x86/mm/tlb: Revert the recent lazy TLB patches
[platform/kernel/linux-rpi.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335         /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340         /*
341          * This isn't an RCU grace period and hence the page-tables cannot be
342          * assumed to be actually RCU-freed.
343          *
344          * It is however sufficient for software page-table walkers that rely on
345          * IRQ disabling. See the comment near struct mmu_table_batch.
346          */
347         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348         __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353         struct mmu_table_batch *batch;
354         int i;
355
356         batch = container_of(head, struct mmu_table_batch, rcu);
357
358         for (i = 0; i < batch->nr; i++)
359                 __tlb_remove_table(batch->tables[i]);
360
361         free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         if (*batch) {
369                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370                 *batch = NULL;
371         }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376         struct mmu_table_batch **batch = &tlb->batch;
377
378         /*
379          * When there's less then two users of this mm there cannot be a
380          * concurrent page-table walk.
381          */
382         if (atomic_read(&tlb->mm->mm_users) < 2) {
383                 __tlb_remove_table(table);
384                 return;
385         }
386
387         if (*batch == NULL) {
388                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389                 if (*batch == NULL) {
390                         tlb_remove_table_one(table);
391                         return;
392                 }
393                 (*batch)->nr = 0;
394         }
395         (*batch)->tables[(*batch)->nr++] = table;
396         if ((*batch)->nr == MAX_TABLE_BATCH)
397                 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /**
403  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404  * @tlb: the mmu_gather structure to initialize
405  * @mm: the mm_struct of the target address space
406  * @start: start of the region that will be removed from the page-table
407  * @end: end of the region that will be removed from the page-table
408  *
409  * Called to initialize an (on-stack) mmu_gather structure for page-table
410  * tear-down from @mm. The @start and @end are set to 0 and -1
411  * respectively when @mm is without users and we're going to destroy
412  * the full address space (exit/execve).
413  */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415                         unsigned long start, unsigned long end)
416 {
417         arch_tlb_gather_mmu(tlb, mm, start, end);
418         inc_tlb_flush_pending(tlb->mm);
419 }
420
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422                 unsigned long start, unsigned long end)
423 {
424         /*
425          * If there are parallel threads are doing PTE changes on same range
426          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427          * flush by batching, a thread has stable TLB entry can fail to flush
428          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429          * forcefully if we detect parallel PTE batching threads.
430          */
431         bool force = mm_tlb_flush_nested(tlb->mm);
432
433         arch_tlb_finish_mmu(tlb, start, end, force);
434         dec_tlb_flush_pending(tlb->mm);
435 }
436
437 /*
438  * Note: this doesn't free the actual pages themselves. That
439  * has been handled earlier when unmapping all the memory regions.
440  */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442                            unsigned long addr)
443 {
444         pgtable_t token = pmd_pgtable(*pmd);
445         pmd_clear(pmd);
446         pte_free_tlb(tlb, token, addr);
447         mm_dec_nr_ptes(tlb->mm);
448 }
449
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451                                 unsigned long addr, unsigned long end,
452                                 unsigned long floor, unsigned long ceiling)
453 {
454         pmd_t *pmd;
455         unsigned long next;
456         unsigned long start;
457
458         start = addr;
459         pmd = pmd_offset(pud, addr);
460         do {
461                 next = pmd_addr_end(addr, end);
462                 if (pmd_none_or_clear_bad(pmd))
463                         continue;
464                 free_pte_range(tlb, pmd, addr);
465         } while (pmd++, addr = next, addr != end);
466
467         start &= PUD_MASK;
468         if (start < floor)
469                 return;
470         if (ceiling) {
471                 ceiling &= PUD_MASK;
472                 if (!ceiling)
473                         return;
474         }
475         if (end - 1 > ceiling - 1)
476                 return;
477
478         pmd = pmd_offset(pud, start);
479         pud_clear(pud);
480         pmd_free_tlb(tlb, pmd, start);
481         mm_dec_nr_pmds(tlb->mm);
482 }
483
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485                                 unsigned long addr, unsigned long end,
486                                 unsigned long floor, unsigned long ceiling)
487 {
488         pud_t *pud;
489         unsigned long next;
490         unsigned long start;
491
492         start = addr;
493         pud = pud_offset(p4d, addr);
494         do {
495                 next = pud_addr_end(addr, end);
496                 if (pud_none_or_clear_bad(pud))
497                         continue;
498                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499         } while (pud++, addr = next, addr != end);
500
501         start &= P4D_MASK;
502         if (start < floor)
503                 return;
504         if (ceiling) {
505                 ceiling &= P4D_MASK;
506                 if (!ceiling)
507                         return;
508         }
509         if (end - 1 > ceiling - 1)
510                 return;
511
512         pud = pud_offset(p4d, start);
513         p4d_clear(p4d);
514         pud_free_tlb(tlb, pud, start);
515         mm_dec_nr_puds(tlb->mm);
516 }
517
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519                                 unsigned long addr, unsigned long end,
520                                 unsigned long floor, unsigned long ceiling)
521 {
522         p4d_t *p4d;
523         unsigned long next;
524         unsigned long start;
525
526         start = addr;
527         p4d = p4d_offset(pgd, addr);
528         do {
529                 next = p4d_addr_end(addr, end);
530                 if (p4d_none_or_clear_bad(p4d))
531                         continue;
532                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533         } while (p4d++, addr = next, addr != end);
534
535         start &= PGDIR_MASK;
536         if (start < floor)
537                 return;
538         if (ceiling) {
539                 ceiling &= PGDIR_MASK;
540                 if (!ceiling)
541                         return;
542         }
543         if (end - 1 > ceiling - 1)
544                 return;
545
546         p4d = p4d_offset(pgd, start);
547         pgd_clear(pgd);
548         p4d_free_tlb(tlb, p4d, start);
549 }
550
551 /*
552  * This function frees user-level page tables of a process.
553  */
554 void free_pgd_range(struct mmu_gather *tlb,
555                         unsigned long addr, unsigned long end,
556                         unsigned long floor, unsigned long ceiling)
557 {
558         pgd_t *pgd;
559         unsigned long next;
560
561         /*
562          * The next few lines have given us lots of grief...
563          *
564          * Why are we testing PMD* at this top level?  Because often
565          * there will be no work to do at all, and we'd prefer not to
566          * go all the way down to the bottom just to discover that.
567          *
568          * Why all these "- 1"s?  Because 0 represents both the bottom
569          * of the address space and the top of it (using -1 for the
570          * top wouldn't help much: the masks would do the wrong thing).
571          * The rule is that addr 0 and floor 0 refer to the bottom of
572          * the address space, but end 0 and ceiling 0 refer to the top
573          * Comparisons need to use "end - 1" and "ceiling - 1" (though
574          * that end 0 case should be mythical).
575          *
576          * Wherever addr is brought up or ceiling brought down, we must
577          * be careful to reject "the opposite 0" before it confuses the
578          * subsequent tests.  But what about where end is brought down
579          * by PMD_SIZE below? no, end can't go down to 0 there.
580          *
581          * Whereas we round start (addr) and ceiling down, by different
582          * masks at different levels, in order to test whether a table
583          * now has no other vmas using it, so can be freed, we don't
584          * bother to round floor or end up - the tests don't need that.
585          */
586
587         addr &= PMD_MASK;
588         if (addr < floor) {
589                 addr += PMD_SIZE;
590                 if (!addr)
591                         return;
592         }
593         if (ceiling) {
594                 ceiling &= PMD_MASK;
595                 if (!ceiling)
596                         return;
597         }
598         if (end - 1 > ceiling - 1)
599                 end -= PMD_SIZE;
600         if (addr > end - 1)
601                 return;
602         /*
603          * We add page table cache pages with PAGE_SIZE,
604          * (see pte_free_tlb()), flush the tlb if we need
605          */
606         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607         pgd = pgd_offset(tlb->mm, addr);
608         do {
609                 next = pgd_addr_end(addr, end);
610                 if (pgd_none_or_clear_bad(pgd))
611                         continue;
612                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613         } while (pgd++, addr = next, addr != end);
614 }
615
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617                 unsigned long floor, unsigned long ceiling)
618 {
619         while (vma) {
620                 struct vm_area_struct *next = vma->vm_next;
621                 unsigned long addr = vma->vm_start;
622
623                 /*
624                  * Hide vma from rmap and truncate_pagecache before freeing
625                  * pgtables
626                  */
627                 unlink_anon_vmas(vma);
628                 unlink_file_vma(vma);
629
630                 if (is_vm_hugetlb_page(vma)) {
631                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632                                 floor, next ? next->vm_start : ceiling);
633                 } else {
634                         /*
635                          * Optimization: gather nearby vmas into one call down
636                          */
637                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638                                && !is_vm_hugetlb_page(next)) {
639                                 vma = next;
640                                 next = vma->vm_next;
641                                 unlink_anon_vmas(vma);
642                                 unlink_file_vma(vma);
643                         }
644                         free_pgd_range(tlb, addr, vma->vm_end,
645                                 floor, next ? next->vm_start : ceiling);
646                 }
647                 vma = next;
648         }
649 }
650
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653         spinlock_t *ptl;
654         pgtable_t new = pte_alloc_one(mm, address);
655         if (!new)
656                 return -ENOMEM;
657
658         /*
659          * Ensure all pte setup (eg. pte page lock and page clearing) are
660          * visible before the pte is made visible to other CPUs by being
661          * put into page tables.
662          *
663          * The other side of the story is the pointer chasing in the page
664          * table walking code (when walking the page table without locking;
665          * ie. most of the time). Fortunately, these data accesses consist
666          * of a chain of data-dependent loads, meaning most CPUs (alpha
667          * being the notable exception) will already guarantee loads are
668          * seen in-order. See the alpha page table accessors for the
669          * smp_read_barrier_depends() barriers in page table walking code.
670          */
671         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672
673         ptl = pmd_lock(mm, pmd);
674         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
675                 mm_inc_nr_ptes(mm);
676                 pmd_populate(mm, pmd, new);
677                 new = NULL;
678         }
679         spin_unlock(ptl);
680         if (new)
681                 pte_free(mm, new);
682         return 0;
683 }
684
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688         if (!new)
689                 return -ENOMEM;
690
691         smp_wmb(); /* See comment in __pte_alloc */
692
693         spin_lock(&init_mm.page_table_lock);
694         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
695                 pmd_populate_kernel(&init_mm, pmd, new);
696                 new = NULL;
697         }
698         spin_unlock(&init_mm.page_table_lock);
699         if (new)
700                 pte_free_kernel(&init_mm, new);
701         return 0;
702 }
703
704 static inline void init_rss_vec(int *rss)
705 {
706         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711         int i;
712
713         if (current->mm == mm)
714                 sync_mm_rss(mm);
715         for (i = 0; i < NR_MM_COUNTERS; i++)
716                 if (rss[i])
717                         add_mm_counter(mm, i, rss[i]);
718 }
719
720 /*
721  * This function is called to print an error when a bad pte
722  * is found. For example, we might have a PFN-mapped pte in
723  * a region that doesn't allow it.
724  *
725  * The calling function must still handle the error.
726  */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728                           pte_t pte, struct page *page)
729 {
730         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731         p4d_t *p4d = p4d_offset(pgd, addr);
732         pud_t *pud = pud_offset(p4d, addr);
733         pmd_t *pmd = pmd_offset(pud, addr);
734         struct address_space *mapping;
735         pgoff_t index;
736         static unsigned long resume;
737         static unsigned long nr_shown;
738         static unsigned long nr_unshown;
739
740         /*
741          * Allow a burst of 60 reports, then keep quiet for that minute;
742          * or allow a steady drip of one report per second.
743          */
744         if (nr_shown == 60) {
745                 if (time_before(jiffies, resume)) {
746                         nr_unshown++;
747                         return;
748                 }
749                 if (nr_unshown) {
750                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751                                  nr_unshown);
752                         nr_unshown = 0;
753                 }
754                 nr_shown = 0;
755         }
756         if (nr_shown++ == 0)
757                 resume = jiffies + 60 * HZ;
758
759         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760         index = linear_page_index(vma, addr);
761
762         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
763                  current->comm,
764                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
765         if (page)
766                 dump_page(page, "bad pte");
767         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770                  vma->vm_file,
771                  vma->vm_ops ? vma->vm_ops->fault : NULL,
772                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773                  mapping ? mapping->a_ops->readpage : NULL);
774         dump_stack();
775         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777
778 /*
779  * vm_normal_page -- This function gets the "struct page" associated with a pte.
780  *
781  * "Special" mappings do not wish to be associated with a "struct page" (either
782  * it doesn't exist, or it exists but they don't want to touch it). In this
783  * case, NULL is returned here. "Normal" mappings do have a struct page.
784  *
785  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786  * pte bit, in which case this function is trivial. Secondly, an architecture
787  * may not have a spare pte bit, which requires a more complicated scheme,
788  * described below.
789  *
790  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791  * special mapping (even if there are underlying and valid "struct pages").
792  * COWed pages of a VM_PFNMAP are always normal.
793  *
794  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797  * mapping will always honor the rule
798  *
799  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800  *
801  * And for normal mappings this is false.
802  *
803  * This restricts such mappings to be a linear translation from virtual address
804  * to pfn. To get around this restriction, we allow arbitrary mappings so long
805  * as the vma is not a COW mapping; in that case, we know that all ptes are
806  * special (because none can have been COWed).
807  *
808  *
809  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810  *
811  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812  * page" backing, however the difference is that _all_ pages with a struct
813  * page (that is, those where pfn_valid is true) are refcounted and considered
814  * normal pages by the VM. The disadvantage is that pages are refcounted
815  * (which can be slower and simply not an option for some PFNMAP users). The
816  * advantage is that we don't have to follow the strict linearity rule of
817  * PFNMAP mappings in order to support COWable mappings.
818  *
819  */
820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821                              pte_t pte, bool with_public_device)
822 {
823         unsigned long pfn = pte_pfn(pte);
824
825         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
826                 if (likely(!pte_special(pte)))
827                         goto check_pfn;
828                 if (vma->vm_ops && vma->vm_ops->find_special_page)
829                         return vma->vm_ops->find_special_page(vma, addr);
830                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831                         return NULL;
832                 if (is_zero_pfn(pfn))
833                         return NULL;
834
835                 /*
836                  * Device public pages are special pages (they are ZONE_DEVICE
837                  * pages but different from persistent memory). They behave
838                  * allmost like normal pages. The difference is that they are
839                  * not on the lru and thus should never be involve with any-
840                  * thing that involve lru manipulation (mlock, numa balancing,
841                  * ...).
842                  *
843                  * This is why we still want to return NULL for such page from
844                  * vm_normal_page() so that we do not have to special case all
845                  * call site of vm_normal_page().
846                  */
847                 if (likely(pfn <= highest_memmap_pfn)) {
848                         struct page *page = pfn_to_page(pfn);
849
850                         if (is_device_public_page(page)) {
851                                 if (with_public_device)
852                                         return page;
853                                 return NULL;
854                         }
855                 }
856
857                 if (pte_devmap(pte))
858                         return NULL;
859
860                 print_bad_pte(vma, addr, pte, NULL);
861                 return NULL;
862         }
863
864         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
865
866         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
867                 if (vma->vm_flags & VM_MIXEDMAP) {
868                         if (!pfn_valid(pfn))
869                                 return NULL;
870                         goto out;
871                 } else {
872                         unsigned long off;
873                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
874                         if (pfn == vma->vm_pgoff + off)
875                                 return NULL;
876                         if (!is_cow_mapping(vma->vm_flags))
877                                 return NULL;
878                 }
879         }
880
881         if (is_zero_pfn(pfn))
882                 return NULL;
883
884 check_pfn:
885         if (unlikely(pfn > highest_memmap_pfn)) {
886                 print_bad_pte(vma, addr, pte, NULL);
887                 return NULL;
888         }
889
890         /*
891          * NOTE! We still have PageReserved() pages in the page tables.
892          * eg. VDSO mappings can cause them to exist.
893          */
894 out:
895         return pfn_to_page(pfn);
896 }
897
898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
899 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
900                                 pmd_t pmd)
901 {
902         unsigned long pfn = pmd_pfn(pmd);
903
904         /*
905          * There is no pmd_special() but there may be special pmds, e.g.
906          * in a direct-access (dax) mapping, so let's just replicate the
907          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
908          */
909         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
910                 if (vma->vm_flags & VM_MIXEDMAP) {
911                         if (!pfn_valid(pfn))
912                                 return NULL;
913                         goto out;
914                 } else {
915                         unsigned long off;
916                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
917                         if (pfn == vma->vm_pgoff + off)
918                                 return NULL;
919                         if (!is_cow_mapping(vma->vm_flags))
920                                 return NULL;
921                 }
922         }
923
924         if (pmd_devmap(pmd))
925                 return NULL;
926         if (is_zero_pfn(pfn))
927                 return NULL;
928         if (unlikely(pfn > highest_memmap_pfn))
929                 return NULL;
930
931         /*
932          * NOTE! We still have PageReserved() pages in the page tables.
