Merge tag 'mm-hotfixes-stable-2022-12-22-14-34' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167         trace_rss_stat(mm, member);
168 }
169
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175                            unsigned long addr)
176 {
177         pgtable_t token = pmd_pgtable(*pmd);
178         pmd_clear(pmd);
179         pte_free_tlb(tlb, token, addr);
180         mm_dec_nr_ptes(tlb->mm);
181 }
182
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184                                 unsigned long addr, unsigned long end,
185                                 unsigned long floor, unsigned long ceiling)
186 {
187         pmd_t *pmd;
188         unsigned long next;
189         unsigned long start;
190
191         start = addr;
192         pmd = pmd_offset(pud, addr);
193         do {
194                 next = pmd_addr_end(addr, end);
195                 if (pmd_none_or_clear_bad(pmd))
196                         continue;
197                 free_pte_range(tlb, pmd, addr);
198         } while (pmd++, addr = next, addr != end);
199
200         start &= PUD_MASK;
201         if (start < floor)
202                 return;
203         if (ceiling) {
204                 ceiling &= PUD_MASK;
205                 if (!ceiling)
206                         return;
207         }
208         if (end - 1 > ceiling - 1)
209                 return;
210
211         pmd = pmd_offset(pud, start);
212         pud_clear(pud);
213         pmd_free_tlb(tlb, pmd, start);
214         mm_dec_nr_pmds(tlb->mm);
215 }
216
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218                                 unsigned long addr, unsigned long end,
219                                 unsigned long floor, unsigned long ceiling)
220 {
221         pud_t *pud;
222         unsigned long next;
223         unsigned long start;
224
225         start = addr;
226         pud = pud_offset(p4d, addr);
227         do {
228                 next = pud_addr_end(addr, end);
229                 if (pud_none_or_clear_bad(pud))
230                         continue;
231                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232         } while (pud++, addr = next, addr != end);
233
234         start &= P4D_MASK;
235         if (start < floor)
236                 return;
237         if (ceiling) {
238                 ceiling &= P4D_MASK;
239                 if (!ceiling)
240                         return;
241         }
242         if (end - 1 > ceiling - 1)
243                 return;
244
245         pud = pud_offset(p4d, start);
246         p4d_clear(p4d);
247         pud_free_tlb(tlb, pud, start);
248         mm_dec_nr_puds(tlb->mm);
249 }
250
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252                                 unsigned long addr, unsigned long end,
253                                 unsigned long floor, unsigned long ceiling)
254 {
255         p4d_t *p4d;
256         unsigned long next;
257         unsigned long start;
258
259         start = addr;
260         p4d = p4d_offset(pgd, addr);
261         do {
262                 next = p4d_addr_end(addr, end);
263                 if (p4d_none_or_clear_bad(p4d))
264                         continue;
265                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266         } while (p4d++, addr = next, addr != end);
267
268         start &= PGDIR_MASK;
269         if (start < floor)
270                 return;
271         if (ceiling) {
272                 ceiling &= PGDIR_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 return;
278
279         p4d = p4d_offset(pgd, start);
280         pgd_clear(pgd);
281         p4d_free_tlb(tlb, p4d, start);
282 }
283
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288                         unsigned long addr, unsigned long end,
289                         unsigned long floor, unsigned long ceiling)
290 {
291         pgd_t *pgd;
292         unsigned long next;
293
294         /*
295          * The next few lines have given us lots of grief...
296          *
297          * Why are we testing PMD* at this top level?  Because often
298          * there will be no work to do at all, and we'd prefer not to
299          * go all the way down to the bottom just to discover that.
300          *
301          * Why all these "- 1"s?  Because 0 represents both the bottom
302          * of the address space and the top of it (using -1 for the
303          * top wouldn't help much: the masks would do the wrong thing).
304          * The rule is that addr 0 and floor 0 refer to the bottom of
305          * the address space, but end 0 and ceiling 0 refer to the top
306          * Comparisons need to use "end - 1" and "ceiling - 1" (though
307          * that end 0 case should be mythical).
308          *
309          * Wherever addr is brought up or ceiling brought down, we must
310          * be careful to reject "the opposite 0" before it confuses the
311          * subsequent tests.  But what about where end is brought down
312          * by PMD_SIZE below? no, end can't go down to 0 there.
313          *
314          * Whereas we round start (addr) and ceiling down, by different
315          * masks at different levels, in order to test whether a table
316          * now has no other vmas using it, so can be freed, we don't
317          * bother to round floor or end up - the tests don't need that.
318          */
319
320         addr &= PMD_MASK;
321         if (addr < floor) {
322                 addr += PMD_SIZE;
323                 if (!addr)
324                         return;
325         }
326         if (ceiling) {
327                 ceiling &= PMD_MASK;
328                 if (!ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 end -= PMD_SIZE;
333         if (addr > end - 1)
334                 return;
335         /*
336          * We add page table cache pages with PAGE_SIZE,
337          * (see pte_free_tlb()), flush the tlb if we need
338          */
339         tlb_change_page_size(tlb, PAGE_SIZE);
340         pgd = pgd_offset(tlb->mm, addr);
341         do {
342                 next = pgd_addr_end(addr, end);
343                 if (pgd_none_or_clear_bad(pgd))
344                         continue;
345                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346         } while (pgd++, addr = next, addr != end);
347 }
348
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350                    struct vm_area_struct *vma, unsigned long floor,
351                    unsigned long ceiling)
352 {
353         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355         do {
356                 unsigned long addr = vma->vm_start;
357                 struct vm_area_struct *next;
358
359                 /*
360                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361                  * be 0.  This will underflow and is okay.
362                  */
363                 next = mas_find(&mas, ceiling - 1);
364
365                 /*
366                  * Hide vma from rmap and truncate_pagecache before freeing
367                  * pgtables
368                  */
369                 unlink_anon_vmas(vma);
370                 unlink_file_vma(vma);
371
372                 if (is_vm_hugetlb_page(vma)) {
373                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374                                 floor, next ? next->vm_start : ceiling);
375                 } else {
376                         /*
377                          * Optimization: gather nearby vmas into one call down
378                          */
379                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380                                && !is_vm_hugetlb_page(next)) {
381                                 vma = next;
382                                 next = mas_find(&mas, ceiling - 1);
383                                 unlink_anon_vmas(vma);
384                                 unlink_file_vma(vma);
385                         }
386                         free_pgd_range(tlb, addr, vma->vm_end,
387                                 floor, next ? next->vm_start : ceiling);
388                 }
389                 vma = next;
390         } while (vma);
391 }
392
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395         spinlock_t *ptl = pmd_lock(mm, pmd);
396
397         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
398                 mm_inc_nr_ptes(mm);
399                 /*
400                  * Ensure all pte setup (eg. pte page lock and page clearing) are
401                  * visible before the pte is made visible to other CPUs by being
402                  * put into page tables.
403                  *
404                  * The other side of the story is the pointer chasing in the page
405                  * table walking code (when walking the page table without locking;
406                  * ie. most of the time). Fortunately, these data accesses consist
407                  * of a chain of data-dependent loads, meaning most CPUs (alpha
408                  * being the notable exception) will already guarantee loads are
409                  * seen in-order. See the alpha page table accessors for the
410                  * smp_rmb() barriers in page table walking code.
411                  */
412                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413                 pmd_populate(mm, pmd, *pte);
414                 *pte = NULL;
415         }
416         spin_unlock(ptl);
417 }
418
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421         pgtable_t new = pte_alloc_one(mm);
422         if (!new)
423                 return -ENOMEM;
424
425         pmd_install(mm, pmd, &new);
426         if (new)
427                 pte_free(mm, new);
428         return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433         pte_t *new = pte_alloc_one_kernel(&init_mm);
434         if (!new)
435                 return -ENOMEM;
436
437         spin_lock(&init_mm.page_table_lock);
438         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
439                 smp_wmb(); /* See comment in pmd_install() */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         p4d_t *p4d = p4d_offset(pgd, addr);
477         pud_t *pud = pud_offset(p4d, addr);
478         pmd_t *pmd = pmd_offset(pud, addr);
479         struct address_space *mapping;
480         pgoff_t index;
481         static unsigned long resume;
482         static unsigned long nr_shown;
483         static unsigned long nr_unshown;
484
485         /*
486          * Allow a burst of 60 reports, then keep quiet for that minute;
487          * or allow a steady drip of one report per second.
488          */
489         if (nr_shown == 60) {
490                 if (time_before(jiffies, resume)) {
491                         nr_unshown++;
492                         return;
493                 }
494                 if (nr_unshown) {
495                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496                                  nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508                  current->comm,
509                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
510         if (page)
511                 dump_page(page, "bad pte");
512         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515                  vma->vm_file,
516                  vma->vm_ops ? vma->vm_ops->fault : NULL,
517                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518                  mapping ? mapping->a_ops->read_folio : NULL);
519         dump_stack();
520         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566                             pte_t pte)
567 {
568         unsigned long pfn = pte_pfn(pte);
569
570         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571                 if (likely(!pte_special(pte)))
572                         goto check_pfn;
573                 if (vma->vm_ops && vma->vm_ops->find_special_page)
574                         return vma->vm_ops->find_special_page(vma, addr);
575                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576                         return NULL;
577                 if (is_zero_pfn(pfn))
578                         return NULL;
579                 if (pte_devmap(pte))
580                 /*
581                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582                  * and will have refcounts incremented on their struct pages
583                  * when they are inserted into PTEs, thus they are safe to
584                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585                  * do not have refcounts. Example of legacy ZONE_DEVICE is
586                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587                  */
588                         return NULL;
589
590                 print_bad_pte(vma, addr, pte, NULL);
591                 return NULL;
592         }
593
594         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595
596         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597                 if (vma->vm_flags & VM_MIXEDMAP) {
598                         if (!pfn_valid(pfn))
599                                 return NULL;
600                         goto out;
601                 } else {
602                         unsigned long off;
603                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
604                         if (pfn == vma->vm_pgoff + off)
605                                 return NULL;
606                         if (!is_cow_mapping(vma->vm_flags))
607                                 return NULL;
608                 }
609         }
610
611         if (is_zero_pfn(pfn))
612                 return NULL;
613
614 check_pfn:
615         if (unlikely(pfn > highest_memmap_pfn)) {
616                 print_bad_pte(vma, addr, pte, NULL);
617                 return NULL;
618         }
619
620         /*
621          * NOTE! We still have PageReserved() pages in the page tables.
622          * eg. VDSO mappings can cause them to exist.
623          */
624 out:
625         return pfn_to_page(pfn);
626 }
627
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
630                                 pmd_t pmd)
631 {
632         unsigned long pfn = pmd_pfn(pmd);
633
634         /*
635          * There is no pmd_special() but there may be special pmds, e.g.
636          * in a direct-access (dax) mapping, so let's just replicate the
637          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
638          */
639         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640                 if (vma->vm_flags & VM_MIXEDMAP) {
641                         if (!pfn_valid(pfn))
642                                 return NULL;
643                         goto out;
644                 } else {
645                         unsigned long off;
646                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
647                         if (pfn == vma->vm_pgoff + off)
648                                 return NULL;
649                         if (!is_cow_mapping(vma->vm_flags))
650                                 return NULL;
651                 }
652         }
653
654         if (pmd_devmap(pmd))
655                 return NULL;
656         if (is_huge_zero_pmd(pmd))
657                 return NULL;
658         if (unlikely(pfn > highest_memmap_pfn))
659                 return NULL;
660
661         /*
662          * NOTE! We still have PageReserved() pages in the page tables.
663          * eg. VDSO mappings can cause them to exist.
664          */
665 out:
666         return pfn_to_page(pfn);
667 }
668 #endif
669
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671                                   struct page *page, unsigned long address,
672                                   pte_t *ptep)
673 {
674         pte_t pte;
675         swp_entry_t entry;
676
677         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678         if (pte_swp_soft_dirty(*ptep))
679                 pte = pte_mksoft_dirty(pte);
680
681         entry = pte_to_swp_entry(*ptep);
682         if (pte_swp_uffd_wp(*ptep))
683                 pte = pte_mkuffd_wp(pte);
684         else if (is_writable_device_exclusive_entry(entry))
685                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
686
687         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
688
689         /*
690          * No need to take a page reference as one was already
691          * created when the swap entry was made.
692          */
693         if (PageAnon(page))
694                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
695         else
696                 /*
697                  * Currently device exclusive access only supports anonymous
698                  * memory so the entry shouldn't point to a filebacked page.
699                  */
700                 WARN_ON_ONCE(1);
701
702         set_pte_at(vma->vm_mm, address, ptep, pte);
703
704         /*
705          * No need to invalidate - it was non-present before. However
706          * secondary CPUs may have mappings that need invalidating.
707          */
708         update_mmu_cache(vma, address, ptep);
709 }
710
711 /*
712  * Tries to restore an exclusive pte if the page lock can be acquired without
713  * sleeping.
714  */
715 static int
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
717                         unsigned long addr)
718 {
719         swp_entry_t entry = pte_to_swp_entry(*src_pte);
720         struct page *page = pfn_swap_entry_to_page(entry);
721
722         if (trylock_page(page)) {
723                 restore_exclusive_pte(vma, page, addr, src_pte);
724                 unlock_page(page);
725                 return 0;
726         }
727
728         return -EBUSY;
729 }
730
731 /*
732  * copy one vm_area from one task to the other. Assumes the page tables
733  * already present in the new task to be cleared in the whole range
734  * covered by this vma.
735  */
736
737 static unsigned long
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
741 {
742         unsigned long vm_flags = dst_vma->vm_flags;
743         pte_t pte = *src_pte;
744         struct page *page;
745         swp_entry_t entry = pte_to_swp_entry(pte);
746
747         if (likely(!non_swap_entry(entry))) {
748                 if (swap_duplicate(entry) < 0)
749                         return -EIO;
750
751                 /* make sure dst_mm is on swapoff's mmlist. */
752                 if (unlikely(list_empty(&dst_mm->mmlist))) {
753                         spin_lock(&mmlist_lock);
754                         if (list_empty(&dst_mm->mmlist))
755                                 list_add(&dst_mm->mmlist,
756                                                 &src_mm->mmlist);
757                         spin_unlock(&mmlist_lock);
758                 }
759                 /* Mark the swap entry as shared. */
760                 if (pte_swp_exclusive(*src_pte)) {
761                         pte = pte_swp_clear_exclusive(*src_pte);
762                         set_pte_at(src_mm, addr, src_pte, pte);
763                 }
764                 rss[MM_SWAPENTS]++;
765         } else if (is_migration_entry(entry)) {
766                 page = pfn_swap_entry_to_page(entry);
767
768                 rss[mm_counter(page)]++;
769
770                 if (!is_readable_migration_entry(entry) &&
771                                 is_cow_mapping(vm_flags)) {
772                         /*
773                          * COW mappings require pages in both parent and child
774                          * to be set to read. A previously exclusive entry is
775                          * now shared.
776                          */
777                         entry = make_readable_migration_entry(
778                                                         swp_offset(entry));
779                         pte = swp_entry_to_pte(entry);
780                         if (pte_swp_soft_dirty(*src_pte))
781                                 pte = pte_swp_mksoft_dirty(pte);
782                         if (pte_swp_uffd_wp(*src_pte))
783                                 pte = pte_swp_mkuffd_wp(pte);
784                         set_pte_at(src_mm, addr, src_pte, pte);
785                 }
786         } else if (is_device_private_entry(entry)) {
787                 page = pfn_swap_entry_to_page(entry);
788
789                 /*
790                  * Update rss count even for unaddressable pages, as
791                  * they should treated just like normal pages in this
792                  * respect.
793                  *
794                  * We will likely want to have some new rss counters
795                  * for unaddressable pages, at some point. But for now
796                  * keep things as they are.
797                  */
798                 get_page(page);
799                 rss[mm_counter(page)]++;
800                 /* Cannot fail as these pages cannot get pinned. */
801                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
802
803                 /*
804                  * We do not preserve soft-dirty information, because so
805                  * far, checkpoint/restore is the only feature that
806                  * requires that. And checkpoint/restore does not work
807                  * when a device driver is involved (you cannot easily
808                  * save and restore device driver state).
809                  */
810                 if (is_writable_device_private_entry(entry) &&
811                     is_cow_mapping(vm_flags)) {
812                         entry = make_readable_device_private_entry(
813                                                         swp_offset(entry));
814                         pte = swp_entry_to_pte(entry);
815                         if (pte_swp_uffd_wp(*src_pte))
816                                 pte = pte_swp_mkuffd_wp(pte);
817                         set_pte_at(src_mm, addr, src_pte, pte);
818                 }
819         } else if (is_device_exclusive_entry(entry)) {
820                 /*
821                  * Make device exclusive entries present by restoring the
822                  * original entry then copying as for a present pte. Device
823                  * exclusive entries currently only support private writable
824                  * (ie. COW) mappings.
825                  */
826                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
828                         return -EBUSY;
829                 return -ENOENT;
830         } else if (is_pte_marker_entry(entry)) {
831                 /*
832                  * We're copying the pgtable should only because dst_vma has
833                  * uffd-wp enabled, do sanity check.
834                  */
835                 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
836                 set_pte_at(dst_mm, addr, dst_pte, pte);
837                 return 0;
838         }
839         if (!userfaultfd_wp(dst_vma))
840                 pte = pte_swp_clear_uffd_wp(pte);
841         set_pte_at(dst_mm, addr, dst_pte, pte);
842         return 0;
843 }
844
845 /*
846  * Copy a present and normal page.
847  *
848  * NOTE! The usual case is that this isn't required;
849  * instead, the caller can just increase the page refcount
850  * and re-use the pte the traditional way.
851  *
852  * And if we need a pre-allocated page but don't yet have
853  * one, return a negative error to let the preallocation
854  * code know so that it can do so outside the page table
855  * lock.
856  */
857 static inline int
858 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
859                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
860                   struct page **prealloc, struct page *page)
861 {
862         struct page *new_page;
863         pte_t pte;
864
865         new_page = *prealloc;
866         if (!new_page)
867                 return -EAGAIN;
868
869         /*
870          * We have a prealloc page, all good!  Take it
871          * over and copy the page & arm it.
872          */
873         *prealloc = NULL;
874         copy_user_highpage(new_page, page, addr, src_vma);
875         __SetPageUptodate(new_page);
876         page_add_new_anon_rmap(new_page, dst_vma, addr);
877         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
878         rss[mm_counter(new_page)]++;
879
880         /* All done, just insert the new page copy in the child */
881         pte = mk_pte(new_page, dst_vma->vm_page_prot);
882         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
883         if (userfaultfd_pte_wp(dst_vma, *src_pte))
884                 /* Uffd-wp needs to be delivered to dest pte as well */
885                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
886         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
887         return 0;
888 }
889
890 /*
891  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
892  * is required to copy this pte.
893  */
894 static inline int
895 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897                  struct page **prealloc)
898 {
899         struct mm_struct *src_mm = src_vma->vm_mm;
900         unsigned long vm_flags = src_vma->vm_flags;
901         pte_t pte = *src_pte;
902         struct page *page;
903
904         page = vm_normal_page(src_vma, addr, pte);
905         if (page && PageAnon(page)) {
906                 /*
907                  * If this page may have been pinned by the parent process,
908                  * copy the page immediately for the child so that we'll always
909                  * guarantee the pinned page won't be randomly replaced in the
910                  * future.
911                  */
912                 get_page(page);
913                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
914                         /* Page maybe pinned, we have to copy. */
915                         put_page(page);
916                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
917                                                  addr, rss, prealloc, page);
918                 }
919                 rss[mm_counter(page)]++;
920         } else if (page) {
921                 get_page(page);
922                 page_dup_file_rmap(page, false);
923                 rss[mm_counter(page)]++;
924         }
925
926         /*
927          * If it's a COW mapping, write protect it both
928          * in the parent and the child
929          */
930         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
931                 ptep_set_wrprotect(src_mm, addr, src_pte);
932                 pte = pte_wrprotect(pte);
933         }
934         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
935
936         /*
937          * If it's a shared mapping, mark it clean in
938          * the child
939          */
940         if (vm_flags & VM_SHARED)
941                 pte = pte_mkclean(pte);
942         pte = pte_mkold(pte);
943
944         if (!userfaultfd_wp(dst_vma))
945                 pte = pte_clear_uffd_wp(pte);
946
947         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
948         return 0;
949 }
950
951 static inline struct page *
952 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
953                    unsigned long addr)
954 {
955         struct page *new_page;
956
957         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
958         if (!new_page)
959                 return NULL;
960
961         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
962                 put_page(new_page);
963                 return NULL;
964         }
965         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
966
967         return new_page;
968 }
969
970 static int
971 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
972                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973                unsigned long end)
974 {
975         struct mm_struct *dst_mm = dst_vma->vm_mm;
976         struct mm_struct *src_mm = src_vma->vm_mm;
977         pte_t *orig_src_pte, *orig_dst_pte;
978         pte_t *src_pte, *dst_pte;
979         spinlock_t *src_ptl, *dst_ptl;
980         int progress, ret = 0;
981         int rss[NR_MM_COUNTERS];
982         swp_entry_t entry = (swp_entry_t){0};
983         struct page *prealloc = NULL;
984
985 again:
986         progress = 0;
987         init_rss_vec(rss);
988
989         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
990         if (!dst_pte) {
991                 ret = -ENOMEM;
992                 goto out;
993         }
994         src_pte = pte_offset_map(src_pmd, addr);
995         src_ptl = pte_lockptr(src_mm, src_pmd);
996         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997         orig_src_pte = src_pte;
998         orig_dst_pte = dst_pte;
999         arch_enter_lazy_mmu_mode();
1000
1001         do {
1002                 /*
1003                  * We are holding two locks at this point - either of them
1004                  * could generate latencies in another task on another CPU.
