x86: add tizen_qemu_x86_defconfig & tizen_qemu_x86_64_defconfig
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139         /*
140          * Transitioning a PTE from 'old' to 'young' can be expensive on
141          * some architectures, even if it's performed in hardware. By
142          * default, "false" means prefaulted entries will be 'young'.
143          */
144         return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150         randomize_va_space = 0;
151         return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165         zero_pfn = page_to_pfn(ZERO_PAGE(0));
166         return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172         trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179         int i;
180
181         for (i = 0; i < NR_MM_COUNTERS; i++) {
182                 if (current->rss_stat.count[i]) {
183                         add_mm_counter(mm, i, current->rss_stat.count[i]);
184                         current->rss_stat.count[i] = 0;
185                 }
186         }
187         current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192         struct task_struct *task = current;
193
194         if (likely(task->mm == mm))
195                 task->rss_stat.count[member] += val;
196         else
197                 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH  (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206         if (unlikely(task != current))
207                 return;
208         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209                 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227                            unsigned long addr)
228 {
229         pgtable_t token = pmd_pgtable(*pmd);
230         pmd_clear(pmd);
231         pte_free_tlb(tlb, token, addr);
232         mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236                                 unsigned long addr, unsigned long end,
237                                 unsigned long floor, unsigned long ceiling)
238 {
239         pmd_t *pmd;
240         unsigned long next;
241         unsigned long start;
242
243         start = addr;
244         pmd = pmd_offset(pud, addr);
245         do {
246                 next = pmd_addr_end(addr, end);
247                 if (pmd_none_or_clear_bad(pmd))
248                         continue;
249                 free_pte_range(tlb, pmd, addr);
250         } while (pmd++, addr = next, addr != end);
251
252         start &= PUD_MASK;
253         if (start < floor)
254                 return;
255         if (ceiling) {
256                 ceiling &= PUD_MASK;
257                 if (!ceiling)
258                         return;
259         }
260         if (end - 1 > ceiling - 1)
261                 return;
262
263         pmd = pmd_offset(pud, start);
264         pud_clear(pud);
265         pmd_free_tlb(tlb, pmd, start);
266         mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270                                 unsigned long addr, unsigned long end,
271                                 unsigned long floor, unsigned long ceiling)
272 {
273         pud_t *pud;
274         unsigned long next;
275         unsigned long start;
276
277         start = addr;
278         pud = pud_offset(p4d, addr);
279         do {
280                 next = pud_addr_end(addr, end);
281                 if (pud_none_or_clear_bad(pud))
282                         continue;
283                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284         } while (pud++, addr = next, addr != end);
285
286         start &= P4D_MASK;
287         if (start < floor)
288                 return;
289         if (ceiling) {
290                 ceiling &= P4D_MASK;
291                 if (!ceiling)
292                         return;
293         }
294         if (end - 1 > ceiling - 1)
295                 return;
296
297         pud = pud_offset(p4d, start);
298         p4d_clear(p4d);
299         pud_free_tlb(tlb, pud, start);
300         mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304                                 unsigned long addr, unsigned long end,
305                                 unsigned long floor, unsigned long ceiling)
306 {
307         p4d_t *p4d;
308         unsigned long next;
309         unsigned long start;
310
311         start = addr;
312         p4d = p4d_offset(pgd, addr);
313         do {
314                 next = p4d_addr_end(addr, end);
315                 if (p4d_none_or_clear_bad(p4d))
316                         continue;
317                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318         } while (p4d++, addr = next, addr != end);
319
320         start &= PGDIR_MASK;
321         if (start < floor)
322                 return;
323         if (ceiling) {
324                 ceiling &= PGDIR_MASK;
325                 if (!ceiling)
326                         return;
327         }
328         if (end - 1 > ceiling - 1)
329                 return;
330
331         p4d = p4d_offset(pgd, start);
332         pgd_clear(pgd);
333         p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340                         unsigned long addr, unsigned long end,
341                         unsigned long floor, unsigned long ceiling)
342 {
343         pgd_t *pgd;
344         unsigned long next;
345
346         /*
347          * The next few lines have given us lots of grief...
348          *
349          * Why are we testing PMD* at this top level?  Because often
350          * there will be no work to do at all, and we'd prefer not to
351          * go all the way down to the bottom just to discover that.
352          *
353          * Why all these "- 1"s?  Because 0 represents both the bottom
354          * of the address space and the top of it (using -1 for the
355          * top wouldn't help much: the masks would do the wrong thing).
356          * The rule is that addr 0 and floor 0 refer to the bottom of
357          * the address space, but end 0 and ceiling 0 refer to the top
358          * Comparisons need to use "end - 1" and "ceiling - 1" (though
359          * that end 0 case should be mythical).
360          *
361          * Wherever addr is brought up or ceiling brought down, we must
362          * be careful to reject "the opposite 0" before it confuses the
363          * subsequent tests.  But what about where end is brought down
364          * by PMD_SIZE below? no, end can't go down to 0 there.
365          *
366          * Whereas we round start (addr) and ceiling down, by different
367          * masks at different levels, in order to test whether a table
368          * now has no other vmas using it, so can be freed, we don't
369          * bother to round floor or end up - the tests don't need that.
370          */
371
372         addr &= PMD_MASK;
373         if (addr < floor) {
374                 addr += PMD_SIZE;
375                 if (!addr)
376                         return;
377         }
378         if (ceiling) {
379                 ceiling &= PMD_MASK;
380                 if (!ceiling)
381                         return;
382         }
383         if (end - 1 > ceiling - 1)
384                 end -= PMD_SIZE;
385         if (addr > end - 1)
386                 return;
387         /*
388          * We add page table cache pages with PAGE_SIZE,
389          * (see pte_free_tlb()), flush the tlb if we need
390          */
391         tlb_change_page_size(tlb, PAGE_SIZE);
392         pgd = pgd_offset(tlb->mm, addr);
393         do {
394                 next = pgd_addr_end(addr, end);
395                 if (pgd_none_or_clear_bad(pgd))
396                         continue;
397                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398         } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402                 unsigned long floor, unsigned long ceiling)
403 {
404         while (vma) {
405                 struct vm_area_struct *next = vma->vm_next;
406                 unsigned long addr = vma->vm_start;
407
408                 /*
409                  * Hide vma from rmap and truncate_pagecache before freeing
410                  * pgtables
411                  */
412                 unlink_anon_vmas(vma);
413                 unlink_file_vma(vma);
414
415                 if (is_vm_hugetlb_page(vma)) {
416                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 } else {
419                         /*
420                          * Optimization: gather nearby vmas into one call down
421                          */
422                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423                                && !is_vm_hugetlb_page(next)) {
424                                 vma = next;
425                                 next = vma->vm_next;
426                                 unlink_anon_vmas(vma);
427                                 unlink_file_vma(vma);
428                         }
429                         free_pgd_range(tlb, addr, vma->vm_end,
430                                 floor, next ? next->vm_start : ceiling);
431                 }
432                 vma = next;
433         }
434 }
435
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438         spinlock_t *ptl;
439         pgtable_t new = pte_alloc_one(mm);
440         if (!new)
441                 return -ENOMEM;
442
443         /*
444          * Ensure all pte setup (eg. pte page lock and page clearing) are
445          * visible before the pte is made visible to other CPUs by being
446          * put into page tables.
447          *
448          * The other side of the story is the pointer chasing in the page
449          * table walking code (when walking the page table without locking;
450          * ie. most of the time). Fortunately, these data accesses consist
451          * of a chain of data-dependent loads, meaning most CPUs (alpha
452          * being the notable exception) will already guarantee loads are
453          * seen in-order. See the alpha page table accessors for the
454          * smp_rmb() barriers in page table walking code.
455          */
456         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458         ptl = pmd_lock(mm, pmd);
459         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
460                 mm_inc_nr_ptes(mm);
461                 pmd_populate(mm, pmd, new);
462                 new = NULL;
463         }
464         spin_unlock(ptl);
465         if (new)
466                 pte_free(mm, new);
467         return 0;
468 }
469
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472         pte_t *new = pte_alloc_one_kernel(&init_mm);
473         if (!new)
474                 return -ENOMEM;
475
476         smp_wmb(); /* See comment in __pte_alloc */
477
478         spin_lock(&init_mm.page_table_lock);
479         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
480                 pmd_populate_kernel(&init_mm, pmd, new);
481                 new = NULL;
482         }
483         spin_unlock(&init_mm.page_table_lock);
484         if (new)
485                 pte_free_kernel(&init_mm, new);
486         return 0;
487 }
488
489 static inline void init_rss_vec(int *rss)
490 {
491         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496         int i;
497
498         if (current->mm == mm)
499                 sync_mm_rss(mm);
500         for (i = 0; i < NR_MM_COUNTERS; i++)
501                 if (rss[i])
502                         add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513                           pte_t pte, struct page *page)
514 {
515         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516         p4d_t *p4d = p4d_offset(pgd, addr);
517         pud_t *pud = pud_offset(p4d, addr);
518         pmd_t *pmd = pmd_offset(pud, addr);
519         struct address_space *mapping;
520         pgoff_t index;
521         static unsigned long resume;
522         static unsigned long nr_shown;
523         static unsigned long nr_unshown;
524
525         /*
526          * Allow a burst of 60 reports, then keep quiet for that minute;
527          * or allow a steady drip of one report per second.
528          */
529         if (nr_shown == 60) {
530                 if (time_before(jiffies, resume)) {
531                         nr_unshown++;
532                         return;
533                 }
534                 if (nr_unshown) {
535                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536                                  nr_unshown);
537                         nr_unshown = 0;
538                 }
539                 nr_shown = 0;
540         }
541         if (nr_shown++ == 0)
542                 resume = jiffies + 60 * HZ;
543
544         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545         index = linear_page_index(vma, addr);
546
547         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548                  current->comm,
549                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
550         if (page)
551                 dump_page(page, "bad pte");
552         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555                  vma->vm_file,
556                  vma->vm_ops ? vma->vm_ops->fault : NULL,
557                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558                  mapping ? mapping->a_ops->readpage : NULL);
559         dump_stack();
560         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606                             pte_t pte)
607 {
608         unsigned long pfn = pte_pfn(pte);
609
610         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611                 if (likely(!pte_special(pte)))
612                         goto check_pfn;
613                 if (vma->vm_ops && vma->vm_ops->find_special_page)
614                         return vma->vm_ops->find_special_page(vma, addr);
615                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616                         return NULL;
617                 if (is_zero_pfn(pfn))
618                         return NULL;
619                 if (pte_devmap(pte))
620                         return NULL;
621
622                 print_bad_pte(vma, addr, pte, NULL);
623                 return NULL;
624         }
625
626         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629                 if (vma->vm_flags & VM_MIXEDMAP) {
630                         if (!pfn_valid(pfn))
631                                 return NULL;
632                         goto out;
633                 } else {
634                         unsigned long off;
635                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
636                         if (pfn == vma->vm_pgoff + off)
637                                 return NULL;
638                         if (!is_cow_mapping(vma->vm_flags))
639                                 return NULL;
640                 }
641         }
642
643         if (is_zero_pfn(pfn))
644                 return NULL;
645
646 check_pfn:
647         if (unlikely(pfn > highest_memmap_pfn)) {
648                 print_bad_pte(vma, addr, pte, NULL);
649                 return NULL;
650         }
651
652         /*
653          * NOTE! We still have PageReserved() pages in the page tables.
654          * eg. VDSO mappings can cause them to exist.
655          */
656 out:
657         return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662                                 pmd_t pmd)
663 {
664         unsigned long pfn = pmd_pfn(pmd);
665
666         /*
667          * There is no pmd_special() but there may be special pmds, e.g.
668          * in a direct-access (dax) mapping, so let's just replicate the
669          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670          */
671         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672                 if (vma->vm_flags & VM_MIXEDMAP) {
673                         if (!pfn_valid(pfn))
674                                 return NULL;
675                         goto out;
676                 } else {
677                         unsigned long off;
678                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
679                         if (pfn == vma->vm_pgoff + off)
680                                 return NULL;
681                         if (!is_cow_mapping(vma->vm_flags))
682                                 return NULL;
683                 }
684         }
685
686         if (pmd_devmap(pmd))
687                 return NULL;
688         if (is_huge_zero_pmd(pmd))
689                 return NULL;
690         if (unlikely(pfn > highest_memmap_pfn))
691                 return NULL;
692
693         /*
694          * NOTE! We still have PageReserved() pages in the page tables.
695          * eg. VDSO mappings can cause them to exist.
696          */
697 out:
698         return pfn_to_page(pfn);
699 }
700 #endif
701
702 static void restore_exclusive_pte(struct vm_area_struct *vma,
703                                   struct page *page, unsigned long address,
704                                   pte_t *ptep)
705 {
706         pte_t pte;
707         swp_entry_t entry;
708
709         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710         if (pte_swp_soft_dirty(*ptep))
711                 pte = pte_mksoft_dirty(pte);
712
713         entry = pte_to_swp_entry(*ptep);
714         if (pte_swp_uffd_wp(*ptep))
715                 pte = pte_mkuffd_wp(pte);
716         else if (is_writable_device_exclusive_entry(entry))
717                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718
719         set_pte_at(vma->vm_mm, address, ptep, pte);
720
721         /*
722          * No need to take a page reference as one was already
723          * created when the swap entry was made.
724          */
725         if (PageAnon(page))
726                 page_add_anon_rmap(page, vma, address, false);
727         else
728                 /*
729                  * Currently device exclusive access only supports anonymous
730                  * memory so the entry shouldn't point to a filebacked page.
731                  */
732                 WARN_ON_ONCE(!PageAnon(page));
733
734         if (vma->vm_flags & VM_LOCKED)
735                 mlock_vma_page(page);
736
737         /*
738          * No need to invalidate - it was non-present before. However
739          * secondary CPUs may have mappings that need invalidating.
740          */
741         update_mmu_cache(vma, address, ptep);
742 }
743
744 /*
745  * Tries to restore an exclusive pte if the page lock can be acquired without
746  * sleeping.
747  */
748 static int
749 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750                         unsigned long addr)
751 {
752         swp_entry_t entry = pte_to_swp_entry(*src_pte);
753         struct page *page = pfn_swap_entry_to_page(entry);
754
755         if (trylock_page(page)) {
756                 restore_exclusive_pte(vma, page, addr, src_pte);
757                 unlock_page(page);
758                 return 0;
759         }
760
761         return -EBUSY;
762 }
763
764 /*
765  * copy one vm_area from one task to the other. Assumes the page tables
766  * already present in the new task to be cleared in the whole range
767  * covered by this vma.
768  */
769
770 static unsigned long
771 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
772                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
774 {
775         unsigned long vm_flags = dst_vma->vm_flags;
776         pte_t pte = *src_pte;
777         struct page *page;
778         swp_entry_t entry = pte_to_swp_entry(pte);
779
780         if (likely(!non_swap_entry(entry))) {
781                 if (swap_duplicate(entry) < 0)
782                         return -EIO;
783
784                 /* make sure dst_mm is on swapoff's mmlist. */
785                 if (unlikely(list_empty(&dst_mm->mmlist))) {
786                         spin_lock(&mmlist_lock);
787                         if (list_empty(&dst_mm->mmlist))
788                                 list_add(&dst_mm->mmlist,
789                                                 &src_mm->mmlist);
790                         spin_unlock(&mmlist_lock);
791                 }
792                 rss[MM_SWAPENTS]++;
793         } else if (is_migration_entry(entry)) {
794                 page = pfn_swap_entry_to_page(entry);
795
796                 rss[mm_counter(page)]++;
797
798                 if (is_writable_migration_entry(entry) &&
799                                 is_cow_mapping(vm_flags)) {
800                         /*
801                          * COW mappings require pages in both
802                          * parent and child to be set to read.
803                          */
804                         entry = make_readable_migration_entry(
805                                                         swp_offset(entry));
806                         pte = swp_entry_to_pte(entry);
807                         if (pte_swp_soft_dirty(*src_pte))
808                                 pte = pte_swp_mksoft_dirty(pte);
809                         if (pte_swp_uffd_wp(*src_pte))
810                                 pte = pte_swp_mkuffd_wp(pte);
811                         set_pte_at(src_mm, addr, src_pte, pte);
812                 }
813         } else if (is_device_private_entry(entry)) {
814                 page = pfn_swap_entry_to_page(entry);
815
816                 /*
817                  * Update rss count even for unaddressable pages, as
818                  * they should treated just like normal pages in this
819                  * respect.
820                  *
821                  * We will likely want to have some new rss counters
822                  * for unaddressable pages, at some point. But for now
823                  * keep things as they are.
824                  */
825                 get_page(page);
826                 rss[mm_counter(page)]++;
827                 page_dup_rmap(page, false);
828
829                 /*
830                  * We do not preserve soft-dirty information, because so
831                  * far, checkpoint/restore is the only feature that
832                  * requires that. And checkpoint/restore does not work
833                  * when a device driver is involved (you cannot easily
834                  * save and restore device driver state).
835                  */
836                 if (is_writable_device_private_entry(entry) &&
837                     is_cow_mapping(vm_flags)) {
838                         entry = make_readable_device_private_entry(
839                                                         swp_offset(entry));
840                         pte = swp_entry_to_pte(entry);
841                         if (pte_swp_uffd_wp(*src_pte))
842                                 pte = pte_swp_mkuffd_wp(pte);
843                         set_pte_at(src_mm, addr, src_pte, pte);
844                 }
845         } else if (is_device_exclusive_entry(entry)) {
846                 /*
847                  * Make device exclusive entries present by restoring the
848                  * original entry then copying as for a present pte. Device
849                  * exclusive entries currently only support private writable
850                  * (ie. COW) mappings.
851                  */
852                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854                         return -EBUSY;
855                 return -ENOENT;
856         }
857         if (!userfaultfd_wp(dst_vma))
858                 pte = pte_swp_clear_uffd_wp(pte);
859         set_pte_at(dst_mm, addr, dst_pte, pte);
860         return 0;
861 }
862
863 /*
864  * Copy a present and normal page if necessary.
865  *
866  * NOTE! The usual case is that this doesn't need to do
867  * anything, and can just return a positive value. That
868  * will let the caller know that it can just increase
869  * the page refcount and re-use the pte the traditional
870  * way.
871  *
872  * But _if_ we need to copy it because it needs to be
873  * pinned in the parent (and the child should get its own
874  * copy rather than just a reference to the same page),
875  * we'll do that here and return zero to let the caller
876  * know we're done.
877  *
878  * And if we need a pre-allocated page but don't yet have
879  * one, return a negative error to let the preallocation
880  * code know so that it can do so outside the page table
881  * lock.
882  */
883 static inline int
884 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886                   struct page **prealloc, pte_t pte, struct page *page)
887 {
888         struct page *new_page;
889
890         /*
891          * What we want to do is to check whether this page may
892          * have been pinned by the parent process.  If so,
893          * instead of wrprotect the pte on both sides, we copy
894          * the page immediately so that we'll always guarantee
895          * the pinned page won't be randomly replaced in the
896          * future.
897          *
898          * The page pinning checks are just "has this mm ever
899          * seen pinning", along with the (inexact) check of
900          * the page count. That might give false positives for
901          * for pinning, but it will work correctly.
902          */
903         if (likely(!page_needs_cow_for_dma(src_vma, page)))
904                 return 1;
905
906         new_page = *prealloc;
907         if (!new_page)
908                 return -EAGAIN;
909
910         /*
911          * We have a prealloc page, all good!  Take it
912          * over and copy the page & arm it.
913          */
914         *prealloc = NULL;
915         copy_user_highpage(new_page, page, addr, src_vma);
916         __SetPageUptodate(new_page);
917         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
919         rss[mm_counter(new_page)]++;
920
921         /* All done, just insert the new page copy in the child */
922         pte = mk_pte(new_page, dst_vma->vm_page_prot);
923         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924         if (userfaultfd_pte_wp(dst_vma, *src_pte))
925                 /* Uffd-wp needs to be delivered to dest pte as well */
926                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
927         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928         return 0;
929 }
930
931 /*
932  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
933  * is required to copy this pte.
