                      pte_fn_t fn, void *data, bool create)
2243 {
2244         pmd_t *pmd;
2245         unsigned long next;
2246         int err = 0;
2247
2248         BUG_ON(pud_huge(*pud));
2249
2250         if (create) {
2251                 pmd = pmd_alloc(mm, pud, addr);
2252                 if (!pmd)
2253                         return -ENOMEM;
2254         } else {
2255                 pmd = pmd_offset(pud, addr);
2256         }
2257         do {
2258                 next = pmd_addr_end(addr, end);
2259                 if (create || !pmd_none_or_clear_bad(pmd)) {
2260                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2261                                                  create);
2262                         if (err)
2263                                 break;
2264                 }
2265         } while (pmd++, addr = next, addr != end);
2266         return err;
2267 }
2268
2269 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2270                                      unsigned long addr, unsigned long end,
2271                                      pte_fn_t fn, void *data, bool create)
2272 {
2273         pud_t *pud;
2274         unsigned long next;
2275         int err = 0;
2276
2277         if (create) {
2278                 pud = pud_alloc(mm, p4d, addr);
2279                 if (!pud)
2280                         return -ENOMEM;
2281         } else {
2282                 pud = pud_offset(p4d, addr);
2283         }
2284         do {
2285                 next = pud_addr_end(addr, end);
2286                 if (create || !pud_none_or_clear_bad(pud)) {
2287                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2288                                                  create);
2289                         if (err)
2290                                 break;
2291                 }
2292         } while (pud++, addr = next, addr != end);
2293         return err;
2294 }
2295
2296 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2297                                      unsigned long addr, unsigned long end,
2298                                      pte_fn_t fn, void *data, bool create)
2299 {
2300         p4d_t *p4d;
2301         unsigned long next;
2302         int err = 0;
2303
2304         if (create) {
2305                 p4d = p4d_alloc(mm, pgd, addr);
2306                 if (!p4d)
2307                         return -ENOMEM;
2308         } else {
2309                 p4d = p4d_offset(pgd, addr);
2310         }
2311         do {
2312                 next = p4d_addr_end(addr, end);
2313                 if (create || !p4d_none_or_clear_bad(p4d)) {
2314                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2315                                                  create);
2316                         if (err)
2317                                 break;
2318                 }
2319         } while (p4d++, addr = next, addr != end);
2320         return err;
2321 }
2322
2323 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2324                                  unsigned long size, pte_fn_t fn,
2325                                  void *data, bool create)
2326 {
2327         pgd_t *pgd;
2328         unsigned long next;
2329         unsigned long end = addr + size;
2330         int err = 0;
2331
2332         if (WARN_ON(addr >= end))
2333                 return -EINVAL;
2334
2335         pgd = pgd_offset(mm, addr);
2336         do {
2337                 next = pgd_addr_end(addr, end);
2338                 if (!create && pgd_none_or_clear_bad(pgd))
2339                         continue;
2340                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2341                 if (err)
2342                         break;
2343         } while (pgd++, addr = next, addr != end);
2344
2345         return err;
2346 }
2347
2348 /*
2349  * Scan a region of virtual memory, filling in page tables as necessary
2350  * and calling a provided function on each leaf page table.
2351  */
2352 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2353                         unsigned long size, pte_fn_t fn, void *data)
2354 {
2355         return __apply_to_page_range(mm, addr, size, fn, data, true);
2356 }
2357 EXPORT_SYMBOL_GPL(apply_to_page_range);
2358
2359 /*
2360  * Scan a region of virtual memory, calling a provided function on
2361  * each leaf page table where it exists.
2362  *
2363  * Unlike apply_to_page_range, this does _not_ fill in page tables
2364  * where they are absent.
2365  */
2366 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2367                                  unsigned long size, pte_fn_t fn, void *data)
2368 {
2369         return __apply_to_page_range(mm, addr, size, fn, data, false);
2370 }
2371 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2372
2373 /*
2374  * handle_pte_fault chooses page fault handler according to an entry which was
2375  * read non-atomically.  Before making any commitment, on those architectures
2376  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2377  * parts, do_swap_page must check under lock before unmapping the pte and
2378  * proceeding (but do_wp_page is only called after already making such a check;
2379  * and do_anonymous_page can safely check later on).
2380  */
2381 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2382                                 pte_t *page_table, pte_t orig_pte)
2383 {
2384         int same = 1;
2385 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2386         if (sizeof(pte_t) > sizeof(unsigned long)) {
2387                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2388                 spin_lock(ptl);
2389                 same = pte_same(*page_table, orig_pte);
2390                 spin_unlock(ptl);
2391         }
2392 #endif
2393         pte_unmap(page_table);
2394         return same;
2395 }
2396
2397 static inline bool cow_user_page(struct page *dst, struct page *src,
2398                                  struct vm_fault *vmf)
2399 {
2400         bool ret;
2401         void *kaddr;
2402         void __user *uaddr;
2403         bool locked = false;
2404         struct vm_area_struct *vma = vmf->vma;
2405         struct mm_struct *mm = vma->vm_mm;
2406         unsigned long addr = vmf->address;
2407
2408         debug_dma_assert_idle(src);
2409
2410         if (likely(src)) {
2411                 copy_user_highpage(dst, src, addr, vma);
2412                 return true;
2413         }
2414
2415         /*
2416          * If the source page was a PFN mapping, we don't have
2417          * a "struct page" for it. We do a best-effort copy by
2418          * just copying from the original user address. If that
2419          * fails, we just zero-fill it. Live with it.
2420          */
2421         kaddr = kmap_atomic(dst);
2422         uaddr = (void __user *)(addr & PAGE_MASK);
2423
2424         /*
2425          * On architectures with software "accessed" bits, we would
2426          * take a double page fault, so mark it accessed here.
2427          */
2428         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2429                 pte_t entry;
2430
2431                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2432                 locked = true;
2433                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2434                         /*
2435                          * Other thread has already handled the fault
2436                          * and update local tlb only
2437                          */
2438                         update_mmu_tlb(vma, addr, vmf->pte);
2439                         ret = false;
2440                         goto pte_unlock;
2441                 }
2442
2443                 entry = pte_mkyoung(vmf->orig_pte);
2444                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2445                         update_mmu_cache(vma, addr, vmf->pte);
2446         }
2447
2448         /*
2449          * This really shouldn't fail, because the page is there
2450          * in the page tables. But it might just be unreadable,
2451          * in which case we just give up and fill the result with
2452          * zeroes.
2453          */
2454         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2455                 if (locked)
2456                         goto warn;
2457
2458                 /* Re-validate under PTL if the page is still mapped */
2459                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2460                 locked = true;
2461                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2462                         /* The PTE changed under us, update local tlb */
2463                         update_mmu_tlb(vma, addr, vmf->pte);
2464                         ret = false;
2465                         goto pte_unlock;
2466                 }
2467
2468                 /*
2469                  * The same page can be mapped back since last copy attempt.
2470                  * Try to copy again under PTL.
2471                  */
2472                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2473                         /*
2474                          * Give a warn in case there can be some obscure
2475                          * use-case
2476                          */
2477 warn:
2478                         WARN_ON_ONCE(1);
2479                         clear_page(kaddr);
2480                 }
2481         }
2482
2483         ret = true;
2484
2485 pte_unlock:
2486         if (locked)
2487                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2488         kunmap_atomic(kaddr);
2489         flush_dcache_page(dst);
2490
2491         return ret;
2492 }
2493
2494 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2495 {
2496         struct file *vm_file = vma->vm_file;
2497
2498         if (vm_file)
2499                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2500
2501         /*
2502          * Special mappings (e.g. VDSO) do not have any file so fake
2503          * a default GFP_KERNEL for them.
2504          */
2505         return GFP_KERNEL;
2506 }
2507
2508 /*
2509  * Notify the address space that the page is about to become writable so that
2510  * it can prohibit this or wait for the page to get into an appropriate state.
2511  *
2512  * We do this without the lock held, so that it can sleep if it needs to.
2513  */
2514 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2515 {
2516         vm_fault_t ret;
2517         struct page *page = vmf->page;
2518         unsigned int old_flags = vmf->flags;
2519
2520         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2521
2522         if (vmf->vma->vm_file &&
2523             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2524                 return VM_FAULT_SIGBUS;
2525
2526         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2527         /* Restore original flags so that caller is not surprised */
2528         vmf->flags = old_flags;
2529         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2530                 return ret;
2531         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2532                 lock_page(page);
2533                 if (!page->mapping) {
2534                         unlock_page(page);
2535                         return 0; /* retry */
2536                 }
2537                 ret |= VM_FAULT_LOCKED;
2538         } else
2539                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2540         return ret;
2541 }
2542
2543 /*
2544  * Handle dirtying of a page in shared file mapping on a write fault.
2545  *
2546  * The function expects the page to be locked and unlocks it.
2547  */
2548 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2549 {
2550         struct vm_area_struct *vma = vmf->vma;
2551         struct address_space *mapping;
2552         struct page *page = vmf->page;
2553         bool dirtied;
2554         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2555
2556         dirtied = set_page_dirty(page);
2557         VM_BUG_ON_PAGE(PageAnon(page), page);
2558         /*
2559          * Take a local copy of the address_space - page.mapping may be zeroed
2560          * by truncate after unlock_page().   The address_space itself remains
2561          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2562          * release semantics to prevent the compiler from undoing this copying.
2563          */
2564         mapping = page_rmapping(page);
2565         unlock_page(page);
2566
2567         if (!page_mkwrite)
2568                 file_update_time(vma->vm_file);
2569
2570         /*
2571          * Throttle page dirtying rate down to writeback speed.
2572          *
2573          * mapping may be NULL here because some device drivers do not
2574          * set page.mapping but still dirty their pages
2575          *
2576          * Drop the mmap_lock before waiting on IO, if we can. The file
2577          * is pinning the mapping, as per above.
2578          */
2579         if ((dirtied || page_mkwrite) && mapping) {
2580                 struct file *fpin;
2581
2582                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2583                 balance_dirty_pages_ratelimited(mapping);
2584                 if (fpin) {
2585                         fput(fpin);
2586                         return VM_FAULT_RETRY;
2587                 }
2588         }
2589
2590         return 0;
2591 }
2592
2593 /*
2594  * Handle write page faults for pages that can be reused in the current vma
2595  *
2596  * This can happen either due to the mapping being with the VM_SHARED flag,
2597  * or due to us being the last reference standing to the page. In either
2598  * case, all we need to do here is to mark the page as writable and update
2599  * any related book-keeping.
