mm: move pgtable related functions to right place
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93
94 EXPORT_SYMBOL(high_memory);
95
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104                                         1;
105 #else
106                                         2;
107 #endif
108
109 static int __init disable_randmaps(char *s)
110 {
111         randomize_va_space = 0;
112         return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124         zero_pfn = page_to_pfn(ZERO_PAGE(0));
125         return 0;
126 }
127 core_initcall(init_zero_pfn);
128
129
130 #if defined(SPLIT_RSS_COUNTING)
131
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134         int i;
135
136         for (i = 0; i < NR_MM_COUNTERS; i++) {
137                 if (current->rss_stat.count[i]) {
138                         add_mm_counter(mm, i, current->rss_stat.count[i]);
139                         current->rss_stat.count[i] = 0;
140                 }
141         }
142         current->rss_stat.events = 0;
143 }
144
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147         struct task_struct *task = current;
148
149         if (likely(task->mm == mm))
150                 task->rss_stat.count[member] += val;
151         else
152                 add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH  (64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161         if (unlikely(task != current))
162                 return;
163         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164                 sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174
175 #endif /* SPLIT_RSS_COUNTING */
176
177 #ifdef HAVE_GENERIC_MMU_GATHER
178
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181         struct mmu_gather_batch *batch;
182
183         batch = tlb->active;
184         if (batch->next) {
185                 tlb->active = batch->next;
186                 return 1;
187         }
188
189         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190                 return 0;
191
192         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193         if (!batch)
194                 return 0;
195
196         tlb->batch_count++;
197         batch->next = NULL;
198         batch->nr   = 0;
199         batch->max  = MAX_GATHER_BATCH;
200
201         tlb->active->next = batch;
202         tlb->active = batch;
203
204         return 1;
205 }
206
207 /* tlb_gather_mmu
208  *      Called to initialize an (on-stack) mmu_gather structure for page-table
209  *      tear-down from @mm. The @fullmm argument is used when @mm is without
210  *      users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 {
214         tlb->mm = mm;
215
216         /* Is it from 0 to ~0? */
217         tlb->fullmm     = !(start | (end+1));
218         tlb->need_flush_all = 0;
219         tlb->start      = start;
220         tlb->end        = end;
221         tlb->need_flush = 0;
222         tlb->local.next = NULL;
223         tlb->local.nr   = 0;
224         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
225         tlb->active     = &tlb->local;
226         tlb->batch_count = 0;
227
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229         tlb->batch = NULL;
230 #endif
231 }
232
233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 {
235         struct mmu_gather_batch *batch;
236
237         if (!tlb->need_flush)
238                 return;
239         tlb->need_flush = 0;
240         tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242         tlb_table_flush(tlb);
243 #endif
244
245         for (batch = &tlb->local; batch; batch = batch->next) {
246                 free_pages_and_swap_cache(batch->pages, batch->nr);
247                 batch->nr = 0;
248         }
249         tlb->active = &tlb->local;
250 }
251
252 /* tlb_finish_mmu
253  *      Called at the end of the shootdown operation to free up any resources
254  *      that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258         struct mmu_gather_batch *batch, *next;
259
260         tlb_flush_mmu(tlb);
261
262         /* keep the page table cache within bounds */
263         check_pgt_cache();
264
265         for (batch = tlb->local.next; batch; batch = next) {
266                 next = batch->next;
267                 free_pages((unsigned long)batch, 0);
268         }
269         tlb->local.next = NULL;
270 }
271
272 /* __tlb_remove_page
273  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274  *      handling the additional races in SMP caused by other CPUs caching valid
275  *      mappings in their TLBs. Returns the number of free page slots left.
276  *      When out of page slots we must call tlb_flush_mmu().
277  */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 {
280         struct mmu_gather_batch *batch;
281
282         VM_BUG_ON(!tlb->need_flush);
283
284         batch = tlb->active;
285         batch->pages[batch->nr++] = page;
286         if (batch->nr == batch->max) {
287                 if (!tlb_next_batch(tlb))
288                         return 0;
289                 batch = tlb->active;
290         }
291         VM_BUG_ON(batch->nr > batch->max);
292
293         return batch->max - batch->nr;
294 }
295
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306         /* Simply deliver the interrupt */
307 }
308
309 static void tlb_remove_table_one(void *table)
310 {
311         /*
312          * This isn't an RCU grace period and hence the page-tables cannot be
313          * assumed to be actually RCU-freed.
314          *
315          * It is however sufficient for software page-table walkers that rely on
316          * IRQ disabling. See the comment near struct mmu_table_batch.
317          */
318         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319         __tlb_remove_table(table);
320 }
321
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324         struct mmu_table_batch *batch;
325         int i;
326
327         batch = container_of(head, struct mmu_table_batch, rcu);
328
329         for (i = 0; i < batch->nr; i++)
330                 __tlb_remove_table(batch->tables[i]);
331
332         free_page((unsigned long)batch);
333 }
334
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337         struct mmu_table_batch **batch = &tlb->batch;
338
339         if (*batch) {
340                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341                 *batch = NULL;
342         }
343 }
344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347         struct mmu_table_batch **batch = &tlb->batch;
348
349         tlb->need_flush = 1;
350
351         /*
352          * When there's less then two users of this mm there cannot be a
353          * concurrent page-table walk.
354          */
355         if (atomic_read(&tlb->mm->mm_users) < 2) {
356                 __tlb_remove_table(table);
357                 return;
358         }
359
360         if (*batch == NULL) {
361                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362                 if (*batch == NULL) {
363                         tlb_remove_table_one(table);
364                         return;
365                 }
366                 (*batch)->nr = 0;
367         }
368         (*batch)->tables[(*batch)->nr++] = table;
369         if ((*batch)->nr == MAX_TABLE_BATCH)
370                 tlb_table_flush(tlb);
371 }
372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375 /*
376  * Note: this doesn't free the actual pages themselves. That
377  * has been handled earlier when unmapping all the memory regions.
378  */
379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380                            unsigned long addr)
381 {
382         pgtable_t token = pmd_pgtable(*pmd);
383         pmd_clear(pmd);
384         pte_free_tlb(tlb, token, addr);
385         tlb->mm->nr_ptes--;
386 }
387
388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389                                 unsigned long addr, unsigned long end,
390                                 unsigned long floor, unsigned long ceiling)
391 {
392         pmd_t *pmd;
393         unsigned long next;
394         unsigned long start;
395
396         start = addr;
397         pmd = pmd_offset(pud, addr);
398         do {
399                 next = pmd_addr_end(addr, end);
400                 if (pmd_none_or_clear_bad(pmd))
401                         continue;
402                 free_pte_range(tlb, pmd, addr);
403         } while (pmd++, addr = next, addr != end);
404
405         start &= PUD_MASK;
406         if (start < floor)
407                 return;
408         if (ceiling) {
409                 ceiling &= PUD_MASK;
410                 if (!ceiling)
411                         return;
412         }
413         if (end - 1 > ceiling - 1)
414                 return;
415
416         pmd = pmd_offset(pud, start);
417         pud_clear(pud);
418         pmd_free_tlb(tlb, pmd, start);
419 }
420
421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422                                 unsigned long addr, unsigned long end,
423                                 unsigned long floor, unsigned long ceiling)
424 {
425         pud_t *pud;
426         unsigned long next;
427         unsigned long start;
428
429         start = addr;
430         pud = pud_offset(pgd, addr);
431         do {
432                 next = pud_addr_end(addr, end);
433                 if (pud_none_or_clear_bad(pud))
434                         continue;
435                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436         } while (pud++, addr = next, addr != end);
437
438         start &= PGDIR_MASK;
439         if (start < floor)
440                 return;
441         if (ceiling) {
442                 ceiling &= PGDIR_MASK;
443                 if (!ceiling)
444                         return;
445         }
446         if (end - 1 > ceiling - 1)
447                 return;
448
449         pud = pud_offset(pgd, start);
450         pgd_clear(pgd);
451         pud_free_tlb(tlb, pud, start);
452 }
453
454 /*
455  * This function frees user-level page tables of a process.
456  *
457  * Must be called with pagetable lock held.
458  */
459 void free_pgd_range(struct mmu_gather *tlb,
460                         unsigned long addr, unsigned long end,
461                         unsigned long floor, unsigned long ceiling)
462 {
463         pgd_t *pgd;
464         unsigned long next;
465
466         /*
467          * The next few lines have given us lots of grief...
468          *
469          * Why are we testing PMD* at this top level?  Because often
470          * there will be no work to do at all, and we'd prefer not to
471          * go all the way down to the bottom just to discover that.
472          *
473          * Why all these "- 1"s?  Because 0 represents both the bottom
474          * of the address space and the top of it (using -1 for the
475          * top wouldn't help much: the masks would do the wrong thing).
476          * The rule is that addr 0 and floor 0 refer to the bottom of
477          * the address space, but end 0 and ceiling 0 refer to the top
478          * Comparisons need to use "end - 1" and "ceiling - 1" (though
479          * that end 0 case should be mythical).
480          *
481          * Wherever addr is brought up or ceiling brought down, we must
482          * be careful to reject "the opposite 0" before it confuses the
483          * subsequent tests.  But what about where end is brought down
484          * by PMD_SIZE below? no, end can't go down to 0 there.
485          *
486          * Whereas we round start (addr) and ceiling down, by different
487          * masks at different levels, in order to test whether a table
488          * now has no other vmas using it, so can be freed, we don't
489          * bother to round floor or end up - the tests don't need that.
490          */
491
492         addr &= PMD_MASK;
493         if (addr < floor) {
494                 addr += PMD_SIZE;
495                 if (!addr)
496                         return;
497         }
498         if (ceiling) {
499                 ceiling &= PMD_MASK;
500                 if (!ceiling)
501                         return;
502         }
503         if (end - 1 > ceiling - 1)
504                 end -= PMD_SIZE;
505         if (addr > end - 1)
506                 return;
507
508         pgd = pgd_offset(tlb->mm, addr);
509         do {
510                 next = pgd_addr_end(addr, end);
511                 if (pgd_none_or_clear_bad(pgd))
512                         continue;
513                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514         } while (pgd++, addr = next, addr != end);
515 }
516
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518                 unsigned long floor, unsigned long ceiling)
519 {
520         while (vma) {
521                 struct vm_area_struct *next = vma->vm_next;
522                 unsigned long addr = vma->vm_start;
523
524                 /*
525                  * Hide vma from rmap and truncate_pagecache before freeing
526                  * pgtables
527                  */
528                 unlink_anon_vmas(vma);
529                 unlink_file_vma(vma);
530
531                 if (is_vm_hugetlb_page(vma)) {
532                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533                                 floor, next? next->vm_start: ceiling);
534                 } else {
535                         /*
536                          * Optimization: gather nearby vmas into one call down
537                          */
538                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539                                && !is_vm_hugetlb_page(next)) {
540                                 vma = next;
541                                 next = vma->vm_next;
542                                 unlink_anon_vmas(vma);
543                                 unlink_file_vma(vma);
544                         }
545                         free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 }
548                 vma = next;
549         }
550 }
551
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553                 pmd_t *pmd, unsigned long address)
554 {
555         pgtable_t new = pte_alloc_one(mm, address);
556         int wait_split_huge_page;
557         if (!new)
558                 return -ENOMEM;
559
560         /*
561          * Ensure all pte setup (eg. pte page lock and page clearing) are
562          * visible before the pte is made visible to other CPUs by being
563          * put into page tables.
564          *
565          * The other side of the story is the pointer chasing in the page
566          * table walking code (when walking the page table without locking;
567          * ie. most of the time). Fortunately, these data accesses consist
568          * of a chain of data-dependent loads, meaning most CPUs (alpha
569          * being the notable exception) will already guarantee loads are
570          * seen in-order. See the alpha page table accessors for the
571          * smp_read_barrier_depends() barriers in page table walking code.
572          */
573         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574
575         spin_lock(&mm->page_table_lock);
576         wait_split_huge_page = 0;
577         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
578                 mm->nr_ptes++;
579                 pmd_populate(mm, pmd, new);
580                 new = NULL;
581         } else if (unlikely(pmd_trans_splitting(*pmd)))
582                 wait_split_huge_page = 1;
583         spin_unlock(&mm->page_table_lock);
584         if (new)
585                 pte_free(mm, new);
586         if (wait_split_huge_page)
587                 wait_split_huge_page(vma->anon_vma, pmd);
588         return 0;
589 }
590
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
592 {
593         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594         if (!new)
595                 return -ENOMEM;
596
597         smp_wmb(); /* See comment in __pte_alloc */
598
599         spin_lock(&init_mm.page_table_lock);
600         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
601                 pmd_populate_kernel(&init_mm, pmd, new);
602                 new = NULL;
603         } else
604                 VM_BUG_ON(pmd_trans_splitting(*pmd));
605         spin_unlock(&init_mm.page_table_lock);
606         if (new)
607                 pte_free_kernel(&init_mm, new);
608         return 0;
609 }
610
611 static inline void init_rss_vec(int *rss)
612 {
613         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614 }
615
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
617 {
618         int i;
619
620         if (current->mm == mm)
621                 sync_mm_rss(mm);
622         for (i = 0; i < NR_MM_COUNTERS; i++)
623                 if (rss[i])
624                         add_mm_counter(mm, i, rss[i]);
625 }
626
627 /*
628  * This function is called to print an error when a bad pte
629  * is found. For example, we might have a PFN-mapped pte in
630  * a region that doesn't allow it.
631  *
632  * The calling function must still handle the error.
633  */
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635                           pte_t pte, struct page *page)
636 {
637         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638         pud_t *pud = pud_offset(pgd, addr);
639         pmd_t *pmd = pmd_offset(pud, addr);
640         struct address_space *mapping;
641         pgoff_t index;
642         static unsigned long resume;
643         static unsigned long nr_shown;
644         static unsigned long nr_unshown;
645
646         /*
647          * Allow a burst of 60 reports, then keep quiet for that minute;
648          * or allow a steady drip of one report per second.
649          */
650         if (nr_shown == 60) {
651                 if (time_before(jiffies, resume)) {
652                         nr_unshown++;
653                         return;
654                 }
655                 if (nr_unshown) {
656                         printk(KERN_ALERT
657                                 "BUG: Bad page map: %lu messages suppressed\n",
658                                 nr_unshown);
659                         nr_unshown = 0;
660                 }
661                 nr_shown = 0;
662         }
663         if (nr_shown++ == 0)
664                 resume = jiffies + 60 * HZ;
665
666         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667         index = linear_page_index(vma, addr);
668
669         printk(KERN_ALERT
670                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
671                 current->comm,
672                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
673         if (page)
674                 dump_page(page);
675         printk(KERN_ALERT
676                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678         /*
679          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680          */
681         if (vma->vm_ops)
682                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683                        vma->vm_ops->fault);
684         if (vma->vm_file && vma->vm_file->f_op)
685                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686                        vma->vm_file->f_op->mmap);
687         dump_stack();
688         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
689 }
690
691 static inline bool is_cow_mapping(vm_flags_t flags)
692 {
693         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694 }
695
696 /*
697  * vm_normal_page -- This function gets the "struct page" associated with a pte.
698  *
699  * "Special" mappings do not wish to be associated with a "struct page" (either
700  * it doesn't exist, or it exists but they don't want to touch it). In this
701  * case, NULL is returned here. "Normal" mappings do have a struct page.
702  *
703  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704  * pte bit, in which case this function is trivial. Secondly, an architecture
705  * may not have a spare pte bit, which requires a more complicated scheme,
706  * described below.
707  *
708  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709  * special mapping (even if there are underlying and valid "struct pages").
710  * COWed pages of a VM_PFNMAP are always normal.
711  *
712  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715  * mapping will always honor the rule
716  *
717  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718  *
719  * And for normal mappings this is false.
720  *
721  * This restricts such mappings to be a linear translation from virtual address
722  * to pfn. To get around this restriction, we allow arbitrary mappings so long
723  * as the vma is not a COW mapping; in that case, we know that all ptes are
724  * special (because none can have been COWed).
725  *
726  *
727  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728  *
729  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730  * page" backing, however the difference is that _all_ pages with a struct
731  * page (that is, those where pfn_valid is true) are refcounted and considered
732  * normal pages by the VM. The disadvantage is that pages are refcounted
733  * (which can be slower and simply not an option for some PFNMAP users). The
734  * advantage is that we don't have to follow the strict linearity rule of
735  * PFNMAP mappings in order to support COWable mappings.