934  */
935 static inline int
936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938                  struct page **prealloc)
939 {
940         struct mm_struct *src_mm = src_vma->vm_mm;
941         unsigned long vm_flags = src_vma->vm_flags;
942         pte_t pte = *src_pte;
943         struct page *page;
944
945         page = vm_normal_page(src_vma, addr, pte);
946         if (page) {
947                 int retval;
948
949                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950                                            addr, rss, prealloc, pte, page);
951                 if (retval <= 0)
952                         return retval;
953
954                 get_page(page);
955                 page_dup_rmap(page, false);
956                 rss[mm_counter(page)]++;
957         }
958
959         /*
960          * If it's a COW mapping, write protect it both
961          * in the parent and the child
962          */
963         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964                 ptep_set_wrprotect(src_mm, addr, src_pte);
965                 pte = pte_wrprotect(pte);
966         }
967
968         /*
969          * If it's a shared mapping, mark it clean in
970          * the child
971          */
972         if (vm_flags & VM_SHARED)
973                 pte = pte_mkclean(pte);
974         pte = pte_mkold(pte);
975
976         if (!userfaultfd_wp(dst_vma))
977                 pte = pte_clear_uffd_wp(pte);
978
979         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
980         return 0;
981 }
982
983 static inline struct page *
984 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985                    unsigned long addr)
986 {
987         struct page *new_page;
988
989         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990         if (!new_page)
991                 return NULL;
992
993         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994                 put_page(new_page);
995                 return NULL;
996         }
997         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
998
999         return new_page;
1000 }
1001
1002 static int
1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005                unsigned long end)
1006 {
1007         struct mm_struct *dst_mm = dst_vma->vm_mm;
1008         struct mm_struct *src_mm = src_vma->vm_mm;
1009         pte_t *orig_src_pte, *orig_dst_pte;
1010         pte_t *src_pte, *dst_pte;
1011         spinlock_t *src_ptl, *dst_ptl;
1012         int progress, ret = 0;
1013         int rss[NR_MM_COUNTERS];
1014         swp_entry_t entry = (swp_entry_t){0};
1015         struct page *prealloc = NULL;
1016
1017 again:
1018         progress = 0;
1019         init_rss_vec(rss);
1020
1021         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022         if (!dst_pte) {
1023                 ret = -ENOMEM;
1024                 goto out;
1025         }
1026         src_pte = pte_offset_map(src_pmd, addr);
1027         src_ptl = pte_lockptr(src_mm, src_pmd);
1028         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029         orig_src_pte = src_pte;
1030         orig_dst_pte = dst_pte;
1031         arch_enter_lazy_mmu_mode();
1032
1033         do {
1034                 /*
1035                  * We are holding two locks at this point - either of them
1036                  * could generate latencies in another task on another CPU.
1037                  */
1038                 if (progress >= 32) {
1039                         progress = 0;
1040                         if (need_resched() ||
1041                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042                                 break;
1043                 }
1044                 if (pte_none(*src_pte)) {
1045                         progress++;
1046                         continue;
1047                 }
1048                 if (unlikely(!pte_present(*src_pte))) {
1049                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1050                                                   dst_pte, src_pte,
1051                                                   dst_vma, src_vma,
1052                                                   addr, rss);
1053                         if (ret == -EIO) {
1054                                 entry = pte_to_swp_entry(*src_pte);
1055                                 break;
1056                         } else if (ret == -EBUSY) {
1057                                 break;
1058                         } else if (!ret) {
1059                                 progress += 8;
1060                                 continue;
1061                         }
1062
1063                         /*
1064                          * Device exclusive entry restored, continue by copying
1065                          * the now present pte.
1066                          */
1067                         WARN_ON_ONCE(ret != -ENOENT);
1068                 }
1069                 /* copy_present_pte() will clear `*prealloc' if consumed */
1070                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071                                        addr, rss, &prealloc);
1072                 /*
1073                  * If we need a pre-allocated page for this pte, drop the
1074                  * locks, allocate, and try again.
1075                  */
1076                 if (unlikely(ret == -EAGAIN))
1077                         break;
1078                 if (unlikely(prealloc)) {
1079                         /*
1080                          * pre-alloc page cannot be reused by next time so as
1081                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1082                          * will allocate page according to address).  This
1083                          * could only happen if one pinned pte changed.
1084                          */
1085                         put_page(prealloc);
1086                         prealloc = NULL;
1087                 }
1088                 progress += 8;
1089         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090
1091         arch_leave_lazy_mmu_mode();
1092         spin_unlock(src_ptl);
1093         pte_unmap(orig_src_pte);
1094         add_mm_rss_vec(dst_mm, rss);
1095         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096         cond_resched();
1097
1098         if (ret == -EIO) {
1099                 VM_WARN_ON_ONCE(!entry.val);
1100                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101                         ret = -ENOMEM;
1102                         goto out;
1103                 }
1104                 entry.val = 0;
1105         } else if (ret == -EBUSY) {
1106                 goto out;
1107         } else if (ret ==  -EAGAIN) {
1108                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109                 if (!prealloc)
1110                         return -ENOMEM;
1111         } else if (ret) {
1112                 VM_WARN_ON_ONCE(1);
1113         }
1114
1115         /* We've captured and resolved the error. Reset, try again. */
1116         ret = 0;
1117
1118         if (addr != end)
1119                 goto again;
1120 out:
1121         if (unlikely(prealloc))
1122                 put_page(prealloc);
1123         return ret;
1124 }
1125
1126 static inline int
1127 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129                unsigned long end)
1130 {
1131         struct mm_struct *dst_mm = dst_vma->vm_mm;
1132         struct mm_struct *src_mm = src_vma->vm_mm;
1133         pmd_t *src_pmd, *dst_pmd;
1134         unsigned long next;
1135
1136         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137         if (!dst_pmd)
1138                 return -ENOMEM;
1139         src_pmd = pmd_offset(src_pud, addr);
1140         do {
1141                 next = pmd_addr_end(addr, end);
1142                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143                         || pmd_devmap(*src_pmd)) {
1144                         int err;
1145                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147                                             addr, dst_vma, src_vma);
1148                         if (err == -ENOMEM)
1149                                 return -ENOMEM;
1150                         if (!err)
1151                                 continue;
1152                         /* fall through */
1153                 }
1154                 if (pmd_none_or_clear_bad(src_pmd))
1155                         continue;
1156                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157                                    addr, next))
1158                         return -ENOMEM;
1159         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160         return 0;
1161 }
1162
1163 static inline int
1164 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166                unsigned long end)
1167 {
1168         struct mm_struct *dst_mm = dst_vma->vm_mm;
1169         struct mm_struct *src_mm = src_vma->vm_mm;
1170         pud_t *src_pud, *dst_pud;
1171         unsigned long next;
1172
1173         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174         if (!dst_pud)
1175                 return -ENOMEM;
1176         src_pud = pud_offset(src_p4d, addr);
1177         do {
1178                 next = pud_addr_end(addr, end);
1179                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180                         int err;
1181
1182                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183                         err = copy_huge_pud(dst_mm, src_mm,
1184                                             dst_pud, src_pud, addr, src_vma);
1185                         if (err == -ENOMEM)
1186                                 return -ENOMEM;
1187                         if (!err)
1188                                 continue;
1189                         /* fall through */
1190                 }
1191                 if (pud_none_or_clear_bad(src_pud))
1192                         continue;
1193                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194                                    addr, next))
1195                         return -ENOMEM;
1196         } while (dst_pud++, src_pud++, addr = next, addr != end);
1197         return 0;
1198 }
1199
1200 static inline int
1201 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203                unsigned long end)
1204 {
1205         struct mm_struct *dst_mm = dst_vma->vm_mm;
1206         p4d_t *src_p4d, *dst_p4d;
1207         unsigned long next;
1208
1209         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210         if (!dst_p4d)
1211                 return -ENOMEM;
1212         src_p4d = p4d_offset(src_pgd, addr);
1213         do {
1214                 next = p4d_addr_end(addr, end);
1215                 if (p4d_none_or_clear_bad(src_p4d))
1216                         continue;
1217                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218                                    addr, next))
1219                         return -ENOMEM;
1220         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221         return 0;
1222 }
1223
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227         pgd_t *src_pgd, *dst_pgd;
1228         unsigned long next;
1229         unsigned long addr = src_vma->vm_start;
1230         unsigned long end = src_vma->vm_end;
1231         struct mm_struct *dst_mm = dst_vma->vm_mm;
1232         struct mm_struct *src_mm = src_vma->vm_mm;
1233         struct mmu_notifier_range range;
1234         bool is_cow;
1235         int ret;
1236
1237         /*
1238          * Don't copy ptes where a page fault will fill them correctly.
1239          * Fork becomes much lighter when there are big shared or private
1240          * readonly mappings. The tradeoff is that copy_page_range is more
1241          * efficient than faulting.
1242          */
1243         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244             !src_vma->anon_vma)
1245                 return 0;
1246
1247         if (is_vm_hugetlb_page(src_vma))
1248                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249
1250         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251                 /*
1252                  * We do not free on error cases below as remove_vma
1253                  * gets called on error from higher level routine
1254                  */
1255                 ret = track_pfn_copy(src_vma);
1256                 if (ret)
1257                         return ret;
1258         }
1259
1260         /*
1261          * We need to invalidate the secondary MMU mappings only when
1262          * there could be a permission downgrade on the ptes of the
1263          * parent mm. And a permission downgrade will only happen if
1264          * is_cow_mapping() returns true.
1265          */
1266         is_cow = is_cow_mapping(src_vma->vm_flags);
1267
1268         if (is_cow) {
1269                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270                                         0, src_vma, src_mm, addr, end);
1271                 mmu_notifier_invalidate_range_start(&range);
1272                 /*
1273                  * Disabling preemption is not needed for the write side, as
1274                  * the read side doesn't spin, but goes to the mmap_lock.
1275                  *
1276                  * Use the raw variant of the seqcount_t write API to avoid
1277                  * lockdep complaining about preemptibility.
1278                  */
1279                 mmap_assert_write_locked(src_mm);
1280                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281         }
1282
1283         ret = 0;
1284         dst_pgd = pgd_offset(dst_mm, addr);
1285         src_pgd = pgd_offset(src_mm, addr);
1286         do {
1287                 next = pgd_addr_end(addr, end);
1288                 if (pgd_none_or_clear_bad(src_pgd))
1289                         continue;
1290                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291                                             addr, next))) {
1292                         ret = -ENOMEM;
1293                         break;
1294                 }
1295         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296
1297         if (is_cow) {
1298                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1299                 mmu_notifier_invalidate_range_end(&range);
1300         }
1301         return ret;
1302 }
1303
1304 /* Whether we should zap all COWed (private) pages too */
1305 static inline bool should_zap_cows(struct zap_details *details)
1306 {
1307         /* By default, zap all pages */
1308         if (!details)
1309                 return true;
1310
1311         /* Or, we zap COWed pages only if the caller wants to */
1312         return !details->check_mapping;
1313 }
1314
1315 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1316                                 struct vm_area_struct *vma, pmd_t *pmd,
1317                                 unsigned long addr, unsigned long end,
1318                                 struct zap_details *details)
1319 {
1320         struct mm_struct *mm = tlb->mm;
1321         int force_flush = 0;
1322         int rss[NR_MM_COUNTERS];
1323         spinlock_t *ptl;
1324         pte_t *start_pte;
1325         pte_t *pte;
1326         swp_entry_t entry;
1327
1328         tlb_change_page_size(tlb, PAGE_SIZE);
1329 again:
1330         init_rss_vec(rss);
1331         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1332         pte = start_pte;
1333         flush_tlb_batched_pending(mm);
1334         arch_enter_lazy_mmu_mode();
1335         do {
1336                 pte_t ptent = *pte;
1337                 if (pte_none(ptent))
1338                         continue;
1339
1340                 if (need_resched())
1341                         break;
1342
1343                 if (pte_present(ptent)) {
1344                         struct page *page;
1345
1346                         page = vm_normal_page(vma, addr, ptent);
1347                         if (unlikely(details) && page) {
1348                                 /*
1349                                  * unmap_shared_mapping_pages() wants to
1350                                  * invalidate cache without truncating:
1351                                  * unmap shared but keep private pages.
1352                                  */
1353                                 if (details->check_mapping &&
1354                                     details->check_mapping != page_rmapping(page))
1355                                         continue;
1356                         }
1357                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1358                                                         tlb->fullmm);
1359                         tlb_remove_tlb_entry(tlb, pte, addr);
1360                         if (unlikely(!page))
1361                                 continue;
1362
1363                         if (!PageAnon(page)) {
1364                                 if (pte_dirty(ptent)) {
1365                                         force_flush = 1;
1366                                         set_page_dirty(page);
1367                                 }
1368                                 if (pte_young(ptent) &&
1369                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1370                                         mark_page_accessed(page);
1371                         }
1372                         rss[mm_counter(page)]--;
1373                         page_remove_rmap(page, false);
1374                         if (unlikely(page_mapcount(page) < 0))
1375                                 print_bad_pte(vma, addr, ptent, page);
1376                         if (unlikely(__tlb_remove_page(tlb, page))) {
1377                                 force_flush = 1;
1378                                 addr += PAGE_SIZE;
1379                                 break;
1380                         }
1381                         continue;
1382                 }
1383
1384                 entry = pte_to_swp_entry(ptent);
1385                 if (is_device_private_entry(entry) ||
1386                     is_device_exclusive_entry(entry)) {
1387                         struct page *page = pfn_swap_entry_to_page(entry);
1388
1389                         if (unlikely(details && details->check_mapping)) {
1390                                 /*
1391                                  * unmap_shared_mapping_pages() wants to
1392                                  * invalidate cache without truncating:
1393                                  * unmap shared but keep private pages.
1394                                  */
1395                                 if (details->check_mapping !=
1396                                     page_rmapping(page))
1397                                         continue;
1398                         }
1399
1400                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1401                         rss[mm_counter(page)]--;
1402
1403                         if (is_device_private_entry(entry))
1404                                 page_remove_rmap(page, false);
1405
1406                         put_page(page);
1407                         continue;
1408                 }
1409
1410                 if (!non_swap_entry(entry)) {
1411                         /* Genuine swap entry, hence a private anon page */
1412                         if (!should_zap_cows(details))
1413                                 continue;
1414                         rss[MM_SWAPENTS]--;
1415                 } else if (is_migration_entry(entry)) {
1416                         struct page *page;
1417
1418                         page = pfn_swap_entry_to_page(entry);
1419                         if (details && details->check_mapping &&
1420                             details->check_mapping != page_rmapping(page))
1421                                 continue;
1422                         rss[mm_counter(page)]--;
1423                 }
1424                 if (unlikely(!free_swap_and_cache(entry)))
1425                         print_bad_pte(vma, addr, ptent, NULL);
1426                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1427         } while (pte++, addr += PAGE_SIZE, addr != end);
1428
1429         add_mm_rss_vec(mm, rss);
1430         arch_leave_lazy_mmu_mode();
1431
1432         /* Do the actual TLB flush before dropping ptl */
1433         if (force_flush)
1434                 tlb_flush_mmu_tlbonly(tlb);
1435         pte_unmap_unlock(start_pte, ptl);
1436
1437         /*
1438          * If we forced a TLB flush (either due to running out of
1439          * batch buffers or because we needed to flush dirty TLB
1440          * entries before releasing the ptl), free the batched
1441          * memory too. Restart if we didn't do everything.
1442          */
1443         if (force_flush) {
1444                 force_flush = 0;
1445                 tlb_flush_mmu(tlb);
1446         }
1447
1448         if (addr != end) {
1449                 cond_resched();
1450                 goto again;
1451         }
1452
1453         return addr;
1454 }
1455
1456 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1457                                 struct vm_area_struct *vma, pud_t *pud,
1458                                 unsigned long addr, unsigned long end,
1459                                 struct zap_details *details)
1460 {
1461         pmd_t *pmd;
1462         unsigned long next;
1463
1464         pmd = pmd_offset(pud, addr);
1465         do {
1466                 next = pmd_addr_end(addr, end);
1467                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1468                         if (next - addr != HPAGE_PMD_SIZE)
1469                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1470                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1471                                 goto next;
1472                         /* fall through */
1473                 } else if (details && details->single_page &&
1474                            PageTransCompound(details->single_page) &&
1475                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1476                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1477                         /*
1478                          * Take and drop THP pmd lock so that we cannot return
1479                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1480                          * but not yet decremented compound_mapcount().
1481                          */
1482                         spin_unlock(ptl);
1483                 }
1484
1485                 /*
1486                  * Here there can be other concurrent MADV_DONTNEED or
1487                  * trans huge page faults running, and if the pmd is
1488                  * none or trans huge it can change under us. This is
1489                  * because MADV_DONTNEED holds the mmap_lock in read
1490                  * mode.
1491                  */
1492                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1493                         goto next;
1494                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1495 next:
1496                 cond_resched();
1497         } while (pmd++, addr = next, addr != end);
1498
1499         return addr;
1500 }
1501
1502 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1503                                 struct vm_area_struct *vma, p4d_t *p4d,
1504                                 unsigned long addr, unsigned long end,
1505                                 struct zap_details *details)
1506 {
1507         pud_t *pud;
1508         unsigned long next;
1509
1510         pud = pud_offset(p4d, addr);
1511         do {
1512                 next = pud_addr_end(addr, end);
1513                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1514                         if (next - addr != HPAGE_PUD_SIZE) {
1515                                 mmap_assert_locked(tlb->mm);
1516                                 split_huge_pud(vma, pud, addr);
1517                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1518                                 goto next;
1519                         /* fall through */
1520                 }
1521                 if (pud_none_or_clear_bad(pud))
1522                         continue;
1523                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1524 next:
1525                 cond_resched();
1526         } while (pud++, addr = next, addr != end);
1527
1528         return addr;
1529 }
1530
1531 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1532                                 struct vm_area_struct *vma, pgd_t *pgd,
1533                                 unsigned long addr, unsigned long end,
1534                                 struct zap_details *details)
1535 {
1536         p4d_t *p4d;
1537         unsigned long next;
1538
1539         p4d = p4d_offset(pgd, addr);
1540         do {
1541                 next = p4d_addr_end(addr, end);
1542                 if (p4d_none_or_clear_bad(p4d))
1543                         continue;
1544                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1545         } while (p4d++, addr = next, addr != end);
1546
1547         return addr;
1548 }
1549
1550 void unmap_page_range(struct mmu_gather *tlb,
1551                              struct vm_area_struct *vma,
1552                              unsigned long addr, unsigned long end,
1553                              struct zap_details *details)
1554 {
1555         pgd_t *pgd;
1556         unsigned long next;
1557
1558         BUG_ON(addr >= end);
1559         tlb_start_vma(tlb, vma);
1560         pgd = pgd_offset(vma->vm_mm, addr);
1561         do {
1562                 next = pgd_addr_end(addr, end);
1563                 if (pgd_none_or_clear_bad(pgd))
1564                         continue;
1565                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1566         } while (pgd++, addr = next, addr != end);
1567         tlb_end_vma(tlb, vma);
1568 }
1569
1570
1571 static void unmap_single_vma(struct mmu_gather *tlb,
1572                 struct vm_area_struct *vma, unsigned long start_addr,
1573                 unsigned long end_addr,
1574                 struct zap_details *details)
1575 {
1576         unsigned long start = max(vma->vm_start, start_addr);
1577         unsigned long end;
1578
1579         if (start >= vma->vm_end)
1580                 return;
1581         end = min(vma->vm_end, end_addr);
1582         if (end <= vma->vm_start)
1583                 return;
1584
1585         if (vma->vm_file)
1586                 uprobe_munmap(vma, start, end);
1587
1588         if (unlikely(vma->vm_flags & VM_PFNMAP))
1589                 untrack_pfn(vma, 0, 0);
1590
1591         if (start != end) {
1592                 if (unlikely(is_vm_hugetlb_page(vma))) {
1593                         /*
1594                          * It is undesirable to test vma->vm_file as it
1595                          * should be non-null for valid hugetlb area.
