1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
78 #include <trace/events/kmem.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
85 #include <asm/tlbflush.h>
87 #include "pgalloc-track.h"
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
99 EXPORT_SYMBOL(mem_map);
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 EXPORT_SYMBOL(high_memory);
113 * Randomize the address space (stacks, mmaps, brk, etc.).
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
149 static int __init disable_randmaps(char *s)
151 randomize_va_space = 0;
154 __setup("norandmaps", disable_randmaps);
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
159 unsigned long highest_memmap_pfn __read_mostly;
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
164 static int __init init_zero_pfn(void)
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
169 early_initcall(init_zero_pfn);
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
173 trace_rss_stat(mm, member, count);
176 #if defined(SPLIT_RSS_COUNTING)
178 void sync_mm_rss(struct mm_struct *mm)
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
188 current->rss_stat.events = 0;
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
193 struct task_struct *task = current;
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
198 add_mm_counter(mm, member, val);
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH (64)
205 static void check_sync_rss_stat(struct task_struct *task)
207 if (unlikely(task != current))
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 sync_mm_rss(task->mm);
212 #else /* SPLIT_RSS_COUNTING */
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
217 static void check_sync_rss_stat(struct task_struct *task)
221 #endif /* SPLIT_RSS_COUNTING */
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
230 pgtable_t token = pmd_pgtable(*pmd);
232 pte_free_tlb(tlb, token, addr);
233 mm_dec_nr_ptes(tlb->mm);
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
245 pmd = pmd_offset(pud, addr);
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
250 free_pte_range(tlb, pmd, addr);
251 } while (pmd++, addr = next, addr != end);
261 if (end - 1 > ceiling - 1)
264 pmd = pmd_offset(pud, start);
266 pmd_free_tlb(tlb, pmd, start);
267 mm_dec_nr_pmds(tlb->mm);
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
279 pud = pud_offset(p4d, addr);
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 } while (pud++, addr = next, addr != end);
295 if (end - 1 > ceiling - 1)
298 pud = pud_offset(p4d, start);
300 pud_free_tlb(tlb, pud, start);
301 mm_dec_nr_puds(tlb->mm);
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
313 p4d = p4d_offset(pgd, addr);
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
325 ceiling &= PGDIR_MASK;
329 if (end - 1 > ceiling - 1)
332 p4d = p4d_offset(pgd, start);
334 p4d_free_tlb(tlb, p4d, start);
338 * This function frees user-level page tables of a process.
340 void free_pgd_range(struct mmu_gather *tlb,
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
348 * The next few lines have given us lots of grief...
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
384 if (end - 1 > ceiling - 1)
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
392 tlb_change_page_size(tlb, PAGE_SIZE);
393 pgd = pgd_offset(tlb->mm, addr);
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 } while (pgd++, addr = next, addr != end);
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 unsigned long floor, unsigned long ceiling)
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
410 * Hide vma from rmap and truncate_pagecache before freeing
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
416 if (is_vm_hugetlb_page(vma)) {
417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
421 * Optimization: gather nearby vmas into one call down
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 && !is_vm_hugetlb_page(next)) {
427 unlink_anon_vmas(vma);
428 unlink_file_vma(vma);
430 free_pgd_range(tlb, addr, vma->vm_end,
431 floor, next ? next->vm_start : ceiling);
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
439 spinlock_t *ptl = pmd_lock(mm, pmd);
441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 pmd_populate(mm, pmd, *pte);
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
465 pgtable_t new = pte_alloc_one(mm);
469 pmd_install(mm, pmd, &new);
475 int __pte_alloc_kernel(pmd_t *pmd)
477 pte_t *new = pte_alloc_one_kernel(&init_mm);
481 spin_lock(&init_mm.page_table_lock);
482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
483 smp_wmb(); /* See comment in pmd_install() */
484 pmd_populate_kernel(&init_mm, pmd, new);
487 spin_unlock(&init_mm.page_table_lock);
489 pte_free_kernel(&init_mm, new);
493 static inline void init_rss_vec(int *rss)
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 if (current->mm == mm)
504 for (i = 0; i < NR_MM_COUNTERS; i++)
506 add_mm_counter(mm, i, rss[i]);
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
514 * The calling function must still handle the error.
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
546 resume = jiffies + 60 * HZ;
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
555 dump_page(page, "bad pte");
556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
590 * And for normal mappings this is false.
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
612 unsigned long pfn = pte_pfn(pte);
614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615 if (likely(!pte_special(pte)))
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
621 if (is_zero_pfn(pfn))
626 print_bad_pte(vma, addr, pte, NULL);
630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 if (pfn == vma->vm_pgoff + off)
642 if (!is_cow_mapping(vma->vm_flags))
647 if (is_zero_pfn(pfn))
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
657 * NOTE! We still have PageReserved() pages in the page tables.
658 * eg. VDSO mappings can cause them to exist.
661 return pfn_to_page(pfn);
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
668 unsigned long pfn = pmd_pfn(pmd);
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
685 if (!is_cow_mapping(vma->vm_flags))
692 if (is_huge_zero_pmd(pmd))
694 if (unlikely(pfn > highest_memmap_pfn))
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
702 return pfn_to_page(pfn);
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
728 page_add_anon_rmap(page, vma, address, false);
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
734 WARN_ON_ONCE(!PageAnon(page));
736 set_pte_at(vma->vm_mm, address, ptep, pte);
738 if (vma->vm_flags & VM_LOCKED)
739 mlock_vma_page(page);
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
745 update_mmu_cache(vma, address, ptep);
749 * Tries to restore an exclusive pte if the page lock can be acquired without
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756 swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 struct page *page = pfn_swap_entry_to_page(entry);
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
779 unsigned long vm_flags = dst_vma->vm_flags;
780 pte_t pte = *src_pte;
782 swp_entry_t entry = pte_to_swp_entry(pte);
784 if (likely(!non_swap_entry(entry))) {
785 if (swap_duplicate(entry) < 0)
788 /* make sure dst_mm is on swapoff's mmlist. */
789 if (unlikely(list_empty(&dst_mm->mmlist))) {
790 spin_lock(&mmlist_lock);
791 if (list_empty(&dst_mm->mmlist))
792 list_add(&dst_mm->mmlist,
794 spin_unlock(&mmlist_lock);
797 } else if (is_migration_entry(entry)) {
798 page = pfn_swap_entry_to_page(entry);
800 rss[mm_counter(page)]++;
802 if (is_writable_migration_entry(entry) &&
803 is_cow_mapping(vm_flags)) {
805 * COW mappings require pages in both
806 * parent and child to be set to read.
808 entry = make_readable_migration_entry(
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(*src_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(*src_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
817 } else if (is_device_private_entry(entry)) {
818 page = pfn_swap_entry_to_page(entry);
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
830 rss[mm_counter(page)]++;
831 page_dup_rmap(page, false);
834 * We do not preserve soft-dirty information, because so
835 * far, checkpoint/restore is the only feature that
836 * requires that. And checkpoint/restore does not work
837 * when a device driver is involved (you cannot easily
838 * save and restore device driver state).
840 if (is_writable_device_private_entry(entry) &&
841 is_cow_mapping(vm_flags)) {
842 entry = make_readable_device_private_entry(
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_uffd_wp(*src_pte))
846 pte = pte_swp_mkuffd_wp(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
849 } else if (is_device_exclusive_entry(entry)) {
851 * Make device exclusive entries present by restoring the
852 * original entry then copying as for a present pte. Device
853 * exclusive entries currently only support private writable
854 * (ie. COW) mappings.
856 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
861 if (!userfaultfd_wp(dst_vma))
862 pte = pte_swp_clear_uffd_wp(pte);
863 set_pte_at(dst_mm, addr, dst_pte, pte);
868 * Copy a present and normal page if necessary.
870 * NOTE! The usual case is that this doesn't need to do
871 * anything, and can just return a positive value. That
872 * will let the caller know that it can just increase
873 * the page refcount and re-use the pte the traditional
876 * But _if_ we need to copy it because it needs to be
877 * pinned in the parent (and the child should get its own
878 * copy rather than just a reference to the same page),
879 * we'll do that here and return zero to let the caller
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct page **prealloc, pte_t pte, struct page *page)
892 struct page *new_page;
895 * What we want to do is to check whether this page may
896 * have been pinned by the parent process. If so,
897 * instead of wrprotect the pte on both sides, we copy
898 * the page immediately so that we'll always guarantee
899 * the pinned page won't be randomly replaced in the
902 * The page pinning checks are just "has this mm ever
903 * seen pinning", along with the (inexact) check of
904 * the page count. That might give false positives for
905 * for pinning, but it will work correctly.
907 if (likely(!page_needs_cow_for_dma(src_vma, page)))
910 new_page = *prealloc;
915 * We have a prealloc page, all good! Take it
916 * over and copy the page & arm it.
919 copy_user_highpage(new_page, page, addr, src_vma);
920 __SetPageUptodate(new_page);
921 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
923 rss[mm_counter(new_page)]++;
925 /* All done, just insert the new page copy in the child */
926 pte = mk_pte(new_page, dst_vma->vm_page_prot);
927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928 if (userfaultfd_pte_wp(dst_vma, *src_pte))
929 /* Uffd-wp needs to be delivered to dest pte as well */
930 pte = pte_wrprotect(pte_mkuffd_wp(pte));
931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
936 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
937 * is required to copy this pte.
940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942 struct page **prealloc)
944 struct mm_struct *src_mm = src_vma->vm_mm;
945 unsigned long vm_flags = src_vma->vm_flags;
946 pte_t pte = *src_pte;
949 page = vm_normal_page(src_vma, addr, pte);
953 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 addr, rss, prealloc, pte, page);
959 page_dup_rmap(page, false);
960 rss[mm_counter(page)]++;
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
967 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968 ptep_set_wrprotect(src_mm, addr, src_pte);
969 pte = pte_wrprotect(pte);
973 * If it's a shared mapping, mark it clean in
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
980 if (!userfaultfd_wp(dst_vma))
981 pte = pte_clear_uffd_wp(pte);
983 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
991 struct page *new_page;
993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
997 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1001 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1011 struct mm_struct *dst_mm = dst_vma->vm_mm;
1012 struct mm_struct *src_mm = src_vma->vm_mm;
1013 pte_t *orig_src_pte, *orig_dst_pte;
1014 pte_t *src_pte, *dst_pte;
1015 spinlock_t *src_ptl, *dst_ptl;
1016 int progress, ret = 0;
1017 int rss[NR_MM_COUNTERS];
1018 swp_entry_t entry = (swp_entry_t){0};
1019 struct page *prealloc = NULL;
1025 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1030 src_pte = pte_offset_map(src_pmd, addr);
1031 src_ptl = pte_lockptr(src_mm, src_pmd);
1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033 orig_src_pte = src_pte;
1034 orig_dst_pte = dst_pte;
1035 arch_enter_lazy_mmu_mode();
1039 * We are holding two locks at this point - either of them
1040 * could generate latencies in another task on another CPU.
1042 if (progress >= 32) {
1044 if (need_resched() ||
1045 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1048 if (pte_none(*src_pte)) {
1052 if (unlikely(!pte_present(*src_pte))) {
1053 ret = copy_nonpresent_pte(dst_mm, src_mm,
1058 entry = pte_to_swp_entry(*src_pte);
1060 } else if (ret == -EBUSY) {
1068 * Device exclusive entry restored, continue by copying
1069 * the now present pte.
1071 WARN_ON_ONCE(ret != -ENOENT);
1073 /* copy_present_pte() will clear `*prealloc' if consumed */
1074 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075 addr, rss, &prealloc);
1077 * If we need a pre-allocated page for this pte, drop the
1078 * locks, allocate, and try again.
1080 if (unlikely(ret == -EAGAIN))
1082 if (unlikely(prealloc)) {
1084 * pre-alloc page cannot be reused by next time so as
1085 * to strictly follow mempolicy (e.g., alloc_page_vma()
1086 * will allocate page according to address). This
1087 * could only happen if one pinned pte changed.
1093 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1095 arch_leave_lazy_mmu_mode();
1096 spin_unlock(src_ptl);
1097 pte_unmap(orig_src_pte);
1098 add_mm_rss_vec(dst_mm, rss);
1099 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1103 VM_WARN_ON_ONCE(!entry.val);
1104 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1109 } else if (ret == -EBUSY) {
1111 } else if (ret == -EAGAIN) {
1112 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1119 /* We've captured and resolved the error. Reset, try again. */
1125 if (unlikely(prealloc))
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1135 struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 struct mm_struct *src_mm = src_vma->vm_mm;
1137 pmd_t *src_pmd, *dst_pmd;
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1143 src_pmd = pmd_offset(src_pud, addr);
1145 next = pmd_addr_end(addr, end);
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151 addr, dst_vma, src_vma);
1158 if (pmd_none_or_clear_bad(src_pmd))
1160 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1172 struct mm_struct *dst_mm = dst_vma->vm_mm;
1173 struct mm_struct *src_mm = src_vma->vm_mm;
1174 pud_t *src_pud, *dst_pud;
1177 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1180 src_pud = pud_offset(src_p4d, addr);
1182 next = pud_addr_end(addr, end);
1183 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1186 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187 err = copy_huge_pud(dst_mm, src_mm,
1188 dst_pud, src_pud, addr, src_vma);
1195 if (pud_none_or_clear_bad(src_pud))
1197 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1200 } while (dst_pud++, src_pud++, addr = next, addr != end);
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1209 struct mm_struct *dst_mm = dst_vma->vm_mm;
1210 p4d_t *src_p4d, *dst_p4d;
1213 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1216 src_p4d = p4d_offset(src_pgd, addr);
1218 next = p4d_addr_end(addr, end);
1219 if (p4d_none_or_clear_bad(src_p4d))
1221 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1224 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1231 pgd_t *src_pgd, *dst_pgd;
1233 unsigned long addr = src_vma->vm_start;
1234 unsigned long end = src_vma->vm_end;
1235 struct mm_struct *dst_mm = dst_vma->vm_mm;
1236 struct mm_struct *src_mm = src_vma->vm_mm;
1237 struct mmu_notifier_range range;
1242 * Don't copy ptes where a page fault will fill them correctly.