933          * eg. VDSO mappings can cause them to exist.
934          */
935 out:
936         return pfn_to_page(pfn);
937 }
938 #endif
939
940 /*
941  * copy one vm_area from one task to the other. Assumes the page tables
942  * already present in the new task to be cleared in the whole range
943  * covered by this vma.
944  */
945
946 static inline unsigned long
947 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
949                 unsigned long addr, int *rss)
950 {
951         unsigned long vm_flags = vma->vm_flags;
952         pte_t pte = *src_pte;
953         struct page *page;
954
955         /* pte contains position in swap or file, so copy. */
956         if (unlikely(!pte_present(pte))) {
957                 swp_entry_t entry = pte_to_swp_entry(pte);
958
959                 if (likely(!non_swap_entry(entry))) {
960                         if (swap_duplicate(entry) < 0)
961                                 return entry.val;
962
963                         /* make sure dst_mm is on swapoff's mmlist. */
964                         if (unlikely(list_empty(&dst_mm->mmlist))) {
965                                 spin_lock(&mmlist_lock);
966                                 if (list_empty(&dst_mm->mmlist))
967                                         list_add(&dst_mm->mmlist,
968                                                         &src_mm->mmlist);
969                                 spin_unlock(&mmlist_lock);
970                         }
971                         rss[MM_SWAPENTS]++;
972                 } else if (is_migration_entry(entry)) {
973                         page = migration_entry_to_page(entry);
974
975                         rss[mm_counter(page)]++;
976
977                         if (is_write_migration_entry(entry) &&
978                                         is_cow_mapping(vm_flags)) {
979                                 /*
980                                  * COW mappings require pages in both
981                                  * parent and child to be set to read.
982                                  */
983                                 make_migration_entry_read(&entry);
984                                 pte = swp_entry_to_pte(entry);
985                                 if (pte_swp_soft_dirty(*src_pte))
986                                         pte = pte_swp_mksoft_dirty(pte);
987                                 set_pte_at(src_mm, addr, src_pte, pte);
988                         }
989                 } else if (is_device_private_entry(entry)) {
990                         page = device_private_entry_to_page(entry);
991
992                         /*
993                          * Update rss count even for unaddressable pages, as
994                          * they should treated just like normal pages in this
995                          * respect.
996                          *
997                          * We will likely want to have some new rss counters
998                          * for unaddressable pages, at some point. But for now
999                          * keep things as they are.
1000                          */
1001                         get_page(page);
1002                         rss[mm_counter(page)]++;
1003                         page_dup_rmap(page, false);
1004
1005                         /*
1006                          * We do not preserve soft-dirty information, because so
1007                          * far, checkpoint/restore is the only feature that
1008                          * requires that. And checkpoint/restore does not work
1009                          * when a device driver is involved (you cannot easily
1010                          * save and restore device driver state).
1011                          */
1012                         if (is_write_device_private_entry(entry) &&
1013                             is_cow_mapping(vm_flags)) {
1014                                 make_device_private_entry_read(&entry);
1015                                 pte = swp_entry_to_pte(entry);
1016                                 set_pte_at(src_mm, addr, src_pte, pte);
1017                         }
1018                 }
1019                 goto out_set_pte;
1020         }
1021
1022         /*
1023          * If it's a COW mapping, write protect it both
1024          * in the parent and the child
1025          */
1026         if (is_cow_mapping(vm_flags)) {
1027                 ptep_set_wrprotect(src_mm, addr, src_pte);
1028                 pte = pte_wrprotect(pte);
1029         }
1030
1031         /*
1032          * If it's a shared mapping, mark it clean in
1033          * the child
1034          */
1035         if (vm_flags & VM_SHARED)
1036                 pte = pte_mkclean(pte);
1037         pte = pte_mkold(pte);
1038
1039         page = vm_normal_page(vma, addr, pte);
1040         if (page) {
1041                 get_page(page);
1042                 page_dup_rmap(page, false);
1043                 rss[mm_counter(page)]++;
1044         } else if (pte_devmap(pte)) {
1045                 page = pte_page(pte);
1046
1047                 /*
1048                  * Cache coherent device memory behave like regular page and
1049                  * not like persistent memory page. For more informations see
1050                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1051                  */
1052                 if (is_device_public_page(page)) {
1053                         get_page(page);
1054                         page_dup_rmap(page, false);
1055                         rss[mm_counter(page)]++;
1056                 }
1057         }
1058
1059 out_set_pte:
1060         set_pte_at(dst_mm, addr, dst_pte, pte);
1061         return 0;
1062 }
1063
1064 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1066                    unsigned long addr, unsigned long end)
1067 {
1068         pte_t *orig_src_pte, *orig_dst_pte;
1069         pte_t *src_pte, *dst_pte;
1070         spinlock_t *src_ptl, *dst_ptl;
1071         int progress = 0;
1072         int rss[NR_MM_COUNTERS];
1073         swp_entry_t entry = (swp_entry_t){0};
1074
1075 again:
1076         init_rss_vec(rss);
1077
1078         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1079         if (!dst_pte)
1080                 return -ENOMEM;
1081         src_pte = pte_offset_map(src_pmd, addr);
1082         src_ptl = pte_lockptr(src_mm, src_pmd);
1083         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1084         orig_src_pte = src_pte;
1085         orig_dst_pte = dst_pte;
1086         arch_enter_lazy_mmu_mode();
1087
1088         do {
1089                 /*
1090                  * We are holding two locks at this point - either of them
1091                  * could generate latencies in another task on another CPU.
1092                  */
1093                 if (progress >= 32) {
1094                         progress = 0;
1095                         if (need_resched() ||
1096                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1097                                 break;
1098                 }
1099                 if (pte_none(*src_pte)) {
1100                         progress++;
1101                         continue;
1102                 }
1103                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1104                                                         vma, addr, rss);
1105                 if (entry.val)
1106                         break;
1107                 progress += 8;
1108         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1109
1110         arch_leave_lazy_mmu_mode();
1111         spin_unlock(src_ptl);
1112         pte_unmap(orig_src_pte);
1113         add_mm_rss_vec(dst_mm, rss);
1114         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1115         cond_resched();
1116
1117         if (entry.val) {
1118                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1119                         return -ENOMEM;
1120                 progress = 0;
1121         }
1122         if (addr != end)
1123                 goto again;
1124         return 0;
1125 }
1126
1127 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1128                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1129                 unsigned long addr, unsigned long end)
1130 {
1131         pmd_t *src_pmd, *dst_pmd;
1132         unsigned long next;
1133
1134         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1135         if (!dst_pmd)
1136                 return -ENOMEM;
1137         src_pmd = pmd_offset(src_pud, addr);
1138         do {
1139                 next = pmd_addr_end(addr, end);
1140                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1141                         || pmd_devmap(*src_pmd)) {
1142                         int err;
1143                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1144                         err = copy_huge_pmd(dst_mm, src_mm,
1145                                             dst_pmd, src_pmd, addr, vma);
1146                         if (err == -ENOMEM)
1147                                 return -ENOMEM;
1148                         if (!err)
1149                                 continue;
1150                         /* fall through */
1151                 }
1152                 if (pmd_none_or_clear_bad(src_pmd))
1153                         continue;
1154                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1155                                                 vma, addr, next))
1156                         return -ENOMEM;
1157         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1158         return 0;
1159 }
1160
1161 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1162                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1163                 unsigned long addr, unsigned long end)
1164 {
1165         pud_t *src_pud, *dst_pud;
1166         unsigned long next;
1167
1168         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1169         if (!dst_pud)
1170                 return -ENOMEM;
1171         src_pud = pud_offset(src_p4d, addr);
1172         do {
1173                 next = pud_addr_end(addr, end);
1174                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1175                         int err;
1176
1177                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1178                         err = copy_huge_pud(dst_mm, src_mm,
1179                                             dst_pud, src_pud, addr, vma);
1180                         if (err == -ENOMEM)
1181                                 return -ENOMEM;
1182                         if (!err)
1183                                 continue;
1184                         /* fall through */
1185                 }
1186                 if (pud_none_or_clear_bad(src_pud))
1187                         continue;
1188                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1189                                                 vma, addr, next))
1190                         return -ENOMEM;
1191         } while (dst_pud++, src_pud++, addr = next, addr != end);
1192         return 0;
1193 }
1194
1195 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1196                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1197                 unsigned long addr, unsigned long end)
1198 {
1199         p4d_t *src_p4d, *dst_p4d;
1200         unsigned long next;
1201
1202         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1203         if (!dst_p4d)
1204                 return -ENOMEM;
1205         src_p4d = p4d_offset(src_pgd, addr);
1206         do {
1207                 next = p4d_addr_end(addr, end);
1208                 if (p4d_none_or_clear_bad(src_p4d))
1209                         continue;
1210                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1211                                                 vma, addr, next))
1212                         return -ENOMEM;
1213         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1214         return 0;
1215 }
1216
1217 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1218                 struct vm_area_struct *vma)
1219 {
1220         pgd_t *src_pgd, *dst_pgd;
1221         unsigned long next;
1222         unsigned long addr = vma->vm_start;
1223         unsigned long end = vma->vm_end;
1224         unsigned long mmun_start;       /* For mmu_notifiers */
1225         unsigned long mmun_end;         /* For mmu_notifiers */
1226         bool is_cow;
1227         int ret;
1228
1229         /*
1230          * Don't copy ptes where a page fault will fill them correctly.
1231          * Fork becomes much lighter when there are big shared or private
1232          * readonly mappings. The tradeoff is that copy_page_range is more
1233          * efficient than faulting.
1234          */
1235         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1236                         !vma->anon_vma)
1237                 return 0;
1238
1239         if (is_vm_hugetlb_page(vma))
1240                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1241
1242         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1243                 /*
1244                  * We do not free on error cases below as remove_vma
1245                  * gets called on error from higher level routine
1246                  */
1247                 ret = track_pfn_copy(vma);
1248                 if (ret)
1249                         return ret;
1250         }
1251
1252         /*
1253          * We need to invalidate the secondary MMU mappings only when
1254          * there could be a permission downgrade on the ptes of the
1255          * parent mm. And a permission downgrade will only happen if
1256          * is_cow_mapping() returns true.
1257          */
1258         is_cow = is_cow_mapping(vma->vm_flags);
1259         mmun_start = addr;
1260         mmun_end   = end;
1261         if (is_cow)
1262                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1263                                                     mmun_end);
1264
1265         ret = 0;
1266         dst_pgd = pgd_offset(dst_mm, addr);
1267         src_pgd = pgd_offset(src_mm, addr);
1268         do {
1269                 next = pgd_addr_end(addr, end);
1270                 if (pgd_none_or_clear_bad(src_pgd))
1271                         continue;
1272                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1273                                             vma, addr, next))) {
1274                         ret = -ENOMEM;
1275                         break;
1276                 }
1277         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1278
1279         if (is_cow)
1280                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1281         return ret;
1282 }
1283
1284 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1285                                 struct vm_area_struct *vma, pmd_t *pmd,
1286                                 unsigned long addr, unsigned long end,
1287                                 struct zap_details *details)
1288 {
1289         struct mm_struct *mm = tlb->mm;
1290         int force_flush = 0;
1291         int rss[NR_MM_COUNTERS];
1292         spinlock_t *ptl;
1293         pte_t *start_pte;
1294         pte_t *pte;
1295         swp_entry_t entry;
1296
1297         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1298 again:
1299         init_rss_vec(rss);
1300         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1301         pte = start_pte;
1302         flush_tlb_batched_pending(mm);
1303         arch_enter_lazy_mmu_mode();
1304         do {
1305                 pte_t ptent = *pte;
1306                 if (pte_none(ptent))
1307                         continue;
1308
1309                 if (pte_present(ptent)) {
1310                         struct page *page;
1311
1312                         page = _vm_normal_page(vma, addr, ptent, true);
1313                         if (unlikely(details) && page) {
1314                                 /*
1315                                  * unmap_shared_mapping_pages() wants to
1316                                  * invalidate cache without truncating:
1317                                  * unmap shared but keep private pages.
1318                                  */
1319                                 if (details->check_mapping &&
1320                                     details->check_mapping != page_rmapping(page))
1321                                         continue;
1322                         }
1323                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1324                                                         tlb->fullmm);
1325                         tlb_remove_tlb_entry(tlb, pte, addr);
1326                         if (unlikely(!page))
1327                                 continue;
1328
1329                         if (!PageAnon(page)) {
1330                                 if (pte_dirty(ptent)) {
1331                                         force_flush = 1;
1332                                         set_page_dirty(page);
1333                                 }
1334                                 if (pte_young(ptent) &&
1335                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1336                                         mark_page_accessed(page);
1337                         }
1338                         rss[mm_counter(page)]--;
1339                         page_remove_rmap(page, false);
1340                         if (unlikely(page_mapcount(page) < 0))
1341                                 print_bad_pte(vma, addr, ptent, page);
1342                         if (unlikely(__tlb_remove_page(tlb, page))) {
1343                                 force_flush = 1;
1344                                 addr += PAGE_SIZE;
1345                                 break;
1346                         }
1347                         continue;
1348                 }
1349
1350                 entry = pte_to_swp_entry(ptent);
1351                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1352                         struct page *page = device_private_entry_to_page(entry);
1353
1354                         if (unlikely(details && details->check_mapping)) {
1355                                 /*
1356                                  * unmap_shared_mapping_pages() wants to
1357                                  * invalidate cache without truncating:
1358                                  * unmap shared but keep private pages.
1359                                  */
1360                                 if (details->check_mapping !=
1361                                     page_rmapping(page))
1362                                         continue;
1363                         }
1364
1365                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1366                         rss[mm_counter(page)]--;
1367                         page_remove_rmap(page, false);
1368                         put_page(page);
1369                         continue;
1370                 }
1371
1372                 /* If details->check_mapping, we leave swap entries. */
1373                 if (unlikely(details))
1374                         continue;
1375
1376                 entry = pte_to_swp_entry(ptent);
1377                 if (!non_swap_entry(entry))
1378                         rss[MM_SWAPENTS]--;
1379                 else if (is_migration_entry(entry)) {
1380                         struct page *page;
1381
1382                         page = migration_entry_to_page(entry);
1383                         rss[mm_counter(page)]--;
1384                 }
1385                 if (unlikely(!free_swap_and_cache(entry)))
1386                         print_bad_pte(vma, addr, ptent, NULL);
1387                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1388         } while (pte++, addr += PAGE_SIZE, addr != end);
1389
1390         add_mm_rss_vec(mm, rss);
1391         arch_leave_lazy_mmu_mode();
1392
1393         /* Do the actual TLB flush before dropping ptl */
1394         if (force_flush)
1395                 tlb_flush_mmu_tlbonly(tlb);
1396         pte_unmap_unlock(start_pte, ptl);
1397
1398         /*
1399          * If we forced a TLB flush (either due to running out of
1400          * batch buffers or because we needed to flush dirty TLB
1401          * entries before releasing the ptl), free the batched
1402          * memory too. Restart if we didn't do everything.
1403          */
1404         if (force_flush) {
1405                 force_flush = 0;
1406                 tlb_flush_mmu_free(tlb);
1407                 if (addr != end)
1408                         goto again;
1409         }
1410
1411         return addr;
1412 }
1413
1414 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1415                                 struct vm_area_struct *vma, pud_t *pud,
1416                                 unsigned long addr, unsigned long end,
1417                                 struct zap_details *details)
1418 {
1419         pmd_t *pmd;
1420         unsigned long next;
1421
1422         pmd = pmd_offset(pud, addr);
1423         do {
1424                 next = pmd_addr_end(addr, end);
1425                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1426                         if (next - addr != HPAGE_PMD_SIZE)
1427                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1428                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429                                 goto next;
1430                         /* fall through */
1431                 }
1432                 /*
1433                  * Here there can be other concurrent MADV_DONTNEED or
1434                  * trans huge page faults running, and if the pmd is
1435                  * none or trans huge it can change under us. This is
1436                  * because MADV_DONTNEED holds the mmap_sem in read
1437                  * mode.