2600  */
2601 static inline void wp_page_reuse(struct vm_fault *vmf)
2602         __releases(vmf->ptl)
2603 {
2604         struct vm_area_struct *vma = vmf->vma;
2605         struct page *page = vmf->page;
2606         pte_t entry;
2607         /*
2608          * Clear the pages cpupid information as the existing
2609          * information potentially belongs to a now completely
2610          * unrelated process.
2611          */
2612         if (page)
2613                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2614
2615         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2616         entry = pte_mkyoung(vmf->orig_pte);
2617         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2618         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2619                 update_mmu_cache(vma, vmf->address, vmf->pte);
2620         pte_unmap_unlock(vmf->pte, vmf->ptl);
2621 }
2622
2623 /*
2624  * Handle the case of a page which we actually need to copy to a new page.
2625  *
2626  * Called with mmap_lock locked and the old page referenced, but
2627  * without the ptl held.
2628  *
2629  * High level logic flow:
2630  *
2631  * - Allocate a page, copy the content of the old page to the new one.
2632  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2633  * - Take the PTL. If the pte changed, bail out and release the allocated page
2634  * - If the pte is still the way we remember it, update the page table and all
2635  *   relevant references. This includes dropping the reference the page-table
2636  *   held to the old page, as well as updating the rmap.
2637  * - In any case, unlock the PTL and drop the reference we took to the old page.
2638  */
2639 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2640 {
2641         struct vm_area_struct *vma = vmf->vma;
2642         struct mm_struct *mm = vma->vm_mm;
2643         struct page *old_page = vmf->page;
2644         struct page *new_page = NULL;
2645         pte_t entry;
2646         int page_copied = 0;
2647         struct mmu_notifier_range range;
2648
2649         if (unlikely(anon_vma_prepare(vma)))
2650                 goto oom;
2651
2652         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2653                 new_page = alloc_zeroed_user_highpage_movable(vma,
2654                                                               vmf->address);
2655                 if (!new_page)
2656                         goto oom;
2657         } else {
2658                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2659                                 vmf->address);
2660                 if (!new_page)
2661                         goto oom;
2662
2663                 if (!cow_user_page(new_page, old_page, vmf)) {
2664                         /*
2665                          * COW failed, if the fault was solved by other,
2666                          * it's fine. If not, userspace would re-fault on
2667                          * the same address and we will handle the fault
2668                          * from the second attempt.
2669                          */
2670                         put_page(new_page);
2671                         if (old_page)
2672                                 put_page(old_page);
2673                         return 0;
2674                 }
2675         }
2676
2677         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2678                 goto oom_free_new;
2679         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2680
2681         __SetPageUptodate(new_page);
2682
2683         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2684                                 vmf->address & PAGE_MASK,
2685                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2686         mmu_notifier_invalidate_range_start(&range);
2687
2688         /*
2689          * Re-check the pte - we dropped the lock
2690          */
2691         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2692         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2693                 if (old_page) {
2694                         if (!PageAnon(old_page)) {
2695                                 dec_mm_counter_fast(mm,
2696                                                 mm_counter_file(old_page));
2697                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2698                         }
2699                 } else {
2700                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2701                 }
2702                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2703                 entry = mk_pte(new_page, vma->vm_page_prot);
2704                 entry = pte_sw_mkyoung(entry);
2705                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706                 /*
2707                  * Clear the pte entry and flush it first, before updating the
2708                  * pte with the new entry. This will avoid a race condition
2709                  * seen in the presence of one thread doing SMC and another
2710                  * thread doing COW.
2711                  */
2712                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2714                 lru_cache_add_active_or_unevictable(new_page, vma);
2715                 /*
2716                  * We call the notify macro here because, when using secondary
2717                  * mmu page tables (such as kvm shadow page tables), we want the
2718                  * new page to be mapped directly into the secondary page table.
2719                  */
2720                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2721                 update_mmu_cache(vma, vmf->address, vmf->pte);
2722                 if (old_page) {
2723                         /*
2724                          * Only after switching the pte to the new page may
2725                          * we remove the mapcount here. Otherwise another
2726                          * process may come and find the rmap count decremented
2727                          * before the pte is switched to the new page, and
2728                          * "reuse" the old page writing into it while our pte
2729                          * here still points into it and can be read by other
2730                          * threads.
2731                          *
2732                          * The critical issue is to order this
2733                          * page_remove_rmap with the ptp_clear_flush above.
2734                          * Those stores are ordered by (if nothing else,)
2735                          * the barrier present in the atomic_add_negative
2736                          * in page_remove_rmap.
2737                          *
2738                          * Then the TLB flush in ptep_clear_flush ensures that
2739                          * no process can access the old page before the
2740                          * decremented mapcount is visible. And the old page
2741                          * cannot be reused until after the decremented
2742                          * mapcount is visible. So transitively, TLBs to
2743                          * old page will be flushed before it can be reused.
2744                          */
2745                         page_remove_rmap(old_page, false);
2746                 }
2747
2748                 /* Free the old page.. */
2749                 new_page = old_page;
2750                 page_copied = 1;
2751         } else {
2752                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2753         }
2754
2755         if (new_page)
2756                 put_page(new_page);
2757
2758         pte_unmap_unlock(vmf->pte, vmf->ptl);
2759         /*
2760          * No need to double call mmu_notifier->invalidate_range() callback as
2761          * the above ptep_clear_flush_notify() did already call it.
2762          */
2763         mmu_notifier_invalidate_range_only_end(&range);
2764         if (old_page) {
2765                 /*
2766                  * Don't let another task, with possibly unlocked vma,
2767                  * keep the mlocked page.
2768                  */
2769                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2770                         lock_page(old_page);    /* LRU manipulation */
2771                         if (PageMlocked(old_page))
2772                                 munlock_vma_page(old_page);
2773                         unlock_page(old_page);
2774                 }
2775                 put_page(old_page);
2776         }
2777         return page_copied ? VM_FAULT_WRITE : 0;
2778 oom_free_new:
2779         put_page(new_page);
2780 oom:
2781         if (old_page)
2782                 put_page(old_page);
2783         return VM_FAULT_OOM;
2784 }
2785
2786 /**
2787  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2788  *                        writeable once the page is prepared
2789  *
2790  * @vmf: structure describing the fault
2791  *
2792  * This function handles all that is needed to finish a write page fault in a
2793  * shared mapping due to PTE being read-only once the mapped page is prepared.
2794  * It handles locking of PTE and modifying it.
2795  *
2796  * The function expects the page to be locked or other protection against
2797  * concurrent faults / writeback (such as DAX radix tree locks).
2798  *
2799  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2800  * we acquired PTE lock.
2801  */
2802 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2803 {
2804         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2805         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2806                                        &vmf->ptl);
2807         /*
2808          * We might have raced with another page fault while we released the
2809          * pte_offset_map_lock.
2810          */
2811         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2812                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2813                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2814                 return VM_FAULT_NOPAGE;
2815         }
2816         wp_page_reuse(vmf);
2817         return 0;
2818 }
2819
2820 /*
2821  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2822  * mapping
2823  */
2824 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2825 {
2826         struct vm_area_struct *vma = vmf->vma;
2827
2828         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2829                 vm_fault_t ret;
2830
2831                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2832                 vmf->flags |= FAULT_FLAG_MKWRITE;
2833                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2834                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2835                         return ret;
2836                 return finish_mkwrite_fault(vmf);
2837         }
2838         wp_page_reuse(vmf);
2839         return VM_FAULT_WRITE;
2840 }
2841
2842 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2843         __releases(vmf->ptl)
2844 {
2845         struct vm_area_struct *vma = vmf->vma;
2846         vm_fault_t ret = VM_FAULT_WRITE;
2847
2848         get_page(vmf->page);
2849
2850         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2851                 vm_fault_t tmp;
2852
2853                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2854                 tmp = do_page_mkwrite(vmf);
2855                 if (unlikely(!tmp || (tmp &
2856                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2857                         put_page(vmf->page);
2858                         return tmp;
2859                 }
2860                 tmp = finish_mkwrite_fault(vmf);
2861                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2862                         unlock_page(vmf->page);
2863                         put_page(vmf->page);
2864                         return tmp;
2865                 }
2866         } else {
2867                 wp_page_reuse(vmf);
2868                 lock_page(vmf->page);
2869         }
2870         ret |= fault_dirty_shared_page(vmf);
2871         put_page(vmf->page);
2872
2873         return ret;
2874 }
2875
2876 /*
2877  * This routine handles present pages, when users try to write
2878  * to a shared page. It is done by copying the page to a new address
2879  * and decrementing the shared-page counter for the old page.
2880  *
2881  * Note that this routine assumes that the protection checks have been
2882  * done by the caller (the low-level page fault routine in most cases).
2883  * Thus we can safely just mark it writable once we've done any necessary
2884  * COW.
2885  *
2886  * We also mark the page dirty at this point even though the page will
2887  * change only once the write actually happens. This avoids a few races,
2888  * and potentially makes it more efficient.
2889  *
2890  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2891  * but allow concurrent faults), with pte both mapped and locked.
2892  * We return with mmap_lock still held, but pte unmapped and unlocked.
2893  */
2894 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2895         __releases(vmf->ptl)
2896 {
2897         struct vm_area_struct *vma = vmf->vma;
2898
2899         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2900                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2901                 return handle_userfault(vmf, VM_UFFD_WP);
2902         }
2903
2904         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2905         if (!vmf->page) {
2906                 /*
2907                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2908                  * VM_PFNMAP VMA.
2909                  *
2910                  * We should not cow pages in a shared writeable mapping.
2911                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2912                  */
2913                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2914                                      (VM_WRITE|VM_SHARED))
2915                         return wp_pfn_shared(vmf);
2916
2917                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2918                 return wp_page_copy(vmf);
2919         }
2920
2921         /*
2922          * Take out anonymous pages first, anonymous shared vmas are
2923          * not dirty accountable.
2924          */
2925         if (PageAnon(vmf->page)) {
2926                 int total_map_swapcount;
2927                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2928                                            page_count(vmf->page) != 1))
2929                         goto copy;
2930                 if (!trylock_page(vmf->page)) {
2931                         get_page(vmf->page);
2932                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2933                         lock_page(vmf->page);
2934                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2935                                         vmf->address, &vmf->ptl);
2936                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2937                                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2938                                 unlock_page(vmf->page);
2939                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2940                                 put_page(vmf->page);
2941                                 return 0;
2942                         }
2943                         put_page(vmf->page);
2944                 }
2945                 if (PageKsm(vmf->page)) {
2946                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2947                                                      vmf->address);
2948                         unlock_page(vmf->page);
2949                         if (!reused)
2950                                 goto copy;
2951                         wp_page_reuse(vmf);
2952                         return VM_FAULT_WRITE;
2953                 }
2954                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2955                         if (total_map_swapcount == 1) {
2956                                 /*
2957                                  * The page is all ours. Move it to
2958                                  * our anon_vma so the rmap code will
2959                                  * not search our parent or siblings.