1243 * Fork becomes much lighter when there are big shared or private
1244 * readonly mappings. The tradeoff is that copy_page_range is more
1245 * efficient than faulting.
1247 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1251 if (is_vm_hugetlb_page(src_vma))
1252 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1254 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1256 * We do not free on error cases below as remove_vma
1257 * gets called on error from higher level routine
1259 ret = track_pfn_copy(src_vma);
1265 * We need to invalidate the secondary MMU mappings only when
1266 * there could be a permission downgrade on the ptes of the
1267 * parent mm. And a permission downgrade will only happen if
1268 * is_cow_mapping() returns true.
1270 is_cow = is_cow_mapping(src_vma->vm_flags);
1273 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1274 0, src_vma, src_mm, addr, end);
1275 mmu_notifier_invalidate_range_start(&range);
1277 * Disabling preemption is not needed for the write side, as
1278 * the read side doesn't spin, but goes to the mmap_lock.
1280 * Use the raw variant of the seqcount_t write API to avoid
1281 * lockdep complaining about preemptibility.
1283 mmap_assert_write_locked(src_mm);
1284 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1288 dst_pgd = pgd_offset(dst_mm, addr);
1289 src_pgd = pgd_offset(src_mm, addr);
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(src_pgd))
1294 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1299 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1302 raw_write_seqcount_end(&src_mm->write_protect_seq);
1303 mmu_notifier_invalidate_range_end(&range);
1309 * Parameter block passed down to zap_pte_range in exceptional cases.
1311 struct zap_details {
1312 struct address_space *zap_mapping; /* Check page->mapping if set */
1313 struct folio *single_folio; /* Locked folio to be unmapped */
1317 * We set details->zap_mapping when we want to unmap shared but keep private
1318 * pages. Return true if skip zapping this page, false otherwise.
1321 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1323 if (!details || !page)
1326 return details->zap_mapping &&
1327 (details->zap_mapping != page_rmapping(page));
1330 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1331 struct vm_area_struct *vma, pmd_t *pmd,
1332 unsigned long addr, unsigned long end,
1333 struct zap_details *details)
1335 struct mm_struct *mm = tlb->mm;
1336 int force_flush = 0;
1337 int rss[NR_MM_COUNTERS];
1343 tlb_change_page_size(tlb, PAGE_SIZE);
1346 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1348 flush_tlb_batched_pending(mm);
1349 arch_enter_lazy_mmu_mode();
1352 if (pte_none(ptent))
1358 if (pte_present(ptent)) {
1361 page = vm_normal_page(vma, addr, ptent);
1362 if (unlikely(zap_skip_check_mapping(details, page)))
1364 ptent = ptep_get_and_clear_full(mm, addr, pte,
1366 tlb_remove_tlb_entry(tlb, pte, addr);
1367 if (unlikely(!page))
1370 if (!PageAnon(page)) {
1371 if (pte_dirty(ptent)) {
1373 set_page_dirty(page);
1375 if (pte_young(ptent) &&
1376 likely(!(vma->vm_flags & VM_SEQ_READ)))
1377 mark_page_accessed(page);
1379 rss[mm_counter(page)]--;
1380 page_remove_rmap(page, false);
1381 if (unlikely(page_mapcount(page) < 0))
1382 print_bad_pte(vma, addr, ptent, page);
1383 if (unlikely(__tlb_remove_page(tlb, page))) {
1391 entry = pte_to_swp_entry(ptent);
1392 if (is_device_private_entry(entry) ||
1393 is_device_exclusive_entry(entry)) {
1394 struct page *page = pfn_swap_entry_to_page(entry);
1396 if (unlikely(zap_skip_check_mapping(details, page)))
1398 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399 rss[mm_counter(page)]--;
1401 if (is_device_private_entry(entry))
1402 page_remove_rmap(page, false);
1408 /* If details->check_mapping, we leave swap entries. */
1409 if (unlikely(details))
1412 if (!non_swap_entry(entry))
1414 else if (is_migration_entry(entry)) {
1417 page = pfn_swap_entry_to_page(entry);
1418 rss[mm_counter(page)]--;
1420 if (unlikely(!free_swap_and_cache(entry)))
1421 print_bad_pte(vma, addr, ptent, NULL);
1422 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1423 } while (pte++, addr += PAGE_SIZE, addr != end);
1425 add_mm_rss_vec(mm, rss);
1426 arch_leave_lazy_mmu_mode();
1428 /* Do the actual TLB flush before dropping ptl */
1430 tlb_flush_mmu_tlbonly(tlb);
1431 pte_unmap_unlock(start_pte, ptl);
1434 * If we forced a TLB flush (either due to running out of
1435 * batch buffers or because we needed to flush dirty TLB
1436 * entries before releasing the ptl), free the batched
1437 * memory too. Restart if we didn't do everything.
1452 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1453 struct vm_area_struct *vma, pud_t *pud,
1454 unsigned long addr, unsigned long end,
1455 struct zap_details *details)
1460 pmd = pmd_offset(pud, addr);
1462 next = pmd_addr_end(addr, end);
1463 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1464 if (next - addr != HPAGE_PMD_SIZE)
1465 __split_huge_pmd(vma, pmd, addr, false, NULL);
1466 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1469 } else if (details && details->single_folio &&
1470 folio_test_pmd_mappable(details->single_folio) &&
1471 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1472 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1474 * Take and drop THP pmd lock so that we cannot return
1475 * prematurely, while zap_huge_pmd() has cleared *pmd,
1476 * but not yet decremented compound_mapcount().
1482 * Here there can be other concurrent MADV_DONTNEED or
1483 * trans huge page faults running, and if the pmd is
1484 * none or trans huge it can change under us. This is
1485 * because MADV_DONTNEED holds the mmap_lock in read
1488 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1490 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1493 } while (pmd++, addr = next, addr != end);
1498 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1499 struct vm_area_struct *vma, p4d_t *p4d,
1500 unsigned long addr, unsigned long end,
1501 struct zap_details *details)
1506 pud = pud_offset(p4d, addr);
1508 next = pud_addr_end(addr, end);
1509 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1510 if (next - addr != HPAGE_PUD_SIZE) {
1511 mmap_assert_locked(tlb->mm);
1512 split_huge_pud(vma, pud, addr);
1513 } else if (zap_huge_pud(tlb, vma, pud, addr))
1517 if (pud_none_or_clear_bad(pud))
1519 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1522 } while (pud++, addr = next, addr != end);
1527 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1528 struct vm_area_struct *vma, pgd_t *pgd,
1529 unsigned long addr, unsigned long end,
1530 struct zap_details *details)
1535 p4d = p4d_offset(pgd, addr);
1537 next = p4d_addr_end(addr, end);
1538 if (p4d_none_or_clear_bad(p4d))
1540 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1541 } while (p4d++, addr = next, addr != end);
1546 void unmap_page_range(struct mmu_gather *tlb,
1547 struct vm_area_struct *vma,
1548 unsigned long addr, unsigned long end,
1549 struct zap_details *details)
1554 BUG_ON(addr >= end);
1555 tlb_start_vma(tlb, vma);
1556 pgd = pgd_offset(vma->vm_mm, addr);
1558 next = pgd_addr_end(addr, end);
1559 if (pgd_none_or_clear_bad(pgd))
1561 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1562 } while (pgd++, addr = next, addr != end);
1563 tlb_end_vma(tlb, vma);
1567 static void unmap_single_vma(struct mmu_gather *tlb,
1568 struct vm_area_struct *vma, unsigned long start_addr,
1569 unsigned long end_addr,
1570 struct zap_details *details)
1572 unsigned long start = max(vma->vm_start, start_addr);
1575 if (start >= vma->vm_end)
1577 end = min(vma->vm_end, end_addr);
1578 if (end <= vma->vm_start)
1582 uprobe_munmap(vma, start, end);
1584 if (unlikely(vma->vm_flags & VM_PFNMAP))
1585 untrack_pfn(vma, 0, 0);
1588 if (unlikely(is_vm_hugetlb_page(vma))) {
1590 * It is undesirable to test vma->vm_file as it
1591 * should be non-null for valid hugetlb area.
1592 * However, vm_file will be NULL in the error
1593 * cleanup path of mmap_region. When
1594 * hugetlbfs ->mmap method fails,
1595 * mmap_region() nullifies vma->vm_file
1596 * before calling this function to clean up.
1597 * Since no pte has actually been setup, it is
1598 * safe to do nothing in this case.
1601 i_mmap_lock_write(vma->vm_file->f_mapping);
1602 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1603 i_mmap_unlock_write(vma->vm_file->f_mapping);
1606 unmap_page_range(tlb, vma, start, end, details);
1611 * unmap_vmas - unmap a range of memory covered by a list of vma's
1612 * @tlb: address of the caller's struct mmu_gather
1613 * @vma: the starting vma
1614 * @start_addr: virtual address at which to start unmapping
1615 * @end_addr: virtual address at which to end unmapping
1617 * Unmap all pages in the vma list.
1619 * Only addresses between `start' and `end' will be unmapped.
1621 * The VMA list must be sorted in ascending virtual address order.
1623 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1624 * range after unmap_vmas() returns. So the only responsibility here is to
1625 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1626 * drops the lock and schedules.
1628 void unmap_vmas(struct mmu_gather *tlb,
1629 struct vm_area_struct *vma, unsigned long start_addr,
1630 unsigned long end_addr)
1632 struct mmu_notifier_range range;
1634 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1635 start_addr, end_addr);
1636 mmu_notifier_invalidate_range_start(&range);
1637 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1638 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1639 mmu_notifier_invalidate_range_end(&range);
1643 * zap_page_range - remove user pages in a given range
1644 * @vma: vm_area_struct holding the applicable pages
1645 * @start: starting address of pages to zap
1646 * @size: number of bytes to zap
1648 * Caller must protect the VMA list
1650 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1653 struct mmu_notifier_range range;
1654 struct mmu_gather tlb;
1657 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1658 start, start + size);
1659 tlb_gather_mmu(&tlb, vma->vm_mm);
1660 update_hiwater_rss(vma->vm_mm);
1661 mmu_notifier_invalidate_range_start(&range);
1662 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1663 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1664 mmu_notifier_invalidate_range_end(&range);
1665 tlb_finish_mmu(&tlb);
1669 * zap_page_range_single - remove user pages in a given range
1670 * @vma: vm_area_struct holding the applicable pages
1671 * @address: starting address of pages to zap
1672 * @size: number of bytes to zap
1673 * @details: details of shared cache invalidation
1675 * The range must fit into one VMA.
1677 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1678 unsigned long size, struct zap_details *details)
1680 struct mmu_notifier_range range;
1681 struct mmu_gather tlb;
1684 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1685 address, address + size);
1686 tlb_gather_mmu(&tlb, vma->vm_mm);
1687 update_hiwater_rss(vma->vm_mm);
1688 mmu_notifier_invalidate_range_start(&range);
1689 unmap_single_vma(&tlb, vma, address, range.end, details);
1690 mmu_notifier_invalidate_range_end(&range);
1691 tlb_finish_mmu(&tlb);
1695 * zap_vma_ptes - remove ptes mapping the vma
1696 * @vma: vm_area_struct holding ptes to be zapped
1697 * @address: starting address of pages to zap
1698 * @size: number of bytes to zap
1700 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1702 * The entire address range must be fully contained within the vma.
1705 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1708 if (address < vma->vm_start || address + size > vma->vm_end ||
1709 !(vma->vm_flags & VM_PFNMAP))
1712 zap_page_range_single(vma, address, size, NULL);
1714 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1716 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1723 pgd = pgd_offset(mm, addr);
1724 p4d = p4d_alloc(mm, pgd, addr);
1727 pud = pud_alloc(mm, p4d, addr);
1730 pmd = pmd_alloc(mm, pud, addr);
1734 VM_BUG_ON(pmd_trans_huge(*pmd));
1738 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1741 pmd_t *pmd = walk_to_pmd(mm, addr);
1745 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1748 static int validate_page_before_insert(struct page *page)
1750 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1752 flush_dcache_page(page);
1756 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1757 unsigned long addr, struct page *page, pgprot_t prot)
1759 if (!pte_none(*pte))
1761 /* Ok, finally just insert the thing.. */
1763 inc_mm_counter_fast(mm, mm_counter_file(page));
1764 page_add_file_rmap(page, false);
1765 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1770 * This is the old fallback for page remapping.
1772 * For historical reasons, it only allows reserved pages. Only
1773 * old drivers should use this, and they needed to mark their
1774 * pages reserved for the old functions anyway.
1776 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1777 struct page *page, pgprot_t prot)
1779 struct mm_struct *mm = vma->vm_mm;
1784 retval = validate_page_before_insert(page);
1788 pte = get_locked_pte(mm, addr, &ptl);
1791 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1792 pte_unmap_unlock(pte, ptl);
1798 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1799 unsigned long addr, struct page *page, pgprot_t prot)
1803 if (!page_count(page))
1805 err = validate_page_before_insert(page);
1808 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1811 /* insert_pages() amortizes the cost of spinlock operations
1812 * when inserting pages in a loop. Arch *must* define pte_index.