736  *
737  */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744                                 pte_t pte)
745 {
746         unsigned long pfn = pte_pfn(pte);
747
748         if (HAVE_PTE_SPECIAL) {
749                 if (likely(!pte_special(pte)))
750                         goto check_pfn;
751                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752                         return NULL;
753                 if (!is_zero_pfn(pfn))
754                         print_bad_pte(vma, addr, pte, NULL);
755                 return NULL;
756         }
757
758         /* !HAVE_PTE_SPECIAL case follows: */
759
760         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761                 if (vma->vm_flags & VM_MIXEDMAP) {
762                         if (!pfn_valid(pfn))
763                                 return NULL;
764                         goto out;
765                 } else {
766                         unsigned long off;
767                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
768                         if (pfn == vma->vm_pgoff + off)
769                                 return NULL;
770                         if (!is_cow_mapping(vma->vm_flags))
771                                 return NULL;
772                 }
773         }
774
775         if (is_zero_pfn(pfn))
776                 return NULL;
777 check_pfn:
778         if (unlikely(pfn > highest_memmap_pfn)) {
779                 print_bad_pte(vma, addr, pte, NULL);
780                 return NULL;
781         }
782
783         /*
784          * NOTE! We still have PageReserved() pages in the page tables.
785          * eg. VDSO mappings can cause them to exist.
786          */
787 out:
788         return pfn_to_page(pfn);
789 }
790
791 /*
792  * copy one vm_area from one task to the other. Assumes the page tables
793  * already present in the new task to be cleared in the whole range
794  * covered by this vma.
795  */
796
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800                 unsigned long addr, int *rss)
801 {
802         unsigned long vm_flags = vma->vm_flags;
803         pte_t pte = *src_pte;
804         struct page *page;
805
806         /* pte contains position in swap or file, so copy. */
807         if (unlikely(!pte_present(pte))) {
808                 if (!pte_file(pte)) {
809                         swp_entry_t entry = pte_to_swp_entry(pte);
810
811                         if (swap_duplicate(entry) < 0)
812                                 return entry.val;
813
814                         /* make sure dst_mm is on swapoff's mmlist. */
815                         if (unlikely(list_empty(&dst_mm->mmlist))) {
816                                 spin_lock(&mmlist_lock);
817                                 if (list_empty(&dst_mm->mmlist))
818                                         list_add(&dst_mm->mmlist,
819                                                  &src_mm->mmlist);
820                                 spin_unlock(&mmlist_lock);
821                         }
822                         if (likely(!non_swap_entry(entry)))
823                                 rss[MM_SWAPENTS]++;
824                         else if (is_migration_entry(entry)) {
825                                 page = migration_entry_to_page(entry);
826
827                                 if (PageAnon(page))
828                                         rss[MM_ANONPAGES]++;
829                                 else
830                                         rss[MM_FILEPAGES]++;
831
832                                 if (is_write_migration_entry(entry) &&
833                                     is_cow_mapping(vm_flags)) {
834                                         /*
835                                          * COW mappings require pages in both
836                                          * parent and child to be set to read.
837                                          */
838                                         make_migration_entry_read(&entry);
839                                         pte = swp_entry_to_pte(entry);
840                                         set_pte_at(src_mm, addr, src_pte, pte);
841                                 }
842                         }
843                 }
844                 goto out_set_pte;
845         }
846
847         /*
848          * If it's a COW mapping, write protect it both
849          * in the parent and the child
850          */
851         if (is_cow_mapping(vm_flags)) {
852                 ptep_set_wrprotect(src_mm, addr, src_pte);
853                 pte = pte_wrprotect(pte);
854         }
855
856         /*
857          * If it's a shared mapping, mark it clean in
858          * the child
859          */
860         if (vm_flags & VM_SHARED)
861                 pte = pte_mkclean(pte);
862         pte = pte_mkold(pte);
863
864         page = vm_normal_page(vma, addr, pte);
865         if (page) {
866                 get_page(page);
867                 page_dup_rmap(page);
868                 if (PageAnon(page))
869                         rss[MM_ANONPAGES]++;
870                 else
871                         rss[MM_FILEPAGES]++;
872         }
873
874 out_set_pte:
875         set_pte_at(dst_mm, addr, dst_pte, pte);
876         return 0;
877 }
878
879 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
881                    unsigned long addr, unsigned long end)
882 {
883         pte_t *orig_src_pte, *orig_dst_pte;
884         pte_t *src_pte, *dst_pte;
885         spinlock_t *src_ptl, *dst_ptl;
886         int progress = 0;
887         int rss[NR_MM_COUNTERS];
888         swp_entry_t entry = (swp_entry_t){0};
889
890 again:
891         init_rss_vec(rss);
892
893         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
894         if (!dst_pte)
895                 return -ENOMEM;
896         src_pte = pte_offset_map(src_pmd, addr);
897         src_ptl = pte_lockptr(src_mm, src_pmd);
898         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
899         orig_src_pte = src_pte;
900         orig_dst_pte = dst_pte;
901         arch_enter_lazy_mmu_mode();
902
903         do {
904                 /*
905                  * We are holding two locks at this point - either of them
906                  * could generate latencies in another task on another CPU.
907                  */
908                 if (progress >= 32) {
909                         progress = 0;
910                         if (need_resched() ||
911                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
912                                 break;
913                 }
914                 if (pte_none(*src_pte)) {
915                         progress++;
916                         continue;
917                 }
918                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
919                                                         vma, addr, rss);
920                 if (entry.val)
921                         break;
922                 progress += 8;
923         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
924
925         arch_leave_lazy_mmu_mode();
926         spin_unlock(src_ptl);
927         pte_unmap(orig_src_pte);
928         add_mm_rss_vec(dst_mm, rss);
929         pte_unmap_unlock(orig_dst_pte, dst_ptl);
930         cond_resched();
931
932         if (entry.val) {
933                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
934                         return -ENOMEM;
935                 progress = 0;
936         }
937         if (addr != end)
938                 goto again;
939         return 0;
940 }
941
942 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
944                 unsigned long addr, unsigned long end)
945 {
946         pmd_t *src_pmd, *dst_pmd;
947         unsigned long next;
948
949         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
950         if (!dst_pmd)
951                 return -ENOMEM;
952         src_pmd = pmd_offset(src_pud, addr);
953         do {
954                 next = pmd_addr_end(addr, end);
955                 if (pmd_trans_huge(*src_pmd)) {
956                         int err;
957                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
958                         err = copy_huge_pmd(dst_mm, src_mm,
959                                             dst_pmd, src_pmd, addr, vma);
960                         if (err == -ENOMEM)
961                                 return -ENOMEM;
962                         if (!err)
963                                 continue;
964                         /* fall through */
965                 }
966                 if (pmd_none_or_clear_bad(src_pmd))
967                         continue;
968                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
969                                                 vma, addr, next))
970                         return -ENOMEM;
971         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
972         return 0;
973 }
974
975 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
977                 unsigned long addr, unsigned long end)
978 {
979         pud_t *src_pud, *dst_pud;
980         unsigned long next;
981
982         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
983         if (!dst_pud)
984                 return -ENOMEM;
985         src_pud = pud_offset(src_pgd, addr);
986         do {
987                 next = pud_addr_end(addr, end);
988                 if (pud_none_or_clear_bad(src_pud))
989                         continue;
990                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
991                                                 vma, addr, next))
992                         return -ENOMEM;
993         } while (dst_pud++, src_pud++, addr = next, addr != end);
994         return 0;
995 }
996
997 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998                 struct vm_area_struct *vma)
999 {
1000         pgd_t *src_pgd, *dst_pgd;
1001         unsigned long next;
1002         unsigned long addr = vma->vm_start;
1003         unsigned long end = vma->vm_end;
1004         unsigned long mmun_start;       /* For mmu_notifiers */
1005         unsigned long mmun_end;         /* For mmu_notifiers */
1006         bool is_cow;
1007         int ret;
1008
1009         /*
1010          * Don't copy ptes where a page fault will fill them correctly.
1011          * Fork becomes much lighter when there are big shared or private
1012          * readonly mappings. The tradeoff is that copy_page_range is more
1013          * efficient than faulting.
1014          */
1015         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1016                                VM_PFNMAP | VM_MIXEDMAP))) {
1017                 if (!vma->anon_vma)
1018                         return 0;
1019         }
1020
1021         if (is_vm_hugetlb_page(vma))
1022                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1023
1024         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1025                 /*
1026                  * We do not free on error cases below as remove_vma
1027                  * gets called on error from higher level routine
1028                  */
1029                 ret = track_pfn_copy(vma);
1030                 if (ret)
1031                         return ret;
1032         }
1033
1034         /*
1035          * We need to invalidate the secondary MMU mappings only when
1036          * there could be a permission downgrade on the ptes of the
1037          * parent mm. And a permission downgrade will only happen if
1038          * is_cow_mapping() returns true.
1039          */
1040         is_cow = is_cow_mapping(vma->vm_flags);
1041         mmun_start = addr;
1042         mmun_end   = end;
1043         if (is_cow)
1044                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1045                                                     mmun_end);
1046
1047         ret = 0;
1048         dst_pgd = pgd_offset(dst_mm, addr);
1049         src_pgd = pgd_offset(src_mm, addr);
1050         do {
1051                 next = pgd_addr_end(addr, end);
1052                 if (pgd_none_or_clear_bad(src_pgd))
1053                         continue;
1054                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1055                                             vma, addr, next))) {
1056                         ret = -ENOMEM;
1057                         break;
1058                 }
1059         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1060
1061         if (is_cow)
1062                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1063         return ret;
1064 }
1065
1066 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1067                                 struct vm_area_struct *vma, pmd_t *pmd,
1068                                 unsigned long addr, unsigned long end,
1069                                 struct zap_details *details)
1070 {
1071         struct mm_struct *mm = tlb->mm;
1072         int force_flush = 0;
1073         int rss[NR_MM_COUNTERS];
1074         spinlock_t *ptl;
1075         pte_t *start_pte;
1076         pte_t *pte;
1077
1078 again:
1079         init_rss_vec(rss);
1080         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1081         pte = start_pte;
1082         arch_enter_lazy_mmu_mode();
1083         do {
1084                 pte_t ptent = *pte;
1085                 if (pte_none(ptent)) {
1086                         continue;
1087                 }
1088
1089                 if (pte_present(ptent)) {
1090                         struct page *page;
1091
1092                         page = vm_normal_page(vma, addr, ptent);
1093                         if (unlikely(details) && page) {
1094                                 /*
1095                                  * unmap_shared_mapping_pages() wants to
1096                                  * invalidate cache without truncating:
1097                                  * unmap shared but keep private pages.
1098                                  */
1099                                 if (details->check_mapping &&
1100                                     details->check_mapping != page->mapping)
1101                                         continue;
1102                                 /*
1103                                  * Each page->index must be checked when
1104                                  * invalidating or truncating nonlinear.
1105                                  */
1106                                 if (details->nonlinear_vma &&
1107                                     (page->index < details->first_index ||
1108                                      page->index > details->last_index))
1109                                         continue;
1110                         }
1111                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1112                                                         tlb->fullmm);
1113                         tlb_remove_tlb_entry(tlb, pte, addr);
1114                         if (unlikely(!page))
1115                                 continue;
1116                         if (unlikely(details) && details->nonlinear_vma
1117                             && linear_page_index(details->nonlinear_vma,
1118                                                 addr) != page->index) {
1119                                 pte_t ptfile = pgoff_to_pte(page->index);
1120                                 if (pte_soft_dirty(ptent))
1121                                         pte_file_mksoft_dirty(ptfile);
1122                                 set_pte_at(mm, addr, pte, ptfile);
1123                         }
1124                         if (PageAnon(page))
1125                                 rss[MM_ANONPAGES]--;
1126                         else {
1127                                 if (pte_dirty(ptent))
1128                                         set_page_dirty(page);
1129                                 if (pte_young(ptent) &&
1130                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1131                                         mark_page_accessed(page);
1132                                 rss[MM_FILEPAGES]--;
1133                         }
1134                         page_remove_rmap(page);
1135                         if (unlikely(page_mapcount(page) < 0))
1136                                 print_bad_pte(vma, addr, ptent, page);
1137                         force_flush = !__tlb_remove_page(tlb, page);
1138                         if (force_flush)
1139                                 break;
1140                         continue;
1141                 }
1142                 /*
1143                  * If details->check_mapping, we leave swap entries;
1144                  * if details->nonlinear_vma, we leave file entries.
1145                  */
1146                 if (unlikely(details))
1147                         continue;
1148                 if (pte_file(ptent)) {
1149                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1150                                 print_bad_pte(vma, addr, ptent, NULL);
1151                 } else {
1152                         swp_entry_t entry = pte_to_swp_entry(ptent);
1153
1154                         if (!non_swap_entry(entry))
1155                                 rss[MM_SWAPENTS]--;
1156                         else if (is_migration_entry(entry)) {
1157                                 struct page *page;
1158
1159                                 page = migration_entry_to_page(entry);
1160
1161                                 if (PageAnon(page))
1162                                         rss[MM_ANONPAGES]--;
1163                                 else
1164                                         rss[MM_FILEPAGES]--;
1165                         }
1166                         if (unlikely(!free_swap_and_cache(entry)))
1167                                 print_bad_pte(vma, addr, ptent, NULL);
1168                 }
1169                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1170         } while (pte++, addr += PAGE_SIZE, addr != end);
1171
1172         add_mm_rss_vec(mm, rss);
1173         arch_leave_lazy_mmu_mode();
1174         pte_unmap_unlock(start_pte, ptl);
1175
1176         /*
1177          * mmu_gather ran out of room to batch pages, we break out of
1178          * the PTE lock to avoid doing the potential expensive TLB invalidate
1179          * and page-free while holding it.
1180          */
1181         if (force_flush) {
1182                 unsigned long old_end;
1183
1184                 force_flush = 0;
1185
1186                 /*
1187                  * Flush the TLB just for the previous segment,
1188                  * then update the range to be the remaining
1189                  * TLB range.
1190                  */
1191                 old_end = tlb->end;
1192                 tlb->end = addr;
1193
1194                 tlb_flush_mmu(tlb);
1195
1196                 tlb->start = addr;
1197                 tlb->end = old_end;
1198
1199                 if (addr != end)
1200                         goto again;
1201         }
1202
1203         return addr;
1204 }
1205
1206 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1207                                 struct vm_area_struct *vma, pud_t *pud,
1208                                 unsigned long addr, unsigned long end,
1209                                 struct zap_details *details)
1210 {
1211         pmd_t *pmd;
1212         unsigned long next;
1213
1214         pmd = pmd_offset(pud, addr);
1215         do {
1216                 next = pmd_addr_end(addr, end);
1217                 if (pmd_trans_huge(*pmd)) {
1218                         if (next - addr != HPAGE_PMD_SIZE) {
1219 #ifdef CONFIG_DEBUG_VM
1220                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1221                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1222                                                 __func__, addr, end,
1223                                                 vma->vm_start,
1224                                                 vma->vm_end);
1225                                         BUG();
1226                                 }
1227 #endif
1228                                 split_huge_page_pmd(vma, addr, pmd);
1229                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1230                                 goto next;
1231                         /* fall through */
1232                 }
1233                 /*
1234                  * Here there can be other concurrent MADV_DONTNEED or
1235                  * trans huge page faults running, and if the pmd is
1236                  * none or trans huge it can change under us. This is
1237                  * because MADV_DONTNEED holds the mmap_sem in read
1238                  * mode.