2960                                  * Protected against the rmap code by
2961                                  * the page lock.
2962                                  */
2963                                 page_move_anon_rmap(vmf->page, vma);
2964                         }
2965                         unlock_page(vmf->page);
2966                         wp_page_reuse(vmf);
2967                         return VM_FAULT_WRITE;
2968                 }
2969                 unlock_page(vmf->page);
2970         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2971                                         (VM_WRITE|VM_SHARED))) {
2972                 return wp_page_shared(vmf);
2973         }
2974 copy:
2975         /*
2976          * Ok, we need to copy. Oh, well..
2977          */
2978         get_page(vmf->page);
2979
2980         pte_unmap_unlock(vmf->pte, vmf->ptl);
2981         return wp_page_copy(vmf);
2982 }
2983
2984 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2985                 unsigned long start_addr, unsigned long end_addr,
2986                 struct zap_details *details)
2987 {
2988         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2989 }
2990
2991 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2992                                             struct zap_details *details)
2993 {
2994         struct vm_area_struct *vma;
2995         pgoff_t vba, vea, zba, zea;
2996
2997         vma_interval_tree_foreach(vma, root,
2998                         details->first_index, details->last_index) {
2999
3000                 vba = vma->vm_pgoff;
3001                 vea = vba + vma_pages(vma) - 1;
3002                 zba = details->first_index;
3003                 if (zba < vba)
3004                         zba = vba;
3005                 zea = details->last_index;
3006                 if (zea > vea)
3007                         zea = vea;
3008
3009                 unmap_mapping_range_vma(vma,
3010                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3011                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3012                                 details);
3013         }
3014 }
3015
3016 /**
3017  * unmap_mapping_pages() - Unmap pages from processes.
3018  * @mapping: The address space containing pages to be unmapped.
3019  * @start: Index of first page to be unmapped.
3020  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3021  * @even_cows: Whether to unmap even private COWed pages.
3022  *
3023  * Unmap the pages in this address space from any userspace process which
3024  * has them mmaped.  Generally, you want to remove COWed pages as well when
3025  * a file is being truncated, but not when invalidating pages from the page
3026  * cache.
3027  */
3028 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3029                 pgoff_t nr, bool even_cows)
3030 {
3031         struct zap_details details = { };
3032
3033         details.check_mapping = even_cows ? NULL : mapping;
3034         details.first_index = start;
3035         details.last_index = start + nr - 1;
3036         if (details.last_index < details.first_index)
3037                 details.last_index = ULONG_MAX;
3038
3039         i_mmap_lock_write(mapping);
3040         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3041                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3042         i_mmap_unlock_write(mapping);
3043 }
3044
3045 /**
3046  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3047  * address_space corresponding to the specified byte range in the underlying
3048  * file.
3049  *
3050  * @mapping: the address space containing mmaps to be unmapped.
3051  * @holebegin: byte in first page to unmap, relative to the start of
3052  * the underlying file.  This will be rounded down to a PAGE_SIZE
3053  * boundary.  Note that this is different from truncate_pagecache(), which
3054  * must keep the partial page.  In contrast, we must get rid of
3055  * partial pages.
3056  * @holelen: size of prospective hole in bytes.  This will be rounded
3057  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3058  * end of the file.
3059  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3060  * but 0 when invalidating pagecache, don't throw away private data.
3061  */
3062 void unmap_mapping_range(struct address_space *mapping,
3063                 loff_t const holebegin, loff_t const holelen, int even_cows)
3064 {
3065         pgoff_t hba = holebegin >> PAGE_SHIFT;
3066         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3067
3068         /* Check for overflow. */
3069         if (sizeof(holelen) > sizeof(hlen)) {
3070                 long long holeend =
3071                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3072                 if (holeend & ~(long long)ULONG_MAX)
3073                         hlen = ULONG_MAX - hba + 1;
3074         }
3075
3076         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3077 }
3078 EXPORT_SYMBOL(unmap_mapping_range);
3079
3080 /*
3081  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3082  * but allow concurrent faults), and pte mapped but not yet locked.
3083  * We return with pte unmapped and unlocked.
3084  *
3085  * We return with the mmap_lock locked or unlocked in the same cases
3086  * as does filemap_fault().
3087  */
3088 vm_fault_t do_swap_page(struct vm_fault *vmf)
3089 {
3090         struct vm_area_struct *vma = vmf->vma;
3091         struct page *page = NULL, *swapcache;
3092         swp_entry_t entry;
3093         pte_t pte;
3094         int locked;
3095         int exclusive = 0;
3096         vm_fault_t ret = 0;
3097
3098         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3099                 goto out;
3100
3101         entry = pte_to_swp_entry(vmf->orig_pte);
3102         if (unlikely(non_swap_entry(entry))) {
3103                 if (is_migration_entry(entry)) {
3104                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3105                                              vmf->address);
3106                 } else if (is_device_private_entry(entry)) {
3107                         vmf->page = device_private_entry_to_page(entry);
3108                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3109                 } else if (is_hwpoison_entry(entry)) {
3110                         ret = VM_FAULT_HWPOISON;
3111                 } else {
3112                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3113                         ret = VM_FAULT_SIGBUS;
3114                 }
3115                 goto out;
3116         }
3117
3118
3119         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3120         page = lookup_swap_cache(entry, vma, vmf->address);
3121         swapcache = page;
3122
3123         if (!page) {
3124                 struct swap_info_struct *si = swp_swap_info(entry);
3125
3126                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3127                                 __swap_count(entry) == 1) {
3128                         /* skip swapcache */
3129                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3130                                                         vmf->address);
3131                         if (page) {
3132                                 int err;
3133
3134                                 __SetPageLocked(page);
3135                                 __SetPageSwapBacked(page);
3136                                 set_page_private(page, entry.val);
3137
3138                                 /* Tell memcg to use swap ownership records */
3139                                 SetPageSwapCache(page);
3140                                 err = mem_cgroup_charge(page, vma->vm_mm,
3141                                                         GFP_KERNEL);
3142                                 ClearPageSwapCache(page);
3143                                 if (err)
3144                                         goto out_page;
3145
3146                                 lru_cache_add(page);
3147                                 swap_readpage(page, true);
3148                         }
3149                 } else {
3150                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3151                                                 vmf);
3152                         swapcache = page;
3153                 }
3154
3155                 if (!page) {
3156                         /*
3157                          * Back out if somebody else faulted in this pte
3158                          * while we released the pte lock.
3159                          */
3160                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3161                                         vmf->address, &vmf->ptl);
3162                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3163                                 ret = VM_FAULT_OOM;
3164                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3165                         goto unlock;
3166                 }
3167
3168                 /* Had to read the page from swap area: Major fault */
3169                 ret = VM_FAULT_MAJOR;
3170                 count_vm_event(PGMAJFAULT);
3171                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3172         } else if (PageHWPoison(page)) {
3173                 /*
3174                  * hwpoisoned dirty swapcache pages are kept for killing
3175                  * owner processes (which may be unknown at hwpoison time)
3176                  */
3177                 ret = VM_FAULT_HWPOISON;
3178                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3179                 goto out_release;
3180         }
3181
3182         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3183
3184         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3185         if (!locked) {
3186                 ret |= VM_FAULT_RETRY;
3187                 goto out_release;
3188         }
3189
3190         /*
3191          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3192          * release the swapcache from under us.  The page pin, and pte_same
3193          * test below, are not enough to exclude that.  Even if it is still
3194          * swapcache, we need to check that the page's swap has not changed.
3195          */
3196         if (unlikely((!PageSwapCache(page) ||
3197                         page_private(page) != entry.val)) && swapcache)
3198                 goto out_page;
3199
3200         page = ksm_might_need_to_copy(page, vma, vmf->address);
3201         if (unlikely(!page)) {
3202                 ret = VM_FAULT_OOM;
3203                 page = swapcache;
3204                 goto out_page;
3205         }
3206
3207         cgroup_throttle_swaprate(page, GFP_KERNEL);
3208
3209         /*
3210          * Back out if somebody else already faulted in this pte.
3211          */
3212         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3213                         &vmf->ptl);
3214         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3215                 goto out_nomap;
3216
3217         if (unlikely(!PageUptodate(page))) {
3218                 ret = VM_FAULT_SIGBUS;
3219                 goto out_nomap;
3220         }
3221
3222         /*
3223          * The page isn't present yet, go ahead with the fault.
3224          *
3225          * Be careful about the sequence of operations here.
3226          * To get its accounting right, reuse_swap_page() must be called
3227          * while the page is counted on swap but not yet in mapcount i.e.
3228          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3229          * must be called after the swap_free(), or it will never succeed.
3230          */
3231
3232         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3233         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3234         pte = mk_pte(page, vma->vm_page_prot);
3235         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3236                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3237                 vmf->flags &= ~FAULT_FLAG_WRITE;
3238                 ret |= VM_FAULT_WRITE;
3239                 exclusive = RMAP_EXCLUSIVE;
3240         }
3241         flush_icache_page(vma, page);
3242         if (pte_swp_soft_dirty(vmf->orig_pte))
3243                 pte = pte_mksoft_dirty(pte);
3244         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3245                 pte = pte_mkuffd_wp(pte);
3246                 pte = pte_wrprotect(pte);
3247         }
3248         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3249         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3250         vmf->orig_pte = pte;
3251
3252         /* ksm created a completely new copy */
3253         if (unlikely(page != swapcache && swapcache)) {
3254                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3255                 lru_cache_add_active_or_unevictable(page, vma);
3256         } else {
3257                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3258                 activate_page(page);
3259         }
3260
3261         swap_free(entry);
3262         if (mem_cgroup_swap_full(page) ||
3263             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3264                 try_to_free_swap(page);
3265         unlock_page(page);
3266         if (page != swapcache && swapcache) {
3267                 /*
3268                  * Hold the lock to avoid the swap entry to be reused
3269                  * until we take the PT lock for the pte_same() check
3270                  * (to avoid false positives from pte_same). For
3271                  * further safety release the lock after the swap_free
3272                  * so that the swap count won't change under a
3273                  * parallel locked swapcache.