1005                  */
1006                 if (progress >= 32) {
1007                         progress = 0;
1008                         if (need_resched() ||
1009                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1010                                 break;
1011                 }
1012                 if (pte_none(*src_pte)) {
1013                         progress++;
1014                         continue;
1015                 }
1016                 if (unlikely(!pte_present(*src_pte))) {
1017                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1018                                                   dst_pte, src_pte,
1019                                                   dst_vma, src_vma,
1020                                                   addr, rss);
1021                         if (ret == -EIO) {
1022                                 entry = pte_to_swp_entry(*src_pte);
1023                                 break;
1024                         } else if (ret == -EBUSY) {
1025                                 break;
1026                         } else if (!ret) {
1027                                 progress += 8;
1028                                 continue;
1029                         }
1030
1031                         /*
1032                          * Device exclusive entry restored, continue by copying
1033                          * the now present pte.
1034                          */
1035                         WARN_ON_ONCE(ret != -ENOENT);
1036                 }
1037                 /* copy_present_pte() will clear `*prealloc' if consumed */
1038                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1039                                        addr, rss, &prealloc);
1040                 /*
1041                  * If we need a pre-allocated page for this pte, drop the
1042                  * locks, allocate, and try again.
1043                  */
1044                 if (unlikely(ret == -EAGAIN))
1045                         break;
1046                 if (unlikely(prealloc)) {
1047                         /*
1048                          * pre-alloc page cannot be reused by next time so as
1049                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1050                          * will allocate page according to address).  This
1051                          * could only happen if one pinned pte changed.
1052                          */
1053                         put_page(prealloc);
1054                         prealloc = NULL;
1055                 }
1056                 progress += 8;
1057         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1058
1059         arch_leave_lazy_mmu_mode();
1060         spin_unlock(src_ptl);
1061         pte_unmap(orig_src_pte);
1062         add_mm_rss_vec(dst_mm, rss);
1063         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1064         cond_resched();
1065
1066         if (ret == -EIO) {
1067                 VM_WARN_ON_ONCE(!entry.val);
1068                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069                         ret = -ENOMEM;
1070                         goto out;
1071                 }
1072                 entry.val = 0;
1073         } else if (ret == -EBUSY) {
1074                 goto out;
1075         } else if (ret ==  -EAGAIN) {
1076                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1077                 if (!prealloc)
1078                         return -ENOMEM;
1079         } else if (ret) {
1080                 VM_WARN_ON_ONCE(1);
1081         }
1082
1083         /* We've captured and resolved the error. Reset, try again. */
1084         ret = 0;
1085
1086         if (addr != end)
1087                 goto again;
1088 out:
1089         if (unlikely(prealloc))
1090                 put_page(prealloc);
1091         return ret;
1092 }
1093
1094 static inline int
1095 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1096                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1097                unsigned long end)
1098 {
1099         struct mm_struct *dst_mm = dst_vma->vm_mm;
1100         struct mm_struct *src_mm = src_vma->vm_mm;
1101         pmd_t *src_pmd, *dst_pmd;
1102         unsigned long next;
1103
1104         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1105         if (!dst_pmd)
1106                 return -ENOMEM;
1107         src_pmd = pmd_offset(src_pud, addr);
1108         do {
1109                 next = pmd_addr_end(addr, end);
1110                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1111                         || pmd_devmap(*src_pmd)) {
1112                         int err;
1113                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1114                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1115                                             addr, dst_vma, src_vma);
1116                         if (err == -ENOMEM)
1117                                 return -ENOMEM;
1118                         if (!err)
1119                                 continue;
1120                         /* fall through */
1121                 }
1122                 if (pmd_none_or_clear_bad(src_pmd))
1123                         continue;
1124                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1125                                    addr, next))
1126                         return -ENOMEM;
1127         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1128         return 0;
1129 }
1130
1131 static inline int
1132 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1134                unsigned long end)
1135 {
1136         struct mm_struct *dst_mm = dst_vma->vm_mm;
1137         struct mm_struct *src_mm = src_vma->vm_mm;
1138         pud_t *src_pud, *dst_pud;
1139         unsigned long next;
1140
1141         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1142         if (!dst_pud)
1143                 return -ENOMEM;
1144         src_pud = pud_offset(src_p4d, addr);
1145         do {
1146                 next = pud_addr_end(addr, end);
1147                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1148                         int err;
1149
1150                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1151                         err = copy_huge_pud(dst_mm, src_mm,
1152                                             dst_pud, src_pud, addr, src_vma);
1153                         if (err == -ENOMEM)
1154                                 return -ENOMEM;
1155                         if (!err)
1156                                 continue;
1157                         /* fall through */
1158                 }
1159                 if (pud_none_or_clear_bad(src_pud))
1160                         continue;
1161                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1162                                    addr, next))
1163                         return -ENOMEM;
1164         } while (dst_pud++, src_pud++, addr = next, addr != end);
1165         return 0;
1166 }
1167
1168 static inline int
1169 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1171                unsigned long end)
1172 {
1173         struct mm_struct *dst_mm = dst_vma->vm_mm;
1174         p4d_t *src_p4d, *dst_p4d;
1175         unsigned long next;
1176
1177         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1178         if (!dst_p4d)
1179                 return -ENOMEM;
1180         src_p4d = p4d_offset(src_pgd, addr);
1181         do {
1182                 next = p4d_addr_end(addr, end);
1183                 if (p4d_none_or_clear_bad(src_p4d))
1184                         continue;
1185                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1186                                    addr, next))
1187                         return -ENOMEM;
1188         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1189         return 0;
1190 }
1191
1192 /*
1193  * Return true if the vma needs to copy the pgtable during this fork().  Return
1194  * false when we can speed up fork() by allowing lazy page faults later until
1195  * when the child accesses the memory range.
1196  */
1197 static bool
1198 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1199 {
1200         /*
1201          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1202          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1203          * contains uffd-wp protection information, that's something we can't
1204          * retrieve from page cache, and skip copying will lose those info.
1205          */
1206         if (userfaultfd_wp(dst_vma))
1207                 return true;
1208
1209         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1210                 return true;
1211
1212         if (src_vma->anon_vma)
1213                 return true;
1214
1215         /*
1216          * Don't copy ptes where a page fault will fill them correctly.  Fork
1217          * becomes much lighter when there are big shared or private readonly
1218          * mappings. The tradeoff is that copy_page_range is more efficient
1219          * than faulting.
1220          */
1221         return false;
1222 }
1223
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227         pgd_t *src_pgd, *dst_pgd;
1228         unsigned long next;
1229         unsigned long addr = src_vma->vm_start;
1230         unsigned long end = src_vma->vm_end;
1231         struct mm_struct *dst_mm = dst_vma->vm_mm;
1232         struct mm_struct *src_mm = src_vma->vm_mm;
1233         struct mmu_notifier_range range;
1234         bool is_cow;
1235         int ret;
1236
1237         if (!vma_needs_copy(dst_vma, src_vma))
1238                 return 0;
1239
1240         if (is_vm_hugetlb_page(src_vma))
1241                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1242
1243         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1244                 /*
1245                  * We do not free on error cases below as remove_vma
1246                  * gets called on error from higher level routine
1247                  */
1248                 ret = track_pfn_copy(src_vma);
1249                 if (ret)
1250                         return ret;
1251         }
1252
1253         /*
1254          * We need to invalidate the secondary MMU mappings only when
1255          * there could be a permission downgrade on the ptes of the
1256          * parent mm. And a permission downgrade will only happen if
1257          * is_cow_mapping() returns true.
1258          */
1259         is_cow = is_cow_mapping(src_vma->vm_flags);
1260
1261         if (is_cow) {
1262                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1263                                         0, src_vma, src_mm, addr, end);
1264                 mmu_notifier_invalidate_range_start(&range);
1265                 /*
1266                  * Disabling preemption is not needed for the write side, as
1267                  * the read side doesn't spin, but goes to the mmap_lock.
1268                  *
1269                  * Use the raw variant of the seqcount_t write API to avoid
1270                  * lockdep complaining about preemptibility.
1271                  */
1272                 mmap_assert_write_locked(src_mm);
1273                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1274         }
1275
1276         ret = 0;
1277         dst_pgd = pgd_offset(dst_mm, addr);
1278         src_pgd = pgd_offset(src_mm, addr);
1279         do {
1280                 next = pgd_addr_end(addr, end);
1281                 if (pgd_none_or_clear_bad(src_pgd))
1282                         continue;
1283                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1284                                             addr, next))) {
1285                         ret = -ENOMEM;
1286                         break;
1287                 }
1288         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1289
1290         if (is_cow) {
1291                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1292                 mmu_notifier_invalidate_range_end(&range);
1293         }
1294         return ret;
1295 }
1296
1297 /* Whether we should zap all COWed (private) pages too */
1298 static inline bool should_zap_cows(struct zap_details *details)
1299 {
1300         /* By default, zap all pages */
1301         if (!details)
1302                 return true;
1303
1304         /* Or, we zap COWed pages only if the caller wants to */
1305         return details->even_cows;
1306 }
1307
1308 /* Decides whether we should zap this page with the page pointer specified */
1309 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1310 {
1311         /* If we can make a decision without *page.. */
1312         if (should_zap_cows(details))
1313                 return true;
1314
1315         /* E.g. the caller passes NULL for the case of a zero page */
1316         if (!page)
1317                 return true;
1318
1319         /* Otherwise we should only zap non-anon pages */
1320         return !PageAnon(page);
1321 }
1322
1323 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1324 {
1325         if (!details)
1326                 return false;
1327
1328         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1329 }
1330
1331 /*
1332  * This function makes sure that we'll replace the none pte with an uffd-wp
1333  * swap special pte marker when necessary. Must be with the pgtable lock held.
1334  */
1335 static inline void
1336 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1337                               unsigned long addr, pte_t *pte,
1338                               struct zap_details *details, pte_t pteval)
1339 {
1340         if (zap_drop_file_uffd_wp(details))
1341                 return;
1342
1343         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1344 }
1345
1346 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1347                                 struct vm_area_struct *vma, pmd_t *pmd,
1348                                 unsigned long addr, unsigned long end,
1349                                 struct zap_details *details)
1350 {
1351         struct mm_struct *mm = tlb->mm;
1352         int force_flush = 0;
1353         int rss[NR_MM_COUNTERS];
1354         spinlock_t *ptl;
1355         pte_t *start_pte;
1356         pte_t *pte;
1357         swp_entry_t entry;
1358
1359         tlb_change_page_size(tlb, PAGE_SIZE);
1360 again:
1361         init_rss_vec(rss);
1362         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1363         pte = start_pte;
1364         flush_tlb_batched_pending(mm);
1365         arch_enter_lazy_mmu_mode();
1366         do {
1367                 pte_t ptent = *pte;
1368                 struct page *page;
1369
1370                 if (pte_none(ptent))
1371                         continue;
1372
1373                 if (need_resched())
1374                         break;
1375
1376                 if (pte_present(ptent)) {
1377                         unsigned int delay_rmap;
1378
1379                         page = vm_normal_page(vma, addr, ptent);
1380                         if (unlikely(!should_zap_page(details, page)))
1381                                 continue;
1382                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1383                                                         tlb->fullmm);
1384                         tlb_remove_tlb_entry(tlb, pte, addr);
1385                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1386                                                       ptent);
1387                         if (unlikely(!page))
1388                                 continue;
1389
1390                         delay_rmap = 0;
1391                         if (!PageAnon(page)) {
1392                                 if (pte_dirty(ptent)) {
1393                                         set_page_dirty(page);
1394                                         if (tlb_delay_rmap(tlb)) {
1395                                                 delay_rmap = 1;
1396                                                 force_flush = 1;
1397                                         }
1398                                 }
1399                                 if (pte_young(ptent) &&
1400                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1401                                         mark_page_accessed(page);
1402                         }
1403                         rss[mm_counter(page)]--;
1404                         if (!delay_rmap) {
1405                                 page_remove_rmap(page, vma, false);
1406                                 if (unlikely(page_mapcount(page) < 0))
1407                                         print_bad_pte(vma, addr, ptent, page);
1408                         }
1409                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1410                                 force_flush = 1;
1411                                 addr += PAGE_SIZE;
1412                                 break;
1413                         }
1414                         continue;
1415                 }
1416
1417                 entry = pte_to_swp_entry(ptent);
1418                 if (is_device_private_entry(entry) ||
1419                     is_device_exclusive_entry(entry)) {
1420                         page = pfn_swap_entry_to_page(entry);
1421                         if (unlikely(!should_zap_page(details, page)))
1422                                 continue;
1423                         /*
1424                          * Both device private/exclusive mappings should only
1425                          * work with anonymous page so far, so we don't need to
1426                          * consider uffd-wp bit when zap. For more information,
1427                          * see zap_install_uffd_wp_if_needed().
1428                          */
1429                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1430                         rss[mm_counter(page)]--;
1431                         if (is_device_private_entry(entry))
1432                                 page_remove_rmap(page, vma, false);
1433                         put_page(page);
1434                 } else if (!non_swap_entry(entry)) {
1435                         /* Genuine swap entry, hence a private anon page */
1436                         if (!should_zap_cows(details))
1437                                 continue;
1438                         rss[MM_SWAPENTS]--;
1439                         if (unlikely(!free_swap_and_cache(entry)))
1440                                 print_bad_pte(vma, addr, ptent, NULL);
1441                 } else if (is_migration_entry(entry)) {
1442                         page = pfn_swap_entry_to_page(entry);
1443                         if (!should_zap_page(details, page))
1444                                 continue;
1445                         rss[mm_counter(page)]--;
1446                 } else if (pte_marker_entry_uffd_wp(entry)) {
1447                         /* Only drop the uffd-wp marker if explicitly requested */
1448                         if (!zap_drop_file_uffd_wp(details))
1449                                 continue;
1450                 } else if (is_hwpoison_entry(entry) ||
1451                            is_swapin_error_entry(entry)) {
1452                         if (!should_zap_cows(details))
1453                                 continue;
1454                 } else {
1455                         /* We should have covered all the swap entry types */
1456                         WARN_ON_ONCE(1);
1457                 }
1458                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1459                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1460         } while (pte++, addr += PAGE_SIZE, addr != end);
1461
1462         add_mm_rss_vec(mm, rss);
1463         arch_leave_lazy_mmu_mode();
1464
1465         /* Do the actual TLB flush before dropping ptl */
1466         if (force_flush) {
1467                 tlb_flush_mmu_tlbonly(tlb);
1468                 tlb_flush_rmaps(tlb, vma);
1469         }
1470         pte_unmap_unlock(start_pte, ptl);
1471
1472         /*
1473          * If we forced a TLB flush (either due to running out of
1474          * batch buffers or because we needed to flush dirty TLB
1475          * entries before releasing the ptl), free the batched
1476          * memory too. Restart if we didn't do everything.
1477          */
1478         if (force_flush) {
1479                 force_flush = 0;
1480                 tlb_flush_mmu(tlb);
1481         }
1482
1483         if (addr != end) {
1484                 cond_resched();
1485                 goto again;
1486         }
1487
1488         return addr;
1489 }
1490
1491 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1492                                 struct vm_area_struct *vma, pud_t *pud,
1493                                 unsigned long addr, unsigned long end,
1494                                 struct zap_details *details)
1495 {
1496         pmd_t *pmd;
1497         unsigned long next;
1498
1499         pmd = pmd_offset(pud, addr);
1500         do {
1501                 next = pmd_addr_end(addr, end);
1502                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1503                         if (next - addr != HPAGE_PMD_SIZE)
1504                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1505                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1506                                 goto next;
1507                         /* fall through */
1508                 } else if (details && details->single_folio &&
1509                            folio_test_pmd_mappable(details->single_folio) &&
1510                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1511                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1512                         /*
1513                          * Take and drop THP pmd lock so that we cannot return
1514                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1515                          * but not yet decremented compound_mapcount().
1516                          */
1517                         spin_unlock(ptl);
1518                 }
1519
1520                 /*
1521                  * Here there can be other concurrent MADV_DONTNEED or
1522                  * trans huge page faults running, and if the pmd is
1523                  * none or trans huge it can change under us. This is
1524                  * because MADV_DONTNEED holds the mmap_lock in read
1525                  * mode.
1526                  */
1527                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1528                         goto next;
1529                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1530 next:
1531                 cond_resched();
1532         } while (pmd++, addr = next, addr != end);
1533
1534         return addr;
1535 }
1536
1537 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1538                                 struct vm_area_struct *vma, p4d_t *p4d,
1539                                 unsigned long addr, unsigned long end,
1540                                 struct zap_details *details)
1541 {
1542         pud_t *pud;
1543         unsigned long next;
1544
1545         pud = pud_offset(p4d, addr);
1546         do {
1547                 next = pud_addr_end(addr, end);
1548                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1549                         if (next - addr != HPAGE_PUD_SIZE) {
1550                                 mmap_assert_locked(tlb->mm);
1551                                 split_huge_pud(vma, pud, addr);
1552                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1553                                 goto next;
1554                         /* fall through */
1555                 }
1556                 if (pud_none_or_clear_bad(pud))
1557                         continue;
1558                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1559 next:
1560                 cond_resched();
1561         } while (pud++, addr = next, addr != end);
1562
1563         return addr;
1564 }
1565
1566 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1567                                 struct vm_area_struct *vma, pgd_t *pgd,
1568                                 unsigned long addr, unsigned long end,
1569                                 struct zap_details *details)
1570 {
1571         p4d_t *p4d;
1572         unsigned long next;
1573
1574         p4d = p4d_offset(pgd, addr);
1575         do {
1576                 next = p4d_addr_end(addr, end);
1577                 if (p4d_none_or_clear_bad(p4d))
1578                         continue;
1579                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1580         } while (p4d++, addr = next, addr != end);
1581
1582         return addr;
1583 }
1584
1585 void unmap_page_range(struct mmu_gather *tlb,
1586                              struct vm_area_struct *vma,
1587                              unsigned long addr, unsigned long end,
1588                              struct zap_details *details)
1589 {
1590         pgd_t *pgd;
1591         unsigned long next;
1592
1593         BUG_ON(addr >= end);
1594         tlb_start_vma(tlb, vma);
1595         pgd = pgd_offset(vma->vm_mm, addr);
1596         do {
1597                 next = pgd_addr_end(addr, end);
1598                 if (pgd_none_or_clear_bad(pgd))
1599                         continue;
1600                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1601         } while (pgd++, addr = next, addr != end);
1602         tlb_end_vma(tlb, vma);
1603 }
1604
1605
1606 static void unmap_single_vma(struct mmu_gather *tlb,
1607                 struct vm_area_struct *vma, unsigned long start_addr,
1608                 unsigned long end_addr,
1609                 struct zap_details *details)
1610 {
1611         unsigned long start = max(vma->vm_start, start_addr);
1612         unsigned long end;
1613
1614         if (start >= vma->vm_end)
1615                 return;
1616         end = min(vma->vm_end, end_addr);
1617         if (end <= vma->vm_start)
1618                 return;
1619
1620         if (vma->vm_file)
1621                 uprobe_munmap(vma, start, end);
1622
1623         if (unlikely(vma->vm_flags & VM_PFNMAP))
1624                 untrack_pfn(vma, 0, 0);
1625
1626         if (start != end) {
1627                 if (unlikely(is_vm_hugetlb_page(vma))) {
1628                         /*
1629                          * It is undesirable to test vma->vm_file as it
1630                          * should be non-null for valid hugetlb area.
1631                          * However, vm_file will be NULL in the error
1632                          * cleanup path of mmap_region. When
1633                          * hugetlbfs ->mmap method fails,
1634                          * mmap_region() nullifies vma->vm_file
1635                          * before calling this function to clean up.
1636                          * Since no pte has actually been setup, it is
1637                          * safe to do nothing in this case.
1638                          */
1639                         if (vma->vm_file) {
1640                                 zap_flags_t zap_flags = details ?
1641                                     details->zap_flags : 0;
1642                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1643                                                              NULL, zap_flags);
1644                         }
1645                 } else
1646                         unmap_page_range(tlb, vma, start, end, details);
1647         }
1648 }
1649
1650 /**
1651  * unmap_vmas - unmap a range of memory covered by a list of vma's
1652  * @tlb: address of the caller's struct mmu_gather
1653  * @mt: the maple tree
1654  * @vma: the starting vma
1655  * @start_addr: virtual address at which to start unmapping
1656  * @end_addr: virtual address at which to end unmapping
1657  *
1658  * Unmap all pages in the vma list.
1659  *
1660  * Only addresses between `start' and `end' will be unmapped.
1661  *
1662  * The VMA list must be sorted in ascending virtual address order.
1663  *
1664  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1665  * range after unmap_vmas() returns.  So the only responsibility here is to
1666  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1667  * drops the lock and schedules.