1814 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1815 struct page **pages, unsigned long *num, pgprot_t prot)
1818 pte_t *start_pte, *pte;
1819 spinlock_t *pte_lock;
1820 struct mm_struct *const mm = vma->vm_mm;
1821 unsigned long curr_page_idx = 0;
1822 unsigned long remaining_pages_total = *num;
1823 unsigned long pages_to_write_in_pmd;
1827 pmd = walk_to_pmd(mm, addr);
1831 pages_to_write_in_pmd = min_t(unsigned long,
1832 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1834 /* Allocate the PTE if necessary; takes PMD lock once only. */
1836 if (pte_alloc(mm, pmd))
1839 while (pages_to_write_in_pmd) {
1841 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1843 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1844 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1845 int err = insert_page_in_batch_locked(mm, pte,
1846 addr, pages[curr_page_idx], prot);
1847 if (unlikely(err)) {
1848 pte_unmap_unlock(start_pte, pte_lock);
1850 remaining_pages_total -= pte_idx;
1856 pte_unmap_unlock(start_pte, pte_lock);
1857 pages_to_write_in_pmd -= batch_size;
1858 remaining_pages_total -= batch_size;
1860 if (remaining_pages_total)
1864 *num = remaining_pages_total;
1867 #endif /* ifdef pte_index */
1870 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1871 * @vma: user vma to map to
1872 * @addr: target start user address of these pages
1873 * @pages: source kernel pages
1874 * @num: in: number of pages to map. out: number of pages that were *not*
1875 * mapped. (0 means all pages were successfully mapped).
1877 * Preferred over vm_insert_page() when inserting multiple pages.
1879 * In case of error, we may have mapped a subset of the provided
1880 * pages. It is the caller's responsibility to account for this case.
1882 * The same restrictions apply as in vm_insert_page().
1884 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1885 struct page **pages, unsigned long *num)
1888 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1890 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1892 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1893 BUG_ON(mmap_read_trylock(vma->vm_mm));
1894 BUG_ON(vma->vm_flags & VM_PFNMAP);
1895 vma->vm_flags |= VM_MIXEDMAP;
1897 /* Defer page refcount checking till we're about to map that page. */
1898 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1900 unsigned long idx = 0, pgcount = *num;
1903 for (; idx < pgcount; ++idx) {
1904 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1908 *num = pgcount - idx;
1910 #endif /* ifdef pte_index */
1912 EXPORT_SYMBOL(vm_insert_pages);
1915 * vm_insert_page - insert single page into user vma
1916 * @vma: user vma to map to
1917 * @addr: target user address of this page
1918 * @page: source kernel page
1920 * This allows drivers to insert individual pages they've allocated
1923 * The page has to be a nice clean _individual_ kernel allocation.
1924 * If you allocate a compound page, you need to have marked it as
1925 * such (__GFP_COMP), or manually just split the page up yourself
1926 * (see split_page()).
1928 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1929 * took an arbitrary page protection parameter. This doesn't allow
1930 * that. Your vma protection will have to be set up correctly, which
1931 * means that if you want a shared writable mapping, you'd better
1932 * ask for a shared writable mapping!
1934 * The page does not need to be reserved.
1936 * Usually this function is called from f_op->mmap() handler
1937 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1938 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1939 * function from other places, for example from page-fault handler.
1941 * Return: %0 on success, negative error code otherwise.
1943 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1946 if (addr < vma->vm_start || addr >= vma->vm_end)
1948 if (!page_count(page))
1950 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1951 BUG_ON(mmap_read_trylock(vma->vm_mm));
1952 BUG_ON(vma->vm_flags & VM_PFNMAP);
1953 vma->vm_flags |= VM_MIXEDMAP;
1955 return insert_page(vma, addr, page, vma->vm_page_prot);
1957 EXPORT_SYMBOL(vm_insert_page);
1960 * __vm_map_pages - maps range of kernel pages into user vma
1961 * @vma: user vma to map to
1962 * @pages: pointer to array of source kernel pages
1963 * @num: number of pages in page array
1964 * @offset: user's requested vm_pgoff
1966 * This allows drivers to map range of kernel pages into a user vma.
1968 * Return: 0 on success and error code otherwise.
1970 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1971 unsigned long num, unsigned long offset)
1973 unsigned long count = vma_pages(vma);
1974 unsigned long uaddr = vma->vm_start;
1977 /* Fail if the user requested offset is beyond the end of the object */
1981 /* Fail if the user requested size exceeds available object size */
1982 if (count > num - offset)
1985 for (i = 0; i < count; i++) {
1986 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1996 * vm_map_pages - maps range of kernel pages starts with non zero offset
1997 * @vma: user vma to map to
1998 * @pages: pointer to array of source kernel pages
1999 * @num: number of pages in page array
2001 * Maps an object consisting of @num pages, catering for the user's
2002 * requested vm_pgoff
2004 * If we fail to insert any page into the vma, the function will return
2005 * immediately leaving any previously inserted pages present. Callers
2006 * from the mmap handler may immediately return the error as their caller
2007 * will destroy the vma, removing any successfully inserted pages. Other
2008 * callers should make their own arrangements for calling unmap_region().
2010 * Context: Process context. Called by mmap handlers.
2011 * Return: 0 on success and error code otherwise.
2013 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2016 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2018 EXPORT_SYMBOL(vm_map_pages);
2021 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2022 * @vma: user vma to map to
2023 * @pages: pointer to array of source kernel pages
2024 * @num: number of pages in page array
2026 * Similar to vm_map_pages(), except that it explicitly sets the offset
2027 * to 0. This function is intended for the drivers that did not consider
2030 * Context: Process context. Called by mmap handlers.
2031 * Return: 0 on success and error code otherwise.
2033 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2036 return __vm_map_pages(vma, pages, num, 0);
2038 EXPORT_SYMBOL(vm_map_pages_zero);
2040 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041 pfn_t pfn, pgprot_t prot, bool mkwrite)
2043 struct mm_struct *mm = vma->vm_mm;
2047 pte = get_locked_pte(mm, addr, &ptl);
2049 return VM_FAULT_OOM;
2050 if (!pte_none(*pte)) {
2053 * For read faults on private mappings the PFN passed
2054 * in may not match the PFN we have mapped if the
2055 * mapped PFN is a writeable COW page. In the mkwrite
2056 * case we are creating a writable PTE for a shared
2057 * mapping and we expect the PFNs to match. If they
2058 * don't match, we are likely racing with block
2059 * allocation and mapping invalidation so just skip the
2062 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2063 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2066 entry = pte_mkyoung(*pte);
2067 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2068 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2069 update_mmu_cache(vma, addr, pte);
2074 /* Ok, finally just insert the thing.. */
2075 if (pfn_t_devmap(pfn))
2076 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2078 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2081 entry = pte_mkyoung(entry);
2082 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2085 set_pte_at(mm, addr, pte, entry);
2086 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2089 pte_unmap_unlock(pte, ptl);
2090 return VM_FAULT_NOPAGE;
2094 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2095 * @vma: user vma to map to
2096 * @addr: target user address of this page
2097 * @pfn: source kernel pfn
2098 * @pgprot: pgprot flags for the inserted page
2100 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2101 * to override pgprot on a per-page basis.
2103 * This only makes sense for IO mappings, and it makes no sense for
2104 * COW mappings. In general, using multiple vmas is preferable;
2105 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2108 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2109 * a value of @pgprot different from that of @vma->vm_page_prot.
2111 * Context: Process context. May allocate using %GFP_KERNEL.
2112 * Return: vm_fault_t value.
2114 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2115 unsigned long pfn, pgprot_t pgprot)
2118 * Technically, architectures with pte_special can avoid all these
2119 * restrictions (same for remap_pfn_range). However we would like
2120 * consistency in testing and feature parity among all, so we should
2121 * try to keep these invariants in place for everybody.
2123 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2124 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2125 (VM_PFNMAP|VM_MIXEDMAP));
2126 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2127 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2129 if (addr < vma->vm_start || addr >= vma->vm_end)
2130 return VM_FAULT_SIGBUS;
2132 if (!pfn_modify_allowed(pfn, pgprot))
2133 return VM_FAULT_SIGBUS;
2135 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2137 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2140 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2143 * vmf_insert_pfn - insert single pfn into user vma
2144 * @vma: user vma to map to
2145 * @addr: target user address of this page
2146 * @pfn: source kernel pfn
2148 * Similar to vm_insert_page, this allows drivers to insert individual pages
2149 * they've allocated into a user vma. Same comments apply.
2151 * This function should only be called from a vm_ops->fault handler, and
2152 * in that case the handler should return the result of this function.
2154 * vma cannot be a COW mapping.
2156 * As this is called only for pages that do not currently exist, we
2157 * do not need to flush old virtual caches or the TLB.
2159 * Context: Process context. May allocate using %GFP_KERNEL.
2160 * Return: vm_fault_t value.
2162 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2165 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2167 EXPORT_SYMBOL(vmf_insert_pfn);
2169 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2171 /* these checks mirror the abort conditions in vm_normal_page */
2172 if (vma->vm_flags & VM_MIXEDMAP)
2174 if (pfn_t_devmap(pfn))
2176 if (pfn_t_special(pfn))
2178 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2183 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2184 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2189 BUG_ON(!vm_mixed_ok(vma, pfn));
2191 if (addr < vma->vm_start || addr >= vma->vm_end)
2192 return VM_FAULT_SIGBUS;
2194 track_pfn_insert(vma, &pgprot, pfn);
2196 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2197 return VM_FAULT_SIGBUS;
2200 * If we don't have pte special, then we have to use the pfn_valid()
2201 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2202 * refcount the page if pfn_valid is true (hence insert_page rather
2203 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2204 * without pte special, it would there be refcounted as a normal page.
2206 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2207 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2211 * At this point we are committed to insert_page()
2212 * regardless of whether the caller specified flags that
2213 * result in pfn_t_has_page() == false.
2215 page = pfn_to_page(pfn_t_to_pfn(pfn));
2216 err = insert_page(vma, addr, page, pgprot);
2218 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2222 return VM_FAULT_OOM;
2223 if (err < 0 && err != -EBUSY)
2224 return VM_FAULT_SIGBUS;
2226 return VM_FAULT_NOPAGE;
2230 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2231 * @vma: user vma to map to
2232 * @addr: target user address of this page
2233 * @pfn: source kernel pfn
2234 * @pgprot: pgprot flags for the inserted page
2236 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2237 * to override pgprot on a per-page basis.
2239 * Typically this function should be used by drivers to set caching- and
2240 * encryption bits different than those of @vma->vm_page_prot, because
2241 * the caching- or encryption mode may not be known at mmap() time.
2242 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2243 * to set caching and encryption bits for those vmas (except for COW pages).
2244 * This is ensured by core vm only modifying these page table entries using
2245 * functions that don't touch caching- or encryption bits, using pte_modify()
2246 * if needed. (See for example mprotect()).
2247 * Also when new page-table entries are created, this is only done using the
2248 * fault() callback, and never using the value of vma->vm_page_prot,
2249 * except for page-table entries that point to anonymous pages as the result
2252 * Context: Process context. May allocate using %GFP_KERNEL.
2253 * Return: vm_fault_t value.
2255 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2256 pfn_t pfn, pgprot_t pgprot)
2258 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2260 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2262 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2265 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2267 EXPORT_SYMBOL(vmf_insert_mixed);
2270 * If the insertion of PTE failed because someone else already added a
2271 * different entry in the mean time, we treat that as success as we assume
2272 * the same entry was actually inserted.
2274 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2275 unsigned long addr, pfn_t pfn)
2277 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2279 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2282 * maps a range of physical memory into the requested pages. the old
2283 * mappings are removed. any references to nonexistent pages results
2284 * in null mappings (currently treated as "copy-on-access")
2286 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2287 unsigned long addr, unsigned long end,
2288 unsigned long pfn, pgprot_t prot)
2290 pte_t *pte, *mapped_pte;
2294 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2297 arch_enter_lazy_mmu_mode();
2299 BUG_ON(!pte_none(*pte));
2300 if (!pfn_modify_allowed(pfn, prot)) {
2304 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2306 } while (pte++, addr += PAGE_SIZE, addr != end);
2307 arch_leave_lazy_mmu_mode();
2308 pte_unmap_unlock(mapped_pte, ptl);
2312 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2313 unsigned long addr, unsigned long end,
2314 unsigned long pfn, pgprot_t prot)
2320 pfn -= addr >> PAGE_SHIFT;
2321 pmd = pmd_alloc(mm, pud, addr);
2324 VM_BUG_ON(pmd_trans_huge(*pmd));
2326 next = pmd_addr_end(addr, end);
2327 err = remap_pte_range(mm, pmd, addr, next,
2328 pfn + (addr >> PAGE_SHIFT), prot);
2331 } while (pmd++, addr = next, addr != end);
2335 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2336 unsigned long addr, unsigned long end,
2337 unsigned long pfn, pgprot_t prot)
2343 pfn -= addr >> PAGE_SHIFT;
2344 pud = pud_alloc(mm, p4d, addr);
2348 next = pud_addr_end(addr, end);
2349 err = remap_pmd_range(mm, pud, addr, next,
2350 pfn + (addr >> PAGE_SHIFT), prot);
2353 } while (pud++, addr = next, addr != end);
2357 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2358 unsigned long addr, unsigned long end,
2359 unsigned long pfn, pgprot_t prot)
2365 pfn -= addr >> PAGE_SHIFT;
2366 p4d = p4d_alloc(mm, pgd, addr);
2370 next = p4d_addr_end(addr, end);
2371 err = remap_pud_range(mm, p4d, addr, next,
2372 pfn + (addr >> PAGE_SHIFT), prot);
2375 } while (p4d++, addr = next, addr != end);
2380 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2381 * must have pre-validated the caching bits of the pgprot_t.
2383 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2384 unsigned long pfn, unsigned long size, pgprot_t prot)
2388 unsigned long end = addr + PAGE_ALIGN(size);
2389 struct mm_struct *mm = vma->vm_mm;
2392 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2396 * Physically remapped pages are special. Tell the
2397 * rest of the world about it:
2398 * VM_IO tells people not to look at these pages
2399 * (accesses can have side effects).
2400 * VM_PFNMAP tells the core MM that the base pages are just
2401 * raw PFN mappings, and do not have a "struct page" associated
2404 * Disable vma merging and expanding with mremap().
2406 * Omit vma from core dump, even when VM_IO turned off.
2408 * There's a horrible special case to handle copy-on-write
2409 * behaviour that some programs depend on. We mark the "original"
2410 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2411 * See vm_normal_page() for details.