1438                  */
1439                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440                         goto next;
1441                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442 next:
1443                 cond_resched();
1444         } while (pmd++, addr = next, addr != end);
1445
1446         return addr;
1447 }
1448
1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450                                 struct vm_area_struct *vma, p4d_t *p4d,
1451                                 unsigned long addr, unsigned long end,
1452                                 struct zap_details *details)
1453 {
1454         pud_t *pud;
1455         unsigned long next;
1456
1457         pud = pud_offset(p4d, addr);
1458         do {
1459                 next = pud_addr_end(addr, end);
1460                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461                         if (next - addr != HPAGE_PUD_SIZE) {
1462                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463                                 split_huge_pud(vma, pud, addr);
1464                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1465                                 goto next;
1466                         /* fall through */
1467                 }
1468                 if (pud_none_or_clear_bad(pud))
1469                         continue;
1470                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471 next:
1472                 cond_resched();
1473         } while (pud++, addr = next, addr != end);
1474
1475         return addr;
1476 }
1477
1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479                                 struct vm_area_struct *vma, pgd_t *pgd,
1480                                 unsigned long addr, unsigned long end,
1481                                 struct zap_details *details)
1482 {
1483         p4d_t *p4d;
1484         unsigned long next;
1485
1486         p4d = p4d_offset(pgd, addr);
1487         do {
1488                 next = p4d_addr_end(addr, end);
1489                 if (p4d_none_or_clear_bad(p4d))
1490                         continue;
1491                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492         } while (p4d++, addr = next, addr != end);
1493
1494         return addr;
1495 }
1496
1497 void unmap_page_range(struct mmu_gather *tlb,
1498                              struct vm_area_struct *vma,
1499                              unsigned long addr, unsigned long end,
1500                              struct zap_details *details)
1501 {
1502         pgd_t *pgd;
1503         unsigned long next;
1504
1505         BUG_ON(addr >= end);
1506         tlb_start_vma(tlb, vma);
1507         pgd = pgd_offset(vma->vm_mm, addr);
1508         do {
1509                 next = pgd_addr_end(addr, end);
1510                 if (pgd_none_or_clear_bad(pgd))
1511                         continue;
1512                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513         } while (pgd++, addr = next, addr != end);
1514         tlb_end_vma(tlb, vma);
1515 }
1516
1517
1518 static void unmap_single_vma(struct mmu_gather *tlb,
1519                 struct vm_area_struct *vma, unsigned long start_addr,
1520                 unsigned long end_addr,
1521                 struct zap_details *details)
1522 {
1523         unsigned long start = max(vma->vm_start, start_addr);
1524         unsigned long end;
1525
1526         if (start >= vma->vm_end)
1527                 return;
1528         end = min(vma->vm_end, end_addr);
1529         if (end <= vma->vm_start)
1530                 return;
1531
1532         if (vma->vm_file)
1533                 uprobe_munmap(vma, start, end);
1534
1535         if (unlikely(vma->vm_flags & VM_PFNMAP))
1536                 untrack_pfn(vma, 0, 0);
1537
1538         if (start != end) {
1539                 if (unlikely(is_vm_hugetlb_page(vma))) {
1540                         /*
1541                          * It is undesirable to test vma->vm_file as it
1542                          * should be non-null for valid hugetlb area.
1543                          * However, vm_file will be NULL in the error
1544                          * cleanup path of mmap_region. When
1545                          * hugetlbfs ->mmap method fails,
1546                          * mmap_region() nullifies vma->vm_file
1547                          * before calling this function to clean up.
1548                          * Since no pte has actually been setup, it is
1549                          * safe to do nothing in this case.
1550                          */
1551                         if (vma->vm_file) {
1552                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1553                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1555                         }
1556                 } else
1557                         unmap_page_range(tlb, vma, start, end, details);
1558         }
1559 }
1560
1561 /**
1562  * unmap_vmas - unmap a range of memory covered by a list of vma's
1563  * @tlb: address of the caller's struct mmu_gather
1564  * @vma: the starting vma
1565  * @start_addr: virtual address at which to start unmapping
1566  * @end_addr: virtual address at which to end unmapping
1567  *
1568  * Unmap all pages in the vma list.
1569  *
1570  * Only addresses between `start' and `end' will be unmapped.
1571  *
1572  * The VMA list must be sorted in ascending virtual address order.
1573  *
1574  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575  * range after unmap_vmas() returns.  So the only responsibility here is to
1576  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577  * drops the lock and schedules.
1578  */
1579 void unmap_vmas(struct mmu_gather *tlb,
1580                 struct vm_area_struct *vma, unsigned long start_addr,
1581                 unsigned long end_addr)
1582 {
1583         struct mm_struct *mm = vma->vm_mm;
1584
1585         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 }
1590
1591 /**
1592  * zap_page_range - remove user pages in a given range
1593  * @vma: vm_area_struct holding the applicable pages
1594  * @start: starting address of pages to zap
1595  * @size: number of bytes to zap
1596  *
1597  * Caller must protect the VMA list
1598  */
1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600                 unsigned long size)
1601 {
1602         struct mm_struct *mm = vma->vm_mm;
1603         struct mmu_gather tlb;
1604         unsigned long end = start + size;
1605
1606         lru_add_drain();
1607         tlb_gather_mmu(&tlb, mm, start, end);
1608         update_hiwater_rss(mm);
1609         mmu_notifier_invalidate_range_start(mm, start, end);
1610         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1611                 unmap_single_vma(&tlb, vma, start, end, NULL);
1612         mmu_notifier_invalidate_range_end(mm, start, end);
1613         tlb_finish_mmu(&tlb, start, end);
1614 }
1615
1616 /**
1617  * zap_page_range_single - remove user pages in a given range
1618  * @vma: vm_area_struct holding the applicable pages
1619  * @address: starting address of pages to zap
1620  * @size: number of bytes to zap
1621  * @details: details of shared cache invalidation
1622  *
1623  * The range must fit into one VMA.
1624  */
1625 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1626                 unsigned long size, struct zap_details *details)
1627 {
1628         struct mm_struct *mm = vma->vm_mm;
1629         struct mmu_gather tlb;
1630         unsigned long end = address + size;
1631
1632         lru_add_drain();
1633         tlb_gather_mmu(&tlb, mm, address, end);
1634         update_hiwater_rss(mm);
1635         mmu_notifier_invalidate_range_start(mm, address, end);
1636         unmap_single_vma(&tlb, vma, address, end, details);
1637         mmu_notifier_invalidate_range_end(mm, address, end);
1638         tlb_finish_mmu(&tlb, address, end);
1639 }
1640
1641 /**
1642  * zap_vma_ptes - remove ptes mapping the vma
1643  * @vma: vm_area_struct holding ptes to be zapped
1644  * @address: starting address of pages to zap
1645  * @size: number of bytes to zap
1646  *
1647  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1648  *
1649  * The entire address range must be fully contained within the vma.
1650  *
1651  */
1652 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1653                 unsigned long size)
1654 {
1655         if (address < vma->vm_start || address + size > vma->vm_end ||
1656                         !(vma->vm_flags & VM_PFNMAP))
1657                 return;
1658
1659         zap_page_range_single(vma, address, size, NULL);
1660 }
1661 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1662
1663 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1664                         spinlock_t **ptl)
1665 {
1666         pgd_t *pgd;
1667         p4d_t *p4d;
1668         pud_t *pud;
1669         pmd_t *pmd;
1670
1671         pgd = pgd_offset(mm, addr);
1672         p4d = p4d_alloc(mm, pgd, addr);
1673         if (!p4d)
1674                 return NULL;
1675         pud = pud_alloc(mm, p4d, addr);
1676         if (!pud)
1677                 return NULL;
1678         pmd = pmd_alloc(mm, pud, addr);
1679         if (!pmd)
1680                 return NULL;
1681
1682         VM_BUG_ON(pmd_trans_huge(*pmd));
1683         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1684 }
1685
1686 /*
1687  * This is the old fallback for page remapping.
1688  *
1689  * For historical reasons, it only allows reserved pages. Only
1690  * old drivers should use this, and they needed to mark their
1691  * pages reserved for the old functions anyway.
1692  */
1693 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1694                         struct page *page, pgprot_t prot)
1695 {
1696         struct mm_struct *mm = vma->vm_mm;
1697         int retval;
1698         pte_t *pte;
1699         spinlock_t *ptl;
1700
1701         retval = -EINVAL;
1702         if (PageAnon(page))
1703                 goto out;
1704         retval = -ENOMEM;
1705         flush_dcache_page(page);
1706         pte = get_locked_pte(mm, addr, &ptl);
1707         if (!pte)
1708                 goto out;
1709         retval = -EBUSY;
1710         if (!pte_none(*pte))
1711                 goto out_unlock;
1712
1713         /* Ok, finally just insert the thing.. */
1714         get_page(page);
1715         inc_mm_counter_fast(mm, mm_counter_file(page));
1716         page_add_file_rmap(page, false);
1717         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1718
1719         retval = 0;
1720         pte_unmap_unlock(pte, ptl);
1721         return retval;
1722 out_unlock:
1723         pte_unmap_unlock(pte, ptl);
1724 out:
1725         return retval;
1726 }
1727
1728 /**
1729  * vm_insert_page - insert single page into user vma
1730  * @vma: user vma to map to
1731  * @addr: target user address of this page
1732  * @page: source kernel page
1733  *
1734  * This allows drivers to insert individual pages they've allocated
1735  * into a user vma.
1736  *
1737  * The page has to be a nice clean _individual_ kernel allocation.
1738  * If you allocate a compound page, you need to have marked it as
1739  * such (__GFP_COMP), or manually just split the page up yourself
1740  * (see split_page()).
1741  *
1742  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1743  * took an arbitrary page protection parameter. This doesn't allow
1744  * that. Your vma protection will have to be set up correctly, which
1745  * means that if you want a shared writable mapping, you'd better
1746  * ask for a shared writable mapping!
1747  *
1748  * The page does not need to be reserved.
1749  *
1750  * Usually this function is called from f_op->mmap() handler
1751  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1752  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1753  * function from other places, for example from page-fault handler.
1754  */
1755 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1756                         struct page *page)
1757 {
1758         if (addr < vma->vm_start || addr >= vma->vm_end)
1759                 return -EFAULT;
1760         if (!page_count(page))
1761                 return -EINVAL;
1762         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1763                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1764                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1765                 vma->vm_flags |= VM_MIXEDMAP;
1766         }
1767         return insert_page(vma, addr, page, vma->vm_page_prot);
1768 }
1769 EXPORT_SYMBOL(vm_insert_page);
1770
1771 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1772                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1773 {
1774         struct mm_struct *mm = vma->vm_mm;
1775         int retval;
1776         pte_t *pte, entry;
1777         spinlock_t *ptl;
1778
1779         retval = -ENOMEM;
1780         pte = get_locked_pte(mm, addr, &ptl);
1781         if (!pte)
1782                 goto out;
1783         retval = -EBUSY;
1784         if (!pte_none(*pte)) {
1785                 if (mkwrite) {
1786                         /*
1787                          * For read faults on private mappings the PFN passed
1788                          * in may not match the PFN we have mapped if the
1789                          * mapped PFN is a writeable COW page.  In the mkwrite
1790                          * case we are creating a writable PTE for a shared
1791                          * mapping and we expect the PFNs to match.
1792                          */
1793                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1794                                 goto out_unlock;
1795                         entry = *pte;
1796                         goto out_mkwrite;
1797                 } else
1798                         goto out_unlock;
1799         }
1800
1801         /* Ok, finally just insert the thing.. */
1802         if (pfn_t_devmap(pfn))
1803                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1804         else
1805                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1806
1807 out_mkwrite:
1808         if (mkwrite) {
1809                 entry = pte_mkyoung(entry);
1810                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1811         }
1812
1813         set_pte_at(mm, addr, pte, entry);
1814         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1815
1816         retval = 0;
1817 out_unlock:
1818         pte_unmap_unlock(pte, ptl);
1819 out:
1820         return retval;
1821 }
1822
1823 /**
1824  * vm_insert_pfn - insert single pfn into user vma
1825  * @vma: user vma to map to
1826  * @addr: target user address of this page
1827  * @pfn: source kernel pfn
1828  *
1829  * Similar to vm_insert_page, this allows drivers to insert individual pages
1830  * they've allocated into a user vma. Same comments apply.
1831  *
1832  * This function should only be called from a vm_ops->fault handler, and
1833  * in that case the handler should return NULL.
1834  *
1835  * vma cannot be a COW mapping.
1836  *
1837  * As this is called only for pages that do not currently exist, we
1838  * do not need to flush old virtual caches or the TLB.
1839  */
1840 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1841                         unsigned long pfn)
1842 {
1843         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1844 }
1845 EXPORT_SYMBOL(vm_insert_pfn);
1846
1847 /**
1848  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1849  * @vma: user vma to map to
1850  * @addr: target user address of this page
1851  * @pfn: source kernel pfn
1852  * @pgprot: pgprot flags for the inserted page
1853  *
1854  * This is exactly like vm_insert_pfn, except that it allows drivers to
1855  * to override pgprot on a per-page basis.
1856  *
1857  * This only makes sense for IO mappings, and it makes no sense for
1858  * cow mappings.  In general, using multiple vmas is preferable;
1859  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1860  * impractical.
1861  */
1862 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1863                         unsigned long pfn, pgprot_t pgprot)
1864 {
1865         int ret;
1866         /*
1867          * Technically, architectures with pte_special can avoid all these
1868          * restrictions (same for remap_pfn_range).  However we would like
1869          * consistency in testing and feature parity among all, so we should
1870          * try to keep these invariants in place for everybody.
1871          */
1872         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1873         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1874                                                 (VM_PFNMAP|VM_MIXEDMAP));
1875         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1876         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1877
1878         if (addr < vma->vm_start || addr >= vma->vm_end)
1879                 return -EFAULT;
1880
1881         if (!pfn_modify_allowed(pfn, pgprot))
1882                 return -EACCES;
1883
1884         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1885
1886         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1887                         false);
1888
1889         return ret;
1890 }
1891 EXPORT_SYMBOL(vm_insert_pfn_prot);
1892
1893 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1894 {
1895         /* these checks mirror the abort conditions in vm_normal_page */
1896         if (vma->vm_flags & VM_MIXEDMAP)
1897                 return true;
1898         if (pfn_t_devmap(pfn))
1899                 return true;
1900         if (pfn_t_special(pfn))
1901                 return true;
1902         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1903                 return true;
1904         return false;
1905 }
1906
1907 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1908                         pfn_t pfn, bool mkwrite)
1909 {
1910         pgprot_t pgprot = vma->vm_page_prot;
1911
1912         BUG_ON(!vm_mixed_ok(vma, pfn));
1913
1914         if (addr < vma->vm_start || addr >= vma->vm_end)
1915                 return -EFAULT;
1916
1917         track_pfn_insert(vma, &pgprot, pfn);
1918
1919         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1920                 return -EACCES;
1921
1922         /*
1923          * If we don't have pte special, then we have to use the pfn_valid()
1924          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1925          * refcount the page if pfn_valid is true (hence insert_page rather
1926          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1927          * without pte special, it would there be refcounted as a normal page.
1928          */
1929         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1930             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1931                 struct page *page;
1932
1933                 /*
1934                  * At this point we are committed to insert_page()
1935                  * regardless of whether the caller specified flags that
1936                  * result in pfn_t_has_page() == false.
1937                  */
1938                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1939                 return insert_page(vma, addr, page, pgprot);
1940         }
1941         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1942 }
1943
1944 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1945                         pfn_t pfn)
1946 {
1947         return __vm_insert_mixed(vma, addr, pfn, false);
1948
1949 }
1950 EXPORT_SYMBOL(vm_insert_mixed);
1951
1952 /*
1953  *  If the insertion of PTE failed because someone else already added a
1954  *  different entry in the mean time, we treat that as success as we assume
1955  *  the same entry was actually inserted.