1668  */
1669 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1670                 struct vm_area_struct *vma, unsigned long start_addr,
1671                 unsigned long end_addr)
1672 {
1673         struct mmu_notifier_range range;
1674         struct zap_details details = {
1675                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1676                 /* Careful - we need to zap private pages too! */
1677                 .even_cows = true,
1678         };
1679         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1680
1681         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1682                                 start_addr, end_addr);
1683         mmu_notifier_invalidate_range_start(&range);
1684         do {
1685                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1686         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1687         mmu_notifier_invalidate_range_end(&range);
1688 }
1689
1690 /**
1691  * zap_page_range - remove user pages in a given range
1692  * @vma: vm_area_struct holding the applicable pages
1693  * @start: starting address of pages to zap
1694  * @size: number of bytes to zap
1695  *
1696  * Caller must protect the VMA list
1697  */
1698 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1699                 unsigned long size)
1700 {
1701         struct maple_tree *mt = &vma->vm_mm->mm_mt;
1702         unsigned long end = start + size;
1703         struct mmu_notifier_range range;
1704         struct mmu_gather tlb;
1705         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1706
1707         lru_add_drain();
1708         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1709                                 start, start + size);
1710         tlb_gather_mmu(&tlb, vma->vm_mm);
1711         update_hiwater_rss(vma->vm_mm);
1712         mmu_notifier_invalidate_range_start(&range);
1713         do {
1714                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1715         } while ((vma = mas_find(&mas, end - 1)) != NULL);
1716         mmu_notifier_invalidate_range_end(&range);
1717         tlb_finish_mmu(&tlb);
1718 }
1719
1720 /**
1721  * zap_page_range_single - remove user pages in a given range
1722  * @vma: vm_area_struct holding the applicable pages
1723  * @address: starting address of pages to zap
1724  * @size: number of bytes to zap
1725  * @details: details of shared cache invalidation
1726  *
1727  * The range must fit into one VMA.
1728  */
1729 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1730                 unsigned long size, struct zap_details *details)
1731 {
1732         const unsigned long end = address + size;
1733         struct mmu_notifier_range range;
1734         struct mmu_gather tlb;
1735
1736         lru_add_drain();
1737         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1738                                 address, end);
1739         if (is_vm_hugetlb_page(vma))
1740                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1741                                                      &range.end);
1742         tlb_gather_mmu(&tlb, vma->vm_mm);
1743         update_hiwater_rss(vma->vm_mm);
1744         mmu_notifier_invalidate_range_start(&range);
1745         /*
1746          * unmap 'address-end' not 'range.start-range.end' as range
1747          * could have been expanded for hugetlb pmd sharing.
1748          */
1749         unmap_single_vma(&tlb, vma, address, end, details);
1750         mmu_notifier_invalidate_range_end(&range);
1751         tlb_finish_mmu(&tlb);
1752 }
1753
1754 /**
1755  * zap_vma_ptes - remove ptes mapping the vma
1756  * @vma: vm_area_struct holding ptes to be zapped
1757  * @address: starting address of pages to zap
1758  * @size: number of bytes to zap
1759  *
1760  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1761  *
1762  * The entire address range must be fully contained within the vma.
1763  *
1764  */
1765 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1766                 unsigned long size)
1767 {
1768         if (!range_in_vma(vma, address, address + size) ||
1769                         !(vma->vm_flags & VM_PFNMAP))
1770                 return;
1771
1772         zap_page_range_single(vma, address, size, NULL);
1773 }
1774 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1775
1776 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1777 {
1778         pgd_t *pgd;
1779         p4d_t *p4d;
1780         pud_t *pud;
1781         pmd_t *pmd;
1782
1783         pgd = pgd_offset(mm, addr);
1784         p4d = p4d_alloc(mm, pgd, addr);
1785         if (!p4d)
1786                 return NULL;
1787         pud = pud_alloc(mm, p4d, addr);
1788         if (!pud)
1789                 return NULL;
1790         pmd = pmd_alloc(mm, pud, addr);
1791         if (!pmd)
1792                 return NULL;
1793
1794         VM_BUG_ON(pmd_trans_huge(*pmd));
1795         return pmd;
1796 }
1797
1798 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1799                         spinlock_t **ptl)
1800 {
1801         pmd_t *pmd = walk_to_pmd(mm, addr);
1802
1803         if (!pmd)
1804                 return NULL;
1805         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1806 }
1807
1808 static int validate_page_before_insert(struct page *page)
1809 {
1810         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1811                 return -EINVAL;
1812         flush_dcache_page(page);
1813         return 0;
1814 }
1815
1816 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1817                         unsigned long addr, struct page *page, pgprot_t prot)
1818 {
1819         if (!pte_none(*pte))
1820                 return -EBUSY;
1821         /* Ok, finally just insert the thing.. */
1822         get_page(page);
1823         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1824         page_add_file_rmap(page, vma, false);
1825         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1826         return 0;
1827 }
1828
1829 /*
1830  * This is the old fallback for page remapping.
1831  *
1832  * For historical reasons, it only allows reserved pages. Only
1833  * old drivers should use this, and they needed to mark their
1834  * pages reserved for the old functions anyway.
1835  */
1836 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1837                         struct page *page, pgprot_t prot)
1838 {
1839         int retval;
1840         pte_t *pte;
1841         spinlock_t *ptl;
1842
1843         retval = validate_page_before_insert(page);
1844         if (retval)
1845                 goto out;
1846         retval = -ENOMEM;
1847         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1848         if (!pte)
1849                 goto out;
1850         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1851         pte_unmap_unlock(pte, ptl);
1852 out:
1853         return retval;
1854 }
1855
1856 #ifdef pte_index
1857 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1858                         unsigned long addr, struct page *page, pgprot_t prot)
1859 {
1860         int err;
1861
1862         if (!page_count(page))
1863                 return -EINVAL;
1864         err = validate_page_before_insert(page);
1865         if (err)
1866                 return err;
1867         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868 }
1869
1870 /* insert_pages() amortizes the cost of spinlock operations
1871  * when inserting pages in a loop. Arch *must* define pte_index.
1872  */
1873 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1874                         struct page **pages, unsigned long *num, pgprot_t prot)
1875 {
1876         pmd_t *pmd = NULL;
1877         pte_t *start_pte, *pte;
1878         spinlock_t *pte_lock;
1879         struct mm_struct *const mm = vma->vm_mm;
1880         unsigned long curr_page_idx = 0;
1881         unsigned long remaining_pages_total = *num;
1882         unsigned long pages_to_write_in_pmd;
1883         int ret;
1884 more:
1885         ret = -EFAULT;
1886         pmd = walk_to_pmd(mm, addr);
1887         if (!pmd)
1888                 goto out;
1889
1890         pages_to_write_in_pmd = min_t(unsigned long,
1891                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1892
1893         /* Allocate the PTE if necessary; takes PMD lock once only. */
1894         ret = -ENOMEM;
1895         if (pte_alloc(mm, pmd))
1896                 goto out;
1897
1898         while (pages_to_write_in_pmd) {
1899                 int pte_idx = 0;
1900                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1901
1902                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1903                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1904                         int err = insert_page_in_batch_locked(vma, pte,
1905                                 addr, pages[curr_page_idx], prot);
1906                         if (unlikely(err)) {
1907                                 pte_unmap_unlock(start_pte, pte_lock);
1908                                 ret = err;
1909                                 remaining_pages_total -= pte_idx;
1910                                 goto out;
1911                         }
1912                         addr += PAGE_SIZE;
1913                         ++curr_page_idx;
1914                 }
1915                 pte_unmap_unlock(start_pte, pte_lock);
1916                 pages_to_write_in_pmd -= batch_size;
1917                 remaining_pages_total -= batch_size;
1918         }
1919         if (remaining_pages_total)
1920                 goto more;
1921         ret = 0;
1922 out:
1923         *num = remaining_pages_total;
1924         return ret;
1925 }
1926 #endif  /* ifdef pte_index */
1927
1928 /**
1929  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1930  * @vma: user vma to map to
1931  * @addr: target start user address of these pages
1932  * @pages: source kernel pages
1933  * @num: in: number of pages to map. out: number of pages that were *not*
1934  * mapped. (0 means all pages were successfully mapped).
1935  *
1936  * Preferred over vm_insert_page() when inserting multiple pages.
1937  *
1938  * In case of error, we may have mapped a subset of the provided
1939  * pages. It is the caller's responsibility to account for this case.
1940  *
1941  * The same restrictions apply as in vm_insert_page().
1942  */
1943 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1944                         struct page **pages, unsigned long *num)
1945 {
1946 #ifdef pte_index
1947         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1948
1949         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1950                 return -EFAULT;
1951         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1952                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1953                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1954                 vma->vm_flags |= VM_MIXEDMAP;
1955         }
1956         /* Defer page refcount checking till we're about to map that page. */
1957         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1958 #else
1959         unsigned long idx = 0, pgcount = *num;
1960         int err = -EINVAL;
1961
1962         for (; idx < pgcount; ++idx) {
1963                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1964                 if (err)
1965                         break;
1966         }
1967         *num = pgcount - idx;
1968         return err;
1969 #endif  /* ifdef pte_index */
1970 }
1971 EXPORT_SYMBOL(vm_insert_pages);
1972
1973 /**
1974  * vm_insert_page - insert single page into user vma
1975  * @vma: user vma to map to
1976  * @addr: target user address of this page
1977  * @page: source kernel page
1978  *
1979  * This allows drivers to insert individual pages they've allocated
1980  * into a user vma.
1981  *
1982  * The page has to be a nice clean _individual_ kernel allocation.
1983  * If you allocate a compound page, you need to have marked it as
1984  * such (__GFP_COMP), or manually just split the page up yourself
1985  * (see split_page()).
1986  *
1987  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1988  * took an arbitrary page protection parameter. This doesn't allow
1989  * that. Your vma protection will have to be set up correctly, which
1990  * means that if you want a shared writable mapping, you'd better
1991  * ask for a shared writable mapping!
1992  *
1993  * The page does not need to be reserved.
1994  *
1995  * Usually this function is called from f_op->mmap() handler
1996  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1997  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1998  * function from other places, for example from page-fault handler.
1999  *
2000  * Return: %0 on success, negative error code otherwise.
2001  */
2002 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2003                         struct page *page)
2004 {
2005         if (addr < vma->vm_start || addr >= vma->vm_end)
2006                 return -EFAULT;
2007         if (!page_count(page))
2008                 return -EINVAL;
2009         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2010                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2011                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2012                 vma->vm_flags |= VM_MIXEDMAP;
2013         }
2014         return insert_page(vma, addr, page, vma->vm_page_prot);
2015 }
2016 EXPORT_SYMBOL(vm_insert_page);
2017
2018 /*
2019  * __vm_map_pages - maps range of kernel pages into user vma
2020  * @vma: user vma to map to
2021  * @pages: pointer to array of source kernel pages
2022  * @num: number of pages in page array
2023  * @offset: user's requested vm_pgoff
2024  *
2025  * This allows drivers to map range of kernel pages into a user vma.
2026  *
2027  * Return: 0 on success and error code otherwise.
2028  */
2029 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2030                                 unsigned long num, unsigned long offset)
2031 {
2032         unsigned long count = vma_pages(vma);
2033         unsigned long uaddr = vma->vm_start;
2034         int ret, i;
2035
2036         /* Fail if the user requested offset is beyond the end of the object */
2037         if (offset >= num)
2038                 return -ENXIO;
2039
2040         /* Fail if the user requested size exceeds available object size */
2041         if (count > num - offset)
2042                 return -ENXIO;
2043
2044         for (i = 0; i < count; i++) {
2045                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2046                 if (ret < 0)
2047                         return ret;
2048                 uaddr += PAGE_SIZE;
2049         }
2050
2051         return 0;
2052 }
2053
2054 /**
2055  * vm_map_pages - maps range of kernel pages starts with non zero offset
2056  * @vma: user vma to map to
2057  * @pages: pointer to array of source kernel pages
2058  * @num: number of pages in page array
2059  *
2060  * Maps an object consisting of @num pages, catering for the user's
2061  * requested vm_pgoff
2062  *
2063  * If we fail to insert any page into the vma, the function will return
2064  * immediately leaving any previously inserted pages present.  Callers
2065  * from the mmap handler may immediately return the error as their caller
2066  * will destroy the vma, removing any successfully inserted pages. Other
2067  * callers should make their own arrangements for calling unmap_region().
2068  *
2069  * Context: Process context. Called by mmap handlers.
2070  * Return: 0 on success and error code otherwise.
2071  */
2072 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2073                                 unsigned long num)
2074 {
2075         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2076 }
2077 EXPORT_SYMBOL(vm_map_pages);
2078
2079 /**
2080  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2081  * @vma: user vma to map to
2082  * @pages: pointer to array of source kernel pages
2083  * @num: number of pages in page array
2084  *
2085  * Similar to vm_map_pages(), except that it explicitly sets the offset
2086  * to 0. This function is intended for the drivers that did not consider
2087  * vm_pgoff.
2088  *
2089  * Context: Process context. Called by mmap handlers.
2090  * Return: 0 on success and error code otherwise.
2091  */
2092 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2093                                 unsigned long num)
2094 {
2095         return __vm_map_pages(vma, pages, num, 0);
2096 }
2097 EXPORT_SYMBOL(vm_map_pages_zero);
2098
2099 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2100                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2101 {
2102         struct mm_struct *mm = vma->vm_mm;
2103         pte_t *pte, entry;
2104         spinlock_t *ptl;
2105
2106         pte = get_locked_pte(mm, addr, &ptl);
2107         if (!pte)
2108                 return VM_FAULT_OOM;
2109         if (!pte_none(*pte)) {
2110                 if (mkwrite) {
2111                         /*
2112                          * For read faults on private mappings the PFN passed
2113                          * in may not match the PFN we have mapped if the
2114                          * mapped PFN is a writeable COW page.  In the mkwrite
2115                          * case we are creating a writable PTE for a shared
2116                          * mapping and we expect the PFNs to match. If they
2117                          * don't match, we are likely racing with block
2118                          * allocation and mapping invalidation so just skip the
2119                          * update.
2120                          */
2121                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2122                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2123                                 goto out_unlock;
2124                         }
2125                         entry = pte_mkyoung(*pte);
2126                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2127                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2128                                 update_mmu_cache(vma, addr, pte);
2129                 }
2130                 goto out_unlock;
2131         }
2132
2133         /* Ok, finally just insert the thing.. */
2134         if (pfn_t_devmap(pfn))
2135                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2136         else
2137                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2138
2139         if (mkwrite) {
2140                 entry = pte_mkyoung(entry);
2141                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2142         }
2143
2144         set_pte_at(mm, addr, pte, entry);
2145         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2146
2147 out_unlock:
2148         pte_unmap_unlock(pte, ptl);
2149         return VM_FAULT_NOPAGE;
2150 }
2151
2152 /**
2153  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2154  * @vma: user vma to map to
2155  * @addr: target user address of this page
2156  * @pfn: source kernel pfn
2157  * @pgprot: pgprot flags for the inserted page
2158  *
2159  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2160  * to override pgprot on a per-page basis.
2161  *
2162  * This only makes sense for IO mappings, and it makes no sense for
2163  * COW mappings.  In general, using multiple vmas is preferable;
2164  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2165  * impractical.
2166  *
2167  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2168  * a value of @pgprot different from that of @vma->vm_page_prot.
2169  *
2170  * Context: Process context.  May allocate using %GFP_KERNEL.
2171  * Return: vm_fault_t value.
2172  */
2173 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2174                         unsigned long pfn, pgprot_t pgprot)
2175 {
2176         /*
2177          * Technically, architectures with pte_special can avoid all these
2178          * restrictions (same for remap_pfn_range).  However we would like
2179          * consistency in testing and feature parity among all, so we should
2180          * try to keep these invariants in place for everybody.
2181          */
2182         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2183         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2184                                                 (VM_PFNMAP|VM_MIXEDMAP));
2185         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2186         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2187
2188         if (addr < vma->vm_start || addr >= vma->vm_end)
2189                 return VM_FAULT_SIGBUS;
2190
2191         if (!pfn_modify_allowed(pfn, pgprot))
2192                 return VM_FAULT_SIGBUS;
2193
2194         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2195
2196         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2197                         false);
2198 }
2199 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2200
2201 /**
2202  * vmf_insert_pfn - insert single pfn into user vma
2203  * @vma: user vma to map to
2204  * @addr: target user address of this page
2205  * @pfn: source kernel pfn
2206  *
2207  * Similar to vm_insert_page, this allows drivers to insert individual pages
2208  * they've allocated into a user vma. Same comments apply.
2209  *
2210  * This function should only be called from a vm_ops->fault handler, and
2211  * in that case the handler should return the result of this function.
2212  *
2213  * vma cannot be a COW mapping.
2214  *
2215  * As this is called only for pages that do not currently exist, we
2216  * do not need to flush old virtual caches or the TLB.
2217  *
2218  * Context: Process context.  May allocate using %GFP_KERNEL.
2219  * Return: vm_fault_t value.
2220  */
2221 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2222                         unsigned long pfn)
2223 {
2224         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2225 }
2226 EXPORT_SYMBOL(vmf_insert_pfn);
2227
2228 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2229 {
2230         /* these checks mirror the abort conditions in vm_normal_page */
2231         if (vma->vm_flags & VM_MIXEDMAP)
2232                 return true;
2233         if (pfn_t_devmap(pfn))
2234                 return true;
2235         if (pfn_t_special(pfn))
2236                 return true;
2237         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2238                 return true;
2239         return false;
2240 }
2241
2242 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2243                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2244                 bool mkwrite)
2245 {
2246         int err;
2247
2248         BUG_ON(!vm_mixed_ok(vma, pfn));
2249
2250         if (addr < vma->vm_start || addr >= vma->vm_end)
2251                 return VM_FAULT_SIGBUS;
2252
2253         track_pfn_insert(vma, &pgprot, pfn);
2254
2255         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2256                 return VM_FAULT_SIGBUS;
2257
2258         /*
2259          * If we don't have pte special, then we have to use the pfn_valid()
2260          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2261          * refcount the page if pfn_valid is true (hence insert_page rather
2262          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2263          * without pte special, it would there be refcounted as a normal page.
2264          */
2265         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2266             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2267                 struct page *page;
2268
2269                 /*
2270                  * At this point we are committed to insert_page()
2271                  * regardless of whether the caller specified flags that
2272                  * result in pfn_t_has_page() == false.
2273                  */
2274                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2275                 err = insert_page(vma, addr, page, pgprot);
2276         } else {
2277                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2278         }
2279
2280         if (err == -ENOMEM)
2281                 return VM_FAULT_OOM;
2282         if (err < 0 && err != -EBUSY)
2283                 return VM_FAULT_SIGBUS;
2284
2285         return VM_FAULT_NOPAGE;
2286 }
2287
2288 /**
2289  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2290  * @vma: user vma to map to
2291  * @addr: target user address of this page
2292  * @pfn: source kernel pfn
2293  * @pgprot: pgprot flags for the inserted page
2294  *
2295  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2296  * to override pgprot on a per-page basis.
2297  *
2298  * Typically this function should be used by drivers to set caching- and
2299  * encryption bits different than those of @vma->vm_page_prot, because
2300  * the caching- or encryption mode may not be known at mmap() time.
2301  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2302  * to set caching and encryption bits for those vmas (except for COW pages).
2303  * This is ensured by core vm only modifying these page table entries using
2304  * functions that don't touch caching- or encryption bits, using pte_modify()
2305  * if needed. (See for example mprotect()).
2306  * Also when new page-table entries are created, this is only done using the
2307  * fault() callback, and never using the value of vma->vm_page_prot,
2308  * except for page-table entries that point to anonymous pages as the result
2309  * of COW.
2310  *
2311  * Context: Process context.  May allocate using %GFP_KERNEL.
2312  * Return: vm_fault_t value.
2313  */
2314 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2315                                  pfn_t pfn, pgprot_t pgprot)
2316 {
2317         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2318 }
2319 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2320
2321 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2322                 pfn_t pfn)
2323 {
2324         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2325 }
2326 EXPORT_SYMBOL(vmf_insert_mixed);
2327
2328 /*
2329  *  If the insertion of PTE failed because someone else already added a
2330  *  different entry in the mean time, we treat that as success as we assume
2331  *  the same entry was actually inserted.