1239                  */
1240                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241                         goto next;
1242                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1243 next:
1244                 cond_resched();
1245         } while (pmd++, addr = next, addr != end);
1246
1247         return addr;
1248 }
1249
1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1251                                 struct vm_area_struct *vma, pgd_t *pgd,
1252                                 unsigned long addr, unsigned long end,
1253                                 struct zap_details *details)
1254 {
1255         pud_t *pud;
1256         unsigned long next;
1257
1258         pud = pud_offset(pgd, addr);
1259         do {
1260                 next = pud_addr_end(addr, end);
1261                 if (pud_none_or_clear_bad(pud))
1262                         continue;
1263                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264         } while (pud++, addr = next, addr != end);
1265
1266         return addr;
1267 }
1268
1269 static void unmap_page_range(struct mmu_gather *tlb,
1270                              struct vm_area_struct *vma,
1271                              unsigned long addr, unsigned long end,
1272                              struct zap_details *details)
1273 {
1274         pgd_t *pgd;
1275         unsigned long next;
1276
1277         if (details && !details->check_mapping && !details->nonlinear_vma)
1278                 details = NULL;
1279
1280         BUG_ON(addr >= end);
1281         mem_cgroup_uncharge_start();
1282         tlb_start_vma(tlb, vma);
1283         pgd = pgd_offset(vma->vm_mm, addr);
1284         do {
1285                 next = pgd_addr_end(addr, end);
1286                 if (pgd_none_or_clear_bad(pgd))
1287                         continue;
1288                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1289         } while (pgd++, addr = next, addr != end);
1290         tlb_end_vma(tlb, vma);
1291         mem_cgroup_uncharge_end();
1292 }
1293
1294
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296                 struct vm_area_struct *vma, unsigned long start_addr,
1297                 unsigned long end_addr,
1298                 struct zap_details *details)
1299 {
1300         unsigned long start = max(vma->vm_start, start_addr);
1301         unsigned long end;
1302
1303         if (start >= vma->vm_end)
1304                 return;
1305         end = min(vma->vm_end, end_addr);
1306         if (end <= vma->vm_start)
1307                 return;
1308
1309         if (vma->vm_file)
1310                 uprobe_munmap(vma, start, end);
1311
1312         if (unlikely(vma->vm_flags & VM_PFNMAP))
1313                 untrack_pfn(vma, 0, 0);
1314
1315         if (start != end) {
1316                 if (unlikely(is_vm_hugetlb_page(vma))) {
1317                         /*
1318                          * It is undesirable to test vma->vm_file as it
1319                          * should be non-null for valid hugetlb area.
1320                          * However, vm_file will be NULL in the error
1321                          * cleanup path of do_mmap_pgoff. When
1322                          * hugetlbfs ->mmap method fails,
1323                          * do_mmap_pgoff() nullifies vma->vm_file
1324                          * before calling this function to clean up.
1325                          * Since no pte has actually been setup, it is
1326                          * safe to do nothing in this case.
1327                          */
1328                         if (vma->vm_file) {
1329                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1330                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332                         }
1333                 } else
1334                         unmap_page_range(tlb, vma, start, end, details);
1335         }
1336 }
1337
1338 /**
1339  * unmap_vmas - unmap a range of memory covered by a list of vma's
1340  * @tlb: address of the caller's struct mmu_gather
1341  * @vma: the starting vma
1342  * @start_addr: virtual address at which to start unmapping
1343  * @end_addr: virtual address at which to end unmapping
1344  *
1345  * Unmap all pages in the vma list.
1346  *
1347  * Only addresses between `start' and `end' will be unmapped.
1348  *
1349  * The VMA list must be sorted in ascending virtual address order.
1350  *
1351  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352  * range after unmap_vmas() returns.  So the only responsibility here is to
1353  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354  * drops the lock and schedules.
1355  */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357                 struct vm_area_struct *vma, unsigned long start_addr,
1358                 unsigned long end_addr)
1359 {
1360         struct mm_struct *mm = vma->vm_mm;
1361
1362         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367
1368 /**
1369  * zap_page_range - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @start: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of nonlinear truncation or shared cache invalidation
1374  *
1375  * Caller must protect the VMA list
1376  */
1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381         struct mmu_gather tlb;
1382         unsigned long end = start + size;
1383
1384         lru_add_drain();
1385         tlb_gather_mmu(&tlb, mm, start, end);
1386         update_hiwater_rss(mm);
1387         mmu_notifier_invalidate_range_start(mm, start, end);
1388         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1389                 unmap_single_vma(&tlb, vma, start, end, details);
1390         mmu_notifier_invalidate_range_end(mm, start, end);
1391         tlb_finish_mmu(&tlb, start, end);
1392 }
1393
1394 /**
1395  * zap_page_range_single - remove user pages in a given range
1396  * @vma: vm_area_struct holding the applicable pages
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  * @details: details of nonlinear truncation or shared cache invalidation
1400  *
1401  * The range must fit into one VMA.
1402  */
1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1404                 unsigned long size, struct zap_details *details)
1405 {
1406         struct mm_struct *mm = vma->vm_mm;
1407         struct mmu_gather tlb;
1408         unsigned long end = address + size;
1409
1410         lru_add_drain();
1411         tlb_gather_mmu(&tlb, mm, address, end);
1412         update_hiwater_rss(mm);
1413         mmu_notifier_invalidate_range_start(mm, address, end);
1414         unmap_single_vma(&tlb, vma, address, end, details);
1415         mmu_notifier_invalidate_range_end(mm, address, end);
1416         tlb_finish_mmu(&tlb, address, end);
1417 }
1418
1419 /**
1420  * zap_vma_ptes - remove ptes mapping the vma
1421  * @vma: vm_area_struct holding ptes to be zapped
1422  * @address: starting address of pages to zap
1423  * @size: number of bytes to zap
1424  *
1425  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426  *
1427  * The entire address range must be fully contained within the vma.
1428  *
1429  * Returns 0 if successful.
1430  */
1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432                 unsigned long size)
1433 {
1434         if (address < vma->vm_start || address + size > vma->vm_end ||
1435                         !(vma->vm_flags & VM_PFNMAP))
1436                 return -1;
1437         zap_page_range_single(vma, address, size, NULL);
1438         return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441
1442 /**
1443  * follow_page_mask - look up a page descriptor from a user-virtual address
1444  * @vma: vm_area_struct mapping @address
1445  * @address: virtual address to look up
1446  * @flags: flags modifying lookup behaviour
1447  * @page_mask: on output, *page_mask is set according to the size of the page
1448  *
1449  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1450  *
1451  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1452  * an error pointer if there is a mapping to something not represented
1453  * by a page descriptor (see also vm_normal_page()).
1454  */
1455 struct page *follow_page_mask(struct vm_area_struct *vma,
1456                               unsigned long address, unsigned int flags,
1457                               unsigned int *page_mask)
1458 {
1459         pgd_t *pgd;
1460         pud_t *pud;
1461         pmd_t *pmd;
1462         pte_t *ptep, pte;
1463         spinlock_t *ptl;
1464         struct page *page;
1465         struct mm_struct *mm = vma->vm_mm;
1466
1467         *page_mask = 0;
1468
1469         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1470         if (!IS_ERR(page)) {
1471                 BUG_ON(flags & FOLL_GET);
1472                 goto out;
1473         }
1474
1475         page = NULL;
1476         pgd = pgd_offset(mm, address);
1477         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1478                 goto no_page_table;
1479
1480         pud = pud_offset(pgd, address);
1481         if (pud_none(*pud))
1482                 goto no_page_table;
1483         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1484                 BUG_ON(flags & FOLL_GET);
1485                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1486                 goto out;
1487         }
1488         if (unlikely(pud_bad(*pud)))
1489                 goto no_page_table;
1490
1491         pmd = pmd_offset(pud, address);
1492         if (pmd_none(*pmd))
1493                 goto no_page_table;
1494         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1495                 BUG_ON(flags & FOLL_GET);
1496                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1497                 goto out;
1498         }
1499         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1500                 goto no_page_table;
1501         if (pmd_trans_huge(*pmd)) {
1502                 if (flags & FOLL_SPLIT) {
1503                         split_huge_page_pmd(vma, address, pmd);
1504                         goto split_fallthrough;
1505                 }
1506                 spin_lock(&mm->page_table_lock);
1507                 if (likely(pmd_trans_huge(*pmd))) {
1508                         if (unlikely(pmd_trans_splitting(*pmd))) {
1509                                 spin_unlock(&mm->page_table_lock);
1510                                 wait_split_huge_page(vma->anon_vma, pmd);
1511                         } else {
1512                                 page = follow_trans_huge_pmd(vma, address,
1513                                                              pmd, flags);
1514                                 spin_unlock(&mm->page_table_lock);
1515                                 *page_mask = HPAGE_PMD_NR - 1;
1516                                 goto out;
1517                         }
1518                 } else
1519                         spin_unlock(&mm->page_table_lock);
1520                 /* fall through */
1521         }
1522 split_fallthrough:
1523         if (unlikely(pmd_bad(*pmd)))
1524                 goto no_page_table;
1525
1526         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1527
1528         pte = *ptep;
1529         if (!pte_present(pte)) {
1530                 swp_entry_t entry;
1531                 /*
1532                  * KSM's break_ksm() relies upon recognizing a ksm page
1533                  * even while it is being migrated, so for that case we
1534                  * need migration_entry_wait().
1535                  */
1536                 if (likely(!(flags & FOLL_MIGRATION)))
1537                         goto no_page;
1538                 if (pte_none(pte) || pte_file(pte))
1539                         goto no_page;
1540                 entry = pte_to_swp_entry(pte);
1541                 if (!is_migration_entry(entry))
1542                         goto no_page;
1543                 pte_unmap_unlock(ptep, ptl);
1544                 migration_entry_wait(mm, pmd, address);
1545                 goto split_fallthrough;
1546         }
1547         if ((flags & FOLL_NUMA) && pte_numa(pte))
1548                 goto no_page;
1549         if ((flags & FOLL_WRITE) && !pte_write(pte))
1550                 goto unlock;
1551
1552         page = vm_normal_page(vma, address, pte);
1553         if (unlikely(!page)) {
1554                 if ((flags & FOLL_DUMP) ||
1555                     !is_zero_pfn(pte_pfn(pte)))
1556                         goto bad_page;
1557                 page = pte_page(pte);
1558         }
1559
1560         if (flags & FOLL_GET)
1561                 get_page_foll(page);
1562         if (flags & FOLL_TOUCH) {
1563                 if ((flags & FOLL_WRITE) &&
1564                     !pte_dirty(pte) && !PageDirty(page))
1565                         set_page_dirty(page);
1566                 /*
1567                  * pte_mkyoung() would be more correct here, but atomic care
1568                  * is needed to avoid losing the dirty bit: it is easier to use
1569                  * mark_page_accessed().
1570                  */
1571                 mark_page_accessed(page);
1572         }
1573         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1574                 /*
1575                  * The preliminary mapping check is mainly to avoid the
1576                  * pointless overhead of lock_page on the ZERO_PAGE
1577                  * which might bounce very badly if there is contention.
1578                  *
1579                  * If the page is already locked, we don't need to
1580                  * handle it now - vmscan will handle it later if and
1581                  * when it attempts to reclaim the page.
1582                  */
1583                 if (page->mapping && trylock_page(page)) {
1584                         lru_add_drain();  /* push cached pages to LRU */
1585                         /*
1586                          * Because we lock page here, and migration is
1587                          * blocked by the pte's page reference, and we
1588                          * know the page is still mapped, we don't even
1589                          * need to check for file-cache page truncation.
1590                          */
1591                         mlock_vma_page(page);
1592                         unlock_page(page);
1593                 }
1594         }
1595 unlock:
1596         pte_unmap_unlock(ptep, ptl);
1597 out:
1598         return page;
1599
1600 bad_page:
1601         pte_unmap_unlock(ptep, ptl);
1602         return ERR_PTR(-EFAULT);
1603
1604 no_page:
1605         pte_unmap_unlock(ptep, ptl);
1606         if (!pte_none(pte))
1607                 return page;
1608
1609 no_page_table:
1610         /*
1611          * When core dumping an enormous anonymous area that nobody
1612          * has touched so far, we don't want to allocate unnecessary pages or
1613          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1614          * then get_dump_page() will return NULL to leave a hole in the dump.
1615          * But we can only make this optimization where a hole would surely
1616          * be zero-filled if handle_mm_fault() actually did handle it.
1617          */
1618         if ((flags & FOLL_DUMP) &&
1619             (!vma->vm_ops || !vma->vm_ops->fault))
1620                 return ERR_PTR(-EFAULT);
1621         return page;
1622 }
1623
1624 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1625 {
1626         return stack_guard_page_start(vma, addr) ||
1627                stack_guard_page_end(vma, addr+PAGE_SIZE);
1628 }
1629
1630 /**
1631  * __get_user_pages() - pin user pages in memory
1632  * @tsk:        task_struct of target task
1633  * @mm:         mm_struct of target mm
1634  * @start:      starting user address
1635  * @nr_pages:   number of pages from start to pin
1636  * @gup_flags:  flags modifying pin behaviour
1637  * @pages:      array that receives pointers to the pages pinned.
1638  *              Should be at least nr_pages long. Or NULL, if caller
1639  *              only intends to ensure the pages are faulted in.
1640  * @vmas:       array of pointers to vmas corresponding to each page.
1641  *              Or NULL if the caller does not require them.
1642  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1643  *
1644  * Returns number of pages pinned. This may be fewer than the number
1645  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1646  * were pinned, returns -errno. Each page returned must be released
1647  * with a put_page() call when it is finished with. vmas will only
1648  * remain valid while mmap_sem is held.
1649  *
1650  * Must be called with mmap_sem held for read or write.
1651  *
1652  * __get_user_pages walks a process's page tables and takes a reference to
1653  * each struct page that each user address corresponds to at a given
1654  * instant. That is, it takes the page that would be accessed if a user
1655  * thread accesses the given user virtual address at that instant.
1656  *
1657  * This does not guarantee that the page exists in the user mappings when
1658  * __get_user_pages returns, and there may even be a completely different
1659  * page there in some cases (eg. if mmapped pagecache has been invalidated
1660  * and subsequently re faulted). However it does guarantee that the page
1661  * won't be freed completely. And mostly callers simply care that the page
1662  * contains data that was valid *at some point in time*. Typically, an IO
1663  * or similar operation cannot guarantee anything stronger anyway because
1664  * locks can't be held over the syscall boundary.
1665  *
1666  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1667  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1668  * appropriate) must be called after the page is finished with, and
1669  * before put_page is called.
1670  *
1671  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1672  * or mmap_sem contention, and if waiting is needed to pin all pages,
1673  * *@nonblocking will be set to 0.
1674  *
1675  * In most cases, get_user_pages or get_user_pages_fast should be used
1676  * instead of __get_user_pages. __get_user_pages should be used only if
1677  * you need some special @gup_flags.
1678  */
1679 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1680                 unsigned long start, unsigned long nr_pages,
1681                 unsigned int gup_flags, struct page **pages,
1682                 struct vm_area_struct **vmas, int *nonblocking)
1683 {
1684         long i;
1685         unsigned long vm_flags;
1686         unsigned int page_mask;
1687
1688         if (!nr_pages)
1689                 return 0;
1690
1691         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1692
1693         /* 
1694          * Require read or write permissions.
1695          * If FOLL_FORCE is set, we only require the "MAY" flags.
1696          */
1697         vm_flags  = (gup_flags & FOLL_WRITE) ?
1698                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1699         vm_flags &= (gup_flags & FOLL_FORCE) ?
1700                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1701
1702         /*
1703          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1704          * would be called on PROT_NONE ranges. We must never invoke
1705          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1706          * page faults would unprotect the PROT_NONE ranges if
1707          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1708          * bitflag. So to avoid that, don't set FOLL_NUMA if
1709          * FOLL_FORCE is set.
1710          */
1711         if (!(gup_flags & FOLL_FORCE))
1712                 gup_flags |= FOLL_NUMA;
1713
1714         i = 0;
1715
1716         do {
1717                 struct vm_area_struct *vma;
1718
1719                 vma = find_extend_vma(mm, start);
1720                 if (!vma && in_gate_area(mm, start)) {
1721                         unsigned long pg = start & PAGE_MASK;
1722                         pgd_t *pgd;
1723                         pud_t *pud;
1724                         pmd_t *pmd;
1725                         pte_t *pte;
1726
1727                         /* user gate pages are read-only */
1728                         if (gup_flags & FOLL_WRITE)
1729                                 return i ? : -EFAULT;
1730                         if (pg > TASK_SIZE)
1731                                 pgd = pgd_offset_k(pg);
1732                         else
1733                                 pgd = pgd_offset_gate(mm, pg);
1734                         BUG_ON(pgd_none(*pgd));
1735                         pud = pud_offset(pgd, pg);
1736                         BUG_ON(pud_none(*pud));
1737                         pmd = pmd_offset(pud, pg);
1738                         if (pmd_none(*pmd))
1739                                 return i ? : -EFAULT;
1740                         VM_BUG_ON(pmd_trans_huge(*pmd));
1741                         pte = pte_offset_map(pmd, pg);
1742                         if (pte_none(*pte)) {
1743                                 pte_unmap(pte);
1744                                 return i ? : -EFAULT;
1745                         }
1746                         vma = get_gate_vma(mm);
1747                         if (pages) {
1748                                 struct page *page;
1749
1750                                 page = vm_normal_page(vma, start, *pte);
1751                                 if (!page) {
1752                                         if (!(gup_flags & FOLL_DUMP) &&
1753                                              is_zero_pfn(pte_pfn(*pte)))
1754                                                 page = pte_page(*pte);
1755                                         else {
1756                                                 pte_unmap(pte);
1757                                                 return i ? : -EFAULT;
1758                                         }
1759                                 }
1760                                 pages[i] = page;
1761                                 get_page(page);
1762                         }
1763                         pte_unmap(pte);
1764                         page_mask = 0;
1765                         goto next_page;
1766                 }
1767
1768                 if (!vma ||
1769                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1770                     !(vm_flags & vma->vm_flags))
1771                         return i ? : -EFAULT;
1772
1773                 if (is_vm_hugetlb_page(vma)) {
1774                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1775                                         &start, &nr_pages, i, gup_flags);
1776                         continue;
1777                 }
1778
1779                 do {
1780                         struct page *page;
1781                         unsigned int foll_flags = gup_flags;
1782                         unsigned int page_increm;
1783
1784                         /*
1785                          * If we have a pending SIGKILL, don't keep faulting
1786                          * pages and potentially allocating memory.