3274                  */
3275                 unlock_page(swapcache);
3276                 put_page(swapcache);
3277         }
3278
3279         if (vmf->flags & FAULT_FLAG_WRITE) {
3280                 ret |= do_wp_page(vmf);
3281                 if (ret & VM_FAULT_ERROR)
3282                         ret &= VM_FAULT_ERROR;
3283                 goto out;
3284         }
3285
3286         /* No need to invalidate - it was non-present before */
3287         update_mmu_cache(vma, vmf->address, vmf->pte);
3288 unlock:
3289         pte_unmap_unlock(vmf->pte, vmf->ptl);
3290 out:
3291         return ret;
3292 out_nomap:
3293         pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 out_page:
3295         unlock_page(page);
3296 out_release:
3297         put_page(page);
3298         if (page != swapcache && swapcache) {
3299                 unlock_page(swapcache);
3300                 put_page(swapcache);
3301         }
3302         return ret;
3303 }
3304
3305 /*
3306  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3307  * but allow concurrent faults), and pte mapped but not yet locked.
3308  * We return with mmap_lock still held, but pte unmapped and unlocked.
3309  */
3310 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3311 {
3312         struct vm_area_struct *vma = vmf->vma;
3313         struct page *page;
3314         vm_fault_t ret = 0;
3315         pte_t entry;
3316
3317         /* File mapping without ->vm_ops ? */
3318         if (vma->vm_flags & VM_SHARED)
3319                 return VM_FAULT_SIGBUS;
3320
3321         /*
3322          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3323          * pte_offset_map() on pmds where a huge pmd might be created
3324          * from a different thread.
3325          *
3326          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3327          * parallel threads are excluded by other means.
3328          *
3329          * Here we only have mmap_read_lock(mm).
3330          */
3331         if (pte_alloc(vma->vm_mm, vmf->pmd))
3332                 return VM_FAULT_OOM;
3333
3334         /* See the comment in pte_alloc_one_map() */
3335         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3336                 return 0;
3337
3338         /* Use the zero-page for reads */
3339         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3340                         !mm_forbids_zeropage(vma->vm_mm)) {
3341                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3342                                                 vma->vm_page_prot));
3343                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3344                                 vmf->address, &vmf->ptl);
3345                 if (!pte_none(*vmf->pte)) {
3346                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3347                         goto unlock;
3348                 }
3349                 ret = check_stable_address_space(vma->vm_mm);
3350                 if (ret)
3351                         goto unlock;
3352                 /* Deliver the page fault to userland, check inside PT lock */
3353                 if (userfaultfd_missing(vma)) {
3354                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3355                         return handle_userfault(vmf, VM_UFFD_MISSING);
3356                 }
3357                 goto setpte;
3358         }
3359
3360         /* Allocate our own private page. */
3361         if (unlikely(anon_vma_prepare(vma)))
3362                 goto oom;
3363         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3364         if (!page)
3365                 goto oom;
3366
3367         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3368                 goto oom_free_page;
3369         cgroup_throttle_swaprate(page, GFP_KERNEL);
3370
3371         /*
3372          * The memory barrier inside __SetPageUptodate makes sure that
3373          * preceding stores to the page contents become visible before
3374          * the set_pte_at() write.
3375          */
3376         __SetPageUptodate(page);
3377
3378         entry = mk_pte(page, vma->vm_page_prot);
3379         entry = pte_sw_mkyoung(entry);
3380         if (vma->vm_flags & VM_WRITE)
3381                 entry = pte_mkwrite(pte_mkdirty(entry));
3382
3383         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3384                         &vmf->ptl);
3385         if (!pte_none(*vmf->pte)) {
3386                 update_mmu_cache(vma, vmf->address, vmf->pte);
3387                 goto release;
3388         }
3389
3390         ret = check_stable_address_space(vma->vm_mm);
3391         if (ret)
3392                 goto release;
3393
3394         /* Deliver the page fault to userland, check inside PT lock */
3395         if (userfaultfd_missing(vma)) {
3396                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3397                 put_page(page);
3398                 return handle_userfault(vmf, VM_UFFD_MISSING);
3399         }
3400
3401         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3402         page_add_new_anon_rmap(page, vma, vmf->address, false);
3403         lru_cache_add_active_or_unevictable(page, vma);
3404 setpte:
3405         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3406
3407         /* No need to invalidate - it was non-present before */
3408         update_mmu_cache(vma, vmf->address, vmf->pte);
3409 unlock:
3410         pte_unmap_unlock(vmf->pte, vmf->ptl);
3411         return ret;
3412 release:
3413         put_page(page);
3414         goto unlock;
3415 oom_free_page:
3416         put_page(page);
3417 oom:
3418         return VM_FAULT_OOM;
3419 }
3420
3421 /*
3422  * The mmap_lock must have been held on entry, and may have been
3423  * released depending on flags and vma->vm_ops->fault() return value.
3424  * See filemap_fault() and __lock_page_retry().
3425  */
3426 static vm_fault_t __do_fault(struct vm_fault *vmf)
3427 {
3428         struct vm_area_struct *vma = vmf->vma;
3429         vm_fault_t ret;
3430
3431         /*
3432          * Preallocate pte before we take page_lock because this might lead to
3433          * deadlocks for memcg reclaim which waits for pages under writeback:
3434          *                              lock_page(A)
3435          *                              SetPageWriteback(A)
3436          *                              unlock_page(A)
3437          * lock_page(B)
3438          *                              lock_page(B)
3439          * pte_alloc_pne
3440          *   shrink_page_list
3441          *     wait_on_page_writeback(A)
3442          *                              SetPageWriteback(B)
3443          *                              unlock_page(B)
3444          *                              # flush A, B to clear the writeback
3445          */
3446         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3447                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3448                 if (!vmf->prealloc_pte)
3449                         return VM_FAULT_OOM;
3450                 smp_wmb(); /* See comment in __pte_alloc() */
3451         }
3452
3453         ret = vma->vm_ops->fault(vmf);
3454         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3455                             VM_FAULT_DONE_COW)))
3456                 return ret;
3457
3458         if (unlikely(PageHWPoison(vmf->page))) {
3459                 if (ret & VM_FAULT_LOCKED)
3460                         unlock_page(vmf->page);
3461                 put_page(vmf->page);
3462                 vmf->page = NULL;
3463                 return VM_FAULT_HWPOISON;
3464         }
3465
3466         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3467                 lock_page(vmf->page);
3468         else
3469                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3470
3471         return ret;
3472 }
3473
3474 /*
3475  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3476  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3477  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3478  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3479  */
3480 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3481 {
3482         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3483 }
3484
3485 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3486 {
3487         struct vm_area_struct *vma = vmf->vma;
3488
3489         if (!pmd_none(*vmf->pmd))
3490                 goto map_pte;
3491         if (vmf->prealloc_pte) {
3492                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3493                 if (unlikely(!pmd_none(*vmf->pmd))) {
3494                         spin_unlock(vmf->ptl);
3495                         goto map_pte;
3496                 }
3497
3498                 mm_inc_nr_ptes(vma->vm_mm);
3499                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3500                 spin_unlock(vmf->ptl);
3501                 vmf->prealloc_pte = NULL;
3502         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3503                 return VM_FAULT_OOM;
3504         }
3505 map_pte:
3506         /*
3507          * If a huge pmd materialized under us just retry later.  Use
3508          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3509          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3510          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3511          * running immediately after a huge pmd fault in a different thread of
3512          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3513          * All we have to ensure is that it is a regular pmd that we can walk
3514          * with pte_offset_map() and we can do that through an atomic read in
3515          * C, which is what pmd_trans_unstable() provides.
3516          */
3517         if (pmd_devmap_trans_unstable(vmf->pmd))
3518                 return VM_FAULT_NOPAGE;
3519
3520         /*
3521          * At this point we know that our vmf->pmd points to a page of ptes
3522          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3523          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3524          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3525          * be valid and we will re-check to make sure the vmf->pte isn't
3526          * pte_none() under vmf->ptl protection when we return to
3527          * alloc_set_pte().
3528          */
3529         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3530                         &vmf->ptl);
3531         return 0;
3532 }
3533
3534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3535 static void deposit_prealloc_pte(struct vm_fault *vmf)
3536 {
3537         struct vm_area_struct *vma = vmf->vma;
3538
3539         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3540         /*
3541          * We are going to consume the prealloc table,
3542          * count that as nr_ptes.
3543          */
3544         mm_inc_nr_ptes(vma->vm_mm);
3545         vmf->prealloc_pte = NULL;
3546 }
3547
3548 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3549 {
3550         struct vm_area_struct *vma = vmf->vma;
3551         bool write = vmf->flags & FAULT_FLAG_WRITE;
3552         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3553         pmd_t entry;
3554         int i;
3555         vm_fault_t ret;
3556
3557         if (!transhuge_vma_suitable(vma, haddr))
3558                 return VM_FAULT_FALLBACK;
3559
3560         ret = VM_FAULT_FALLBACK;
3561         page = compound_head(page);
3562
3563         /*
3564          * Archs like ppc64 need additonal space to store information
3565          * related to pte entry. Use the preallocated table for that.
3566          */
3567         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3568                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3569                 if (!vmf->prealloc_pte)
3570                         return VM_FAULT_OOM;
3571                 smp_wmb(); /* See comment in __pte_alloc() */
3572         }
3573
3574         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3575         if (unlikely(!pmd_none(*vmf->pmd)))
3576                 goto out;
3577
3578         for (i = 0; i < HPAGE_PMD_NR; i++)
3579                 flush_icache_page(vma, page + i);
3580
3581         entry = mk_huge_pmd(page, vma->vm_page_prot);
3582         if (write)
3583                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3584
3585         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3586         page_add_file_rmap(page, true);
3587         /*
3588          * deposit and withdraw with pmd lock held
3589          */
3590         if (arch_needs_pgtable_deposit())
3591                 deposit_prealloc_pte(vmf);
3592
3593         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3594
3595         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3596
3597         /* fault is handled */
3598         ret = 0;
3599         count_vm_event(THP_FILE_MAPPED);
3600 out:
3601         spin_unlock(vmf->ptl);
3602         return ret;
3603 }
3604 #else
3605 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3606 {
3607         BUILD_BUG();
3608         return 0;
3609 }
3610 #endif
3611
3612 /**
3613  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3614  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3615  *
3616  * @vmf: fault environment
3617  * @page: page to map
3618  *
3619  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3620  * return.
3621  *
3622  * Target users are page handler itself and implementations of
3623  * vm_ops->map_pages.
3624  *
3625  * Return: %0 on success, %VM_FAULT_ code in case of error.