2332  */
2333 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2334                 unsigned long addr, pfn_t pfn)
2335 {
2336         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2337 }
2338 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2339
2340 /*
2341  * maps a range of physical memory into the requested pages. the old
2342  * mappings are removed. any references to nonexistent pages results
2343  * in null mappings (currently treated as "copy-on-access")
2344  */
2345 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2346                         unsigned long addr, unsigned long end,
2347                         unsigned long pfn, pgprot_t prot)
2348 {
2349         pte_t *pte, *mapped_pte;
2350         spinlock_t *ptl;
2351         int err = 0;
2352
2353         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2354         if (!pte)
2355                 return -ENOMEM;
2356         arch_enter_lazy_mmu_mode();
2357         do {
2358                 BUG_ON(!pte_none(*pte));
2359                 if (!pfn_modify_allowed(pfn, prot)) {
2360                         err = -EACCES;
2361                         break;
2362                 }
2363                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2364                 pfn++;
2365         } while (pte++, addr += PAGE_SIZE, addr != end);
2366         arch_leave_lazy_mmu_mode();
2367         pte_unmap_unlock(mapped_pte, ptl);
2368         return err;
2369 }
2370
2371 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2372                         unsigned long addr, unsigned long end,
2373                         unsigned long pfn, pgprot_t prot)
2374 {
2375         pmd_t *pmd;
2376         unsigned long next;
2377         int err;
2378
2379         pfn -= addr >> PAGE_SHIFT;
2380         pmd = pmd_alloc(mm, pud, addr);
2381         if (!pmd)
2382                 return -ENOMEM;
2383         VM_BUG_ON(pmd_trans_huge(*pmd));
2384         do {
2385                 next = pmd_addr_end(addr, end);
2386                 err = remap_pte_range(mm, pmd, addr, next,
2387                                 pfn + (addr >> PAGE_SHIFT), prot);
2388                 if (err)
2389                         return err;
2390         } while (pmd++, addr = next, addr != end);
2391         return 0;
2392 }
2393
2394 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2395                         unsigned long addr, unsigned long end,
2396                         unsigned long pfn, pgprot_t prot)
2397 {
2398         pud_t *pud;
2399         unsigned long next;
2400         int err;
2401
2402         pfn -= addr >> PAGE_SHIFT;
2403         pud = pud_alloc(mm, p4d, addr);
2404         if (!pud)
2405                 return -ENOMEM;
2406         do {
2407                 next = pud_addr_end(addr, end);
2408                 err = remap_pmd_range(mm, pud, addr, next,
2409                                 pfn + (addr >> PAGE_SHIFT), prot);
2410                 if (err)
2411                         return err;
2412         } while (pud++, addr = next, addr != end);
2413         return 0;
2414 }
2415
2416 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2417                         unsigned long addr, unsigned long end,
2418                         unsigned long pfn, pgprot_t prot)
2419 {
2420         p4d_t *p4d;
2421         unsigned long next;
2422         int err;
2423
2424         pfn -= addr >> PAGE_SHIFT;
2425         p4d = p4d_alloc(mm, pgd, addr);
2426         if (!p4d)
2427                 return -ENOMEM;
2428         do {
2429                 next = p4d_addr_end(addr, end);
2430                 err = remap_pud_range(mm, p4d, addr, next,
2431                                 pfn + (addr >> PAGE_SHIFT), prot);
2432                 if (err)
2433                         return err;
2434         } while (p4d++, addr = next, addr != end);
2435         return 0;
2436 }
2437
2438 /*
2439  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2440  * must have pre-validated the caching bits of the pgprot_t.
2441  */
2442 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2443                 unsigned long pfn, unsigned long size, pgprot_t prot)
2444 {
2445         pgd_t *pgd;
2446         unsigned long next;
2447         unsigned long end = addr + PAGE_ALIGN(size);
2448         struct mm_struct *mm = vma->vm_mm;
2449         int err;
2450
2451         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2452                 return -EINVAL;
2453
2454         /*
2455          * Physically remapped pages are special. Tell the
2456          * rest of the world about it:
2457          *   VM_IO tells people not to look at these pages
2458          *      (accesses can have side effects).
2459          *   VM_PFNMAP tells the core MM that the base pages are just
2460          *      raw PFN mappings, and do not have a "struct page" associated
2461          *      with them.
2462          *   VM_DONTEXPAND
2463          *      Disable vma merging and expanding with mremap().
2464          *   VM_DONTDUMP
2465          *      Omit vma from core dump, even when VM_IO turned off.
2466          *
2467          * There's a horrible special case to handle copy-on-write
2468          * behaviour that some programs depend on. We mark the "original"
2469          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2470          * See vm_normal_page() for details.
2471          */
2472         if (is_cow_mapping(vma->vm_flags)) {
2473                 if (addr != vma->vm_start || end != vma->vm_end)
2474                         return -EINVAL;
2475                 vma->vm_pgoff = pfn;
2476         }
2477
2478         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2479
2480         BUG_ON(addr >= end);
2481         pfn -= addr >> PAGE_SHIFT;
2482         pgd = pgd_offset(mm, addr);
2483         flush_cache_range(vma, addr, end);
2484         do {
2485                 next = pgd_addr_end(addr, end);
2486                 err = remap_p4d_range(mm, pgd, addr, next,
2487                                 pfn + (addr >> PAGE_SHIFT), prot);
2488                 if (err)
2489                         return err;
2490         } while (pgd++, addr = next, addr != end);
2491
2492         return 0;
2493 }
2494
2495 /**
2496  * remap_pfn_range - remap kernel memory to userspace
2497  * @vma: user vma to map to
2498  * @addr: target page aligned user address to start at
2499  * @pfn: page frame number of kernel physical memory address
2500  * @size: size of mapping area
2501  * @prot: page protection flags for this mapping
2502  *
2503  * Note: this is only safe if the mm semaphore is held when called.
2504  *
2505  * Return: %0 on success, negative error code otherwise.
2506  */
2507 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2508                     unsigned long pfn, unsigned long size, pgprot_t prot)
2509 {
2510         int err;
2511
2512         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2513         if (err)
2514                 return -EINVAL;
2515
2516         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517         if (err)
2518                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2519         return err;
2520 }
2521 EXPORT_SYMBOL(remap_pfn_range);
2522
2523 /**
2524  * vm_iomap_memory - remap memory to userspace
2525  * @vma: user vma to map to
2526  * @start: start of the physical memory to be mapped
2527  * @len: size of area
2528  *
2529  * This is a simplified io_remap_pfn_range() for common driver use. The
2530  * driver just needs to give us the physical memory range to be mapped,
2531  * we'll figure out the rest from the vma information.
2532  *
2533  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2534  * whatever write-combining details or similar.
2535  *
2536  * Return: %0 on success, negative error code otherwise.
2537  */
2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539 {
2540         unsigned long vm_len, pfn, pages;
2541
2542         /* Check that the physical memory area passed in looks valid */
2543         if (start + len < start)
2544                 return -EINVAL;
2545         /*
2546          * You *really* shouldn't map things that aren't page-aligned,
2547          * but we've historically allowed it because IO memory might
2548          * just have smaller alignment.
2549          */
2550         len += start & ~PAGE_MASK;
2551         pfn = start >> PAGE_SHIFT;
2552         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2553         if (pfn + pages < pfn)
2554                 return -EINVAL;
2555
2556         /* We start the mapping 'vm_pgoff' pages into the area */
2557         if (vma->vm_pgoff > pages)
2558                 return -EINVAL;
2559         pfn += vma->vm_pgoff;
2560         pages -= vma->vm_pgoff;
2561
2562         /* Can we fit all of the mapping? */
2563         vm_len = vma->vm_end - vma->vm_start;
2564         if (vm_len >> PAGE_SHIFT > pages)
2565                 return -EINVAL;
2566
2567         /* Ok, let it rip */
2568         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569 }
2570 EXPORT_SYMBOL(vm_iomap_memory);
2571
2572 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2573                                      unsigned long addr, unsigned long end,
2574                                      pte_fn_t fn, void *data, bool create,
2575                                      pgtbl_mod_mask *mask)
2576 {
2577         pte_t *pte, *mapped_pte;
2578         int err = 0;
2579         spinlock_t *ptl;
2580
2581         if (create) {
2582                 mapped_pte = pte = (mm == &init_mm) ?
2583                         pte_alloc_kernel_track(pmd, addr, mask) :
2584                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2585                 if (!pte)
2586                         return -ENOMEM;
2587         } else {
2588                 mapped_pte = pte = (mm == &init_mm) ?
2589                         pte_offset_kernel(pmd, addr) :
2590                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2591         }
2592
2593         BUG_ON(pmd_huge(*pmd));
2594
2595         arch_enter_lazy_mmu_mode();
2596
2597         if (fn) {
2598                 do {
2599                         if (create || !pte_none(*pte)) {
2600                                 err = fn(pte++, addr, data);
2601                                 if (err)
2602                                         break;
2603                         }
2604                 } while (addr += PAGE_SIZE, addr != end);
2605         }
2606         *mask |= PGTBL_PTE_MODIFIED;
2607
2608         arch_leave_lazy_mmu_mode();
2609
2610         if (mm != &init_mm)
2611                 pte_unmap_unlock(mapped_pte, ptl);
2612         return err;
2613 }
2614
2615 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2616                                      unsigned long addr, unsigned long end,
2617                                      pte_fn_t fn, void *data, bool create,
2618                                      pgtbl_mod_mask *mask)
2619 {
2620         pmd_t *pmd;
2621         unsigned long next;
2622         int err = 0;
2623
2624         BUG_ON(pud_huge(*pud));
2625
2626         if (create) {
2627                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2628                 if (!pmd)
2629                         return -ENOMEM;
2630         } else {
2631                 pmd = pmd_offset(pud, addr);
2632         }
2633         do {
2634                 next = pmd_addr_end(addr, end);
2635                 if (pmd_none(*pmd) && !create)
2636                         continue;
2637                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638                         return -EINVAL;
2639                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640                         if (!create)
2641                                 continue;
2642                         pmd_clear_bad(pmd);
2643                 }
2644                 err = apply_to_pte_range(mm, pmd, addr, next,
2645                                          fn, data, create, mask);
2646                 if (err)
2647                         break;
2648         } while (pmd++, addr = next, addr != end);
2649
2650         return err;
2651 }
2652
2653 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2654                                      unsigned long addr, unsigned long end,
2655                                      pte_fn_t fn, void *data, bool create,
2656                                      pgtbl_mod_mask *mask)
2657 {
2658         pud_t *pud;
2659         unsigned long next;
2660         int err = 0;
2661
2662         if (create) {
2663                 pud = pud_alloc_track(mm, p4d, addr, mask);
2664                 if (!pud)
2665                         return -ENOMEM;
2666         } else {
2667                 pud = pud_offset(p4d, addr);
2668         }
2669         do {
2670                 next = pud_addr_end(addr, end);
2671                 if (pud_none(*pud) && !create)
2672                         continue;
2673                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2674                         return -EINVAL;
2675                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676                         if (!create)
2677                                 continue;
2678                         pud_clear_bad(pud);
2679                 }
2680                 err = apply_to_pmd_range(mm, pud, addr, next,
2681                                          fn, data, create, mask);
2682                 if (err)
2683                         break;
2684         } while (pud++, addr = next, addr != end);
2685
2686         return err;
2687 }
2688
2689 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2690                                      unsigned long addr, unsigned long end,
2691                                      pte_fn_t fn, void *data, bool create,
2692                                      pgtbl_mod_mask *mask)
2693 {
2694         p4d_t *p4d;
2695         unsigned long next;
2696         int err = 0;
2697
2698         if (create) {
2699                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2700                 if (!p4d)
2701                         return -ENOMEM;
2702         } else {
2703                 p4d = p4d_offset(pgd, addr);
2704         }
2705         do {
2706                 next = p4d_addr_end(addr, end);
2707                 if (p4d_none(*p4d) && !create)
2708                         continue;
2709                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710                         return -EINVAL;
2711                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712                         if (!create)
2713                                 continue;
2714                         p4d_clear_bad(p4d);
2715                 }
2716                 err = apply_to_pud_range(mm, p4d, addr, next,
2717                                          fn, data, create, mask);
2718                 if (err)
2719                         break;
2720         } while (p4d++, addr = next, addr != end);
2721
2722         return err;
2723 }
2724
2725 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2726                                  unsigned long size, pte_fn_t fn,
2727                                  void *data, bool create)
2728 {
2729         pgd_t *pgd;
2730         unsigned long start = addr, next;
2731         unsigned long end = addr + size;
2732         pgtbl_mod_mask mask = 0;
2733         int err = 0;
2734
2735         if (WARN_ON(addr >= end))
2736                 return -EINVAL;
2737
2738         pgd = pgd_offset(mm, addr);
2739         do {
2740                 next = pgd_addr_end(addr, end);
2741                 if (pgd_none(*pgd) && !create)
2742                         continue;
2743                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744                         return -EINVAL;
2745                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746                         if (!create)
2747                                 continue;
2748                         pgd_clear_bad(pgd);
2749                 }
2750                 err = apply_to_p4d_range(mm, pgd, addr, next,
2751                                          fn, data, create, &mask);
2752                 if (err)
2753                         break;
2754         } while (pgd++, addr = next, addr != end);
2755
2756         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2757                 arch_sync_kernel_mappings(start, start + size);
2758
2759         return err;
2760 }
2761
2762 /*
2763  * Scan a region of virtual memory, filling in page tables as necessary
2764  * and calling a provided function on each leaf page table.
2765  */
2766 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2767                         unsigned long size, pte_fn_t fn, void *data)
2768 {
2769         return __apply_to_page_range(mm, addr, size, fn, data, true);
2770 }
2771 EXPORT_SYMBOL_GPL(apply_to_page_range);
2772
2773 /*
2774  * Scan a region of virtual memory, calling a provided function on
2775  * each leaf page table where it exists.
2776  *
2777  * Unlike apply_to_page_range, this does _not_ fill in page tables
2778  * where they are absent.
2779  */
2780 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2781                                  unsigned long size, pte_fn_t fn, void *data)
2782 {
2783         return __apply_to_page_range(mm, addr, size, fn, data, false);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2786
2787 /*
2788  * handle_pte_fault chooses page fault handler according to an entry which was
2789  * read non-atomically.  Before making any commitment, on those architectures
2790  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2791  * parts, do_swap_page must check under lock before unmapping the pte and
2792  * proceeding (but do_wp_page is only called after already making such a check;
2793  * and do_anonymous_page can safely check later on).
2794  */
2795 static inline int pte_unmap_same(struct vm_fault *vmf)
2796 {
2797         int same = 1;
2798 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2799         if (sizeof(pte_t) > sizeof(unsigned long)) {
2800                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2801                 spin_lock(ptl);
2802                 same = pte_same(*vmf->pte, vmf->orig_pte);
2803                 spin_unlock(ptl);
2804         }
2805 #endif
2806         pte_unmap(vmf->pte);
2807         vmf->pte = NULL;
2808         return same;
2809 }
2810
2811 /*
2812  * Return:
2813  *      0:              copied succeeded
2814  *      -EHWPOISON:     copy failed due to hwpoison in source page
2815  *      -EAGAIN:        copied failed (some other reason)
2816  */
2817 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2818                                       struct vm_fault *vmf)
2819 {
2820         int ret;
2821         void *kaddr;
2822         void __user *uaddr;
2823         bool locked = false;
2824         struct vm_area_struct *vma = vmf->vma;
2825         struct mm_struct *mm = vma->vm_mm;
2826         unsigned long addr = vmf->address;
2827
2828         if (likely(src)) {
2829                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2830                         memory_failure_queue(page_to_pfn(src), 0);
2831                         return -EHWPOISON;
2832                 }
2833                 return 0;
2834         }
2835
2836         /*
2837          * If the source page was a PFN mapping, we don't have
2838          * a "struct page" for it. We do a best-effort copy by
2839          * just copying from the original user address. If that
2840          * fails, we just zero-fill it. Live with it.
2841          */
2842         kaddr = kmap_atomic(dst);
2843         uaddr = (void __user *)(addr & PAGE_MASK);
2844
2845         /*
2846          * On architectures with software "accessed" bits, we would
2847          * take a double page fault, so mark it accessed here.
2848          */
2849         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2850                 pte_t entry;
2851
2852                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2853                 locked = true;
2854                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2855                         /*
2856                          * Other thread has already handled the fault
2857                          * and update local tlb only
2858                          */
2859                         update_mmu_tlb(vma, addr, vmf->pte);
2860                         ret = -EAGAIN;
2861                         goto pte_unlock;
2862                 }
2863
2864                 entry = pte_mkyoung(vmf->orig_pte);
2865                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2866                         update_mmu_cache(vma, addr, vmf->pte);
2867         }
2868
2869         /*
2870          * This really shouldn't fail, because the page is there
2871          * in the page tables. But it might just be unreadable,
2872          * in which case we just give up and fill the result with
2873          * zeroes.
2874          */
2875         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2876                 if (locked)
2877                         goto warn;
2878
2879                 /* Re-validate under PTL if the page is still mapped */
2880                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2881                 locked = true;
2882                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2883                         /* The PTE changed under us, update local tlb */
2884                         update_mmu_tlb(vma, addr, vmf->pte);
2885                         ret = -EAGAIN;
2886                         goto pte_unlock;
2887                 }
2888
2889                 /*
2890                  * The same page can be mapped back since last copy attempt.
2891                  * Try to copy again under PTL.
2892                  */
2893                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2894                         /*
2895                          * Give a warn in case there can be some obscure
2896                          * use-case
2897                          */
2898 warn:
2899                         WARN_ON_ONCE(1);
2900                         clear_page(kaddr);
2901                 }
2902         }
2903
2904         ret = 0;
2905
2906 pte_unlock:
2907         if (locked)
2908                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2909         kunmap_atomic(kaddr);
2910         flush_dcache_page(dst);
2911
2912         return ret;
2913 }
2914
2915 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2916 {
2917         struct file *vm_file = vma->vm_file;
2918
2919         if (vm_file)
2920                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2921
2922         /*
2923          * Special mappings (e.g. VDSO) do not have any file so fake
2924          * a default GFP_KERNEL for them.
2925          */
2926         return GFP_KERNEL;
2927 }
2928
2929 /*
2930  * Notify the address space that the page is about to become writable so that
2931  * it can prohibit this or wait for the page to get into an appropriate state.
2932  *
2933  * We do this without the lock held, so that it can sleep if it needs to.
2934  */
2935 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2936 {
2937         vm_fault_t ret;
2938         struct page *page = vmf->page;
2939         unsigned int old_flags = vmf->flags;
2940
2941         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2942
2943         if (vmf->vma->vm_file &&
2944             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2945                 return VM_FAULT_SIGBUS;
2946
2947         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2948         /* Restore original flags so that caller is not surprised */
2949         vmf->flags = old_flags;
2950         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2951                 return ret;
2952         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2953                 lock_page(page);
2954                 if (!page->mapping) {
2955                         unlock_page(page);
2956                         return 0; /* retry */
2957                 }
2958                 ret |= VM_FAULT_LOCKED;
2959         } else
2960                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2961         return ret;
2962 }
2963
2964 /*
2965  * Handle dirtying of a page in shared file mapping on a write fault.
2966  *
2967  * The function expects the page to be locked and unlocks it.
2968  */
2969 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2970 {
2971         struct vm_area_struct *vma = vmf->vma;
2972         struct address_space *mapping;
2973         struct page *page = vmf->page;
2974         bool dirtied;
2975         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2976
2977         dirtied = set_page_dirty(page);
2978         VM_BUG_ON_PAGE(PageAnon(page), page);
2979         /*
2980          * Take a local copy of the address_space - page.mapping may be zeroed
2981          * by truncate after unlock_page().   The address_space itself remains
2982          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2983          * release semantics to prevent the compiler from undoing this copying.
2984          */
2985         mapping = page_rmapping(page);
2986         unlock_page(page);
2987
2988         if (!page_mkwrite)
2989                 file_update_time(vma->vm_file);
2990
2991         /*
2992          * Throttle page dirtying rate down to writeback speed.
2993          *
2994          * mapping may be NULL here because some device drivers do not
2995          * set page.mapping but still dirty their pages
2996          *
2997          * Drop the mmap_lock before waiting on IO, if we can. The file
2998          * is pinning the mapping, as per above.
2999          */
3000         if ((dirtied || page_mkwrite) && mapping) {
3001                 struct file *fpin;
3002
3003                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3004                 balance_dirty_pages_ratelimited(mapping);
3005                 if (fpin) {
3006                         fput(fpin);
3007                         return VM_FAULT_COMPLETED;
3008                 }
3009         }
3010
3011         return 0;
3012 }
3013
3014 /*
3015  * Handle write page faults for pages that can be reused in the current vma
3016  *
3017  * This can happen either due to the mapping being with the VM_SHARED flag,
3018  * or due to us being the last reference standing to the page. In either
3019  * case, all we need to do here is to mark the page as writable and update
3020  * any related book-keeping.
3021  */
3022 static inline void wp_page_reuse(struct vm_fault *vmf)
3023         __releases(vmf->ptl)
3024 {
3025         struct vm_area_struct *vma = vmf->vma;
3026         struct page *page = vmf->page;
3027         pte_t entry;
3028
3029         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3030         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3031
3032         /*
3033          * Clear the pages cpupid information as the existing
3034          * information potentially belongs to a now completely
3035          * unrelated process.
3036          */
3037         if (page)
3038                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3039
3040         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3041         entry = pte_mkyoung(vmf->orig_pte);
3042         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3043         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3044                 update_mmu_cache(vma, vmf->address, vmf->pte);
3045         pte_unmap_unlock(vmf->pte, vmf->ptl);
3046         count_vm_event(PGREUSE);
3047 }
3048
3049 /*
3050  * Handle the case of a page which we actually need to copy to a new page,
3051  * either due to COW or unsharing.
3052  *
3053  * Called with mmap_lock locked and the old page referenced, but
3054  * without the ptl held.
3055  *
3056  * High level logic flow:
3057  *
3058  * - Allocate a page, copy the content of the old page to the new one.
3059  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3060  * - Take the PTL. If the pte changed, bail out and release the allocated page
3061  * - If the pte is still the way we remember it, update the page table and all
3062  *   relevant references. This includes dropping the reference the page-table
3063  *   held to the old page, as well as updating the rmap.
3064  * - In any case, unlock the PTL and drop the reference we took to the old page.