1787                          */
1788                         if (unlikely(fatal_signal_pending(current)))
1789                                 return i ? i : -ERESTARTSYS;
1790
1791                         cond_resched();
1792                         while (!(page = follow_page_mask(vma, start,
1793                                                 foll_flags, &page_mask))) {
1794                                 int ret;
1795                                 unsigned int fault_flags = 0;
1796
1797                                 /* For mlock, just skip the stack guard page. */
1798                                 if (foll_flags & FOLL_MLOCK) {
1799                                         if (stack_guard_page(vma, start))
1800                                                 goto next_page;
1801                                 }
1802                                 if (foll_flags & FOLL_WRITE)
1803                                         fault_flags |= FAULT_FLAG_WRITE;
1804                                 if (nonblocking)
1805                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1806                                 if (foll_flags & FOLL_NOWAIT)
1807                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1808
1809                                 ret = handle_mm_fault(mm, vma, start,
1810                                                         fault_flags);
1811
1812                                 if (ret & VM_FAULT_ERROR) {
1813                                         if (ret & VM_FAULT_OOM)
1814                                                 return i ? i : -ENOMEM;
1815                                         if (ret & (VM_FAULT_HWPOISON |
1816                                                    VM_FAULT_HWPOISON_LARGE)) {
1817                                                 if (i)
1818                                                         return i;
1819                                                 else if (gup_flags & FOLL_HWPOISON)
1820                                                         return -EHWPOISON;
1821                                                 else
1822                                                         return -EFAULT;
1823                                         }
1824                                         if (ret & VM_FAULT_SIGBUS)
1825                                                 return i ? i : -EFAULT;
1826                                         BUG();
1827                                 }
1828
1829                                 if (tsk) {
1830                                         if (ret & VM_FAULT_MAJOR)
1831                                                 tsk->maj_flt++;
1832                                         else
1833                                                 tsk->min_flt++;
1834                                 }
1835
1836                                 if (ret & VM_FAULT_RETRY) {
1837                                         if (nonblocking)
1838                                                 *nonblocking = 0;
1839                                         return i;
1840                                 }
1841
1842                                 /*
1843                                  * The VM_FAULT_WRITE bit tells us that
1844                                  * do_wp_page has broken COW when necessary,
1845                                  * even if maybe_mkwrite decided not to set
1846                                  * pte_write. We can thus safely do subsequent
1847                                  * page lookups as if they were reads. But only
1848                                  * do so when looping for pte_write is futile:
1849                                  * in some cases userspace may also be wanting
1850                                  * to write to the gotten user page, which a
1851                                  * read fault here might prevent (a readonly
1852                                  * page might get reCOWed by userspace write).
1853                                  */
1854                                 if ((ret & VM_FAULT_WRITE) &&
1855                                     !(vma->vm_flags & VM_WRITE))
1856                                         foll_flags &= ~FOLL_WRITE;
1857
1858                                 cond_resched();
1859                         }
1860                         if (IS_ERR(page))
1861                                 return i ? i : PTR_ERR(page);
1862                         if (pages) {
1863                                 pages[i] = page;
1864
1865                                 flush_anon_page(vma, page, start);
1866                                 flush_dcache_page(page);
1867                                 page_mask = 0;
1868                         }
1869 next_page:
1870                         if (vmas) {
1871                                 vmas[i] = vma;
1872                                 page_mask = 0;
1873                         }
1874                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1875                         if (page_increm > nr_pages)
1876                                 page_increm = nr_pages;
1877                         i += page_increm;
1878                         start += page_increm * PAGE_SIZE;
1879                         nr_pages -= page_increm;
1880                 } while (nr_pages && start < vma->vm_end);
1881         } while (nr_pages);
1882         return i;
1883 }
1884 EXPORT_SYMBOL(__get_user_pages);
1885
1886 /*
1887  * fixup_user_fault() - manually resolve a user page fault
1888  * @tsk:        the task_struct to use for page fault accounting, or
1889  *              NULL if faults are not to be recorded.
1890  * @mm:         mm_struct of target mm
1891  * @address:    user address
1892  * @fault_flags:flags to pass down to handle_mm_fault()
1893  *
1894  * This is meant to be called in the specific scenario where for locking reasons
1895  * we try to access user memory in atomic context (within a pagefault_disable()
1896  * section), this returns -EFAULT, and we want to resolve the user fault before
1897  * trying again.
1898  *
1899  * Typically this is meant to be used by the futex code.
1900  *
1901  * The main difference with get_user_pages() is that this function will
1902  * unconditionally call handle_mm_fault() which will in turn perform all the
1903  * necessary SW fixup of the dirty and young bits in the PTE, while
1904  * handle_mm_fault() only guarantees to update these in the struct page.
1905  *
1906  * This is important for some architectures where those bits also gate the
1907  * access permission to the page because they are maintained in software.  On
1908  * such architectures, gup() will not be enough to make a subsequent access
1909  * succeed.
1910  *
1911  * This should be called with the mm_sem held for read.
1912  */
1913 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1914                      unsigned long address, unsigned int fault_flags)
1915 {
1916         struct vm_area_struct *vma;
1917         int ret;
1918
1919         vma = find_extend_vma(mm, address);
1920         if (!vma || address < vma->vm_start)
1921                 return -EFAULT;
1922
1923         ret = handle_mm_fault(mm, vma, address, fault_flags);
1924         if (ret & VM_FAULT_ERROR) {
1925                 if (ret & VM_FAULT_OOM)
1926                         return -ENOMEM;
1927                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1928                         return -EHWPOISON;
1929                 if (ret & VM_FAULT_SIGBUS)
1930                         return -EFAULT;
1931                 BUG();
1932         }
1933         if (tsk) {
1934                 if (ret & VM_FAULT_MAJOR)
1935                         tsk->maj_flt++;
1936                 else
1937                         tsk->min_flt++;
1938         }
1939         return 0;
1940 }
1941
1942 /*
1943  * get_user_pages() - pin user pages in memory
1944  * @tsk:        the task_struct to use for page fault accounting, or
1945  *              NULL if faults are not to be recorded.
1946  * @mm:         mm_struct of target mm
1947  * @start:      starting user address
1948  * @nr_pages:   number of pages from start to pin
1949  * @write:      whether pages will be written to by the caller
1950  * @force:      whether to force write access even if user mapping is
1951  *              readonly. This will result in the page being COWed even
1952  *              in MAP_SHARED mappings. You do not want this.
1953  * @pages:      array that receives pointers to the pages pinned.
1954  *              Should be at least nr_pages long. Or NULL, if caller
1955  *              only intends to ensure the pages are faulted in.
1956  * @vmas:       array of pointers to vmas corresponding to each page.
1957  *              Or NULL if the caller does not require them.
1958  *
1959  * Returns number of pages pinned. This may be fewer than the number
1960  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1961  * were pinned, returns -errno. Each page returned must be released
1962  * with a put_page() call when it is finished with. vmas will only
1963  * remain valid while mmap_sem is held.
1964  *
1965  * Must be called with mmap_sem held for read or write.
1966  *
1967  * get_user_pages walks a process's page tables and takes a reference to
1968  * each struct page that each user address corresponds to at a given
1969  * instant. That is, it takes the page that would be accessed if a user
1970  * thread accesses the given user virtual address at that instant.
1971  *
1972  * This does not guarantee that the page exists in the user mappings when
1973  * get_user_pages returns, and there may even be a completely different
1974  * page there in some cases (eg. if mmapped pagecache has been invalidated
1975  * and subsequently re faulted). However it does guarantee that the page
1976  * won't be freed completely. And mostly callers simply care that the page
1977  * contains data that was valid *at some point in time*. Typically, an IO
1978  * or similar operation cannot guarantee anything stronger anyway because
1979  * locks can't be held over the syscall boundary.
1980  *
1981  * If write=0, the page must not be written to. If the page is written to,
1982  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1983  * after the page is finished with, and before put_page is called.
1984  *
1985  * get_user_pages is typically used for fewer-copy IO operations, to get a
1986  * handle on the memory by some means other than accesses via the user virtual
1987  * addresses. The pages may be submitted for DMA to devices or accessed via
1988  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1989  * use the correct cache flushing APIs.
1990  *
1991  * See also get_user_pages_fast, for performance critical applications.
1992  */
1993 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1994                 unsigned long start, unsigned long nr_pages, int write,
1995                 int force, struct page **pages, struct vm_area_struct **vmas)
1996 {
1997         int flags = FOLL_TOUCH;
1998
1999         if (pages)
2000                 flags |= FOLL_GET;
2001         if (write)
2002                 flags |= FOLL_WRITE;
2003         if (force)
2004                 flags |= FOLL_FORCE;
2005
2006         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2007                                 NULL);
2008 }
2009 EXPORT_SYMBOL(get_user_pages);
2010
2011 /**
2012  * get_dump_page() - pin user page in memory while writing it to core dump
2013  * @addr: user address
2014  *
2015  * Returns struct page pointer of user page pinned for dump,
2016  * to be freed afterwards by page_cache_release() or put_page().
2017  *
2018  * Returns NULL on any kind of failure - a hole must then be inserted into
2019  * the corefile, to preserve alignment with its headers; and also returns
2020  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2021  * allowing a hole to be left in the corefile to save diskspace.
2022  *
2023  * Called without mmap_sem, but after all other threads have been killed.
2024  */
2025 #ifdef CONFIG_ELF_CORE
2026 struct page *get_dump_page(unsigned long addr)
2027 {
2028         struct vm_area_struct *vma;
2029         struct page *page;
2030
2031         if (__get_user_pages(current, current->mm, addr, 1,
2032                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2033                              NULL) < 1)
2034                 return NULL;
2035         flush_cache_page(vma, addr, page_to_pfn(page));
2036         return page;
2037 }
2038 #endif /* CONFIG_ELF_CORE */
2039
2040 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2041                         spinlock_t **ptl)
2042 {
2043         pgd_t * pgd = pgd_offset(mm, addr);
2044         pud_t * pud = pud_alloc(mm, pgd, addr);
2045         if (pud) {
2046                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2047                 if (pmd) {
2048                         VM_BUG_ON(pmd_trans_huge(*pmd));
2049                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2050                 }
2051         }
2052         return NULL;
2053 }
2054
2055 /*
2056  * This is the old fallback for page remapping.
2057  *
2058  * For historical reasons, it only allows reserved pages. Only
2059  * old drivers should use this, and they needed to mark their
2060  * pages reserved for the old functions anyway.
2061  */
2062 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2063                         struct page *page, pgprot_t prot)
2064 {
2065         struct mm_struct *mm = vma->vm_mm;
2066         int retval;
2067         pte_t *pte;
2068         spinlock_t *ptl;
2069
2070         retval = -EINVAL;
2071         if (PageAnon(page))
2072                 goto out;
2073         retval = -ENOMEM;
2074         flush_dcache_page(page);
2075         pte = get_locked_pte(mm, addr, &ptl);
2076         if (!pte)
2077                 goto out;
2078         retval = -EBUSY;
2079         if (!pte_none(*pte))
2080                 goto out_unlock;
2081
2082         /* Ok, finally just insert the thing.. */
2083         get_page(page);
2084         inc_mm_counter_fast(mm, MM_FILEPAGES);
2085         page_add_file_rmap(page);
2086         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2087
2088         retval = 0;
2089         pte_unmap_unlock(pte, ptl);
2090         return retval;
2091 out_unlock:
2092         pte_unmap_unlock(pte, ptl);
2093 out:
2094         return retval;
2095 }
2096
2097 /**
2098  * vm_insert_page - insert single page into user vma
2099  * @vma: user vma to map to
2100  * @addr: target user address of this page
2101  * @page: source kernel page
2102  *
2103  * This allows drivers to insert individual pages they've allocated
2104  * into a user vma.
2105  *
2106  * The page has to be a nice clean _individual_ kernel allocation.
2107  * If you allocate a compound page, you need to have marked it as
2108  * such (__GFP_COMP), or manually just split the page up yourself
2109  * (see split_page()).
2110  *
2111  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2112  * took an arbitrary page protection parameter. This doesn't allow
2113  * that. Your vma protection will have to be set up correctly, which
2114  * means that if you want a shared writable mapping, you'd better
2115  * ask for a shared writable mapping!
2116  *
2117  * The page does not need to be reserved.
2118  *
2119  * Usually this function is called from f_op->mmap() handler
2120  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2121  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2122  * function from other places, for example from page-fault handler.
2123  */
2124 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2125                         struct page *page)
2126 {
2127         if (addr < vma->vm_start || addr >= vma->vm_end)
2128                 return -EFAULT;
2129         if (!page_count(page))
2130                 return -EINVAL;
2131         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2132                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2133                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2134                 vma->vm_flags |= VM_MIXEDMAP;
2135         }
2136         return insert_page(vma, addr, page, vma->vm_page_prot);
2137 }
2138 EXPORT_SYMBOL(vm_insert_page);
2139
2140 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2141                         unsigned long pfn, pgprot_t prot)
2142 {
2143         struct mm_struct *mm = vma->vm_mm;
2144         int retval;
2145         pte_t *pte, entry;
2146         spinlock_t *ptl;
2147
2148         retval = -ENOMEM;
2149         pte = get_locked_pte(mm, addr, &ptl);
2150         if (!pte)
2151                 goto out;
2152         retval = -EBUSY;
2153         if (!pte_none(*pte))
2154                 goto out_unlock;
2155
2156         /* Ok, finally just insert the thing.. */
2157         entry = pte_mkspecial(pfn_pte(pfn, prot));
2158         set_pte_at(mm, addr, pte, entry);
2159         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2160
2161         retval = 0;
2162 out_unlock:
2163         pte_unmap_unlock(pte, ptl);
2164 out:
2165         return retval;
2166 }
2167
2168 /**
2169  * vm_insert_pfn - insert single pfn into user vma
2170  * @vma: user vma to map to
2171  * @addr: target user address of this page
2172  * @pfn: source kernel pfn
2173  *
2174  * Similar to vm_insert_page, this allows drivers to insert individual pages
2175  * they've allocated into a user vma. Same comments apply.
2176  *
2177  * This function should only be called from a vm_ops->fault handler, and
2178  * in that case the handler should return NULL.
2179  *
2180  * vma cannot be a COW mapping.
2181  *
2182  * As this is called only for pages that do not currently exist, we
2183  * do not need to flush old virtual caches or the TLB.
2184  */
2185 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2186                         unsigned long pfn)
2187 {
2188         int ret;
2189         pgprot_t pgprot = vma->vm_page_prot;
2190         /*
2191          * Technically, architectures with pte_special can avoid all these
2192          * restrictions (same for remap_pfn_range).  However we would like
2193          * consistency in testing and feature parity among all, so we should
2194          * try to keep these invariants in place for everybody.
2195          */
2196         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2197         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2198                                                 (VM_PFNMAP|VM_MIXEDMAP));
2199         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2200         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2201
2202         if (addr < vma->vm_start || addr >= vma->vm_end)
2203                 return -EFAULT;
2204         if (track_pfn_insert(vma, &pgprot, pfn))
2205                 return -EINVAL;
2206
2207         ret = insert_pfn(vma, addr, pfn, pgprot);
2208
2209         return ret;
2210 }
2211 EXPORT_SYMBOL(vm_insert_pfn);
2212
2213 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2214                         unsigned long pfn)
2215 {
2216         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2217
2218         if (addr < vma->vm_start || addr >= vma->vm_end)
2219                 return -EFAULT;
2220
2221         /*
2222          * If we don't have pte special, then we have to use the pfn_valid()
2223          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2224          * refcount the page if pfn_valid is true (hence insert_page rather
2225          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2226          * without pte special, it would there be refcounted as a normal page.