2413 if (is_cow_mapping(vma->vm_flags)) {
2414 if (addr != vma->vm_start || end != vma->vm_end)
2416 vma->vm_pgoff = pfn;
2419 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2421 BUG_ON(addr >= end);
2422 pfn -= addr >> PAGE_SHIFT;
2423 pgd = pgd_offset(mm, addr);
2424 flush_cache_range(vma, addr, end);
2426 next = pgd_addr_end(addr, end);
2427 err = remap_p4d_range(mm, pgd, addr, next,
2428 pfn + (addr >> PAGE_SHIFT), prot);
2431 } while (pgd++, addr = next, addr != end);
2437 * remap_pfn_range - remap kernel memory to userspace
2438 * @vma: user vma to map to
2439 * @addr: target page aligned user address to start at
2440 * @pfn: page frame number of kernel physical memory address
2441 * @size: size of mapping area
2442 * @prot: page protection flags for this mapping
2444 * Note: this is only safe if the mm semaphore is held when called.
2446 * Return: %0 on success, negative error code otherwise.
2448 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2449 unsigned long pfn, unsigned long size, pgprot_t prot)
2453 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2457 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2459 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2462 EXPORT_SYMBOL(remap_pfn_range);
2465 * vm_iomap_memory - remap memory to userspace
2466 * @vma: user vma to map to
2467 * @start: start of the physical memory to be mapped
2468 * @len: size of area
2470 * This is a simplified io_remap_pfn_range() for common driver use. The
2471 * driver just needs to give us the physical memory range to be mapped,
2472 * we'll figure out the rest from the vma information.
2474 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2475 * whatever write-combining details or similar.
2477 * Return: %0 on success, negative error code otherwise.
2479 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2481 unsigned long vm_len, pfn, pages;
2483 /* Check that the physical memory area passed in looks valid */
2484 if (start + len < start)
2487 * You *really* shouldn't map things that aren't page-aligned,
2488 * but we've historically allowed it because IO memory might
2489 * just have smaller alignment.
2491 len += start & ~PAGE_MASK;
2492 pfn = start >> PAGE_SHIFT;
2493 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2494 if (pfn + pages < pfn)
2497 /* We start the mapping 'vm_pgoff' pages into the area */
2498 if (vma->vm_pgoff > pages)
2500 pfn += vma->vm_pgoff;
2501 pages -= vma->vm_pgoff;
2503 /* Can we fit all of the mapping? */
2504 vm_len = vma->vm_end - vma->vm_start;
2505 if (vm_len >> PAGE_SHIFT > pages)
2508 /* Ok, let it rip */
2509 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2511 EXPORT_SYMBOL(vm_iomap_memory);
2513 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2514 unsigned long addr, unsigned long end,
2515 pte_fn_t fn, void *data, bool create,
2516 pgtbl_mod_mask *mask)
2518 pte_t *pte, *mapped_pte;
2523 mapped_pte = pte = (mm == &init_mm) ?
2524 pte_alloc_kernel_track(pmd, addr, mask) :
2525 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2529 mapped_pte = pte = (mm == &init_mm) ?
2530 pte_offset_kernel(pmd, addr) :
2531 pte_offset_map_lock(mm, pmd, addr, &ptl);
2534 BUG_ON(pmd_huge(*pmd));
2536 arch_enter_lazy_mmu_mode();
2540 if (create || !pte_none(*pte)) {
2541 err = fn(pte++, addr, data);
2545 } while (addr += PAGE_SIZE, addr != end);
2547 *mask |= PGTBL_PTE_MODIFIED;
2549 arch_leave_lazy_mmu_mode();
2552 pte_unmap_unlock(mapped_pte, ptl);
2556 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2557 unsigned long addr, unsigned long end,
2558 pte_fn_t fn, void *data, bool create,
2559 pgtbl_mod_mask *mask)
2565 BUG_ON(pud_huge(*pud));
2568 pmd = pmd_alloc_track(mm, pud, addr, mask);
2572 pmd = pmd_offset(pud, addr);
2575 next = pmd_addr_end(addr, end);
2576 if (pmd_none(*pmd) && !create)
2578 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2580 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2585 err = apply_to_pte_range(mm, pmd, addr, next,
2586 fn, data, create, mask);
2589 } while (pmd++, addr = next, addr != end);
2594 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2595 unsigned long addr, unsigned long end,
2596 pte_fn_t fn, void *data, bool create,
2597 pgtbl_mod_mask *mask)
2604 pud = pud_alloc_track(mm, p4d, addr, mask);
2608 pud = pud_offset(p4d, addr);
2611 next = pud_addr_end(addr, end);
2612 if (pud_none(*pud) && !create)
2614 if (WARN_ON_ONCE(pud_leaf(*pud)))
2616 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2621 err = apply_to_pmd_range(mm, pud, addr, next,
2622 fn, data, create, mask);
2625 } while (pud++, addr = next, addr != end);
2630 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 unsigned long addr, unsigned long end,
2632 pte_fn_t fn, void *data, bool create,
2633 pgtbl_mod_mask *mask)
2640 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2644 p4d = p4d_offset(pgd, addr);
2647 next = p4d_addr_end(addr, end);
2648 if (p4d_none(*p4d) && !create)
2650 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2652 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2657 err = apply_to_pud_range(mm, p4d, addr, next,
2658 fn, data, create, mask);
2661 } while (p4d++, addr = next, addr != end);
2666 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2667 unsigned long size, pte_fn_t fn,
2668 void *data, bool create)
2671 unsigned long start = addr, next;
2672 unsigned long end = addr + size;
2673 pgtbl_mod_mask mask = 0;
2676 if (WARN_ON(addr >= end))
2679 pgd = pgd_offset(mm, addr);
2681 next = pgd_addr_end(addr, end);
2682 if (pgd_none(*pgd) && !create)
2684 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2686 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2691 err = apply_to_p4d_range(mm, pgd, addr, next,
2692 fn, data, create, &mask);
2695 } while (pgd++, addr = next, addr != end);
2697 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2698 arch_sync_kernel_mappings(start, start + size);
2704 * Scan a region of virtual memory, filling in page tables as necessary
2705 * and calling a provided function on each leaf page table.
2707 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2708 unsigned long size, pte_fn_t fn, void *data)
2710 return __apply_to_page_range(mm, addr, size, fn, data, true);
2712 EXPORT_SYMBOL_GPL(apply_to_page_range);
2715 * Scan a region of virtual memory, calling a provided function on
2716 * each leaf page table where it exists.
2718 * Unlike apply_to_page_range, this does _not_ fill in page tables
2719 * where they are absent.
2721 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2722 unsigned long size, pte_fn_t fn, void *data)
2724 return __apply_to_page_range(mm, addr, size, fn, data, false);
2726 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2729 * handle_pte_fault chooses page fault handler according to an entry which was
2730 * read non-atomically. Before making any commitment, on those architectures
2731 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2732 * parts, do_swap_page must check under lock before unmapping the pte and
2733 * proceeding (but do_wp_page is only called after already making such a check;
2734 * and do_anonymous_page can safely check later on).
2736 static inline int pte_unmap_same(struct vm_fault *vmf)
2739 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2740 if (sizeof(pte_t) > sizeof(unsigned long)) {
2741 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2743 same = pte_same(*vmf->pte, vmf->orig_pte);
2747 pte_unmap(vmf->pte);
2752 static inline bool cow_user_page(struct page *dst, struct page *src,
2753 struct vm_fault *vmf)
2758 bool locked = false;
2759 struct vm_area_struct *vma = vmf->vma;
2760 struct mm_struct *mm = vma->vm_mm;
2761 unsigned long addr = vmf->address;
2764 copy_user_highpage(dst, src, addr, vma);
2769 * If the source page was a PFN mapping, we don't have
2770 * a "struct page" for it. We do a best-effort copy by
2771 * just copying from the original user address. If that
2772 * fails, we just zero-fill it. Live with it.
2774 kaddr = kmap_atomic(dst);
2775 uaddr = (void __user *)(addr & PAGE_MASK);
2778 * On architectures with software "accessed" bits, we would
2779 * take a double page fault, so mark it accessed here.
2781 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2784 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2786 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2788 * Other thread has already handled the fault
2789 * and update local tlb only
2791 update_mmu_tlb(vma, addr, vmf->pte);
2796 entry = pte_mkyoung(vmf->orig_pte);
2797 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2798 update_mmu_cache(vma, addr, vmf->pte);
2802 * This really shouldn't fail, because the page is there
2803 * in the page tables. But it might just be unreadable,
2804 * in which case we just give up and fill the result with
2807 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2811 /* Re-validate under PTL if the page is still mapped */
2812 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2814 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2815 /* The PTE changed under us, update local tlb */
2816 update_mmu_tlb(vma, addr, vmf->pte);
2822 * The same page can be mapped back since last copy attempt.
2823 * Try to copy again under PTL.
2825 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2827 * Give a warn in case there can be some obscure
2840 pte_unmap_unlock(vmf->pte, vmf->ptl);
2841 kunmap_atomic(kaddr);
2842 flush_dcache_page(dst);
2847 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2849 struct file *vm_file = vma->vm_file;
2852 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2855 * Special mappings (e.g. VDSO) do not have any file so fake
2856 * a default GFP_KERNEL for them.
2862 * Notify the address space that the page is about to become writable so that
2863 * it can prohibit this or wait for the page to get into an appropriate state.
2865 * We do this without the lock held, so that it can sleep if it needs to.
2867 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2870 struct page *page = vmf->page;
2871 unsigned int old_flags = vmf->flags;
2873 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2875 if (vmf->vma->vm_file &&
2876 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2877 return VM_FAULT_SIGBUS;
2879 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2880 /* Restore original flags so that caller is not surprised */
2881 vmf->flags = old_flags;
2882 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2884 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2886 if (!page->mapping) {
2888 return 0; /* retry */
2890 ret |= VM_FAULT_LOCKED;
2892 VM_BUG_ON_PAGE(!PageLocked(page), page);
2897 * Handle dirtying of a page in shared file mapping on a write fault.
2899 * The function expects the page to be locked and unlocks it.
2901 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2903 struct vm_area_struct *vma = vmf->vma;
2904 struct address_space *mapping;
2905 struct page *page = vmf->page;
2907 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2909 dirtied = set_page_dirty(page);
2910 VM_BUG_ON_PAGE(PageAnon(page), page);
2912 * Take a local copy of the address_space - page.mapping may be zeroed
2913 * by truncate after unlock_page(). The address_space itself remains
2914 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2915 * release semantics to prevent the compiler from undoing this copying.
2917 mapping = page_rmapping(page);
2921 file_update_time(vma->vm_file);
2924 * Throttle page dirtying rate down to writeback speed.
2926 * mapping may be NULL here because some device drivers do not
2927 * set page.mapping but still dirty their pages
2929 * Drop the mmap_lock before waiting on IO, if we can. The file
2930 * is pinning the mapping, as per above.
2932 if ((dirtied || page_mkwrite) && mapping) {
2935 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2936 balance_dirty_pages_ratelimited(mapping);
2939 return VM_FAULT_RETRY;
2947 * Handle write page faults for pages that can be reused in the current vma
2949 * This can happen either due to the mapping being with the VM_SHARED flag,
2950 * or due to us being the last reference standing to the page. In either
2951 * case, all we need to do here is to mark the page as writable and update
2952 * any related book-keeping.
2954 static inline void wp_page_reuse(struct vm_fault *vmf)
2955 __releases(vmf->ptl)
2957 struct vm_area_struct *vma = vmf->vma;
2958 struct page *page = vmf->page;
2961 * Clear the pages cpupid information as the existing
2962 * information potentially belongs to a now completely
2963 * unrelated process.
2966 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2968 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2969 entry = pte_mkyoung(vmf->orig_pte);
2970 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2971 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2972 update_mmu_cache(vma, vmf->address, vmf->pte);
2973 pte_unmap_unlock(vmf->pte, vmf->ptl);
2974 count_vm_event(PGREUSE);
2978 * Handle the case of a page which we actually need to copy to a new page.
2980 * Called with mmap_lock locked and the old page referenced, but
2981 * without the ptl held.
2983 * High level logic flow:
2985 * - Allocate a page, copy the content of the old page to the new one.
2986 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2987 * - Take the PTL. If the pte changed, bail out and release the allocated page
2988 * - If the pte is still the way we remember it, update the page table and all
2989 * relevant references. This includes dropping the reference the page-table
2990 * held to the old page, as well as updating the rmap.
2991 * - In any case, unlock the PTL and drop the reference we took to the old page.
2993 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2995 struct vm_area_struct *vma = vmf->vma;
2996 struct mm_struct *mm = vma->vm_mm;
2997 struct page *old_page = vmf->page;
2998 struct page *new_page = NULL;
3000 int page_copied = 0;
3001 struct mmu_notifier_range range;
3003 if (unlikely(anon_vma_prepare(vma)))
3006 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3007 new_page = alloc_zeroed_user_highpage_movable(vma,
3012 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3017 if (!cow_user_page(new_page, old_page, vmf)) {
3019 * COW failed, if the fault was solved by other,
3020 * it's fine. If not, userspace would re-fault on
3021 * the same address and we will handle the fault
3022 * from the second attempt.
3031 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3033 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3035 __SetPageUptodate(new_page);
3037 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3038 vmf->address & PAGE_MASK,
3039 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3040 mmu_notifier_invalidate_range_start(&range);
3043 * Re-check the pte - we dropped the lock
3045 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3046 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3048 if (!PageAnon(old_page)) {
3049 dec_mm_counter_fast(mm,
3050 mm_counter_file(old_page));
3051 inc_mm_counter_fast(mm, MM_ANONPAGES);
3054 inc_mm_counter_fast(mm, MM_ANONPAGES);
3056 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057 entry = mk_pte(new_page, vma->vm_page_prot);
3058 entry = pte_sw_mkyoung(entry);
3059 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3062 * Clear the pte entry and flush it first, before updating the
3063 * pte with the new entry, to keep TLBs on different CPUs in
3064 * sync. This code used to set the new PTE then flush TLBs, but
3065 * that left a window where the new PTE could be loaded into
3066 * some TLBs while the old PTE remains in others.