1956  */
1957
1958 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1959                 unsigned long addr, pfn_t pfn)
1960 {
1961         int err;
1962
1963         err =  __vm_insert_mixed(vma, addr, pfn, true);
1964         if (err == -ENOMEM)
1965                 return VM_FAULT_OOM;
1966         if (err < 0 && err != -EBUSY)
1967                 return VM_FAULT_SIGBUS;
1968         return VM_FAULT_NOPAGE;
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1971
1972 /*
1973  * maps a range of physical memory into the requested pages. the old
1974  * mappings are removed. any references to nonexistent pages results
1975  * in null mappings (currently treated as "copy-on-access")
1976  */
1977 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1978                         unsigned long addr, unsigned long end,
1979                         unsigned long pfn, pgprot_t prot)
1980 {
1981         pte_t *pte;
1982         spinlock_t *ptl;
1983         int err = 0;
1984
1985         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1986         if (!pte)
1987                 return -ENOMEM;
1988         arch_enter_lazy_mmu_mode();
1989         do {
1990                 BUG_ON(!pte_none(*pte));
1991                 if (!pfn_modify_allowed(pfn, prot)) {
1992                         err = -EACCES;
1993                         break;
1994                 }
1995                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1996                 pfn++;
1997         } while (pte++, addr += PAGE_SIZE, addr != end);
1998         arch_leave_lazy_mmu_mode();
1999         pte_unmap_unlock(pte - 1, ptl);
2000         return err;
2001 }
2002
2003 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2004                         unsigned long addr, unsigned long end,
2005                         unsigned long pfn, pgprot_t prot)
2006 {
2007         pmd_t *pmd;
2008         unsigned long next;
2009         int err;
2010
2011         pfn -= addr >> PAGE_SHIFT;
2012         pmd = pmd_alloc(mm, pud, addr);
2013         if (!pmd)
2014                 return -ENOMEM;
2015         VM_BUG_ON(pmd_trans_huge(*pmd));
2016         do {
2017                 next = pmd_addr_end(addr, end);
2018                 err = remap_pte_range(mm, pmd, addr, next,
2019                                 pfn + (addr >> PAGE_SHIFT), prot);
2020                 if (err)
2021                         return err;
2022         } while (pmd++, addr = next, addr != end);
2023         return 0;
2024 }
2025
2026 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2027                         unsigned long addr, unsigned long end,
2028                         unsigned long pfn, pgprot_t prot)
2029 {
2030         pud_t *pud;
2031         unsigned long next;
2032         int err;
2033
2034         pfn -= addr >> PAGE_SHIFT;
2035         pud = pud_alloc(mm, p4d, addr);
2036         if (!pud)
2037                 return -ENOMEM;
2038         do {
2039                 next = pud_addr_end(addr, end);
2040                 err = remap_pmd_range(mm, pud, addr, next,
2041                                 pfn + (addr >> PAGE_SHIFT), prot);
2042                 if (err)
2043                         return err;
2044         } while (pud++, addr = next, addr != end);
2045         return 0;
2046 }
2047
2048 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2049                         unsigned long addr, unsigned long end,
2050                         unsigned long pfn, pgprot_t prot)
2051 {
2052         p4d_t *p4d;
2053         unsigned long next;
2054         int err;
2055
2056         pfn -= addr >> PAGE_SHIFT;
2057         p4d = p4d_alloc(mm, pgd, addr);
2058         if (!p4d)
2059                 return -ENOMEM;
2060         do {
2061                 next = p4d_addr_end(addr, end);
2062                 err = remap_pud_range(mm, p4d, addr, next,
2063                                 pfn + (addr >> PAGE_SHIFT), prot);
2064                 if (err)
2065                         return err;
2066         } while (p4d++, addr = next, addr != end);
2067         return 0;
2068 }
2069
2070 /**
2071  * remap_pfn_range - remap kernel memory to userspace
2072  * @vma: user vma to map to
2073  * @addr: target user address to start at
2074  * @pfn: physical address of kernel memory
2075  * @size: size of map area
2076  * @prot: page protection flags for this mapping
2077  *
2078  *  Note: this is only safe if the mm semaphore is held when called.
2079  */
2080 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2081                     unsigned long pfn, unsigned long size, pgprot_t prot)
2082 {
2083         pgd_t *pgd;
2084         unsigned long next;
2085         unsigned long end = addr + PAGE_ALIGN(size);
2086         struct mm_struct *mm = vma->vm_mm;
2087         unsigned long remap_pfn = pfn;
2088         int err;
2089
2090         /*
2091          * Physically remapped pages are special. Tell the
2092          * rest of the world about it:
2093          *   VM_IO tells people not to look at these pages
2094          *      (accesses can have side effects).
2095          *   VM_PFNMAP tells the core MM that the base pages are just
2096          *      raw PFN mappings, and do not have a "struct page" associated
2097          *      with them.
2098          *   VM_DONTEXPAND
2099          *      Disable vma merging and expanding with mremap().
2100          *   VM_DONTDUMP
2101          *      Omit vma from core dump, even when VM_IO turned off.
2102          *
2103          * There's a horrible special case to handle copy-on-write
2104          * behaviour that some programs depend on. We mark the "original"
2105          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2106          * See vm_normal_page() for details.
2107          */
2108         if (is_cow_mapping(vma->vm_flags)) {
2109                 if (addr != vma->vm_start || end != vma->vm_end)
2110                         return -EINVAL;
2111                 vma->vm_pgoff = pfn;
2112         }
2113
2114         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2115         if (err)
2116                 return -EINVAL;
2117
2118         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2119
2120         BUG_ON(addr >= end);
2121         pfn -= addr >> PAGE_SHIFT;
2122         pgd = pgd_offset(mm, addr);
2123         flush_cache_range(vma, addr, end);
2124         do {
2125                 next = pgd_addr_end(addr, end);
2126                 err = remap_p4d_range(mm, pgd, addr, next,
2127                                 pfn + (addr >> PAGE_SHIFT), prot);
2128                 if (err)
2129                         break;
2130         } while (pgd++, addr = next, addr != end);
2131
2132         if (err)
2133                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2134
2135         return err;
2136 }
2137 EXPORT_SYMBOL(remap_pfn_range);
2138
2139 /**
2140  * vm_iomap_memory - remap memory to userspace
2141  * @vma: user vma to map to
2142  * @start: start of area
2143  * @len: size of area
2144  *
2145  * This is a simplified io_remap_pfn_range() for common driver use. The
2146  * driver just needs to give us the physical memory range to be mapped,
2147  * we'll figure out the rest from the vma information.
2148  *
2149  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2150  * whatever write-combining details or similar.
2151  */
2152 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2153 {
2154         unsigned long vm_len, pfn, pages;
2155
2156         /* Check that the physical memory area passed in looks valid */
2157         if (start + len < start)
2158                 return -EINVAL;
2159         /*
2160          * You *really* shouldn't map things that aren't page-aligned,
2161          * but we've historically allowed it because IO memory might
2162          * just have smaller alignment.
2163          */
2164         len += start & ~PAGE_MASK;
2165         pfn = start >> PAGE_SHIFT;
2166         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2167         if (pfn + pages < pfn)
2168                 return -EINVAL;
2169
2170         /* We start the mapping 'vm_pgoff' pages into the area */
2171         if (vma->vm_pgoff > pages)
2172                 return -EINVAL;
2173         pfn += vma->vm_pgoff;
2174         pages -= vma->vm_pgoff;
2175
2176         /* Can we fit all of the mapping? */
2177         vm_len = vma->vm_end - vma->vm_start;
2178         if (vm_len >> PAGE_SHIFT > pages)
2179                 return -EINVAL;
2180
2181         /* Ok, let it rip */
2182         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2183 }
2184 EXPORT_SYMBOL(vm_iomap_memory);
2185
2186 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2187                                      unsigned long addr, unsigned long end,
2188                                      pte_fn_t fn, void *data)
2189 {
2190         pte_t *pte;
2191         int err;
2192         pgtable_t token;
2193         spinlock_t *uninitialized_var(ptl);
2194
2195         pte = (mm == &init_mm) ?
2196                 pte_alloc_kernel(pmd, addr) :
2197                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2198         if (!pte)
2199                 return -ENOMEM;
2200
2201         BUG_ON(pmd_huge(*pmd));
2202
2203         arch_enter_lazy_mmu_mode();
2204
2205         token = pmd_pgtable(*pmd);
2206
2207         do {
2208                 err = fn(pte++, token, addr, data);
2209                 if (err)
2210                         break;
2211         } while (addr += PAGE_SIZE, addr != end);
2212
2213         arch_leave_lazy_mmu_mode();
2214
2215         if (mm != &init_mm)
2216                 pte_unmap_unlock(pte-1, ptl);
2217         return err;
2218 }
2219
2220 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2221                                      unsigned long addr, unsigned long end,
2222                                      pte_fn_t fn, void *data)
2223 {
2224         pmd_t *pmd;
2225         unsigned long next;
2226         int err;
2227
2228         BUG_ON(pud_huge(*pud));
2229
2230         pmd = pmd_alloc(mm, pud, addr);
2231         if (!pmd)
2232                 return -ENOMEM;
2233         do {
2234                 next = pmd_addr_end(addr, end);
2235                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2236                 if (err)
2237                         break;
2238         } while (pmd++, addr = next, addr != end);
2239         return err;
2240 }
2241
2242 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2243                                      unsigned long addr, unsigned long end,
2244                                      pte_fn_t fn, void *data)
2245 {
2246         pud_t *pud;
2247         unsigned long next;
2248         int err;
2249
2250         pud = pud_alloc(mm, p4d, addr);
2251         if (!pud)
2252                 return -ENOMEM;
2253         do {
2254                 next = pud_addr_end(addr, end);
2255                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2256                 if (err)
2257                         break;
2258         } while (pud++, addr = next, addr != end);
2259         return err;
2260 }
2261
2262 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2263                                      unsigned long addr, unsigned long end,
2264                                      pte_fn_t fn, void *data)
2265 {
2266         p4d_t *p4d;
2267         unsigned long next;
2268         int err;
2269
2270         p4d = p4d_alloc(mm, pgd, addr);
2271         if (!p4d)
2272                 return -ENOMEM;
2273         do {
2274                 next = p4d_addr_end(addr, end);
2275                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2276                 if (err)
2277                         break;
2278         } while (p4d++, addr = next, addr != end);
2279         return err;
2280 }
2281
2282 /*
2283  * Scan a region of virtual memory, filling in page tables as necessary
2284  * and calling a provided function on each leaf page table.
2285  */
2286 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2287                         unsigned long size, pte_fn_t fn, void *data)
2288 {
2289         pgd_t *pgd;
2290         unsigned long next;
2291         unsigned long end = addr + size;
2292         int err;
2293
2294         if (WARN_ON(addr >= end))
2295                 return -EINVAL;
2296
2297         pgd = pgd_offset(mm, addr);
2298         do {
2299                 next = pgd_addr_end(addr, end);
2300                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2301                 if (err)
2302                         break;
2303         } while (pgd++, addr = next, addr != end);
2304
2305         return err;
2306 }
2307 EXPORT_SYMBOL_GPL(apply_to_page_range);
2308
2309 /*
2310  * handle_pte_fault chooses page fault handler according to an entry which was
2311  * read non-atomically.  Before making any commitment, on those architectures
2312  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2313  * parts, do_swap_page must check under lock before unmapping the pte and
2314  * proceeding (but do_wp_page is only called after already making such a check;
2315  * and do_anonymous_page can safely check later on).
2316  */
2317 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2318                                 pte_t *page_table, pte_t orig_pte)
2319 {
2320         int same = 1;
2321 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2322         if (sizeof(pte_t) > sizeof(unsigned long)) {
2323                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2324                 spin_lock(ptl);
2325                 same = pte_same(*page_table, orig_pte);
2326                 spin_unlock(ptl);
2327         }
2328 #endif
2329         pte_unmap(page_table);
2330         return same;
2331 }
2332
2333 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2334 {
2335         debug_dma_assert_idle(src);
2336
2337         /*
2338          * If the source page was a PFN mapping, we don't have
2339          * a "struct page" for it. We do a best-effort copy by
2340          * just copying from the original user address. If that
2341          * fails, we just zero-fill it. Live with it.
2342          */
2343         if (unlikely(!src)) {
2344                 void *kaddr = kmap_atomic(dst);
2345                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2346
2347                 /*
2348                  * This really shouldn't fail, because the page is there
2349                  * in the page tables. But it might just be unreadable,
2350                  * in which case we just give up and fill the result with
2351                  * zeroes.
2352                  */
2353                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2354                         clear_page(kaddr);
2355                 kunmap_atomic(kaddr);
2356                 flush_dcache_page(dst);
2357         } else
2358                 copy_user_highpage(dst, src, va, vma);
2359 }
2360
2361 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2362 {
2363         struct file *vm_file = vma->vm_file;
2364
2365         if (vm_file)
2366                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2367
2368         /*
2369          * Special mappings (e.g. VDSO) do not have any file so fake
2370          * a default GFP_KERNEL for them.
2371          */
2372         return GFP_KERNEL;
2373 }
2374
2375 /*
2376  * Notify the address space that the page is about to become writable so that
2377  * it can prohibit this or wait for the page to get into an appropriate state.
2378  *
2379  * We do this without the lock held, so that it can sleep if it needs to.
2380  */
2381 static int do_page_mkwrite(struct vm_fault *vmf)
2382 {
2383         int ret;
2384         struct page *page = vmf->page;
2385         unsigned int old_flags = vmf->flags;
2386
2387         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2388
2389         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2390         /* Restore original flags so that caller is not surprised */
2391         vmf->flags = old_flags;
2392         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2393                 return ret;
2394         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2395                 lock_page(page);
2396                 if (!page->mapping) {
2397                         unlock_page(page);
2398                         return 0; /* retry */
2399                 }
2400                 ret |= VM_FAULT_LOCKED;
2401         } else
2402                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2403         return ret;
2404 }
2405
2406 /*
2407  * Handle dirtying of a page in shared file mapping on a write fault.
2408  *
2409  * The function expects the page to be locked and unlocks it.
2410  */
2411 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2412                                     struct page *page)
2413 {
2414         struct address_space *mapping;
2415         bool dirtied;
2416         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2417
2418         dirtied = set_page_dirty(page);
2419         VM_BUG_ON_PAGE(PageAnon(page), page);
2420         /*
2421          * Take a local copy of the address_space - page.mapping may be zeroed
2422          * by truncate after unlock_page().   The address_space itself remains
2423          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2424          * release semantics to prevent the compiler from undoing this copying.
2425          */
2426         mapping = page_rmapping(page);
2427         unlock_page(page);
2428
2429         if ((dirtied || page_mkwrite) && mapping) {
2430                 /*
2431                  * Some device drivers do not set page.mapping
2432                  * but still dirty their pages
2433                  */
2434                 balance_dirty_pages_ratelimited(mapping);
2435         }
2436
2437         if (!page_mkwrite)
2438                 file_update_time(vma->vm_file);
2439 }
2440
2441 /*
2442  * Handle write page faults for pages that can be reused in the current vma
2443  *
2444  * This can happen either due to the mapping being with the VM_SHARED flag,
2445  * or due to us being the last reference standing to the page. In either
2446  * case, all we need to do here is to mark the page as writable and update
2447  * any related book-keeping.
2448  */
2449 static inline void wp_page_reuse(struct vm_fault *vmf)
2450         __releases(vmf->ptl)
2451 {
2452         struct vm_area_struct *vma = vmf->vma;
2453         struct page *page = vmf->page;
2454         pte_t entry;
2455         /*
2456          * Clear the pages cpupid information as the existing
2457          * information potentially belongs to a now completely
2458          * unrelated process.
2459          */
2460         if (page)
2461                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2462
2463         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2464         entry = pte_mkyoung(vmf->orig_pte);
2465         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2466         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2467                 update_mmu_cache(vma, vmf->address, vmf->pte);
2468         pte_unmap_unlock(vmf->pte, vmf->ptl);
2469 }
2470
2471 /*
2472  * Handle the case of a page which we actually need to copy to a new page.
2473  *
2474  * Called with mmap_sem locked and the old page referenced, but
2475  * without the ptl held.
2476  *
2477  * High level logic flow:
2478  *
2479  * - Allocate a page, copy the content of the old page to the new one.
2480  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2481  * - Take the PTL. If the pte changed, bail out and release the allocated page
2482  * - If the pte is still the way we remember it, update the page table and all
2483  *   relevant references. This includes dropping the reference the page-table
2484  *   held to the old page, as well as updating the rmap.
2485  * - In any case, unlock the PTL and drop the reference we took to the old page.
2486  */
2487 static int wp_page_copy(struct vm_fault *vmf)
2488 {
2489         struct vm_area_struct *vma = vmf->vma;
2490         struct mm_struct *mm = vma->vm_mm;
2491         struct page *old_page = vmf->page;
2492         struct page *new_page = NULL;
2493         pte_t entry;
2494         int page_copied = 0;
2495         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2496         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2497         struct mem_cgroup *memcg;
2498
2499         if (unlikely(anon_vma_prepare(vma)))
2500                 goto oom;
2501
2502         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2503                 new_page = alloc_zeroed_user_highpage_movable(vma,
2504                                                               vmf->address);
2505                 if (!new_page)
2506                         goto oom;
2507         } else {
2508                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2509                                 vmf->address);
2510                 if (!new_page)
2511                         goto oom;
2512                 cow_user_page(new_page, old_page, vmf->address, vma);
2513         }
2514
2515         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2516                 goto oom_free_new;
2517
2518         __SetPageUptodate(new_page);
2519
2520         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2521
2522         /*
2523          * Re-check the pte - we dropped the lock
2524          */
2525         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2526         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2527                 if (old_page) {
2528                         if (!PageAnon(old_page)) {
2529                                 dec_mm_counter_fast(mm,
2530                                                 mm_counter_file(old_page));
2531                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2532                         }
2533                 } else {
2534                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2535                 }
2536                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2537                 entry = mk_pte(new_page, vma->vm_page_prot);
2538                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2539                 /*
2540                  * Clear the pte entry and flush it first, before updating the
2541                  * pte with the new entry. This will avoid a race condition
2542                  * seen in the presence of one thread doing SMC and another
2543                  * thread doing COW.
2544                  */
2545                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2546                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2547                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2548                 lru_cache_add_active_or_unevictable(new_page, vma);
2549                 /*
2550                  * We call the notify macro here because, when using secondary
2551                  * mmu page tables (such as kvm shadow page tables), we want the
2552                  * new page to be mapped directly into the secondary page table.