2227          */
2228         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2229                 struct page *page;
2230
2231                 page = pfn_to_page(pfn);
2232                 return insert_page(vma, addr, page, vma->vm_page_prot);
2233         }
2234         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2235 }
2236 EXPORT_SYMBOL(vm_insert_mixed);
2237
2238 /*
2239  * maps a range of physical memory into the requested pages. the old
2240  * mappings are removed. any references to nonexistent pages results
2241  * in null mappings (currently treated as "copy-on-access")
2242  */
2243 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2244                         unsigned long addr, unsigned long end,
2245                         unsigned long pfn, pgprot_t prot)
2246 {
2247         pte_t *pte;
2248         spinlock_t *ptl;
2249
2250         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2251         if (!pte)
2252                 return -ENOMEM;
2253         arch_enter_lazy_mmu_mode();
2254         do {
2255                 BUG_ON(!pte_none(*pte));
2256                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2257                 pfn++;
2258         } while (pte++, addr += PAGE_SIZE, addr != end);
2259         arch_leave_lazy_mmu_mode();
2260         pte_unmap_unlock(pte - 1, ptl);
2261         return 0;
2262 }
2263
2264 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2265                         unsigned long addr, unsigned long end,
2266                         unsigned long pfn, pgprot_t prot)
2267 {
2268         pmd_t *pmd;
2269         unsigned long next;
2270
2271         pfn -= addr >> PAGE_SHIFT;
2272         pmd = pmd_alloc(mm, pud, addr);
2273         if (!pmd)
2274                 return -ENOMEM;
2275         VM_BUG_ON(pmd_trans_huge(*pmd));
2276         do {
2277                 next = pmd_addr_end(addr, end);
2278                 if (remap_pte_range(mm, pmd, addr, next,
2279                                 pfn + (addr >> PAGE_SHIFT), prot))
2280                         return -ENOMEM;
2281         } while (pmd++, addr = next, addr != end);
2282         return 0;
2283 }
2284
2285 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2286                         unsigned long addr, unsigned long end,
2287                         unsigned long pfn, pgprot_t prot)
2288 {
2289         pud_t *pud;
2290         unsigned long next;
2291
2292         pfn -= addr >> PAGE_SHIFT;
2293         pud = pud_alloc(mm, pgd, addr);
2294         if (!pud)
2295                 return -ENOMEM;
2296         do {
2297                 next = pud_addr_end(addr, end);
2298                 if (remap_pmd_range(mm, pud, addr, next,
2299                                 pfn + (addr >> PAGE_SHIFT), prot))
2300                         return -ENOMEM;
2301         } while (pud++, addr = next, addr != end);
2302         return 0;
2303 }
2304
2305 /**
2306  * remap_pfn_range - remap kernel memory to userspace
2307  * @vma: user vma to map to
2308  * @addr: target user address to start at
2309  * @pfn: physical address of kernel memory
2310  * @size: size of map area
2311  * @prot: page protection flags for this mapping
2312  *
2313  *  Note: this is only safe if the mm semaphore is held when called.
2314  */
2315 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2316                     unsigned long pfn, unsigned long size, pgprot_t prot)
2317 {
2318         pgd_t *pgd;
2319         unsigned long next;
2320         unsigned long end = addr + PAGE_ALIGN(size);
2321         struct mm_struct *mm = vma->vm_mm;
2322         int err;
2323
2324         /*
2325          * Physically remapped pages are special. Tell the
2326          * rest of the world about it:
2327          *   VM_IO tells people not to look at these pages
2328          *      (accesses can have side effects).
2329          *   VM_PFNMAP tells the core MM that the base pages are just
2330          *      raw PFN mappings, and do not have a "struct page" associated
2331          *      with them.
2332          *   VM_DONTEXPAND
2333          *      Disable vma merging and expanding with mremap().
2334          *   VM_DONTDUMP
2335          *      Omit vma from core dump, even when VM_IO turned off.
2336          *
2337          * There's a horrible special case to handle copy-on-write
2338          * behaviour that some programs depend on. We mark the "original"
2339          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2340          * See vm_normal_page() for details.
2341          */
2342         if (is_cow_mapping(vma->vm_flags)) {
2343                 if (addr != vma->vm_start || end != vma->vm_end)
2344                         return -EINVAL;
2345                 vma->vm_pgoff = pfn;
2346         }
2347
2348         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2349         if (err)
2350                 return -EINVAL;
2351
2352         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2353
2354         BUG_ON(addr >= end);
2355         pfn -= addr >> PAGE_SHIFT;
2356         pgd = pgd_offset(mm, addr);
2357         flush_cache_range(vma, addr, end);
2358         do {
2359                 next = pgd_addr_end(addr, end);
2360                 err = remap_pud_range(mm, pgd, addr, next,
2361                                 pfn + (addr >> PAGE_SHIFT), prot);
2362                 if (err)
2363                         break;
2364         } while (pgd++, addr = next, addr != end);
2365
2366         if (err)
2367                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2368
2369         return err;
2370 }
2371 EXPORT_SYMBOL(remap_pfn_range);
2372
2373 /**
2374  * vm_iomap_memory - remap memory to userspace
2375  * @vma: user vma to map to
2376  * @start: start of area
2377  * @len: size of area
2378  *
2379  * This is a simplified io_remap_pfn_range() for common driver use. The
2380  * driver just needs to give us the physical memory range to be mapped,
2381  * we'll figure out the rest from the vma information.
2382  *
2383  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2384  * whatever write-combining details or similar.
2385  */
2386 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2387 {
2388         unsigned long vm_len, pfn, pages;
2389
2390         /* Check that the physical memory area passed in looks valid */
2391         if (start + len < start)
2392                 return -EINVAL;
2393         /*
2394          * You *really* shouldn't map things that aren't page-aligned,
2395          * but we've historically allowed it because IO memory might
2396          * just have smaller alignment.
2397          */
2398         len += start & ~PAGE_MASK;
2399         pfn = start >> PAGE_SHIFT;
2400         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2401         if (pfn + pages < pfn)
2402                 return -EINVAL;
2403
2404         /* We start the mapping 'vm_pgoff' pages into the area */
2405         if (vma->vm_pgoff > pages)
2406                 return -EINVAL;
2407         pfn += vma->vm_pgoff;
2408         pages -= vma->vm_pgoff;
2409
2410         /* Can we fit all of the mapping? */
2411         vm_len = vma->vm_end - vma->vm_start;
2412         if (vm_len >> PAGE_SHIFT > pages)
2413                 return -EINVAL;
2414
2415         /* Ok, let it rip */
2416         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2417 }
2418 EXPORT_SYMBOL(vm_iomap_memory);
2419
2420 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2421                                      unsigned long addr, unsigned long end,
2422                                      pte_fn_t fn, void *data)
2423 {
2424         pte_t *pte;
2425         int err;
2426         pgtable_t token;
2427         spinlock_t *uninitialized_var(ptl);
2428
2429         pte = (mm == &init_mm) ?
2430                 pte_alloc_kernel(pmd, addr) :
2431                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2432         if (!pte)
2433                 return -ENOMEM;
2434
2435         BUG_ON(pmd_huge(*pmd));
2436
2437         arch_enter_lazy_mmu_mode();
2438
2439         token = pmd_pgtable(*pmd);
2440
2441         do {
2442                 err = fn(pte++, token, addr, data);
2443                 if (err)
2444                         break;
2445         } while (addr += PAGE_SIZE, addr != end);
2446
2447         arch_leave_lazy_mmu_mode();
2448
2449         if (mm != &init_mm)
2450                 pte_unmap_unlock(pte-1, ptl);
2451         return err;
2452 }
2453
2454 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2455                                      unsigned long addr, unsigned long end,
2456                                      pte_fn_t fn, void *data)
2457 {
2458         pmd_t *pmd;
2459         unsigned long next;
2460         int err;
2461
2462         BUG_ON(pud_huge(*pud));
2463
2464         pmd = pmd_alloc(mm, pud, addr);
2465         if (!pmd)
2466                 return -ENOMEM;
2467         do {
2468                 next = pmd_addr_end(addr, end);
2469                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2470                 if (err)
2471                         break;
2472         } while (pmd++, addr = next, addr != end);
2473         return err;
2474 }
2475
2476 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2477                                      unsigned long addr, unsigned long end,
2478                                      pte_fn_t fn, void *data)
2479 {
2480         pud_t *pud;
2481         unsigned long next;
2482         int err;
2483
2484         pud = pud_alloc(mm, pgd, addr);
2485         if (!pud)
2486                 return -ENOMEM;
2487         do {
2488                 next = pud_addr_end(addr, end);
2489                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2490                 if (err)
2491                         break;
2492         } while (pud++, addr = next, addr != end);
2493         return err;
2494 }
2495
2496 /*
2497  * Scan a region of virtual memory, filling in page tables as necessary
2498  * and calling a provided function on each leaf page table.
2499  */
2500 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2501                         unsigned long size, pte_fn_t fn, void *data)
2502 {
2503         pgd_t *pgd;
2504         unsigned long next;
2505         unsigned long end = addr + size;
2506         int err;
2507
2508         BUG_ON(addr >= end);
2509         pgd = pgd_offset(mm, addr);
2510         do {
2511                 next = pgd_addr_end(addr, end);
2512                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2513                 if (err)
2514                         break;
2515         } while (pgd++, addr = next, addr != end);
2516
2517         return err;
2518 }
2519 EXPORT_SYMBOL_GPL(apply_to_page_range);
2520
2521 /*
2522  * handle_pte_fault chooses page fault handler according to an entry
2523  * which was read non-atomically.  Before making any commitment, on
2524  * those architectures or configurations (e.g. i386 with PAE) which
2525  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2526  * must check under lock before unmapping the pte and proceeding
2527  * (but do_wp_page is only called after already making such a check;
2528  * and do_anonymous_page can safely check later on).
2529  */
2530 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2531                                 pte_t *page_table, pte_t orig_pte)
2532 {
2533         int same = 1;
2534 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2535         if (sizeof(pte_t) > sizeof(unsigned long)) {
2536                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2537                 spin_lock(ptl);
2538                 same = pte_same(*page_table, orig_pte);
2539                 spin_unlock(ptl);
2540         }
2541 #endif
2542         pte_unmap(page_table);
2543         return same;
2544 }
2545
2546 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2547 {
2548         /*
2549          * If the source page was a PFN mapping, we don't have
2550          * a "struct page" for it. We do a best-effort copy by
2551          * just copying from the original user address. If that
2552          * fails, we just zero-fill it. Live with it.
2553          */
2554         if (unlikely(!src)) {
2555                 void *kaddr = kmap_atomic(dst);
2556                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2557
2558                 /*
2559                  * This really shouldn't fail, because the page is there
2560                  * in the page tables. But it might just be unreadable,
2561                  * in which case we just give up and fill the result with
2562                  * zeroes.
2563                  */
2564                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2565                         clear_page(kaddr);
2566                 kunmap_atomic(kaddr);
2567                 flush_dcache_page(dst);
2568         } else
2569                 copy_user_highpage(dst, src, va, vma);
2570 }
2571
2572 /*
2573  * This routine handles present pages, when users try to write
2574  * to a shared page. It is done by copying the page to a new address
2575  * and decrementing the shared-page counter for the old page.
2576  *
2577  * Note that this routine assumes that the protection checks have been
2578  * done by the caller (the low-level page fault routine in most cases).
2579  * Thus we can safely just mark it writable once we've done any necessary
2580  * COW.
2581  *
2582  * We also mark the page dirty at this point even though the page will
2583  * change only once the write actually happens. This avoids a few races,
2584  * and potentially makes it more efficient.
2585  *
2586  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2587  * but allow concurrent faults), with pte both mapped and locked.
2588  * We return with mmap_sem still held, but pte unmapped and unlocked.
2589  */
2590 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2591                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2592                 spinlock_t *ptl, pte_t orig_pte)
2593         __releases(ptl)
2594 {
2595         struct page *old_page, *new_page = NULL;
2596         pte_t entry;
2597         int ret = 0;
2598         int page_mkwrite = 0;
2599         struct page *dirty_page = NULL;
2600         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2601         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2602
2603         old_page = vm_normal_page(vma, address, orig_pte);
2604         if (!old_page) {
2605                 /*
2606                  * VM_MIXEDMAP !pfn_valid() case
2607                  *
2608                  * We should not cow pages in a shared writeable mapping.
2609                  * Just mark the pages writable as we can't do any dirty
2610                  * accounting on raw pfn maps.
2611                  */
2612                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2613                                      (VM_WRITE|VM_SHARED))
2614                         goto reuse;
2615                 goto gotten;
2616         }
2617
2618         /*
2619          * Take out anonymous pages first, anonymous shared vmas are
2620          * not dirty accountable.
2621          */
2622         if (PageAnon(old_page) && !PageKsm(old_page)) {
2623                 if (!trylock_page(old_page)) {
2624                         page_cache_get(old_page);
2625                         pte_unmap_unlock(page_table, ptl);
2626                         lock_page(old_page);
2627                         page_table = pte_offset_map_lock(mm, pmd, address,
2628                                                          &ptl);
2629                         if (!pte_same(*page_table, orig_pte)) {
2630                                 unlock_page(old_page);
2631                                 goto unlock;
2632                         }
2633                         page_cache_release(old_page);
2634                 }
2635                 if (reuse_swap_page(old_page)) {
2636                         /*
2637                          * The page is all ours.  Move it to our anon_vma so
2638                          * the rmap code will not search our parent or siblings.
2639                          * Protected against the rmap code by the page lock.
2640                          */
2641                         page_move_anon_rmap(old_page, vma, address);
2642                         unlock_page(old_page);
2643                         goto reuse;
2644                 }
2645                 unlock_page(old_page);
2646         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2647                                         (VM_WRITE|VM_SHARED))) {
2648                 /*
2649                  * Only catch write-faults on shared writable pages,
2650                  * read-only shared pages can get COWed by
2651                  * get_user_pages(.write=1, .force=1).
2652                  */
2653                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2654                         struct vm_fault vmf;
2655                         int tmp;
2656
2657                         vmf.virtual_address = (void __user *)(address &
2658                                                                 PAGE_MASK);
2659                         vmf.pgoff = old_page->index;
2660                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2661                         vmf.page = old_page;
2662
2663                         /*
2664                          * Notify the address space that the page is about to
2665                          * become writable so that it can prohibit this or wait
2666                          * for the page to get into an appropriate state.
2667                          *
2668                          * We do this without the lock held, so that it can
2669                          * sleep if it needs to.
2670                          */
2671                         page_cache_get(old_page);
2672                         pte_unmap_unlock(page_table, ptl);
2673
2674                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2675                         if (unlikely(tmp &
2676                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2677                                 ret = tmp;
2678                                 goto unwritable_page;
2679                         }
2680                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2681                                 lock_page(old_page);
2682                                 if (!old_page->mapping) {
2683                                         ret = 0; /* retry the fault */
2684                                         unlock_page(old_page);
2685                                         goto unwritable_page;
2686                                 }
2687                         } else
2688                                 VM_BUG_ON(!PageLocked(old_page));
2689
2690                         /*
2691                          * Since we dropped the lock we need to revalidate
2692                          * the PTE as someone else may have changed it.  If
2693                          * they did, we just return, as we can count on the
2694                          * MMU to tell us if they didn't also make it writable.
2695                          */
2696                         page_table = pte_offset_map_lock(mm, pmd, address,
2697                                                          &ptl);
2698                         if (!pte_same(*page_table, orig_pte)) {
2699                                 unlock_page(old_page);
2700                                 goto unlock;
2701                         }
2702
2703                         page_mkwrite = 1;
2704                 }
2705                 dirty_page = old_page;
2706                 get_page(dirty_page);
2707
2708 reuse:
2709                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2710                 entry = pte_mkyoung(orig_pte);
2711                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2712                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2713                         update_mmu_cache(vma, address, page_table);
2714                 pte_unmap_unlock(page_table, ptl);
2715                 ret |= VM_FAULT_WRITE;
2716
2717                 if (!dirty_page)
2718                         return ret;
2719
2720                 /*
2721                  * Yes, Virginia, this is actually required to prevent a race
2722                  * with clear_page_dirty_for_io() from clearing the page dirty
2723                  * bit after it clear all dirty ptes, but before a racing
2724                  * do_wp_page installs a dirty pte.