3065  */
3066 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3067 {
3068         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3069         struct vm_area_struct *vma = vmf->vma;
3070         struct mm_struct *mm = vma->vm_mm;
3071         struct page *old_page = vmf->page;
3072         struct page *new_page = NULL;
3073         pte_t entry;
3074         int page_copied = 0;
3075         struct mmu_notifier_range range;
3076         int ret;
3077
3078         delayacct_wpcopy_start();
3079
3080         if (unlikely(anon_vma_prepare(vma)))
3081                 goto oom;
3082
3083         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3084                 new_page = alloc_zeroed_user_highpage_movable(vma,
3085                                                               vmf->address);
3086                 if (!new_page)
3087                         goto oom;
3088         } else {
3089                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3090                                 vmf->address);
3091                 if (!new_page)
3092                         goto oom;
3093
3094                 ret = __wp_page_copy_user(new_page, old_page, vmf);
3095                 if (ret) {
3096                         /*
3097                          * COW failed, if the fault was solved by other,
3098                          * it's fine. If not, userspace would re-fault on
3099                          * the same address and we will handle the fault
3100                          * from the second attempt.
3101                          * The -EHWPOISON case will not be retried.
3102                          */
3103                         put_page(new_page);
3104                         if (old_page)
3105                                 put_page(old_page);
3106
3107                         delayacct_wpcopy_end();
3108                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3109                 }
3110                 kmsan_copy_page_meta(new_page, old_page);
3111         }
3112
3113         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3114                 goto oom_free_new;
3115         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3116
3117         __SetPageUptodate(new_page);
3118
3119         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3120                                 vmf->address & PAGE_MASK,
3121                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3122         mmu_notifier_invalidate_range_start(&range);
3123
3124         /*
3125          * Re-check the pte - we dropped the lock
3126          */
3127         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3128         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3129                 if (old_page) {
3130                         if (!PageAnon(old_page)) {
3131                                 dec_mm_counter(mm, mm_counter_file(old_page));
3132                                 inc_mm_counter(mm, MM_ANONPAGES);
3133                         }
3134                 } else {
3135                         inc_mm_counter(mm, MM_ANONPAGES);
3136                 }
3137                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3138                 entry = mk_pte(new_page, vma->vm_page_prot);
3139                 entry = pte_sw_mkyoung(entry);
3140                 if (unlikely(unshare)) {
3141                         if (pte_soft_dirty(vmf->orig_pte))
3142                                 entry = pte_mksoft_dirty(entry);
3143                         if (pte_uffd_wp(vmf->orig_pte))
3144                                 entry = pte_mkuffd_wp(entry);
3145                 } else {
3146                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3147                 }
3148
3149                 /*
3150                  * Clear the pte entry and flush it first, before updating the
3151                  * pte with the new entry, to keep TLBs on different CPUs in
3152                  * sync. This code used to set the new PTE then flush TLBs, but
3153                  * that left a window where the new PTE could be loaded into
3154                  * some TLBs while the old PTE remains in others.
3155                  */
3156                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3157                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3158                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3159                 /*
3160                  * We call the notify macro here because, when using secondary
3161                  * mmu page tables (such as kvm shadow page tables), we want the
3162                  * new page to be mapped directly into the secondary page table.
3163                  */
3164                 BUG_ON(unshare && pte_write(entry));
3165                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3166                 update_mmu_cache(vma, vmf->address, vmf->pte);
3167                 if (old_page) {
3168                         /*
3169                          * Only after switching the pte to the new page may
3170                          * we remove the mapcount here. Otherwise another
3171                          * process may come and find the rmap count decremented
3172                          * before the pte is switched to the new page, and
3173                          * "reuse" the old page writing into it while our pte
3174                          * here still points into it and can be read by other
3175                          * threads.
3176                          *
3177                          * The critical issue is to order this
3178                          * page_remove_rmap with the ptp_clear_flush above.
3179                          * Those stores are ordered by (if nothing else,)
3180                          * the barrier present in the atomic_add_negative
3181                          * in page_remove_rmap.
3182                          *
3183                          * Then the TLB flush in ptep_clear_flush ensures that
3184                          * no process can access the old page before the
3185                          * decremented mapcount is visible. And the old page
3186                          * cannot be reused until after the decremented
3187                          * mapcount is visible. So transitively, TLBs to
3188                          * old page will be flushed before it can be reused.
3189                          */
3190                         page_remove_rmap(old_page, vma, false);
3191                 }
3192
3193                 /* Free the old page.. */
3194                 new_page = old_page;
3195                 page_copied = 1;
3196         } else {
3197                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3198         }
3199
3200         if (new_page)
3201                 put_page(new_page);
3202
3203         pte_unmap_unlock(vmf->pte, vmf->ptl);
3204         /*
3205          * No need to double call mmu_notifier->invalidate_range() callback as
3206          * the above ptep_clear_flush_notify() did already call it.
3207          */
3208         mmu_notifier_invalidate_range_only_end(&range);
3209         if (old_page) {
3210                 if (page_copied)
3211                         free_swap_cache(old_page);
3212                 put_page(old_page);
3213         }
3214
3215         delayacct_wpcopy_end();
3216         return 0;
3217 oom_free_new:
3218         put_page(new_page);
3219 oom:
3220         if (old_page)
3221                 put_page(old_page);
3222
3223         delayacct_wpcopy_end();
3224         return VM_FAULT_OOM;
3225 }
3226
3227 /**
3228  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3229  *                        writeable once the page is prepared
3230  *
3231  * @vmf: structure describing the fault
3232  *
3233  * This function handles all that is needed to finish a write page fault in a
3234  * shared mapping due to PTE being read-only once the mapped page is prepared.
3235  * It handles locking of PTE and modifying it.
3236  *
3237  * The function expects the page to be locked or other protection against
3238  * concurrent faults / writeback (such as DAX radix tree locks).
3239  *
3240  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3241  * we acquired PTE lock.
3242  */
3243 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3244 {
3245         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3246         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3247                                        &vmf->ptl);
3248         /*
3249          * We might have raced with another page fault while we released the
3250          * pte_offset_map_lock.
3251          */
3252         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3253                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3254                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3255                 return VM_FAULT_NOPAGE;
3256         }
3257         wp_page_reuse(vmf);
3258         return 0;
3259 }
3260
3261 /*
3262  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3263  * mapping
3264  */
3265 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3266 {
3267         struct vm_area_struct *vma = vmf->vma;
3268
3269         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3270                 vm_fault_t ret;
3271
3272                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3273                 vmf->flags |= FAULT_FLAG_MKWRITE;
3274                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3275                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3276                         return ret;
3277                 return finish_mkwrite_fault(vmf);
3278         }
3279         wp_page_reuse(vmf);
3280         return 0;
3281 }
3282
3283 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3284         __releases(vmf->ptl)
3285 {
3286         struct vm_area_struct *vma = vmf->vma;
3287         vm_fault_t ret = 0;
3288
3289         get_page(vmf->page);
3290
3291         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3292                 vm_fault_t tmp;
3293
3294                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3295                 tmp = do_page_mkwrite(vmf);
3296                 if (unlikely(!tmp || (tmp &
3297                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3298                         put_page(vmf->page);
3299                         return tmp;
3300                 }
3301                 tmp = finish_mkwrite_fault(vmf);
3302                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3303                         unlock_page(vmf->page);
3304                         put_page(vmf->page);
3305                         return tmp;
3306                 }
3307         } else {
3308                 wp_page_reuse(vmf);
3309                 lock_page(vmf->page);
3310         }
3311         ret |= fault_dirty_shared_page(vmf);
3312         put_page(vmf->page);
3313
3314         return ret;
3315 }
3316
3317 /*
3318  * This routine handles present pages, when
3319  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3320  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3321  *   (FAULT_FLAG_UNSHARE)
3322  *
3323  * It is done by copying the page to a new address and decrementing the
3324  * shared-page counter for the old page.
3325  *
3326  * Note that this routine assumes that the protection checks have been
3327  * done by the caller (the low-level page fault routine in most cases).
3328  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3329  * done any necessary COW.
3330  *
3331  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3332  * though the page will change only once the write actually happens. This
3333  * avoids a few races, and potentially makes it more efficient.
3334  *
3335  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3336  * but allow concurrent faults), with pte both mapped and locked.
3337  * We return with mmap_lock still held, but pte unmapped and unlocked.
3338  */
3339 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3340         __releases(vmf->ptl)
3341 {
3342         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3343         struct vm_area_struct *vma = vmf->vma;
3344         struct folio *folio = NULL;
3345
3346         if (likely(!unshare)) {
3347                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3348                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3349                         return handle_userfault(vmf, VM_UFFD_WP);
3350                 }
3351
3352                 /*
3353                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3354                  * is flushed in this case before copying.
3355                  */
3356                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3357                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3358                         flush_tlb_page(vmf->vma, vmf->address);
3359         }
3360
3361         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3362
3363         /*
3364          * Shared mapping: we are guaranteed to have VM_WRITE and
3365          * FAULT_FLAG_WRITE set at this point.
3366          */
3367         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3368                 /*
3369                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3370                  * VM_PFNMAP VMA.
3371                  *
3372                  * We should not cow pages in a shared writeable mapping.
3373                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3374                  */
3375                 if (!vmf->page)
3376                         return wp_pfn_shared(vmf);
3377                 return wp_page_shared(vmf);
3378         }
3379
3380         if (vmf->page)
3381                 folio = page_folio(vmf->page);
3382
3383         /*
3384          * Private mapping: create an exclusive anonymous page copy if reuse
3385          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3386          */
3387         if (folio && folio_test_anon(folio)) {
3388                 /*
3389                  * If the page is exclusive to this process we must reuse the
3390                  * page without further checks.
3391                  */
3392                 if (PageAnonExclusive(vmf->page))
3393                         goto reuse;
3394
3395                 /*
3396                  * We have to verify under folio lock: these early checks are
3397                  * just an optimization to avoid locking the folio and freeing
3398                  * the swapcache if there is little hope that we can reuse.
3399                  *
3400                  * KSM doesn't necessarily raise the folio refcount.
3401                  */
3402                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3403                         goto copy;
3404                 if (!folio_test_lru(folio))
3405                         /*
3406                          * Note: We cannot easily detect+handle references from
3407                          * remote LRU pagevecs or references to LRU folios.
3408                          */
3409                         lru_add_drain();
3410                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3411                         goto copy;
3412                 if (!folio_trylock(folio))
3413                         goto copy;
3414                 if (folio_test_swapcache(folio))
3415                         folio_free_swap(folio);
3416                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3417                         folio_unlock(folio);
3418                         goto copy;
3419                 }
3420                 /*
3421                  * Ok, we've got the only folio reference from our mapping
3422                  * and the folio is locked, it's dark out, and we're wearing
3423                  * sunglasses. Hit it.
3424                  */
3425                 page_move_anon_rmap(vmf->page, vma);
3426                 folio_unlock(folio);
3427 reuse:
3428                 if (unlikely(unshare)) {
3429                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3430                         return 0;
3431                 }
3432                 wp_page_reuse(vmf);
3433                 return 0;
3434         }
3435 copy:
3436         /*
3437          * Ok, we need to copy. Oh, well..
3438          */
3439         if (folio)
3440                 folio_get(folio);
3441
3442         pte_unmap_unlock(vmf->pte, vmf->ptl);
3443 #ifdef CONFIG_KSM
3444         if (folio && folio_test_ksm(folio))
3445                 count_vm_event(COW_KSM);
3446 #endif
3447         return wp_page_copy(vmf);
3448 }
3449
3450 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3451                 unsigned long start_addr, unsigned long end_addr,
3452                 struct zap_details *details)
3453 {
3454         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3455 }
3456
3457 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3458                                             pgoff_t first_index,
3459                                             pgoff_t last_index,
3460                                             struct zap_details *details)
3461 {
3462         struct vm_area_struct *vma;
3463         pgoff_t vba, vea, zba, zea;
3464
3465         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3466                 vba = vma->vm_pgoff;
3467                 vea = vba + vma_pages(vma) - 1;
3468                 zba = max(first_index, vba);
3469                 zea = min(last_index, vea);
3470
3471                 unmap_mapping_range_vma(vma,
3472                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3473                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3474                                 details);
3475         }
3476 }
3477
3478 /**
3479  * unmap_mapping_folio() - Unmap single folio from processes.
3480  * @folio: The locked folio to be unmapped.
3481  *
3482  * Unmap this folio from any userspace process which still has it mmaped.
3483  * Typically, for efficiency, the range of nearby pages has already been
3484  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3485  * truncation or invalidation holds the lock on a folio, it may find that
3486  * the page has been remapped again: and then uses unmap_mapping_folio()
3487  * to unmap it finally.
3488  */
3489 void unmap_mapping_folio(struct folio *folio)
3490 {
3491         struct address_space *mapping = folio->mapping;
3492         struct zap_details details = { };
3493         pgoff_t first_index;
3494         pgoff_t last_index;
3495
3496         VM_BUG_ON(!folio_test_locked(folio));
3497
3498         first_index = folio->index;
3499         last_index = folio->index + folio_nr_pages(folio) - 1;
3500
3501         details.even_cows = false;
3502         details.single_folio = folio;
3503         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3504
3505         i_mmap_lock_read(mapping);
3506         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3507                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3508                                          last_index, &details);
3509         i_mmap_unlock_read(mapping);
3510 }
3511
3512 /**
3513  * unmap_mapping_pages() - Unmap pages from processes.
3514  * @mapping: The address space containing pages to be unmapped.
3515  * @start: Index of first page to be unmapped.
3516  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3517  * @even_cows: Whether to unmap even private COWed pages.
3518  *
3519  * Unmap the pages in this address space from any userspace process which
3520  * has them mmaped.  Generally, you want to remove COWed pages as well when
3521  * a file is being truncated, but not when invalidating pages from the page
3522  * cache.
3523  */
3524 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3525                 pgoff_t nr, bool even_cows)
3526 {
3527         struct zap_details details = { };
3528         pgoff_t first_index = start;
3529         pgoff_t last_index = start + nr - 1;
3530
3531         details.even_cows = even_cows;
3532         if (last_index < first_index)
3533                 last_index = ULONG_MAX;
3534
3535         i_mmap_lock_read(mapping);
3536         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3537                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3538                                          last_index, &details);
3539         i_mmap_unlock_read(mapping);
3540 }
3541 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3542
3543 /**
3544  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3545  * address_space corresponding to the specified byte range in the underlying
3546  * file.
3547  *
3548  * @mapping: the address space containing mmaps to be unmapped.
3549  * @holebegin: byte in first page to unmap, relative to the start of
3550  * the underlying file.  This will be rounded down to a PAGE_SIZE
3551  * boundary.  Note that this is different from truncate_pagecache(), which
3552  * must keep the partial page.  In contrast, we must get rid of
3553  * partial pages.
3554  * @holelen: size of prospective hole in bytes.  This will be rounded
3555  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3556  * end of the file.
3557  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3558  * but 0 when invalidating pagecache, don't throw away private data.
3559  */
3560 void unmap_mapping_range(struct address_space *mapping,
3561                 loff_t const holebegin, loff_t const holelen, int even_cows)
3562 {
3563         pgoff_t hba = holebegin >> PAGE_SHIFT;
3564         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3565
3566         /* Check for overflow. */
3567         if (sizeof(holelen) > sizeof(hlen)) {
3568                 long long holeend =
3569                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3570                 if (holeend & ~(long long)ULONG_MAX)
3571                         hlen = ULONG_MAX - hba + 1;
3572         }
3573
3574         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3575 }
3576 EXPORT_SYMBOL(unmap_mapping_range);
3577
3578 /*
3579  * Restore a potential device exclusive pte to a working pte entry
3580  */
3581 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3582 {
3583         struct folio *folio = page_folio(vmf->page);
3584         struct vm_area_struct *vma = vmf->vma;
3585         struct mmu_notifier_range range;
3586
3587         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3588                 return VM_FAULT_RETRY;
3589         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3590                                 vma->vm_mm, vmf->address & PAGE_MASK,
3591                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3592         mmu_notifier_invalidate_range_start(&range);
3593
3594         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3595                                 &vmf->ptl);
3596         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3597                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3598
3599         pte_unmap_unlock(vmf->pte, vmf->ptl);
3600         folio_unlock(folio);
3601
3602         mmu_notifier_invalidate_range_end(&range);
3603         return 0;
3604 }
3605
3606 static inline bool should_try_to_free_swap(struct folio *folio,
3607                                            struct vm_area_struct *vma,
3608                                            unsigned int fault_flags)
3609 {
3610         if (!folio_test_swapcache(folio))
3611                 return false;
3612         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3613             folio_test_mlocked(folio))
3614                 return true;
3615         /*
3616          * If we want to map a page that's in the swapcache writable, we
3617          * have to detect via the refcount if we're really the exclusive
3618          * user. Try freeing the swapcache to get rid of the swapcache
3619          * reference only in case it's likely that we'll be the exlusive user.
3620          */
3621         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3622                 folio_ref_count(folio) == 2;
3623 }
3624
3625 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3626 {
3627         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3628                                        vmf->address, &vmf->ptl);
3629         /*
3630          * Be careful so that we will only recover a special uffd-wp pte into a
3631          * none pte.  Otherwise it means the pte could have changed, so retry.
3632          */
3633         if (is_pte_marker(*vmf->pte))
3634                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3635         pte_unmap_unlock(vmf->pte, vmf->ptl);
3636         return 0;
3637 }
3638
3639 /*
3640  * This is actually a page-missing access, but with uffd-wp special pte
3641  * installed.  It means this pte was wr-protected before being unmapped.
3642  */
3643 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3644 {
3645         /*
3646          * Just in case there're leftover special ptes even after the region
3647          * got unregistered - we can simply clear them.  We can also do that
3648          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3649          * ranges, but it should be more efficient to be done lazily here.
3650          */
3651         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3652                 return pte_marker_clear(vmf);
3653
3654         /* do_fault() can handle pte markers too like none pte */
3655         return do_fault(vmf);
3656 }
3657
3658 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3659 {
3660         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3661         unsigned long marker = pte_marker_get(entry);
3662
3663         /*
3664          * PTE markers should never be empty.  If anything weird happened,
3665          * the best thing to do is to kill the process along with its mm.
3666          */
3667         if (WARN_ON_ONCE(!marker))
3668                 return VM_FAULT_SIGBUS;
3669
3670         /* Higher priority than uffd-wp when data corrupted */
3671         if (marker & PTE_MARKER_SWAPIN_ERROR)
3672                 return VM_FAULT_SIGBUS;
3673
3674         if (pte_marker_entry_uffd_wp(entry))
3675                 return pte_marker_handle_uffd_wp(vmf);
3676
3677         /* This is an unknown pte marker */
3678         return VM_FAULT_SIGBUS;
3679 }
3680
3681 /*
3682  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3683  * but allow concurrent faults), and pte mapped but not yet locked.
3684  * We return with pte unmapped and unlocked.
3685  *
3686  * We return with the mmap_lock locked or unlocked in the same cases
3687  * as does filemap_fault().
3688  */
3689 vm_fault_t do_swap_page(struct vm_fault *vmf)
3690 {
3691         struct vm_area_struct *vma = vmf->vma;
3692         struct folio *swapcache, *folio = NULL;
3693         struct page *page;
3694         struct swap_info_struct *si = NULL;
3695         rmap_t rmap_flags = RMAP_NONE;
3696         bool exclusive = false;
3697         swp_entry_t entry;
3698         pte_t pte;
3699         int locked;
3700         vm_fault_t ret = 0;
3701         void *shadow = NULL;
3702
3703         if (!pte_unmap_same(vmf))
3704                 goto out;
3705
3706         entry = pte_to_swp_entry(vmf->orig_pte);
3707         if (unlikely(non_swap_entry(entry))) {
3708                 if (is_migration_entry(entry)) {
3709                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3710                                              vmf->address);
3711                 } else if (is_device_exclusive_entry(entry)) {
3712                         vmf->page = pfn_swap_entry_to_page(entry);
3713                         ret = remove_device_exclusive_entry(vmf);
3714                 } else if (is_device_private_entry(entry)) {
3715                         vmf->page = pfn_swap_entry_to_page(entry);
3716                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3717                                         vmf->address, &vmf->ptl);
3718                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3719                                 spin_unlock(vmf->ptl);
3720                                 goto out;
3721                         }
3722
3723                         /*
3724                          * Get a page reference while we know the page can't be
3725                          * freed.
3726                          */
3727                         get_page(vmf->page);
3728                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3729                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3730                         put_page(vmf->page);
3731                 } else if (is_hwpoison_entry(entry)) {
3732                         ret = VM_FAULT_HWPOISON;
3733                 } else if (is_pte_marker_entry(entry)) {
3734                         ret = handle_pte_marker(vmf);
3735                 } else {
3736                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3737                         ret = VM_FAULT_SIGBUS;
3738                 }
3739                 goto out;
3740         }
3741
3742         /* Prevent swapoff from happening to us. */
3743         si = get_swap_device(entry);
3744         if (unlikely(!si))
3745                 goto out;
3746
3747         folio = swap_cache_get_folio(entry, vma, vmf->address);
3748         if (folio)
3749                 page = folio_file_page(folio, swp_offset(entry));
3750         swapcache = folio;
3751
3752         if (!folio) {
3753                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3754                     __swap_count(entry) == 1) {
3755                         /* skip swapcache */
3756                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3757                                                 vma, vmf->address, false);
3758                         page = &folio->page;
3759                         if (folio) {
3760                                 __folio_set_locked(folio);
3761                                 __folio_set_swapbacked(folio);
3762
3763                                 if (mem_cgroup_swapin_charge_folio(folio,
3764                                                         vma->vm_mm, GFP_KERNEL,
3765                                                         entry)) {
3766                                         ret = VM_FAULT_OOM;
3767                                         goto out_page;
3768                                 }
3769                                 mem_cgroup_swapin_uncharge_swap(entry);
3770
3771                                 shadow = get_shadow_from_swap_cache(entry);
3772                                 if (shadow)
3773                                         workingset_refault(folio, shadow);
3774
3775                                 folio_add_lru(folio);
3776
3777                                 /* To provide entry to swap_readpage() */
3778                                 folio_set_swap_entry(folio, entry);
3779                                 swap_readpage(page, true, NULL);
3780                                 folio->private = NULL;
3781                         }
3782                 } else {
3783                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3784                                                 vmf);
3785                         if (page)
3786                                 folio = page_folio(page);
3787                         swapcache = folio;
3788                 }
3789
3790                 if (!folio) {
3791                         /*
3792                          * Back out if somebody else faulted in this pte
3793                          * while we released the pte lock.