2553                  */
2554                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2555                 update_mmu_cache(vma, vmf->address, vmf->pte);
2556                 if (old_page) {
2557                         /*
2558                          * Only after switching the pte to the new page may
2559                          * we remove the mapcount here. Otherwise another
2560                          * process may come and find the rmap count decremented
2561                          * before the pte is switched to the new page, and
2562                          * "reuse" the old page writing into it while our pte
2563                          * here still points into it and can be read by other
2564                          * threads.
2565                          *
2566                          * The critical issue is to order this
2567                          * page_remove_rmap with the ptp_clear_flush above.
2568                          * Those stores are ordered by (if nothing else,)
2569                          * the barrier present in the atomic_add_negative
2570                          * in page_remove_rmap.
2571                          *
2572                          * Then the TLB flush in ptep_clear_flush ensures that
2573                          * no process can access the old page before the
2574                          * decremented mapcount is visible. And the old page
2575                          * cannot be reused until after the decremented
2576                          * mapcount is visible. So transitively, TLBs to
2577                          * old page will be flushed before it can be reused.
2578                          */
2579                         page_remove_rmap(old_page, false);
2580                 }
2581
2582                 /* Free the old page.. */
2583                 new_page = old_page;
2584                 page_copied = 1;
2585         } else {
2586                 mem_cgroup_cancel_charge(new_page, memcg, false);
2587         }
2588
2589         if (new_page)
2590                 put_page(new_page);
2591
2592         pte_unmap_unlock(vmf->pte, vmf->ptl);
2593         /*
2594          * No need to double call mmu_notifier->invalidate_range() callback as
2595          * the above ptep_clear_flush_notify() did already call it.
2596          */
2597         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2598         if (old_page) {
2599                 /*
2600                  * Don't let another task, with possibly unlocked vma,
2601                  * keep the mlocked page.
2602                  */
2603                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2604                         lock_page(old_page);    /* LRU manipulation */
2605                         if (PageMlocked(old_page))
2606                                 munlock_vma_page(old_page);
2607                         unlock_page(old_page);
2608                 }
2609                 put_page(old_page);
2610         }
2611         return page_copied ? VM_FAULT_WRITE : 0;
2612 oom_free_new:
2613         put_page(new_page);
2614 oom:
2615         if (old_page)
2616                 put_page(old_page);
2617         return VM_FAULT_OOM;
2618 }
2619
2620 /**
2621  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2622  *                        writeable once the page is prepared
2623  *
2624  * @vmf: structure describing the fault
2625  *
2626  * This function handles all that is needed to finish a write page fault in a
2627  * shared mapping due to PTE being read-only once the mapped page is prepared.
2628  * It handles locking of PTE and modifying it. The function returns
2629  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2630  * lock.
2631  *
2632  * The function expects the page to be locked or other protection against
2633  * concurrent faults / writeback (such as DAX radix tree locks).
2634  */
2635 int finish_mkwrite_fault(struct vm_fault *vmf)
2636 {
2637         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2638         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2639                                        &vmf->ptl);
2640         /*
2641          * We might have raced with another page fault while we released the
2642          * pte_offset_map_lock.
2643          */
2644         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2645                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2646                 return VM_FAULT_NOPAGE;
2647         }
2648         wp_page_reuse(vmf);
2649         return 0;
2650 }
2651
2652 /*
2653  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2654  * mapping
2655  */
2656 static int wp_pfn_shared(struct vm_fault *vmf)
2657 {
2658         struct vm_area_struct *vma = vmf->vma;
2659
2660         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2661                 int ret;
2662
2663                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2664                 vmf->flags |= FAULT_FLAG_MKWRITE;
2665                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2666                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2667                         return ret;
2668                 return finish_mkwrite_fault(vmf);
2669         }
2670         wp_page_reuse(vmf);
2671         return VM_FAULT_WRITE;
2672 }
2673
2674 static int wp_page_shared(struct vm_fault *vmf)
2675         __releases(vmf->ptl)
2676 {
2677         struct vm_area_struct *vma = vmf->vma;
2678
2679         get_page(vmf->page);
2680
2681         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2682                 int tmp;
2683
2684                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2685                 tmp = do_page_mkwrite(vmf);
2686                 if (unlikely(!tmp || (tmp &
2687                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2688                         put_page(vmf->page);
2689                         return tmp;
2690                 }
2691                 tmp = finish_mkwrite_fault(vmf);
2692                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2693                         unlock_page(vmf->page);
2694                         put_page(vmf->page);
2695                         return tmp;
2696                 }
2697         } else {
2698                 wp_page_reuse(vmf);
2699                 lock_page(vmf->page);
2700         }
2701         fault_dirty_shared_page(vma, vmf->page);
2702         put_page(vmf->page);
2703
2704         return VM_FAULT_WRITE;
2705 }
2706
2707 /*
2708  * This routine handles present pages, when users try to write
2709  * to a shared page. It is done by copying the page to a new address
2710  * and decrementing the shared-page counter for the old page.
2711  *
2712  * Note that this routine assumes that the protection checks have been
2713  * done by the caller (the low-level page fault routine in most cases).
2714  * Thus we can safely just mark it writable once we've done any necessary
2715  * COW.
2716  *
2717  * We also mark the page dirty at this point even though the page will
2718  * change only once the write actually happens. This avoids a few races,
2719  * and potentially makes it more efficient.
2720  *
2721  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2722  * but allow concurrent faults), with pte both mapped and locked.
2723  * We return with mmap_sem still held, but pte unmapped and unlocked.
2724  */
2725 static int do_wp_page(struct vm_fault *vmf)
2726         __releases(vmf->ptl)
2727 {
2728         struct vm_area_struct *vma = vmf->vma;
2729
2730         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2731         if (!vmf->page) {
2732                 /*
2733                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2734                  * VM_PFNMAP VMA.
2735                  *
2736                  * We should not cow pages in a shared writeable mapping.
2737                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2738                  */
2739                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2740                                      (VM_WRITE|VM_SHARED))
2741                         return wp_pfn_shared(vmf);
2742
2743                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2744                 return wp_page_copy(vmf);
2745         }
2746
2747         /*
2748          * Take out anonymous pages first, anonymous shared vmas are
2749          * not dirty accountable.
2750          */
2751         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2752                 int total_map_swapcount;
2753                 if (!trylock_page(vmf->page)) {
2754                         get_page(vmf->page);
2755                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2756                         lock_page(vmf->page);
2757                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2758                                         vmf->address, &vmf->ptl);
2759                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2760                                 unlock_page(vmf->page);
2761                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2762                                 put_page(vmf->page);
2763                                 return 0;
2764                         }
2765                         put_page(vmf->page);
2766                 }
2767                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2768                         if (total_map_swapcount == 1) {
2769                                 /*
2770                                  * The page is all ours. Move it to
2771                                  * our anon_vma so the rmap code will
2772                                  * not search our parent or siblings.
2773                                  * Protected against the rmap code by
2774                                  * the page lock.
2775                                  */
2776                                 page_move_anon_rmap(vmf->page, vma);
2777                         }
2778                         unlock_page(vmf->page);
2779                         wp_page_reuse(vmf);
2780                         return VM_FAULT_WRITE;
2781                 }
2782                 unlock_page(vmf->page);
2783         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2784                                         (VM_WRITE|VM_SHARED))) {
2785                 return wp_page_shared(vmf);
2786         }
2787
2788         /*
2789          * Ok, we need to copy. Oh, well..
2790          */
2791         get_page(vmf->page);
2792
2793         pte_unmap_unlock(vmf->pte, vmf->ptl);
2794         return wp_page_copy(vmf);
2795 }
2796
2797 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2798                 unsigned long start_addr, unsigned long end_addr,
2799                 struct zap_details *details)
2800 {
2801         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2802 }
2803
2804 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2805                                             struct zap_details *details)
2806 {
2807         struct vm_area_struct *vma;
2808         pgoff_t vba, vea, zba, zea;
2809
2810         vma_interval_tree_foreach(vma, root,
2811                         details->first_index, details->last_index) {
2812
2813                 vba = vma->vm_pgoff;
2814                 vea = vba + vma_pages(vma) - 1;
2815                 zba = details->first_index;
2816                 if (zba < vba)
2817                         zba = vba;
2818                 zea = details->last_index;
2819                 if (zea > vea)
2820                         zea = vea;
2821
2822                 unmap_mapping_range_vma(vma,
2823                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2824                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2825                                 details);
2826         }
2827 }
2828
2829 /**
2830  * unmap_mapping_pages() - Unmap pages from processes.
2831  * @mapping: The address space containing pages to be unmapped.
2832  * @start: Index of first page to be unmapped.
2833  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2834  * @even_cows: Whether to unmap even private COWed pages.
2835  *
2836  * Unmap the pages in this address space from any userspace process which
2837  * has them mmaped.  Generally, you want to remove COWed pages as well when
2838  * a file is being truncated, but not when invalidating pages from the page
2839  * cache.
2840  */
2841 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2842                 pgoff_t nr, bool even_cows)
2843 {
2844         struct zap_details details = { };
2845
2846         details.check_mapping = even_cows ? NULL : mapping;
2847         details.first_index = start;
2848         details.last_index = start + nr - 1;
2849         if (details.last_index < details.first_index)
2850                 details.last_index = ULONG_MAX;
2851
2852         i_mmap_lock_write(mapping);
2853         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2854                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2855         i_mmap_unlock_write(mapping);
2856 }
2857
2858 /**
2859  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2860  * address_space corresponding to the specified byte range in the underlying
2861  * file.
2862  *
2863  * @mapping: the address space containing mmaps to be unmapped.
2864  * @holebegin: byte in first page to unmap, relative to the start of
2865  * the underlying file.  This will be rounded down to a PAGE_SIZE
2866  * boundary.  Note that this is different from truncate_pagecache(), which
2867  * must keep the partial page.  In contrast, we must get rid of
2868  * partial pages.
2869  * @holelen: size of prospective hole in bytes.  This will be rounded
2870  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2871  * end of the file.
2872  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2873  * but 0 when invalidating pagecache, don't throw away private data.
2874  */
2875 void unmap_mapping_range(struct address_space *mapping,
2876                 loff_t const holebegin, loff_t const holelen, int even_cows)
2877 {
2878         pgoff_t hba = holebegin >> PAGE_SHIFT;
2879         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2880
2881         /* Check for overflow. */
2882         if (sizeof(holelen) > sizeof(hlen)) {
2883                 long long holeend =
2884                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2885                 if (holeend & ~(long long)ULONG_MAX)
2886                         hlen = ULONG_MAX - hba + 1;
2887         }
2888
2889         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2890 }
2891 EXPORT_SYMBOL(unmap_mapping_range);
2892
2893 /*
2894  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2895  * but allow concurrent faults), and pte mapped but not yet locked.
2896  * We return with pte unmapped and unlocked.
2897  *
2898  * We return with the mmap_sem locked or unlocked in the same cases
2899  * as does filemap_fault().
2900  */
2901 int do_swap_page(struct vm_fault *vmf)
2902 {
2903         struct vm_area_struct *vma = vmf->vma;
2904         struct page *page = NULL, *swapcache;
2905         struct mem_cgroup *memcg;
2906         swp_entry_t entry;
2907         pte_t pte;
2908         int locked;
2909         int exclusive = 0;
2910         int ret = 0;
2911
2912         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2913                 goto out;
2914
2915         entry = pte_to_swp_entry(vmf->orig_pte);
2916         if (unlikely(non_swap_entry(entry))) {
2917                 if (is_migration_entry(entry)) {
2918                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2919                                              vmf->address);
2920                 } else if (is_device_private_entry(entry)) {
2921                         /*
2922                          * For un-addressable device memory we call the pgmap
2923                          * fault handler callback. The callback must migrate
2924                          * the page back to some CPU accessible page.
2925                          */
2926                         ret = device_private_entry_fault(vma, vmf->address, entry,
2927                                                  vmf->flags, vmf->pmd);
2928                 } else if (is_hwpoison_entry(entry)) {
2929                         ret = VM_FAULT_HWPOISON;
2930                 } else {
2931                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2932                         ret = VM_FAULT_SIGBUS;
2933                 }
2934                 goto out;
2935         }
2936
2937
2938         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2939         page = lookup_swap_cache(entry, vma, vmf->address);
2940         swapcache = page;
2941
2942         if (!page) {
2943                 struct swap_info_struct *si = swp_swap_info(entry);
2944
2945                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2946                                 __swap_count(si, entry) == 1) {
2947                         /* skip swapcache */
2948                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2949                                                         vmf->address);
2950                         if (page) {
2951                                 __SetPageLocked(page);
2952                                 __SetPageSwapBacked(page);
2953                                 set_page_private(page, entry.val);
2954                                 lru_cache_add_anon(page);
2955                                 swap_readpage(page, true);
2956                         }
2957                 } else {
2958                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2959                                                 vmf);
2960                         swapcache = page;
2961                 }
2962
2963                 if (!page) {
2964                         /*
2965                          * Back out if somebody else faulted in this pte
2966                          * while we released the pte lock.
2967                          */
2968                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2969                                         vmf->address, &vmf->ptl);
2970                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2971                                 ret = VM_FAULT_OOM;
2972                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973                         goto unlock;
2974                 }
2975
2976                 /* Had to read the page from swap area: Major fault */
2977                 ret = VM_FAULT_MAJOR;
2978                 count_vm_event(PGMAJFAULT);
2979                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2980         } else if (PageHWPoison(page)) {
2981                 /*
2982                  * hwpoisoned dirty swapcache pages are kept for killing
2983                  * owner processes (which may be unknown at hwpoison time)
2984                  */
2985                 ret = VM_FAULT_HWPOISON;
2986                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2987                 goto out_release;
2988         }
2989
2990         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2991
2992         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2993         if (!locked) {
2994                 ret |= VM_FAULT_RETRY;
2995                 goto out_release;
2996         }
2997
2998         /*
2999          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3000          * release the swapcache from under us.  The page pin, and pte_same
3001          * test below, are not enough to exclude that.  Even if it is still
3002          * swapcache, we need to check that the page's swap has not changed.
3003          */
3004         if (unlikely((!PageSwapCache(page) ||
3005                         page_private(page) != entry.val)) && swapcache)
3006                 goto out_page;
3007
3008         page = ksm_might_need_to_copy(page, vma, vmf->address);
3009         if (unlikely(!page)) {
3010                 ret = VM_FAULT_OOM;
3011                 page = swapcache;
3012                 goto out_page;
3013         }
3014
3015         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3016                                         &memcg, false)) {
3017                 ret = VM_FAULT_OOM;
3018                 goto out_page;
3019         }
3020
3021         /*
3022          * Back out if somebody else already faulted in this pte.
3023          */
3024         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3025                         &vmf->ptl);
3026         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3027                 goto out_nomap;
3028
3029         if (unlikely(!PageUptodate(page))) {
3030                 ret = VM_FAULT_SIGBUS;
3031                 goto out_nomap;
3032         }
3033
3034         /*
3035          * The page isn't present yet, go ahead with the fault.
3036          *
3037          * Be careful about the sequence of operations here.
3038          * To get its accounting right, reuse_swap_page() must be called
3039          * while the page is counted on swap but not yet in mapcount i.e.
3040          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3041          * must be called after the swap_free(), or it will never succeed.
3042          */
3043
3044         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3045         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3046         pte = mk_pte(page, vma->vm_page_prot);
3047         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3048                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3049                 vmf->flags &= ~FAULT_FLAG_WRITE;
3050                 ret |= VM_FAULT_WRITE;
3051                 exclusive = RMAP_EXCLUSIVE;
3052         }
3053         flush_icache_page(vma, page);
3054         if (pte_swp_soft_dirty(vmf->orig_pte))
3055                 pte = pte_mksoft_dirty(pte);
3056         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3057         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3058         vmf->orig_pte = pte;
3059
3060         /* ksm created a completely new copy */
3061         if (unlikely(page != swapcache && swapcache)) {
3062                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3063                 mem_cgroup_commit_charge(page, memcg, false, false);
3064                 lru_cache_add_active_or_unevictable(page, vma);
3065         } else {
3066                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3067                 mem_cgroup_commit_charge(page, memcg, true, false);
3068                 activate_page(page);
3069         }
3070
3071         swap_free(entry);
3072         if (mem_cgroup_swap_full(page) ||
3073             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3074                 try_to_free_swap(page);
3075         unlock_page(page);
3076         if (page != swapcache && swapcache) {
3077                 /*
3078                  * Hold the lock to avoid the swap entry to be reused
3079                  * until we take the PT lock for the pte_same() check
3080                  * (to avoid false positives from pte_same). For
3081                  * further safety release the lock after the swap_free
3082                  * so that the swap count won't change under a
3083                  * parallel locked swapcache.
3084                  */
3085                 unlock_page(swapcache);
3086                 put_page(swapcache);
3087         }
3088
3089         if (vmf->flags & FAULT_FLAG_WRITE) {
3090                 ret |= do_wp_page(vmf);
3091                 if (ret & VM_FAULT_ERROR)
3092                         ret &= VM_FAULT_ERROR;
3093                 goto out;
3094         }
3095
3096         /* No need to invalidate - it was non-present before */
3097         update_mmu_cache(vma, vmf->address, vmf->pte);
3098 unlock:
3099         pte_unmap_unlock(vmf->pte, vmf->ptl);
3100 out:
3101         return ret;
3102 out_nomap:
3103         mem_cgroup_cancel_charge(page, memcg, false);
3104         pte_unmap_unlock(vmf->pte, vmf->ptl);
3105 out_page:
3106         unlock_page(page);
3107 out_release:
3108         put_page(page);
3109         if (page != swapcache && swapcache) {
3110                 unlock_page(swapcache);
3111                 put_page(swapcache);
3112         }
3113         return ret;
3114 }
3115
3116 /*
3117  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3118  * but allow concurrent faults), and pte mapped but not yet locked.
3119  * We return with mmap_sem still held, but pte unmapped and unlocked.
3120  */
3121 static int do_anonymous_page(struct vm_fault *vmf)
3122 {
3123         struct vm_area_struct *vma = vmf->vma;
3124         struct mem_cgroup *memcg;
3125         struct page *page;
3126         int ret = 0;
3127         pte_t entry;
3128
3129         /* File mapping without ->vm_ops ? */
3130         if (vma->vm_flags & VM_SHARED)
3131                 return VM_FAULT_SIGBUS;
3132
3133         /*
3134          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3135          * pte_offset_map() on pmds where a huge pmd might be created
3136          * from a different thread.
3137          *
3138          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3139          * parallel threads are excluded by other means.
3140          *
3141          * Here we only have down_read(mmap_sem).
3142          */
3143         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3144                 return VM_FAULT_OOM;
3145
3146         /* See the comment in pte_alloc_one_map() */
3147         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3148                 return 0;
3149
3150         /* Use the zero-page for reads */
3151         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3152                         !mm_forbids_zeropage(vma->vm_mm)) {
3153                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3154                                                 vma->vm_page_prot));
3155                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3156                                 vmf->address, &vmf->ptl);
3157                 if (!pte_none(*vmf->pte))
3158                         goto unlock;
3159                 ret = check_stable_address_space(vma->vm_mm);
3160                 if (ret)
3161                         goto unlock;
3162                 /* Deliver the page fault to userland, check inside PT lock */
3163                 if (userfaultfd_missing(vma)) {
3164                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3165                         return handle_userfault(vmf, VM_UFFD_MISSING);
3166                 }
3167                 goto setpte;
3168         }
3169
3170         /* Allocate our own private page. */
3171         if (unlikely(anon_vma_prepare(vma)))
3172                 goto oom;
3173         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3174         if (!page)
3175                 goto oom;
3176
3177         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3178                                         false))
3179                 goto oom_free_page;
3180
3181         /*
3182          * The memory barrier inside __SetPageUptodate makes sure that
3183          * preceeding stores to the page contents become visible before
3184          * the set_pte_at() write.
3185          */
3186         __SetPageUptodate(page);
3187
3188         entry = mk_pte(page, vma->vm_page_prot);
3189         if (vma->vm_flags & VM_WRITE)
3190                 entry = pte_mkwrite(pte_mkdirty(entry));
3191
3192         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3193                         &vmf->ptl);
3194         if (!pte_none(*vmf->pte))
3195                 goto release;
3196
3197         ret = check_stable_address_space(vma->vm_mm);
3198         if (ret)
3199                 goto release;
3200
3201         /* Deliver the page fault to userland, check inside PT lock */
3202         if (userfaultfd_missing(vma)) {
3203                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3204                 mem_cgroup_cancel_charge(page, memcg, false);
3205                 put_page(page);
3206                 return handle_userfault(vmf, VM_UFFD_MISSING);
3207         }
3208
3209         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3210         page_add_new_anon_rmap(page, vma, vmf->address, false);
3211         mem_cgroup_commit_charge(page, memcg, false, false);
3212         lru_cache_add_active_or_unevictable(page, vma);
3213 setpte:
3214         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3215
3216         /* No need to invalidate - it was non-present before */
3217         update_mmu_cache(vma, vmf->address, vmf->pte);
3218 unlock:
3219         pte_unmap_unlock(vmf->pte, vmf->ptl);
3220         return ret;
3221 release:
3222         mem_cgroup_cancel_charge(page, memcg, false);
3223         put_page(page);
3224         goto unlock;
3225 oom_free_page:
3226         put_page(page);
3227 oom:
3228         return VM_FAULT_OOM;
3229 }
3230
3231 /*
3232  * The mmap_sem must have been held on entry, and may have been
3233  * released depending on flags and vma->vm_ops->fault() return value.
3234  * See filemap_fault() and __lock_page_retry().
3235  */
3236 static int __do_fault(struct vm_fault *vmf)
3237 {
3238         struct vm_area_struct *vma = vmf->vma;
3239         int ret;
3240
3241         ret = vma->vm_ops->fault(vmf);
3242         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3243                             VM_FAULT_DONE_COW)))
3244                 return ret;
3245
3246         if (unlikely(PageHWPoison(vmf->page))) {
3247                 if (ret & VM_FAULT_LOCKED)
3248                         unlock_page(vmf->page);
3249                 put_page(vmf->page);
3250                 vmf->page = NULL;
3251                 return VM_FAULT_HWPOISON;
3252         }
3253
3254         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3255                 lock_page(vmf->page);
3256         else
3257                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3258
3259         return ret;
3260 }
3261
3262 /*
3263  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3264  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3265  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3266  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3267  */
3268 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3269 {
3270         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3271 }
3272
3273 static int pte_alloc_one_map(struct vm_fault *vmf)
3274 {
3275         struct vm_area_struct *vma = vmf->vma;
3276
3277         if (!pmd_none(*vmf->pmd))
3278                 goto map_pte;
3279         if (vmf->prealloc_pte) {
3280                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3281                 if (unlikely(!pmd_none(*vmf->pmd))) {
3282                         spin_unlock(vmf->ptl);
3283                         goto map_pte;
3284                 }
3285
3286                 mm_inc_nr_ptes(vma->vm_mm);
3287                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3288                 spin_unlock(vmf->ptl);
3289                 vmf->prealloc_pte = NULL;
3290         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3291                 return VM_FAULT_OOM;
3292         }
3293 map_pte:
3294         /*
3295          * If a huge pmd materialized under us just retry later.  Use
3296          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3297          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3298          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3299          * running immediately after a huge pmd fault in a different thread of
3300          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3301          * All we have to ensure is that it is a regular pmd that we can walk
3302          * with pte_offset_map() and we can do that through an atomic read in
3303          * C, which is what pmd_trans_unstable() provides.
3304          */
3305         if (pmd_devmap_trans_unstable(vmf->pmd))
3306                 return VM_FAULT_NOPAGE;
3307
3308         /*
3309          * At this point we know that our vmf->pmd points to a page of ptes
3310          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3311          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3312          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3313          * be valid and we will re-check to make sure the vmf->pte isn't
3314          * pte_none() under vmf->ptl protection when we return to
3315          * alloc_set_pte().
3316          */
3317         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3318                         &vmf->ptl);
3319         return 0;
3320 }
3321
3322 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3323
3324 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3325 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3326                 unsigned long haddr)
3327 {
3328         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3329                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3330                 return false;
3331         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3332                 return false;
3333         return true;
3334 }
3335
3336 static void deposit_prealloc_pte(struct vm_fault *vmf)
3337 {
3338         struct vm_area_struct *vma = vmf->vma;
3339
3340         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3341         /*
3342          * We are going to consume the prealloc table,
3343          * count that as nr_ptes.
3344          */
3345         mm_inc_nr_ptes(vma->vm_mm);
3346         vmf->prealloc_pte = NULL;
3347 }
3348
3349 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3350 {
3351         struct vm_area_struct *vma = vmf->vma;
3352         bool write = vmf->flags & FAULT_FLAG_WRITE;
3353         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3354         pmd_t entry;
3355         int i, ret;
3356
3357         if (!transhuge_vma_suitable(vma, haddr))
3358                 return VM_FAULT_FALLBACK;
3359
3360         ret = VM_FAULT_FALLBACK;
3361         page = compound_head(page);
3362
3363         /*
3364          * Archs like ppc64 need additonal space to store information
3365          * related to pte entry. Use the preallocated table for that.
3366          */
3367         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3368                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3369                 if (!vmf->prealloc_pte)
3370                         return VM_FAULT_OOM;
3371                 smp_wmb(); /* See comment in __pte_alloc() */
3372         }
3373
3374         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3375         if (unlikely(!pmd_none(*vmf->pmd)))
3376                 goto out;
3377
3378         for (i = 0; i < HPAGE_PMD_NR; i++)
3379                 flush_icache_page(vma, page + i);
3380
3381         entry = mk_huge_pmd(page, vma->vm_page_prot);
3382         if (write)
3383                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3384
3385         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3386         page_add_file_rmap(page, true);
3387         /*
3388          * deposit and withdraw with pmd lock held
3389          */
3390         if (arch_needs_pgtable_deposit())
3391                 deposit_prealloc_pte(vmf);
3392
3393         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3394
3395         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3396
3397         /* fault is handled */
3398         ret = 0;
3399         count_vm_event(THP_FILE_MAPPED);
3400 out:
3401         spin_unlock(vmf->ptl);
3402         return ret;
3403 }
3404 #else
3405 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3406 {
3407         BUILD_BUG();
3408         return 0;
3409 }
3410 #endif
3411
3412 /**
3413  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3414  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3415  *
3416  * @vmf: fault environment
3417  * @memcg: memcg to charge page (only for private mappings)
3418  * @page: page to map
3419  *
3420  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3421  * return.
3422  *
3423  * Target users are page handler itself and implementations of
3424  * vm_ops->map_pages.
3425  */
3426 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3427                 struct page *page)
3428 {
3429         struct vm_area_struct *vma = vmf->vma;
3430         bool write = vmf->flags & FAULT_FLAG_WRITE;
3431         pte_t entry;
3432         int ret;
3433
3434         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3435                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3436                 /* THP on COW? */
3437                 VM_BUG_ON_PAGE(memcg, page);
3438
3439                 ret = do_set_pmd(vmf, page);
3440                 if (ret != VM_FAULT_FALLBACK)
3441                         return ret;
3442         }
3443
3444         if (!vmf->pte) {
3445                 ret = pte_alloc_one_map(vmf);
3446                 if (ret)
3447                         return ret;
3448         }
3449
3450         /* Re-check under ptl */
3451         if (unlikely(!pte_none(*vmf->pte)))
3452                 return VM_FAULT_NOPAGE;
3453
3454         flush_icache_page(vma, page);
3455         entry = mk_pte(page, vma->vm_page_prot);
3456         if (write)
3457                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3458         /* copy-on-write page */
3459         if (write && !(vma->vm_flags & VM_SHARED)) {
3460                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3461                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3462                 mem_cgroup_commit_charge(page, memcg, false, false);
3463                 lru_cache_add_active_or_unevictable(page, vma);
3464         } else {
3465                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3466                 page_add_file_rmap(page, false);
3467         }
3468         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3469
3470         /* no need to invalidate: a not-present page won't be cached */
3471         update_mmu_cache(vma, vmf->address, vmf->pte);
3472
3473         return 0;
3474 }
3475
3476
3477 /**
3478  * finish_fault - finish page fault once we have prepared the page to fault
3479  *
3480  * @vmf: structure describing the fault
3481  *
3482  * This function handles all that is needed to finish a page fault once the
3483  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3484  * given page, adds reverse page mapping, handles memcg charges and LRU
3485  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3486  * error.
3487  *
3488  * The function expects the page to be locked and on success it consumes a
3489  * reference of a page being mapped (for the PTE which maps it).
3490  */
3491 int finish_fault(struct vm_fault *vmf)
3492 {
3493         struct page *page;
3494         int ret = 0;
3495
3496         /* Did we COW the page? */
3497         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3498             !(vmf->vma->vm_flags & VM_SHARED))
3499                 page = vmf->cow_page;
3500         else
3501                 page = vmf->page;
3502
3503         /*
3504          * check even for read faults because we might have lost our CoWed
3505          * page
3506          */
3507         if (!(vmf->vma->vm_flags & VM_SHARED))
3508                 ret = check_stable_address_space(vmf->vma->vm_mm);
3509         if (!ret)
3510                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3511         if (vmf->pte)
3512                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513         return ret;
3514 }
3515
3516 static unsigned long fault_around_bytes __read_mostly =
3517         rounddown_pow_of_two(65536);
3518
3519 #ifdef CONFIG_DEBUG_FS
3520 static int fault_around_bytes_get(void *data, u64 *val)
3521 {
3522         *val = fault_around_bytes;
3523         return 0;
3524 }
3525
3526 /*
3527  * fault_around_bytes must be rounded down to the nearest page order as it's
3528  * what do_fault_around() expects to see.
3529  */
3530 static int fault_around_bytes_set(void *data, u64 val)
3531 {
3532         if (val / PAGE_SIZE > PTRS_PER_PTE)
3533                 return -EINVAL;
3534         if (val > PAGE_SIZE)
3535                 fault_around_bytes = rounddown_pow_of_two(val);
3536         else
3537                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3538         return 0;
3539 }
3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3541                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3542
3543 static int __init fault_around_debugfs(void)
3544 {
3545         void *ret;
3546
3547         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548                         &fault_around_bytes_fops);
3549         if (!ret)
3550                 pr_warn("Failed to create fault_around_bytes in debugfs");
3551         return 0;
3552 }
3553 late_initcall(fault_around_debugfs);
3554 #endif
3555
3556 /*
3557  * do_fault_around() tries to map few pages around the fault address. The hope
3558  * is that the pages will be needed soon and this will lower the number of
3559  * faults to handle.
3560  *
3561  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562  * not ready to be mapped: not up-to-date, locked, etc.
3563  *
3564  * This function is called with the page table lock taken. In the split ptlock
3565  * case the page table lock only protects only those entries which belong to
3566  * the page table corresponding to the fault address.
3567  *
3568  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3569  * only once.
3570  *
3571  * fault_around_bytes defines how many bytes we'll try to map.
3572  * do_fault_around() expects it to be set to a power of two less than or equal
3573  * to PTRS_PER_PTE.
3574  *
3575  * The virtual address of the area that we map is naturally aligned to
3576  * fault_around_bytes rounded down to the machine page size
3577  * (and therefore to page order).  This way it's easier to guarantee
3578  * that we don't cross page table boundaries.
3579  */
3580 static int do_fault_around(struct vm_fault *vmf)
3581 {
3582         unsigned long address = vmf->address, nr_pages, mask;
3583         pgoff_t start_pgoff = vmf->pgoff;
3584         pgoff_t end_pgoff;
3585         int off, ret = 0;
3586
3587         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3588         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3589
3590         vmf->address = max(address & mask, vmf->vma->vm_start);
3591         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3592         start_pgoff -= off;
3593
3594         /*
3595          *  end_pgoff is either the end of the page table, the end of
3596          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3597          */
3598         end_pgoff = start_pgoff -
3599                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3600                 PTRS_PER_PTE - 1;
3601         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3602                         start_pgoff + nr_pages - 1);
3603
3604         if (pmd_none(*vmf->pmd)) {
3605                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3606                                                   vmf->address);
3607                 if (!vmf->prealloc_pte)
3608                         goto out;
3609                 smp_wmb(); /* See comment in __pte_alloc() */
3610         }
3611
3612         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3613
3614         /* Huge page is mapped? Page fault is solved */
3615         if (pmd_trans_huge(*vmf->pmd)) {
3616                 ret = VM_FAULT_NOPAGE;
3617                 goto out;
3618         }
3619
3620         /* ->map_pages() haven't done anything useful. Cold page cache? */
3621         if (!vmf->pte)
3622                 goto out;
3623
3624         /* check if the page fault is solved */
3625         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3626         if (!pte_none(*vmf->pte))
3627                 ret = VM_FAULT_NOPAGE;
3628         pte_unmap_unlock(vmf->pte, vmf->ptl);
3629 out:
3630         vmf->address = address;
3631         vmf->pte = NULL;
3632         return ret;
3633 }
3634
3635 static int do_read_fault(struct vm_fault *vmf)
3636 {
3637         struct vm_area_struct *vma = vmf->vma;
3638         int ret = 0;
3639
3640         /*
3641          * Let's call ->map_pages() first and use ->fault() as fallback
3642          * if page by the offset is not ready to be mapped (cold cache or
3643          * something).
3644          */
3645         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3646                 ret = do_fault_around(vmf);
3647                 if (ret)
3648                         return ret;
3649         }
3650
3651         ret = __do_fault(vmf);
3652         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3653                 return ret;
3654
3655         ret |= finish_fault(vmf);
3656         unlock_page(vmf->page);
3657         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3658                 put_page(vmf->page);
3659         return ret;
3660 }
3661
3662 static int do_cow_fault(struct vm_fault *vmf)
3663 {
3664         struct vm_area_struct *vma = vmf->vma;
3665         int ret;
3666
3667         if (unlikely(anon_vma_prepare(vma)))
3668                 return VM_FAULT_OOM;
3669
3670         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3671         if (!vmf->cow_page)
3672                 return VM_FAULT_OOM;
3673
3674         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3675                                 &vmf->memcg, false)) {
3676                 put_page(vmf->cow_page);
3677                 return VM_FAULT_OOM;
3678         }
3679
3680         ret = __do_fault(vmf);
3681         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3682                 goto uncharge_out;
3683         if (ret & VM_FAULT_DONE_COW)
3684                 return ret;
3685
3686         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3687         __SetPageUptodate(vmf->cow_page);
3688
3689         ret |= finish_fault(vmf);
3690         unlock_page(vmf->page);
3691         put_page(vmf->page);
3692         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3693                 goto uncharge_out;
3694         return ret;
3695 uncharge_out:
3696         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3697         put_page(vmf->cow_page);
3698         return ret;
3699 }
3700
3701 static int do_shared_fault(struct vm_fault *vmf)
3702 {
3703         struct vm_area_struct *vma = vmf->vma;
3704         int ret, tmp;
3705
3706         ret = __do_fault(vmf);
3707         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3708                 return ret;
3709
3710         /*
3711          * Check if the backing address space wants to know that the page is
3712          * about to become writable
3713          */
3714         if (vma->vm_ops->page_mkwrite) {
3715                 unlock_page(vmf->page);
3716                 tmp = do_page_mkwrite(vmf);
3717                 if (unlikely(!tmp ||
3718                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3719                         put_page(vmf->page);
3720                         return tmp;
3721                 }
3722         }
3723
3724         ret |= finish_fault(vmf);
3725         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3726                                         VM_FAULT_RETRY))) {
3727                 unlock_page(vmf->page);
3728                 put_page(vmf->page);
3729                 return ret;
3730         }
3731
3732         fault_dirty_shared_page(vma, vmf->page);
3733         return ret;
3734 }
3735
3736 /*
3737  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3738  * but allow concurrent faults).
3739  * The mmap_sem may have been released depending on flags and our
3740  * return value.  See filemap_fault() and __lock_page_or_retry().
3741  */
3742 static int do_fault(struct vm_fault *vmf)
3743 {
3744         struct vm_area_struct *vma = vmf->vma;
3745         int ret;
3746
3747         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3748         if (!vma->vm_ops->fault)
3749                 ret = VM_FAULT_SIGBUS;
3750         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3751                 ret = do_read_fault(vmf);
3752         else if (!(vma->vm_flags & VM_SHARED))
3753                 ret = do_cow_fault(vmf);
3754         else
3755                 ret = do_shared_fault(vmf);
3756
3757         /* preallocated pagetable is unused: free it */
3758         if (vmf->prealloc_pte) {
3759                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3760                 vmf->prealloc_pte = NULL;
3761         }
3762         return ret;
3763 }
3764
3765 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3766                                 unsigned long addr, int page_nid,
3767                                 int *flags)
3768 {
3769         get_page(page);
3770
3771         count_vm_numa_event(NUMA_HINT_FAULTS);
3772         if (page_nid == numa_node_id()) {
3773                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3774                 *flags |= TNF_FAULT_LOCAL;
3775         }
3776
3777         return mpol_misplaced(page, vma, addr);
3778 }
3779
3780 static int do_numa_page(struct vm_fault *vmf)
3781 {
3782         struct vm_area_struct *vma = vmf->vma;
3783         struct page *page = NULL;
3784         int page_nid = -1;
3785         int last_cpupid;
3786         int target_nid;
3787         bool migrated = false;
3788         pte_t pte;
3789         bool was_writable = pte_savedwrite(vmf->orig_pte);
3790         int flags = 0;
3791
3792         /*
3793          * The "pte" at this point cannot be used safely without
3794          * validation through pte_unmap_same(). It's of NUMA type but
3795          * the pfn may be screwed if the read is non atomic.
3796          */
3797         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3798         spin_lock(vmf->ptl);
3799         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3800                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3801                 goto out;
3802         }
3803
3804         /*
3805          * Make it present again, Depending on how arch implementes non
3806          * accessible ptes, some can allow access by kernel mode.
3807          */
3808         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3809         pte = pte_modify(pte, vma->vm_page_prot);
3810         pte = pte_mkyoung(pte);
3811         if (was_writable)
3812                 pte = pte_mkwrite(pte);
3813         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3814         update_mmu_cache(vma, vmf->address, vmf->pte);
3815
3816         page = vm_normal_page(vma, vmf->address, pte);
3817         if (!page) {
3818                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819                 return 0;
3820         }
3821
3822         /* TODO: handle PTE-mapped THP */
3823         if (PageCompound(page)) {
3824                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3825                 return 0;
3826         }
3827
3828         /*
3829          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3830          * much anyway since they can be in shared cache state. This misses
3831          * the case where a mapping is writable but the process never writes
3832          * to it but pte_write gets cleared during protection updates and
3833          * pte_dirty has unpredictable behaviour between PTE scan updates,
3834          * background writeback, dirty balancing and application behaviour.
3835          */
3836         if (!pte_write(pte))
3837                 flags |= TNF_NO_GROUP;
3838
3839         /*
3840          * Flag if the page is shared between multiple address spaces. This
3841          * is later used when determining whether to group tasks together
3842          */
3843         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3844                 flags |= TNF_SHARED;
3845
3846         last_cpupid = page_cpupid_last(page);
3847         page_nid = page_to_nid(page);
3848         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3849                         &flags);
3850         pte_unmap_unlock(vmf->pte, vmf->ptl);
3851         if (target_nid == -1) {
3852                 put_page(page);
3853                 goto out;
3854         }
3855
3856         /* Migrate to the requested node */
3857         migrated = migrate_misplaced_page(page, vma, target_nid);
3858         if (migrated) {
3859                 page_nid = target_nid;
3860                 flags |= TNF_MIGRATED;
3861         } else
3862                 flags |= TNF_MIGRATE_FAIL;
3863
3864 out:
3865         if (page_nid != -1)
3866                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3867         return 0;
3868 }
3869
3870 static inline int create_huge_pmd(struct vm_fault *vmf)
3871 {
3872         if (vma_is_anonymous(vmf->vma))
3873                 return do_huge_pmd_anonymous_page(vmf);
3874         if (vmf->vma->vm_ops->huge_fault)
3875                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3876         return VM_FAULT_FALLBACK;
3877 }
3878
3879 /* `inline' is required to avoid gcc 4.1.2 build error */
3880 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3881 {
3882         if (vma_is_anonymous(vmf->vma))
3883                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3884         if (vmf->vma->vm_ops->huge_fault)
3885                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3886
3887         /* COW handled on pte level: split pmd */
3888         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3889         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3890
3891         return VM_FAULT_FALLBACK;
3892 }
3893
3894 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3895 {
3896         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3897 }
3898
3899 static int create_huge_pud(struct vm_fault *vmf)
3900 {
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902         /* No support for anonymous transparent PUD pages yet */
3903         if (vma_is_anonymous(vmf->vma))
3904                 return VM_FAULT_FALLBACK;
3905         if (vmf->vma->vm_ops->huge_fault)
3906                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3908         return VM_FAULT_FALLBACK;
3909 }
3910
3911 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3912 {
3913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3914         /* No support for anonymous transparent PUD pages yet */
3915         if (vma_is_anonymous(vmf->vma))
3916                 return VM_FAULT_FALLBACK;
3917         if (vmf->vma->vm_ops->huge_fault)
3918                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3919 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3920         return VM_FAULT_FALLBACK;
3921 }
3922
3923 /*
3924  * These routines also need to handle stuff like marking pages dirty
3925  * and/or accessed for architectures that don't do it in hardware (most
3926  * RISC architectures).  The early dirtying is also good on the i386.
3927  *
3928  * There is also a hook called "update_mmu_cache()" that architectures
3929  * with external mmu caches can use to update those (ie the Sparc or
3930  * PowerPC hashed page tables that act as extended TLBs).
3931  *
3932  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3933  * concurrent faults).
3934  *
3935  * The mmap_sem may have been released depending on flags and our return value.
3936  * See filemap_fault() and __lock_page_or_retry().
3937  */
3938 static int handle_pte_fault(struct vm_fault *vmf)
3939 {
3940         pte_t entry;
3941
3942         if (unlikely(pmd_none(*vmf->pmd))) {
3943                 /*
3944                  * Leave __pte_alloc() until later: because vm_ops->fault may
3945                  * want to allocate huge page, and if we expose page table
3946                  * for an instant, it will be difficult to retract from
3947                  * concurrent faults and from rmap lookups.
3948                  */
3949                 vmf->pte = NULL;
3950         } else {
3951                 /* See comment in pte_alloc_one_map() */
3952                 if (pmd_devmap_trans_unstable(vmf->pmd))
3953                         return 0;
3954                 /*
3955                  * A regular pmd is established and it can't morph into a huge
3956                  * pmd from under us anymore at this point because we hold the
3957                  * mmap_sem read mode and khugepaged takes it in write mode.
3958                  * So now it's safe to run pte_offset_map().
3959                  */
3960                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3961                 vmf->orig_pte = *vmf->pte;
3962
3963                 /*
3964                  * some architectures can have larger ptes than wordsize,
3965                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3966                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3967                  * accesses.  The code below just needs a consistent view
3968                  * for the ifs and we later double check anyway with the
3969                  * ptl lock held. So here a barrier will do.
3970                  */
3971                 barrier();
3972                 if (pte_none(vmf->orig_pte)) {
3973                         pte_unmap(vmf->pte);
3974                         vmf->pte = NULL;
3975                 }
3976         }
3977
3978         if (!vmf->pte) {
3979                 if (vma_is_anonymous(vmf->vma))
3980                         return do_anonymous_page(vmf);
3981                 else
3982                         return do_fault(vmf);
3983         }
3984
3985         if (!pte_present(vmf->orig_pte))
3986                 return do_swap_page(vmf);
3987
3988         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3989                 return do_numa_page(vmf);
3990
3991         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3992         spin_lock(vmf->ptl);
3993         entry = vmf->orig_pte;
3994         if (unlikely(!pte_same(*vmf->pte, entry)))
3995                 goto unlock;
3996         if (vmf->flags & FAULT_FLAG_WRITE) {
3997                 if (!pte_write(entry))
3998                         return do_wp_page(vmf);
3999                 entry = pte_mkdirty(entry);
4000         }
4001         entry = pte_mkyoung(entry);
4002         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4003                                 vmf->flags & FAULT_FLAG_WRITE)) {
4004                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4005         } else {
4006                 /*
4007                  * This is needed only for protection faults but the arch code
4008                  * is not yet telling us if this is a protection fault or not.
4009                  * This still avoids useless tlb flushes for .text page faults
4010                  * with threads.
4011                  */
4012                 if (vmf->flags & FAULT_FLAG_WRITE)
4013                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4014         }
4015 unlock:
4016         pte_unmap_unlock(vmf->pte, vmf->ptl);
4017         return 0;
4018 }
4019
4020 /*
4021  * By the time we get here, we already hold the mm semaphore
4022  *
4023  * The mmap_sem may have been released depending on flags and our
4024  * return value.  See filemap_fault() and __lock_page_or_retry().
4025  */
4026 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4027                 unsigned int flags)
4028 {
4029         struct vm_fault vmf = {
4030                 .vma = vma,
4031                 .address = address & PAGE_MASK,
4032                 .flags = flags,
4033                 .pgoff = linear_page_index(vma, address),
4034                 .gfp_mask = __get_fault_gfp_mask(vma),
4035         };
4036         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4037         struct mm_struct *mm = vma->vm_mm;
4038         pgd_t *pgd;
4039         p4d_t *p4d;
4040         int ret;
4041
4042         pgd = pgd_offset(mm, address);
4043         p4d = p4d_alloc(mm, pgd, address);
4044         if (!p4d)
4045                 return VM_FAULT_OOM;
4046
4047         vmf.pud = pud_alloc(mm, p4d, address);
4048         if (!vmf.pud)
4049                 return VM_FAULT_OOM;
4050         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4051                 ret = create_huge_pud(&vmf);
4052                 if (!(ret & VM_FAULT_FALLBACK))
4053                         return ret;
4054         } else {
4055                 pud_t orig_pud = *vmf.pud;
4056
4057                 barrier();
4058                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4059
4060                         /* NUMA case for anonymous PUDs would go here */
4061
4062                         if (dirty && !pud_write(orig_pud)) {
4063                                 ret = wp_huge_pud(&vmf, orig_pud);
4064                                 if (!(ret & VM_FAULT_FALLBACK))
4065                                         return ret;
4066                         } else {
4067                                 huge_pud_set_accessed(&vmf, orig_pud);
4068                                 return 0;
4069                         }
4070                 }
4071         }
4072
4073         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4074         if (!vmf.pmd)
4075                 return VM_FAULT_OOM;
4076         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4077                 ret = create_huge_pmd(&vmf);
4078                 if (!(ret & VM_FAULT_FALLBACK))
4079                         return ret;
4080         } else {
4081                 pmd_t orig_pmd = *vmf.pmd;
4082
4083                 barrier();
4084                 if (unlikely(is_swap_pmd(orig_pmd))) {
4085                         VM_BUG_ON(thp_migration_supported() &&
4086                                           !is_pmd_migration_entry(orig_pmd));
4087                         if (is_pmd_migration_entry(orig_pmd))
4088                                 pmd_migration_entry_wait(mm, vmf.pmd);
4089                         return 0;
4090                 }
4091                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4092                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4093                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4094
4095                         if (dirty && !pmd_write(orig_pmd)) {
4096                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4097                                 if (!(ret & VM_FAULT_FALLBACK))
4098                                         return ret;
4099                         } else {
4100                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4101                                 return 0;
4102                         }
4103                 }
4104         }
4105
4106         return handle_pte_fault(&vmf);
4107 }
4108
4109 /*
4110  * By the time we get here, we already hold the mm semaphore
4111  *
4112  * The mmap_sem may have been released depending on flags and our
4113  * return value.  See filemap_fault() and __lock_page_or_retry().
4114  */
4115 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4116                 unsigned int flags)
4117 {
4118         int ret;
4119
4120         __set_current_state(TASK_RUNNING);
4121
4122         count_vm_event(PGFAULT);
4123         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4124
4125         /* do counter updates before entering really critical section. */
4126         check_sync_rss_stat(current);
4127
4128         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4129                                             flags & FAULT_FLAG_INSTRUCTION,
4130                                             flags & FAULT_FLAG_REMOTE))
4131                 return VM_FAULT_SIGSEGV;
4132
4133         /*
4134          * Enable the memcg OOM handling for faults triggered in user
4135          * space.  Kernel faults are handled more gracefully.
4136          */
4137         if (flags & FAULT_FLAG_USER)
4138                 mem_cgroup_enter_user_fault();
4139
4140         if (unlikely(is_vm_hugetlb_page(vma)))
4141                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4142         else
4143                 ret = __handle_mm_fault(vma, address, flags);
4144
4145         if (flags & FAULT_FLAG_USER) {
4146                 mem_cgroup_exit_user_fault();
4147                 /*
4148                  * The task may have entered a memcg OOM situation but
4149                  * if the allocation error was handled gracefully (no
4150                  * VM_FAULT_OOM), there is no need to kill anything.
4151                  * Just clean up the OOM state peacefully.
4152                  */
4153                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4154                         mem_cgroup_oom_synchronize(false);
4155         }
4156
4157         return ret;
4158 }
4159 EXPORT_SYMBOL_GPL(handle_mm_fault);
4160
4161 #ifndef __PAGETABLE_P4D_FOLDED
4162 /*
4163  * Allocate p4d page table.
4164  * We've already handled the fast-path in-line.
4165  */
4166 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4167 {
4168         p4d_t *new = p4d_alloc_one(mm, address);
4169         if (!new)
4170                 return -ENOMEM;
4171
4172         smp_wmb(); /* See comment in __pte_alloc */
4173
4174         spin_lock(&mm->page_table_lock);
4175         if (pgd_present(*pgd))          /* Another has populated it */
4176                 p4d_free(mm, new);
4177         else
4178                 pgd_populate(mm, pgd, new);
4179         spin_unlock(&mm->page_table_lock);
4180         return 0;
4181 }
4182 #endif /* __PAGETABLE_P4D_FOLDED */
4183
4184 #ifndef __PAGETABLE_PUD_FOLDED
4185 /*
4186  * Allocate page upper directory.
4187  * We've already handled the fast-path in-line.