3068 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3069 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3070 lru_cache_add_inactive_or_unevictable(new_page, vma);
3072 * We call the notify macro here because, when using secondary
3073 * mmu page tables (such as kvm shadow page tables), we want the
3074 * new page to be mapped directly into the secondary page table.
3076 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3077 update_mmu_cache(vma, vmf->address, vmf->pte);
3080 * Only after switching the pte to the new page may
3081 * we remove the mapcount here. Otherwise another
3082 * process may come and find the rmap count decremented
3083 * before the pte is switched to the new page, and
3084 * "reuse" the old page writing into it while our pte
3085 * here still points into it and can be read by other
3088 * The critical issue is to order this
3089 * page_remove_rmap with the ptp_clear_flush above.
3090 * Those stores are ordered by (if nothing else,)
3091 * the barrier present in the atomic_add_negative
3092 * in page_remove_rmap.
3094 * Then the TLB flush in ptep_clear_flush ensures that
3095 * no process can access the old page before the
3096 * decremented mapcount is visible. And the old page
3097 * cannot be reused until after the decremented
3098 * mapcount is visible. So transitively, TLBs to
3099 * old page will be flushed before it can be reused.
3101 page_remove_rmap(old_page, false);
3104 /* Free the old page.. */
3105 new_page = old_page;
3108 update_mmu_tlb(vma, vmf->address, vmf->pte);
3114 pte_unmap_unlock(vmf->pte, vmf->ptl);
3116 * No need to double call mmu_notifier->invalidate_range() callback as
3117 * the above ptep_clear_flush_notify() did already call it.
3119 mmu_notifier_invalidate_range_only_end(&range);
3122 * Don't let another task, with possibly unlocked vma,
3123 * keep the mlocked page.
3125 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3126 lock_page(old_page); /* LRU manipulation */
3127 if (PageMlocked(old_page))
3128 munlock_vma_page(old_page);
3129 unlock_page(old_page);
3132 free_swap_cache(old_page);
3135 return page_copied ? VM_FAULT_WRITE : 0;
3141 return VM_FAULT_OOM;
3145 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3146 * writeable once the page is prepared
3148 * @vmf: structure describing the fault
3150 * This function handles all that is needed to finish a write page fault in a
3151 * shared mapping due to PTE being read-only once the mapped page is prepared.
3152 * It handles locking of PTE and modifying it.
3154 * The function expects the page to be locked or other protection against
3155 * concurrent faults / writeback (such as DAX radix tree locks).
3157 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3158 * we acquired PTE lock.
3160 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3162 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3163 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3166 * We might have raced with another page fault while we released the
3167 * pte_offset_map_lock.
3169 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3170 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3171 pte_unmap_unlock(vmf->pte, vmf->ptl);
3172 return VM_FAULT_NOPAGE;
3179 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3182 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3184 struct vm_area_struct *vma = vmf->vma;
3186 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3189 pte_unmap_unlock(vmf->pte, vmf->ptl);
3190 vmf->flags |= FAULT_FLAG_MKWRITE;
3191 ret = vma->vm_ops->pfn_mkwrite(vmf);
3192 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3194 return finish_mkwrite_fault(vmf);
3197 return VM_FAULT_WRITE;
3200 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3201 __releases(vmf->ptl)
3203 struct vm_area_struct *vma = vmf->vma;
3204 vm_fault_t ret = VM_FAULT_WRITE;
3206 get_page(vmf->page);
3208 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3211 pte_unmap_unlock(vmf->pte, vmf->ptl);
3212 tmp = do_page_mkwrite(vmf);
3213 if (unlikely(!tmp || (tmp &
3214 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3215 put_page(vmf->page);
3218 tmp = finish_mkwrite_fault(vmf);
3219 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3220 unlock_page(vmf->page);
3221 put_page(vmf->page);
3226 lock_page(vmf->page);
3228 ret |= fault_dirty_shared_page(vmf);
3229 put_page(vmf->page);
3235 * This routine handles present pages, when users try to write
3236 * to a shared page. It is done by copying the page to a new address
3237 * and decrementing the shared-page counter for the old page.
3239 * Note that this routine assumes that the protection checks have been
3240 * done by the caller (the low-level page fault routine in most cases).
3241 * Thus we can safely just mark it writable once we've done any necessary
3244 * We also mark the page dirty at this point even though the page will
3245 * change only once the write actually happens. This avoids a few races,
3246 * and potentially makes it more efficient.
3248 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3249 * but allow concurrent faults), with pte both mapped and locked.
3250 * We return with mmap_lock still held, but pte unmapped and unlocked.
3252 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3253 __releases(vmf->ptl)
3255 struct vm_area_struct *vma = vmf->vma;
3257 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3258 pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 return handle_userfault(vmf, VM_UFFD_WP);
3263 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3264 * is flushed in this case before copying.
3266 if (unlikely(userfaultfd_wp(vmf->vma) &&
3267 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3268 flush_tlb_page(vmf->vma, vmf->address);
3270 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3273 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3276 * We should not cow pages in a shared writeable mapping.
3277 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3279 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3280 (VM_WRITE|VM_SHARED))
3281 return wp_pfn_shared(vmf);
3283 pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 return wp_page_copy(vmf);
3288 * Take out anonymous pages first, anonymous shared vmas are
3289 * not dirty accountable.
3291 if (PageAnon(vmf->page)) {
3292 struct page *page = vmf->page;
3294 /* PageKsm() doesn't necessarily raise the page refcount */
3295 if (PageKsm(page) || page_count(page) != 1)
3297 if (!trylock_page(page))
3299 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3304 * Ok, we've got the only map reference, and the only
3305 * page count reference, and the page is locked,
3306 * it's dark out, and we're wearing sunglasses. Hit it.
3310 return VM_FAULT_WRITE;
3311 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3312 (VM_WRITE|VM_SHARED))) {
3313 return wp_page_shared(vmf);
3317 * Ok, we need to copy. Oh, well..
3319 get_page(vmf->page);
3321 pte_unmap_unlock(vmf->pte, vmf->ptl);
3322 return wp_page_copy(vmf);
3325 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3326 unsigned long start_addr, unsigned long end_addr,
3327 struct zap_details *details)
3329 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3332 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3333 pgoff_t first_index,
3335 struct zap_details *details)
3337 struct vm_area_struct *vma;
3338 pgoff_t vba, vea, zba, zea;
3340 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3341 vba = vma->vm_pgoff;
3342 vea = vba + vma_pages(vma) - 1;
3350 unmap_mapping_range_vma(vma,
3351 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3352 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3358 * unmap_mapping_folio() - Unmap single folio from processes.
3359 * @folio: The locked folio to be unmapped.
3361 * Unmap this folio from any userspace process which still has it mmaped.
3362 * Typically, for efficiency, the range of nearby pages has already been
3363 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3364 * truncation or invalidation holds the lock on a folio, it may find that
3365 * the page has been remapped again: and then uses unmap_mapping_folio()
3366 * to unmap it finally.
3368 void unmap_mapping_folio(struct folio *folio)
3370 struct address_space *mapping = folio->mapping;
3371 struct zap_details details = { };
3372 pgoff_t first_index;
3375 VM_BUG_ON(!folio_test_locked(folio));
3377 first_index = folio->index;
3378 last_index = folio->index + folio_nr_pages(folio) - 1;
3380 details.zap_mapping = mapping;
3381 details.single_folio = folio;
3383 i_mmap_lock_write(mapping);
3384 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3385 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3386 last_index, &details);
3387 i_mmap_unlock_write(mapping);
3391 * unmap_mapping_pages() - Unmap pages from processes.
3392 * @mapping: The address space containing pages to be unmapped.
3393 * @start: Index of first page to be unmapped.
3394 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3395 * @even_cows: Whether to unmap even private COWed pages.
3397 * Unmap the pages in this address space from any userspace process which
3398 * has them mmaped. Generally, you want to remove COWed pages as well when
3399 * a file is being truncated, but not when invalidating pages from the page
3402 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3403 pgoff_t nr, bool even_cows)
3405 struct zap_details details = { };
3406 pgoff_t first_index = start;
3407 pgoff_t last_index = start + nr - 1;
3409 details.zap_mapping = even_cows ? NULL : mapping;
3410 if (last_index < first_index)
3411 last_index = ULONG_MAX;
3413 i_mmap_lock_write(mapping);
3414 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3415 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3416 last_index, &details);
3417 i_mmap_unlock_write(mapping);
3419 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3422 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3423 * address_space corresponding to the specified byte range in the underlying
3426 * @mapping: the address space containing mmaps to be unmapped.
3427 * @holebegin: byte in first page to unmap, relative to the start of
3428 * the underlying file. This will be rounded down to a PAGE_SIZE
3429 * boundary. Note that this is different from truncate_pagecache(), which
3430 * must keep the partial page. In contrast, we must get rid of
3432 * @holelen: size of prospective hole in bytes. This will be rounded
3433 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3435 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3436 * but 0 when invalidating pagecache, don't throw away private data.
3438 void unmap_mapping_range(struct address_space *mapping,
3439 loff_t const holebegin, loff_t const holelen, int even_cows)
3441 pgoff_t hba = holebegin >> PAGE_SHIFT;
3442 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3444 /* Check for overflow. */
3445 if (sizeof(holelen) > sizeof(hlen)) {
3447 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3448 if (holeend & ~(long long)ULONG_MAX)
3449 hlen = ULONG_MAX - hba + 1;
3452 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3454 EXPORT_SYMBOL(unmap_mapping_range);
3457 * Restore a potential device exclusive pte to a working pte entry
3459 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3461 struct page *page = vmf->page;
3462 struct vm_area_struct *vma = vmf->vma;
3463 struct mmu_notifier_range range;
3465 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3466 return VM_FAULT_RETRY;
3467 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3468 vma->vm_mm, vmf->address & PAGE_MASK,
3469 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3470 mmu_notifier_invalidate_range_start(&range);
3472 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3474 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3475 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3477 pte_unmap_unlock(vmf->pte, vmf->ptl);
3480 mmu_notifier_invalidate_range_end(&range);
3485 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3486 * but allow concurrent faults), and pte mapped but not yet locked.
3487 * We return with pte unmapped and unlocked.
3489 * We return with the mmap_lock locked or unlocked in the same cases
3490 * as does filemap_fault().
3492 vm_fault_t do_swap_page(struct vm_fault *vmf)
3494 struct vm_area_struct *vma = vmf->vma;
3495 struct page *page = NULL, *swapcache;
3496 struct swap_info_struct *si = NULL;
3502 void *shadow = NULL;
3504 if (!pte_unmap_same(vmf))
3507 entry = pte_to_swp_entry(vmf->orig_pte);
3508 if (unlikely(non_swap_entry(entry))) {
3509 if (is_migration_entry(entry)) {
3510 migration_entry_wait(vma->vm_mm, vmf->pmd,
3512 } else if (is_device_exclusive_entry(entry)) {
3513 vmf->page = pfn_swap_entry_to_page(entry);
3514 ret = remove_device_exclusive_entry(vmf);
3515 } else if (is_device_private_entry(entry)) {
3516 vmf->page = pfn_swap_entry_to_page(entry);
3517 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3518 } else if (is_hwpoison_entry(entry)) {
3519 ret = VM_FAULT_HWPOISON;
3521 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3522 ret = VM_FAULT_SIGBUS;
3527 /* Prevent swapoff from happening to us. */
3528 si = get_swap_device(entry);
3532 page = lookup_swap_cache(entry, vma, vmf->address);
3536 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3537 __swap_count(entry) == 1) {
3538 /* skip swapcache */
3539 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3542 __SetPageLocked(page);
3543 __SetPageSwapBacked(page);
3545 if (mem_cgroup_swapin_charge_page(page,
3546 vma->vm_mm, GFP_KERNEL, entry)) {
3550 mem_cgroup_swapin_uncharge_swap(entry);
3552 shadow = get_shadow_from_swap_cache(entry);
3554 workingset_refault(page_folio(page),
3557 lru_cache_add(page);
3559 /* To provide entry to swap_readpage() */
3560 set_page_private(page, entry.val);
3561 swap_readpage(page, true);
3562 set_page_private(page, 0);
3565 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3572 * Back out if somebody else faulted in this pte
3573 * while we released the pte lock.
3575 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3576 vmf->address, &vmf->ptl);
3577 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3582 /* Had to read the page from swap area: Major fault */
3583 ret = VM_FAULT_MAJOR;
3584 count_vm_event(PGMAJFAULT);
3585 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3586 } else if (PageHWPoison(page)) {
3588 * hwpoisoned dirty swapcache pages are kept for killing
3589 * owner processes (which may be unknown at hwpoison time)
3591 ret = VM_FAULT_HWPOISON;
3595 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3598 ret |= VM_FAULT_RETRY;
3603 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3604 * release the swapcache from under us. The page pin, and pte_same
3605 * test below, are not enough to exclude that. Even if it is still
3606 * swapcache, we need to check that the page's swap has not changed.
3608 if (unlikely((!PageSwapCache(page) ||
3609 page_private(page) != entry.val)) && swapcache)
3612 page = ksm_might_need_to_copy(page, vma, vmf->address);
3613 if (unlikely(!page)) {
3619 cgroup_throttle_swaprate(page, GFP_KERNEL);
3622 * Back out if somebody else already faulted in this pte.
3624 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3626 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3629 if (unlikely(!PageUptodate(page))) {
3630 ret = VM_FAULT_SIGBUS;
3635 * The page isn't present yet, go ahead with the fault.
3637 * Be careful about the sequence of operations here.
3638 * To get its accounting right, reuse_swap_page() must be called
3639 * while the page is counted on swap but not yet in mapcount i.e.
3640 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3641 * must be called after the swap_free(), or it will never succeed.