3794                          */
3795                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3796                                         vmf->address, &vmf->ptl);
3797                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3798                                 ret = VM_FAULT_OOM;
3799                         goto unlock;
3800                 }
3801
3802                 /* Had to read the page from swap area: Major fault */
3803                 ret = VM_FAULT_MAJOR;
3804                 count_vm_event(PGMAJFAULT);
3805                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3806         } else if (PageHWPoison(page)) {
3807                 /*
3808                  * hwpoisoned dirty swapcache pages are kept for killing
3809                  * owner processes (which may be unknown at hwpoison time)
3810                  */
3811                 ret = VM_FAULT_HWPOISON;
3812                 goto out_release;
3813         }
3814
3815         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3816
3817         if (!locked) {
3818                 ret |= VM_FAULT_RETRY;
3819                 goto out_release;
3820         }
3821
3822         if (swapcache) {
3823                 /*
3824                  * Make sure folio_free_swap() or swapoff did not release the
3825                  * swapcache from under us.  The page pin, and pte_same test
3826                  * below, are not enough to exclude that.  Even if it is still
3827                  * swapcache, we need to check that the page's swap has not
3828                  * changed.
3829                  */
3830                 if (unlikely(!folio_test_swapcache(folio) ||
3831                              page_private(page) != entry.val))
3832                         goto out_page;
3833
3834                 /*
3835                  * KSM sometimes has to copy on read faults, for example, if
3836                  * page->index of !PageKSM() pages would be nonlinear inside the
3837                  * anon VMA -- PageKSM() is lost on actual swapout.
3838                  */
3839                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3840                 if (unlikely(!page)) {
3841                         ret = VM_FAULT_OOM;
3842                         goto out_page;
3843                 }
3844                 folio = page_folio(page);
3845
3846                 /*
3847                  * If we want to map a page that's in the swapcache writable, we
3848                  * have to detect via the refcount if we're really the exclusive
3849                  * owner. Try removing the extra reference from the local LRU
3850                  * pagevecs if required.
3851                  */
3852                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3853                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3854                         lru_add_drain();
3855         }
3856
3857         cgroup_throttle_swaprate(page, GFP_KERNEL);
3858
3859         /*
3860          * Back out if somebody else already faulted in this pte.
3861          */
3862         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3863                         &vmf->ptl);
3864         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3865                 goto out_nomap;
3866
3867         if (unlikely(!folio_test_uptodate(folio))) {
3868                 ret = VM_FAULT_SIGBUS;
3869                 goto out_nomap;
3870         }
3871
3872         /*
3873          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3874          * must never point at an anonymous page in the swapcache that is
3875          * PG_anon_exclusive. Sanity check that this holds and especially, that
3876          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3877          * check after taking the PT lock and making sure that nobody
3878          * concurrently faulted in this page and set PG_anon_exclusive.
3879          */
3880         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3881         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3882
3883         /*
3884          * Check under PT lock (to protect against concurrent fork() sharing
3885          * the swap entry concurrently) for certainly exclusive pages.
3886          */
3887         if (!folio_test_ksm(folio)) {
3888                 /*
3889                  * Note that pte_swp_exclusive() == false for architectures
3890                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3891                  */
3892                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3893                 if (folio != swapcache) {
3894                         /*
3895                          * We have a fresh page that is not exposed to the
3896                          * swapcache -> certainly exclusive.
3897                          */
3898                         exclusive = true;
3899                 } else if (exclusive && folio_test_writeback(folio) &&
3900                           data_race(si->flags & SWP_STABLE_WRITES)) {
3901                         /*
3902                          * This is tricky: not all swap backends support
3903                          * concurrent page modifications while under writeback.
3904                          *
3905                          * So if we stumble over such a page in the swapcache
3906                          * we must not set the page exclusive, otherwise we can
3907                          * map it writable without further checks and modify it
3908                          * while still under writeback.
3909                          *
3910                          * For these problematic swap backends, simply drop the
3911                          * exclusive marker: this is perfectly fine as we start
3912                          * writeback only if we fully unmapped the page and
3913                          * there are no unexpected references on the page after
3914                          * unmapping succeeded. After fully unmapped, no
3915                          * further GUP references (FOLL_GET and FOLL_PIN) can
3916                          * appear, so dropping the exclusive marker and mapping
3917                          * it only R/O is fine.
3918                          */
3919                         exclusive = false;
3920                 }
3921         }
3922
3923         /*
3924          * Remove the swap entry and conditionally try to free up the swapcache.
3925          * We're already holding a reference on the page but haven't mapped it
3926          * yet.
3927          */
3928         swap_free(entry);
3929         if (should_try_to_free_swap(folio, vma, vmf->flags))
3930                 folio_free_swap(folio);
3931
3932         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3933         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3934         pte = mk_pte(page, vma->vm_page_prot);
3935
3936         /*
3937          * Same logic as in do_wp_page(); however, optimize for pages that are
3938          * certainly not shared either because we just allocated them without
3939          * exposing them to the swapcache or because the swap entry indicates
3940          * exclusivity.
3941          */
3942         if (!folio_test_ksm(folio) &&
3943             (exclusive || folio_ref_count(folio) == 1)) {
3944                 if (vmf->flags & FAULT_FLAG_WRITE) {
3945                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3946                         vmf->flags &= ~FAULT_FLAG_WRITE;
3947                 }
3948                 rmap_flags |= RMAP_EXCLUSIVE;
3949         }
3950         flush_icache_page(vma, page);
3951         if (pte_swp_soft_dirty(vmf->orig_pte))
3952                 pte = pte_mksoft_dirty(pte);
3953         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3954                 pte = pte_mkuffd_wp(pte);
3955                 pte = pte_wrprotect(pte);
3956         }
3957         vmf->orig_pte = pte;
3958
3959         /* ksm created a completely new copy */
3960         if (unlikely(folio != swapcache && swapcache)) {
3961                 page_add_new_anon_rmap(page, vma, vmf->address);
3962                 folio_add_lru_vma(folio, vma);
3963         } else {
3964                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3965         }
3966
3967         VM_BUG_ON(!folio_test_anon(folio) ||
3968                         (pte_write(pte) && !PageAnonExclusive(page)));
3969         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3970         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3971
3972         folio_unlock(folio);
3973         if (folio != swapcache && swapcache) {
3974                 /*
3975                  * Hold the lock to avoid the swap entry to be reused
3976                  * until we take the PT lock for the pte_same() check
3977                  * (to avoid false positives from pte_same). For
3978                  * further safety release the lock after the swap_free
3979                  * so that the swap count won't change under a
3980                  * parallel locked swapcache.
3981                  */
3982                 folio_unlock(swapcache);
3983                 folio_put(swapcache);
3984         }
3985
3986         if (vmf->flags & FAULT_FLAG_WRITE) {
3987                 ret |= do_wp_page(vmf);
3988                 if (ret & VM_FAULT_ERROR)
3989                         ret &= VM_FAULT_ERROR;
3990                 goto out;
3991         }
3992
3993         /* No need to invalidate - it was non-present before */
3994         update_mmu_cache(vma, vmf->address, vmf->pte);
3995 unlock:
3996         pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 out:
3998         if (si)
3999                 put_swap_device(si);
4000         return ret;
4001 out_nomap:
4002         pte_unmap_unlock(vmf->pte, vmf->ptl);
4003 out_page:
4004         folio_unlock(folio);
4005 out_release:
4006         folio_put(folio);
4007         if (folio != swapcache && swapcache) {
4008                 folio_unlock(swapcache);
4009                 folio_put(swapcache);
4010         }
4011         if (si)
4012                 put_swap_device(si);
4013         return ret;
4014 }
4015
4016 /*
4017  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4018  * but allow concurrent faults), and pte mapped but not yet locked.
4019  * We return with mmap_lock still held, but pte unmapped and unlocked.
4020  */
4021 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4022 {
4023         struct vm_area_struct *vma = vmf->vma;
4024         struct page *page;
4025         vm_fault_t ret = 0;
4026         pte_t entry;
4027
4028         /* File mapping without ->vm_ops ? */
4029         if (vma->vm_flags & VM_SHARED)
4030                 return VM_FAULT_SIGBUS;
4031
4032         /*
4033          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4034          * pte_offset_map() on pmds where a huge pmd might be created
4035          * from a different thread.
4036          *
4037          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4038          * parallel threads are excluded by other means.
4039          *
4040          * Here we only have mmap_read_lock(mm).
4041          */
4042         if (pte_alloc(vma->vm_mm, vmf->pmd))
4043                 return VM_FAULT_OOM;
4044
4045         /* See comment in handle_pte_fault() */
4046         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4047                 return 0;
4048
4049         /* Use the zero-page for reads */
4050         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4051                         !mm_forbids_zeropage(vma->vm_mm)) {
4052                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4053                                                 vma->vm_page_prot));
4054                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4055                                 vmf->address, &vmf->ptl);
4056                 if (!pte_none(*vmf->pte)) {
4057                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4058                         goto unlock;
4059                 }
4060                 ret = check_stable_address_space(vma->vm_mm);
4061                 if (ret)
4062                         goto unlock;
4063                 /* Deliver the page fault to userland, check inside PT lock */
4064                 if (userfaultfd_missing(vma)) {
4065                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4066                         return handle_userfault(vmf, VM_UFFD_MISSING);
4067                 }
4068                 goto setpte;
4069         }
4070
4071         /* Allocate our own private page. */
4072         if (unlikely(anon_vma_prepare(vma)))
4073                 goto oom;
4074         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4075         if (!page)
4076                 goto oom;
4077
4078         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4079                 goto oom_free_page;
4080         cgroup_throttle_swaprate(page, GFP_KERNEL);
4081
4082         /*
4083          * The memory barrier inside __SetPageUptodate makes sure that
4084          * preceding stores to the page contents become visible before
4085          * the set_pte_at() write.
4086          */
4087         __SetPageUptodate(page);
4088
4089         entry = mk_pte(page, vma->vm_page_prot);
4090         entry = pte_sw_mkyoung(entry);
4091         if (vma->vm_flags & VM_WRITE)
4092                 entry = pte_mkwrite(pte_mkdirty(entry));
4093
4094         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4095                         &vmf->ptl);
4096         if (!pte_none(*vmf->pte)) {
4097                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4098                 goto release;
4099         }
4100
4101         ret = check_stable_address_space(vma->vm_mm);
4102         if (ret)
4103                 goto release;
4104
4105         /* Deliver the page fault to userland, check inside PT lock */
4106         if (userfaultfd_missing(vma)) {
4107                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4108                 put_page(page);
4109                 return handle_userfault(vmf, VM_UFFD_MISSING);
4110         }
4111
4112         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4113         page_add_new_anon_rmap(page, vma, vmf->address);
4114         lru_cache_add_inactive_or_unevictable(page, vma);
4115 setpte:
4116         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4117
4118         /* No need to invalidate - it was non-present before */
4119         update_mmu_cache(vma, vmf->address, vmf->pte);
4120 unlock:
4121         pte_unmap_unlock(vmf->pte, vmf->ptl);
4122         return ret;
4123 release:
4124         put_page(page);
4125         goto unlock;
4126 oom_free_page:
4127         put_page(page);
4128 oom:
4129         return VM_FAULT_OOM;
4130 }
4131
4132 /*
4133  * The mmap_lock must have been held on entry, and may have been
4134  * released depending on flags and vma->vm_ops->fault() return value.
4135  * See filemap_fault() and __lock_page_retry().
4136  */
4137 static vm_fault_t __do_fault(struct vm_fault *vmf)
4138 {
4139         struct vm_area_struct *vma = vmf->vma;
4140         vm_fault_t ret;
4141
4142         /*
4143          * Preallocate pte before we take page_lock because this might lead to
4144          * deadlocks for memcg reclaim which waits for pages under writeback:
4145          *                              lock_page(A)
4146          *                              SetPageWriteback(A)
4147          *                              unlock_page(A)
4148          * lock_page(B)
4149          *                              lock_page(B)
4150          * pte_alloc_one
4151          *   shrink_page_list
4152          *     wait_on_page_writeback(A)
4153          *                              SetPageWriteback(B)
4154          *                              unlock_page(B)
4155          *                              # flush A, B to clear the writeback
4156          */
4157         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4158                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4159                 if (!vmf->prealloc_pte)
4160                         return VM_FAULT_OOM;
4161         }
4162
4163         ret = vma->vm_ops->fault(vmf);
4164         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4165                             VM_FAULT_DONE_COW)))
4166                 return ret;
4167
4168         if (unlikely(PageHWPoison(vmf->page))) {
4169                 struct page *page = vmf->page;
4170                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4171                 if (ret & VM_FAULT_LOCKED) {
4172                         if (page_mapped(page))
4173                                 unmap_mapping_pages(page_mapping(page),
4174                                                     page->index, 1, false);
4175                         /* Retry if a clean page was removed from the cache. */
4176                         if (invalidate_inode_page(page))
4177                                 poisonret = VM_FAULT_NOPAGE;
4178                         unlock_page(page);
4179                 }
4180                 put_page(page);
4181                 vmf->page = NULL;
4182                 return poisonret;
4183         }
4184
4185         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4186                 lock_page(vmf->page);
4187         else
4188                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4189
4190         return ret;
4191 }
4192
4193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4194 static void deposit_prealloc_pte(struct vm_fault *vmf)
4195 {
4196         struct vm_area_struct *vma = vmf->vma;
4197
4198         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4199         /*
4200          * We are going to consume the prealloc table,
4201          * count that as nr_ptes.
4202          */
4203         mm_inc_nr_ptes(vma->vm_mm);
4204         vmf->prealloc_pte = NULL;
4205 }
4206
4207 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4208 {
4209         struct vm_area_struct *vma = vmf->vma;
4210         bool write = vmf->flags & FAULT_FLAG_WRITE;
4211         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4212         pmd_t entry;
4213         int i;
4214         vm_fault_t ret = VM_FAULT_FALLBACK;
4215
4216         if (!transhuge_vma_suitable(vma, haddr))
4217                 return ret;
4218
4219         page = compound_head(page);
4220         if (compound_order(page) != HPAGE_PMD_ORDER)
4221                 return ret;
4222
4223         /*
4224          * Just backoff if any subpage of a THP is corrupted otherwise
4225          * the corrupted page may mapped by PMD silently to escape the
4226          * check.  This kind of THP just can be PTE mapped.  Access to
4227          * the corrupted subpage should trigger SIGBUS as expected.
4228          */
4229         if (unlikely(PageHasHWPoisoned(page)))
4230                 return ret;
4231
4232         /*
4233          * Archs like ppc64 need additional space to store information
4234          * related to pte entry. Use the preallocated table for that.
4235          */
4236         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4237                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4238                 if (!vmf->prealloc_pte)
4239                         return VM_FAULT_OOM;
4240         }
4241
4242         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4243         if (unlikely(!pmd_none(*vmf->pmd)))
4244                 goto out;
4245
4246         for (i = 0; i < HPAGE_PMD_NR; i++)
4247                 flush_icache_page(vma, page + i);
4248
4249         entry = mk_huge_pmd(page, vma->vm_page_prot);
4250         if (write)
4251                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4252
4253         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4254         page_add_file_rmap(page, vma, true);
4255
4256         /*
4257          * deposit and withdraw with pmd lock held
4258          */
4259         if (arch_needs_pgtable_deposit())
4260                 deposit_prealloc_pte(vmf);
4261
4262         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4263
4264         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4265
4266         /* fault is handled */
4267         ret = 0;
4268         count_vm_event(THP_FILE_MAPPED);
4269 out:
4270         spin_unlock(vmf->ptl);
4271         return ret;
4272 }
4273 #else
4274 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4275 {
4276         return VM_FAULT_FALLBACK;
4277 }
4278 #endif
4279
4280 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4281 {
4282         struct vm_area_struct *vma = vmf->vma;
4283         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4284         bool write = vmf->flags & FAULT_FLAG_WRITE;
4285         bool prefault = vmf->address != addr;
4286         pte_t entry;
4287
4288         flush_icache_page(vma, page);
4289         entry = mk_pte(page, vma->vm_page_prot);
4290
4291         if (prefault && arch_wants_old_prefaulted_pte())
4292                 entry = pte_mkold(entry);
4293         else
4294                 entry = pte_sw_mkyoung(entry);
4295
4296         if (write)
4297                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4298         if (unlikely(uffd_wp))
4299                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4300         /* copy-on-write page */
4301         if (write && !(vma->vm_flags & VM_SHARED)) {
4302                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4303                 page_add_new_anon_rmap(page, vma, addr);
4304                 lru_cache_add_inactive_or_unevictable(page, vma);
4305         } else {
4306                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4307                 page_add_file_rmap(page, vma, false);
4308         }
4309         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4310 }
4311
4312 static bool vmf_pte_changed(struct vm_fault *vmf)
4313 {
4314         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4315                 return !pte_same(*vmf->pte, vmf->orig_pte);
4316
4317         return !pte_none(*vmf->pte);
4318 }
4319
4320 /**
4321  * finish_fault - finish page fault once we have prepared the page to fault
4322  *
4323  * @vmf: structure describing the fault
4324  *
4325  * This function handles all that is needed to finish a page fault once the
4326  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4327  * given page, adds reverse page mapping, handles memcg charges and LRU
4328  * addition.
4329  *
4330  * The function expects the page to be locked and on success it consumes a
4331  * reference of a page being mapped (for the PTE which maps it).
4332  *
4333  * Return: %0 on success, %VM_FAULT_ code in case of error.
4334  */
4335 vm_fault_t finish_fault(struct vm_fault *vmf)
4336 {
4337         struct vm_area_struct *vma = vmf->vma;
4338         struct page *page;
4339         vm_fault_t ret;
4340
4341         /* Did we COW the page? */
4342         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4343                 page = vmf->cow_page;
4344         else
4345                 page = vmf->page;
4346
4347         /*
4348          * check even for read faults because we might have lost our CoWed
4349          * page
4350          */
4351         if (!(vma->vm_flags & VM_SHARED)) {
4352                 ret = check_stable_address_space(vma->vm_mm);
4353                 if (ret)
4354                         return ret;
4355         }
4356
4357         if (pmd_none(*vmf->pmd)) {
4358                 if (PageTransCompound(page)) {
4359                         ret = do_set_pmd(vmf, page);
4360                         if (ret != VM_FAULT_FALLBACK)
4361                                 return ret;
4362                 }
4363
4364                 if (vmf->prealloc_pte)
4365                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4366                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4367                         return VM_FAULT_OOM;
4368         }
4369
4370         /*
4371          * See comment in handle_pte_fault() for how this scenario happens, we
4372          * need to return NOPAGE so that we drop this page.
4373          */
4374         if (pmd_devmap_trans_unstable(vmf->pmd))
4375                 return VM_FAULT_NOPAGE;
4376
4377         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4378                                       vmf->address, &vmf->ptl);
4379
4380         /* Re-check under ptl */
4381         if (likely(!vmf_pte_changed(vmf))) {
4382                 do_set_pte(vmf, page, vmf->address);
4383
4384                 /* no need to invalidate: a not-present page won't be cached */
4385                 update_mmu_cache(vma, vmf->address, vmf->pte);
4386
4387                 ret = 0;
4388         } else {
4389                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4390                 ret = VM_FAULT_NOPAGE;
4391         }
4392
4393         pte_unmap_unlock(vmf->pte, vmf->ptl);
4394         return ret;
4395 }
4396
4397 static unsigned long fault_around_bytes __read_mostly =
4398         rounddown_pow_of_two(65536);
4399
4400 #ifdef CONFIG_DEBUG_FS
4401 static int fault_around_bytes_get(void *data, u64 *val)
4402 {
4403         *val = fault_around_bytes;
4404         return 0;
4405 }
4406
4407 /*
4408  * fault_around_bytes must be rounded down to the nearest page order as it's
4409  * what do_fault_around() expects to see.
4410  */
4411 static int fault_around_bytes_set(void *data, u64 val)
4412 {
4413         if (val / PAGE_SIZE > PTRS_PER_PTE)
4414                 return -EINVAL;
4415         if (val > PAGE_SIZE)
4416                 fault_around_bytes = rounddown_pow_of_two(val);
4417         else
4418                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4419         return 0;
4420 }
4421 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4422                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4423
4424 static int __init fault_around_debugfs(void)
4425 {
4426         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4427                                    &fault_around_bytes_fops);
4428         return 0;
4429 }
4430 late_initcall(fault_around_debugfs);
4431 #endif
4432
4433 /*
4434  * do_fault_around() tries to map few pages around the fault address. The hope
4435  * is that the pages will be needed soon and this will lower the number of
4436  * faults to handle.