3626  */
3627 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3628 {
3629         struct vm_area_struct *vma = vmf->vma;
3630         bool write = vmf->flags & FAULT_FLAG_WRITE;
3631         pte_t entry;
3632         vm_fault_t ret;
3633
3634         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3635                 ret = do_set_pmd(vmf, page);
3636                 if (ret != VM_FAULT_FALLBACK)
3637                         return ret;
3638         }
3639
3640         if (!vmf->pte) {
3641                 ret = pte_alloc_one_map(vmf);
3642                 if (ret)
3643                         return ret;
3644         }
3645
3646         /* Re-check under ptl */
3647         if (unlikely(!pte_none(*vmf->pte))) {
3648                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3649                 return VM_FAULT_NOPAGE;
3650         }
3651
3652         flush_icache_page(vma, page);
3653         entry = mk_pte(page, vma->vm_page_prot);
3654         entry = pte_sw_mkyoung(entry);
3655         if (write)
3656                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3657         /* copy-on-write page */
3658         if (write && !(vma->vm_flags & VM_SHARED)) {
3659                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3660                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3661                 lru_cache_add_active_or_unevictable(page, vma);
3662         } else {
3663                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3664                 page_add_file_rmap(page, false);
3665         }
3666         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3667
3668         /* no need to invalidate: a not-present page won't be cached */
3669         update_mmu_cache(vma, vmf->address, vmf->pte);
3670
3671         return 0;
3672 }
3673
3674
3675 /**
3676  * finish_fault - finish page fault once we have prepared the page to fault
3677  *
3678  * @vmf: structure describing the fault
3679  *
3680  * This function handles all that is needed to finish a page fault once the
3681  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682  * given page, adds reverse page mapping, handles memcg charges and LRU
3683  * addition.
3684  *
3685  * The function expects the page to be locked and on success it consumes a
3686  * reference of a page being mapped (for the PTE which maps it).
3687  *
3688  * Return: %0 on success, %VM_FAULT_ code in case of error.
3689  */
3690 vm_fault_t finish_fault(struct vm_fault *vmf)
3691 {
3692         struct page *page;
3693         vm_fault_t ret = 0;
3694
3695         /* Did we COW the page? */
3696         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3697             !(vmf->vma->vm_flags & VM_SHARED))
3698                 page = vmf->cow_page;
3699         else
3700                 page = vmf->page;
3701
3702         /*
3703          * check even for read faults because we might have lost our CoWed
3704          * page
3705          */
3706         if (!(vmf->vma->vm_flags & VM_SHARED))
3707                 ret = check_stable_address_space(vmf->vma->vm_mm);
3708         if (!ret)
3709                 ret = alloc_set_pte(vmf, page);
3710         if (vmf->pte)
3711                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3712         return ret;
3713 }
3714
3715 static unsigned long fault_around_bytes __read_mostly =
3716         rounddown_pow_of_two(65536);
3717
3718 #ifdef CONFIG_DEBUG_FS
3719 static int fault_around_bytes_get(void *data, u64 *val)
3720 {
3721         *val = fault_around_bytes;
3722         return 0;
3723 }
3724
3725 /*
3726  * fault_around_bytes must be rounded down to the nearest page order as it's
3727  * what do_fault_around() expects to see.
3728  */
3729 static int fault_around_bytes_set(void *data, u64 val)
3730 {
3731         if (val / PAGE_SIZE > PTRS_PER_PTE)
3732                 return -EINVAL;
3733         if (val > PAGE_SIZE)
3734                 fault_around_bytes = rounddown_pow_of_two(val);
3735         else
3736                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3737         return 0;
3738 }
3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3740                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3741
3742 static int __init fault_around_debugfs(void)
3743 {
3744         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3745                                    &fault_around_bytes_fops);
3746         return 0;
3747 }
3748 late_initcall(fault_around_debugfs);
3749 #endif
3750
3751 /*
3752  * do_fault_around() tries to map few pages around the fault address. The hope
3753  * is that the pages will be needed soon and this will lower the number of
3754  * faults to handle.
3755  *
3756  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757  * not ready to be mapped: not up-to-date, locked, etc.
3758  *
3759  * This function is called with the page table lock taken. In the split ptlock
3760  * case the page table lock only protects only those entries which belong to
3761  * the page table corresponding to the fault address.
3762  *
3763  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764  * only once.
3765  *
3766  * fault_around_bytes defines how many bytes we'll try to map.
3767  * do_fault_around() expects it to be set to a power of two less than or equal
3768  * to PTRS_PER_PTE.
3769  *
3770  * The virtual address of the area that we map is naturally aligned to
3771  * fault_around_bytes rounded down to the machine page size
3772  * (and therefore to page order).  This way it's easier to guarantee
3773  * that we don't cross page table boundaries.
3774  */
3775 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3776 {
3777         unsigned long address = vmf->address, nr_pages, mask;
3778         pgoff_t start_pgoff = vmf->pgoff;
3779         pgoff_t end_pgoff;
3780         int off;
3781         vm_fault_t ret = 0;
3782
3783         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3784         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785
3786         vmf->address = max(address & mask, vmf->vma->vm_start);
3787         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3788         start_pgoff -= off;
3789
3790         /*
3791          *  end_pgoff is either the end of the page table, the end of
3792          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3793          */
3794         end_pgoff = start_pgoff -
3795                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3796                 PTRS_PER_PTE - 1;
3797         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3798                         start_pgoff + nr_pages - 1);
3799
3800         if (pmd_none(*vmf->pmd)) {
3801                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3802                 if (!vmf->prealloc_pte)
3803                         goto out;
3804                 smp_wmb(); /* See comment in __pte_alloc() */
3805         }
3806
3807         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3808
3809         /* Huge page is mapped? Page fault is solved */
3810         if (pmd_trans_huge(*vmf->pmd)) {
3811                 ret = VM_FAULT_NOPAGE;
3812                 goto out;
3813         }
3814
3815         /* ->map_pages() haven't done anything useful. Cold page cache? */
3816         if (!vmf->pte)
3817                 goto out;
3818
3819         /* check if the page fault is solved */
3820         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3821         if (!pte_none(*vmf->pte))
3822                 ret = VM_FAULT_NOPAGE;
3823         pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 out:
3825         vmf->address = address;
3826         vmf->pte = NULL;
3827         return ret;
3828 }
3829
3830 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3831 {
3832         struct vm_area_struct *vma = vmf->vma;
3833         vm_fault_t ret = 0;
3834
3835         /*
3836          * Let's call ->map_pages() first and use ->fault() as fallback
3837          * if page by the offset is not ready to be mapped (cold cache or
3838          * something).
3839          */
3840         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3841                 ret = do_fault_around(vmf);
3842                 if (ret)
3843                         return ret;
3844         }
3845
3846         ret = __do_fault(vmf);
3847         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3848                 return ret;
3849
3850         ret |= finish_fault(vmf);
3851         unlock_page(vmf->page);
3852         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3853                 put_page(vmf->page);
3854         return ret;
3855 }
3856
3857 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3858 {
3859         struct vm_area_struct *vma = vmf->vma;
3860         vm_fault_t ret;
3861
3862         if (unlikely(anon_vma_prepare(vma)))
3863                 return VM_FAULT_OOM;
3864
3865         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3866         if (!vmf->cow_page)
3867                 return VM_FAULT_OOM;
3868
3869         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3870                 put_page(vmf->cow_page);
3871                 return VM_FAULT_OOM;
3872         }
3873         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3874
3875         ret = __do_fault(vmf);
3876         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3877                 goto uncharge_out;
3878         if (ret & VM_FAULT_DONE_COW)
3879                 return ret;
3880
3881         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3882         __SetPageUptodate(vmf->cow_page);
3883
3884         ret |= finish_fault(vmf);
3885         unlock_page(vmf->page);
3886         put_page(vmf->page);
3887         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888                 goto uncharge_out;
3889         return ret;
3890 uncharge_out:
3891         put_page(vmf->cow_page);
3892         return ret;
3893 }
3894
3895 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3896 {
3897         struct vm_area_struct *vma = vmf->vma;
3898         vm_fault_t ret, tmp;
3899
3900         ret = __do_fault(vmf);
3901         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3902                 return ret;
3903
3904         /*
3905          * Check if the backing address space wants to know that the page is
3906          * about to become writable
3907          */
3908         if (vma->vm_ops->page_mkwrite) {
3909                 unlock_page(vmf->page);
3910                 tmp = do_page_mkwrite(vmf);
3911                 if (unlikely(!tmp ||
3912                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3913                         put_page(vmf->page);
3914                         return tmp;
3915                 }
3916         }
3917
3918         ret |= finish_fault(vmf);
3919         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3920                                         VM_FAULT_RETRY))) {
3921                 unlock_page(vmf->page);
3922                 put_page(vmf->page);
3923                 return ret;
3924         }
3925
3926         ret |= fault_dirty_shared_page(vmf);
3927         return ret;
3928 }
3929
3930 /*
3931  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3932  * but allow concurrent faults).
3933  * The mmap_lock may have been released depending on flags and our
3934  * return value.  See filemap_fault() and __lock_page_or_retry().
3935  * If mmap_lock is released, vma may become invalid (for example
3936  * by other thread calling munmap()).
3937  */
3938 static vm_fault_t do_fault(struct vm_fault *vmf)
3939 {
3940         struct vm_area_struct *vma = vmf->vma;
3941         struct mm_struct *vm_mm = vma->vm_mm;
3942         vm_fault_t ret;
3943
3944         /*
3945          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3946          */
3947         if (!vma->vm_ops->fault) {
3948                 /*
3949                  * If we find a migration pmd entry or a none pmd entry, which
3950                  * should never happen, return SIGBUS
3951                  */
3952                 if (unlikely(!pmd_present(*vmf->pmd)))
3953                         ret = VM_FAULT_SIGBUS;
3954                 else {
3955                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3956                                                        vmf->pmd,
3957                                                        vmf->address,
3958                                                        &vmf->ptl);
3959                         /*
3960                          * Make sure this is not a temporary clearing of pte
3961                          * by holding ptl and checking again. A R/M/W update
3962                          * of pte involves: take ptl, clearing the pte so that
3963                          * we don't have concurrent modification by hardware
3964                          * followed by an update.