3644 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3645 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3646 pte = mk_pte(page, vma->vm_page_prot);
3647 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3648 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3649 vmf->flags &= ~FAULT_FLAG_WRITE;
3650 ret |= VM_FAULT_WRITE;
3651 exclusive = RMAP_EXCLUSIVE;
3653 flush_icache_page(vma, page);
3654 if (pte_swp_soft_dirty(vmf->orig_pte))
3655 pte = pte_mksoft_dirty(pte);
3656 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3657 pte = pte_mkuffd_wp(pte);
3658 pte = pte_wrprotect(pte);
3660 vmf->orig_pte = pte;
3662 /* ksm created a completely new copy */
3663 if (unlikely(page != swapcache && swapcache)) {
3664 page_add_new_anon_rmap(page, vma, vmf->address, false);
3665 lru_cache_add_inactive_or_unevictable(page, vma);
3667 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3670 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3671 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3674 if (mem_cgroup_swap_full(page) ||
3675 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3676 try_to_free_swap(page);
3678 if (page != swapcache && swapcache) {
3680 * Hold the lock to avoid the swap entry to be reused
3681 * until we take the PT lock for the pte_same() check
3682 * (to avoid false positives from pte_same). For
3683 * further safety release the lock after the swap_free
3684 * so that the swap count won't change under a
3685 * parallel locked swapcache.
3687 unlock_page(swapcache);
3688 put_page(swapcache);
3691 if (vmf->flags & FAULT_FLAG_WRITE) {
3692 ret |= do_wp_page(vmf);
3693 if (ret & VM_FAULT_ERROR)
3694 ret &= VM_FAULT_ERROR;
3698 /* No need to invalidate - it was non-present before */
3699 update_mmu_cache(vma, vmf->address, vmf->pte);
3701 pte_unmap_unlock(vmf->pte, vmf->ptl);
3704 put_swap_device(si);
3707 pte_unmap_unlock(vmf->pte, vmf->ptl);
3712 if (page != swapcache && swapcache) {
3713 unlock_page(swapcache);
3714 put_page(swapcache);
3717 put_swap_device(si);
3722 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3723 * but allow concurrent faults), and pte mapped but not yet locked.
3724 * We return with mmap_lock still held, but pte unmapped and unlocked.
3726 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3728 struct vm_area_struct *vma = vmf->vma;
3733 /* File mapping without ->vm_ops ? */
3734 if (vma->vm_flags & VM_SHARED)
3735 return VM_FAULT_SIGBUS;
3738 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3739 * pte_offset_map() on pmds where a huge pmd might be created
3740 * from a different thread.
3742 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3743 * parallel threads are excluded by other means.
3745 * Here we only have mmap_read_lock(mm).
3747 if (pte_alloc(vma->vm_mm, vmf->pmd))
3748 return VM_FAULT_OOM;
3750 /* See comment in handle_pte_fault() */
3751 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3754 /* Use the zero-page for reads */
3755 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3756 !mm_forbids_zeropage(vma->vm_mm)) {
3757 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3758 vma->vm_page_prot));
3759 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3760 vmf->address, &vmf->ptl);
3761 if (!pte_none(*vmf->pte)) {
3762 update_mmu_tlb(vma, vmf->address, vmf->pte);
3765 ret = check_stable_address_space(vma->vm_mm);
3768 /* Deliver the page fault to userland, check inside PT lock */
3769 if (userfaultfd_missing(vma)) {
3770 pte_unmap_unlock(vmf->pte, vmf->ptl);
3771 return handle_userfault(vmf, VM_UFFD_MISSING);
3776 /* Allocate our own private page. */
3777 if (unlikely(anon_vma_prepare(vma)))
3779 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3783 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3785 cgroup_throttle_swaprate(page, GFP_KERNEL);
3788 * The memory barrier inside __SetPageUptodate makes sure that
3789 * preceding stores to the page contents become visible before
3790 * the set_pte_at() write.
3792 __SetPageUptodate(page);
3794 entry = mk_pte(page, vma->vm_page_prot);
3795 entry = pte_sw_mkyoung(entry);
3796 if (vma->vm_flags & VM_WRITE)
3797 entry = pte_mkwrite(pte_mkdirty(entry));
3799 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3801 if (!pte_none(*vmf->pte)) {
3802 update_mmu_cache(vma, vmf->address, vmf->pte);
3806 ret = check_stable_address_space(vma->vm_mm);
3810 /* Deliver the page fault to userland, check inside PT lock */
3811 if (userfaultfd_missing(vma)) {
3812 pte_unmap_unlock(vmf->pte, vmf->ptl);
3814 return handle_userfault(vmf, VM_UFFD_MISSING);
3817 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818 page_add_new_anon_rmap(page, vma, vmf->address, false);
3819 lru_cache_add_inactive_or_unevictable(page, vma);
3821 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3823 /* No need to invalidate - it was non-present before */
3824 update_mmu_cache(vma, vmf->address, vmf->pte);
3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
3834 return VM_FAULT_OOM;
3838 * The mmap_lock must have been held on entry, and may have been
3839 * released depending on flags and vma->vm_ops->fault() return value.
3840 * See filemap_fault() and __lock_page_retry().
3842 static vm_fault_t __do_fault(struct vm_fault *vmf)
3844 struct vm_area_struct *vma = vmf->vma;
3848 * Preallocate pte before we take page_lock because this might lead to
3849 * deadlocks for memcg reclaim which waits for pages under writeback:
3851 * SetPageWriteback(A)
3857 * wait_on_page_writeback(A)
3858 * SetPageWriteback(B)
3860 * # flush A, B to clear the writeback
3862 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3863 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3864 if (!vmf->prealloc_pte)
3865 return VM_FAULT_OOM;
3868 ret = vma->vm_ops->fault(vmf);
3869 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3870 VM_FAULT_DONE_COW)))
3873 if (unlikely(PageHWPoison(vmf->page))) {
3874 if (ret & VM_FAULT_LOCKED)
3875 unlock_page(vmf->page);
3876 put_page(vmf->page);
3878 return VM_FAULT_HWPOISON;
3881 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3882 lock_page(vmf->page);
3884 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 static void deposit_prealloc_pte(struct vm_fault *vmf)
3892 struct vm_area_struct *vma = vmf->vma;
3894 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3896 * We are going to consume the prealloc table,
3897 * count that as nr_ptes.
3899 mm_inc_nr_ptes(vma->vm_mm);
3900 vmf->prealloc_pte = NULL;
3903 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3905 struct vm_area_struct *vma = vmf->vma;
3906 bool write = vmf->flags & FAULT_FLAG_WRITE;
3907 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3910 vm_fault_t ret = VM_FAULT_FALLBACK;
3912 if (!transhuge_vma_suitable(vma, haddr))
3915 page = compound_head(page);
3916 if (compound_order(page) != HPAGE_PMD_ORDER)
3920 * Just backoff if any subpage of a THP is corrupted otherwise
3921 * the corrupted page may mapped by PMD silently to escape the
3922 * check. This kind of THP just can be PTE mapped. Access to
3923 * the corrupted subpage should trigger SIGBUS as expected.
3925 if (unlikely(PageHasHWPoisoned(page)))
3929 * Archs like ppc64 need additional space to store information
3930 * related to pte entry. Use the preallocated table for that.
3932 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3933 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3934 if (!vmf->prealloc_pte)
3935 return VM_FAULT_OOM;
3938 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3939 if (unlikely(!pmd_none(*vmf->pmd)))
3942 for (i = 0; i < HPAGE_PMD_NR; i++)
3943 flush_icache_page(vma, page + i);
3945 entry = mk_huge_pmd(page, vma->vm_page_prot);
3947 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3949 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3950 page_add_file_rmap(page, true);
3952 * deposit and withdraw with pmd lock held
3954 if (arch_needs_pgtable_deposit())
3955 deposit_prealloc_pte(vmf);
3957 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3959 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3961 /* fault is handled */
3963 count_vm_event(THP_FILE_MAPPED);
3965 spin_unlock(vmf->ptl);
3969 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3971 return VM_FAULT_FALLBACK;
3975 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3977 struct vm_area_struct *vma = vmf->vma;
3978 bool write = vmf->flags & FAULT_FLAG_WRITE;
3979 bool prefault = vmf->address != addr;
3982 flush_icache_page(vma, page);
3983 entry = mk_pte(page, vma->vm_page_prot);
3985 if (prefault && arch_wants_old_prefaulted_pte())
3986 entry = pte_mkold(entry);
3988 entry = pte_sw_mkyoung(entry);
3991 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3992 /* copy-on-write page */
3993 if (write && !(vma->vm_flags & VM_SHARED)) {
3994 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3995 page_add_new_anon_rmap(page, vma, addr, false);
3996 lru_cache_add_inactive_or_unevictable(page, vma);
3998 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3999 page_add_file_rmap(page, false);
4001 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4005 * finish_fault - finish page fault once we have prepared the page to fault
4007 * @vmf: structure describing the fault
4009 * This function handles all that is needed to finish a page fault once the
4010 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4011 * given page, adds reverse page mapping, handles memcg charges and LRU
4014 * The function expects the page to be locked and on success it consumes a
4015 * reference of a page being mapped (for the PTE which maps it).
4017 * Return: %0 on success, %VM_FAULT_ code in case of error.
4019 vm_fault_t finish_fault(struct vm_fault *vmf)
4021 struct vm_area_struct *vma = vmf->vma;
4025 /* Did we COW the page? */
4026 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4027 page = vmf->cow_page;
4032 * check even for read faults because we might have lost our CoWed
4035 if (!(vma->vm_flags & VM_SHARED)) {
4036 ret = check_stable_address_space(vma->vm_mm);
4041 if (pmd_none(*vmf->pmd)) {
4042 if (PageTransCompound(page)) {
4043 ret = do_set_pmd(vmf, page);
4044 if (ret != VM_FAULT_FALLBACK)
4048 if (vmf->prealloc_pte)
4049 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4050 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4051 return VM_FAULT_OOM;
4054 /* See comment in handle_pte_fault() */
4055 if (pmd_devmap_trans_unstable(vmf->pmd))
4058 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059 vmf->address, &vmf->ptl);
4061 /* Re-check under ptl */
4062 if (likely(pte_none(*vmf->pte)))
4063 do_set_pte(vmf, page, vmf->address);
4065 ret = VM_FAULT_NOPAGE;
4067 update_mmu_tlb(vma, vmf->address, vmf->pte);
4068 pte_unmap_unlock(vmf->pte, vmf->ptl);
4072 static unsigned long fault_around_bytes __read_mostly =
4073 rounddown_pow_of_two(65536);
4075 #ifdef CONFIG_DEBUG_FS
4076 static int fault_around_bytes_get(void *data, u64 *val)
4078 *val = fault_around_bytes;
4083 * fault_around_bytes must be rounded down to the nearest page order as it's
4084 * what do_fault_around() expects to see.
4086 static int fault_around_bytes_set(void *data, u64 val)
4088 if (val / PAGE_SIZE > PTRS_PER_PTE)
4090 if (val > PAGE_SIZE)
4091 fault_around_bytes = rounddown_pow_of_two(val);
4093 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4096 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4097 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4099 static int __init fault_around_debugfs(void)
4101 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4102 &fault_around_bytes_fops);
4105 late_initcall(fault_around_debugfs);
4109 * do_fault_around() tries to map few pages around the fault address. The hope
4110 * is that the pages will be needed soon and this will lower the number of
4113 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4114 * not ready to be mapped: not up-to-date, locked, etc.
4116 * This function is called with the page table lock taken. In the split ptlock
4117 * case the page table lock only protects only those entries which belong to
4118 * the page table corresponding to the fault address.
4120 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4123 * fault_around_bytes defines how many bytes we'll try to map.
4124 * do_fault_around() expects it to be set to a power of two less than or equal
4127 * The virtual address of the area that we map is naturally aligned to
4128 * fault_around_bytes rounded down to the machine page size
4129 * (and therefore to page order). This way it's easier to guarantee
4130 * that we don't cross page table boundaries.
4132 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4134 unsigned long address = vmf->address, nr_pages, mask;
4135 pgoff_t start_pgoff = vmf->pgoff;
4139 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4140 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4142 address = max(address & mask, vmf->vma->vm_start);
4143 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4147 * end_pgoff is either the end of the page table, the end of
4148 * the vma or nr_pages from start_pgoff, depending what is nearest.
4150 end_pgoff = start_pgoff -
4151 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4153 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4154 start_pgoff + nr_pages - 1);
4156 if (pmd_none(*vmf->pmd)) {
4157 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4158 if (!vmf->prealloc_pte)
4159 return VM_FAULT_OOM;
4162 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4165 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4167 struct vm_area_struct *vma = vmf->vma;
4171 * Let's call ->map_pages() first and use ->fault() as fallback
4172 * if page by the offset is not ready to be mapped (cold cache or
4175 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4176 if (likely(!userfaultfd_minor(vmf->vma))) {
4177 ret = do_fault_around(vmf);
4183 ret = __do_fault(vmf);
4184 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4187 ret |= finish_fault(vmf);
4188 unlock_page(vmf->page);
4189 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4190 put_page(vmf->page);
4194 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4196 struct vm_area_struct *vma = vmf->vma;
4199 if (unlikely(anon_vma_prepare(vma)))
4200 return VM_FAULT_OOM;
4202 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4204 return VM_FAULT_OOM;
4206 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4208 put_page(vmf->cow_page);
4209 return VM_FAULT_OOM;
4211 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4213 ret = __do_fault(vmf);
4214 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4216 if (ret & VM_FAULT_DONE_COW)
4219 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4220 __SetPageUptodate(vmf->cow_page);
4222 ret |= finish_fault(vmf);
4223 unlock_page(vmf->page);
4224 put_page(vmf->page);
4225 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4229 put_page(vmf->cow_page);
4233 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4235 struct vm_area_struct *vma = vmf->vma;
4236 vm_fault_t ret, tmp;
4238 ret = __do_fault(vmf);
4239 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4243 * Check if the backing address space wants to know that the page is
4244 * about to become writable
4246 if (vma->vm_ops->page_mkwrite) {
4247 unlock_page(vmf->page);
4248 tmp = do_page_mkwrite(vmf);
4249 if (unlikely(!tmp ||
4250 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4251 put_page(vmf->page);
4256 ret |= finish_fault(vmf);
4257 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4259 unlock_page(vmf->page);
4260 put_page(vmf->page);
4264 ret |= fault_dirty_shared_page(vmf);
4269 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4270 * but allow concurrent faults).