4437  *
4438  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4439  * not ready to be mapped: not up-to-date, locked, etc.
4440  *
4441  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442  * only once.
4443  *
4444  * fault_around_bytes defines how many bytes we'll try to map.
4445  * do_fault_around() expects it to be set to a power of two less than or equal
4446  * to PTRS_PER_PTE.
4447  *
4448  * The virtual address of the area that we map is naturally aligned to
4449  * fault_around_bytes rounded down to the machine page size
4450  * (and therefore to page order).  This way it's easier to guarantee
4451  * that we don't cross page table boundaries.
4452  */
4453 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4454 {
4455         unsigned long address = vmf->address, nr_pages, mask;
4456         pgoff_t start_pgoff = vmf->pgoff;
4457         pgoff_t end_pgoff;
4458         int off;
4459
4460         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4461         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462
4463         address = max(address & mask, vmf->vma->vm_start);
4464         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4465         start_pgoff -= off;
4466
4467         /*
4468          *  end_pgoff is either the end of the page table, the end of
4469          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4470          */
4471         end_pgoff = start_pgoff -
4472                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4473                 PTRS_PER_PTE - 1;
4474         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4475                         start_pgoff + nr_pages - 1);
4476
4477         if (pmd_none(*vmf->pmd)) {
4478                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4479                 if (!vmf->prealloc_pte)
4480                         return VM_FAULT_OOM;
4481         }
4482
4483         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4484 }
4485
4486 /* Return true if we should do read fault-around, false otherwise */
4487 static inline bool should_fault_around(struct vm_fault *vmf)
4488 {
4489         /* No ->map_pages?  No way to fault around... */
4490         if (!vmf->vma->vm_ops->map_pages)
4491                 return false;
4492
4493         if (uffd_disable_fault_around(vmf->vma))
4494                 return false;
4495
4496         return fault_around_bytes >> PAGE_SHIFT > 1;
4497 }
4498
4499 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4500 {
4501         vm_fault_t ret = 0;
4502
4503         /*
4504          * Let's call ->map_pages() first and use ->fault() as fallback
4505          * if page by the offset is not ready to be mapped (cold cache or
4506          * something).
4507          */
4508         if (should_fault_around(vmf)) {
4509                 ret = do_fault_around(vmf);
4510                 if (ret)
4511                         return ret;
4512         }
4513
4514         ret = __do_fault(vmf);
4515         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516                 return ret;
4517
4518         ret |= finish_fault(vmf);
4519         unlock_page(vmf->page);
4520         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521                 put_page(vmf->page);
4522         return ret;
4523 }
4524
4525 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4526 {
4527         struct vm_area_struct *vma = vmf->vma;
4528         vm_fault_t ret;
4529
4530         if (unlikely(anon_vma_prepare(vma)))
4531                 return VM_FAULT_OOM;
4532
4533         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534         if (!vmf->cow_page)
4535                 return VM_FAULT_OOM;
4536
4537         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538                                 GFP_KERNEL)) {
4539                 put_page(vmf->cow_page);
4540                 return VM_FAULT_OOM;
4541         }
4542         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4543
4544         ret = __do_fault(vmf);
4545         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546                 goto uncharge_out;
4547         if (ret & VM_FAULT_DONE_COW)
4548                 return ret;
4549
4550         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4551         __SetPageUptodate(vmf->cow_page);
4552
4553         ret |= finish_fault(vmf);
4554         unlock_page(vmf->page);
4555         put_page(vmf->page);
4556         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557                 goto uncharge_out;
4558         return ret;
4559 uncharge_out:
4560         put_page(vmf->cow_page);
4561         return ret;
4562 }
4563
4564 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4565 {
4566         struct vm_area_struct *vma = vmf->vma;
4567         vm_fault_t ret, tmp;
4568
4569         ret = __do_fault(vmf);
4570         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571                 return ret;
4572
4573         /*
4574          * Check if the backing address space wants to know that the page is
4575          * about to become writable
4576          */
4577         if (vma->vm_ops->page_mkwrite) {
4578                 unlock_page(vmf->page);
4579                 tmp = do_page_mkwrite(vmf);
4580                 if (unlikely(!tmp ||
4581                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4582                         put_page(vmf->page);
4583                         return tmp;
4584                 }
4585         }
4586
4587         ret |= finish_fault(vmf);
4588         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589                                         VM_FAULT_RETRY))) {
4590                 unlock_page(vmf->page);
4591                 put_page(vmf->page);
4592                 return ret;
4593         }
4594
4595         ret |= fault_dirty_shared_page(vmf);
4596         return ret;
4597 }
4598
4599 /*
4600  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4601  * but allow concurrent faults).
4602  * The mmap_lock may have been released depending on flags and our
4603  * return value.  See filemap_fault() and __folio_lock_or_retry().
4604  * If mmap_lock is released, vma may become invalid (for example
4605  * by other thread calling munmap()).
4606  */
4607 static vm_fault_t do_fault(struct vm_fault *vmf)
4608 {
4609         struct vm_area_struct *vma = vmf->vma;
4610         struct mm_struct *vm_mm = vma->vm_mm;
4611         vm_fault_t ret;
4612
4613         /*
4614          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615          */
4616         if (!vma->vm_ops->fault) {
4617                 /*
4618                  * If we find a migration pmd entry or a none pmd entry, which
4619                  * should never happen, return SIGBUS
4620                  */
4621                 if (unlikely(!pmd_present(*vmf->pmd)))
4622                         ret = VM_FAULT_SIGBUS;
4623                 else {
4624                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625                                                        vmf->pmd,
4626                                                        vmf->address,
4627                                                        &vmf->ptl);
4628                         /*
4629                          * Make sure this is not a temporary clearing of pte
4630                          * by holding ptl and checking again. A R/M/W update
4631                          * of pte involves: take ptl, clearing the pte so that
4632                          * we don't have concurrent modification by hardware
4633                          * followed by an update.
4634                          */
4635                         if (unlikely(pte_none(*vmf->pte)))
4636                                 ret = VM_FAULT_SIGBUS;
4637                         else
4638                                 ret = VM_FAULT_NOPAGE;
4639
4640                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4641                 }
4642         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4643                 ret = do_read_fault(vmf);
4644         else if (!(vma->vm_flags & VM_SHARED))
4645                 ret = do_cow_fault(vmf);
4646         else
4647                 ret = do_shared_fault(vmf);
4648
4649         /* preallocated pagetable is unused: free it */
4650         if (vmf->prealloc_pte) {
4651                 pte_free(vm_mm, vmf->prealloc_pte);
4652                 vmf->prealloc_pte = NULL;
4653         }
4654         return ret;
4655 }
4656
4657 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658                       unsigned long addr, int page_nid, int *flags)
4659 {
4660         get_page(page);
4661
4662         count_vm_numa_event(NUMA_HINT_FAULTS);
4663         if (page_nid == numa_node_id()) {
4664                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4665                 *flags |= TNF_FAULT_LOCAL;
4666         }
4667
4668         return mpol_misplaced(page, vma, addr);
4669 }
4670
4671 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4672 {
4673         struct vm_area_struct *vma = vmf->vma;
4674         struct page *page = NULL;
4675         int page_nid = NUMA_NO_NODE;
4676         bool writable = false;
4677         int last_cpupid;
4678         int target_nid;
4679         pte_t pte, old_pte;
4680         int flags = 0;
4681
4682         /*
4683          * The "pte" at this point cannot be used safely without
4684          * validation through pte_unmap_same(). It's of NUMA type but
4685          * the pfn may be screwed if the read is non atomic.
4686          */
4687         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688         spin_lock(vmf->ptl);
4689         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4690                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4691                 goto out;
4692         }
4693
4694         /* Get the normal PTE  */
4695         old_pte = ptep_get(vmf->pte);
4696         pte = pte_modify(old_pte, vma->vm_page_prot);
4697
4698         /*
4699          * Detect now whether the PTE could be writable; this information
4700          * is only valid while holding the PT lock.
4701          */
4702         writable = pte_write(pte);
4703         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4704             can_change_pte_writable(vma, vmf->address, pte))
4705                 writable = true;
4706
4707         page = vm_normal_page(vma, vmf->address, pte);
4708         if (!page || is_zone_device_page(page))
4709                 goto out_map;
4710
4711         /* TODO: handle PTE-mapped THP */
4712         if (PageCompound(page))
4713                 goto out_map;
4714
4715         /*
4716          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4717          * much anyway since they can be in shared cache state. This misses
4718          * the case where a mapping is writable but the process never writes
4719          * to it but pte_write gets cleared during protection updates and
4720          * pte_dirty has unpredictable behaviour between PTE scan updates,
4721          * background writeback, dirty balancing and application behaviour.
4722          */
4723         if (!writable)
4724                 flags |= TNF_NO_GROUP;
4725
4726         /*
4727          * Flag if the page is shared between multiple address spaces. This
4728          * is later used when determining whether to group tasks together
4729          */
4730         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4731                 flags |= TNF_SHARED;
4732
4733         page_nid = page_to_nid(page);
4734         /*
4735          * For memory tiering mode, cpupid of slow memory page is used
4736          * to record page access time.  So use default value.
4737          */
4738         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4739             !node_is_toptier(page_nid))
4740                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4741         else
4742                 last_cpupid = page_cpupid_last(page);
4743         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4744                         &flags);
4745         if (target_nid == NUMA_NO_NODE) {
4746                 put_page(page);
4747                 goto out_map;
4748         }
4749         pte_unmap_unlock(vmf->pte, vmf->ptl);
4750         writable = false;
4751
4752         /* Migrate to the requested node */
4753         if (migrate_misplaced_page(page, vma, target_nid)) {
4754                 page_nid = target_nid;
4755                 flags |= TNF_MIGRATED;
4756         } else {
4757                 flags |= TNF_MIGRATE_FAIL;
4758                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4759                 spin_lock(vmf->ptl);
4760                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4761                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4762                         goto out;
4763                 }
4764                 goto out_map;
4765         }
4766
4767 out:
4768         if (page_nid != NUMA_NO_NODE)
4769                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4770         return 0;
4771 out_map:
4772         /*
4773          * Make it present again, depending on how arch implements
4774          * non-accessible ptes, some can allow access by kernel mode.
4775          */
4776         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4777         pte = pte_modify(old_pte, vma->vm_page_prot);
4778         pte = pte_mkyoung(pte);
4779         if (writable)
4780                 pte = pte_mkwrite(pte);
4781         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4782         update_mmu_cache(vma, vmf->address, vmf->pte);
4783         pte_unmap_unlock(vmf->pte, vmf->ptl);
4784         goto out;
4785 }
4786
4787 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4788 {
4789         if (vma_is_anonymous(vmf->vma))
4790                 return do_huge_pmd_anonymous_page(vmf);
4791         if (vmf->vma->vm_ops->huge_fault)
4792                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4793         return VM_FAULT_FALLBACK;
4794 }
4795
4796 /* `inline' is required to avoid gcc 4.1.2 build error */
4797 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4798 {
4799         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4800         vm_fault_t ret;
4801
4802         if (vma_is_anonymous(vmf->vma)) {
4803                 if (likely(!unshare) &&
4804                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4805                         return handle_userfault(vmf, VM_UFFD_WP);
4806                 return do_huge_pmd_wp_page(vmf);
4807         }
4808
4809         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4810                 if (vmf->vma->vm_ops->huge_fault) {
4811                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4812                         if (!(ret & VM_FAULT_FALLBACK))
4813                                 return ret;
4814                 }
4815         }
4816
4817         /* COW or write-notify handled on pte level: split pmd. */
4818         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4819
4820         return VM_FAULT_FALLBACK;
4821 }
4822
4823 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4824 {
4825 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4826         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4827         /* No support for anonymous transparent PUD pages yet */
4828         if (vma_is_anonymous(vmf->vma))
4829                 return VM_FAULT_FALLBACK;
4830         if (vmf->vma->vm_ops->huge_fault)
4831                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4833         return VM_FAULT_FALLBACK;
4834 }
4835
4836 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4837 {
4838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4839         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4840         vm_fault_t ret;
4841
4842         /* No support for anonymous transparent PUD pages yet */
4843         if (vma_is_anonymous(vmf->vma))
4844                 goto split;
4845         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4846                 if (vmf->vma->vm_ops->huge_fault) {
4847                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4848                         if (!(ret & VM_FAULT_FALLBACK))
4849                                 return ret;
4850                 }
4851         }
4852 split:
4853         /* COW or write-notify not handled on PUD level: split pud.*/
4854         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4856         return VM_FAULT_FALLBACK;
4857 }
4858
4859 /*
4860  * These routines also need to handle stuff like marking pages dirty
4861  * and/or accessed for architectures that don't do it in hardware (most
4862  * RISC architectures).  The early dirtying is also good on the i386.
4863  *
4864  * There is also a hook called "update_mmu_cache()" that architectures
4865  * with external mmu caches can use to update those (ie the Sparc or
4866  * PowerPC hashed page tables that act as extended TLBs).
4867  *
4868  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4869  * concurrent faults).
4870  *
4871  * The mmap_lock may have been released depending on flags and our return value.
4872  * See filemap_fault() and __folio_lock_or_retry().
4873  */
4874 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4875 {
4876         pte_t entry;
4877
4878         if (unlikely(pmd_none(*vmf->pmd))) {
4879                 /*
4880                  * Leave __pte_alloc() until later: because vm_ops->fault may
4881                  * want to allocate huge page, and if we expose page table
4882                  * for an instant, it will be difficult to retract from
4883                  * concurrent faults and from rmap lookups.
4884                  */
4885                 vmf->pte = NULL;
4886                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4887         } else {
4888                 /*
4889                  * If a huge pmd materialized under us just retry later.  Use
4890                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4891                  * of pmd_trans_huge() to ensure the pmd didn't become
4892                  * pmd_trans_huge under us and then back to pmd_none, as a
4893                  * result of MADV_DONTNEED running immediately after a huge pmd
4894                  * fault in a different thread of this mm, in turn leading to a
4895                  * misleading pmd_trans_huge() retval. All we have to ensure is
4896                  * that it is a regular pmd that we can walk with
4897                  * pte_offset_map() and we can do that through an atomic read
4898                  * in C, which is what pmd_trans_unstable() provides.
4899                  */
4900                 if (pmd_devmap_trans_unstable(vmf->pmd))
4901                         return 0;
4902                 /*
4903                  * A regular pmd is established and it can't morph into a huge
4904                  * pmd from under us anymore at this point because we hold the
4905                  * mmap_lock read mode and khugepaged takes it in write mode.
4906                  * So now it's safe to run pte_offset_map().
4907                  */
4908                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4909                 vmf->orig_pte = *vmf->pte;
4910                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4911
4912                 /*
4913                  * some architectures can have larger ptes than wordsize,
4914                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4915                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4916                  * accesses.  The code below just needs a consistent view
4917                  * for the ifs and we later double check anyway with the
4918                  * ptl lock held. So here a barrier will do.
4919                  */
4920                 barrier();
4921                 if (pte_none(vmf->orig_pte)) {
4922                         pte_unmap(vmf->pte);
4923                         vmf->pte = NULL;
4924                 }
4925         }
4926
4927         if (!vmf->pte) {
4928                 if (vma_is_anonymous(vmf->vma))
4929                         return do_anonymous_page(vmf);
4930                 else
4931                         return do_fault(vmf);
4932         }
4933
4934         if (!pte_present(vmf->orig_pte))
4935                 return do_swap_page(vmf);
4936
4937         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4938                 return do_numa_page(vmf);
4939
4940         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4941         spin_lock(vmf->ptl);
4942         entry = vmf->orig_pte;
4943         if (unlikely(!pte_same(*vmf->pte, entry))) {
4944                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4945                 goto unlock;
4946         }
4947         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4948                 if (!pte_write(entry))
4949                         return do_wp_page(vmf);
4950                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4951                         entry = pte_mkdirty(entry);
4952         }
4953         entry = pte_mkyoung(entry);
4954         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4955                                 vmf->flags & FAULT_FLAG_WRITE)) {
4956                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4957         } else {
4958                 /* Skip spurious TLB flush for retried page fault */
4959                 if (vmf->flags & FAULT_FLAG_TRIED)
4960                         goto unlock;
4961                 /*
4962                  * This is needed only for protection faults but the arch code
4963                  * is not yet telling us if this is a protection fault or not.
4964                  * This still avoids useless tlb flushes for .text page faults
4965                  * with threads.
4966                  */
4967                 if (vmf->flags & FAULT_FLAG_WRITE)
4968                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4969         }
4970 unlock:
4971         pte_unmap_unlock(vmf->pte, vmf->ptl);
4972         return 0;
4973 }
4974
4975 /*
4976  * By the time we get here, we already hold the mm semaphore
4977  *
4978  * The mmap_lock may have been released depending on flags and our
4979  * return value.  See filemap_fault() and __folio_lock_or_retry().
4980  */
4981 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4982                 unsigned long address, unsigned int flags)
4983 {
4984         struct vm_fault vmf = {
4985                 .vma = vma,
4986                 .address = address & PAGE_MASK,
4987                 .real_address = address,
4988                 .flags = flags,
4989                 .pgoff = linear_page_index(vma, address),
4990                 .gfp_mask = __get_fault_gfp_mask(vma),
4991         };
4992         struct mm_struct *mm = vma->vm_mm;
4993         unsigned long vm_flags = vma->vm_flags;
4994         pgd_t *pgd;
4995         p4d_t *p4d;
4996         vm_fault_t ret;
4997
4998         pgd = pgd_offset(mm, address);
4999         p4d = p4d_alloc(mm, pgd, address);
5000         if (!p4d)
5001                 return VM_FAULT_OOM;
5002
5003         vmf.pud = pud_alloc(mm, p4d, address);
5004         if (!vmf.pud)
5005                 return VM_FAULT_OOM;
5006 retry_pud:
5007         if (pud_none(*vmf.pud) &&
5008             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5009                 ret = create_huge_pud(&vmf);
5010                 if (!(ret & VM_FAULT_FALLBACK))
5011                         return ret;
5012         } else {
5013                 pud_t orig_pud = *vmf.pud;
5014
5015                 barrier();
5016                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5017
5018                         /*
5019                          * TODO once we support anonymous PUDs: NUMA case and
5020                          * FAULT_FLAG_UNSHARE handling.
5021                          */
5022                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5023                                 ret = wp_huge_pud(&vmf, orig_pud);
5024                                 if (!(ret & VM_FAULT_FALLBACK))
5025                                         return ret;
5026                         } else {
5027                                 huge_pud_set_accessed(&vmf, orig_pud);
5028                                 return 0;
5029                         }
5030                 }
5031         }
5032
5033         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5034         if (!vmf.pmd)
5035                 return VM_FAULT_OOM;
5036
5037         /* Huge pud page fault raced with pmd_alloc? */
5038         if (pud_trans_unstable(vmf.pud))
5039                 goto retry_pud;
5040
5041         if (pmd_none(*vmf.pmd) &&
5042             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5043                 ret = create_huge_pmd(&vmf);
5044                 if (!(ret & VM_FAULT_FALLBACK))
5045                         return ret;
5046         } else {
5047                 vmf.orig_pmd = *vmf.pmd;
5048
5049                 barrier();
5050                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5051                         VM_BUG_ON(thp_migration_supported() &&
5052                                           !is_pmd_migration_entry(vmf.orig_pmd));
5053                         if (is_pmd_migration_entry(vmf.orig_pmd))
5054                                 pmd_migration_entry_wait(mm, vmf.pmd);
5055                         return 0;
5056                 }
5057                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5058                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5059                                 return do_huge_pmd_numa_page(&vmf);
5060
5061                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5062                             !pmd_write(vmf.orig_pmd)) {
5063                                 ret = wp_huge_pmd(&vmf);
5064                                 if (!(ret & VM_FAULT_FALLBACK))
5065                                         return ret;
5066                         } else {
5067                                 huge_pmd_set_accessed(&vmf);
5068                                 return 0;
5069                         }
5070                 }
5071         }
5072
5073         return handle_pte_fault(&vmf);
5074 }
5075
5076 /**
5077  * mm_account_fault - Do page fault accounting
5078  *
5079  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5080  *        of perf event counters, but we'll still do the per-task accounting to
5081  *        the task who triggered this page fault.
5082  * @address: the faulted address.
5083  * @flags: the fault flags.
5084  * @ret: the fault retcode.
5085  *
5086  * This will take care of most of the page fault accounting.  Meanwhile, it
5087  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5088  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5089  * still be in per-arch page fault handlers at the entry of page fault.
5090  */
5091 static inline void mm_account_fault(struct pt_regs *regs,
5092                                     unsigned long address, unsigned int flags,
5093                                     vm_fault_t ret)
5094 {
5095         bool major;
5096
5097         /*
5098          * We don't do accounting for some specific faults:
5099          *
5100          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5101          *   includes arch_vma_access_permitted() failing before reaching here.
5102          *   So this is not a "this many hardware page faults" counter.  We
5103          *   should use the hw profiling for that.
5104          *
5105          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5106          *   once they're completed.
5107          */
5108         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5109                 return;
5110
5111         /*
5112          * We define the fault as a major fault when the final successful fault
5113          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5114          * handle it immediately previously).