3965                          */
3966                         if (unlikely(pte_none(*vmf->pte)))
3967                                 ret = VM_FAULT_SIGBUS;
3968                         else
3969                                 ret = VM_FAULT_NOPAGE;
3970
3971                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3972                 }
3973         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3974                 ret = do_read_fault(vmf);
3975         else if (!(vma->vm_flags & VM_SHARED))
3976                 ret = do_cow_fault(vmf);
3977         else
3978                 ret = do_shared_fault(vmf);
3979
3980         /* preallocated pagetable is unused: free it */
3981         if (vmf->prealloc_pte) {
3982                 pte_free(vm_mm, vmf->prealloc_pte);
3983                 vmf->prealloc_pte = NULL;
3984         }
3985         return ret;
3986 }
3987
3988 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3989                                 unsigned long addr, int page_nid,
3990                                 int *flags)
3991 {
3992         get_page(page);
3993
3994         count_vm_numa_event(NUMA_HINT_FAULTS);
3995         if (page_nid == numa_node_id()) {
3996                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3997                 *flags |= TNF_FAULT_LOCAL;
3998         }
3999
4000         return mpol_misplaced(page, vma, addr);
4001 }
4002
4003 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4004 {
4005         struct vm_area_struct *vma = vmf->vma;
4006         struct page *page = NULL;
4007         int page_nid = NUMA_NO_NODE;
4008         int last_cpupid;
4009         int target_nid;
4010         bool migrated = false;
4011         pte_t pte, old_pte;
4012         bool was_writable = pte_savedwrite(vmf->orig_pte);
4013         int flags = 0;
4014
4015         /*
4016          * The "pte" at this point cannot be used safely without
4017          * validation through pte_unmap_same(). It's of NUMA type but
4018          * the pfn may be screwed if the read is non atomic.
4019          */
4020         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4021         spin_lock(vmf->ptl);
4022         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4023                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4024                 goto out;
4025         }
4026
4027         /*
4028          * Make it present again, Depending on how arch implementes non
4029          * accessible ptes, some can allow access by kernel mode.
4030          */
4031         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4032         pte = pte_modify(old_pte, vma->vm_page_prot);
4033         pte = pte_mkyoung(pte);
4034         if (was_writable)
4035                 pte = pte_mkwrite(pte);
4036         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4037         update_mmu_cache(vma, vmf->address, vmf->pte);
4038
4039         page = vm_normal_page(vma, vmf->address, pte);
4040         if (!page) {
4041                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4042                 return 0;
4043         }
4044
4045         /* TODO: handle PTE-mapped THP */
4046         if (PageCompound(page)) {
4047                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4048                 return 0;
4049         }
4050
4051         /*
4052          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4053          * much anyway since they can be in shared cache state. This misses
4054          * the case where a mapping is writable but the process never writes
4055          * to it but pte_write gets cleared during protection updates and
4056          * pte_dirty has unpredictable behaviour between PTE scan updates,
4057          * background writeback, dirty balancing and application behaviour.
4058          */
4059         if (!pte_write(pte))
4060                 flags |= TNF_NO_GROUP;
4061
4062         /*
4063          * Flag if the page is shared between multiple address spaces. This
4064          * is later used when determining whether to group tasks together
4065          */
4066         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4067                 flags |= TNF_SHARED;
4068
4069         last_cpupid = page_cpupid_last(page);
4070         page_nid = page_to_nid(page);
4071         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4072                         &flags);
4073         pte_unmap_unlock(vmf->pte, vmf->ptl);
4074         if (target_nid == NUMA_NO_NODE) {
4075                 put_page(page);
4076                 goto out;
4077         }
4078
4079         /* Migrate to the requested node */
4080         migrated = migrate_misplaced_page(page, vma, target_nid);
4081         if (migrated) {
4082                 page_nid = target_nid;
4083                 flags |= TNF_MIGRATED;
4084         } else
4085                 flags |= TNF_MIGRATE_FAIL;
4086
4087 out:
4088         if (page_nid != NUMA_NO_NODE)
4089                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4090         return 0;
4091 }
4092
4093 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4094 {
4095         if (vma_is_anonymous(vmf->vma))
4096                 return do_huge_pmd_anonymous_page(vmf);
4097         if (vmf->vma->vm_ops->huge_fault)
4098                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4099         return VM_FAULT_FALLBACK;
4100 }
4101
4102 /* `inline' is required to avoid gcc 4.1.2 build error */
4103 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4104 {
4105         if (vma_is_anonymous(vmf->vma)) {
4106                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4107                         return handle_userfault(vmf, VM_UFFD_WP);
4108                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4109         }
4110         if (vmf->vma->vm_ops->huge_fault) {
4111                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4112
4113                 if (!(ret & VM_FAULT_FALLBACK))
4114                         return ret;
4115         }
4116
4117         /* COW or write-notify handled on pte level: split pmd. */
4118         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4119
4120         return VM_FAULT_FALLBACK;
4121 }
4122
4123 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4124 {
4125 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4126         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4127         /* No support for anonymous transparent PUD pages yet */
4128         if (vma_is_anonymous(vmf->vma))
4129                 goto split;
4130         if (vmf->vma->vm_ops->huge_fault) {
4131                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4132
4133                 if (!(ret & VM_FAULT_FALLBACK))
4134                         return ret;
4135         }
4136 split:
4137         /* COW or write-notify not handled on PUD level: split pud.*/
4138         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4140         return VM_FAULT_FALLBACK;
4141 }
4142
4143 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4144 {
4145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4146         /* No support for anonymous transparent PUD pages yet */
4147         if (vma_is_anonymous(vmf->vma))
4148                 return VM_FAULT_FALLBACK;
4149         if (vmf->vma->vm_ops->huge_fault)
4150                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4151 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4152         return VM_FAULT_FALLBACK;
4153 }
4154
4155 /*
4156  * These routines also need to handle stuff like marking pages dirty
4157  * and/or accessed for architectures that don't do it in hardware (most
4158  * RISC architectures).  The early dirtying is also good on the i386.
4159  *
4160  * There is also a hook called "update_mmu_cache()" that architectures
4161  * with external mmu caches can use to update those (ie the Sparc or
4162  * PowerPC hashed page tables that act as extended TLBs).
4163  *
4164  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4165  * concurrent faults).
4166  *
4167  * The mmap_lock may have been released depending on flags and our return value.
4168  * See filemap_fault() and __lock_page_or_retry().
4169  */
4170 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4171 {
4172         pte_t entry;
4173
4174         if (unlikely(pmd_none(*vmf->pmd))) {
4175                 /*
4176                  * Leave __pte_alloc() until later: because vm_ops->fault may
4177                  * want to allocate huge page, and if we expose page table
4178                  * for an instant, it will be difficult to retract from
4179                  * concurrent faults and from rmap lookups.
4180                  */
4181                 vmf->pte = NULL;
4182         } else {
4183                 /* See comment in pte_alloc_one_map() */
4184                 if (pmd_devmap_trans_unstable(vmf->pmd))
4185                         return 0;
4186                 /*
4187                  * A regular pmd is established and it can't morph into a huge
4188                  * pmd from under us anymore at this point because we hold the
4189                  * mmap_lock read mode and khugepaged takes it in write mode.
4190                  * So now it's safe to run pte_offset_map().
4191                  */
4192                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4193                 vmf->orig_pte = *vmf->pte;
4194
4195                 /*
4196                  * some architectures can have larger ptes than wordsize,
4197                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4198                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4199                  * accesses.  The code below just needs a consistent view
4200                  * for the ifs and we later double check anyway with the
4201                  * ptl lock held. So here a barrier will do.
4202                  */
4203                 barrier();
4204                 if (pte_none(vmf->orig_pte)) {
4205                         pte_unmap(vmf->pte);
4206                         vmf->pte = NULL;
4207                 }
4208         }
4209
4210         if (!vmf->pte) {
4211                 if (vma_is_anonymous(vmf->vma))
4212                         return do_anonymous_page(vmf);
4213                 else
4214                         return do_fault(vmf);
4215         }
4216
4217         if (!pte_present(vmf->orig_pte))
4218                 return do_swap_page(vmf);
4219
4220         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4221                 return do_numa_page(vmf);
4222
4223         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4224         spin_lock(vmf->ptl);
4225         entry = vmf->orig_pte;
4226         if (unlikely(!pte_same(*vmf->pte, entry))) {
4227                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4228                 goto unlock;
4229         }
4230         if (vmf->flags & FAULT_FLAG_WRITE) {
4231                 if (!pte_write(entry))
4232                         return do_wp_page(vmf);
4233                 entry = pte_mkdirty(entry);
4234         }
4235         entry = pte_mkyoung(entry);
4236         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4237                                 vmf->flags & FAULT_FLAG_WRITE)) {
4238                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4239         } else {
4240                 /*
4241                  * This is needed only for protection faults but the arch code
4242                  * is not yet telling us if this is a protection fault or not.
4243                  * This still avoids useless tlb flushes for .text page faults
4244                  * with threads.
4245                  */
4246                 if (vmf->flags & FAULT_FLAG_WRITE)
4247                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4248         }
4249 unlock:
4250         pte_unmap_unlock(vmf->pte, vmf->ptl);
4251         return 0;
4252 }
4253
4254 /*
4255  * By the time we get here, we already hold the mm semaphore
4256  *
4257  * The mmap_lock may have been released depending on flags and our
4258  * return value.  See filemap_fault() and __lock_page_or_retry().