4271 * The mmap_lock may have been released depending on flags and our
4272 * return value. See filemap_fault() and __folio_lock_or_retry().
4273 * If mmap_lock is released, vma may become invalid (for example
4274 * by other thread calling munmap()).
4276 static vm_fault_t do_fault(struct vm_fault *vmf)
4278 struct vm_area_struct *vma = vmf->vma;
4279 struct mm_struct *vm_mm = vma->vm_mm;
4283 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4285 if (!vma->vm_ops->fault) {
4287 * If we find a migration pmd entry or a none pmd entry, which
4288 * should never happen, return SIGBUS
4290 if (unlikely(!pmd_present(*vmf->pmd)))
4291 ret = VM_FAULT_SIGBUS;
4293 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4298 * Make sure this is not a temporary clearing of pte
4299 * by holding ptl and checking again. A R/M/W update
4300 * of pte involves: take ptl, clearing the pte so that
4301 * we don't have concurrent modification by hardware
4302 * followed by an update.
4304 if (unlikely(pte_none(*vmf->pte)))
4305 ret = VM_FAULT_SIGBUS;
4307 ret = VM_FAULT_NOPAGE;
4309 pte_unmap_unlock(vmf->pte, vmf->ptl);
4311 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4312 ret = do_read_fault(vmf);
4313 else if (!(vma->vm_flags & VM_SHARED))
4314 ret = do_cow_fault(vmf);
4316 ret = do_shared_fault(vmf);
4318 /* preallocated pagetable is unused: free it */
4319 if (vmf->prealloc_pte) {
4320 pte_free(vm_mm, vmf->prealloc_pte);
4321 vmf->prealloc_pte = NULL;
4326 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4327 unsigned long addr, int page_nid, int *flags)
4331 count_vm_numa_event(NUMA_HINT_FAULTS);
4332 if (page_nid == numa_node_id()) {
4333 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4334 *flags |= TNF_FAULT_LOCAL;
4337 return mpol_misplaced(page, vma, addr);
4340 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4342 struct vm_area_struct *vma = vmf->vma;
4343 struct page *page = NULL;
4344 int page_nid = NUMA_NO_NODE;
4348 bool was_writable = pte_savedwrite(vmf->orig_pte);
4352 * The "pte" at this point cannot be used safely without
4353 * validation through pte_unmap_same(). It's of NUMA type but
4354 * the pfn may be screwed if the read is non atomic.
4356 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4357 spin_lock(vmf->ptl);
4358 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4359 pte_unmap_unlock(vmf->pte, vmf->ptl);
4363 /* Get the normal PTE */
4364 old_pte = ptep_get(vmf->pte);
4365 pte = pte_modify(old_pte, vma->vm_page_prot);
4367 page = vm_normal_page(vma, vmf->address, pte);
4371 /* TODO: handle PTE-mapped THP */
4372 if (PageCompound(page))
4376 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4377 * much anyway since they can be in shared cache state. This misses
4378 * the case where a mapping is writable but the process never writes
4379 * to it but pte_write gets cleared during protection updates and
4380 * pte_dirty has unpredictable behaviour between PTE scan updates,
4381 * background writeback, dirty balancing and application behaviour.
4384 flags |= TNF_NO_GROUP;
4387 * Flag if the page is shared between multiple address spaces. This
4388 * is later used when determining whether to group tasks together
4390 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4391 flags |= TNF_SHARED;
4393 last_cpupid = page_cpupid_last(page);
4394 page_nid = page_to_nid(page);
4395 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4397 if (target_nid == NUMA_NO_NODE) {
4401 pte_unmap_unlock(vmf->pte, vmf->ptl);
4403 /* Migrate to the requested node */
4404 if (migrate_misplaced_page(page, vma, target_nid)) {
4405 page_nid = target_nid;
4406 flags |= TNF_MIGRATED;
4408 flags |= TNF_MIGRATE_FAIL;
4409 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4410 spin_lock(vmf->ptl);
4411 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4412 pte_unmap_unlock(vmf->pte, vmf->ptl);
4419 if (page_nid != NUMA_NO_NODE)
4420 task_numa_fault(last_cpupid, page_nid, 1, flags);
4424 * Make it present again, depending on how arch implements
4425 * non-accessible ptes, some can allow access by kernel mode.
4427 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4428 pte = pte_modify(old_pte, vma->vm_page_prot);
4429 pte = pte_mkyoung(pte);
4431 pte = pte_mkwrite(pte);
4432 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4433 update_mmu_cache(vma, vmf->address, vmf->pte);
4434 pte_unmap_unlock(vmf->pte, vmf->ptl);
4438 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4440 if (vma_is_anonymous(vmf->vma))
4441 return do_huge_pmd_anonymous_page(vmf);
4442 if (vmf->vma->vm_ops->huge_fault)
4443 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4444 return VM_FAULT_FALLBACK;
4447 /* `inline' is required to avoid gcc 4.1.2 build error */
4448 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4450 if (vma_is_anonymous(vmf->vma)) {
4451 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4452 return handle_userfault(vmf, VM_UFFD_WP);
4453 return do_huge_pmd_wp_page(vmf);
4455 if (vmf->vma->vm_ops->huge_fault) {
4456 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4458 if (!(ret & VM_FAULT_FALLBACK))
4462 /* COW or write-notify handled on pte level: split pmd. */
4463 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4465 return VM_FAULT_FALLBACK;
4468 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4470 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4471 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4472 /* No support for anonymous transparent PUD pages yet */
4473 if (vma_is_anonymous(vmf->vma))
4475 if (vmf->vma->vm_ops->huge_fault) {
4476 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4478 if (!(ret & VM_FAULT_FALLBACK))
4482 /* COW or write-notify not handled on PUD level: split pud.*/
4483 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4484 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485 return VM_FAULT_FALLBACK;
4488 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4491 /* No support for anonymous transparent PUD pages yet */
4492 if (vma_is_anonymous(vmf->vma))
4493 return VM_FAULT_FALLBACK;
4494 if (vmf->vma->vm_ops->huge_fault)
4495 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4496 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4497 return VM_FAULT_FALLBACK;
4501 * These routines also need to handle stuff like marking pages dirty
4502 * and/or accessed for architectures that don't do it in hardware (most
4503 * RISC architectures). The early dirtying is also good on the i386.
4505 * There is also a hook called "update_mmu_cache()" that architectures
4506 * with external mmu caches can use to update those (ie the Sparc or
4507 * PowerPC hashed page tables that act as extended TLBs).
4509 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4510 * concurrent faults).
4512 * The mmap_lock may have been released depending on flags and our return value.
4513 * See filemap_fault() and __folio_lock_or_retry().
4515 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4519 if (unlikely(pmd_none(*vmf->pmd))) {
4521 * Leave __pte_alloc() until later: because vm_ops->fault may
4522 * want to allocate huge page, and if we expose page table
4523 * for an instant, it will be difficult to retract from
4524 * concurrent faults and from rmap lookups.
4529 * If a huge pmd materialized under us just retry later. Use
4530 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4531 * of pmd_trans_huge() to ensure the pmd didn't become
4532 * pmd_trans_huge under us and then back to pmd_none, as a
4533 * result of MADV_DONTNEED running immediately after a huge pmd
4534 * fault in a different thread of this mm, in turn leading to a
4535 * misleading pmd_trans_huge() retval. All we have to ensure is
4536 * that it is a regular pmd that we can walk with
4537 * pte_offset_map() and we can do that through an atomic read
4538 * in C, which is what pmd_trans_unstable() provides.
4540 if (pmd_devmap_trans_unstable(vmf->pmd))
4543 * A regular pmd is established and it can't morph into a huge
4544 * pmd from under us anymore at this point because we hold the
4545 * mmap_lock read mode and khugepaged takes it in write mode.
4546 * So now it's safe to run pte_offset_map().
4548 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4549 vmf->orig_pte = *vmf->pte;
4552 * some architectures can have larger ptes than wordsize,
4553 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4554 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4555 * accesses. The code below just needs a consistent view
4556 * for the ifs and we later double check anyway with the
4557 * ptl lock held. So here a barrier will do.
4560 if (pte_none(vmf->orig_pte)) {
4561 pte_unmap(vmf->pte);
4567 if (vma_is_anonymous(vmf->vma))
4568 return do_anonymous_page(vmf);
4570 return do_fault(vmf);
4573 if (!pte_present(vmf->orig_pte))
4574 return do_swap_page(vmf);
4576 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4577 return do_numa_page(vmf);
4579 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4580 spin_lock(vmf->ptl);
4581 entry = vmf->orig_pte;
4582 if (unlikely(!pte_same(*vmf->pte, entry))) {
4583 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4586 if (vmf->flags & FAULT_FLAG_WRITE) {
4587 if (!pte_write(entry))
4588 return do_wp_page(vmf);
4589 entry = pte_mkdirty(entry);
4591 entry = pte_mkyoung(entry);
4592 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4593 vmf->flags & FAULT_FLAG_WRITE)) {
4594 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4596 /* Skip spurious TLB flush for retried page fault */
4597 if (vmf->flags & FAULT_FLAG_TRIED)
4600 * This is needed only for protection faults but the arch code
4601 * is not yet telling us if this is a protection fault or not.
4602 * This still avoids useless tlb flushes for .text page faults
4605 if (vmf->flags & FAULT_FLAG_WRITE)
4606 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4609 pte_unmap_unlock(vmf->pte, vmf->ptl);
4614 * By the time we get here, we already hold the mm semaphore
4616 * The mmap_lock may have been released depending on flags and our
4617 * return value. See filemap_fault() and __folio_lock_or_retry().
4619 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4620 unsigned long address, unsigned int flags)
4622 struct vm_fault vmf = {
4624 .address = address & PAGE_MASK,
4626 .pgoff = linear_page_index(vma, address),
4627 .gfp_mask = __get_fault_gfp_mask(vma),
4629 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4630 struct mm_struct *mm = vma->vm_mm;
4635 pgd = pgd_offset(mm, address);
4636 p4d = p4d_alloc(mm, pgd, address);
4638 return VM_FAULT_OOM;
4640 vmf.pud = pud_alloc(mm, p4d, address);
4642 return VM_FAULT_OOM;
4644 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4645 ret = create_huge_pud(&vmf);
4646 if (!(ret & VM_FAULT_FALLBACK))
4649 pud_t orig_pud = *vmf.pud;
4652 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4654 /* NUMA case for anonymous PUDs would go here */
4656 if (dirty && !pud_write(orig_pud)) {
4657 ret = wp_huge_pud(&vmf, orig_pud);
4658 if (!(ret & VM_FAULT_FALLBACK))
4661 huge_pud_set_accessed(&vmf, orig_pud);
4667 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4669 return VM_FAULT_OOM;
4671 /* Huge pud page fault raced with pmd_alloc? */
4672 if (pud_trans_unstable(vmf.pud))
4675 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4676 ret = create_huge_pmd(&vmf);
4677 if (!(ret & VM_FAULT_FALLBACK))
4680 vmf.orig_pmd = *vmf.pmd;
4683 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4684 VM_BUG_ON(thp_migration_supported() &&
4685 !is_pmd_migration_entry(vmf.orig_pmd));
4686 if (is_pmd_migration_entry(vmf.orig_pmd))
4687 pmd_migration_entry_wait(mm, vmf.pmd);
4690 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4691 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4692 return do_huge_pmd_numa_page(&vmf);
4694 if (dirty && !pmd_write(vmf.orig_pmd)) {
4695 ret = wp_huge_pmd(&vmf);
4696 if (!(ret & VM_FAULT_FALLBACK))
4699 huge_pmd_set_accessed(&vmf);
4705 return handle_pte_fault(&vmf);
4709 * mm_account_fault - Do page fault accounting
4711 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4712 * of perf event counters, but we'll still do the per-task accounting to
4713 * the task who triggered this page fault.
4714 * @address: the faulted address.
4715 * @flags: the fault flags.
4716 * @ret: the fault retcode.
4718 * This will take care of most of the page fault accounting. Meanwhile, it
4719 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4720 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4721 * still be in per-arch page fault handlers at the entry of page fault.
4723 static inline void mm_account_fault(struct pt_regs *regs,
4724 unsigned long address, unsigned int flags,
4730 * We don't do accounting for some specific faults:
4732 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4733 * includes arch_vma_access_permitted() failing before reaching here.
4734 * So this is not a "this many hardware page faults" counter. We
4735 * should use the hw profiling for that.
4737 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4738 * once they're completed.
4740 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4744 * We define the fault as a major fault when the final successful fault
4745 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4746 * handle it immediately previously).
4748 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4756 * If the fault is done for GUP, regs will be NULL. We only do the
4757 * accounting for the per thread fault counters who triggered the
4758 * fault, and we skip the perf event updates.
4764 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4766 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4770 * By the time we get here, we already hold the mm semaphore
4772 * The mmap_lock may have been released depending on flags and our
4773 * return value. See filemap_fault() and __folio_lock_or_retry().
4775 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4776 unsigned int flags, struct pt_regs *regs)
4780 __set_current_state(TASK_RUNNING);
4782 count_vm_event(PGFAULT);
4783 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4785 /* do counter updates before entering really critical section. */
4786 check_sync_rss_stat(current);
4788 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4789 flags & FAULT_FLAG_INSTRUCTION,
4790 flags & FAULT_FLAG_REMOTE))
4791 return VM_FAULT_SIGSEGV;
4794 * Enable the memcg OOM handling for faults triggered in user
4795 * space. Kernel faults are handled more gracefully.