5115          */
5116         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5117
5118         if (major)
5119                 current->maj_flt++;
5120         else
5121                 current->min_flt++;
5122
5123         /*
5124          * If the fault is done for GUP, regs will be NULL.  We only do the
5125          * accounting for the per thread fault counters who triggered the
5126          * fault, and we skip the perf event updates.
5127          */
5128         if (!regs)
5129                 return;
5130
5131         if (major)
5132                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5133         else
5134                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5135 }
5136
5137 #ifdef CONFIG_LRU_GEN
5138 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5139 {
5140         /* the LRU algorithm doesn't apply to sequential or random reads */
5141         current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5142 }
5143
5144 static void lru_gen_exit_fault(void)
5145 {
5146         current->in_lru_fault = false;
5147 }
5148 #else
5149 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5150 {
5151 }
5152
5153 static void lru_gen_exit_fault(void)
5154 {
5155 }
5156 #endif /* CONFIG_LRU_GEN */
5157
5158 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5159                                        unsigned int *flags)
5160 {
5161         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5162                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5163                         return VM_FAULT_SIGSEGV;
5164                 /*
5165                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5166                  * just treat it like an ordinary read-fault otherwise.
5167                  */
5168                 if (!is_cow_mapping(vma->vm_flags))
5169                         *flags &= ~FAULT_FLAG_UNSHARE;
5170         } else if (*flags & FAULT_FLAG_WRITE) {
5171                 /* Write faults on read-only mappings are impossible ... */
5172                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5173                         return VM_FAULT_SIGSEGV;
5174                 /* ... and FOLL_FORCE only applies to COW mappings. */
5175                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5176                                  !is_cow_mapping(vma->vm_flags)))
5177                         return VM_FAULT_SIGSEGV;
5178         }
5179         return 0;
5180 }
5181
5182 /*
5183  * By the time we get here, we already hold the mm semaphore
5184  *
5185  * The mmap_lock may have been released depending on flags and our
5186  * return value.  See filemap_fault() and __folio_lock_or_retry().
5187  */
5188 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5189                            unsigned int flags, struct pt_regs *regs)
5190 {
5191         vm_fault_t ret;
5192
5193         __set_current_state(TASK_RUNNING);
5194
5195         count_vm_event(PGFAULT);
5196         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5197
5198         ret = sanitize_fault_flags(vma, &flags);
5199         if (ret)
5200                 return ret;
5201
5202         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5203                                             flags & FAULT_FLAG_INSTRUCTION,
5204                                             flags & FAULT_FLAG_REMOTE))
5205                 return VM_FAULT_SIGSEGV;
5206
5207         /*
5208          * Enable the memcg OOM handling for faults triggered in user
5209          * space.  Kernel faults are handled more gracefully.
5210          */
5211         if (flags & FAULT_FLAG_USER)
5212                 mem_cgroup_enter_user_fault();
5213
5214         lru_gen_enter_fault(vma);
5215
5216         if (unlikely(is_vm_hugetlb_page(vma)))
5217                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5218         else
5219                 ret = __handle_mm_fault(vma, address, flags);
5220
5221         lru_gen_exit_fault();
5222
5223         if (flags & FAULT_FLAG_USER) {
5224                 mem_cgroup_exit_user_fault();
5225                 /*
5226                  * The task may have entered a memcg OOM situation but
5227                  * if the allocation error was handled gracefully (no
5228                  * VM_FAULT_OOM), there is no need to kill anything.
5229                  * Just clean up the OOM state peacefully.
5230                  */
5231                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5232                         mem_cgroup_oom_synchronize(false);
5233         }
5234
5235         mm_account_fault(regs, address, flags, ret);
5236
5237         return ret;
5238 }
5239 EXPORT_SYMBOL_GPL(handle_mm_fault);
5240
5241 #ifndef __PAGETABLE_P4D_FOLDED
5242 /*
5243  * Allocate p4d page table.
5244  * We've already handled the fast-path in-line.
5245  */
5246 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5247 {
5248         p4d_t *new = p4d_alloc_one(mm, address);
5249         if (!new)
5250                 return -ENOMEM;
5251
5252         spin_lock(&mm->page_table_lock);
5253         if (pgd_present(*pgd)) {        /* Another has populated it */
5254                 p4d_free(mm, new);
5255         } else {
5256                 smp_wmb(); /* See comment in pmd_install() */
5257                 pgd_populate(mm, pgd, new);
5258         }
5259         spin_unlock(&mm->page_table_lock);
5260         return 0;
5261 }
5262 #endif /* __PAGETABLE_P4D_FOLDED */
5263
5264 #ifndef __PAGETABLE_PUD_FOLDED
5265 /*
5266  * Allocate page upper directory.
5267  * We've already handled the fast-path in-line.
5268  */
5269 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5270 {
5271         pud_t *new = pud_alloc_one(mm, address);
5272         if (!new)
5273                 return -ENOMEM;
5274
5275         spin_lock(&mm->page_table_lock);
5276         if (!p4d_present(*p4d)) {
5277                 mm_inc_nr_puds(mm);
5278                 smp_wmb(); /* See comment in pmd_install() */
5279                 p4d_populate(mm, p4d, new);
5280         } else  /* Another has populated it */
5281                 pud_free(mm, new);
5282         spin_unlock(&mm->page_table_lock);
5283         return 0;
5284 }
5285 #endif /* __PAGETABLE_PUD_FOLDED */
5286
5287 #ifndef __PAGETABLE_PMD_FOLDED
5288 /*
5289  * Allocate page middle directory.
5290  * We've already handled the fast-path in-line.
5291  */
5292 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5293 {
5294         spinlock_t *ptl;
5295         pmd_t *new = pmd_alloc_one(mm, address);
5296         if (!new)
5297                 return -ENOMEM;
5298
5299         ptl = pud_lock(mm, pud);
5300         if (!pud_present(*pud)) {
5301                 mm_inc_nr_pmds(mm);
5302                 smp_wmb(); /* See comment in pmd_install() */
5303                 pud_populate(mm, pud, new);
5304         } else {        /* Another has populated it */
5305                 pmd_free(mm, new);
5306         }
5307         spin_unlock(ptl);
5308         return 0;
5309 }
5310 #endif /* __PAGETABLE_PMD_FOLDED */
5311
5312 /**
5313  * follow_pte - look up PTE at a user virtual address
5314  * @mm: the mm_struct of the target address space
5315  * @address: user virtual address
5316  * @ptepp: location to store found PTE
5317  * @ptlp: location to store the lock for the PTE
5318  *
5319  * On a successful return, the pointer to the PTE is stored in @ptepp;
5320  * the corresponding lock is taken and its location is stored in @ptlp.
5321  * The contents of the PTE are only stable until @ptlp is released;
5322  * any further use, if any, must be protected against invalidation
5323  * with MMU notifiers.
5324  *
5325  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5326  * should be taken for read.
5327  *
5328  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5329  * it is not a good general-purpose API.
5330  *
5331  * Return: zero on success, -ve otherwise.
5332  */
5333 int follow_pte(struct mm_struct *mm, unsigned long address,
5334                pte_t **ptepp, spinlock_t **ptlp)
5335 {
5336         pgd_t *pgd;
5337         p4d_t *p4d;
5338         pud_t *pud;
5339         pmd_t *pmd;
5340         pte_t *ptep;
5341
5342         pgd = pgd_offset(mm, address);
5343         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5344                 goto out;
5345
5346         p4d = p4d_offset(pgd, address);
5347         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5348                 goto out;
5349
5350         pud = pud_offset(p4d, address);
5351         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5352                 goto out;
5353
5354         pmd = pmd_offset(pud, address);
5355         VM_BUG_ON(pmd_trans_huge(*pmd));
5356
5357         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5358                 goto out;
5359
5360         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5361         if (!pte_present(*ptep))
5362                 goto unlock;
5363         *ptepp = ptep;
5364         return 0;
5365 unlock:
5366         pte_unmap_unlock(ptep, *ptlp);
5367 out:
5368         return -EINVAL;
5369 }
5370 EXPORT_SYMBOL_GPL(follow_pte);
5371
5372 /**
5373  * follow_pfn - look up PFN at a user virtual address
5374  * @vma: memory mapping
5375  * @address: user virtual address
5376  * @pfn: location to store found PFN
5377  *
5378  * Only IO mappings and raw PFN mappings are allowed.
5379  *
5380  * This function does not allow the caller to read the permissions
5381  * of the PTE.  Do not use it.
5382  *
5383  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5384  */
5385 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5386         unsigned long *pfn)
5387 {
5388         int ret = -EINVAL;
5389         spinlock_t *ptl;
5390         pte_t *ptep;
5391
5392         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5393                 return ret;
5394
5395         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5396         if (ret)
5397                 return ret;
5398         *pfn = pte_pfn(*ptep);
5399         pte_unmap_unlock(ptep, ptl);
5400         return 0;
5401 }
5402 EXPORT_SYMBOL(follow_pfn);
5403
5404 #ifdef CONFIG_HAVE_IOREMAP_PROT
5405 int follow_phys(struct vm_area_struct *vma,
5406                 unsigned long address, unsigned int flags,
5407                 unsigned long *prot, resource_size_t *phys)
5408 {
5409         int ret = -EINVAL;
5410         pte_t *ptep, pte;
5411         spinlock_t *ptl;
5412
5413         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5414                 goto out;
5415
5416         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5417                 goto out;
5418         pte = *ptep;
5419
5420         if ((flags & FOLL_WRITE) && !pte_write(pte))
5421                 goto unlock;
5422
5423         *prot = pgprot_val(pte_pgprot(pte));
5424         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5425
5426         ret = 0;
5427 unlock:
5428         pte_unmap_unlock(ptep, ptl);
5429 out:
5430         return ret;
5431 }
5432
5433 /**
5434  * generic_access_phys - generic implementation for iomem mmap access
5435  * @vma: the vma to access
5436  * @addr: userspace address, not relative offset within @vma
5437  * @buf: buffer to read/write
5438  * @len: length of transfer
5439  * @write: set to FOLL_WRITE when writing, otherwise reading
5440  *
5441  * This is a generic implementation for &vm_operations_struct.access for an
5442  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5443  * not page based.
5444  */
5445 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5446                         void *buf, int len, int write)
5447 {
5448         resource_size_t phys_addr;
5449         unsigned long prot = 0;
5450         void __iomem *maddr;
5451         pte_t *ptep, pte;
5452         spinlock_t *ptl;
5453         int offset = offset_in_page(addr);
5454         int ret = -EINVAL;
5455
5456         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5457                 return -EINVAL;
5458
5459 retry:
5460         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5461                 return -EINVAL;
5462         pte = *ptep;
5463         pte_unmap_unlock(ptep, ptl);
5464
5465         prot = pgprot_val(pte_pgprot(pte));
5466         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5467
5468         if ((write & FOLL_WRITE) && !pte_write(pte))
5469                 return -EINVAL;
5470
5471         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5472         if (!maddr)
5473                 return -ENOMEM;
5474
5475         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5476                 goto out_unmap;
5477
5478         if (!pte_same(pte, *ptep)) {
5479                 pte_unmap_unlock(ptep, ptl);
5480                 iounmap(maddr);
5481
5482                 goto retry;
5483         }
5484
5485         if (write)
5486                 memcpy_toio(maddr + offset, buf, len);
5487         else
5488                 memcpy_fromio(buf, maddr + offset, len);
5489         ret = len;
5490         pte_unmap_unlock(ptep, ptl);
5491 out_unmap:
5492         iounmap(maddr);
5493
5494         return ret;
5495 }
5496 EXPORT_SYMBOL_GPL(generic_access_phys);
5497 #endif
5498
5499 /*
5500  * Access another process' address space as given in mm.
5501  */
5502 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5503                        int len, unsigned int gup_flags)
5504 {
5505         struct vm_area_struct *vma;
5506         void *old_buf = buf;
5507         int write = gup_flags & FOLL_WRITE;
5508
5509         if (mmap_read_lock_killable(mm))
5510                 return 0;
5511
5512         /* ignore errors, just check how much was successfully transferred */
5513         while (len) {
5514                 int bytes, ret, offset;
5515                 void *maddr;
5516                 struct page *page = NULL;
5517
5518                 ret = get_user_pages_remote(mm, addr, 1,
5519                                 gup_flags, &page, &vma, NULL);
5520                 if (ret <= 0) {
5521 #ifndef CONFIG_HAVE_IOREMAP_PROT
5522                         break;
5523 #else
5524                         /*
5525                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5526                          * we can access using slightly different code.
5527                          */
5528                         vma = vma_lookup(mm, addr);
5529                         if (!vma)
5530                                 break;
5531                         if (vma->vm_ops && vma->vm_ops->access)
5532                                 ret = vma->vm_ops->access(vma, addr, buf,
5533                                                           len, write);
5534                         if (ret <= 0)
5535                                 break;
5536                         bytes = ret;
5537 #endif
5538                 } else {
5539                         bytes = len;
5540                         offset = addr & (PAGE_SIZE-1);
5541                         if (bytes > PAGE_SIZE-offset)
5542                                 bytes = PAGE_SIZE-offset;
5543
5544                         maddr = kmap(page);
5545                         if (write) {
5546                                 copy_to_user_page(vma, page, addr,
5547                                                   maddr + offset, buf, bytes);
5548                                 set_page_dirty_lock(page);
5549                         } else {
5550                                 copy_from_user_page(vma, page, addr,
5551                                                     buf, maddr + offset, bytes);
5552                         }
5553                         kunmap(page);
5554                         put_page(page);
5555                 }
5556                 len -= bytes;
5557                 buf += bytes;
5558                 addr += bytes;
5559         }
5560         mmap_read_unlock(mm);
5561
5562         return buf - old_buf;
5563 }
5564
5565 /**
5566  * access_remote_vm - access another process' address space
5567  * @mm:         the mm_struct of the target address space
5568  * @addr:       start address to access
5569  * @buf:        source or destination buffer
5570  * @len:        number of bytes to transfer
5571  * @gup_flags:  flags modifying lookup behaviour
5572  *
5573  * The caller must hold a reference on @mm.
5574  *
5575  * Return: number of bytes copied from source to destination.
5576  */
5577 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5578                 void *buf, int len, unsigned int gup_flags)
5579 {
5580         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5581 }
5582
5583 /*
5584  * Access another process' address space.
5585  * Source/target buffer must be kernel space,
5586  * Do not walk the page table directly, use get_user_pages
5587  */
5588 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5589                 void *buf, int len, unsigned int gup_flags)
5590 {
5591         struct mm_struct *mm;
5592         int ret;
5593
5594         mm = get_task_mm(tsk);
5595         if (!mm)
5596                 return 0;
5597
5598         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5599
5600         mmput(mm);
5601
5602         return ret;
5603 }
5604 EXPORT_SYMBOL_GPL(access_process_vm);
5605
5606 /*
5607  * Print the name of a VMA.
5608  */
5609 void print_vma_addr(char *prefix, unsigned long ip)
5610 {
5611         struct mm_struct *mm = current->mm;
5612         struct vm_area_struct *vma;
5613
5614         /*
5615          * we might be running from an atomic context so we cannot sleep
5616          */
5617         if (!mmap_read_trylock(mm))
5618                 return;
5619
5620         vma = find_vma(mm, ip);
5621         if (vma && vma->vm_file) {
5622                 struct file *f = vma->vm_file;
5623                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5624                 if (buf) {
5625                         char *p;
5626
5627                         p = file_path(f, buf, PAGE_SIZE);
5628                         if (IS_ERR(p))
5629                                 p = "?";
5630                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5631                                         vma->vm_start,
5632                                         vma->vm_end - vma->vm_start);
5633                         free_page((unsigned long)buf);
5634                 }
5635         }
5636         mmap_read_unlock(mm);
5637 }
5638
5639 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5640 void __might_fault(const char *file, int line)
5641 {
5642         if (pagefault_disabled())
5643                 return;
5644         __might_sleep(file, line);
5645 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5646         if (current->mm)
5647                 might_lock_read(&current->mm->mmap_lock);
5648 #endif
5649 }
5650 EXPORT_SYMBOL(__might_fault);
5651 #endif
5652
5653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5654 /*
5655  * Process all subpages of the specified huge page with the specified
5656  * operation.  The target subpage will be processed last to keep its
5657  * cache lines hot.
5658  */
5659 static inline void process_huge_page(
5660         unsigned long addr_hint, unsigned int pages_per_huge_page,
5661         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5662         void *arg)
5663 {
5664         int i, n, base, l;
5665         unsigned long addr = addr_hint &
5666                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5667
5668         /* Process target subpage last to keep its cache lines hot */
5669         might_sleep();
5670         n = (addr_hint - addr) / PAGE_SIZE;
5671         if (2 * n <= pages_per_huge_page) {
5672                 /* If target subpage in first half of huge page */
5673                 base = 0;
5674                 l = n;
5675                 /* Process subpages at the end of huge page */
5676                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5677                         cond_resched();
5678                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5679                 }
5680         } else {
5681                 /* If target subpage in second half of huge page */
5682                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5683                 l = pages_per_huge_page - n;
5684                 /* Process subpages at the begin of huge page */
5685                 for (i = 0; i < base; i++) {
5686                         cond_resched();
5687                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5688                 }
5689         }
5690         /*
5691          * Process remaining subpages in left-right-left-right pattern
5692          * towards the target subpage
5693          */
5694         for (i = 0; i < l; i++) {
5695                 int left_idx = base + i;
5696                 int right_idx = base + 2 * l - 1 - i;
5697
5698                 cond_resched();
5699                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5700                 cond_resched();
5701                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5702         }
5703 }
5704
5705 static void clear_gigantic_page(struct page *page,
5706                                 unsigned long addr,
5707                                 unsigned int pages_per_huge_page)
5708 {
5709         int i;
5710         struct page *p;
5711
5712         might_sleep();
5713         for (i = 0; i < pages_per_huge_page; i++) {
5714                 p = nth_page(page, i);
5715                 cond_resched();
5716                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5717         }
5718 }
5719
5720 static void clear_subpage(unsigned long addr, int idx, void *arg)
5721 {
5722         struct page *page = arg;
5723
5724         clear_user_highpage(page + idx, addr);
5725 }
5726
5727 void clear_huge_page(struct page *page,
5728                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5729 {
5730         unsigned long addr = addr_hint &
5731                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5732
5733         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5734                 clear_gigantic_page(page, addr, pages_per_huge_page);
5735                 return;
5736         }
5737
5738         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5739 }
5740
5741 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5742                                     unsigned long addr,
5743                                     struct vm_area_struct *vma,
5744                                     unsigned int pages_per_huge_page)
5745 {
5746         int i;
5747         struct page *dst_base = dst;
5748         struct page *src_base = src;
5749
5750         for (i = 0; i < pages_per_huge_page; i++) {
5751                 dst = nth_page(dst_base, i);
5752                 src = nth_page(src_base, i);
5753
5754                 cond_resched();
5755                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5756         }
5757 }
5758
5759 struct copy_subpage_arg {
5760         struct page *dst;
5761         struct page *src;
5762         struct vm_area_struct *vma;
5763 };
5764
5765 static void copy_subpage(unsigned long addr, int idx, void *arg)
5766 {
5767         struct copy_subpage_arg *copy_arg = arg;
5768
5769         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5770                            addr, copy_arg->vma);
5771 }
5772
5773 void copy_user_huge_page(struct page *dst, struct page *src,
5774                          unsigned long addr_hint, struct vm_area_struct *vma,
5775                          unsigned int pages_per_huge_page)
5776 {
5777         unsigned long addr = addr_hint &
5778                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5779         struct copy_subpage_arg arg = {
5780                 .dst = dst,
5781                 .src = src,
5782                 .vma = vma,
5783         };
5784
5785         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5786                 copy_user_gigantic_page(dst, src, addr, vma,
5787                                         pages_per_huge_page);
5788                 return;
5789         }
5790
5791         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5792 }
5793
5794 long copy_huge_page_from_user(struct page *dst_page,
5795                                 const void __user *usr_src,
5796                                 unsigned int pages_per_huge_page,
5797                                 bool allow_pagefault)
5798 {
5799         void *page_kaddr;
5800         unsigned long i, rc = 0;
5801         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5802         struct page *subpage;
5803
5804         for (i = 0; i < pages_per_huge_page; i++) {
5805                 subpage = nth_page(dst_page, i);
5806                 if (allow_pagefault)
5807                         page_kaddr = kmap(subpage);
5808                 else
5809                         page_kaddr = kmap_atomic(subpage);
5810                 rc = copy_from_user(page_kaddr,
5811                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5812                 if (allow_pagefault)
5813                         kunmap(subpage);
5814                 else
5815                         kunmap_atomic(page_kaddr);
5816
5817                 ret_val -= (PAGE_SIZE - rc);
5818                 if (rc)
5819                         break;
5820
5821                 flush_dcache_page(subpage);
5822
5823                 cond_resched();
5824         }
5825         return ret_val;
5826 }
5827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5828
5829 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5830
5831 static struct kmem_cache *page_ptl_cachep;
5832
5833 void __init ptlock_cache_init(void)
5834 {
5835         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5836                         SLAB_PANIC, NULL);
5837 }
5838
5839 bool ptlock_alloc(struct page *page)
5840 {
5841         spinlock_t *ptl;
5842
5843         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5844         if (!ptl)
5845                 return false;
5846         page->ptl = ptl;
5847         return true;
5848 }
5849
5850 void ptlock_free(struct page *page)
5851 {
5852         kmem_cache_free(page_ptl_cachep, page->ptl);
5853 }
5854 #endif