4259  */
4260 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4261                 unsigned long address, unsigned int flags)
4262 {
4263         struct vm_fault vmf = {
4264                 .vma = vma,
4265                 .address = address & PAGE_MASK,
4266                 .flags = flags,
4267                 .pgoff = linear_page_index(vma, address),
4268                 .gfp_mask = __get_fault_gfp_mask(vma),
4269         };
4270         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4271         struct mm_struct *mm = vma->vm_mm;
4272         pgd_t *pgd;
4273         p4d_t *p4d;
4274         vm_fault_t ret;
4275
4276         pgd = pgd_offset(mm, address);
4277         p4d = p4d_alloc(mm, pgd, address);
4278         if (!p4d)
4279                 return VM_FAULT_OOM;
4280
4281         vmf.pud = pud_alloc(mm, p4d, address);
4282         if (!vmf.pud)
4283                 return VM_FAULT_OOM;
4284 retry_pud:
4285         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4286                 ret = create_huge_pud(&vmf);
4287                 if (!(ret & VM_FAULT_FALLBACK))
4288                         return ret;
4289         } else {
4290                 pud_t orig_pud = *vmf.pud;
4291
4292                 barrier();
4293                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4294
4295                         /* NUMA case for anonymous PUDs would go here */
4296
4297                         if (dirty && !pud_write(orig_pud)) {
4298                                 ret = wp_huge_pud(&vmf, orig_pud);
4299                                 if (!(ret & VM_FAULT_FALLBACK))
4300                                         return ret;
4301                         } else {
4302                                 huge_pud_set_accessed(&vmf, orig_pud);
4303                                 return 0;
4304                         }
4305                 }
4306         }
4307
4308         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4309         if (!vmf.pmd)
4310                 return VM_FAULT_OOM;
4311
4312         /* Huge pud page fault raced with pmd_alloc? */
4313         if (pud_trans_unstable(vmf.pud))
4314                 goto retry_pud;
4315
4316         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4317                 ret = create_huge_pmd(&vmf);
4318                 if (!(ret & VM_FAULT_FALLBACK))
4319                         return ret;
4320         } else {
4321                 pmd_t orig_pmd = *vmf.pmd;
4322
4323                 barrier();
4324                 if (unlikely(is_swap_pmd(orig_pmd))) {
4325                         VM_BUG_ON(thp_migration_supported() &&
4326                                           !is_pmd_migration_entry(orig_pmd));
4327                         if (is_pmd_migration_entry(orig_pmd))
4328                                 pmd_migration_entry_wait(mm, vmf.pmd);
4329                         return 0;
4330                 }
4331                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4332                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4333                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4334
4335                         if (dirty && !pmd_write(orig_pmd)) {
4336                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4337                                 if (!(ret & VM_FAULT_FALLBACK))
4338                                         return ret;
4339                         } else {
4340                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4341                                 return 0;
4342                         }
4343                 }
4344         }
4345
4346         return handle_pte_fault(&vmf);
4347 }
4348
4349 /*
4350  * By the time we get here, we already hold the mm semaphore
4351  *
4352  * The mmap_lock may have been released depending on flags and our
4353  * return value.  See filemap_fault() and __lock_page_or_retry().
4354  */
4355 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4356                 unsigned int flags)
4357 {
4358         vm_fault_t ret;
4359
4360         __set_current_state(TASK_RUNNING);
4361
4362         count_vm_event(PGFAULT);
4363         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4364
4365         /* do counter updates before entering really critical section. */
4366         check_sync_rss_stat(current);
4367
4368         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4369                                             flags & FAULT_FLAG_INSTRUCTION,
4370                                             flags & FAULT_FLAG_REMOTE))
4371                 return VM_FAULT_SIGSEGV;
4372
4373         /*
4374          * Enable the memcg OOM handling for faults triggered in user
4375          * space.  Kernel faults are handled more gracefully.
4376          */
4377         if (flags & FAULT_FLAG_USER)
4378                 mem_cgroup_enter_user_fault();
4379
4380         if (unlikely(is_vm_hugetlb_page(vma)))
4381                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4382         else
4383                 ret = __handle_mm_fault(vma, address, flags);
4384
4385         if (flags & FAULT_FLAG_USER) {
4386                 mem_cgroup_exit_user_fault();
4387                 /*
4388                  * The task may have entered a memcg OOM situation but
4389                  * if the allocation error was handled gracefully (no
4390                  * VM_FAULT_OOM), there is no need to kill anything.
4391                  * Just clean up the OOM state peacefully.
4392                  */
4393                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4394                         mem_cgroup_oom_synchronize(false);
4395         }
4396
4397         return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(handle_mm_fault);
4400
4401 #ifndef __PAGETABLE_P4D_FOLDED
4402 /*
4403  * Allocate p4d page table.
4404  * We've already handled the fast-path in-line.
4405  */
4406 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4407 {
4408         p4d_t *new = p4d_alloc_one(mm, address);
4409         if (!new)
4410                 return -ENOMEM;
4411
4412         smp_wmb(); /* See comment in __pte_alloc */
4413
4414         spin_lock(&mm->page_table_lock);
4415         if (pgd_present(*pgd))          /* Another has populated it */
4416                 p4d_free(mm, new);
4417         else
4418                 pgd_populate(mm, pgd, new);
4419         spin_unlock(&mm->page_table_lock);
4420         return 0;
4421 }
4422 #endif /* __PAGETABLE_P4D_FOLDED */
4423
4424 #ifndef __PAGETABLE_PUD_FOLDED
4425 /*
4426  * Allocate page upper directory.
4427  * We've already handled the fast-path in-line.
4428  */
4429 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4430 {
4431         pud_t *new = pud_alloc_one(mm, address);
4432         if (!new)
4433                 return -ENOMEM;
4434
4435         smp_wmb(); /* See comment in __pte_alloc */
4436
4437         spin_lock(&mm->page_table_lock);
4438         if (!p4d_present(*p4d)) {
4439                 mm_inc_nr_puds(mm);
4440                 p4d_populate(mm, p4d, new);
4441         } else  /* Another has populated it */
4442                 pud_free(mm, new);
4443         spin_unlock(&mm->page_table_lock);
4444         return 0;
4445 }
4446 #endif /* __PAGETABLE_PUD_FOLDED */
4447
4448 #ifndef __PAGETABLE_PMD_FOLDED
4449 /*
4450  * Allocate page middle directory.
4451  * We've already handled the fast-path in-line.
4452  */
4453 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4454 {
4455         spinlock_t *ptl;
4456         pmd_t *new = pmd_alloc_one(mm, address);
4457         if (!new)
4458                 return -ENOMEM;
4459
4460         smp_wmb(); /* See comment in __pte_alloc */
4461
4462         ptl = pud_lock(mm, pud);
4463         if (!pud_present(*pud)) {
4464                 mm_inc_nr_pmds(mm);
4465                 pud_populate(mm, pud, new);
4466         } else  /* Another has populated it */
4467                 pmd_free(mm, new);
4468         spin_unlock(ptl);
4469         return 0;
4470 }
4471 #endif /* __PAGETABLE_PMD_FOLDED */
4472
4473 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4474                             struct mmu_notifier_range *range,
4475                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4476 {
4477         pgd_t *pgd;
4478         p4d_t *p4d;
4479         pud_t *pud;
4480         pmd_t *pmd;
4481         pte_t *ptep;
4482
4483         pgd = pgd_offset(mm, address);
4484         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4485                 goto out;
4486
4487         p4d = p4d_offset(pgd, address);
4488         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4489                 goto out;
4490
4491         pud = pud_offset(p4d, address);
4492         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4493                 goto out;
4494
4495         pmd = pmd_offset(pud, address);
4496         VM_BUG_ON(pmd_trans_huge(*pmd));
4497
4498         if (pmd_huge(*pmd)) {
4499                 if (!pmdpp)
4500                         goto out;
4501
4502                 if (range) {
4503                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4504                                                 NULL, mm, address & PMD_MASK,
4505                                                 (address & PMD_MASK) + PMD_SIZE);
4506                         mmu_notifier_invalidate_range_start(range);
4507                 }
4508                 *ptlp = pmd_lock(mm, pmd);
4509                 if (pmd_huge(*pmd)) {
4510                         *pmdpp = pmd;
4511                         return 0;
4512                 }
4513                 spin_unlock(*ptlp);
4514                 if (range)
4515                         mmu_notifier_invalidate_range_end(range);
4516         }
4517
4518         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4519                 goto out;
4520
4521         if (range) {
4522                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4523                                         address & PAGE_MASK,
4524                                         (address & PAGE_MASK) + PAGE_SIZE);
4525                 mmu_notifier_invalidate_range_start(range);
4526         }
4527         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4528         if (!pte_present(*ptep))
4529                 goto unlock;
4530         *ptepp = ptep;
4531         return 0;
4532 unlock:
4533         pte_unmap_unlock(ptep, *ptlp);
4534         if (range)
4535                 mmu_notifier_invalidate_range_end(range);
4536 out:
4537         return -EINVAL;
4538 }
4539
4540 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4541                              pte_t **ptepp, spinlock_t **ptlp)
4542 {
4543         int res;
4544
4545         /* (void) is needed to make gcc happy */
4546         (void) __cond_lock(*ptlp,
4547                            !(res = __follow_pte_pmd(mm, address, NULL,
4548                                                     ptepp, NULL, ptlp)));
4549         return res;
4550 }
4551
4552 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4553                    struct mmu_notifier_range *range,
4554                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4555 {
4556         int res;
4557
4558         /* (void) is needed to make gcc happy */
4559         (void) __cond_lock(*ptlp,
4560                            !(res = __follow_pte_pmd(mm, address, range,
4561                                                     ptepp, pmdpp, ptlp)));
4562         return res;
4563 }
4564 EXPORT_SYMBOL(follow_pte_pmd);
4565
4566 /**
4567  * follow_pfn - look up PFN at a user virtual address
4568  * @vma: memory mapping
4569  * @address: user virtual address
4570  * @pfn: location to store found PFN
4571  *
4572  * Only IO mappings and raw PFN mappings are allowed.
4573  *
4574  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4575  */
4576 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4577         unsigned long *pfn)
4578 {
4579         int ret = -EINVAL;
4580         spinlock_t *ptl;
4581         pte_t *ptep;
4582
4583         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4584                 return ret;
4585
4586         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4587         if (ret)
4588                 return ret;
4589         *pfn = pte_pfn(*ptep);
4590         pte_unmap_unlock(ptep, ptl);
4591         return 0;
4592 }
4593 EXPORT_SYMBOL(follow_pfn);
4594
4595 #ifdef CONFIG_HAVE_IOREMAP_PROT
4596 int follow_phys(struct vm_area_struct *vma,
4597                 unsigned long address, unsigned int flags,
4598                 unsigned long *prot, resource_size_t *phys)
4599 {
4600         int ret = -EINVAL;
4601         pte_t *ptep, pte;
4602         spinlock_t *ptl;
4603
4604         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4605                 goto out;
4606
4607         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4608                 goto out;
4609         pte = *ptep;
4610
4611         if ((flags & FOLL_WRITE) && !pte_write(pte))
4612                 goto unlock;
4613
4614         *prot = pgprot_val(pte_pgprot(pte));
4615         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4616
4617         ret = 0;
4618 unlock:
4619         pte_unmap_unlock(ptep, ptl);
4620 out:
4621         return ret;
4622 }
4623
4624 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4625                         void *buf, int len, int write)
4626 {
4627         resource_size_t phys_addr;
4628         unsigned long prot = 0;
4629         void __iomem *maddr;
4630         int offset = addr & (PAGE_SIZE-1);
4631
4632         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4633                 return -EINVAL;
4634
4635         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4636         if (!maddr)
4637                 return -ENOMEM;
4638
4639         if (write)
4640                 memcpy_toio(maddr + offset, buf, len);
4641         else
4642                 memcpy_fromio(buf, maddr + offset, len);
4643         iounmap(maddr);
4644
4645         return len;
4646 }
4647 EXPORT_SYMBOL_GPL(generic_access_phys);
4648 #endif
4649
4650 /*
4651  * Access another process' address space as given in mm.  If non-NULL, use the
4652  * given task for page fault accounting.