2725                  *
2726                  * __do_fault is protected similarly.
2727                  */
2728                 if (!page_mkwrite) {
2729                         wait_on_page_locked(dirty_page);
2730                         set_page_dirty_balance(dirty_page, page_mkwrite);
2731                         /* file_update_time outside page_lock */
2732                         if (vma->vm_file)
2733                                 file_update_time(vma->vm_file);
2734                 }
2735                 put_page(dirty_page);
2736                 if (page_mkwrite) {
2737                         struct address_space *mapping = dirty_page->mapping;
2738
2739                         set_page_dirty(dirty_page);
2740                         unlock_page(dirty_page);
2741                         page_cache_release(dirty_page);
2742                         if (mapping)    {
2743                                 /*
2744                                  * Some device drivers do not set page.mapping
2745                                  * but still dirty their pages
2746                                  */
2747                                 balance_dirty_pages_ratelimited(mapping);
2748                         }
2749                 }
2750
2751                 return ret;
2752         }
2753
2754         /*
2755          * Ok, we need to copy. Oh, well..
2756          */
2757         page_cache_get(old_page);
2758 gotten:
2759         pte_unmap_unlock(page_table, ptl);
2760
2761         if (unlikely(anon_vma_prepare(vma)))
2762                 goto oom;
2763
2764         if (is_zero_pfn(pte_pfn(orig_pte))) {
2765                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2766                 if (!new_page)
2767                         goto oom;
2768         } else {
2769                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2770                 if (!new_page)
2771                         goto oom;
2772                 cow_user_page(new_page, old_page, address, vma);
2773         }
2774         __SetPageUptodate(new_page);
2775
2776         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2777                 goto oom_free_new;
2778
2779         mmun_start  = address & PAGE_MASK;
2780         mmun_end    = mmun_start + PAGE_SIZE;
2781         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2782
2783         /*
2784          * Re-check the pte - we dropped the lock
2785          */
2786         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2787         if (likely(pte_same(*page_table, orig_pte))) {
2788                 if (old_page) {
2789                         if (!PageAnon(old_page)) {
2790                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2791                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2792                         }
2793                 } else
2794                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2795                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2796                 entry = mk_pte(new_page, vma->vm_page_prot);
2797                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2798                 /*
2799                  * Clear the pte entry and flush it first, before updating the
2800                  * pte with the new entry. This will avoid a race condition
2801                  * seen in the presence of one thread doing SMC and another
2802                  * thread doing COW.
2803                  */
2804                 ptep_clear_flush(vma, address, page_table);
2805                 page_add_new_anon_rmap(new_page, vma, address);
2806                 /*
2807                  * We call the notify macro here because, when using secondary
2808                  * mmu page tables (such as kvm shadow page tables), we want the
2809                  * new page to be mapped directly into the secondary page table.
2810                  */
2811                 set_pte_at_notify(mm, address, page_table, entry);
2812                 update_mmu_cache(vma, address, page_table);
2813                 if (old_page) {
2814                         /*
2815                          * Only after switching the pte to the new page may
2816                          * we remove the mapcount here. Otherwise another
2817                          * process may come and find the rmap count decremented
2818                          * before the pte is switched to the new page, and
2819                          * "reuse" the old page writing into it while our pte
2820                          * here still points into it and can be read by other
2821                          * threads.
2822                          *
2823                          * The critical issue is to order this
2824                          * page_remove_rmap with the ptp_clear_flush above.
2825                          * Those stores are ordered by (if nothing else,)
2826                          * the barrier present in the atomic_add_negative
2827                          * in page_remove_rmap.
2828                          *
2829                          * Then the TLB flush in ptep_clear_flush ensures that
2830                          * no process can access the old page before the
2831                          * decremented mapcount is visible. And the old page
2832                          * cannot be reused until after the decremented
2833                          * mapcount is visible. So transitively, TLBs to
2834                          * old page will be flushed before it can be reused.
2835                          */
2836                         page_remove_rmap(old_page);
2837                 }
2838
2839                 /* Free the old page.. */
2840                 new_page = old_page;
2841                 ret |= VM_FAULT_WRITE;
2842         } else
2843                 mem_cgroup_uncharge_page(new_page);
2844
2845         if (new_page)
2846                 page_cache_release(new_page);
2847 unlock:
2848         pte_unmap_unlock(page_table, ptl);
2849         if (mmun_end > mmun_start)
2850                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2851         if (old_page) {
2852                 /*
2853                  * Don't let another task, with possibly unlocked vma,
2854                  * keep the mlocked page.
2855                  */
2856                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2857                         lock_page(old_page);    /* LRU manipulation */
2858                         munlock_vma_page(old_page);
2859                         unlock_page(old_page);
2860                 }
2861                 page_cache_release(old_page);
2862         }
2863         return ret;
2864 oom_free_new:
2865         page_cache_release(new_page);
2866 oom:
2867         if (old_page)
2868                 page_cache_release(old_page);
2869         return VM_FAULT_OOM;
2870
2871 unwritable_page:
2872         page_cache_release(old_page);
2873         return ret;
2874 }
2875
2876 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2877                 unsigned long start_addr, unsigned long end_addr,
2878                 struct zap_details *details)
2879 {
2880         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2881 }
2882
2883 static inline void unmap_mapping_range_tree(struct rb_root *root,
2884                                             struct zap_details *details)
2885 {
2886         struct vm_area_struct *vma;
2887         pgoff_t vba, vea, zba, zea;
2888
2889         vma_interval_tree_foreach(vma, root,
2890                         details->first_index, details->last_index) {
2891
2892                 vba = vma->vm_pgoff;
2893                 vea = vba + vma_pages(vma) - 1;
2894                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2895                 zba = details->first_index;
2896                 if (zba < vba)
2897                         zba = vba;
2898                 zea = details->last_index;
2899                 if (zea > vea)
2900                         zea = vea;
2901
2902                 unmap_mapping_range_vma(vma,
2903                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2904                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2905                                 details);
2906         }
2907 }
2908
2909 static inline void unmap_mapping_range_list(struct list_head *head,
2910                                             struct zap_details *details)
2911 {
2912         struct vm_area_struct *vma;
2913
2914         /*
2915          * In nonlinear VMAs there is no correspondence between virtual address
2916          * offset and file offset.  So we must perform an exhaustive search
2917          * across *all* the pages in each nonlinear VMA, not just the pages
2918          * whose virtual address lies outside the file truncation point.
2919          */
2920         list_for_each_entry(vma, head, shared.nonlinear) {
2921                 details->nonlinear_vma = vma;
2922                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2923         }
2924 }
2925
2926 /**
2927  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2928  * @mapping: the address space containing mmaps to be unmapped.
2929  * @holebegin: byte in first page to unmap, relative to the start of
2930  * the underlying file.  This will be rounded down to a PAGE_SIZE
2931  * boundary.  Note that this is different from truncate_pagecache(), which
2932  * must keep the partial page.  In contrast, we must get rid of
2933  * partial pages.
2934  * @holelen: size of prospective hole in bytes.  This will be rounded
2935  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2936  * end of the file.
2937  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2938  * but 0 when invalidating pagecache, don't throw away private data.
2939  */
2940 void unmap_mapping_range(struct address_space *mapping,
2941                 loff_t const holebegin, loff_t const holelen, int even_cows)
2942 {
2943         struct zap_details details;
2944         pgoff_t hba = holebegin >> PAGE_SHIFT;
2945         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2946
2947         /* Check for overflow. */
2948         if (sizeof(holelen) > sizeof(hlen)) {
2949                 long long holeend =
2950                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2951                 if (holeend & ~(long long)ULONG_MAX)
2952                         hlen = ULONG_MAX - hba + 1;
2953         }
2954
2955         details.check_mapping = even_cows? NULL: mapping;
2956         details.nonlinear_vma = NULL;
2957         details.first_index = hba;
2958         details.last_index = hba + hlen - 1;
2959         if (details.last_index < details.first_index)
2960                 details.last_index = ULONG_MAX;
2961
2962
2963         mutex_lock(&mapping->i_mmap_mutex);
2964         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2965                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2966         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2967                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2968         mutex_unlock(&mapping->i_mmap_mutex);
2969 }
2970 EXPORT_SYMBOL(unmap_mapping_range);
2971
2972 /*
2973  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2974  * but allow concurrent faults), and pte mapped but not yet locked.
2975  * We return with mmap_sem still held, but pte unmapped and unlocked.
2976  */
2977 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2978                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2979                 unsigned int flags, pte_t orig_pte)
2980 {
2981         spinlock_t *ptl;
2982         struct page *page, *swapcache;
2983         swp_entry_t entry;
2984         pte_t pte;
2985         int locked;
2986         struct mem_cgroup *ptr;
2987         int exclusive = 0;
2988         int ret = 0;
2989
2990         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2991                 goto out;
2992
2993         entry = pte_to_swp_entry(orig_pte);
2994         if (unlikely(non_swap_entry(entry))) {
2995                 if (is_migration_entry(entry)) {
2996                         migration_entry_wait(mm, pmd, address);
2997                 } else if (is_hwpoison_entry(entry)) {
2998                         ret = VM_FAULT_HWPOISON;
2999                 } else {
3000                         print_bad_pte(vma, address, orig_pte, NULL);
3001                         ret = VM_FAULT_SIGBUS;
3002                 }
3003                 goto out;
3004         }
3005         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3006         page = lookup_swap_cache(entry);
3007         if (!page) {
3008                 page = swapin_readahead(entry,
3009                                         GFP_HIGHUSER_MOVABLE, vma, address);
3010                 if (!page) {
3011                         /*
3012                          * Back out if somebody else faulted in this pte
3013                          * while we released the pte lock.
3014                          */
3015                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3016                         if (likely(pte_same(*page_table, orig_pte)))
3017                                 ret = VM_FAULT_OOM;
3018                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3019                         goto unlock;
3020                 }
3021
3022                 /* Had to read the page from swap area: Major fault */
3023                 ret = VM_FAULT_MAJOR;
3024                 count_vm_event(PGMAJFAULT);
3025                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3026         } else if (PageHWPoison(page)) {
3027                 /*
3028                  * hwpoisoned dirty swapcache pages are kept for killing
3029                  * owner processes (which may be unknown at hwpoison time)
3030                  */
3031                 ret = VM_FAULT_HWPOISON;
3032                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3033                 swapcache = page;
3034                 goto out_release;
3035         }
3036
3037         swapcache = page;
3038         locked = lock_page_or_retry(page, mm, flags);
3039
3040         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3041         if (!locked) {
3042                 ret |= VM_FAULT_RETRY;
3043                 goto out_release;
3044         }
3045
3046         /*
3047          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3048          * release the swapcache from under us.  The page pin, and pte_same
3049          * test below, are not enough to exclude that.  Even if it is still
3050          * swapcache, we need to check that the page's swap has not changed.
3051          */
3052         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3053                 goto out_page;
3054
3055         page = ksm_might_need_to_copy(page, vma, address);
3056         if (unlikely(!page)) {
3057                 ret = VM_FAULT_OOM;
3058                 page = swapcache;
3059                 goto out_page;
3060         }
3061
3062         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3063                 ret = VM_FAULT_OOM;
3064                 goto out_page;
3065         }
3066
3067         /*
3068          * Back out if somebody else already faulted in this pte.
3069          */
3070         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3071         if (unlikely(!pte_same(*page_table, orig_pte)))
3072                 goto out_nomap;
3073
3074         if (unlikely(!PageUptodate(page))) {
3075                 ret = VM_FAULT_SIGBUS;
3076                 goto out_nomap;
3077         }
3078
3079         /*
3080          * The page isn't present yet, go ahead with the fault.
3081          *
3082          * Be careful about the sequence of operations here.
3083          * To get its accounting right, reuse_swap_page() must be called
3084          * while the page is counted on swap but not yet in mapcount i.e.
3085          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3086          * must be called after the swap_free(), or it will never succeed.
3087          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3088          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3089          * in page->private. In this case, a record in swap_cgroup  is silently
3090          * discarded at swap_free().
3091          */
3092
3093         inc_mm_counter_fast(mm, MM_ANONPAGES);
3094         dec_mm_counter_fast(mm, MM_SWAPENTS);
3095         pte = mk_pte(page, vma->vm_page_prot);
3096         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3097                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3098                 flags &= ~FAULT_FLAG_WRITE;
3099                 ret |= VM_FAULT_WRITE;
3100                 exclusive = 1;
3101         }
3102         flush_icache_page(vma, page);
3103         if (pte_swp_soft_dirty(orig_pte))
3104                 pte = pte_mksoft_dirty(pte);
3105         set_pte_at(mm, address, page_table, pte);
3106         if (page == swapcache)
3107                 do_page_add_anon_rmap(page, vma, address, exclusive);
3108         else /* ksm created a completely new copy */
3109                 page_add_new_anon_rmap(page, vma, address);
3110         /* It's better to call commit-charge after rmap is established */
3111         mem_cgroup_commit_charge_swapin(page, ptr);
3112
3113         swap_free(entry);
3114         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3115                 try_to_free_swap(page);
3116         unlock_page(page);
3117         if (page != swapcache) {
3118                 /*
3119                  * Hold the lock to avoid the swap entry to be reused
3120                  * until we take the PT lock for the pte_same() check
3121                  * (to avoid false positives from pte_same). For
3122                  * further safety release the lock after the swap_free
3123                  * so that the swap count won't change under a
3124                  * parallel locked swapcache.
3125                  */
3126                 unlock_page(swapcache);
3127                 page_cache_release(swapcache);
3128         }
3129
3130         if (flags & FAULT_FLAG_WRITE) {
3131                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3132                 if (ret & VM_FAULT_ERROR)
3133                         ret &= VM_FAULT_ERROR;
3134                 goto out;
3135         }
3136
3137         /* No need to invalidate - it was non-present before */
3138         update_mmu_cache(vma, address, page_table);
3139 unlock:
3140         pte_unmap_unlock(page_table, ptl);
3141 out:
3142         return ret;
3143 out_nomap:
3144         mem_cgroup_cancel_charge_swapin(ptr);
3145         pte_unmap_unlock(page_table, ptl);
3146 out_page:
3147         unlock_page(page);
3148 out_release:
3149         page_cache_release(page);
3150         if (page != swapcache) {
3151                 unlock_page(swapcache);
3152                 page_cache_release(swapcache);
3153         }
3154         return ret;
3155 }
3156
3157 /*
3158  * This is like a special single-page "expand_{down|up}wards()",
3159  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3160  * doesn't hit another vma.
3161  */
3162 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3163 {
3164         address &= PAGE_MASK;
3165         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3166                 struct vm_area_struct *prev = vma->vm_prev;
3167
3168                 /*
3169                  * Is there a mapping abutting this one below?
3170                  *
3171                  * That's only ok if it's the same stack mapping
3172                  * that has gotten split..
3173                  */
3174                 if (prev && prev->vm_end == address)
3175                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3176
3177                 expand_downwards(vma, address - PAGE_SIZE);
3178         }
3179         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3180                 struct vm_area_struct *next = vma->vm_next;
3181
3182                 /* As VM_GROWSDOWN but s/below/above/ */
3183                 if (next && next->vm_start == address + PAGE_SIZE)
3184                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3185
3186                 expand_upwards(vma, address + PAGE_SIZE);
3187         }
3188         return 0;
3189 }
3190
3191 /*
3192  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3193  * but allow concurrent faults), and pte mapped but not yet locked.
3194  * We return with mmap_sem still held, but pte unmapped and unlocked.
3195  */
3196 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3197                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3198                 unsigned int flags)
3199 {
3200         struct page *page;
3201         spinlock_t *ptl;
3202         pte_t entry;
3203
3204         pte_unmap(page_table);
3205
3206         /* Check if we need to add a guard page to the stack */
3207         if (check_stack_guard_page(vma, address) < 0)
3208                 return VM_FAULT_SIGBUS;
3209
3210         /* Use the zero-page for reads */
3211         if (!(flags & FAULT_FLAG_WRITE)) {
3212                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3213                                                 vma->vm_page_prot));
3214                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3215                 if (!pte_none(*page_table))
3216                         goto unlock;
3217                 goto setpte;
3218         }
3219
3220         /* Allocate our own private page. */
3221         if (unlikely(anon_vma_prepare(vma)))
3222                 goto oom;
3223         page = alloc_zeroed_user_highpage_movable(vma, address);
3224         if (!page)
3225                 goto oom;
3226         /*
3227          * The memory barrier inside __SetPageUptodate makes sure that
3228          * preceeding stores to the page contents become visible before
3229          * the set_pte_at() write.