1596                          * However, vm_file will be NULL in the error
1597                          * cleanup path of mmap_region. When
1598                          * hugetlbfs ->mmap method fails,
1599                          * mmap_region() nullifies vma->vm_file
1600                          * before calling this function to clean up.
1601                          * Since no pte has actually been setup, it is
1602                          * safe to do nothing in this case.
1603                          */
1604                         if (vma->vm_file) {
1605                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1606                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1607                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1608                         }
1609                 } else
1610                         unmap_page_range(tlb, vma, start, end, details);
1611         }
1612 }
1613
1614 /**
1615  * unmap_vmas - unmap a range of memory covered by a list of vma's
1616  * @tlb: address of the caller's struct mmu_gather
1617  * @vma: the starting vma
1618  * @start_addr: virtual address at which to start unmapping
1619  * @end_addr: virtual address at which to end unmapping
1620  *
1621  * Unmap all pages in the vma list.
1622  *
1623  * Only addresses between `start' and `end' will be unmapped.
1624  *
1625  * The VMA list must be sorted in ascending virtual address order.
1626  *
1627  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1628  * range after unmap_vmas() returns.  So the only responsibility here is to
1629  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1630  * drops the lock and schedules.
1631  */
1632 void unmap_vmas(struct mmu_gather *tlb,
1633                 struct vm_area_struct *vma, unsigned long start_addr,
1634                 unsigned long end_addr)
1635 {
1636         struct mmu_notifier_range range;
1637
1638         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1639                                 start_addr, end_addr);
1640         mmu_notifier_invalidate_range_start(&range);
1641         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1642                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1643         mmu_notifier_invalidate_range_end(&range);
1644 }
1645
1646 /**
1647  * zap_page_range - remove user pages in a given range
1648  * @vma: vm_area_struct holding the applicable pages
1649  * @start: starting address of pages to zap
1650  * @size: number of bytes to zap
1651  *
1652  * Caller must protect the VMA list
1653  */
1654 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1655                 unsigned long size)
1656 {
1657         struct mmu_notifier_range range;
1658         struct mmu_gather tlb;
1659
1660         lru_add_drain();
1661         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662                                 start, start + size);
1663         tlb_gather_mmu(&tlb, vma->vm_mm);
1664         update_hiwater_rss(vma->vm_mm);
1665         mmu_notifier_invalidate_range_start(&range);
1666         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1667                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1668         mmu_notifier_invalidate_range_end(&range);
1669         tlb_finish_mmu(&tlb);
1670 }
1671
1672 /**
1673  * zap_page_range_single - remove user pages in a given range
1674  * @vma: vm_area_struct holding the applicable pages
1675  * @address: starting address of pages to zap
1676  * @size: number of bytes to zap
1677  * @details: details of shared cache invalidation
1678  *
1679  * The range must fit into one VMA.
1680  */
1681 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1682                 unsigned long size, struct zap_details *details)
1683 {
1684         struct mmu_notifier_range range;
1685         struct mmu_gather tlb;
1686
1687         lru_add_drain();
1688         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1689                                 address, address + size);
1690         tlb_gather_mmu(&tlb, vma->vm_mm);
1691         update_hiwater_rss(vma->vm_mm);
1692         mmu_notifier_invalidate_range_start(&range);
1693         unmap_single_vma(&tlb, vma, address, range.end, details);
1694         mmu_notifier_invalidate_range_end(&range);
1695         tlb_finish_mmu(&tlb);
1696 }
1697
1698 /**
1699  * zap_vma_ptes - remove ptes mapping the vma
1700  * @vma: vm_area_struct holding ptes to be zapped
1701  * @address: starting address of pages to zap
1702  * @size: number of bytes to zap
1703  *
1704  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1705  *
1706  * The entire address range must be fully contained within the vma.
1707  *
1708  */
1709 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1710                 unsigned long size)
1711 {
1712         if (address < vma->vm_start || address + size > vma->vm_end ||
1713                         !(vma->vm_flags & VM_PFNMAP))
1714                 return;
1715
1716         zap_page_range_single(vma, address, size, NULL);
1717 }
1718 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1719
1720 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1721 {
1722         pgd_t *pgd;
1723         p4d_t *p4d;
1724         pud_t *pud;
1725         pmd_t *pmd;
1726
1727         pgd = pgd_offset(mm, addr);
1728         p4d = p4d_alloc(mm, pgd, addr);
1729         if (!p4d)
1730                 return NULL;
1731         pud = pud_alloc(mm, p4d, addr);
1732         if (!pud)
1733                 return NULL;
1734         pmd = pmd_alloc(mm, pud, addr);
1735         if (!pmd)
1736                 return NULL;
1737
1738         VM_BUG_ON(pmd_trans_huge(*pmd));
1739         return pmd;
1740 }
1741
1742 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1743                         spinlock_t **ptl)
1744 {
1745         pmd_t *pmd = walk_to_pmd(mm, addr);
1746
1747         if (!pmd)
1748                 return NULL;
1749         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1750 }
1751
1752 static int validate_page_before_insert(struct page *page)
1753 {
1754         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1755                 return -EINVAL;
1756         flush_dcache_page(page);
1757         return 0;
1758 }
1759
1760 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1761                         unsigned long addr, struct page *page, pgprot_t prot)
1762 {
1763         if (!pte_none(*pte))
1764                 return -EBUSY;
1765         /* Ok, finally just insert the thing.. */
1766         get_page(page);
1767         inc_mm_counter_fast(mm, mm_counter_file(page));
1768         page_add_file_rmap(page, false);
1769         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1770         return 0;
1771 }
1772
1773 /*
1774  * This is the old fallback for page remapping.
1775  *
1776  * For historical reasons, it only allows reserved pages. Only
1777  * old drivers should use this, and they needed to mark their
1778  * pages reserved for the old functions anyway.
1779  */
1780 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1781                         struct page *page, pgprot_t prot)
1782 {
1783         struct mm_struct *mm = vma->vm_mm;
1784         int retval;
1785         pte_t *pte;
1786         spinlock_t *ptl;
1787
1788         retval = validate_page_before_insert(page);
1789         if (retval)
1790                 goto out;
1791         retval = -ENOMEM;
1792         pte = get_locked_pte(mm, addr, &ptl);
1793         if (!pte)
1794                 goto out;
1795         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1796         pte_unmap_unlock(pte, ptl);
1797 out:
1798         return retval;
1799 }
1800
1801 #ifdef pte_index
1802 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1803                         unsigned long addr, struct page *page, pgprot_t prot)
1804 {
1805         int err;
1806
1807         if (!page_count(page))
1808                 return -EINVAL;
1809         err = validate_page_before_insert(page);
1810         if (err)
1811                 return err;
1812         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1813 }
1814
1815 /* insert_pages() amortizes the cost of spinlock operations
1816  * when inserting pages in a loop. Arch *must* define pte_index.
1817  */
1818 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1819                         struct page **pages, unsigned long *num, pgprot_t prot)
1820 {
1821         pmd_t *pmd = NULL;
1822         pte_t *start_pte, *pte;
1823         spinlock_t *pte_lock;
1824         struct mm_struct *const mm = vma->vm_mm;
1825         unsigned long curr_page_idx = 0;
1826         unsigned long remaining_pages_total = *num;
1827         unsigned long pages_to_write_in_pmd;
1828         int ret;
1829 more:
1830         ret = -EFAULT;
1831         pmd = walk_to_pmd(mm, addr);
1832         if (!pmd)
1833                 goto out;
1834
1835         pages_to_write_in_pmd = min_t(unsigned long,
1836                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1837
1838         /* Allocate the PTE if necessary; takes PMD lock once only. */
1839         ret = -ENOMEM;
1840         if (pte_alloc(mm, pmd))
1841                 goto out;
1842
1843         while (pages_to_write_in_pmd) {
1844                 int pte_idx = 0;
1845                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1846
1847                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1848                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1849                         int err = insert_page_in_batch_locked(mm, pte,
1850                                 addr, pages[curr_page_idx], prot);
1851                         if (unlikely(err)) {
1852                                 pte_unmap_unlock(start_pte, pte_lock);
1853                                 ret = err;
1854                                 remaining_pages_total -= pte_idx;
1855                                 goto out;
1856                         }
1857                         addr += PAGE_SIZE;
1858                         ++curr_page_idx;
1859                 }
1860                 pte_unmap_unlock(start_pte, pte_lock);
1861                 pages_to_write_in_pmd -= batch_size;
1862                 remaining_pages_total -= batch_size;
1863         }
1864         if (remaining_pages_total)
1865                 goto more;
1866         ret = 0;
1867 out:
1868         *num = remaining_pages_total;
1869         return ret;
1870 }
1871 #endif  /* ifdef pte_index */
1872
1873 /**
1874  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1875  * @vma: user vma to map to
1876  * @addr: target start user address of these pages
1877  * @pages: source kernel pages
1878  * @num: in: number of pages to map. out: number of pages that were *not*
1879  * mapped. (0 means all pages were successfully mapped).
1880  *
1881  * Preferred over vm_insert_page() when inserting multiple pages.
1882  *
1883  * In case of error, we may have mapped a subset of the provided
1884  * pages. It is the caller's responsibility to account for this case.
1885  *
1886  * The same restrictions apply as in vm_insert_page().
1887  */
1888 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1889                         struct page **pages, unsigned long *num)
1890 {
1891 #ifdef pte_index
1892         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1893
1894         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1895                 return -EFAULT;
1896         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1897                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1898                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1899                 vma->vm_flags |= VM_MIXEDMAP;
1900         }
1901         /* Defer page refcount checking till we're about to map that page. */
1902         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1903 #else
1904         unsigned long idx = 0, pgcount = *num;
1905         int err = -EINVAL;
1906
1907         for (; idx < pgcount; ++idx) {
1908                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1909                 if (err)
1910                         break;
1911         }
1912         *num = pgcount - idx;
1913         return err;
1914 #endif  /* ifdef pte_index */
1915 }
1916 EXPORT_SYMBOL(vm_insert_pages);
1917
1918 /**
1919  * vm_insert_page - insert single page into user vma
1920  * @vma: user vma to map to
1921  * @addr: target user address of this page
1922  * @page: source kernel page
1923  *
1924  * This allows drivers to insert individual pages they've allocated
1925  * into a user vma.
1926  *
1927  * The page has to be a nice clean _individual_ kernel allocation.
1928  * If you allocate a compound page, you need to have marked it as
1929  * such (__GFP_COMP), or manually just split the page up yourself
1930  * (see split_page()).
1931  *
1932  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1933  * took an arbitrary page protection parameter. This doesn't allow
1934  * that. Your vma protection will have to be set up correctly, which
1935  * means that if you want a shared writable mapping, you'd better
1936  * ask for a shared writable mapping!
1937  *
1938  * The page does not need to be reserved.
1939  *
1940  * Usually this function is called from f_op->mmap() handler
1941  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1942  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1943  * function from other places, for example from page-fault handler.
1944  *
1945  * Return: %0 on success, negative error code otherwise.
1946  */
1947 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1948                         struct page *page)
1949 {
1950         if (addr < vma->vm_start || addr >= vma->vm_end)
1951                 return -EFAULT;
1952         if (!page_count(page))
1953                 return -EINVAL;
1954         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1955                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1956                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1957                 vma->vm_flags |= VM_MIXEDMAP;
1958         }
1959         return insert_page(vma, addr, page, vma->vm_page_prot);
1960 }
1961 EXPORT_SYMBOL(vm_insert_page);
1962
1963 /*
1964  * __vm_map_pages - maps range of kernel pages into user vma
1965  * @vma: user vma to map to
1966  * @pages: pointer to array of source kernel pages
1967  * @num: number of pages in page array
1968  * @offset: user's requested vm_pgoff
1969  *
1970  * This allows drivers to map range of kernel pages into a user vma.
1971  *
1972  * Return: 0 on success and error code otherwise.
1973  */
1974 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1975                                 unsigned long num, unsigned long offset)
1976 {
1977         unsigned long count = vma_pages(vma);
1978         unsigned long uaddr = vma->vm_start;
1979         int ret, i;
1980
1981         /* Fail if the user requested offset is beyond the end of the object */
1982         if (offset >= num)
1983                 return -ENXIO;
1984
1985         /* Fail if the user requested size exceeds available object size */
1986         if (count > num - offset)
1987                 return -ENXIO;
1988
1989         for (i = 0; i < count; i++) {
1990                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1991                 if (ret < 0)
1992                         return ret;
1993                 uaddr += PAGE_SIZE;
1994         }
1995
1996         return 0;
1997 }
1998
1999 /**
2000  * vm_map_pages - maps range of kernel pages starts with non zero offset
2001  * @vma: user vma to map to
2002  * @pages: pointer to array of source kernel pages
2003  * @num: number of pages in page array
2004  *
2005  * Maps an object consisting of @num pages, catering for the user's
2006  * requested vm_pgoff
2007  *
2008  * If we fail to insert any page into the vma, the function will return
2009  * immediately leaving any previously inserted pages present.  Callers
2010  * from the mmap handler may immediately return the error as their caller
2011  * will destroy the vma, removing any successfully inserted pages. Other
2012  * callers should make their own arrangements for calling unmap_region().
2013  *
2014  * Context: Process context. Called by mmap handlers.
2015  * Return: 0 on success and error code otherwise.
2016  */
2017 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2018                                 unsigned long num)
2019 {
2020         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2021 }
2022 EXPORT_SYMBOL(vm_map_pages);
2023
2024 /**
2025  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2026  * @vma: user vma to map to
2027  * @pages: pointer to array of source kernel pages
2028  * @num: number of pages in page array
2029  *
2030  * Similar to vm_map_pages(), except that it explicitly sets the offset
2031  * to 0. This function is intended for the drivers that did not consider
2032  * vm_pgoff.
2033  *
2034  * Context: Process context. Called by mmap handlers.
2035  * Return: 0 on success and error code otherwise.
2036  */
2037 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2038                                 unsigned long num)
2039 {
2040         return __vm_map_pages(vma, pages, num, 0);
2041 }
2042 EXPORT_SYMBOL(vm_map_pages_zero);
2043
2044 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2045                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2046 {
2047         struct mm_struct *mm = vma->vm_mm;
2048         pte_t *pte, entry;
2049         spinlock_t *ptl;
2050
2051         pte = get_locked_pte(mm, addr, &ptl);
2052         if (!pte)
2053                 return VM_FAULT_OOM;
2054         if (!pte_none(*pte)) {
2055                 if (mkwrite) {
2056                         /*
2057                          * For read faults on private mappings the PFN passed
2058                          * in may not match the PFN we have mapped if the
2059                          * mapped PFN is a writeable COW page.  In the mkwrite
2060                          * case we are creating a writable PTE for a shared
2061                          * mapping and we expect the PFNs to match. If they
2062                          * don't match, we are likely racing with block
2063                          * allocation and mapping invalidation so just skip the
2064                          * update.
2065                          */
2066                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2067                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2068                                 goto out_unlock;
2069                         }
2070                         entry = pte_mkyoung(*pte);
2071                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2072                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2073                                 update_mmu_cache(vma, addr, pte);
2074                 }
2075                 goto out_unlock;
2076         }
2077
2078         /* Ok, finally just insert the thing.. */
2079         if (pfn_t_devmap(pfn))
2080                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2081         else
2082                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2083
2084         if (mkwrite) {
2085                 entry = pte_mkyoung(entry);
2086                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2087         }
2088
2089         set_pte_at(mm, addr, pte, entry);
2090         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2091
2092 out_unlock:
2093         pte_unmap_unlock(pte, ptl);
2094         return VM_FAULT_NOPAGE;
2095 }
2096
2097 /**
2098  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2099  * @vma: user vma to map to
2100  * @addr: target user address of this page
2101  * @pfn: source kernel pfn
2102  * @pgprot: pgprot flags for the inserted page
2103  *
2104  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2105  * to override pgprot on a per-page basis.
2106  *
2107  * This only makes sense for IO mappings, and it makes no sense for
2108  * COW mappings.  In general, using multiple vmas is preferable;
2109  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2110  * impractical.
2111  *
2112  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2113  * a value of @pgprot different from that of @vma->vm_page_prot.
2114  *
2115  * Context: Process context.  May allocate using %GFP_KERNEL.
2116  * Return: vm_fault_t value.
2117  */
2118 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2119                         unsigned long pfn, pgprot_t pgprot)
2120 {
2121         /*
2122          * Technically, architectures with pte_special can avoid all these
2123          * restrictions (same for remap_pfn_range).  However we would like
2124          * consistency in testing and feature parity among all, so we should
2125          * try to keep these invariants in place for everybody.
2126          */
2127         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2128         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2129                                                 (VM_PFNMAP|VM_MIXEDMAP));
2130         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2131         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2132
2133         if (addr < vma->vm_start || addr >= vma->vm_end)
2134                 return VM_FAULT_SIGBUS;
2135
2136         if (!pfn_modify_allowed(pfn, pgprot))
2137                 return VM_FAULT_SIGBUS;
2138
2139         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2140
2141         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2142                         false);
2143 }
2144 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2145
2146 /**
2147  * vmf_insert_pfn - insert single pfn into user vma
2148  * @vma: user vma to map to
2149  * @addr: target user address of this page
2150  * @pfn: source kernel pfn
2151  *
2152  * Similar to vm_insert_page, this allows drivers to insert individual pages
2153  * they've allocated into a user vma. Same comments apply.
2154  *
2155  * This function should only be called from a vm_ops->fault handler, and
2156  * in that case the handler should return the result of this function.
2157  *
2158  * vma cannot be a COW mapping.
2159  *
2160  * As this is called only for pages that do not currently exist, we
2161  * do not need to flush old virtual caches or the TLB.
2162  *
2163  * Context: Process context.  May allocate using %GFP_KERNEL.
2164  * Return: vm_fault_t value.
2165  */
2166 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2167                         unsigned long pfn)
2168 {
2169         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2170 }
2171 EXPORT_SYMBOL(vmf_insert_pfn);
2172
2173 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2174 {
2175         /* these checks mirror the abort conditions in vm_normal_page */
2176         if (vma->vm_flags & VM_MIXEDMAP)
2177                 return true;
2178         if (pfn_t_devmap(pfn))
2179                 return true;
2180         if (pfn_t_special(pfn))
2181                 return true;
2182         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2183                 return true;
2184         return false;
2185 }
2186
2187 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2188                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2189                 bool mkwrite)
2190 {
2191         int err;
2192
2193         BUG_ON(!vm_mixed_ok(vma, pfn));
2194
2195         if (addr < vma->vm_start || addr >= vma->vm_end)
2196                 return VM_FAULT_SIGBUS;
2197
2198         track_pfn_insert(vma, &pgprot, pfn);
2199
2200         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2201                 return VM_FAULT_SIGBUS;
2202
2203         /*
2204          * If we don't have pte special, then we have to use the pfn_valid()
2205          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2206          * refcount the page if pfn_valid is true (hence insert_page rather
2207          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2208          * without pte special, it would there be refcounted as a normal page.
2209          */
2210         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2211             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2212                 struct page *page;
2213
2214                 /*
2215                  * At this point we are committed to insert_page()
2216                  * regardless of whether the caller specified flags that
2217                  * result in pfn_t_has_page() == false.
2218                  */
2219                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2220                 err = insert_page(vma, addr, page, pgprot);
2221         } else {
2222                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2223         }
2224
2225         if (err == -ENOMEM)
2226                 return VM_FAULT_OOM;
2227         if (err < 0 && err != -EBUSY)
2228                 return VM_FAULT_SIGBUS;
2229
2230         return VM_FAULT_NOPAGE;
2231 }
2232
2233 /**
2234  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2235  * @vma: user vma to map to
2236  * @addr: target user address of this page
2237  * @pfn: source kernel pfn
2238  * @pgprot: pgprot flags for the inserted page
2239  *
2240  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2241  * to override pgprot on a per-page basis.
2242  *
2243  * Typically this function should be used by drivers to set caching- and
2244  * encryption bits different than those of @vma->vm_page_prot, because
2245  * the caching- or encryption mode may not be known at mmap() time.
2246  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2247  * to set caching and encryption bits for those vmas (except for COW pages).
2248  * This is ensured by core vm only modifying these page table entries using
2249  * functions that don't touch caching- or encryption bits, using pte_modify()
2250  * if needed. (See for example mprotect()).
2251  * Also when new page-table entries are created, this is only done using the
2252  * fault() callback, and never using the value of vma->vm_page_prot,
2253  * except for page-table entries that point to anonymous pages as the result
2254  * of COW.
2255  *
2256  * Context: Process context.  May allocate using %GFP_KERNEL.
2257  * Return: vm_fault_t value.
2258  */
2259 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2260                                  pfn_t pfn, pgprot_t pgprot)
2261 {
2262         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2263 }
2264 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2265
2266 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2267                 pfn_t pfn)
2268 {
2269         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2270 }
2271 EXPORT_SYMBOL(vmf_insert_mixed);
2272
2273 /*
2274  *  If the insertion of PTE failed because someone else already added a
2275  *  different entry in the mean time, we treat that as success as we assume
2276  *  the same entry was actually inserted.
2277  */
2278 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2279                 unsigned long addr, pfn_t pfn)
2280 {
2281         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2282 }
2283 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2284
2285 /*
2286  * maps a range of physical memory into the requested pages. the old
2287  * mappings are removed. any references to nonexistent pages results
2288  * in null mappings (currently treated as "copy-on-access")
2289  */
2290 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2291                         unsigned long addr, unsigned long end,
2292                         unsigned long pfn, pgprot_t prot)
2293 {
2294         pte_t *pte, *mapped_pte;
2295         spinlock_t *ptl;
2296         int err = 0;
2297
2298         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2299         if (!pte)
2300                 return -ENOMEM;
2301         arch_enter_lazy_mmu_mode();
2302         do {
2303                 BUG_ON(!pte_none(*pte));
2304                 if (!pfn_modify_allowed(pfn, prot)) {
2305                         err = -EACCES;
2306                         break;
2307                 }
2308                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2309                 pfn++;
2310         } while (pte++, addr += PAGE_SIZE, addr != end);
2311         arch_leave_lazy_mmu_mode();
2312         pte_unmap_unlock(mapped_pte, ptl);
2313         return err;
2314 }
2315
2316 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2317                         unsigned long addr, unsigned long end,
2318                         unsigned long pfn, pgprot_t prot)
2319 {
2320         pmd_t *pmd;
2321         unsigned long next;
2322         int err;
2323
2324         pfn -= addr >> PAGE_SHIFT;
2325         pmd = pmd_alloc(mm, pud, addr);
2326         if (!pmd)
2327                 return -ENOMEM;
2328         VM_BUG_ON(pmd_trans_huge(*pmd));
2329         do {
2330                 next = pmd_addr_end(addr, end);
2331                 err = remap_pte_range(mm, pmd, addr, next,
2332                                 pfn + (addr >> PAGE_SHIFT), prot);
2333                 if (err)
2334                         return err;
2335         } while (pmd++, addr = next, addr != end);
2336         return 0;
2337 }
2338
2339 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2340                         unsigned long addr, unsigned long end,
2341                         unsigned long pfn, pgprot_t prot)
2342 {
2343         pud_t *pud;
2344         unsigned long next;
2345         int err;
2346
2347         pfn -= addr >> PAGE_SHIFT;
2348         pud = pud_alloc(mm, p4d, addr);
2349         if (!pud)
2350                 return -ENOMEM;
2351         do {
2352                 next = pud_addr_end(addr, end);
2353                 err = remap_pmd_range(mm, pud, addr, next,
2354                                 pfn + (addr >> PAGE_SHIFT), prot);
2355                 if (err)
2356                         return err;
2357         } while (pud++, addr = next, addr != end);
2358         return 0;
2359 }
2360
2361 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2362                         unsigned long addr, unsigned long end,
2363                         unsigned long pfn, pgprot_t prot)
2364 {
2365         p4d_t *p4d;
2366         unsigned long next;
2367         int err;
2368
2369         pfn -= addr >> PAGE_SHIFT;
2370         p4d = p4d_alloc(mm, pgd, addr);
2371         if (!p4d)
2372                 return -ENOMEM;
2373         do {
2374                 next = p4d_addr_end(addr, end);
2375                 err = remap_pud_range(mm, p4d, addr, next,
2376                                 pfn + (addr >> PAGE_SHIFT), prot);
2377                 if (err)
2378                         return err;
2379         } while (p4d++, addr = next, addr != end);
2380         return 0;
2381 }
2382
2383 /*
2384  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2385  * must have pre-validated the caching bits of the pgprot_t.
2386  */
2387 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2388                 unsigned long pfn, unsigned long size, pgprot_t prot)
2389 {
2390         pgd_t *pgd;
2391         unsigned long next;
2392         unsigned long end = addr + PAGE_ALIGN(size);
2393         struct mm_struct *mm = vma->vm_mm;
2394         int err;
2395
2396         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2397                 return -EINVAL;
2398
2399         /*
2400          * Physically remapped pages are special. Tell the
2401          * rest of the world about it:
2402          *   VM_IO tells people not to look at these pages
2403          *      (accesses can have side effects).
2404          *   VM_PFNMAP tells the core MM that the base pages are just
2405          *      raw PFN mappings, and do not have a "struct page" associated
2406          *      with them.
2407          *   VM_DONTEXPAND
2408          *      Disable vma merging and expanding with mremap().
2409          *   VM_DONTDUMP
2410          *      Omit vma from core dump, even when VM_IO turned off.
2411          *
2412          * There's a horrible special case to handle copy-on-write
2413          * behaviour that some programs depend on. We mark the "original"
2414          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2415          * See vm_normal_page() for details.
2416          */
2417         if (is_cow_mapping(vma->vm_flags)) {
2418                 if (addr != vma->vm_start || end != vma->vm_end)
2419                         return -EINVAL;
2420                 vma->vm_pgoff = pfn;
2421         }
2422
2423         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2424
2425         BUG_ON(addr >= end);
2426         pfn -= addr >> PAGE_SHIFT;
2427         pgd = pgd_offset(mm, addr);
2428         flush_cache_range(vma, addr, end);
2429         do {
2430                 next = pgd_addr_end(addr, end);
2431                 err = remap_p4d_range(mm, pgd, addr, next,
2432                                 pfn + (addr >> PAGE_SHIFT), prot);
2433                 if (err)
2434                         return err;
2435         } while (pgd++, addr = next, addr != end);
2436
2437         return 0;
2438 }
2439
2440 /**
2441  * remap_pfn_range - remap kernel memory to userspace
2442  * @vma: user vma to map to
2443  * @addr: target page aligned user address to start at
2444  * @pfn: page frame number of kernel physical memory address
2445  * @size: size of mapping area
2446  * @prot: page protection flags for this mapping
2447  *
2448  * Note: this is only safe if the mm semaphore is held when called.
2449  *
2450  * Return: %0 on success, negative error code otherwise.
2451  */
2452 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2453                     unsigned long pfn, unsigned long size, pgprot_t prot)
2454 {
2455         int err;
2456
2457         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2458         if (err)
2459                 return -EINVAL;
2460
2461         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2462         if (err)
2463                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2464         return err;
2465 }
2466 EXPORT_SYMBOL(remap_pfn_range);
2467
2468 /**
2469  * vm_iomap_memory - remap memory to userspace
2470  * @vma: user vma to map to
2471  * @start: start of the physical memory to be mapped
2472  * @len: size of area
2473  *
2474  * This is a simplified io_remap_pfn_range() for common driver use. The
2475  * driver just needs to give us the physical memory range to be mapped,
2476  * we'll figure out the rest from the vma information.
2477  *
2478  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2479  * whatever write-combining details or similar.
2480  *
2481  * Return: %0 on success, negative error code otherwise.
2482  */
2483 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2484 {
2485         unsigned long vm_len, pfn, pages;
2486
2487         /* Check that the physical memory area passed in looks valid */
2488         if (start + len < start)
2489                 return -EINVAL;
2490         /*
2491          * You *really* shouldn't map things that aren't page-aligned,
2492          * but we've historically allowed it because IO memory might
2493          * just have smaller alignment.
2494          */
2495         len += start & ~PAGE_MASK;
2496         pfn = start >> PAGE_SHIFT;
2497         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2498         if (pfn + pages < pfn)
2499                 return -EINVAL;
2500
2501         /* We start the mapping 'vm_pgoff' pages into the area */
2502         if (vma->vm_pgoff > pages)
2503                 return -EINVAL;
2504         pfn += vma->vm_pgoff;
2505         pages -= vma->vm_pgoff;
2506
2507         /* Can we fit all of the mapping? */
2508         vm_len = vma->vm_end - vma->vm_start;
2509         if (vm_len >> PAGE_SHIFT > pages)
2510                 return -EINVAL;
2511
2512         /* Ok, let it rip */
2513         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2514 }
2515 EXPORT_SYMBOL(vm_iomap_memory);
2516
2517 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2518                                      unsigned long addr, unsigned long end,
2519                                      pte_fn_t fn, void *data, bool create,
2520                                      pgtbl_mod_mask *mask)
2521 {
2522         pte_t *pte, *mapped_pte;
2523         int err = 0;
2524         spinlock_t *ptl;
2525
2526         if (create) {
2527                 mapped_pte = pte = (mm == &init_mm) ?
2528                         pte_alloc_kernel_track(pmd, addr, mask) :
2529                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2530                 if (!pte)
2531                         return -ENOMEM;
2532         } else {
2533                 mapped_pte = pte = (mm == &init_mm) ?
2534                         pte_offset_kernel(pmd, addr) :
2535                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2536         }
2537
2538         BUG_ON(pmd_huge(*pmd));
2539
2540         arch_enter_lazy_mmu_mode();
2541
2542         if (fn) {
2543                 do {
2544                         if (create || !pte_none(*pte)) {
2545                                 err = fn(pte++, addr, data);
2546                                 if (err)
2547                                         break;
2548                         }
2549                 } while (addr += PAGE_SIZE, addr != end);
2550         }
2551         *mask |= PGTBL_PTE_MODIFIED;
2552
2553         arch_leave_lazy_mmu_mode();
2554
2555         if (mm != &init_mm)
2556                 pte_unmap_unlock(mapped_pte, ptl);
2557         return err;
2558 }
2559
2560 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2561                                      unsigned long addr, unsigned long end,
2562                                      pte_fn_t fn, void *data, bool create,
2563                                      pgtbl_mod_mask *mask)
2564 {
2565         pmd_t *pmd;
2566         unsigned long next;
2567         int err = 0;
2568
2569         BUG_ON(pud_huge(*pud));
2570
2571         if (create) {
2572                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2573                 if (!pmd)
2574                         return -ENOMEM;
2575         } else {
2576                 pmd = pmd_offset(pud, addr);
2577         }
2578         do {
2579                 next = pmd_addr_end(addr, end);
2580                 if (pmd_none(*pmd) && !create)
2581                         continue;
2582                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2583                         return -EINVAL;
2584                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2585                         if (!create)
2586                                 continue;
2587                         pmd_clear_bad(pmd);
2588                 }
2589                 err = apply_to_pte_range(mm, pmd, addr, next,
2590                                          fn, data, create, mask);
2591                 if (err)
2592                         break;
2593         } while (pmd++, addr = next, addr != end);
2594
2595         return err;
2596 }
2597
2598 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2599                                      unsigned long addr, unsigned long end,
2600                                      pte_fn_t fn, void *data, bool create,
2601                                      pgtbl_mod_mask *mask)
2602 {
2603         pud_t *pud;
2604         unsigned long next;
2605         int err = 0;
2606
2607         if (create) {
2608                 pud = pud_alloc_track(mm, p4d, addr, mask);
2609                 if (!pud)
2610                         return -ENOMEM;
2611         } else {
2612                 pud = pud_offset(p4d, addr);
2613         }
2614         do {
2615                 next = pud_addr_end(addr, end);
2616                 if (pud_none(*pud) && !create)
2617                         continue;
2618                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2619                         return -EINVAL;
2620                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2621                         if (!create)
2622                                 continue;
2623                         pud_clear_bad(pud);
2624                 }
2625                 err = apply_to_pmd_range(mm, pud, addr, next,
2626                                          fn, data, create, mask);
2627                 if (err)
2628                         break;
2629         } while (pud++, addr = next, addr != end);
2630
2631         return err;
2632 }
2633
2634 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2635                                      unsigned long addr, unsigned long end,
2636                                      pte_fn_t fn, void *data, bool create,
2637                                      pgtbl_mod_mask *mask)
2638 {
2639         p4d_t *p4d;
2640         unsigned long next;
2641         int err = 0;
2642
2643         if (create) {
2644                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2645                 if (!p4d)
2646                         return -ENOMEM;
2647         } else {
2648                 p4d = p4d_offset(pgd, addr);
2649         }
2650         do {
2651                 next = p4d_addr_end(addr, end);
2652                 if (p4d_none(*p4d) && !create)
2653                         continue;
2654                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2655                         return -EINVAL;
2656                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2657                         if (!create)
2658                                 continue;
2659                         p4d_clear_bad(p4d);
2660                 }
2661                 err = apply_to_pud_range(mm, p4d, addr, next,
2662                                          fn, data, create, mask);
2663                 if (err)
2664                         break;
2665         } while (p4d++, addr = next, addr != end);
2666
2667         return err;
2668 }
2669
2670 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2671                                  unsigned long size, pte_fn_t fn,
2672                                  void *data, bool create)
2673 {
2674         pgd_t *pgd;
2675         unsigned long start = addr, next;
2676         unsigned long end = addr + size;
2677         pgtbl_mod_mask mask = 0;
2678         int err = 0;
2679
2680         if (WARN_ON(addr >= end))
2681                 return -EINVAL;
2682
2683         pgd = pgd_offset(mm, addr);
2684         do {
2685                 next = pgd_addr_end(addr, end);
2686                 if (pgd_none(*pgd) && !create)
2687                         continue;
2688                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2689                         return -EINVAL;
2690                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2691                         if (!create)
2692                                 continue;
2693                         pgd_clear_bad(pgd);
2694                 }
2695                 err = apply_to_p4d_range(mm, pgd, addr, next,
2696                                          fn, data, create, &mask);
2697                 if (err)
2698                         break;
2699         } while (pgd++, addr = next, addr != end);
2700
2701         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2702                 arch_sync_kernel_mappings(start, start + size);
2703
2704         return err;
2705 }
2706
2707 /*
2708  * Scan a region of virtual memory, filling in page tables as necessary
2709  * and calling a provided function on each leaf page table.
2710  */
2711 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2712                         unsigned long size, pte_fn_t fn, void *data)
2713 {
2714         return __apply_to_page_range(mm, addr, size, fn, data, true);
2715 }
2716 EXPORT_SYMBOL_GPL(apply_to_page_range);
2717
2718 /*
2719  * Scan a region of virtual memory, calling a provided function on
2720  * each leaf page table where it exists.
2721  *
2722  * Unlike apply_to_page_range, this does _not_ fill in page tables
2723  * where they are absent.
2724  */
2725 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2726                                  unsigned long size, pte_fn_t fn, void *data)
2727 {
2728         return __apply_to_page_range(mm, addr, size, fn, data, false);
2729 }
2730 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2731
2732 /*
2733  * handle_pte_fault chooses page fault handler according to an entry which was
2734  * read non-atomically.  Before making any commitment, on those architectures
2735  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2736  * parts, do_swap_page must check under lock before unmapping the pte and
2737  * proceeding (but do_wp_page is only called after already making such a check;
2738  * and do_anonymous_page can safely check later on).
2739  */
2740 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2741                                 pte_t *page_table, pte_t orig_pte)
2742 {
2743         int same = 1;
2744 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2745         if (sizeof(pte_t) > sizeof(unsigned long)) {
2746                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2747                 spin_lock(ptl);
2748                 same = pte_same(*page_table, orig_pte);
2749                 spin_unlock(ptl);
2750         }
2751 #endif
2752         pte_unmap(page_table);
2753         return same;
2754 }
2755
2756 static inline bool cow_user_page(struct page *dst, struct page *src,
2757                                  struct vm_fault *vmf)
2758 {
2759         bool ret;
2760         void *kaddr;
2761         void __user *uaddr;
2762         bool locked = false;
2763         struct vm_area_struct *vma = vmf->vma;
2764         struct mm_struct *mm = vma->vm_mm;
2765         unsigned long addr = vmf->address;
2766
2767         if (likely(src)) {
2768                 copy_user_highpage(dst, src, addr, vma);
2769                 return true;
2770         }
2771
2772         /*
2773          * If the source page was a PFN mapping, we don't have
2774          * a "struct page" for it. We do a best-effort copy by
2775          * just copying from the original user address. If that
2776          * fails, we just zero-fill it. Live with it.
2777          */
2778         kaddr = kmap_atomic(dst);
2779         uaddr = (void __user *)(addr & PAGE_MASK);
2780
2781         /*
2782          * On architectures with software "accessed" bits, we would
2783          * take a double page fault, so mark it accessed here.
2784          */
2785         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2786                 pte_t entry;
2787
2788                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2789                 locked = true;
2790                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2791                         /*
2792                          * Other thread has already handled the fault
2793                          * and update local tlb only
2794                          */
2795                         update_mmu_tlb(vma, addr, vmf->pte);
2796                         ret = false;
2797                         goto pte_unlock;
2798                 }
2799
2800                 entry = pte_mkyoung(vmf->orig_pte);
2801                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2802                         update_mmu_cache(vma, addr, vmf->pte);
2803         }
2804
2805         /*
2806          * This really shouldn't fail, because the page is there
2807          * in the page tables. But it might just be unreadable,
2808          * in which case we just give up and fill the result with
2809          * zeroes.
2810          */
2811         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2812                 if (locked)
2813                         goto warn;
2814
2815                 /* Re-validate under PTL if the page is still mapped */
2816                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2817                 locked = true;
2818                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2819                         /* The PTE changed under us, update local tlb */
2820                         update_mmu_tlb(vma, addr, vmf->pte);
2821                         ret = false;
2822                         goto pte_unlock;
2823                 }
2824
2825                 /*
2826                  * The same page can be mapped back since last copy attempt.
2827                  * Try to copy again under PTL.
2828                  */
2829                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2830                         /*
2831                          * Give a warn in case there can be some obscure
2832                          * use-case
2833                          */
2834 warn:
2835                         WARN_ON_ONCE(1);
2836                         clear_page(kaddr);
2837                 }
2838         }
2839
2840         ret = true;
2841
2842 pte_unlock:
2843         if (locked)
2844                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2845         kunmap_atomic(kaddr);
2846         flush_dcache_page(dst);
2847
2848         return ret;
2849 }
2850
2851 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2852 {
2853         struct file *vm_file = vma->vm_file;
2854
2855         if (vm_file)
2856                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2857
2858         /*
2859          * Special mappings (e.g. VDSO) do not have any file so fake
2860          * a default GFP_KERNEL for them.
2861          */
2862         return GFP_KERNEL;
2863 }
2864
2865 /*
2866  * Notify the address space that the page is about to become writable so that
2867  * it can prohibit this or wait for the page to get into an appropriate state.
2868  *
2869  * We do this without the lock held, so that it can sleep if it needs to.
2870  */
2871 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2872 {
2873         vm_fault_t ret;
2874         struct page *page = vmf->page;
2875         unsigned int old_flags = vmf->flags;
2876
2877         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2878
2879         if (vmf->vma->vm_file &&
2880             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2881                 return VM_FAULT_SIGBUS;
2882
2883         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2884         /* Restore original flags so that caller is not surprised */
2885         vmf->flags = old_flags;
2886         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2887                 return ret;
2888         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2889                 lock_page(page);
2890                 if (!page->mapping) {
2891                         unlock_page(page);
2892                         return 0; /* retry */
2893                 }
2894                 ret |= VM_FAULT_LOCKED;
2895         } else
2896                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2897         return ret;
2898 }
2899
2900 /*
2901  * Handle dirtying of a page in shared file mapping on a write fault.
2902  *
2903  * The function expects the page to be locked and unlocks it.
2904  */
2905 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2906 {
2907         struct vm_area_struct *vma = vmf->vma;
2908         struct address_space *mapping;
2909         struct page *page = vmf->page;
2910         bool dirtied;
2911         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2912
2913         dirtied = set_page_dirty(page);
2914         VM_BUG_ON_PAGE(PageAnon(page), page);
2915         /*
2916          * Take a local copy of the address_space - page.mapping may be zeroed
2917          * by truncate after unlock_page().   The address_space itself remains
2918          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2919          * release semantics to prevent the compiler from undoing this copying.
2920          */
2921         mapping = page_rmapping(page);
2922         unlock_page(page);
2923
2924         if (!page_mkwrite)
2925                 file_update_time(vma->vm_file);
2926
2927         /*
2928          * Throttle page dirtying rate down to writeback speed.
2929          *
2930          * mapping may be NULL here because some device drivers do not
2931          * set page.mapping but still dirty their pages
2932          *
2933          * Drop the mmap_lock before waiting on IO, if we can. The file
2934          * is pinning the mapping, as per above.
2935          */
2936         if ((dirtied || page_mkwrite) && mapping) {
2937                 struct file *fpin;
2938
2939                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2940                 balance_dirty_pages_ratelimited(mapping);
2941                 if (fpin) {
2942                         fput(fpin);
2943                         return VM_FAULT_RETRY;
2944                 }
2945         }
2946
2947         return 0;
2948 }
2949
2950 /*
2951  * Handle write page faults for pages that can be reused in the current vma
2952  *
2953  * This can happen either due to the mapping being with the VM_SHARED flag,
2954  * or due to us being the last reference standing to the page. In either
2955  * case, all we need to do here is to mark the page as writable and update
2956  * any related book-keeping.
2957  */
2958 static inline void wp_page_reuse(struct vm_fault *vmf)
2959         __releases(vmf->ptl)
2960 {
2961         struct vm_area_struct *vma = vmf->vma;
2962         struct page *page = vmf->page;
2963         pte_t entry;
2964         /*
2965          * Clear the pages cpupid information as the existing
2966          * information potentially belongs to a now completely
2967          * unrelated process.
2968          */
2969         if (page)
2970                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2971
2972         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2973         entry = pte_mkyoung(vmf->orig_pte);
2974         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2975         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2976                 update_mmu_cache(vma, vmf->address, vmf->pte);
2977         pte_unmap_unlock(vmf->pte, vmf->ptl);
2978         count_vm_event(PGREUSE);
2979 }
2980
2981 /*
2982  * Handle the case of a page which we actually need to copy to a new page.
2983  *
2984  * Called with mmap_lock locked and the old page referenced, but
2985  * without the ptl held.
2986  *
2987  * High level logic flow:
2988  *
2989  * - Allocate a page, copy the content of the old page to the new one.
2990  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2991  * - Take the PTL. If the pte changed, bail out and release the allocated page
2992  * - If the pte is still the way we remember it, update the page table and all
2993  *   relevant references. This includes dropping the reference the page-table
2994  *   held to the old page, as well as updating the rmap.
2995  * - In any case, unlock the PTL and drop the reference we took to the old page.
2996  */
2997 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2998 {
2999         struct vm_area_struct *vma = vmf->vma;
3000         struct mm_struct *mm = vma->vm_mm;
3001         struct page *old_page = vmf->page;
3002         struct page *new_page = NULL;
3003         pte_t entry;
3004         int page_copied = 0;
3005         struct mmu_notifier_range range;
3006
3007         if (unlikely(anon_vma_prepare(vma)))
3008                 goto oom;
3009
3010         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3011                 new_page = alloc_zeroed_user_highpage_movable(vma,
3012                                                               vmf->address);
3013                 if (!new_page)
3014                         goto oom;
3015         } else {
3016                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3017                                 vmf->address);
3018                 if (!new_page)
3019                         goto oom;
3020
3021                 if (!cow_user_page(new_page, old_page, vmf)) {
3022                         /*
3023                          * COW failed, if the fault was solved by other,
3024                          * it's fine. If not, userspace would re-fault on
3025                          * the same address and we will handle the fault
3026                          * from the second attempt.
3027                          */
3028                         put_page(new_page);
3029                         if (old_page)
3030                                 put_page(old_page);
3031                         return 0;
3032                 }
3033         }
3034
3035         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3036                 goto oom_free_new;
3037         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3038
3039         __SetPageUptodate(new_page);
3040
3041         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3042                                 vmf->address & PAGE_MASK,
3043                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3044         mmu_notifier_invalidate_range_start(&range);
3045
3046         /*
3047          * Re-check the pte - we dropped the lock
3048          */
3049         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3050         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3051                 if (old_page) {
3052                         if (!PageAnon(old_page)) {
3053                                 dec_mm_counter_fast(mm,
3054                                                 mm_counter_file(old_page));
3055                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3056                         }
3057                 } else {
3058                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3059                 }
3060                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3061                 entry = mk_pte(new_page, vma->vm_page_prot);
3062                 entry = pte_sw_mkyoung(entry);
3063                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3064
3065                 /*
3066                  * Clear the pte entry and flush it first, before updating the
3067                  * pte with the new entry, to keep TLBs on different CPUs in
3068                  * sync. This code used to set the new PTE then flush TLBs, but
3069                  * that left a window where the new PTE could be loaded into
3070                  * some TLBs while the old PTE remains in others.
3071                  */
3072                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3073                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3074                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3075                 /*
3076                  * We call the notify macro here because, when using secondary
3077                  * mmu page tables (such as kvm shadow page tables), we want the
3078                  * new page to be mapped directly into the secondary page table.
3079                  */
3080                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3081                 update_mmu_cache(vma, vmf->address, vmf->pte);
3082                 if (old_page) {
3083                         /*
3084                          * Only after switching the pte to the new page may
3085                          * we remove the mapcount here. Otherwise another
3086                          * process may come and find the rmap count decremented
3087                          * before the pte is switched to the new page, and
3088                          * "reuse" the old page writing into it while our pte
3089                          * here still points into it and can be read by other
3090                          * threads.
3091                          *
3092                          * The critical issue is to order this
3093                          * page_remove_rmap with the ptp_clear_flush above.
3094                          * Those stores are ordered by (if nothing else,)
3095                          * the barrier present in the atomic_add_negative
3096                          * in page_remove_rmap.
3097                          *
3098                          * Then the TLB flush in ptep_clear_flush ensures that
3099                          * no process can access the old page before the
3100                          * decremented mapcount is visible. And the old page
3101                          * cannot be reused until after the decremented
3102                          * mapcount is visible. So transitively, TLBs to
3103                          * old page will be flushed before it can be reused.
3104                          */
3105                         page_remove_rmap(old_page, false);
3106                 }
3107
3108                 /* Free the old page.. */
3109                 new_page = old_page;
3110                 page_copied = 1;
3111         } else {
3112                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3113         }
3114
3115         if (new_page)
3116                 put_page(new_page);
3117
3118         pte_unmap_unlock(vmf->pte, vmf->ptl);
3119         /*
3120          * No need to double call mmu_notifier->invalidate_range() callback as
3121          * the above ptep_clear_flush_notify() did already call it.
3122          */
3123         mmu_notifier_invalidate_range_only_end(&range);
3124         if (old_page) {
3125                 /*
3126                  * Don't let another task, with possibly unlocked vma,
3127                  * keep the mlocked page.
3128                  */
3129                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3130                         lock_page(old_page);    /* LRU manipulation */
3131                         if (PageMlocked(old_page))
3132                                 munlock_vma_page(old_page);
3133                         unlock_page(old_page);
3134                 }
3135                 if (page_copied)
3136                         free_swap_cache(old_page);
3137                 put_page(old_page);
3138         }
3139         return page_copied ? VM_FAULT_WRITE : 0;
3140 oom_free_new:
3141         put_page(new_page);
3142 oom:
3143         if (old_page)
3144                 put_page(old_page);
3145         return VM_FAULT_OOM;
3146 }
3147
3148 /**
3149  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3150  *                        writeable once the page is prepared
3151  *
3152  * @vmf: structure describing the fault
3153  *
3154  * This function handles all that is needed to finish a write page fault in a
3155  * shared mapping due to PTE being read-only once the mapped page is prepared.
3156  * It handles locking of PTE and modifying it.
3157  *
3158  * The function expects the page to be locked or other protection against
3159  * concurrent faults / writeback (such as DAX radix tree locks).
3160  *
3161  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3162  * we acquired PTE lock.
3163  */
3164 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3165 {
3166         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3167         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3168                                        &vmf->ptl);
3169         /*
3170          * We might have raced with another page fault while we released the
3171          * pte_offset_map_lock.
3172          */
3173         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3174                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3175                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3176                 return VM_FAULT_NOPAGE;
3177         }
3178         wp_page_reuse(vmf);
3179         return 0;
3180 }
3181
3182 /*
3183  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3184  * mapping
3185  */
3186 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3187 {
3188         struct vm_area_struct *vma = vmf->vma;
3189
3190         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3191                 vm_fault_t ret;
3192
3193                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3194                 vmf->flags |= FAULT_FLAG_MKWRITE;
3195                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3196                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3197                         return ret;
3198                 return finish_mkwrite_fault(vmf);
3199         }
3200         wp_page_reuse(vmf);
3201         return VM_FAULT_WRITE;
3202 }
3203
3204 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3205         __releases(vmf->ptl)
3206 {
3207         struct vm_area_struct *vma = vmf->vma;
3208         vm_fault_t ret = VM_FAULT_WRITE;
3209
3210         get_page(vmf->page);
3211
3212         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3213                 vm_fault_t tmp;
3214
3215                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3216                 tmp = do_page_mkwrite(vmf);
3217                 if (unlikely(!tmp || (tmp &
3218                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3219                         put_page(vmf->page);
3220                         return tmp;
3221                 }
3222                 tmp = finish_mkwrite_fault(vmf);
3223                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3224                         unlock_page(vmf->page);
3225                         put_page(vmf->page);
3226                         return tmp;
3227                 }
3228         } else {
3229                 wp_page_reuse(vmf);
3230                 lock_page(vmf->page);
3231         }
3232         ret |= fault_dirty_shared_page(vmf);
3233         put_page(vmf->page);
3234
3235         return ret;
3236 }
3237
3238 /*
3239  * This routine handles present pages, when users try to write
3240  * to a shared page. It is done by copying the page to a new address
3241  * and decrementing the shared-page counter for the old page.
3242  *
3243  * Note that this routine assumes that the protection checks have been
3244  * done by the caller (the low-level page fault routine in most cases).
3245  * Thus we can safely just mark it writable once we've done any necessary
3246  * COW.
3247  *
3248  * We also mark the page dirty at this point even though the page will
3249  * change only once the write actually happens. This avoids a few races,
3250  * and potentially makes it more efficient.
3251  *
3252  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3253  * but allow concurrent faults), with pte both mapped and locked.
3254  * We return with mmap_lock still held, but pte unmapped and unlocked.
3255  */
3256 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3257         __releases(vmf->ptl)
3258 {
3259         struct vm_area_struct *vma = vmf->vma;
3260
3261         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3262                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3263                 return handle_userfault(vmf, VM_UFFD_WP);
3264         }
3265
3266         /*
3267          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3268          * is flushed in this case before copying.
3269          */
3270         if (unlikely(userfaultfd_wp(vmf->vma) &&
3271                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3272                 flush_tlb_page(vmf->vma, vmf->address);
3273
3274         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3275         if (!vmf->page) {
3276                 /*
3277                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3278                  * VM_PFNMAP VMA.
3279                  *
3280                  * We should not cow pages in a shared writeable mapping.
3281                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3282                  */
3283                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3284                                      (VM_WRITE|VM_SHARED))
3285                         return wp_pfn_shared(vmf);
3286
3287                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3288                 return wp_page_copy(vmf);
3289         }
3290
3291         /*
3292          * Take out anonymous pages first, anonymous shared vmas are
3293          * not dirty accountable.
3294          */
3295         if (PageAnon(vmf->page)) {
3296                 struct page *page = vmf->page;
3297
3298                 /* PageKsm() doesn't necessarily raise the page refcount */
3299                 if (PageKsm(page) || page_count(page) != 1)
3300                         goto copy;
3301                 if (!trylock_page(page))
3302                         goto copy;
3303                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3304                         unlock_page(page);
3305                         goto copy;
3306                 }
3307                 /*
3308                  * Ok, we've got the only map reference, and the only
3309                  * page count reference, and the page is locked,
3310                  * it's dark out, and we're wearing sunglasses. Hit it.
3311                  */
3312                 unlock_page(page);
3313                 wp_page_reuse(vmf);
3314                 return VM_FAULT_WRITE;
3315         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3316                                         (VM_WRITE|VM_SHARED))) {
3317                 return wp_page_shared(vmf);
3318         }
3319 copy:
3320         /*
3321          * Ok, we need to copy. Oh, well..
3322          */
3323         get_page(vmf->page);
3324
3325         pte_unmap_unlock(vmf->pte, vmf->ptl);
3326         return wp_page_copy(vmf);
3327 }
3328
3329 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3330                 unsigned long start_addr, unsigned long end_addr,
3331                 struct zap_details *details)
3332 {
3333         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3334 }
3335
3336 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3337                                             struct zap_details *details)
3338 {
3339         struct vm_area_struct *vma;
3340         pgoff_t vba, vea, zba, zea;
3341
3342         vma_interval_tree_foreach(vma, root,
3343                         details->first_index, details->last_index) {
3344
3345                 vba = vma->vm_pgoff;
3346                 vea = vba + vma_pages(vma) - 1;
3347                 zba = details->first_index;
3348                 if (zba < vba)
3349                         zba = vba;
3350                 zea = details->last_index;
3351                 if (zea > vea)
3352                         zea = vea;
3353
3354                 unmap_mapping_range_vma(vma,
3355                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3356                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3357                                 details);
3358         }
3359 }
3360
3361 /**
3362  * unmap_mapping_page() - Unmap single page from processes.
3363  * @page: The locked page to be unmapped.
3364  *
3365  * Unmap this page from any userspace process which still has it mmaped.
3366  * Typically, for efficiency, the range of nearby pages has already been
3367  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3368  * truncation or invalidation holds the lock on a page, it may find that
3369  * the page has been remapped again: and then uses unmap_mapping_page()
3370  * to unmap it finally.
3371  */
3372 void unmap_mapping_page(struct page *page)
3373 {
3374         struct address_space *mapping = page->mapping;
3375         struct zap_details details = { };
3376
3377         VM_BUG_ON(!PageLocked(page));
3378         VM_BUG_ON(PageTail(page));
3379
3380         details.check_mapping = mapping;
3381         details.first_index = page->index;
3382         details.last_index = page->index + thp_nr_pages(page) - 1;
3383         details.single_page = page;
3384
3385         i_mmap_lock_write(mapping);
3386         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3387                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3388         i_mmap_unlock_write(mapping);
3389 }
3390
3391 /**
3392  * unmap_mapping_pages() - Unmap pages from processes.
3393  * @mapping: The address space containing pages to be unmapped.
3394  * @start: Index of first page to be unmapped.
3395  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3396  * @even_cows: Whether to unmap even private COWed pages.
3397  *
3398  * Unmap the pages in this address space from any userspace process which
3399  * has them mmaped.  Generally, you want to remove COWed pages as well when
3400  * a file is being truncated, but not when invalidating pages from the page
3401  * cache.
3402  */
3403 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3404                 pgoff_t nr, bool even_cows)
3405 {
3406         struct zap_details details = { };
3407
3408         details.check_mapping = even_cows ? NULL : mapping;
3409         details.first_index = start;
3410         details.last_index = start + nr - 1;
3411         if (details.last_index < details.first_index)
3412                 details.last_index = ULONG_MAX;
3413
3414         i_mmap_lock_write(mapping);
3415         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3416                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3417         i_mmap_unlock_write(mapping);
3418 }
3419 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3420
3421 /**
3422  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3423  * address_space corresponding to the specified byte range in the underlying
3424  * file.
3425  *
3426  * @mapping: the address space containing mmaps to be unmapped.
3427  * @holebegin: byte in first page to unmap, relative to the start of
3428  * the underlying file.  This will be rounded down to a PAGE_SIZE
3429  * boundary.  Note that this is different from truncate_pagecache(), which
3430  * must keep the partial page.  In contrast, we must get rid of
3431  * partial pages.
3432  * @holelen: size of prospective hole in bytes.  This will be rounded
3433  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3434  * end of the file.
3435  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3436  * but 0 when invalidating pagecache, don't throw away private data.
3437  */
3438 void unmap_mapping_range(struct address_space *mapping,
3439                 loff_t const holebegin, loff_t const holelen, int even_cows)
3440 {
3441         pgoff_t hba = holebegin >> PAGE_SHIFT;
3442         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3443
3444         /* Check for overflow. */
3445         if (sizeof(holelen) > sizeof(hlen)) {
3446                 long long holeend =
3447                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3448                 if (holeend & ~(long long)ULONG_MAX)
3449                         hlen = ULONG_MAX - hba + 1;
3450         }
3451
3452         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3453 }
3454 EXPORT_SYMBOL(unmap_mapping_range);
3455
3456 /*
3457  * Restore a potential device exclusive pte to a working pte entry
3458  */
3459 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3460 {
3461         struct page *page = vmf->page;
3462         struct vm_area_struct *vma = vmf->vma;
3463         struct mmu_notifier_range range;
3464
3465         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3466                 return VM_FAULT_RETRY;
3467         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3468                                 vma->vm_mm, vmf->address & PAGE_MASK,
3469                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3470         mmu_notifier_invalidate_range_start(&range);
3471
3472         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3473                                 &vmf->ptl);
3474         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3475                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3476
3477         pte_unmap_unlock(vmf->pte, vmf->ptl);
3478         unlock_page(page);
3479
3480         mmu_notifier_invalidate_range_end(&range);
3481         return 0;
3482 }
3483
3484 /*
3485  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3486  * but allow concurrent faults), and pte mapped but not yet locked.
3487  * We return with pte unmapped and unlocked.
3488  *
3489  * We return with the mmap_lock locked or unlocked in the same cases
3490  * as does filemap_fault().
3491  */
3492 vm_fault_t do_swap_page(struct vm_fault *vmf)
3493 {
3494         struct vm_area_struct *vma = vmf->vma;
3495         struct page *page = NULL, *swapcache;
3496         struct swap_info_struct *si = NULL;
3497         swp_entry_t entry;
3498         pte_t pte;
3499         int locked;
3500         int exclusive = 0;
3501         vm_fault_t ret = 0;
3502         void *shadow = NULL;
3503
3504         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3505                 goto out;
3506
3507         entry = pte_to_swp_entry(vmf->orig_pte);
3508         if (unlikely(non_swap_entry(entry))) {
3509                 if (is_migration_entry(entry)) {
3510                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3511                                              vmf->address);
3512                 } else if (is_device_exclusive_entry(entry)) {
3513                         vmf->page = pfn_swap_entry_to_page(entry);
3514                         ret = remove_device_exclusive_entry(vmf);
3515                 } else if (is_device_private_entry(entry)) {
3516                         vmf->page = pfn_swap_entry_to_page(entry);
3517                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3518                 } else if (is_hwpoison_entry(entry)) {
3519                         ret = VM_FAULT_HWPOISON;
3520                 } else {
3521                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3522                         ret = VM_FAULT_SIGBUS;
3523                 }
3524                 goto out;
3525         }
3526
3527         /* Prevent swapoff from happening to us. */
3528         si = get_swap_device(entry);
3529         if (unlikely(!si))
3530                 goto out;
3531
3532         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3533         page = lookup_swap_cache(entry, vma, vmf->address);
3534         swapcache = page;
3535
3536         if (!page) {
3537                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3538                     __swap_count(entry) == 1) {
3539                         /* skip swapcache */
3540                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3541                                                         vmf->address);
3542                         if (page) {
3543                                 __SetPageLocked(page);
3544                                 __SetPageSwapBacked(page);
3545
3546                                 if (mem_cgroup_swapin_charge_page(page,
3547                                         vma->vm_mm, GFP_KERNEL, entry)) {
3548                                         ret = VM_FAULT_OOM;
3549                                         goto out_page;
3550                                 }
3551                                 mem_cgroup_swapin_uncharge_swap(entry);
3552
3553                                 shadow = get_shadow_from_swap_cache(entry);
3554                                 if (shadow)
3555                                         workingset_refault(page, shadow);
3556
3557                                 lru_cache_add(page);
3558
3559                                 /* To provide entry to swap_readpage() */
3560                                 set_page_private(page, entry.val);
3561                                 swap_readpage(page, true);
3562                                 set_page_private(page, 0);
3563                         }
3564                 } else {
3565                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3566                                                 vmf);
3567                         swapcache = page;
3568                 }
3569
3570                 if (!page) {
3571                         /*
3572                          * Back out if somebody else faulted in this pte
3573                          * while we released the pte lock.
3574                          */
3575                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3576                                         vmf->address, &vmf->ptl);
3577                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3578                                 ret = VM_FAULT_OOM;
3579                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3580                         goto unlock;
3581                 }
3582
3583                 /* Had to read the page from swap area: Major fault */
3584                 ret = VM_FAULT_MAJOR;
3585                 count_vm_event(PGMAJFAULT);
3586                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3587         } else if (PageHWPoison(page)) {
3588                 /*
3589                  * hwpoisoned dirty swapcache pages are kept for killing
3590                  * owner processes (which may be unknown at hwpoison time)
3591                  */
3592                 ret = VM_FAULT_HWPOISON;
3593                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3594                 goto out_release;
3595         }
3596
3597         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3598
3599         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3600         if (!locked) {
3601                 ret |= VM_FAULT_RETRY;
3602                 goto out_release;
3603         }
3604
3605         /*
3606          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3607          * release the swapcache from under us.  The page pin, and pte_same
3608          * test below, are not enough to exclude that.  Even if it is still
3609          * swapcache, we need to check that the page's swap has not changed.
3610          */
3611         if (unlikely((!PageSwapCache(page) ||
3612                         page_private(page) != entry.val)) && swapcache)
3613                 goto out_page;
3614
3615         page = ksm_might_need_to_copy(page, vma, vmf->address);
3616         if (unlikely(!page)) {
3617                 ret = VM_FAULT_OOM;
3618                 page = swapcache;
3619                 goto out_page;
3620         }
3621
3622         cgroup_throttle_swaprate(page, GFP_KERNEL);
3623
3624         /*
3625          * Back out if somebody else already faulted in this pte.
3626          */
3627         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3628                         &vmf->ptl);
3629         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3630                 goto out_nomap;
3631
3632         if (unlikely(!PageUptodate(page))) {
3633                 ret = VM_FAULT_SIGBUS;
3634                 goto out_nomap;
3635         }
3636
3637         /*
3638          * The page isn't present yet, go ahead with the fault.
3639          *
3640          * Be careful about the sequence of operations here.
3641          * To get its accounting right, reuse_swap_page() must be called
3642          * while the page is counted on swap but not yet in mapcount i.e.
3643          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3644          * must be called after the swap_free(), or it will never succeed.
3645          */
3646
3647         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3648         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3649         pte = mk_pte(page, vma->vm_page_prot);
3650         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3651                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3652                 vmf->flags &= ~FAULT_FLAG_WRITE;
3653                 ret |= VM_FAULT_WRITE;
3654                 exclusive = RMAP_EXCLUSIVE;
3655         }
3656         flush_icache_page(vma, page);
3657         if (pte_swp_soft_dirty(vmf->orig_pte))
3658                 pte = pte_mksoft_dirty(pte);
3659         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3660                 pte = pte_mkuffd_wp(pte);
3661                 pte = pte_wrprotect(pte);
3662         }
3663         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3664         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3665         vmf->orig_pte = pte;
3666
3667         /* ksm created a completely new copy */
3668         if (unlikely(page != swapcache && swapcache)) {
3669                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3670                 lru_cache_add_inactive_or_unevictable(page, vma);
3671         } else {
3672                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3673         }
3674
3675         swap_free(entry);
3676         if (mem_cgroup_swap_full(page) ||
3677             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3678                 try_to_free_swap(page);
3679         unlock_page(page);
3680         if (page != swapcache && swapcache) {
3681                 /*
3682                  * Hold the lock to avoid the swap entry to be reused
3683                  * until we take the PT lock for the pte_same() check
3684                  * (to avoid false positives from pte_same). For
3685                  * further safety release the lock after the swap_free
3686                  * so that the swap count won't change under a
3687                  * parallel locked swapcache.
3688                  */
3689                 unlock_page(swapcache);
3690                 put_page(swapcache);
3691         }
3692
3693         if (vmf->flags & FAULT_FLAG_WRITE) {
3694                 ret |= do_wp_page(vmf);
3695                 if (ret & VM_FAULT_ERROR)
3696                         ret &= VM_FAULT_ERROR;
3697                 goto out;
3698         }
3699
3700         /* No need to invalidate - it was non-present before */
3701         update_mmu_cache(vma, vmf->address, vmf->pte);
3702 unlock:
3703         pte_unmap_unlock(vmf->pte, vmf->ptl);
3704 out:
3705         if (si)
3706                 put_swap_device(si);
3707         return ret;
3708 out_nomap:
3709         pte_unmap_unlock(vmf->pte, vmf->ptl);
3710 out_page:
3711         unlock_page(page);
3712 out_release:
3713         put_page(page);
3714         if (page != swapcache && swapcache) {
3715                 unlock_page(swapcache);
3716                 put_page(swapcache);
3717         }
3718         if (si)
3719                 put_swap_device(si);
3720         return ret;
3721 }
3722
3723 /*
3724  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3725  * but allow concurrent faults), and pte mapped but not yet locked.
3726  * We return with mmap_lock still held, but pte unmapped and unlocked.
3727  */
3728 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3729 {
3730         struct vm_area_struct *vma = vmf->vma;
3731         struct page *page;
3732         vm_fault_t ret = 0;
3733         pte_t entry;
3734
3735         /* File mapping without ->vm_ops ? */
3736         if (vma->vm_flags & VM_SHARED)
3737                 return VM_FAULT_SIGBUS;
3738
3739         /*
3740          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3741          * pte_offset_map() on pmds where a huge pmd might be created
3742          * from a different thread.
3743          *
3744          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3745          * parallel threads are excluded by other means.
3746          *
3747          * Here we only have mmap_read_lock(mm).
3748          */
3749         if (pte_alloc(vma->vm_mm, vmf->pmd))
3750                 return VM_FAULT_OOM;
3751
3752         /* See comment in handle_pte_fault() */
3753         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3754                 return 0;
3755
3756         /* Use the zero-page for reads */
3757         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3758                         !mm_forbids_zeropage(vma->vm_mm)) {
3759                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3760                                                 vma->vm_page_prot));
3761                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3762                                 vmf->address, &vmf->ptl);
3763                 if (!pte_none(*vmf->pte)) {
3764                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3765                         goto unlock;
3766                 }
3767                 ret = check_stable_address_space(vma->vm_mm);
3768                 if (ret)
3769                         goto unlock;
3770                 /* Deliver the page fault to userland, check inside PT lock */
3771                 if (userfaultfd_missing(vma)) {
3772                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3773                         return handle_userfault(vmf, VM_UFFD_MISSING);
3774                 }
3775                 goto setpte;
3776         }
3777
3778         /* Allocate our own private page. */
3779         if (unlikely(anon_vma_prepare(vma)))
3780                 goto oom;
3781         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3782         if (!page)
3783                 goto oom;
3784
3785         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3786                 goto oom_free_page;
3787         cgroup_throttle_swaprate(page, GFP_KERNEL);
3788
3789         /*
3790          * The memory barrier inside __SetPageUptodate makes sure that
3791          * preceding stores to the page contents become visible before
3792          * the set_pte_at() write.
3793          */
3794         __SetPageUptodate(page);
3795
3796         entry = mk_pte(page, vma->vm_page_prot);
3797         entry = pte_sw_mkyoung(entry);
3798         if (vma->vm_flags & VM_WRITE)
3799                 entry = pte_mkwrite(pte_mkdirty(entry));
3800
3801         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3802                         &vmf->ptl);
3803         if (!pte_none(*vmf->pte)) {
3804                 update_mmu_cache(vma, vmf->address, vmf->pte);
3805                 goto release;
3806         }
3807
3808         ret = check_stable_address_space(vma->vm_mm);
3809         if (ret)
3810                 goto release;
3811
3812         /* Deliver the page fault to userland, check inside PT lock */
3813         if (userfaultfd_missing(vma)) {
3814                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3815                 put_page(page);
3816                 return handle_userfault(vmf, VM_UFFD_MISSING);
3817         }
3818
3819         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3820         page_add_new_anon_rmap(page, vma, vmf->address, false);
3821         lru_cache_add_inactive_or_unevictable(page, vma);
3822 setpte:
3823         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3824
3825         /* No need to invalidate - it was non-present before */
3826         update_mmu_cache(vma, vmf->address, vmf->pte);
3827 unlock:
3828         pte_unmap_unlock(vmf->pte, vmf->ptl);
3829         return ret;
3830 release:
3831         put_page(page);
3832         goto unlock;
3833 oom_free_page:
3834         put_page(page);
3835 oom:
3836         return VM_FAULT_OOM;
3837 }
3838
3839 /*
3840  * The mmap_lock must have been held on entry, and may have been
3841  * released depending on flags and vma->vm_ops->fault() return value.
3842  * See filemap_fault() and __lock_page_retry().
3843  */
3844 static vm_fault_t __do_fault(struct vm_fault *vmf)
3845 {
3846         struct vm_area_struct *vma = vmf->vma;
3847         vm_fault_t ret;
3848
3849         /*
3850          * Preallocate pte before we take page_lock because this might lead to
3851          * deadlocks for memcg reclaim which waits for pages under writeback:
3852          *                              lock_page(A)
3853          *                              SetPageWriteback(A)
3854          *                              unlock_page(A)
3855          * lock_page(B)
3856          *                              lock_page(B)
3857          * pte_alloc_one
3858          *   shrink_page_list
3859          *     wait_on_page_writeback(A)
3860          *                              SetPageWriteback(B)
3861          *                              unlock_page(B)
3862          *                              # flush A, B to clear the writeback
3863          */
3864         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3865                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3866                 if (!vmf->prealloc_pte)
3867                         return VM_FAULT_OOM;
3868                 smp_wmb(); /* See comment in __pte_alloc() */
3869         }
3870
3871         ret = vma->vm_ops->fault(vmf);
3872         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3873                             VM_FAULT_DONE_COW)))
3874                 return ret;
3875
3876         if (unlikely(PageHWPoison(vmf->page))) {
3877                 struct page *page = vmf->page;
3878                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3879                 if (ret & VM_FAULT_LOCKED) {
3880                         if (page_mapped(page))
3881                                 unmap_mapping_pages(page_mapping(page),
3882                                                     page->index, 1, false);
3883                         /* Retry if a clean page was removed from the cache. */
3884                         if (invalidate_inode_page(page))
3885                                 poisonret = VM_FAULT_NOPAGE;
3886                         unlock_page(page);
3887                 }
3888                 put_page(page);
3889                 vmf->page = NULL;
3890                 return poisonret;
3891         }
3892
3893         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3894                 lock_page(vmf->page);
3895         else
3896                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3897
3898         return ret;
3899 }
3900
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902 static void deposit_prealloc_pte(struct vm_fault *vmf)
3903 {
3904         struct vm_area_struct *vma = vmf->vma;
3905
3906         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3907         /*
3908          * We are going to consume the prealloc table,
3909          * count that as nr_ptes.
3910          */
3911         mm_inc_nr_ptes(vma->vm_mm);
3912         vmf->prealloc_pte = NULL;
3913 }
3914
3915 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3916 {
3917         struct vm_area_struct *vma = vmf->vma;
3918         bool write = vmf->flags & FAULT_FLAG_WRITE;
3919         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3920         pmd_t entry;
3921         int i;
3922         vm_fault_t ret = VM_FAULT_FALLBACK;
3923
3924         if (!transhuge_vma_suitable(vma, haddr))
3925                 return ret;
3926
3927         page = compound_head(page);
3928         if (compound_order(page) != HPAGE_PMD_ORDER)
3929                 return ret;
3930
3931         /*
3932          * Just backoff if any subpage of a THP is corrupted otherwise
3933          * the corrupted page may mapped by PMD silently to escape the
3934          * check.  This kind of THP just can be PTE mapped.  Access to
3935          * the corrupted subpage should trigger SIGBUS as expected.
3936          */
3937         if (unlikely(PageHasHWPoisoned(page)))
3938                 return ret;
3939
3940         /*
3941          * Archs like ppc64 need additional space to store information
3942          * related to pte entry. Use the preallocated table for that.
3943          */
3944         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3945                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3946                 if (!vmf->prealloc_pte)
3947                         return VM_FAULT_OOM;
3948                 smp_wmb(); /* See comment in __pte_alloc() */
3949         }
3950
3951         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3952         if (unlikely(!pmd_none(*vmf->pmd)))
3953                 goto out;
3954
3955         for (i = 0; i < HPAGE_PMD_NR; i++)
3956                 flush_icache_page(vma, page + i);
3957
3958         entry = mk_huge_pmd(page, vma->vm_page_prot);
3959         if (write)
3960                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3961
3962         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3963         page_add_file_rmap(page, true);
3964         /*
3965          * deposit and withdraw with pmd lock held
3966          */
3967         if (arch_needs_pgtable_deposit())
3968                 deposit_prealloc_pte(vmf);
3969
3970         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3971
3972         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3973
3974         /* fault is handled */
3975         ret = 0;
3976         count_vm_event(THP_FILE_MAPPED);
3977 out:
3978         spin_unlock(vmf->ptl);
3979         return ret;
3980 }
3981 #else
3982 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3983 {
3984         return VM_FAULT_FALLBACK;
3985 }
3986 #endif
3987
3988 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3989 {
3990         struct vm_area_struct *vma = vmf->vma;
3991         bool write = vmf->flags & FAULT_FLAG_WRITE;
3992         bool prefault = vmf->address != addr;
3993         pte_t entry;
3994
3995         flush_icache_page(vma, page);
3996         entry = mk_pte(page, vma->vm_page_prot);
3997
3998         if (prefault && arch_wants_old_prefaulted_pte())
3999                 entry = pte_mkold(entry);
4000         else
4001                 entry = pte_sw_mkyoung(entry);
4002
4003         if (write)
4004                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4005         /* copy-on-write page */
4006         if (write && !(vma->vm_flags & VM_SHARED)) {
4007                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4008                 page_add_new_anon_rmap(page, vma, addr, false);
4009                 lru_cache_add_inactive_or_unevictable(page, vma);
4010         } else {
4011                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4012                 page_add_file_rmap(page, false);
4013         }
4014         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4015 }
4016
4017 /**
4018  * finish_fault - finish page fault once we have prepared the page to fault
4019  *
4020  * @vmf: structure describing the fault
4021  *
4022  * This function handles all that is needed to finish a page fault once the
4023  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4024  * given page, adds reverse page mapping, handles memcg charges and LRU
4025  * addition.
4026  *
4027  * The function expects the page to be locked and on success it consumes a
4028  * reference of a page being mapped (for the PTE which maps it).
4029  *
4030  * Return: %0 on success, %VM_FAULT_ code in case of error.
4031  */
4032 vm_fault_t finish_fault(struct vm_fault *vmf)
4033 {
4034         struct vm_area_struct *vma = vmf->vma;
4035         struct page *page;
4036         vm_fault_t ret;
4037
4038         /* Did we COW the page? */
4039         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4040                 page = vmf->cow_page;
4041         else
4042                 page = vmf->page;
4043
4044         /*
4045          * check even for read faults because we might have lost our CoWed
4046          * page
4047          */
4048         if (!(vma->vm_flags & VM_SHARED)) {
4049                 ret = check_stable_address_space(vma->vm_mm);
4050                 if (ret)
4051                         return ret;
4052         }
4053
4054         if (pmd_none(*vmf->pmd)) {
4055                 if (PageTransCompound(page)) {
4056                         ret = do_set_pmd(vmf, page);
4057                         if (ret != VM_FAULT_FALLBACK)
4058                                 return ret;
4059                 }
4060
4061                 if (vmf->prealloc_pte) {
4062                         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4063                         if (likely(pmd_none(*vmf->pmd))) {
4064                                 mm_inc_nr_ptes(vma->vm_mm);
4065                                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4066                                 vmf->prealloc_pte = NULL;
4067                         }
4068                         spin_unlock(vmf->ptl);
4069                 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4070                         return VM_FAULT_OOM;
4071                 }
4072         }
4073
4074         /*
4075          * See comment in handle_pte_fault() for how this scenario happens, we
4076          * need to return NOPAGE so that we drop this page.
4077          */
4078         if (pmd_devmap_trans_unstable(vmf->pmd))
4079                 return VM_FAULT_NOPAGE;
4080
4081         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4082                                       vmf->address, &vmf->ptl);
4083         ret = 0;
4084         /* Re-check under ptl */
4085         if (likely(pte_none(*vmf->pte)))
4086                 do_set_pte(vmf, page, vmf->address);
4087         else
4088                 ret = VM_FAULT_NOPAGE;
4089
4090         update_mmu_tlb(vma, vmf->address, vmf->pte);
4091         pte_unmap_unlock(vmf->pte, vmf->ptl);
4092         return ret;
4093 }
4094
4095 static unsigned long fault_around_bytes __read_mostly =
4096         rounddown_pow_of_two(4096);
4097
4098 #ifdef CONFIG_DEBUG_FS
4099 static int fault_around_bytes_get(void *data, u64 *val)
4100 {
4101         *val = fault_around_bytes;
4102         return 0;
4103 }
4104
4105 /*
4106  * fault_around_bytes must be rounded down to the nearest page order as it's
4107  * what do_fault_around() expects to see.
4108  */
4109 static int fault_around_bytes_set(void *data, u64 val)
4110 {
4111         if (val / PAGE_SIZE > PTRS_PER_PTE)
4112                 return -EINVAL;
4113         if (val > PAGE_SIZE)
4114                 fault_around_bytes = rounddown_pow_of_two(val);
4115         else
4116                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4117         return 0;
4118 }
4119 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4120                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4121
4122 static int __init fault_around_debugfs(void)
4123 {
4124         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4125                                    &fault_around_bytes_fops);
4126         return 0;
4127 }
4128 late_initcall(fault_around_debugfs);
4129 #endif
4130
4131 /*
4132  * do_fault_around() tries to map few pages around the fault address. The hope
4133  * is that the pages will be needed soon and this will lower the number of
4134  * faults to handle.
4135  *
4136  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4137  * not ready to be mapped: not up-to-date, locked, etc.
4138  *
4139  * This function is called with the page table lock taken. In the split ptlock
4140  * case the page table lock only protects only those entries which belong to
4141  * the page table corresponding to the fault address.
4142  *
4143  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4144  * only once.
4145  *
4146  * fault_around_bytes defines how many bytes we'll try to map.
4147  * do_fault_around() expects it to be set to a power of two less than or equal
4148  * to PTRS_PER_PTE.
4149  *
4150  * The virtual address of the area that we map is naturally aligned to
4151  * fault_around_bytes rounded down to the machine page size
4152  * (and therefore to page order).  This way it's easier to guarantee
4153  * that we don't cross page table boundaries.
4154  */
4155 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4156 {
4157         unsigned long address = vmf->address, nr_pages, mask;
4158         pgoff_t start_pgoff = vmf->pgoff;
4159         pgoff_t end_pgoff;
4160         int off;
4161
4162         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4163         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4164
4165         address = max(address & mask, vmf->vma->vm_start);
4166         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4167         start_pgoff -= off;
4168
4169         /*
4170          *  end_pgoff is either the end of the page table, the end of
4171          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4172          */
4173         end_pgoff = start_pgoff -
4174                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4175                 PTRS_PER_PTE - 1;
4176         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4177                         start_pgoff + nr_pages - 1);
4178
4179         if (pmd_none(*vmf->pmd)) {
4180                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4181                 if (!vmf->prealloc_pte)
4182                         return VM_FAULT_OOM;
4183                 smp_wmb(); /* See comment in __pte_alloc() */
4184         }
4185
4186         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4187 }
4188
4189 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4190 {
4191         struct vm_area_struct *vma = vmf->vma;
4192         vm_fault_t ret = 0;
4193
4194         /*
4195          * Let's call ->map_pages() first and use ->fault() as fallback
4196          * if page by the offset is not ready to be mapped (cold cache or
4197          * something).
4198          */
4199         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4200                 if (likely(!userfaultfd_minor(vmf->vma))) {
4201                         ret = do_fault_around(vmf);
4202                         if (ret)
4203                                 return ret;
4204                 }
4205         }
4206
4207         ret = __do_fault(vmf);
4208         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4209                 return ret;
4210
4211         ret |= finish_fault(vmf);
4212         unlock_page(vmf->page);
4213         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4214                 put_page(vmf->page);
4215         return ret;
4216 }
4217
4218 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4219 {
4220         struct vm_area_struct *vma = vmf->vma;
4221         vm_fault_t ret;
4222
4223         if (unlikely(anon_vma_prepare(vma)))
4224                 return VM_FAULT_OOM;
4225
4226         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4227         if (!vmf->cow_page)
4228                 return VM_FAULT_OOM;
4229
4230         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4231                 put_page(vmf->cow_page);
4232                 return VM_FAULT_OOM;
4233         }
4234         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4235
4236         ret = __do_fault(vmf);
4237         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4238                 goto uncharge_out;
4239         if (ret & VM_FAULT_DONE_COW)
4240                 return ret;
4241
4242         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4243         __SetPageUptodate(vmf->cow_page);
4244
4245         ret |= finish_fault(vmf);
4246         unlock_page(vmf->page);
4247         put_page(vmf->page);
4248         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4249                 goto uncharge_out;
4250         return ret;
4251 uncharge_out:
4252         put_page(vmf->cow_page);
4253         return ret;
4254 }
4255
4256 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4257 {
4258         struct vm_area_struct *vma = vmf->vma;
4259         vm_fault_t ret, tmp;
4260
4261         ret = __do_fault(vmf);
4262         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4263                 return ret;
4264
4265         /*
4266          * Check if the backing address space wants to know that the page is
4267          * about to become writable
4268          */
4269         if (vma->vm_ops->page_mkwrite) {
4270                 unlock_page(vmf->page);
4271                 tmp = do_page_mkwrite(vmf);
4272                 if (unlikely(!tmp ||
4273                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4274                         put_page(vmf->page);
4275                         return tmp;
4276                 }
4277         }
4278
4279         ret |= finish_fault(vmf);
4280         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4281                                         VM_FAULT_RETRY))) {
4282                 unlock_page(vmf->page);
4283                 put_page(vmf->page);
4284                 return ret;
4285         }
4286
4287         ret |= fault_dirty_shared_page(vmf);
4288         return ret;
4289 }
4290
4291 /*
4292  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4293  * but allow concurrent faults).
4294  * The mmap_lock may have been released depending on flags and our
4295  * return value.  See filemap_fault() and __lock_page_or_retry().
4296  * If mmap_lock is released, vma may become invalid (for example
4297  * by other thread calling munmap()).
4298  */
4299 static vm_fault_t do_fault(struct vm_fault *vmf)
4300 {
4301         struct vm_area_struct *vma = vmf->vma;
4302         struct mm_struct *vm_mm = vma->vm_mm;
4303         vm_fault_t ret;
4304
4305         /*
4306          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4307          */
4308         if (!vma->vm_ops->fault) {
4309                 /*
4310                  * If we find a migration pmd entry or a none pmd entry, which
4311                  * should never happen, return SIGBUS
4312                  */
4313                 if (unlikely(!pmd_present(*vmf->pmd)))
4314                         ret = VM_FAULT_SIGBUS;
4315                 else {
4316                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4317                                                        vmf->pmd,
4318                                                        vmf->address,
4319                                                        &vmf->ptl);
4320                         /*
4321                          * Make sure this is not a temporary clearing of pte
4322                          * by holding ptl and checking again. A R/M/W update
4323                          * of pte involves: take ptl, clearing the pte so that
4324                          * we don't have concurrent modification by hardware
4325                          * followed by an update.
4326                          */
4327                         if (unlikely(pte_none(*vmf->pte)))
4328                                 ret = VM_FAULT_SIGBUS;
4329                         else
4330                                 ret = VM_FAULT_NOPAGE;
4331
4332                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4333                 }
4334         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4335                 ret = do_read_fault(vmf);
4336         else if (!(vma->vm_flags & VM_SHARED))
4337                 ret = do_cow_fault(vmf);
4338         else
4339                 ret = do_shared_fault(vmf);
4340
4341         /* preallocated pagetable is unused: free it */
4342         if (vmf->prealloc_pte) {
4343                 pte_free(vm_mm, vmf->prealloc_pte);
4344                 vmf->prealloc_pte = NULL;
4345         }
4346         return ret;
4347 }
4348
4349 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4350                       unsigned long addr, int page_nid, int *flags)
4351 {
4352         get_page(page);
4353
4354         count_vm_numa_event(NUMA_HINT_FAULTS);
4355         if (page_nid == numa_node_id()) {
4356                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4357                 *flags |= TNF_FAULT_LOCAL;
4358         }
4359
4360         return mpol_misplaced(page, vma, addr);
4361 }
4362
4363 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4364 {
4365         struct vm_area_struct *vma = vmf->vma;
4366         struct page *page = NULL;
4367         int page_nid = NUMA_NO_NODE;
4368         int last_cpupid;
4369         int target_nid;
4370         pte_t pte, old_pte;
4371         bool was_writable = pte_savedwrite(vmf->orig_pte);
4372         int flags = 0;
4373
4374         /*
4375          * The "pte" at this point cannot be used safely without
4376          * validation through pte_unmap_same(). It's of NUMA type but
4377          * the pfn may be screwed if the read is non atomic.
4378          */
4379         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4380         spin_lock(vmf->ptl);
4381         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4382                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4383                 goto out;
4384         }
4385
4386         /* Get the normal PTE  */
4387         old_pte = ptep_get(vmf->pte);
4388         pte = pte_modify(old_pte, vma->vm_page_prot);
4389
4390         page = vm_normal_page(vma, vmf->address, pte);
4391         if (!page)
4392                 goto out_map;
4393
4394         /* TODO: handle PTE-mapped THP */
4395         if (PageCompound(page))
4396                 goto out_map;
4397
4398         /*
4399          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4400          * much anyway since they can be in shared cache state. This misses
4401          * the case where a mapping is writable but the process never writes
4402          * to it but pte_write gets cleared during protection updates and
4403          * pte_dirty has unpredictable behaviour between PTE scan updates,
4404          * background writeback, dirty balancing and application behaviour.
4405          */
4406         if (!was_writable)
4407                 flags |= TNF_NO_GROUP;
4408
4409         /*
4410          * Flag if the page is shared between multiple address spaces. This
4411          * is later used when determining whether to group tasks together
4412          */
4413         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4414                 flags |= TNF_SHARED;
4415
4416         last_cpupid = page_cpupid_last(page);
4417         page_nid = page_to_nid(page);
4418         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4419                         &flags);
4420         if (target_nid == NUMA_NO_NODE) {
4421                 put_page(page);
4422                 goto out_map;
4423         }
4424         pte_unmap_unlock(vmf->pte, vmf->ptl);
4425
4426         /* Migrate to the requested node */
4427         if (migrate_misplaced_page(page, vma, target_nid)) {
4428                 page_nid = target_nid;
4429                 flags |= TNF_MIGRATED;
4430         } else {
4431                 flags |= TNF_MIGRATE_FAIL;
4432                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4433                 spin_lock(vmf->ptl);
4434                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4435                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4436                         goto out;
4437                 }
4438                 goto out_map;
4439         }
4440
4441 out:
4442         if (page_nid != NUMA_NO_NODE)
4443                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4444         return 0;
4445 out_map:
4446         /*
4447          * Make it present again, depending on how arch implements
4448          * non-accessible ptes, some can allow access by kernel mode.
4449          */
4450         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4451         pte = pte_modify(old_pte, vma->vm_page_prot);
4452         pte = pte_mkyoung(pte);
4453         if (was_writable)
4454                 pte = pte_mkwrite(pte);
4455         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4456         update_mmu_cache(vma, vmf->address, vmf->pte);
4457         pte_unmap_unlock(vmf->pte, vmf->ptl);
4458         goto out;
4459 }
4460
4461 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4462 {
4463         if (vma_is_anonymous(vmf->vma))
4464                 return do_huge_pmd_anonymous_page(vmf);
4465         if (vmf->vma->vm_ops->huge_fault)
4466                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4467         return VM_FAULT_FALLBACK;
4468 }
4469
4470 /* `inline' is required to avoid gcc 4.1.2 build error */
4471 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4472 {
4473         if (vma_is_anonymous(vmf->vma)) {
4474                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4475                         return handle_userfault(vmf, VM_UFFD_WP);
4476                 return do_huge_pmd_wp_page(vmf);
4477         }
4478         if (vmf->vma->vm_ops->huge_fault) {
4479                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4480
4481                 if (!(ret & VM_FAULT_FALLBACK))
4482                         return ret;
4483         }
4484
4485         /* COW or write-notify handled on pte level: split pmd. */
4486         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4487
4488         return VM_FAULT_FALLBACK;
4489 }
4490
4491 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4492 {
4493 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4494         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4495         /* No support for anonymous transparent PUD pages yet */
4496         if (vma_is_anonymous(vmf->vma))
4497                 return VM_FAULT_FALLBACK;
4498         if (vmf->vma->vm_ops->huge_fault)
4499                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4500 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4501         return VM_FAULT_FALLBACK;
4502 }
4503
4504 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4505 {
4506 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4507         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4508         /* No support for anonymous transparent PUD pages yet */
4509         if (vma_is_anonymous(vmf->vma))
4510                 goto split;
4511         if (vmf->vma->vm_ops->huge_fault) {
4512                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4513
4514                 if (!(ret & VM_FAULT_FALLBACK))
4515                         return ret;
4516         }
4517 split:
4518         /* COW or write-notify not handled on PUD level: split pud.*/
4519         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4520 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4521         return VM_FAULT_FALLBACK;
4522 }
4523
4524 /*
4525  * These routines also need to handle stuff like marking pages dirty
4526  * and/or accessed for architectures that don't do it in hardware (most
4527  * RISC architectures).  The early dirtying is also good on the i386.
4528  *
4529  * There is also a hook called "update_mmu_cache()" that architectures
4530  * with external mmu caches can use to update those (ie the Sparc or
4531  * PowerPC hashed page tables that act as extended TLBs).
4532  *
4533  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4534  * concurrent faults).
4535  *
4536  * The mmap_lock may have been released depending on flags and our return value.
4537  * See filemap_fault() and __lock_page_or_retry().
4538  */
4539 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4540 {
4541         pte_t entry;
4542
4543         if (unlikely(pmd_none(*vmf->pmd))) {
4544                 /*
4545                  * Leave __pte_alloc() until later: because vm_ops->fault may
4546                  * want to allocate huge page, and if we expose page table
4547                  * for an instant, it will be difficult to retract from
4548                  * concurrent faults and from rmap lookups.
4549                  */
4550                 vmf->pte = NULL;
4551         } else {
4552                 /*
4553                  * If a huge pmd materialized under us just retry later.  Use
4554                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4555                  * of pmd_trans_huge() to ensure the pmd didn't become
4556                  * pmd_trans_huge under us and then back to pmd_none, as a
4557                  * result of MADV_DONTNEED running immediately after a huge pmd
4558                  * fault in a different thread of this mm, in turn leading to a
4559                  * misleading pmd_trans_huge() retval. All we have to ensure is
4560                  * that it is a regular pmd that we can walk with
4561                  * pte_offset_map() and we can do that through an atomic read
4562                  * in C, which is what pmd_trans_unstable() provides.
4563                  */
4564                 if (pmd_devmap_trans_unstable(vmf->pmd))
4565                         return 0;
4566                 /*
4567                  * A regular pmd is established and it can't morph into a huge
4568                  * pmd from under us anymore at this point because we hold the
4569                  * mmap_lock read mode and khugepaged takes it in write mode.
4570                  * So now it's safe to run pte_offset_map().
4571                  */
4572                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4573                 vmf->orig_pte = *vmf->pte;
4574
4575                 /*
4576                  * some architectures can have larger ptes than wordsize,
4577                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4578                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4579                  * accesses.  The code below just needs a consistent view
4580                  * for the ifs and we later double check anyway with the
4581                  * ptl lock held. So here a barrier will do.
4582                  */
4583                 barrier();
4584                 if (pte_none(vmf->orig_pte)) {
4585                         pte_unmap(vmf->pte);
4586                         vmf->pte = NULL;
4587                 }
4588         }
4589
4590         if (!vmf->pte) {
4591                 if (vma_is_anonymous(vmf->vma))
4592                         return do_anonymous_page(vmf);
4593                 else
4594                         return do_fault(vmf);
4595         }
4596
4597         if (!pte_present(vmf->orig_pte))
4598                 return do_swap_page(vmf);
4599
4600         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4601                 return do_numa_page(vmf);
4602
4603         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4604         spin_lock(vmf->ptl);
4605         entry = vmf->orig_pte;
4606         if (unlikely(!pte_same(*vmf->pte, entry))) {
4607                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4608                 goto unlock;
4609         }
4610         if (vmf->flags & FAULT_FLAG_WRITE) {
4611                 if (!pte_write(entry))
4612                         return do_wp_page(vmf);
4613                 entry = pte_mkdirty(entry);
4614         }
4615         entry = pte_mkyoung(entry);
4616         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4617                                 vmf->flags & FAULT_FLAG_WRITE)) {
4618                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4619         } else {
4620                 /* Skip spurious TLB flush for retried page fault */
4621                 if (vmf->flags & FAULT_FLAG_TRIED)
4622                         goto unlock;
4623                 /*
4624                  * This is needed only for protection faults but the arch code
4625                  * is not yet telling us if this is a protection fault or not.
4626                  * This still avoids useless tlb flushes for .text page faults
4627                  * with threads.
4628                  */
4629                 if (vmf->flags & FAULT_FLAG_WRITE)
4630                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4631         }
4632 unlock:
4633         pte_unmap_unlock(vmf->pte, vmf->ptl);
4634         return 0;
4635 }
4636
4637 /*
4638  * By the time we get here, we already hold the mm semaphore
4639  *
4640  * The mmap_lock may have been released depending on flags and our
4641  * return value.  See filemap_fault() and __lock_page_or_retry().
4642  */
4643 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4644                 unsigned long address, unsigned int flags)
4645 {
4646         struct vm_fault vmf = {
4647                 .vma = vma,
4648                 .address = address & PAGE_MASK,
4649                 .flags = flags,
4650                 .pgoff = linear_page_index(vma, address),
4651                 .gfp_mask = __get_fault_gfp_mask(vma),
4652         };
4653         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4654         struct mm_struct *mm = vma->vm_mm;
4655         pgd_t *pgd;
4656         p4d_t *p4d;
4657         vm_fault_t ret;
4658
4659         pgd = pgd_offset(mm, address);
4660         p4d = p4d_alloc(mm, pgd, address);
4661         if (!p4d)
4662                 return VM_FAULT_OOM;
4663
4664         vmf.pud = pud_alloc(mm, p4d, address);
4665         if (!vmf.pud)
4666                 return VM_FAULT_OOM;
4667 retry_pud:
4668         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4669                 ret = create_huge_pud(&vmf);
4670                 if (!(ret & VM_FAULT_FALLBACK))
4671                         return ret;
4672         } else {
4673                 pud_t orig_pud = *vmf.pud;
4674
4675                 barrier();
4676                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4677
4678                         /* NUMA case for anonymous PUDs would go here */
4679
4680                         if (dirty && !pud_write(orig_pud)) {
4681                                 ret = wp_huge_pud(&vmf, orig_pud);
4682                                 if (!(ret & VM_FAULT_FALLBACK))
4683                                         return ret;
4684                         } else {
4685                                 huge_pud_set_accessed(&vmf, orig_pud);
4686                                 return 0;
4687                         }
4688                 }
4689         }
4690
4691         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4692         if (!vmf.pmd)
4693                 return VM_FAULT_OOM;
4694
4695         /* Huge pud page fault raced with pmd_alloc? */
4696         if (pud_trans_unstable(vmf.pud))
4697                 goto retry_pud;
4698
4699         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4700                 ret = create_huge_pmd(&vmf);
4701                 if (!(ret & VM_FAULT_FALLBACK))
4702                         return ret;
4703         } else {
4704                 vmf.orig_pmd = *vmf.pmd;
4705
4706                 barrier();
4707                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4708                         VM_BUG_ON(thp_migration_supported() &&
4709                                           !is_pmd_migration_entry(vmf.orig_pmd));
4710                         if (is_pmd_migration_entry(vmf.orig_pmd))
4711                                 pmd_migration_entry_wait(mm, vmf.pmd);
4712                         return 0;
4713                 }
4714                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4715                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4716                                 return do_huge_pmd_numa_page(&vmf);
4717
4718                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4719                                 ret = wp_huge_pmd(&vmf);
4720                                 if (!(ret & VM_FAULT_FALLBACK))
4721                                         return ret;
4722                         } else {
4723                                 huge_pmd_set_accessed(&vmf);
4724                                 return 0;
4725                         }
4726                 }
4727         }
4728
4729         return handle_pte_fault(&vmf);
4730 }
4731
4732 /**
4733  * mm_account_fault - Do page fault accounting
4734  *
4735  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4736  *        of perf event counters, but we'll still do the per-task accounting to
4737  *        the task who triggered this page fault.
4738  * @address: the faulted address.
4739  * @flags: the fault flags.
4740  * @ret: the fault retcode.
4741  *
4742  * This will take care of most of the page fault accounting.  Meanwhile, it
4743  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4744  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4745  * still be in per-arch page fault handlers at the entry of page fault.
4746  */
4747 static inline void mm_account_fault(struct pt_regs *regs,
4748                                     unsigned long address, unsigned int flags,
4749                                     vm_fault_t ret)
4750 {
4751         bool major;
4752
4753         /*
4754          * We don't do accounting for some specific faults:
4755          *
4756          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4757          *   includes arch_vma_access_permitted() failing before reaching here.
4758          *   So this is not a "this many hardware page faults" counter.  We
4759          *   should use the hw profiling for that.
4760          *
4761          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4762          *   once they're completed.
4763          */
4764         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4765                 return;
4766
4767         /*
4768          * We define the fault as a major fault when the final successful fault
4769          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4770          * handle it immediately previously).
4771          */
4772         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4773
4774         if (major)
4775                 current->maj_flt++;
4776         else
4777                 current->min_flt++;
4778
4779         /*
4780          * If the fault is done for GUP, regs will be NULL.  We only do the
4781          * accounting for the per thread fault counters who triggered the
4782          * fault, and we skip the perf event updates.
4783          */
4784         if (!regs)
4785                 return;
4786
4787         if (major)
4788                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4789         else
4790                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4791 }
4792
4793 /*
4794  * By the time we get here, we already hold the mm semaphore
4795  *
4796  * The mmap_lock may have been released depending on flags and our
4797  * return value.  See filemap_fault() and __lock_page_or_retry().
4798  */
4799 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4800                            unsigned int flags, struct pt_regs *regs)
4801 {
4802         vm_fault_t ret;
4803
4804         __set_current_state(TASK_RUNNING);
4805
4806         count_vm_event(PGFAULT);
4807         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4808
4809         /* do counter updates before entering really critical section. */
4810         check_sync_rss_stat(current);
4811
4812         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4813                                             flags & FAULT_FLAG_INSTRUCTION,
4814                                             flags & FAULT_FLAG_REMOTE))
4815                 return VM_FAULT_SIGSEGV;
4816
4817         /*
4818          * Enable the memcg OOM handling for faults triggered in user
4819          * space.  Kernel faults are handled more gracefully.
4820          */
4821         if (flags & FAULT_FLAG_USER)
4822                 mem_cgroup_enter_user_fault();
4823
4824         if (unlikely(is_vm_hugetlb_page(vma)))
4825                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4826         else
4827                 ret = __handle_mm_fault(vma, address, flags);
4828
4829         if (flags & FAULT_FLAG_USER) {
4830                 mem_cgroup_exit_user_fault();
4831                 /*
4832                  * The task may have entered a memcg OOM situation but
4833                  * if the allocation error was handled gracefully (no
4834                  * VM_FAULT_OOM), there is no need to kill anything.
4835                  * Just clean up the OOM state peacefully.
4836                  */
4837                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4838                         mem_cgroup_oom_synchronize(false);
4839         }
4840
4841         mm_account_fault(regs, address, flags, ret);
4842
4843         return ret;
4844 }
4845 EXPORT_SYMBOL_GPL(handle_mm_fault);
4846
4847 #ifndef __PAGETABLE_P4D_FOLDED
4848 /*
4849  * Allocate p4d page table.
4850  * We've already handled the fast-path in-line.
4851  */
4852 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4853 {
4854         p4d_t *new = p4d_alloc_one(mm, address);
4855         if (!new)
4856                 return -ENOMEM;
4857
4858         smp_wmb(); /* See comment in __pte_alloc */
4859
4860         spin_lock(&mm->page_table_lock);
4861         if (pgd_present(*pgd))          /* Another has populated it */
4862                 p4d_free(mm, new);
4863         else
4864                 pgd_populate(mm, pgd, new);
4865         spin_unlock(&mm->page_table_lock);
4866         return 0;
4867 }
4868 #endif /* __PAGETABLE_P4D_FOLDED */
4869
4870 #ifndef __PAGETABLE_PUD_FOLDED
4871 /*
4872  * Allocate page upper directory.
4873  * We've already handled the fast-path in-line.
4874  */
4875 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4876 {
4877         pud_t *new = pud_alloc_one(mm, address);
4878         if (!new)
4879                 return -ENOMEM;
4880
4881         smp_wmb(); /* See comment in __pte_alloc */
4882
4883         spin_lock(&mm->page_table_lock);
4884         if (!p4d_present(*p4d)) {
4885                 mm_inc_nr_puds(mm);
4886                 p4d_populate(mm, p4d, new);
4887         } else  /* Another has populated it */
4888                 pud_free(mm, new);
4889         spin_unlock(&mm->page_table_lock);
4890         return 0;
4891 }
4892 #endif /* __PAGETABLE_PUD_FOLDED */
4893
4894 #ifndef __PAGETABLE_PMD_FOLDED
4895 /*
4896  * Allocate page middle directory.
4897  * We've already handled the fast-path in-line.
4898  */
4899 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4900 {
4901         spinlock_t *ptl;
4902         pmd_t *new = pmd_alloc_one(mm, address);
4903         if (!new)
4904                 return -ENOMEM;
4905
4906         smp_wmb(); /* See comment in __pte_alloc */
4907
4908         ptl = pud_lock(mm, pud);
4909         if (!pud_present(*pud)) {
4910                 mm_inc_nr_pmds(mm);
4911                 pud_populate(mm, pud, new);
4912         } else  /* Another has populated it */
4913                 pmd_free(mm, new);
4914         spin_unlock(ptl);
4915         return 0;
4916 }
4917 #endif /* __PAGETABLE_PMD_FOLDED */
4918
4919 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4920                           struct mmu_notifier_range *range, pte_t **ptepp,
4921                           pmd_t **pmdpp, spinlock_t **ptlp)
4922 {
4923         pgd_t *pgd;
4924         p4d_t *p4d;
4925         pud_t *pud;
4926         pmd_t *pmd;
4927         pte_t *ptep;
4928
4929         pgd = pgd_offset(mm, address);
4930         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4931                 goto out;
4932
4933         p4d = p4d_offset(pgd, address);
4934         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4935                 goto out;
4936
4937         pud = pud_offset(p4d, address);
4938         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4939                 goto out;
4940
4941         pmd = pmd_offset(pud, address);
4942         VM_BUG_ON(pmd_trans_huge(*pmd));
4943
4944         if (pmd_huge(*pmd)) {
4945                 if (!pmdpp)
4946                         goto out;
4947
4948                 if (range) {
4949                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4950                                                 NULL, mm, address & PMD_MASK,
4951                                                 (address & PMD_MASK) + PMD_SIZE);
4952                         mmu_notifier_invalidate_range_start(range);
4953                 }
4954                 *ptlp = pmd_lock(mm, pmd);
4955                 if (pmd_huge(*pmd)) {
4956                         *pmdpp = pmd;
4957                         return 0;
4958                 }
4959                 spin_unlock(*ptlp);
4960                 if (range)
4961                         mmu_notifier_invalidate_range_end(range);
4962         }
4963
4964         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4965                 goto out;
4966
4967         if (range) {
4968                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4969                                         address & PAGE_MASK,
4970                                         (address & PAGE_MASK) + PAGE_SIZE);
4971                 mmu_notifier_invalidate_range_start(range);
4972         }
4973         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4974         if (!pte_present(*ptep))
4975                 goto unlock;
4976         *ptepp = ptep;
4977         return 0;
4978 unlock:
4979         pte_unmap_unlock(ptep, *ptlp);
4980         if (range)
4981                 mmu_notifier_invalidate_range_end(range);
4982 out:
4983         return -EINVAL;
4984 }
4985
4986 /**
4987  * follow_pte - look up PTE at a user virtual address
4988  * @mm: the mm_struct of the target address space
4989  * @address: user virtual address
4990  * @ptepp: location to store found PTE
4991  * @ptlp: location to store the lock for the PTE
4992  *
4993  * On a successful return, the pointer to the PTE is stored in @ptepp;
4994  * the corresponding lock is taken and its location is stored in @ptlp.
4995  * The contents of the PTE are only stable until @ptlp is released;
4996  * any further use, if any, must be protected against invalidation
4997  * with MMU notifiers.
4998  *
4999  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5000  * should be taken for read.
5001  *
5002  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5003  * it is not a good general-purpose API.
5004  *
5005  * Return: zero on success, -ve otherwise.
5006  */
5007 int follow_pte(struct mm_struct *mm, unsigned long address,
5008                pte_t **ptepp, spinlock_t **ptlp)
5009 {
5010         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5011 }
5012 EXPORT_SYMBOL_GPL(follow_pte);
5013
5014 /**
5015  * follow_pfn - look up PFN at a user virtual address
5016  * @vma: memory mapping
5017  * @address: user virtual address
5018  * @pfn: location to store found PFN
5019  *
5020  * Only IO mappings and raw PFN mappings are allowed.
5021  *
5022  * This function does not allow the caller to read the permissions
5023  * of the PTE.  Do not use it.
5024  *
5025  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5026  */
5027 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5028         unsigned long *pfn)
5029 {
5030         int ret = -EINVAL;
5031         spinlock_t *ptl;
5032         pte_t *ptep;
5033
5034         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5035                 return ret;
5036
5037         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5038         if (ret)
5039                 return ret;
5040         *pfn = pte_pfn(*ptep);
5041         pte_unmap_unlock(ptep, ptl);
5042         return 0;
5043 }
5044 EXPORT_SYMBOL(follow_pfn);
5045
5046 #ifdef CONFIG_HAVE_IOREMAP_PROT
5047 int follow_phys(struct vm_area_struct *vma,
5048                 unsigned long address, unsigned int flags,
5049                 unsigned long *prot, resource_size_t *phys)
5050 {
5051         int ret = -EINVAL;
5052         pte_t *ptep, pte;
5053         spinlock_t *ptl;
5054
5055         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5056                 goto out;
5057
5058         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5059                 goto out;
5060         pte = *ptep;
5061
5062         if ((flags & FOLL_WRITE) && !pte_write(pte))
5063                 goto unlock;
5064
5065         *prot = pgprot_val(pte_pgprot(pte));
5066         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5067
5068         ret = 0;
5069 unlock:
5070         pte_unmap_unlock(ptep, ptl);
5071 out:
5072         return ret;
5073 }
5074
5075 /**
5076  * generic_access_phys - generic implementation for iomem mmap access
5077  * @vma: the vma to access
5078  * @addr: userspace address, not relative offset within @vma
5079  * @buf: buffer to read/write
5080  * @len: length of transfer
5081  * @write: set to FOLL_WRITE when writing, otherwise reading
5082  *
5083  * This is a generic implementation for &vm_operations_struct.access for an
5084  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5085  * not page based.
5086  */
5087 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5088                         void *buf, int len, int write)
5089 {
5090         resource_size_t phys_addr;
5091         unsigned long prot = 0;
5092         void __iomem *maddr;
5093         pte_t *ptep, pte;
5094         spinlock_t *ptl;
5095         int offset = offset_in_page(addr);
5096         int ret = -EINVAL;
5097
5098         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5099                 return -EINVAL;
5100
5101 retry:
5102         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5103                 return -EINVAL;
5104         pte = *ptep;
5105         pte_unmap_unlock(ptep, ptl);
5106
5107         prot = pgprot_val(pte_pgprot(pte));
5108         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5109
5110         if ((write & FOLL_WRITE) && !pte_write(pte))
5111                 return -EINVAL;
5112
5113         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5114         if (!maddr)
5115                 return -ENOMEM;
5116
5117         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5118                 goto out_unmap;
5119
5120         if (!pte_same(pte, *ptep)) {
5121                 pte_unmap_unlock(ptep, ptl);
5122                 iounmap(maddr);
5123
5124                 goto retry;
5125         }
5126
5127         if (write)
5128                 memcpy_toio(maddr + offset, buf, len);
5129         else
5130                 memcpy_fromio(buf, maddr + offset, len);
5131         ret = len;
5132         pte_unmap_unlock(ptep, ptl);
5133 out_unmap:
5134         iounmap(maddr);
5135
5136         return ret;
5137 }
5138 EXPORT_SYMBOL_GPL(generic_access_phys);
5139 #endif
5140
5141 /*
5142  * Access another process' address space as given in mm.
5143  */
5144 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5145                        int len, unsigned int gup_flags)
5146 {
5147         struct vm_area_struct *vma;
5148         void *old_buf = buf;
5149         int write = gup_flags & FOLL_WRITE;
5150
5151         if (mmap_read_lock_killable(mm))
5152                 return 0;
5153
5154         /* ignore errors, just check how much was successfully transferred */
5155         while (len) {
5156                 int bytes, ret, offset;
5157                 void *maddr;
5158                 struct page *page = NULL;
5159
5160                 ret = get_user_pages_remote(mm, addr, 1,
5161                                 gup_flags, &page, &vma, NULL);
5162                 if (ret <= 0) {
5163 #ifndef CONFIG_HAVE_IOREMAP_PROT
5164                         break;
5165 #else
5166                         /*
5167                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5168                          * we can access using slightly different code.
5169                          */
5170                         vma = vma_lookup(mm, addr);
5171                         if (!vma)
5172                                 break;
5173                         if (vma->vm_ops && vma->vm_ops->access)
5174                                 ret = vma->vm_ops->access(vma, addr, buf,
5175                                                           len, write);
5176                         if (ret <= 0)
5177                                 break;
5178                         bytes = ret;
5179 #endif
5180                 } else {
5181                         bytes = len;
5182                         offset = addr & (PAGE_SIZE-1);
5183                         if (bytes > PAGE_SIZE-offset)
5184                                 bytes = PAGE_SIZE-offset;
5185
5186                         maddr = kmap(page);
5187                         if (write) {
5188                                 copy_to_user_page(vma, page, addr,
5189                                                   maddr + offset, buf, bytes);
5190                                 set_page_dirty_lock(page);
5191                         } else {
5192                                 copy_from_user_page(vma, page, addr,
5193                                                     buf, maddr + offset, bytes);
5194                         }
5195                         kunmap(page);
5196                         put_page(page);
5197                 }
5198                 len -= bytes;
5199                 buf += bytes;
5200                 addr += bytes;
5201         }
5202         mmap_read_unlock(mm);
5203
5204         return buf - old_buf;
5205 }
5206
5207 /**
5208  * access_remote_vm - access another process' address space
5209  * @mm:         the mm_struct of the target address space
5210  * @addr:       start address to access
5211  * @buf:        source or destination buffer
5212  * @len:        number of bytes to transfer
5213  * @gup_flags:  flags modifying lookup behaviour
5214  *
5215  * The caller must hold a reference on @mm.
5216  *
5217  * Return: number of bytes copied from source to destination.
5218  */
5219 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5220                 void *buf, int len, unsigned int gup_flags)
5221 {
5222         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5223 }
5224
5225 /*
5226  * Access another process' address space.
5227  * Source/target buffer must be kernel space,
5228  * Do not walk the page table directly, use get_user_pages
5229  */
5230 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5231                 void *buf, int len, unsigned int gup_flags)
5232 {
5233         struct mm_struct *mm;
5234         int ret;
5235
5236         mm = get_task_mm(tsk);
5237         if (!mm)
5238                 return 0;
5239
5240         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5241
5242         mmput(mm);
5243
5244         return ret;
5245 }
5246 EXPORT_SYMBOL_GPL(access_process_vm);
5247
5248 /*
5249  * Print the name of a VMA.
5250  */
5251 void print_vma_addr(char *prefix, unsigned long ip)
5252 {
5253         struct mm_struct *mm = current->mm;
5254         struct vm_area_struct *vma;
5255
5256         /*
5257          * we might be running from an atomic context so we cannot sleep
5258          */
5259         if (!mmap_read_trylock(mm))
5260                 return;
5261
5262         vma = find_vma(mm, ip);
5263         if (vma && vma->vm_file) {
5264                 struct file *f = vma->vm_file;
5265                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5266                 if (buf) {
5267                         char *p;
5268
5269                         p = file_path(f, buf, PAGE_SIZE);
5270                         if (IS_ERR(p))
5271                                 p = "?";
5272                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5273                                         vma->vm_start,
5274                                         vma->vm_end - vma->vm_start);
5275                         free_page((unsigned long)buf);
5276                 }
5277         }
5278         mmap_read_unlock(mm);
5279 }
5280
5281 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5282 void __might_fault(const char *file, int line)
5283 {
5284         /*
5285          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5286          * holding the mmap_lock, this is safe because kernel memory doesn't
5287          * get paged out, therefore we'll never actually fault, and the
5288          * below annotations will generate false positives.
5289          */
5290         if (uaccess_kernel())
5291                 return;
5292         if (pagefault_disabled())
5293                 return;
5294         __might_sleep(file, line);
5295 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5296         if (current->mm)
5297                 might_lock_read(&current->mm->mmap_lock);
5298 #endif
5299 }
5300 EXPORT_SYMBOL(__might_fault);
5301 #endif
5302
5303 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5304 /*
5305  * Process all subpages of the specified huge page with the specified
5306  * operation.  The target subpage will be processed last to keep its
5307  * cache lines hot.
5308  */
5309 static inline void process_huge_page(
5310         unsigned long addr_hint, unsigned int pages_per_huge_page,
5311         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5312         void *arg)
5313 {
5314         int i, n, base, l;
5315         unsigned long addr = addr_hint &
5316                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5317
5318         /* Process target subpage last to keep its cache lines hot */
5319         might_sleep();
5320         n = (addr_hint - addr) / PAGE_SIZE;
5321         if (2 * n <= pages_per_huge_page) {
5322                 /* If target subpage in first half of huge page */
5323                 base = 0;
5324                 l = n;
5325                 /* Process subpages at the end of huge page */
5326                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5327                         cond_resched();
5328                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5329                 }
5330         } else {
5331                 /* If target subpage in second half of huge page */
5332                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5333                 l = pages_per_huge_page - n;
5334                 /* Process subpages at the begin of huge page */
5335                 for (i = 0; i < base; i++) {
5336                         cond_resched();
5337                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5338                 }
5339         }
5340         /*
5341          * Process remaining subpages in left-right-left-right pattern
5342          * towards the target subpage
5343          */
5344         for (i = 0; i < l; i++) {
5345                 int left_idx = base + i;
5346                 int right_idx = base + 2 * l - 1 - i;
5347
5348                 cond_resched();
5349                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5350                 cond_resched();
5351                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5352         }
5353 }
5354
5355 static void clear_gigantic_page(struct page *page,
5356                                 unsigned long addr,
5357                                 unsigned int pages_per_huge_page)
5358 {
5359         int i;
5360         struct page *p = page;
5361
5362         might_sleep();
5363         for (i = 0; i < pages_per_huge_page;
5364              i++, p = mem_map_next(p, page, i)) {
5365                 cond_resched();
5366                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5367         }
5368 }
5369
5370 static void clear_subpage(unsigned long addr, int idx, void *arg)
5371 {
5372         struct page *page = arg;
5373
5374         clear_user_highpage(page + idx, addr);
5375 }
5376
5377 void clear_huge_page(struct page *page,
5378                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5379 {
5380         unsigned long addr = addr_hint &
5381                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5382
5383         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5384                 clear_gigantic_page(page, addr, pages_per_huge_page);
5385                 return;
5386         }
5387
5388         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5389 }
5390
5391 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5392                                     unsigned long addr,
5393                                     struct vm_area_struct *vma,
5394                                     unsigned int pages_per_huge_page)
5395 {
5396         int i;
5397         struct page *dst_base = dst;
5398         struct page *src_base = src;
5399
5400         for (i = 0; i < pages_per_huge_page; ) {
5401                 cond_resched();
5402                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5403
5404                 i++;
5405                 dst = mem_map_next(dst, dst_base, i);
5406                 src = mem_map_next(src, src_base, i);
5407         }
5408 }
5409
5410 struct copy_subpage_arg {
5411         struct page *dst;
5412         struct page *src;
5413         struct vm_area_struct *vma;
5414 };
5415
5416 static void copy_subpage(unsigned long addr, int idx, void *arg)
5417 {
5418         struct copy_subpage_arg *copy_arg = arg;
5419
5420         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5421                            addr, copy_arg->vma);
5422 }
5423
5424 void copy_user_huge_page(struct page *dst, struct page *src,
5425                          unsigned long addr_hint, struct vm_area_struct *vma,
5426                          unsigned int pages_per_huge_page)
5427 {
5428         unsigned long addr = addr_hint &
5429                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5430         struct copy_subpage_arg arg = {
5431                 .dst = dst,
5432                 .src = src,
5433                 .vma = vma,
5434         };
5435
5436         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5437                 copy_user_gigantic_page(dst, src, addr, vma,
5438                                         pages_per_huge_page);
5439                 return;
5440         }
5441
5442         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5443 }
5444
5445 long copy_huge_page_from_user(struct page *dst_page,
5446                                 const void __user *usr_src,
5447                                 unsigned int pages_per_huge_page,
5448                                 bool allow_pagefault)
5449 {
5450         void *src = (void *)usr_src;
5451         void *page_kaddr;
5452         unsigned long i, rc = 0;
5453         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5454         struct page *subpage = dst_page;
5455
5456         for (i = 0; i < pages_per_huge_page;
5457              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5458                 if (allow_pagefault)
5459                         page_kaddr = kmap(subpage);
5460                 else
5461                         page_kaddr = kmap_atomic(subpage);
5462                 rc = copy_from_user(page_kaddr,
5463                                 (const void __user *)(src + i * PAGE_SIZE),
5464                                 PAGE_SIZE);
5465                 if (allow_pagefault)
5466                         kunmap(subpage);
5467                 else
5468                         kunmap_atomic(page_kaddr);
5469
5470                 ret_val -= (PAGE_SIZE - rc);
5471                 if (rc)
5472                         break;
5473
5474                 flush_dcache_page(subpage);
5475
5476                 cond_resched();
5477         }
5478         return ret_val;
5479 }
5480 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5481
5482 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5483
5484 static struct kmem_cache *page_ptl_cachep;
5485
5486 void __init ptlock_cache_init(void)
5487 {
5488         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5489                         SLAB_PANIC, NULL);
5490 }
5491
5492 bool ptlock_alloc(struct page *page)
5493 {
5494         spinlock_t *ptl;
5495
5496         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5497         if (!ptl)
5498                 return false;
5499         page->ptl = ptl;
5500         return true;
5501 }
5502
5503 void ptlock_free(struct page *page)
5504 {
5505         kmem_cache_free(page_ptl_cachep, page->ptl);
5506 }
5507 #endif