4653  */
4654 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4655                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4656 {
4657         struct vm_area_struct *vma;
4658         void *old_buf = buf;
4659         int write = gup_flags & FOLL_WRITE;
4660
4661         if (mmap_read_lock_killable(mm))
4662                 return 0;
4663
4664         /* ignore errors, just check how much was successfully transferred */
4665         while (len) {
4666                 int bytes, ret, offset;
4667                 void *maddr;
4668                 struct page *page = NULL;
4669
4670                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4671                                 gup_flags, &page, &vma, NULL);
4672                 if (ret <= 0) {
4673 #ifndef CONFIG_HAVE_IOREMAP_PROT
4674                         break;
4675 #else
4676                         /*
4677                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4678                          * we can access using slightly different code.
4679                          */
4680                         vma = find_vma(mm, addr);
4681                         if (!vma || vma->vm_start > addr)
4682                                 break;
4683                         if (vma->vm_ops && vma->vm_ops->access)
4684                                 ret = vma->vm_ops->access(vma, addr, buf,
4685                                                           len, write);
4686                         if (ret <= 0)
4687                                 break;
4688                         bytes = ret;
4689 #endif
4690                 } else {
4691                         bytes = len;
4692                         offset = addr & (PAGE_SIZE-1);
4693                         if (bytes > PAGE_SIZE-offset)
4694                                 bytes = PAGE_SIZE-offset;
4695
4696                         maddr = kmap(page);
4697                         if (write) {
4698                                 copy_to_user_page(vma, page, addr,
4699                                                   maddr + offset, buf, bytes);
4700                                 set_page_dirty_lock(page);
4701                         } else {
4702                                 copy_from_user_page(vma, page, addr,
4703                                                     buf, maddr + offset, bytes);
4704                         }
4705                         kunmap(page);
4706                         put_page(page);
4707                 }
4708                 len -= bytes;
4709                 buf += bytes;
4710                 addr += bytes;
4711         }
4712         mmap_read_unlock(mm);
4713
4714         return buf - old_buf;
4715 }
4716
4717 /**
4718  * access_remote_vm - access another process' address space
4719  * @mm:         the mm_struct of the target address space
4720  * @addr:       start address to access
4721  * @buf:        source or destination buffer
4722  * @len:        number of bytes to transfer
4723  * @gup_flags:  flags modifying lookup behaviour
4724  *
4725  * The caller must hold a reference on @mm.
4726  *
4727  * Return: number of bytes copied from source to destination.
4728  */
4729 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4730                 void *buf, int len, unsigned int gup_flags)
4731 {
4732         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4733 }
4734
4735 /*
4736  * Access another process' address space.
4737  * Source/target buffer must be kernel space,
4738  * Do not walk the page table directly, use get_user_pages
4739  */
4740 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4741                 void *buf, int len, unsigned int gup_flags)
4742 {
4743         struct mm_struct *mm;
4744         int ret;
4745
4746         mm = get_task_mm(tsk);
4747         if (!mm)
4748                 return 0;
4749
4750         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4751
4752         mmput(mm);
4753
4754         return ret;
4755 }
4756 EXPORT_SYMBOL_GPL(access_process_vm);
4757
4758 /*
4759  * Print the name of a VMA.
4760  */
4761 void print_vma_addr(char *prefix, unsigned long ip)
4762 {
4763         struct mm_struct *mm = current->mm;
4764         struct vm_area_struct *vma;
4765
4766         /*
4767          * we might be running from an atomic context so we cannot sleep
4768          */
4769         if (!mmap_read_trylock(mm))
4770                 return;
4771
4772         vma = find_vma(mm, ip);
4773         if (vma && vma->vm_file) {
4774                 struct file *f = vma->vm_file;
4775                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4776                 if (buf) {
4777                         char *p;
4778
4779                         p = file_path(f, buf, PAGE_SIZE);
4780                         if (IS_ERR(p))
4781                                 p = "?";
4782                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4783                                         vma->vm_start,
4784                                         vma->vm_end - vma->vm_start);
4785                         free_page((unsigned long)buf);
4786                 }
4787         }
4788         mmap_read_unlock(mm);
4789 }
4790
4791 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4792 void __might_fault(const char *file, int line)
4793 {
4794         /*
4795          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4796          * holding the mmap_lock, this is safe because kernel memory doesn't
4797          * get paged out, therefore we'll never actually fault, and the
4798          * below annotations will generate false positives.
4799          */
4800         if (uaccess_kernel())
4801                 return;
4802         if (pagefault_disabled())
4803                 return;
4804         __might_sleep(file, line, 0);
4805 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4806         if (current->mm)
4807                 might_lock_read(&current->mm->mmap_lock);
4808 #endif
4809 }
4810 EXPORT_SYMBOL(__might_fault);
4811 #endif
4812
4813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4814 /*
4815  * Process all subpages of the specified huge page with the specified
4816  * operation.  The target subpage will be processed last to keep its
4817  * cache lines hot.
4818  */
4819 static inline void process_huge_page(
4820         unsigned long addr_hint, unsigned int pages_per_huge_page,
4821         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4822         void *arg)
4823 {
4824         int i, n, base, l;
4825         unsigned long addr = addr_hint &
4826                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4827
4828         /* Process target subpage last to keep its cache lines hot */
4829         might_sleep();
4830         n = (addr_hint - addr) / PAGE_SIZE;
4831         if (2 * n <= pages_per_huge_page) {
4832                 /* If target subpage in first half of huge page */
4833                 base = 0;
4834                 l = n;
4835                 /* Process subpages at the end of huge page */
4836                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4837                         cond_resched();
4838                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4839                 }
4840         } else {
4841                 /* If target subpage in second half of huge page */
4842                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4843                 l = pages_per_huge_page - n;
4844                 /* Process subpages at the begin of huge page */
4845                 for (i = 0; i < base; i++) {
4846                         cond_resched();
4847                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4848                 }
4849         }
4850         /*
4851          * Process remaining subpages in left-right-left-right pattern
4852          * towards the target subpage
4853          */
4854         for (i = 0; i < l; i++) {
4855                 int left_idx = base + i;
4856                 int right_idx = base + 2 * l - 1 - i;
4857
4858                 cond_resched();
4859                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4860                 cond_resched();
4861                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4862         }
4863 }
4864
4865 static void clear_gigantic_page(struct page *page,
4866                                 unsigned long addr,
4867                                 unsigned int pages_per_huge_page)
4868 {
4869         int i;
4870         struct page *p = page;
4871
4872         might_sleep();
4873         for (i = 0; i < pages_per_huge_page;
4874              i++, p = mem_map_next(p, page, i)) {
4875                 cond_resched();
4876                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4877         }
4878 }
4879
4880 static void clear_subpage(unsigned long addr, int idx, void *arg)
4881 {
4882         struct page *page = arg;
4883
4884         clear_user_highpage(page + idx, addr);
4885 }
4886
4887 void clear_huge_page(struct page *page,
4888                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4889 {
4890         unsigned long addr = addr_hint &
4891                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4892
4893         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4894                 clear_gigantic_page(page, addr, pages_per_huge_page);
4895                 return;
4896         }
4897
4898         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4899 }
4900
4901 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4902                                     unsigned long addr,
4903                                     struct vm_area_struct *vma,
4904                                     unsigned int pages_per_huge_page)
4905 {
4906         int i;
4907         struct page *dst_base = dst;
4908         struct page *src_base = src;
4909
4910         for (i = 0; i < pages_per_huge_page; ) {
4911                 cond_resched();
4912                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4913
4914                 i++;
4915                 dst = mem_map_next(dst, dst_base, i);
4916                 src = mem_map_next(src, src_base, i);
4917         }
4918 }
4919
4920 struct copy_subpage_arg {
4921         struct page *dst;
4922         struct page *src;
4923         struct vm_area_struct *vma;
4924 };
4925
4926 static void copy_subpage(unsigned long addr, int idx, void *arg)
4927 {
4928         struct copy_subpage_arg *copy_arg = arg;
4929
4930         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4931                            addr, copy_arg->vma);
4932 }
4933
4934 void copy_user_huge_page(struct page *dst, struct page *src,
4935                          unsigned long addr_hint, struct vm_area_struct *vma,
4936                          unsigned int pages_per_huge_page)
4937 {
4938         unsigned long addr = addr_hint &
4939                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4940         struct copy_subpage_arg arg = {
4941                 .dst = dst,
4942                 .src = src,
4943                 .vma = vma,
4944         };
4945
4946         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4947                 copy_user_gigantic_page(dst, src, addr, vma,
4948                                         pages_per_huge_page);
4949                 return;
4950         }
4951
4952         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4953 }
4954
4955 long copy_huge_page_from_user(struct page *dst_page,
4956                                 const void __user *usr_src,
4957                                 unsigned int pages_per_huge_page,
4958                                 bool allow_pagefault)
4959 {
4960         void *src = (void *)usr_src;
4961         void *page_kaddr;
4962         unsigned long i, rc = 0;
4963         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4964
4965         for (i = 0; i < pages_per_huge_page; i++) {
4966                 if (allow_pagefault)
4967                         page_kaddr = kmap(dst_page + i);
4968                 else
4969                         page_kaddr = kmap_atomic(dst_page + i);
4970                 rc = copy_from_user(page_kaddr,
4971                                 (const void __user *)(src + i * PAGE_SIZE),
4972                                 PAGE_SIZE);
4973                 if (allow_pagefault)
4974                         kunmap(dst_page + i);
4975                 else
4976                         kunmap_atomic(page_kaddr);
4977
4978                 ret_val -= (PAGE_SIZE - rc);
4979                 if (rc)
4980                         break;
4981
4982                 cond_resched();
4983         }
4984         return ret_val;
4985 }
4986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4987
4988 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4989
4990 static struct kmem_cache *page_ptl_cachep;
4991
4992 void __init ptlock_cache_init(void)
4993 {
4994         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4995                         SLAB_PANIC, NULL);
4996 }
4997
4998 bool ptlock_alloc(struct page *page)
4999 {
5000         spinlock_t *ptl;
5001
5002         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5003         if (!ptl)
5004                 return false;
5005         page->ptl = ptl;
5006         return true;
5007 }
5008
5009 void ptlock_free(struct page *page)
5010 {
5011         kmem_cache_free(page_ptl_cachep, page->ptl);
5012 }
5013 #endif