4188  */
4189 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4190 {
4191         pud_t *new = pud_alloc_one(mm, address);
4192         if (!new)
4193                 return -ENOMEM;
4194
4195         smp_wmb(); /* See comment in __pte_alloc */
4196
4197         spin_lock(&mm->page_table_lock);
4198 #ifndef __ARCH_HAS_5LEVEL_HACK
4199         if (!p4d_present(*p4d)) {
4200                 mm_inc_nr_puds(mm);
4201                 p4d_populate(mm, p4d, new);
4202         } else  /* Another has populated it */
4203                 pud_free(mm, new);
4204 #else
4205         if (!pgd_present(*p4d)) {
4206                 mm_inc_nr_puds(mm);
4207                 pgd_populate(mm, p4d, new);
4208         } else  /* Another has populated it */
4209                 pud_free(mm, new);
4210 #endif /* __ARCH_HAS_5LEVEL_HACK */
4211         spin_unlock(&mm->page_table_lock);
4212         return 0;
4213 }
4214 #endif /* __PAGETABLE_PUD_FOLDED */
4215
4216 #ifndef __PAGETABLE_PMD_FOLDED
4217 /*
4218  * Allocate page middle directory.
4219  * We've already handled the fast-path in-line.
4220  */
4221 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4222 {
4223         spinlock_t *ptl;
4224         pmd_t *new = pmd_alloc_one(mm, address);
4225         if (!new)
4226                 return -ENOMEM;
4227
4228         smp_wmb(); /* See comment in __pte_alloc */
4229
4230         ptl = pud_lock(mm, pud);
4231 #ifndef __ARCH_HAS_4LEVEL_HACK
4232         if (!pud_present(*pud)) {
4233                 mm_inc_nr_pmds(mm);
4234                 pud_populate(mm, pud, new);
4235         } else  /* Another has populated it */
4236                 pmd_free(mm, new);
4237 #else
4238         if (!pgd_present(*pud)) {
4239                 mm_inc_nr_pmds(mm);
4240                 pgd_populate(mm, pud, new);
4241         } else /* Another has populated it */
4242                 pmd_free(mm, new);
4243 #endif /* __ARCH_HAS_4LEVEL_HACK */
4244         spin_unlock(ptl);
4245         return 0;
4246 }
4247 #endif /* __PAGETABLE_PMD_FOLDED */
4248
4249 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4250                             unsigned long *start, unsigned long *end,
4251                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4252 {
4253         pgd_t *pgd;
4254         p4d_t *p4d;
4255         pud_t *pud;
4256         pmd_t *pmd;
4257         pte_t *ptep;
4258
4259         pgd = pgd_offset(mm, address);
4260         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4261                 goto out;
4262
4263         p4d = p4d_offset(pgd, address);
4264         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4265                 goto out;
4266
4267         pud = pud_offset(p4d, address);
4268         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4269                 goto out;
4270
4271         pmd = pmd_offset(pud, address);
4272         VM_BUG_ON(pmd_trans_huge(*pmd));
4273
4274         if (pmd_huge(*pmd)) {
4275                 if (!pmdpp)
4276                         goto out;
4277
4278                 if (start && end) {
4279                         *start = address & PMD_MASK;
4280                         *end = *start + PMD_SIZE;
4281                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4282                 }
4283                 *ptlp = pmd_lock(mm, pmd);
4284                 if (pmd_huge(*pmd)) {
4285                         *pmdpp = pmd;
4286                         return 0;
4287                 }
4288                 spin_unlock(*ptlp);
4289                 if (start && end)
4290                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4291         }
4292
4293         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4294                 goto out;
4295
4296         if (start && end) {
4297                 *start = address & PAGE_MASK;
4298                 *end = *start + PAGE_SIZE;
4299                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4300         }
4301         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4302         if (!pte_present(*ptep))
4303                 goto unlock;
4304         *ptepp = ptep;
4305         return 0;
4306 unlock:
4307         pte_unmap_unlock(ptep, *ptlp);
4308         if (start && end)
4309                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4310 out:
4311         return -EINVAL;
4312 }
4313
4314 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4315                              pte_t **ptepp, spinlock_t **ptlp)
4316 {
4317         int res;
4318
4319         /* (void) is needed to make gcc happy */
4320         (void) __cond_lock(*ptlp,
4321                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4322                                                     ptepp, NULL, ptlp)));
4323         return res;
4324 }
4325
4326 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4327                              unsigned long *start, unsigned long *end,
4328                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4329 {
4330         int res;
4331
4332         /* (void) is needed to make gcc happy */
4333         (void) __cond_lock(*ptlp,
4334                            !(res = __follow_pte_pmd(mm, address, start, end,
4335                                                     ptepp, pmdpp, ptlp)));
4336         return res;
4337 }
4338 EXPORT_SYMBOL(follow_pte_pmd);
4339
4340 /**
4341  * follow_pfn - look up PFN at a user virtual address
4342  * @vma: memory mapping
4343  * @address: user virtual address
4344  * @pfn: location to store found PFN
4345  *
4346  * Only IO mappings and raw PFN mappings are allowed.
4347  *
4348  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4349  */
4350 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4351         unsigned long *pfn)
4352 {
4353         int ret = -EINVAL;
4354         spinlock_t *ptl;
4355         pte_t *ptep;
4356
4357         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4358                 return ret;
4359
4360         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4361         if (ret)
4362                 return ret;
4363         *pfn = pte_pfn(*ptep);
4364         pte_unmap_unlock(ptep, ptl);
4365         return 0;
4366 }
4367 EXPORT_SYMBOL(follow_pfn);
4368
4369 #ifdef CONFIG_HAVE_IOREMAP_PROT
4370 int follow_phys(struct vm_area_struct *vma,
4371                 unsigned long address, unsigned int flags,
4372                 unsigned long *prot, resource_size_t *phys)
4373 {
4374         int ret = -EINVAL;
4375         pte_t *ptep, pte;
4376         spinlock_t *ptl;
4377
4378         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4379                 goto out;
4380
4381         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4382                 goto out;
4383         pte = *ptep;
4384
4385         if ((flags & FOLL_WRITE) && !pte_write(pte))
4386                 goto unlock;
4387
4388         *prot = pgprot_val(pte_pgprot(pte));
4389         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4390
4391         ret = 0;
4392 unlock:
4393         pte_unmap_unlock(ptep, ptl);
4394 out:
4395         return ret;
4396 }
4397
4398 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4399                         void *buf, int len, int write)
4400 {
4401         resource_size_t phys_addr;
4402         unsigned long prot = 0;
4403         void __iomem *maddr;
4404         int offset = addr & (PAGE_SIZE-1);
4405
4406         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4407                 return -EINVAL;
4408
4409         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4410         if (!maddr)
4411                 return -ENOMEM;
4412
4413         if (write)
4414                 memcpy_toio(maddr + offset, buf, len);
4415         else
4416                 memcpy_fromio(buf, maddr + offset, len);
4417         iounmap(maddr);
4418
4419         return len;
4420 }
4421 EXPORT_SYMBOL_GPL(generic_access_phys);
4422 #endif
4423
4424 /*
4425  * Access another process' address space as given in mm.  If non-NULL, use the
4426  * given task for page fault accounting.
4427  */
4428 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4429                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4430 {
4431         struct vm_area_struct *vma;
4432         void *old_buf = buf;
4433         int write = gup_flags & FOLL_WRITE;
4434
4435         down_read(&mm->mmap_sem);
4436         /* ignore errors, just check how much was successfully transferred */
4437         while (len) {
4438                 int bytes, ret, offset;
4439                 void *maddr;
4440                 struct page *page = NULL;
4441
4442                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4443                                 gup_flags, &page, &vma, NULL);
4444                 if (ret <= 0) {
4445 #ifndef CONFIG_HAVE_IOREMAP_PROT
4446                         break;
4447 #else
4448                         /*
4449                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4450                          * we can access using slightly different code.
4451                          */
4452                         vma = find_vma(mm, addr);
4453                         if (!vma || vma->vm_start > addr)
4454                                 break;
4455                         if (vma->vm_ops && vma->vm_ops->access)
4456                                 ret = vma->vm_ops->access(vma, addr, buf,
4457                                                           len, write);
4458                         if (ret <= 0)
4459                                 break;
4460                         bytes = ret;
4461 #endif
4462                 } else {
4463                         bytes = len;
4464                         offset = addr & (PAGE_SIZE-1);
4465                         if (bytes > PAGE_SIZE-offset)
4466                                 bytes = PAGE_SIZE-offset;
4467
4468                         maddr = kmap(page);
4469                         if (write) {
4470                                 copy_to_user_page(vma, page, addr,
4471                                                   maddr + offset, buf, bytes);
4472                                 set_page_dirty_lock(page);
4473                         } else {
4474                                 copy_from_user_page(vma, page, addr,
4475                                                     buf, maddr + offset, bytes);
4476                         }
4477                         kunmap(page);
4478                         put_page(page);
4479                 }
4480                 len -= bytes;
4481                 buf += bytes;
4482                 addr += bytes;
4483         }
4484         up_read(&mm->mmap_sem);
4485
4486         return buf - old_buf;
4487 }
4488
4489 /**
4490  * access_remote_vm - access another process' address space
4491  * @mm:         the mm_struct of the target address space
4492  * @addr:       start address to access
4493  * @buf:        source or destination buffer
4494  * @len:        number of bytes to transfer
4495  * @gup_flags:  flags modifying lookup behaviour
4496  *
4497  * The caller must hold a reference on @mm.
4498  */
4499 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4500                 void *buf, int len, unsigned int gup_flags)
4501 {
4502         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4503 }
4504
4505 /*
4506  * Access another process' address space.
4507  * Source/target buffer must be kernel space,
4508  * Do not walk the page table directly, use get_user_pages
4509  */
4510 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4511                 void *buf, int len, unsigned int gup_flags)
4512 {
4513         struct mm_struct *mm;
4514         int ret;
4515
4516         mm = get_task_mm(tsk);
4517         if (!mm)
4518                 return 0;
4519
4520         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4521
4522         mmput(mm);
4523
4524         return ret;
4525 }
4526 EXPORT_SYMBOL_GPL(access_process_vm);
4527
4528 /*
4529  * Print the name of a VMA.
4530  */
4531 void print_vma_addr(char *prefix, unsigned long ip)
4532 {
4533         struct mm_struct *mm = current->mm;
4534         struct vm_area_struct *vma;
4535
4536         /*
4537          * we might be running from an atomic context so we cannot sleep
4538          */
4539         if (!down_read_trylock(&mm->mmap_sem))
4540                 return;
4541
4542         vma = find_vma(mm, ip);
4543         if (vma && vma->vm_file) {
4544                 struct file *f = vma->vm_file;
4545                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4546                 if (buf) {
4547                         char *p;
4548
4549                         p = file_path(f, buf, PAGE_SIZE);
4550                         if (IS_ERR(p))
4551                                 p = "?";
4552                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4553                                         vma->vm_start,
4554                                         vma->vm_end - vma->vm_start);
4555                         free_page((unsigned long)buf);
4556                 }
4557         }
4558         up_read(&mm->mmap_sem);
4559 }
4560
4561 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4562 void __might_fault(const char *file, int line)
4563 {
4564         /*
4565          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4566          * holding the mmap_sem, this is safe because kernel memory doesn't
4567          * get paged out, therefore we'll never actually fault, and the
4568          * below annotations will generate false positives.
4569          */
4570         if (uaccess_kernel())
4571                 return;
4572         if (pagefault_disabled())
4573                 return;
4574         __might_sleep(file, line, 0);
4575 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4576         if (current->mm)
4577                 might_lock_read(&current->mm->mmap_sem);
4578 #endif
4579 }
4580 EXPORT_SYMBOL(__might_fault);
4581 #endif
4582
4583 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4584 /*
4585  * Process all subpages of the specified huge page with the specified
4586  * operation.  The target subpage will be processed last to keep its
4587  * cache lines hot.
4588  */
4589 static inline void process_huge_page(
4590         unsigned long addr_hint, unsigned int pages_per_huge_page,
4591         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4592         void *arg)
4593 {
4594         int i, n, base, l;
4595         unsigned long addr = addr_hint &
4596                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4597
4598         /* Process target subpage last to keep its cache lines hot */
4599         might_sleep();
4600         n = (addr_hint - addr) / PAGE_SIZE;
4601         if (2 * n <= pages_per_huge_page) {
4602                 /* If target subpage in first half of huge page */
4603                 base = 0;
4604                 l = n;
4605                 /* Process subpages at the end of huge page */
4606                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4607                         cond_resched();
4608                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4609                 }
4610         } else {
4611                 /* If target subpage in second half of huge page */
4612                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4613                 l = pages_per_huge_page - n;
4614                 /* Process subpages at the begin of huge page */
4615                 for (i = 0; i < base; i++) {
4616                         cond_resched();
4617                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4618                 }
4619         }
4620         /*
4621          * Process remaining subpages in left-right-left-right pattern
4622          * towards the target subpage
4623          */
4624         for (i = 0; i < l; i++) {
4625                 int left_idx = base + i;
4626                 int right_idx = base + 2 * l - 1 - i;
4627
4628                 cond_resched();
4629                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4630                 cond_resched();
4631                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4632         }
4633 }
4634
4635 static void clear_gigantic_page(struct page *page,
4636                                 unsigned long addr,
4637                                 unsigned int pages_per_huge_page)
4638 {
4639         int i;
4640         struct page *p = page;
4641
4642         might_sleep();
4643         for (i = 0; i < pages_per_huge_page;
4644              i++, p = mem_map_next(p, page, i)) {
4645                 cond_resched();
4646                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4647         }
4648 }
4649
4650 static void clear_subpage(unsigned long addr, int idx, void *arg)
4651 {
4652         struct page *page = arg;
4653
4654         clear_user_highpage(page + idx, addr);
4655 }
4656
4657 void clear_huge_page(struct page *page,
4658                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4659 {
4660         unsigned long addr = addr_hint &
4661                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4662
4663         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4664                 clear_gigantic_page(page, addr, pages_per_huge_page);
4665                 return;
4666         }
4667
4668         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4669 }
4670
4671 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4672                                     unsigned long addr,
4673                                     struct vm_area_struct *vma,
4674                                     unsigned int pages_per_huge_page)
4675 {
4676         int i;
4677         struct page *dst_base = dst;
4678         struct page *src_base = src;
4679
4680         for (i = 0; i < pages_per_huge_page; ) {
4681                 cond_resched();
4682                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4683
4684                 i++;
4685                 dst = mem_map_next(dst, dst_base, i);
4686                 src = mem_map_next(src, src_base, i);
4687         }
4688 }
4689
4690 struct copy_subpage_arg {
4691         struct page *dst;
4692         struct page *src;
4693         struct vm_area_struct *vma;
4694 };
4695
4696 static void copy_subpage(unsigned long addr, int idx, void *arg)
4697 {
4698         struct copy_subpage_arg *copy_arg = arg;
4699
4700         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4701                            addr, copy_arg->vma);
4702 }
4703
4704 void copy_user_huge_page(struct page *dst, struct page *src,
4705                          unsigned long addr_hint, struct vm_area_struct *vma,
4706                          unsigned int pages_per_huge_page)
4707 {
4708         unsigned long addr = addr_hint &
4709                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4710         struct copy_subpage_arg arg = {
4711                 .dst = dst,
4712                 .src = src,
4713                 .vma = vma,
4714         };
4715
4716         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4717                 copy_user_gigantic_page(dst, src, addr, vma,
4718                                         pages_per_huge_page);
4719                 return;
4720         }
4721
4722         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4723 }
4724
4725 long copy_huge_page_from_user(struct page *dst_page,
4726                                 const void __user *usr_src,
4727                                 unsigned int pages_per_huge_page,
4728                                 bool allow_pagefault)
4729 {
4730         void *src = (void *)usr_src;
4731         void *page_kaddr;
4732         unsigned long i, rc = 0;
4733         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4734
4735         for (i = 0; i < pages_per_huge_page; i++) {
4736                 if (allow_pagefault)
4737                         page_kaddr = kmap(dst_page + i);
4738                 else
4739                         page_kaddr = kmap_atomic(dst_page + i);
4740                 rc = copy_from_user(page_kaddr,
4741                                 (const void __user *)(src + i * PAGE_SIZE),
4742                                 PAGE_SIZE);
4743                 if (allow_pagefault)
4744                         kunmap(dst_page + i);
4745                 else
4746                         kunmap_atomic(page_kaddr);
4747
4748                 ret_val -= (PAGE_SIZE - rc);
4749                 if (rc)
4750                         break;
4751
4752                 cond_resched();
4753         }
4754         return ret_val;
4755 }
4756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4757
4758 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4759
4760 static struct kmem_cache *page_ptl_cachep;
4761
4762 void __init ptlock_cache_init(void)
4763 {
4764         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4765                         SLAB_PANIC, NULL);
4766 }
4767
4768 bool ptlock_alloc(struct page *page)
4769 {
4770         spinlock_t *ptl;
4771
4772         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4773         if (!ptl)
4774                 return false;
4775         page->ptl = ptl;
4776         return true;
4777 }
4778
4779 void ptlock_free(struct page *page)
4780 {
4781         kmem_cache_free(page_ptl_cachep, page->ptl);
4782 }
4783 #endif