3230          */
3231         __SetPageUptodate(page);
3232
3233         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3234                 goto oom_free_page;
3235
3236         entry = mk_pte(page, vma->vm_page_prot);
3237         if (vma->vm_flags & VM_WRITE)
3238                 entry = pte_mkwrite(pte_mkdirty(entry));
3239
3240         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3241         if (!pte_none(*page_table))
3242                 goto release;
3243
3244         inc_mm_counter_fast(mm, MM_ANONPAGES);
3245         page_add_new_anon_rmap(page, vma, address);
3246 setpte:
3247         set_pte_at(mm, address, page_table, entry);
3248
3249         /* No need to invalidate - it was non-present before */
3250         update_mmu_cache(vma, address, page_table);
3251 unlock:
3252         pte_unmap_unlock(page_table, ptl);
3253         return 0;
3254 release:
3255         mem_cgroup_uncharge_page(page);
3256         page_cache_release(page);
3257         goto unlock;
3258 oom_free_page:
3259         page_cache_release(page);
3260 oom:
3261         return VM_FAULT_OOM;
3262 }
3263
3264 /*
3265  * __do_fault() tries to create a new page mapping. It aggressively
3266  * tries to share with existing pages, but makes a separate copy if
3267  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3268  * the next page fault.
3269  *
3270  * As this is called only for pages that do not currently exist, we
3271  * do not need to flush old virtual caches or the TLB.
3272  *
3273  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3274  * but allow concurrent faults), and pte neither mapped nor locked.
3275  * We return with mmap_sem still held, but pte unmapped and unlocked.
3276  */
3277 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3278                 unsigned long address, pmd_t *pmd,
3279                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3280 {
3281         pte_t *page_table;
3282         spinlock_t *ptl;
3283         struct page *page;
3284         struct page *cow_page;
3285         pte_t entry;
3286         int anon = 0;
3287         struct page *dirty_page = NULL;
3288         struct vm_fault vmf;
3289         int ret;
3290         int page_mkwrite = 0;
3291
3292         /*
3293          * If we do COW later, allocate page befor taking lock_page()
3294          * on the file cache page. This will reduce lock holding time.
3295          */
3296         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3297
3298                 if (unlikely(anon_vma_prepare(vma)))
3299                         return VM_FAULT_OOM;
3300
3301                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3302                 if (!cow_page)
3303                         return VM_FAULT_OOM;
3304
3305                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3306                         page_cache_release(cow_page);
3307                         return VM_FAULT_OOM;
3308                 }
3309         } else
3310                 cow_page = NULL;
3311
3312         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3313         vmf.pgoff = pgoff;
3314         vmf.flags = flags;
3315         vmf.page = NULL;
3316
3317         ret = vma->vm_ops->fault(vma, &vmf);
3318         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3319                             VM_FAULT_RETRY)))
3320                 goto uncharge_out;
3321
3322         if (unlikely(PageHWPoison(vmf.page))) {
3323                 if (ret & VM_FAULT_LOCKED)
3324                         unlock_page(vmf.page);
3325                 ret = VM_FAULT_HWPOISON;
3326                 goto uncharge_out;
3327         }
3328
3329         /*
3330          * For consistency in subsequent calls, make the faulted page always
3331          * locked.
3332          */
3333         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3334                 lock_page(vmf.page);
3335         else
3336                 VM_BUG_ON(!PageLocked(vmf.page));
3337
3338         /*
3339          * Should we do an early C-O-W break?
3340          */
3341         page = vmf.page;
3342         if (flags & FAULT_FLAG_WRITE) {
3343                 if (!(vma->vm_flags & VM_SHARED)) {
3344                         page = cow_page;
3345                         anon = 1;
3346                         copy_user_highpage(page, vmf.page, address, vma);
3347                         __SetPageUptodate(page);
3348                 } else {
3349                         /*
3350                          * If the page will be shareable, see if the backing
3351                          * address space wants to know that the page is about
3352                          * to become writable
3353                          */
3354                         if (vma->vm_ops->page_mkwrite) {
3355                                 int tmp;
3356
3357                                 unlock_page(page);
3358                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3359                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3360                                 if (unlikely(tmp &
3361                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3362                                         ret = tmp;
3363                                         goto unwritable_page;
3364                                 }
3365                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3366                                         lock_page(page);
3367                                         if (!page->mapping) {
3368                                                 ret = 0; /* retry the fault */
3369                                                 unlock_page(page);
3370                                                 goto unwritable_page;
3371                                         }
3372                                 } else
3373                                         VM_BUG_ON(!PageLocked(page));
3374                                 page_mkwrite = 1;
3375                         }
3376                 }
3377
3378         }
3379
3380         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3381
3382         /*
3383          * This silly early PAGE_DIRTY setting removes a race
3384          * due to the bad i386 page protection. But it's valid
3385          * for other architectures too.
3386          *
3387          * Note that if FAULT_FLAG_WRITE is set, we either now have
3388          * an exclusive copy of the page, or this is a shared mapping,
3389          * so we can make it writable and dirty to avoid having to
3390          * handle that later.
3391          */
3392         /* Only go through if we didn't race with anybody else... */
3393         if (likely(pte_same(*page_table, orig_pte))) {
3394                 flush_icache_page(vma, page);
3395                 entry = mk_pte(page, vma->vm_page_prot);
3396                 if (flags & FAULT_FLAG_WRITE)
3397                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3398                 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3399                         pte_mksoft_dirty(entry);
3400                 if (anon) {
3401                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3402                         page_add_new_anon_rmap(page, vma, address);
3403                 } else {
3404                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3405                         page_add_file_rmap(page);
3406                         if (flags & FAULT_FLAG_WRITE) {
3407                                 dirty_page = page;
3408                                 get_page(dirty_page);
3409                         }
3410                 }
3411                 set_pte_at(mm, address, page_table, entry);
3412
3413                 /* no need to invalidate: a not-present page won't be cached */
3414                 update_mmu_cache(vma, address, page_table);
3415         } else {
3416                 if (cow_page)
3417                         mem_cgroup_uncharge_page(cow_page);
3418                 if (anon)
3419                         page_cache_release(page);
3420                 else
3421                         anon = 1; /* no anon but release faulted_page */
3422         }
3423
3424         pte_unmap_unlock(page_table, ptl);
3425
3426         if (dirty_page) {
3427                 struct address_space *mapping = page->mapping;
3428                 int dirtied = 0;
3429
3430                 if (set_page_dirty(dirty_page))
3431                         dirtied = 1;
3432                 unlock_page(dirty_page);
3433                 put_page(dirty_page);
3434                 if ((dirtied || page_mkwrite) && mapping) {
3435                         /*
3436                          * Some device drivers do not set page.mapping but still
3437                          * dirty their pages
3438                          */
3439                         balance_dirty_pages_ratelimited(mapping);
3440                 }
3441
3442                 /* file_update_time outside page_lock */
3443                 if (vma->vm_file && !page_mkwrite)
3444                         file_update_time(vma->vm_file);
3445         } else {
3446                 unlock_page(vmf.page);
3447                 if (anon)
3448                         page_cache_release(vmf.page);
3449         }
3450
3451         return ret;
3452
3453 unwritable_page:
3454         page_cache_release(page);
3455         return ret;
3456 uncharge_out:
3457         /* fs's fault handler get error */
3458         if (cow_page) {
3459                 mem_cgroup_uncharge_page(cow_page);
3460                 page_cache_release(cow_page);
3461         }
3462         return ret;
3463 }
3464
3465 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3466                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3467                 unsigned int flags, pte_t orig_pte)
3468 {
3469         pgoff_t pgoff = (((address & PAGE_MASK)
3470                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3471
3472         pte_unmap(page_table);
3473         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3474 }
3475
3476 /*
3477  * Fault of a previously existing named mapping. Repopulate the pte
3478  * from the encoded file_pte if possible. This enables swappable
3479  * nonlinear vmas.
3480  *
3481  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3482  * but allow concurrent faults), and pte mapped but not yet locked.
3483  * We return with mmap_sem still held, but pte unmapped and unlocked.
3484  */
3485 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3486                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3487                 unsigned int flags, pte_t orig_pte)
3488 {
3489         pgoff_t pgoff;
3490
3491         flags |= FAULT_FLAG_NONLINEAR;
3492
3493         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3494                 return 0;
3495
3496         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3497                 /*
3498                  * Page table corrupted: show pte and kill process.
3499                  */
3500                 print_bad_pte(vma, address, orig_pte, NULL);
3501                 return VM_FAULT_SIGBUS;
3502         }
3503
3504         pgoff = pte_to_pgoff(orig_pte);
3505         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3506 }
3507
3508 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3509                                 unsigned long addr, int current_nid)
3510 {
3511         get_page(page);
3512
3513         count_vm_numa_event(NUMA_HINT_FAULTS);
3514         if (current_nid == numa_node_id())
3515                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3516
3517         return mpol_misplaced(page, vma, addr);
3518 }
3519
3520 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3521                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3522 {
3523         struct page *page = NULL;
3524         spinlock_t *ptl;
3525         int current_nid = -1;
3526         int target_nid;
3527         bool migrated = false;
3528
3529         /*
3530         * The "pte" at this point cannot be used safely without
3531         * validation through pte_unmap_same(). It's of NUMA type but
3532         * the pfn may be screwed if the read is non atomic.
3533         *
3534         * ptep_modify_prot_start is not called as this is clearing
3535         * the _PAGE_NUMA bit and it is not really expected that there
3536         * would be concurrent hardware modifications to the PTE.
3537         */
3538         ptl = pte_lockptr(mm, pmd);
3539         spin_lock(ptl);
3540         if (unlikely(!pte_same(*ptep, pte))) {
3541                 pte_unmap_unlock(ptep, ptl);
3542                 goto out;
3543         }
3544
3545         pte = pte_mknonnuma(pte);
3546         set_pte_at(mm, addr, ptep, pte);
3547         update_mmu_cache(vma, addr, ptep);
3548
3549         page = vm_normal_page(vma, addr, pte);
3550         if (!page) {
3551                 pte_unmap_unlock(ptep, ptl);
3552                 return 0;
3553         }
3554
3555         current_nid = page_to_nid(page);
3556         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3557         pte_unmap_unlock(ptep, ptl);
3558         if (target_nid == -1) {
3559                 /*
3560                  * Account for the fault against the current node if it not
3561                  * being replaced regardless of where the page is located.
3562                  */
3563                 current_nid = numa_node_id();
3564                 put_page(page);
3565                 goto out;
3566         }
3567
3568         /* Migrate to the requested node */
3569         migrated = migrate_misplaced_page(page, target_nid);
3570         if (migrated)
3571                 current_nid = target_nid;
3572
3573 out:
3574         if (current_nid != -1)
3575                 task_numa_fault(current_nid, 1, migrated);
3576         return 0;
3577 }
3578
3579 /* NUMA hinting page fault entry point for regular pmds */
3580 #ifdef CONFIG_NUMA_BALANCING
3581 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3582                      unsigned long addr, pmd_t *pmdp)
3583 {
3584         pmd_t pmd;
3585         pte_t *pte, *orig_pte;
3586         unsigned long _addr = addr & PMD_MASK;
3587         unsigned long offset;
3588         spinlock_t *ptl;
3589         bool numa = false;
3590         int local_nid = numa_node_id();
3591
3592         spin_lock(&mm->page_table_lock);
3593         pmd = *pmdp;
3594         if (pmd_numa(pmd)) {
3595                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3596                 numa = true;
3597         }
3598         spin_unlock(&mm->page_table_lock);
3599
3600         if (!numa)
3601                 return 0;
3602
3603         /* we're in a page fault so some vma must be in the range */
3604         BUG_ON(!vma);
3605         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3606         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3607         VM_BUG_ON(offset >= PMD_SIZE);
3608         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3609         pte += offset >> PAGE_SHIFT;
3610         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3611                 pte_t pteval = *pte;
3612                 struct page *page;
3613                 int curr_nid = local_nid;
3614                 int target_nid;
3615                 bool migrated;
3616                 if (!pte_present(pteval))
3617                         continue;
3618                 if (!pte_numa(pteval))
3619                         continue;
3620                 if (addr >= vma->vm_end) {
3621                         vma = find_vma(mm, addr);
3622                         /* there's a pte present so there must be a vma */
3623                         BUG_ON(!vma);
3624                         BUG_ON(addr < vma->vm_start);
3625                 }
3626                 if (pte_numa(pteval)) {
3627                         pteval = pte_mknonnuma(pteval);
3628                         set_pte_at(mm, addr, pte, pteval);
3629                 }
3630                 page = vm_normal_page(vma, addr, pteval);
3631                 if (unlikely(!page))
3632                         continue;
3633                 /* only check non-shared pages */
3634                 if (unlikely(page_mapcount(page) != 1))
3635                         continue;
3636
3637                 /*
3638                  * Note that the NUMA fault is later accounted to either
3639                  * the node that is currently running or where the page is
3640                  * migrated to.
3641                  */
3642                 curr_nid = local_nid;
3643                 target_nid = numa_migrate_prep(page, vma, addr,
3644                                                page_to_nid(page));
3645                 if (target_nid == -1) {
3646                         put_page(page);
3647                         continue;
3648                 }
3649
3650                 /* Migrate to the requested node */
3651                 pte_unmap_unlock(pte, ptl);
3652                 migrated = migrate_misplaced_page(page, target_nid);
3653                 if (migrated)
3654                         curr_nid = target_nid;
3655                 task_numa_fault(curr_nid, 1, migrated);
3656
3657                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3658         }
3659         pte_unmap_unlock(orig_pte, ptl);
3660
3661         return 0;
3662 }
3663 #else
3664 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3665                      unsigned long addr, pmd_t *pmdp)
3666 {
3667         BUG();
3668         return 0;
3669 }
3670 #endif /* CONFIG_NUMA_BALANCING */
3671
3672 /*
3673  * These routines also need to handle stuff like marking pages dirty
3674  * and/or accessed for architectures that don't do it in hardware (most
3675  * RISC architectures).  The early dirtying is also good on the i386.
3676  *
3677  * There is also a hook called "update_mmu_cache()" that architectures
3678  * with external mmu caches can use to update those (ie the Sparc or
3679  * PowerPC hashed page tables that act as extended TLBs).
3680  *
3681  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3682  * but allow concurrent faults), and pte mapped but not yet locked.
3683  * We return with mmap_sem still held, but pte unmapped and unlocked.
3684  */
3685 int handle_pte_fault(struct mm_struct *mm,
3686                      struct vm_area_struct *vma, unsigned long address,
3687                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3688 {
3689         pte_t entry;
3690         spinlock_t *ptl;
3691
3692         entry = *pte;
3693         if (!pte_present(entry)) {
3694                 if (pte_none(entry)) {
3695                         if (vma->vm_ops) {
3696                                 if (likely(vma->vm_ops->fault))
3697                                         return do_linear_fault(mm, vma, address,
3698                                                 pte, pmd, flags, entry);
3699                         }
3700                         return do_anonymous_page(mm, vma, address,
3701                                                  pte, pmd, flags);
3702                 }
3703                 if (pte_file(entry))
3704                         return do_nonlinear_fault(mm, vma, address,
3705                                         pte, pmd, flags, entry);
3706                 return do_swap_page(mm, vma, address,
3707                                         pte, pmd, flags, entry);
3708         }
3709
3710         if (pte_numa(entry))
3711                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3712
3713         ptl = pte_lockptr(mm, pmd);
3714         spin_lock(ptl);
3715         if (unlikely(!pte_same(*pte, entry)))
3716                 goto unlock;
3717         if (flags & FAULT_FLAG_WRITE) {
3718                 if (!pte_write(entry))
3719                         return do_wp_page(mm, vma, address,
3720                                         pte, pmd, ptl, entry);
3721                 entry = pte_mkdirty(entry);
3722         }
3723         entry = pte_mkyoung(entry);
3724         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3725                 update_mmu_cache(vma, address, pte);
3726         } else {
3727                 /*
3728                  * This is needed only for protection faults but the arch code
3729                  * is not yet telling us if this is a protection fault or not.
3730                  * This still avoids useless tlb flushes for .text page faults
3731                  * with threads.