4797 if (flags & FAULT_FLAG_USER)
4798 mem_cgroup_enter_user_fault();
4800 if (unlikely(is_vm_hugetlb_page(vma)))
4801 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4803 ret = __handle_mm_fault(vma, address, flags);
4805 if (flags & FAULT_FLAG_USER) {
4806 mem_cgroup_exit_user_fault();
4808 * The task may have entered a memcg OOM situation but
4809 * if the allocation error was handled gracefully (no
4810 * VM_FAULT_OOM), there is no need to kill anything.
4811 * Just clean up the OOM state peacefully.
4813 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4814 mem_cgroup_oom_synchronize(false);
4817 mm_account_fault(regs, address, flags, ret);
4821 EXPORT_SYMBOL_GPL(handle_mm_fault);
4823 #ifndef __PAGETABLE_P4D_FOLDED
4825 * Allocate p4d page table.
4826 * We've already handled the fast-path in-line.
4828 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4830 p4d_t *new = p4d_alloc_one(mm, address);
4834 spin_lock(&mm->page_table_lock);
4835 if (pgd_present(*pgd)) { /* Another has populated it */
4838 smp_wmb(); /* See comment in pmd_install() */
4839 pgd_populate(mm, pgd, new);
4841 spin_unlock(&mm->page_table_lock);
4844 #endif /* __PAGETABLE_P4D_FOLDED */
4846 #ifndef __PAGETABLE_PUD_FOLDED
4848 * Allocate page upper directory.
4849 * We've already handled the fast-path in-line.
4851 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4853 pud_t *new = pud_alloc_one(mm, address);
4857 spin_lock(&mm->page_table_lock);
4858 if (!p4d_present(*p4d)) {
4860 smp_wmb(); /* See comment in pmd_install() */
4861 p4d_populate(mm, p4d, new);
4862 } else /* Another has populated it */
4864 spin_unlock(&mm->page_table_lock);
4867 #endif /* __PAGETABLE_PUD_FOLDED */
4869 #ifndef __PAGETABLE_PMD_FOLDED
4871 * Allocate page middle directory.
4872 * We've already handled the fast-path in-line.
4874 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4877 pmd_t *new = pmd_alloc_one(mm, address);
4881 ptl = pud_lock(mm, pud);
4882 if (!pud_present(*pud)) {
4884 smp_wmb(); /* See comment in pmd_install() */
4885 pud_populate(mm, pud, new);
4886 } else { /* Another has populated it */
4892 #endif /* __PAGETABLE_PMD_FOLDED */
4894 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4895 struct mmu_notifier_range *range, pte_t **ptepp,
4896 pmd_t **pmdpp, spinlock_t **ptlp)
4904 pgd = pgd_offset(mm, address);
4905 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4908 p4d = p4d_offset(pgd, address);
4909 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4912 pud = pud_offset(p4d, address);
4913 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4916 pmd = pmd_offset(pud, address);
4917 VM_BUG_ON(pmd_trans_huge(*pmd));
4919 if (pmd_huge(*pmd)) {
4924 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4925 NULL, mm, address & PMD_MASK,
4926 (address & PMD_MASK) + PMD_SIZE);
4927 mmu_notifier_invalidate_range_start(range);
4929 *ptlp = pmd_lock(mm, pmd);
4930 if (pmd_huge(*pmd)) {
4936 mmu_notifier_invalidate_range_end(range);
4939 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4943 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4944 address & PAGE_MASK,
4945 (address & PAGE_MASK) + PAGE_SIZE);
4946 mmu_notifier_invalidate_range_start(range);
4948 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4949 if (!pte_present(*ptep))
4954 pte_unmap_unlock(ptep, *ptlp);
4956 mmu_notifier_invalidate_range_end(range);
4962 * follow_pte - look up PTE at a user virtual address
4963 * @mm: the mm_struct of the target address space
4964 * @address: user virtual address
4965 * @ptepp: location to store found PTE
4966 * @ptlp: location to store the lock for the PTE
4968 * On a successful return, the pointer to the PTE is stored in @ptepp;
4969 * the corresponding lock is taken and its location is stored in @ptlp.
4970 * The contents of the PTE are only stable until @ptlp is released;
4971 * any further use, if any, must be protected against invalidation
4972 * with MMU notifiers.
4974 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4975 * should be taken for read.
4977 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4978 * it is not a good general-purpose API.
4980 * Return: zero on success, -ve otherwise.
4982 int follow_pte(struct mm_struct *mm, unsigned long address,
4983 pte_t **ptepp, spinlock_t **ptlp)
4985 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4987 EXPORT_SYMBOL_GPL(follow_pte);
4990 * follow_pfn - look up PFN at a user virtual address
4991 * @vma: memory mapping
4992 * @address: user virtual address
4993 * @pfn: location to store found PFN
4995 * Only IO mappings and raw PFN mappings are allowed.
4997 * This function does not allow the caller to read the permissions
4998 * of the PTE. Do not use it.
5000 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5002 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5009 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5012 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5015 *pfn = pte_pfn(*ptep);
5016 pte_unmap_unlock(ptep, ptl);
5019 EXPORT_SYMBOL(follow_pfn);
5021 #ifdef CONFIG_HAVE_IOREMAP_PROT
5022 int follow_phys(struct vm_area_struct *vma,
5023 unsigned long address, unsigned int flags,
5024 unsigned long *prot, resource_size_t *phys)
5030 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5033 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5037 if ((flags & FOLL_WRITE) && !pte_write(pte))
5040 *prot = pgprot_val(pte_pgprot(pte));
5041 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5045 pte_unmap_unlock(ptep, ptl);
5051 * generic_access_phys - generic implementation for iomem mmap access
5052 * @vma: the vma to access
5053 * @addr: userspace address, not relative offset within @vma
5054 * @buf: buffer to read/write
5055 * @len: length of transfer
5056 * @write: set to FOLL_WRITE when writing, otherwise reading
5058 * This is a generic implementation for &vm_operations_struct.access for an
5059 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5063 void *buf, int len, int write)
5065 resource_size_t phys_addr;
5066 unsigned long prot = 0;
5067 void __iomem *maddr;
5070 int offset = offset_in_page(addr);
5073 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5077 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5080 pte_unmap_unlock(ptep, ptl);
5082 prot = pgprot_val(pte_pgprot(pte));
5083 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5085 if ((write & FOLL_WRITE) && !pte_write(pte))
5088 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5092 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5095 if (!pte_same(pte, *ptep)) {
5096 pte_unmap_unlock(ptep, ptl);
5103 memcpy_toio(maddr + offset, buf, len);
5105 memcpy_fromio(buf, maddr + offset, len);
5107 pte_unmap_unlock(ptep, ptl);
5113 EXPORT_SYMBOL_GPL(generic_access_phys);
5117 * Access another process' address space as given in mm.
5119 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5120 int len, unsigned int gup_flags)
5122 struct vm_area_struct *vma;
5123 void *old_buf = buf;
5124 int write = gup_flags & FOLL_WRITE;
5126 if (mmap_read_lock_killable(mm))
5129 /* ignore errors, just check how much was successfully transferred */
5131 int bytes, ret, offset;
5133 struct page *page = NULL;
5135 ret = get_user_pages_remote(mm, addr, 1,
5136 gup_flags, &page, &vma, NULL);
5138 #ifndef CONFIG_HAVE_IOREMAP_PROT
5142 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5143 * we can access using slightly different code.
5145 vma = vma_lookup(mm, addr);
5148 if (vma->vm_ops && vma->vm_ops->access)
5149 ret = vma->vm_ops->access(vma, addr, buf,
5157 offset = addr & (PAGE_SIZE-1);
5158 if (bytes > PAGE_SIZE-offset)
5159 bytes = PAGE_SIZE-offset;
5163 copy_to_user_page(vma, page, addr,
5164 maddr + offset, buf, bytes);
5165 set_page_dirty_lock(page);
5167 copy_from_user_page(vma, page, addr,
5168 buf, maddr + offset, bytes);
5177 mmap_read_unlock(mm);
5179 return buf - old_buf;
5183 * access_remote_vm - access another process' address space
5184 * @mm: the mm_struct of the target address space
5185 * @addr: start address to access
5186 * @buf: source or destination buffer
5187 * @len: number of bytes to transfer
5188 * @gup_flags: flags modifying lookup behaviour
5190 * The caller must hold a reference on @mm.
5192 * Return: number of bytes copied from source to destination.
5194 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5195 void *buf, int len, unsigned int gup_flags)
5197 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5201 * Access another process' address space.
5202 * Source/target buffer must be kernel space,
5203 * Do not walk the page table directly, use get_user_pages
5205 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5206 void *buf, int len, unsigned int gup_flags)
5208 struct mm_struct *mm;
5211 mm = get_task_mm(tsk);
5215 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5221 EXPORT_SYMBOL_GPL(access_process_vm);
5224 * Print the name of a VMA.
5226 void print_vma_addr(char *prefix, unsigned long ip)
5228 struct mm_struct *mm = current->mm;
5229 struct vm_area_struct *vma;
5232 * we might be running from an atomic context so we cannot sleep
5234 if (!mmap_read_trylock(mm))
5237 vma = find_vma(mm, ip);
5238 if (vma && vma->vm_file) {
5239 struct file *f = vma->vm_file;
5240 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5244 p = file_path(f, buf, PAGE_SIZE);
5247 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5249 vma->vm_end - vma->vm_start);
5250 free_page((unsigned long)buf);
5253 mmap_read_unlock(mm);
5256 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5257 void __might_fault(const char *file, int line)
5260 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5261 * holding the mmap_lock, this is safe because kernel memory doesn't
5262 * get paged out, therefore we'll never actually fault, and the
5263 * below annotations will generate false positives.
5265 if (uaccess_kernel())
5267 if (pagefault_disabled())
5269 __might_sleep(file, line);
5270 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5272 might_lock_read(¤t->mm->mmap_lock);
5275 EXPORT_SYMBOL(__might_fault);
5278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5280 * Process all subpages of the specified huge page with the specified
5281 * operation. The target subpage will be processed last to keep its
5284 static inline void process_huge_page(
5285 unsigned long addr_hint, unsigned int pages_per_huge_page,
5286 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5290 unsigned long addr = addr_hint &
5291 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5293 /* Process target subpage last to keep its cache lines hot */
5295 n = (addr_hint - addr) / PAGE_SIZE;
5296 if (2 * n <= pages_per_huge_page) {
5297 /* If target subpage in first half of huge page */
5300 /* Process subpages at the end of huge page */
5301 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5303 process_subpage(addr + i * PAGE_SIZE, i, arg);
5306 /* If target subpage in second half of huge page */
5307 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5308 l = pages_per_huge_page - n;
5309 /* Process subpages at the begin of huge page */
5310 for (i = 0; i < base; i++) {
5312 process_subpage(addr + i * PAGE_SIZE, i, arg);
5316 * Process remaining subpages in left-right-left-right pattern
5317 * towards the target subpage
5319 for (i = 0; i < l; i++) {
5320 int left_idx = base + i;
5321 int right_idx = base + 2 * l - 1 - i;
5324 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5326 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5330 static void clear_gigantic_page(struct page *page,
5332 unsigned int pages_per_huge_page)
5335 struct page *p = page;
5338 for (i = 0; i < pages_per_huge_page;
5339 i++, p = mem_map_next(p, page, i)) {
5341 clear_user_highpage(p, addr + i * PAGE_SIZE);
5345 static void clear_subpage(unsigned long addr, int idx, void *arg)
5347 struct page *page = arg;
5349 clear_user_highpage(page + idx, addr);
5352 void clear_huge_page(struct page *page,
5353 unsigned long addr_hint, unsigned int pages_per_huge_page)
5355 unsigned long addr = addr_hint &
5356 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5358 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5359 clear_gigantic_page(page, addr, pages_per_huge_page);
5363 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5366 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5368 struct vm_area_struct *vma,
5369 unsigned int pages_per_huge_page)
5372 struct page *dst_base = dst;
5373 struct page *src_base = src;
5375 for (i = 0; i < pages_per_huge_page; ) {
5377 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5380 dst = mem_map_next(dst, dst_base, i);
5381 src = mem_map_next(src, src_base, i);
5385 struct copy_subpage_arg {
5388 struct vm_area_struct *vma;
5391 static void copy_subpage(unsigned long addr, int idx, void *arg)
5393 struct copy_subpage_arg *copy_arg = arg;
5395 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5396 addr, copy_arg->vma);
5399 void copy_user_huge_page(struct page *dst, struct page *src,
5400 unsigned long addr_hint, struct vm_area_struct *vma,
5401 unsigned int pages_per_huge_page)
5403 unsigned long addr = addr_hint &
5404 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5405 struct copy_subpage_arg arg = {
5411 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5412 copy_user_gigantic_page(dst, src, addr, vma,
5413 pages_per_huge_page);
5417 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5420 long copy_huge_page_from_user(struct page *dst_page,
5421 const void __user *usr_src,
5422 unsigned int pages_per_huge_page,
5423 bool allow_pagefault)
5426 unsigned long i, rc = 0;
5427 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5428 struct page *subpage = dst_page;
5430 for (i = 0; i < pages_per_huge_page;
5431 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5432 if (allow_pagefault)
5433 page_kaddr = kmap(subpage);
5435 page_kaddr = kmap_atomic(subpage);
5436 rc = copy_from_user(page_kaddr,
5437 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5438 if (allow_pagefault)
5441 kunmap_atomic(page_kaddr);
5443 ret_val -= (PAGE_SIZE - rc);
5451 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5453 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5455 static struct kmem_cache *page_ptl_cachep;
5457 void __init ptlock_cache_init(void)
5459 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5463 bool ptlock_alloc(struct page *page)
5467 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5474 void ptlock_free(struct page *page)
5476 kmem_cache_free(page_ptl_cachep, page->ptl);