3732                  */
3733                 if (flags & FAULT_FLAG_WRITE)
3734                         flush_tlb_fix_spurious_fault(vma, address);
3735         }
3736 unlock:
3737         pte_unmap_unlock(pte, ptl);
3738         return 0;
3739 }
3740
3741 /*
3742  * By the time we get here, we already hold the mm semaphore
3743  */
3744 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3745                 unsigned long address, unsigned int flags)
3746 {
3747         pgd_t *pgd;
3748         pud_t *pud;
3749         pmd_t *pmd;
3750         pte_t *pte;
3751
3752         __set_current_state(TASK_RUNNING);
3753
3754         count_vm_event(PGFAULT);
3755         mem_cgroup_count_vm_event(mm, PGFAULT);
3756
3757         /* do counter updates before entering really critical section. */
3758         check_sync_rss_stat(current);
3759
3760         if (unlikely(is_vm_hugetlb_page(vma)))
3761                 return hugetlb_fault(mm, vma, address, flags);
3762
3763 retry:
3764         pgd = pgd_offset(mm, address);
3765         pud = pud_alloc(mm, pgd, address);
3766         if (!pud)
3767                 return VM_FAULT_OOM;
3768         pmd = pmd_alloc(mm, pud, address);
3769         if (!pmd)
3770                 return VM_FAULT_OOM;
3771         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3772                 if (!vma->vm_ops)
3773                         return do_huge_pmd_anonymous_page(mm, vma, address,
3774                                                           pmd, flags);
3775         } else {
3776                 pmd_t orig_pmd = *pmd;
3777                 int ret;
3778
3779                 barrier();
3780                 if (pmd_trans_huge(orig_pmd)) {
3781                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3782
3783                         /*
3784                          * If the pmd is splitting, return and retry the
3785                          * the fault.  Alternative: wait until the split
3786                          * is done, and goto retry.
3787                          */
3788                         if (pmd_trans_splitting(orig_pmd))
3789                                 return 0;
3790
3791                         if (pmd_numa(orig_pmd))
3792                                 return do_huge_pmd_numa_page(mm, vma, address,
3793                                                              orig_pmd, pmd);
3794
3795                         if (dirty && !pmd_write(orig_pmd)) {
3796                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3797                                                           orig_pmd);
3798                                 /*
3799                                  * If COW results in an oom, the huge pmd will
3800                                  * have been split, so retry the fault on the
3801                                  * pte for a smaller charge.
3802                                  */
3803                                 if (unlikely(ret & VM_FAULT_OOM))
3804                                         goto retry;
3805                                 return ret;
3806                         } else {
3807                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3808                                                       orig_pmd, dirty);
3809                         }
3810
3811                         return 0;
3812                 }
3813         }
3814
3815         if (pmd_numa(*pmd))
3816                 return do_pmd_numa_page(mm, vma, address, pmd);
3817
3818         /*
3819          * Use __pte_alloc instead of pte_alloc_map, because we can't
3820          * run pte_offset_map on the pmd, if an huge pmd could
3821          * materialize from under us from a different thread.
3822          */
3823         if (unlikely(pmd_none(*pmd)) &&
3824             unlikely(__pte_alloc(mm, vma, pmd, address)))
3825                 return VM_FAULT_OOM;
3826         /* if an huge pmd materialized from under us just retry later */
3827         if (unlikely(pmd_trans_huge(*pmd)))
3828                 return 0;
3829         /*
3830          * A regular pmd is established and it can't morph into a huge pmd
3831          * from under us anymore at this point because we hold the mmap_sem
3832          * read mode and khugepaged takes it in write mode. So now it's
3833          * safe to run pte_offset_map().
3834          */
3835         pte = pte_offset_map(pmd, address);
3836
3837         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3838 }
3839
3840 #ifndef __PAGETABLE_PUD_FOLDED
3841 /*
3842  * Allocate page upper directory.
3843  * We've already handled the fast-path in-line.
3844  */
3845 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3846 {
3847         pud_t *new = pud_alloc_one(mm, address);
3848         if (!new)
3849                 return -ENOMEM;
3850
3851         smp_wmb(); /* See comment in __pte_alloc */
3852
3853         spin_lock(&mm->page_table_lock);
3854         if (pgd_present(*pgd))          /* Another has populated it */
3855                 pud_free(mm, new);
3856         else
3857                 pgd_populate(mm, pgd, new);
3858         spin_unlock(&mm->page_table_lock);
3859         return 0;
3860 }
3861 #endif /* __PAGETABLE_PUD_FOLDED */
3862
3863 #ifndef __PAGETABLE_PMD_FOLDED
3864 /*
3865  * Allocate page middle directory.
3866  * We've already handled the fast-path in-line.
3867  */
3868 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3869 {
3870         pmd_t *new = pmd_alloc_one(mm, address);
3871         if (!new)
3872                 return -ENOMEM;
3873
3874         smp_wmb(); /* See comment in __pte_alloc */
3875
3876         spin_lock(&mm->page_table_lock);
3877 #ifndef __ARCH_HAS_4LEVEL_HACK
3878         if (pud_present(*pud))          /* Another has populated it */
3879                 pmd_free(mm, new);
3880         else
3881                 pud_populate(mm, pud, new);
3882 #else
3883         if (pgd_present(*pud))          /* Another has populated it */
3884                 pmd_free(mm, new);
3885         else
3886                 pgd_populate(mm, pud, new);
3887 #endif /* __ARCH_HAS_4LEVEL_HACK */
3888         spin_unlock(&mm->page_table_lock);
3889         return 0;
3890 }
3891 #endif /* __PAGETABLE_PMD_FOLDED */
3892
3893 #if !defined(__HAVE_ARCH_GATE_AREA)
3894
3895 #if defined(AT_SYSINFO_EHDR)
3896 static struct vm_area_struct gate_vma;
3897
3898 static int __init gate_vma_init(void)
3899 {
3900         gate_vma.vm_mm = NULL;
3901         gate_vma.vm_start = FIXADDR_USER_START;
3902         gate_vma.vm_end = FIXADDR_USER_END;
3903         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3904         gate_vma.vm_page_prot = __P101;
3905
3906         return 0;
3907 }
3908 __initcall(gate_vma_init);
3909 #endif
3910
3911 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3912 {
3913 #ifdef AT_SYSINFO_EHDR
3914         return &gate_vma;
3915 #else
3916         return NULL;
3917 #endif
3918 }
3919
3920 int in_gate_area_no_mm(unsigned long addr)
3921 {
3922 #ifdef AT_SYSINFO_EHDR
3923         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3924                 return 1;
3925 #endif
3926         return 0;
3927 }
3928
3929 #endif  /* __HAVE_ARCH_GATE_AREA */
3930
3931 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3932                 pte_t **ptepp, spinlock_t **ptlp)
3933 {
3934         pgd_t *pgd;
3935         pud_t *pud;
3936         pmd_t *pmd;
3937         pte_t *ptep;
3938
3939         pgd = pgd_offset(mm, address);
3940         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3941                 goto out;
3942
3943         pud = pud_offset(pgd, address);
3944         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3945                 goto out;
3946
3947         pmd = pmd_offset(pud, address);
3948         VM_BUG_ON(pmd_trans_huge(*pmd));
3949         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3950                 goto out;
3951
3952         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3953         if (pmd_huge(*pmd))
3954                 goto out;
3955
3956         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3957         if (!ptep)
3958                 goto out;
3959         if (!pte_present(*ptep))
3960                 goto unlock;
3961         *ptepp = ptep;
3962         return 0;
3963 unlock:
3964         pte_unmap_unlock(ptep, *ptlp);
3965 out:
3966         return -EINVAL;
3967 }
3968
3969 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3970                              pte_t **ptepp, spinlock_t **ptlp)
3971 {
3972         int res;
3973
3974         /* (void) is needed to make gcc happy */
3975         (void) __cond_lock(*ptlp,
3976                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3977         return res;
3978 }
3979
3980 /**
3981  * follow_pfn - look up PFN at a user virtual address
3982  * @vma: memory mapping
3983  * @address: user virtual address
3984  * @pfn: location to store found PFN
3985  *
3986  * Only IO mappings and raw PFN mappings are allowed.
3987  *
3988  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3989  */
3990 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3991         unsigned long *pfn)
3992 {
3993         int ret = -EINVAL;
3994         spinlock_t *ptl;
3995         pte_t *ptep;
3996
3997         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3998                 return ret;
3999
4000         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4001         if (ret)
4002                 return ret;
4003         *pfn = pte_pfn(*ptep);
4004         pte_unmap_unlock(ptep, ptl);
4005         return 0;
4006 }
4007 EXPORT_SYMBOL(follow_pfn);
4008
4009 #ifdef CONFIG_HAVE_IOREMAP_PROT
4010 int follow_phys(struct vm_area_struct *vma,
4011                 unsigned long address, unsigned int flags,
4012                 unsigned long *prot, resource_size_t *phys)
4013 {
4014         int ret = -EINVAL;
4015         pte_t *ptep, pte;
4016         spinlock_t *ptl;
4017
4018         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4019                 goto out;
4020
4021         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4022                 goto out;
4023         pte = *ptep;
4024
4025         if ((flags & FOLL_WRITE) && !pte_write(pte))
4026                 goto unlock;
4027
4028         *prot = pgprot_val(pte_pgprot(pte));
4029         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4030
4031         ret = 0;
4032 unlock:
4033         pte_unmap_unlock(ptep, ptl);
4034 out:
4035         return ret;
4036 }
4037
4038 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4039                         void *buf, int len, int write)
4040 {
4041         resource_size_t phys_addr;
4042         unsigned long prot = 0;
4043         void __iomem *maddr;
4044         int offset = addr & (PAGE_SIZE-1);
4045
4046         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4047                 return -EINVAL;
4048
4049         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4050         if (write)
4051                 memcpy_toio(maddr + offset, buf, len);
4052         else
4053                 memcpy_fromio(buf, maddr + offset, len);
4054         iounmap(maddr);
4055
4056         return len;
4057 }
4058 EXPORT_SYMBOL_GPL(generic_access_phys);
4059 #endif
4060
4061 /*
4062  * Access another process' address space as given in mm.  If non-NULL, use the
4063  * given task for page fault accounting.
4064  */
4065 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4066                 unsigned long addr, void *buf, int len, int write)
4067 {
4068         struct vm_area_struct *vma;
4069         void *old_buf = buf;
4070
4071         down_read(&mm->mmap_sem);
4072         /* ignore errors, just check how much was successfully transferred */
4073         while (len) {
4074                 int bytes, ret, offset;
4075                 void *maddr;
4076                 struct page *page = NULL;
4077
4078                 ret = get_user_pages(tsk, mm, addr, 1,
4079                                 write, 1, &page, &vma);
4080                 if (ret <= 0) {
4081                         /*
4082                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4083                          * we can access using slightly different code.
4084                          */
4085 #ifdef CONFIG_HAVE_IOREMAP_PROT
4086                         vma = find_vma(mm, addr);
4087                         if (!vma || vma->vm_start > addr)
4088                                 break;
4089                         if (vma->vm_ops && vma->vm_ops->access)
4090                                 ret = vma->vm_ops->access(vma, addr, buf,
4091                                                           len, write);
4092                         if (ret <= 0)
4093 #endif
4094                                 break;
4095                         bytes = ret;
4096                 } else {
4097                         bytes = len;
4098                         offset = addr & (PAGE_SIZE-1);
4099                         if (bytes > PAGE_SIZE-offset)
4100                                 bytes = PAGE_SIZE-offset;
4101
4102                         maddr = kmap(page);
4103                         if (write) {
4104                                 copy_to_user_page(vma, page, addr,
4105                                                   maddr + offset, buf, bytes);
4106                                 set_page_dirty_lock(page);
4107                         } else {
4108                                 copy_from_user_page(vma, page, addr,
4109                                                     buf, maddr + offset, bytes);
4110                         }
4111                         kunmap(page);
4112                         page_cache_release(page);
4113                 }
4114                 len -= bytes;
4115                 buf += bytes;
4116                 addr += bytes;
4117         }
4118         up_read(&mm->mmap_sem);
4119
4120         return buf - old_buf;
4121 }
4122
4123 /**
4124  * access_remote_vm - access another process' address space
4125  * @mm:         the mm_struct of the target address space
4126  * @addr:       start address to access
4127  * @buf:        source or destination buffer
4128  * @len:        number of bytes to transfer
4129  * @write:      whether the access is a write
4130  *
4131  * The caller must hold a reference on @mm.
4132  */
4133 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4134                 void *buf, int len, int write)
4135 {
4136         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4137 }
4138
4139 /*
4140  * Access another process' address space.
4141  * Source/target buffer must be kernel space,
4142  * Do not walk the page table directly, use get_user_pages
4143  */
4144 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4145                 void *buf, int len, int write)
4146 {
4147         struct mm_struct *mm;
4148         int ret;
4149
4150         mm = get_task_mm(tsk);
4151         if (!mm)
4152                 return 0;
4153
4154         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4155         mmput(mm);
4156
4157         return ret;
4158 }
4159
4160 /*
4161  * Print the name of a VMA.
4162  */
4163 void print_vma_addr(char *prefix, unsigned long ip)
4164 {
4165         struct mm_struct *mm = current->mm;
4166         struct vm_area_struct *vma;
4167
4168         /*
4169          * Do not print if we are in atomic
4170          * contexts (in exception stacks, etc.):
4171          */
4172         if (preempt_count())
4173                 return;
4174
4175         down_read(&mm->mmap_sem);
4176         vma = find_vma(mm, ip);
4177         if (vma && vma->vm_file) {
4178                 struct file *f = vma->vm_file;
4179                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4180                 if (buf) {
4181                         char *p;
4182
4183                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4184                         if (IS_ERR(p))
4185                                 p = "?";
4186                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4187                                         vma->vm_start,
4188                                         vma->vm_end - vma->vm_start);
4189                         free_page((unsigned long)buf);
4190                 }
4191         }
4192         up_read(&mm->mmap_sem);
4193 }
4194
4195 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4196 void might_fault(void)
4197 {
4198         /*
4199          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4200          * holding the mmap_sem, this is safe because kernel memory doesn't
4201          * get paged out, therefore we'll never actually fault, and the
4202          * below annotations will generate false positives.
4203          */
4204         if (segment_eq(get_fs(), KERNEL_DS))
4205                 return;
4206
4207         /*
4208          * it would be nicer only to annotate paths which are not under
4209          * pagefault_disable, however that requires a larger audit and
4210          * providing helpers like get_user_atomic.
4211          */
4212         if (in_atomic())
4213                 return;
4214
4215         __might_sleep(__FILE__, __LINE__, 0);
4216
4217         if (current->mm)
4218                 might_lock_read(&current->mm->mmap_sem);
4219 }
4220 EXPORT_SYMBOL(might_fault);
4221 #endif
4222
4223 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4224 static void clear_gigantic_page(struct page *page,
4225                                 unsigned long addr,
4226                                 unsigned int pages_per_huge_page)
4227 {
4228         int i;
4229         struct page *p = page;
4230
4231         might_sleep();
4232         for (i = 0; i < pages_per_huge_page;
4233              i++, p = mem_map_next(p, page, i)) {
4234                 cond_resched();
4235                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4236         }
4237 }
4238 void clear_huge_page(struct page *page,
4239                      unsigned long addr, unsigned int pages_per_huge_page)
4240 {
4241         int i;
4242
4243         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4244                 clear_gigantic_page(page, addr, pages_per_huge_page);
4245                 return;
4246         }
4247
4248         might_sleep();
4249         for (i = 0; i < pages_per_huge_page; i++) {
4250                 cond_resched();
4251                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4252         }
4253 }
4254
4255 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4256                                     unsigned long addr,
4257                                     struct vm_area_struct *vma,
4258                                     unsigned int pages_per_huge_page)
4259 {
4260         int i;
4261         struct page *dst_base = dst;
4262         struct page *src_base = src;
4263
4264         for (i = 0; i < pages_per_huge_page; ) {
4265                 cond_resched();
4266                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4267
4268                 i++;
4269                 dst = mem_map_next(dst, dst_base, i);
4270                 src = mem_map_next(src, src_base, i);
4271         }
4272 }
4273
4274 void copy_user_huge_page(struct page *dst, struct page *src,
4275                          unsigned long addr, struct vm_area_struct *vma,
4276                          unsigned int pages_per_huge_page)
4277 {
4278         int i;
4279
4280         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4281                 copy_user_gigantic_page(dst, src, addr, vma,
4282                                         pages_per_huge_page);
4283                 return;
4284         }
4285
4286         might_sleep();
4287         for (i = 0; i < pages_per_huge_page; i++) {
4288                 cond_resched();
4289                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4290         }
4291 }
4292 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */