Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[platform/kernel/linux-rpi.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
242 {
243         struct mmu_gather_batch *batch;
244
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb_table_flush(tlb);
247 #endif
248         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
249                 free_pages_and_swap_cache(batch->pages, batch->nr);
250                 batch->nr = 0;
251         }
252         tlb->active = &tlb->local;
253 }
254
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257         tlb_flush_mmu_tlbonly(tlb);
258         tlb_flush_mmu_free(tlb);
259 }
260
261 /* tlb_finish_mmu
262  *      Called at the end of the shootdown operation to free up any resources
263  *      that were required.
264  */
265 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
266                 unsigned long start, unsigned long end, bool force)
267 {
268         struct mmu_gather_batch *batch, *next;
269
270         if (force)
271                 __tlb_adjust_range(tlb, start, end - start);
272
273         tlb_flush_mmu(tlb);
274
275         /* keep the page table cache within bounds */
276         check_pgt_cache();
277
278         for (batch = tlb->local.next; batch; batch = next) {
279                 next = batch->next;
280                 free_pages((unsigned long)batch, 0);
281         }
282         tlb->local.next = NULL;
283 }
284
285 /* __tlb_remove_page
286  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *      handling the additional races in SMP caused by other CPUs caching valid
288  *      mappings in their TLBs. Returns the number of free page slots left.
289  *      When out of page slots we must call tlb_flush_mmu().
290  *returns true if the caller should flush.
291  */
292 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297         VM_WARN_ON(tlb->page_size != page_size);
298
299         batch = tlb->active;
300         /*
301          * Add the page and check if we are full. If so
302          * force a flush.
303          */
304         batch->pages[batch->nr++] = page;
305         if (batch->nr == batch->max) {
306                 if (!tlb_next_batch(tlb))
307                         return true;
308                 batch = tlb->active;
309         }
310         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
311
312         return false;
313 }
314
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322
323 /*
324  * If we want tlb_remove_table() to imply TLB invalidates.
325  */
326 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
327 {
328 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
329         /*
330          * Invalidate page-table caches used by hardware walkers. Then we still
331          * need to RCU-sched wait while freeing the pages because software
332          * walkers can still be in-flight.
333          */
334         tlb_flush_mmu_tlbonly(tlb);
335 #endif
336 }
337
338 static void tlb_remove_table_smp_sync(void *arg)
339 {
340         /* Simply deliver the interrupt */
341 }
342
343 static void tlb_remove_table_one(void *table)
344 {
345         /*
346          * This isn't an RCU grace period and hence the page-tables cannot be
347          * assumed to be actually RCU-freed.
348          *
349          * It is however sufficient for software page-table walkers that rely on
350          * IRQ disabling. See the comment near struct mmu_table_batch.
351          */
352         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
353         __tlb_remove_table(table);
354 }
355
356 static void tlb_remove_table_rcu(struct rcu_head *head)
357 {
358         struct mmu_table_batch *batch;
359         int i;
360
361         batch = container_of(head, struct mmu_table_batch, rcu);
362
363         for (i = 0; i < batch->nr; i++)
364                 __tlb_remove_table(batch->tables[i]);
365
366         free_page((unsigned long)batch);
367 }
368
369 void tlb_table_flush(struct mmu_gather *tlb)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         if (*batch) {
374                 tlb_table_invalidate(tlb);
375                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376                 *batch = NULL;
377         }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382         struct mmu_table_batch **batch = &tlb->batch;
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_table_invalidate(tlb);
388                         tlb_remove_table_one(table);
389                         return;
390                 }
391                 (*batch)->nr = 0;
392         }
393
394         (*batch)->tables[(*batch)->nr++] = table;
395         if ((*batch)->nr == MAX_TABLE_BATCH)
396                 tlb_table_flush(tlb);
397 }
398
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400
401 /**
402  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
403  * @tlb: the mmu_gather structure to initialize
404  * @mm: the mm_struct of the target address space
405  * @start: start of the region that will be removed from the page-table
406  * @end: end of the region that will be removed from the page-table
407  *
408  * Called to initialize an (on-stack) mmu_gather structure for page-table
409  * tear-down from @mm. The @start and @end are set to 0 and -1
410  * respectively when @mm is without users and we're going to destroy
411  * the full address space (exit/execve).
412  */
413 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
414                         unsigned long start, unsigned long end)
415 {
416         arch_tlb_gather_mmu(tlb, mm, start, end);
417         inc_tlb_flush_pending(tlb->mm);
418 }
419
420 void tlb_finish_mmu(struct mmu_gather *tlb,
421                 unsigned long start, unsigned long end)
422 {
423         /*
424          * If there are parallel threads are doing PTE changes on same range
425          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
426          * flush by batching, a thread has stable TLB entry can fail to flush
427          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
428          * forcefully if we detect parallel PTE batching threads.
429          */
430         bool force = mm_tlb_flush_nested(tlb->mm);
431
432         arch_tlb_finish_mmu(tlb, start, end, force);
433         dec_tlb_flush_pending(tlb->mm);
434 }
435
436 /*
437  * Note: this doesn't free the actual pages themselves. That
438  * has been handled earlier when unmapping all the memory regions.
439  */
440 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
441                            unsigned long addr)
442 {
443         pgtable_t token = pmd_pgtable(*pmd);
444         pmd_clear(pmd);
445         pte_free_tlb(tlb, token, addr);
446         mm_dec_nr_ptes(tlb->mm);
447 }
448
449 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
450                                 unsigned long addr, unsigned long end,
451                                 unsigned long floor, unsigned long ceiling)
452 {
453         pmd_t *pmd;
454         unsigned long next;
455         unsigned long start;
456
457         start = addr;
458         pmd = pmd_offset(pud, addr);
459         do {
460                 next = pmd_addr_end(addr, end);
461                 if (pmd_none_or_clear_bad(pmd))
462                         continue;
463                 free_pte_range(tlb, pmd, addr);
464         } while (pmd++, addr = next, addr != end);
465
466         start &= PUD_MASK;
467         if (start < floor)
468                 return;
469         if (ceiling) {
470                 ceiling &= PUD_MASK;
471                 if (!ceiling)
472                         return;
473         }
474         if (end - 1 > ceiling - 1)
475                 return;
476
477         pmd = pmd_offset(pud, start);
478         pud_clear(pud);
479         pmd_free_tlb(tlb, pmd, start);
480         mm_dec_nr_pmds(tlb->mm);
481 }
482
483 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
484                                 unsigned long addr, unsigned long end,
485                                 unsigned long floor, unsigned long ceiling)
486 {
487         pud_t *pud;
488         unsigned long next;
489         unsigned long start;
490
491         start = addr;
492         pud = pud_offset(p4d, addr);
493         do {
494                 next = pud_addr_end(addr, end);
495                 if (pud_none_or_clear_bad(pud))
496                         continue;
497                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
498         } while (pud++, addr = next, addr != end);
499
500         start &= P4D_MASK;
501         if (start < floor)
502                 return;
503         if (ceiling) {
504                 ceiling &= P4D_MASK;
505                 if (!ceiling)
506                         return;
507         }
508         if (end - 1 > ceiling - 1)
509                 return;
510
511         pud = pud_offset(p4d, start);
512         p4d_clear(p4d);
513         pud_free_tlb(tlb, pud, start);
514         mm_dec_nr_puds(tlb->mm);
515 }
516
517 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
518                                 unsigned long addr, unsigned long end,
519                                 unsigned long floor, unsigned long ceiling)
520 {
521         p4d_t *p4d;
522         unsigned long next;
523         unsigned long start;
524
525         start = addr;
526         p4d = p4d_offset(pgd, addr);
527         do {
528                 next = p4d_addr_end(addr, end);
529                 if (p4d_none_or_clear_bad(p4d))
530                         continue;
531                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
532         } while (p4d++, addr = next, addr != end);
533
534         start &= PGDIR_MASK;
535         if (start < floor)
536                 return;
537         if (ceiling) {
538                 ceiling &= PGDIR_MASK;
539                 if (!ceiling)
540                         return;
541         }
542         if (end - 1 > ceiling - 1)
543                 return;
544
545         p4d = p4d_offset(pgd, start);
546         pgd_clear(pgd);
547         p4d_free_tlb(tlb, p4d, start);
548 }
549
550 /*
551  * This function frees user-level page tables of a process.
552  */
553 void free_pgd_range(struct mmu_gather *tlb,
554                         unsigned long addr, unsigned long end,
555                         unsigned long floor, unsigned long ceiling)
556 {
557         pgd_t *pgd;
558         unsigned long next;
559
560         /*
561          * The next few lines have given us lots of grief...
562          *
563          * Why are we testing PMD* at this top level?  Because often
564          * there will be no work to do at all, and we'd prefer not to
565          * go all the way down to the bottom just to discover that.
566          *
567          * Why all these "- 1"s?  Because 0 represents both the bottom
568          * of the address space and the top of it (using -1 for the
569          * top wouldn't help much: the masks would do the wrong thing).
570          * The rule is that addr 0 and floor 0 refer to the bottom of
571          * the address space, but end 0 and ceiling 0 refer to the top
572          * Comparisons need to use "end - 1" and "ceiling - 1" (though
573          * that end 0 case should be mythical).
574          *
575          * Wherever addr is brought up or ceiling brought down, we must
576          * be careful to reject "the opposite 0" before it confuses the
577          * subsequent tests.  But what about where end is brought down
578          * by PMD_SIZE below? no, end can't go down to 0 there.
579          *
580          * Whereas we round start (addr) and ceiling down, by different
581          * masks at different levels, in order to test whether a table
582          * now has no other vmas using it, so can be freed, we don't
583          * bother to round floor or end up - the tests don't need that.
584          */
585
586         addr &= PMD_MASK;
587         if (addr < floor) {
588                 addr += PMD_SIZE;
589                 if (!addr)
590                         return;
591         }
592         if (ceiling) {
593                 ceiling &= PMD_MASK;
594                 if (!ceiling)
595                         return;
596         }
597         if (end - 1 > ceiling - 1)
598                 end -= PMD_SIZE;
599         if (addr > end - 1)
600                 return;
601         /*
602          * We add page table cache pages with PAGE_SIZE,
603          * (see pte_free_tlb()), flush the tlb if we need
604          */
605         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
606         pgd = pgd_offset(tlb->mm, addr);
607         do {
608                 next = pgd_addr_end(addr, end);
609                 if (pgd_none_or_clear_bad(pgd))
610                         continue;
611                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
612         } while (pgd++, addr = next, addr != end);
613 }
614
615 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
616                 unsigned long floor, unsigned long ceiling)
617 {
618         while (vma) {
619                 struct vm_area_struct *next = vma->vm_next;
620                 unsigned long addr = vma->vm_start;
621
622                 /*
623                  * Hide vma from rmap and truncate_pagecache before freeing
624                  * pgtables
625                  */
626                 unlink_anon_vmas(vma);
627                 unlink_file_vma(vma);
628
629                 if (is_vm_hugetlb_page(vma)) {
630                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
631                                 floor, next ? next->vm_start : ceiling);
632                 } else {
633                         /*
634                          * Optimization: gather nearby vmas into one call down
635                          */
636                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
637                                && !is_vm_hugetlb_page(next)) {
638                                 vma = next;
639                                 next = vma->vm_next;
640                                 unlink_anon_vmas(vma);
641                                 unlink_file_vma(vma);
642                         }
643                         free_pgd_range(tlb, addr, vma->vm_end,
644                                 floor, next ? next->vm_start : ceiling);
645                 }
646                 vma = next;
647         }
648 }
649
650 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
651 {
652         spinlock_t *ptl;
653         pgtable_t new = pte_alloc_one(mm, address);
654         if (!new)
655                 return -ENOMEM;
656
657         /*
658          * Ensure all pte setup (eg. pte page lock and page clearing) are
659          * visible before the pte is made visible to other CPUs by being
660          * put into page tables.
661          *
662          * The other side of the story is the pointer chasing in the page
663          * table walking code (when walking the page table without locking;
664          * ie. most of the time). Fortunately, these data accesses consist
665          * of a chain of data-dependent loads, meaning most CPUs (alpha
666          * being the notable exception) will already guarantee loads are
667          * seen in-order. See the alpha page table accessors for the
668          * smp_read_barrier_depends() barriers in page table walking code.
669          */
670         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
671
672         ptl = pmd_lock(mm, pmd);
673         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
674                 mm_inc_nr_ptes(mm);
675                 pmd_populate(mm, pmd, new);
676                 new = NULL;
677         }
678         spin_unlock(ptl);
679         if (new)
680                 pte_free(mm, new);
681         return 0;
682 }
683
684 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
685 {
686         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
687         if (!new)
688                 return -ENOMEM;
689
690         smp_wmb(); /* See comment in __pte_alloc */
691
692         spin_lock(&init_mm.page_table_lock);
693         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
694                 pmd_populate_kernel(&init_mm, pmd, new);
695                 new = NULL;
696         }
697         spin_unlock(&init_mm.page_table_lock);
698         if (new)
699                 pte_free_kernel(&init_mm, new);
700         return 0;
701 }
702
703 static inline void init_rss_vec(int *rss)
704 {
705         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
706 }
707
708 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
709 {
710         int i;
711
712         if (current->mm == mm)
713                 sync_mm_rss(mm);
714         for (i = 0; i < NR_MM_COUNTERS; i++)
715                 if (rss[i])
716                         add_mm_counter(mm, i, rss[i]);
717 }
718
719 /*
720  * This function is called to print an error when a bad pte
721  * is found. For example, we might have a PFN-mapped pte in
722  * a region that doesn't allow it.
723  *
724  * The calling function must still handle the error.
725  */
726 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
727                           pte_t pte, struct page *page)
728 {
729         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
730         p4d_t *p4d = p4d_offset(pgd, addr);
731         pud_t *pud = pud_offset(p4d, addr);
732         pmd_t *pmd = pmd_offset(pud, addr);
733         struct address_space *mapping;
734         pgoff_t index;
735         static unsigned long resume;
736         static unsigned long nr_shown;
737         static unsigned long nr_unshown;
738
739         /*
740          * Allow a burst of 60 reports, then keep quiet for that minute;
741          * or allow a steady drip of one report per second.
742          */
743         if (nr_shown == 60) {
744                 if (time_before(jiffies, resume)) {
745                         nr_unshown++;
746                         return;
747                 }
748                 if (nr_unshown) {
749                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
750                                  nr_unshown);
751                         nr_unshown = 0;
752                 }
753                 nr_shown = 0;
754         }
755         if (nr_shown++ == 0)
756                 resume = jiffies + 60 * HZ;
757
758         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
759         index = linear_page_index(vma, addr);
760
761         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
762                  current->comm,
763                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
764         if (page)
765                 dump_page(page, "bad pte");
766         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
767                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
768         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
769                  vma->vm_file,
770                  vma->vm_ops ? vma->vm_ops->fault : NULL,
771                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
772                  mapping ? mapping->a_ops->readpage : NULL);
773         dump_stack();
774         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
775 }
776
777 /*
778  * vm_normal_page -- This function gets the "struct page" associated with a pte.
779  *
780  * "Special" mappings do not wish to be associated with a "struct page" (either
781  * it doesn't exist, or it exists but they don't want to touch it). In this
782  * case, NULL is returned here. "Normal" mappings do have a struct page.
783  *
784  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
785  * pte bit, in which case this function is trivial. Secondly, an architecture
786  * may not have a spare pte bit, which requires a more complicated scheme,
787  * described below.
788  *
789  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
790  * special mapping (even if there are underlying and valid "struct pages").
791  * COWed pages of a VM_PFNMAP are always normal.
792  *
793  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
794  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
795  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
796  * mapping will always honor the rule
797  *
798  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
799  *
800  * And for normal mappings this is false.
801  *
802  * This restricts such mappings to be a linear translation from virtual address
803  * to pfn. To get around this restriction, we allow arbitrary mappings so long
804  * as the vma is not a COW mapping; in that case, we know that all ptes are
805  * special (because none can have been COWed).
806  *
807  *
808  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
809  *
810  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
811  * page" backing, however the difference is that _all_ pages with a struct
812  * page (that is, those where pfn_valid is true) are refcounted and considered
813  * normal pages by the VM. The disadvantage is that pages are refcounted
814  * (which can be slower and simply not an option for some PFNMAP users). The
815  * advantage is that we don't have to follow the strict linearity rule of
816  * PFNMAP mappings in order to support COWable mappings.
817  *
818  */
819 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
820                              pte_t pte, bool with_public_device)
821 {
822         unsigned long pfn = pte_pfn(pte);
823
824         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
825                 if (likely(!pte_special(pte)))
826                         goto check_pfn;
827                 if (vma->vm_ops && vma->vm_ops->find_special_page)
828                         return vma->vm_ops->find_special_page(vma, addr);
829                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
830                         return NULL;
831                 if (is_zero_pfn(pfn))
832                         return NULL;
833
834                 /*
835                  * Device public pages are special pages (they are ZONE_DEVICE
836                  * pages but different from persistent memory). They behave
837                  * allmost like normal pages. The difference is that they are
838                  * not on the lru and thus should never be involve with any-
839                  * thing that involve lru manipulation (mlock, numa balancing,
840                  * ...).
841                  *
842                  * This is why we still want to return NULL for such page from
843                  * vm_normal_page() so that we do not have to special case all
844                  * call site of vm_normal_page().
845                  */
846                 if (likely(pfn <= highest_memmap_pfn)) {
847                         struct page *page = pfn_to_page(pfn);
848
849                         if (is_device_public_page(page)) {
850                                 if (with_public_device)
851                                         return page;
852                                 return NULL;
853                         }
854                 }
855
856                 if (pte_devmap(pte))
857                         return NULL;
858
859                 print_bad_pte(vma, addr, pte, NULL);
860                 return NULL;
861         }
862
863         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
864
865         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
866                 if (vma->vm_flags & VM_MIXEDMAP) {
867                         if (!pfn_valid(pfn))
868                                 return NULL;
869                         goto out;
870                 } else {
871                         unsigned long off;
872                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
873                         if (pfn == vma->vm_pgoff + off)
874                                 return NULL;
875                         if (!is_cow_mapping(vma->vm_flags))
876                                 return NULL;
877                 }
878         }
879
880         if (is_zero_pfn(pfn))
881                 return NULL;
882
883 check_pfn:
884         if (unlikely(pfn > highest_memmap_pfn)) {
885                 print_bad_pte(vma, addr, pte, NULL);
886                 return NULL;
887         }
888
889         /*
890          * NOTE! We still have PageReserved() pages in the page tables.
891          * eg. VDSO mappings can cause them to exist.
892          */
893 out:
894         return pfn_to_page(pfn);
895 }
896
897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
898 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
899                                 pmd_t pmd)
900 {
901         unsigned long pfn = pmd_pfn(pmd);
902
903         /*
904          * There is no pmd_special() but there may be special pmds, e.g.
905          * in a direct-access (dax) mapping, so let's just replicate the
906          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
907          */
908         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
909                 if (vma->vm_flags & VM_MIXEDMAP) {
910                         if (!pfn_valid(pfn))
911                                 return NULL;
912                         goto out;
913                 } else {
914                         unsigned long off;
915                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
916                         if (pfn == vma->vm_pgoff + off)
917                                 return NULL;
918                         if (!is_cow_mapping(vma->vm_flags))
919                                 return NULL;
920                 }
921         }
922
923         if (pmd_devmap(pmd))
924                 return NULL;
925         if (is_zero_pfn(pfn))
926                 return NULL;
927         if (unlikely(pfn > highest_memmap_pfn))
928                 return NULL;
929
930         /*
931          * NOTE! We still have PageReserved() pages in the page tables.
932          * eg. VDSO mappings can cause them to exist.
933          */
934 out:
935         return pfn_to_page(pfn);
936 }
937 #endif
938
939 /*
940  * copy one vm_area from one task to the other. Assumes the page tables
941  * already present in the new task to be cleared in the whole range
942  * covered by this vma.
943  */
944
945 static inline unsigned long
946 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
948                 unsigned long addr, int *rss)
949 {
950         unsigned long vm_flags = vma->vm_flags;
951         pte_t pte = *src_pte;
952         struct page *page;
953
954         /* pte contains position in swap or file, so copy. */
955         if (unlikely(!pte_present(pte))) {
956                 swp_entry_t entry = pte_to_swp_entry(pte);
957
958                 if (likely(!non_swap_entry(entry))) {
959                         if (swap_duplicate(entry) < 0)
960                                 return entry.val;
961
962                         /* make sure dst_mm is on swapoff's mmlist. */
963                         if (unlikely(list_empty(&dst_mm->mmlist))) {
964                                 spin_lock(&mmlist_lock);
965                                 if (list_empty(&dst_mm->mmlist))
966                                         list_add(&dst_mm->mmlist,
967                                                         &src_mm->mmlist);
968                                 spin_unlock(&mmlist_lock);
969                         }
970                         rss[MM_SWAPENTS]++;
971                 } else if (is_migration_entry(entry)) {
972                         page = migration_entry_to_page(entry);
973
974                         rss[mm_counter(page)]++;
975
976                         if (is_write_migration_entry(entry) &&
977                                         is_cow_mapping(vm_flags)) {
978                                 /*
979                                  * COW mappings require pages in both
980                                  * parent and child to be set to read.
981                                  */
982                                 make_migration_entry_read(&entry);
983                                 pte = swp_entry_to_pte(entry);
984                                 if (pte_swp_soft_dirty(*src_pte))
985                                         pte = pte_swp_mksoft_dirty(pte);
986                                 set_pte_at(src_mm, addr, src_pte, pte);
987                         }
988                 } else if (is_device_private_entry(entry)) {
989                         page = device_private_entry_to_page(entry);
990
991                         /*
992                          * Update rss count even for unaddressable pages, as
993                          * they should treated just like normal pages in this
994                          * respect.
995                          *
996                          * We will likely want to have some new rss counters
997                          * for unaddressable pages, at some point. But for now
998                          * keep things as they are.
999                          */
1000                         get_page(page);
1001                         rss[mm_counter(page)]++;
1002                         page_dup_rmap(page, false);
1003
1004                         /*
1005                          * We do not preserve soft-dirty information, because so
1006                          * far, checkpoint/restore is the only feature that
1007                          * requires that. And checkpoint/restore does not work
1008                          * when a device driver is involved (you cannot easily
1009                          * save and restore device driver state).
1010                          */
1011                         if (is_write_device_private_entry(entry) &&
1012                             is_cow_mapping(vm_flags)) {
1013                                 make_device_private_entry_read(&entry);
1014                                 pte = swp_entry_to_pte(entry);
1015                                 set_pte_at(src_mm, addr, src_pte, pte);
1016                         }
1017                 }
1018                 goto out_set_pte;
1019         }
1020
1021         /*
1022          * If it's a COW mapping, write protect it both
1023          * in the parent and the child
1024          */
1025         if (is_cow_mapping(vm_flags)) {
1026                 ptep_set_wrprotect(src_mm, addr, src_pte);
1027                 pte = pte_wrprotect(pte);
1028         }
1029
1030         /*
1031          * If it's a shared mapping, mark it clean in
1032          * the child
1033          */
1034         if (vm_flags & VM_SHARED)
1035                 pte = pte_mkclean(pte);
1036         pte = pte_mkold(pte);
1037
1038         page = vm_normal_page(vma, addr, pte);
1039         if (page) {
1040                 get_page(page);
1041                 page_dup_rmap(page, false);
1042                 rss[mm_counter(page)]++;
1043         } else if (pte_devmap(pte)) {
1044                 page = pte_page(pte);
1045
1046                 /*
1047                  * Cache coherent device memory behave like regular page and
1048                  * not like persistent memory page. For more informations see
1049                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1050                  */
1051                 if (is_device_public_page(page)) {
1052                         get_page(page);
1053                         page_dup_rmap(page, false);
1054                         rss[mm_counter(page)]++;
1055                 }
1056         }
1057
1058 out_set_pte:
1059         set_pte_at(dst_mm, addr, dst_pte, pte);
1060         return 0;
1061 }
1062
1063 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1064                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1065                    unsigned long addr, unsigned long end)
1066 {
1067         pte_t *orig_src_pte, *orig_dst_pte;
1068         pte_t *src_pte, *dst_pte;
1069         spinlock_t *src_ptl, *dst_ptl;
1070         int progress = 0;
1071         int rss[NR_MM_COUNTERS];
1072         swp_entry_t entry = (swp_entry_t){0};
1073
1074 again:
1075         init_rss_vec(rss);
1076
1077         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1078         if (!dst_pte)
1079                 return -ENOMEM;
1080         src_pte = pte_offset_map(src_pmd, addr);
1081         src_ptl = pte_lockptr(src_mm, src_pmd);
1082         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1083         orig_src_pte = src_pte;
1084         orig_dst_pte = dst_pte;
1085         arch_enter_lazy_mmu_mode();
1086
1087         do {
1088                 /*
1089                  * We are holding two locks at this point - either of them
1090                  * could generate latencies in another task on another CPU.
1091                  */
1092                 if (progress >= 32) {
1093                         progress = 0;
1094                         if (need_resched() ||
1095                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1096                                 break;
1097                 }
1098                 if (pte_none(*src_pte)) {
1099                         progress++;
1100                         continue;
1101                 }
1102                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1103                                                         vma, addr, rss);
1104                 if (entry.val)
1105                         break;
1106                 progress += 8;
1107         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1108
1109         arch_leave_lazy_mmu_mode();
1110         spin_unlock(src_ptl);
1111         pte_unmap(orig_src_pte);
1112         add_mm_rss_vec(dst_mm, rss);
1113         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1114         cond_resched();
1115
1116         if (entry.val) {
1117                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1118                         return -ENOMEM;
1119                 progress = 0;
1120         }
1121         if (addr != end)
1122                 goto again;
1123         return 0;
1124 }
1125
1126 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1128                 unsigned long addr, unsigned long end)
1129 {
1130         pmd_t *src_pmd, *dst_pmd;
1131         unsigned long next;
1132
1133         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1134         if (!dst_pmd)
1135                 return -ENOMEM;
1136         src_pmd = pmd_offset(src_pud, addr);
1137         do {
1138                 next = pmd_addr_end(addr, end);
1139                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1140                         || pmd_devmap(*src_pmd)) {
1141                         int err;
1142                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1143                         err = copy_huge_pmd(dst_mm, src_mm,
1144                                             dst_pmd, src_pmd, addr, vma);
1145                         if (err == -ENOMEM)
1146                                 return -ENOMEM;
1147                         if (!err)
1148                                 continue;
1149                         /* fall through */
1150                 }
1151                 if (pmd_none_or_clear_bad(src_pmd))
1152                         continue;
1153                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1154                                                 vma, addr, next))
1155                         return -ENOMEM;
1156         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1157         return 0;
1158 }
1159
1160 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1161                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1162                 unsigned long addr, unsigned long end)
1163 {
1164         pud_t *src_pud, *dst_pud;
1165         unsigned long next;
1166
1167         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168         if (!dst_pud)
1169                 return -ENOMEM;
1170         src_pud = pud_offset(src_p4d, addr);
1171         do {
1172                 next = pud_addr_end(addr, end);
1173                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174                         int err;
1175
1176                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1177                         err = copy_huge_pud(dst_mm, src_mm,
1178                                             dst_pud, src_pud, addr, vma);
1179                         if (err == -ENOMEM)
1180                                 return -ENOMEM;
1181                         if (!err)
1182                                 continue;
1183                         /* fall through */
1184                 }
1185                 if (pud_none_or_clear_bad(src_pud))
1186                         continue;
1187                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1188                                                 vma, addr, next))
1189                         return -ENOMEM;
1190         } while (dst_pud++, src_pud++, addr = next, addr != end);
1191         return 0;
1192 }
1193
1194 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1196                 unsigned long addr, unsigned long end)
1197 {
1198         p4d_t *src_p4d, *dst_p4d;
1199         unsigned long next;
1200
1201         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1202         if (!dst_p4d)
1203                 return -ENOMEM;
1204         src_p4d = p4d_offset(src_pgd, addr);
1205         do {
1206                 next = p4d_addr_end(addr, end);
1207                 if (p4d_none_or_clear_bad(src_p4d))
1208                         continue;
1209                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1210                                                 vma, addr, next))
1211                         return -ENOMEM;
1212         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1213         return 0;
1214 }
1215
1216 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217                 struct vm_area_struct *vma)
1218 {
1219         pgd_t *src_pgd, *dst_pgd;
1220         unsigned long next;
1221         unsigned long addr = vma->vm_start;
1222         unsigned long end = vma->vm_end;
1223         unsigned long mmun_start;       /* For mmu_notifiers */
1224         unsigned long mmun_end;         /* For mmu_notifiers */
1225         bool is_cow;
1226         int ret;
1227
1228         /*
1229          * Don't copy ptes where a page fault will fill them correctly.
1230          * Fork becomes much lighter when there are big shared or private
1231          * readonly mappings. The tradeoff is that copy_page_range is more
1232          * efficient than faulting.
1233          */
1234         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1235                         !vma->anon_vma)
1236                 return 0;
1237
1238         if (is_vm_hugetlb_page(vma))
1239                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1240
1241         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1242                 /*
1243                  * We do not free on error cases below as remove_vma
1244                  * gets called on error from higher level routine
1245                  */
1246                 ret = track_pfn_copy(vma);
1247                 if (ret)
1248                         return ret;
1249         }
1250
1251         /*
1252          * We need to invalidate the secondary MMU mappings only when
1253          * there could be a permission downgrade on the ptes of the
1254          * parent mm. And a permission downgrade will only happen if
1255          * is_cow_mapping() returns true.
1256          */
1257         is_cow = is_cow_mapping(vma->vm_flags);
1258         mmun_start = addr;
1259         mmun_end   = end;
1260         if (is_cow)
1261                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1262                                                     mmun_end);
1263
1264         ret = 0;
1265         dst_pgd = pgd_offset(dst_mm, addr);
1266         src_pgd = pgd_offset(src_mm, addr);
1267         do {
1268                 next = pgd_addr_end(addr, end);
1269                 if (pgd_none_or_clear_bad(src_pgd))
1270                         continue;
1271                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1272                                             vma, addr, next))) {
1273                         ret = -ENOMEM;
1274                         break;
1275                 }
1276         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1277
1278         if (is_cow)
1279                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1280         return ret;
1281 }
1282
1283 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1284                                 struct vm_area_struct *vma, pmd_t *pmd,
1285                                 unsigned long addr, unsigned long end,
1286                                 struct zap_details *details)
1287 {
1288         struct mm_struct *mm = tlb->mm;
1289         int force_flush = 0;
1290         int rss[NR_MM_COUNTERS];
1291         spinlock_t *ptl;
1292         pte_t *start_pte;
1293         pte_t *pte;
1294         swp_entry_t entry;
1295
1296         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1297 again:
1298         init_rss_vec(rss);
1299         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1300         pte = start_pte;
1301         flush_tlb_batched_pending(mm);
1302         arch_enter_lazy_mmu_mode();
1303         do {
1304                 pte_t ptent = *pte;
1305                 if (pte_none(ptent))
1306                         continue;
1307
1308                 if (pte_present(ptent)) {
1309                         struct page *page;
1310
1311                         page = _vm_normal_page(vma, addr, ptent, true);
1312                         if (unlikely(details) && page) {
1313                                 /*
1314                                  * unmap_shared_mapping_pages() wants to
1315                                  * invalidate cache without truncating:
1316                                  * unmap shared but keep private pages.
1317                                  */
1318                                 if (details->check_mapping &&
1319                                     details->check_mapping != page_rmapping(page))
1320                                         continue;
1321                         }
1322                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1323                                                         tlb->fullmm);
1324                         tlb_remove_tlb_entry(tlb, pte, addr);
1325                         if (unlikely(!page))
1326                                 continue;
1327
1328                         if (!PageAnon(page)) {
1329                                 if (pte_dirty(ptent)) {
1330                                         force_flush = 1;
1331                                         set_page_dirty(page);
1332                                 }
1333                                 if (pte_young(ptent) &&
1334                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1335                                         mark_page_accessed(page);
1336                         }
1337                         rss[mm_counter(page)]--;
1338                         page_remove_rmap(page, false);
1339                         if (unlikely(page_mapcount(page) < 0))
1340                                 print_bad_pte(vma, addr, ptent, page);
1341                         if (unlikely(__tlb_remove_page(tlb, page))) {
1342                                 force_flush = 1;
1343                                 addr += PAGE_SIZE;
1344                                 break;
1345                         }
1346                         continue;
1347                 }
1348
1349                 entry = pte_to_swp_entry(ptent);
1350                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1351                         struct page *page = device_private_entry_to_page(entry);
1352
1353                         if (unlikely(details && details->check_mapping)) {
1354                                 /*
1355                                  * unmap_shared_mapping_pages() wants to
1356                                  * invalidate cache without truncating:
1357                                  * unmap shared but keep private pages.
1358                                  */
1359                                 if (details->check_mapping !=
1360                                     page_rmapping(page))
1361                                         continue;
1362                         }
1363
1364                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1365                         rss[mm_counter(page)]--;
1366                         page_remove_rmap(page, false);
1367                         put_page(page);
1368                         continue;
1369                 }
1370
1371                 /* If details->check_mapping, we leave swap entries. */
1372                 if (unlikely(details))
1373                         continue;
1374
1375                 entry = pte_to_swp_entry(ptent);
1376                 if (!non_swap_entry(entry))
1377                         rss[MM_SWAPENTS]--;
1378                 else if (is_migration_entry(entry)) {
1379                         struct page *page;
1380
1381                         page = migration_entry_to_page(entry);
1382                         rss[mm_counter(page)]--;
1383                 }
1384                 if (unlikely(!free_swap_and_cache(entry)))
1385                         print_bad_pte(vma, addr, ptent, NULL);
1386                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387         } while (pte++, addr += PAGE_SIZE, addr != end);
1388
1389         add_mm_rss_vec(mm, rss);
1390         arch_leave_lazy_mmu_mode();
1391
1392         /* Do the actual TLB flush before dropping ptl */
1393         if (force_flush)
1394                 tlb_flush_mmu_tlbonly(tlb);
1395         pte_unmap_unlock(start_pte, ptl);
1396
1397         /*
1398          * If we forced a TLB flush (either due to running out of
1399          * batch buffers or because we needed to flush dirty TLB
1400          * entries before releasing the ptl), free the batched
1401          * memory too. Restart if we didn't do everything.
1402          */
1403         if (force_flush) {
1404                 force_flush = 0;
1405                 tlb_flush_mmu_free(tlb);
1406                 if (addr != end)
1407                         goto again;
1408         }
1409
1410         return addr;
1411 }
1412
1413 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1414                                 struct vm_area_struct *vma, pud_t *pud,
1415                                 unsigned long addr, unsigned long end,
1416                                 struct zap_details *details)
1417 {
1418         pmd_t *pmd;
1419         unsigned long next;
1420
1421         pmd = pmd_offset(pud, addr);
1422         do {
1423                 next = pmd_addr_end(addr, end);
1424                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1425                         if (next - addr != HPAGE_PMD_SIZE)
1426                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1427                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1428                                 goto next;
1429                         /* fall through */
1430                 }
1431                 /*
1432                  * Here there can be other concurrent MADV_DONTNEED or
1433                  * trans huge page faults running, and if the pmd is
1434                  * none or trans huge it can change under us. This is
1435                  * because MADV_DONTNEED holds the mmap_sem in read
1436                  * mode.
1437                  */
1438                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1439                         goto next;
1440                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1441 next:
1442                 cond_resched();
1443         } while (pmd++, addr = next, addr != end);
1444
1445         return addr;
1446 }
1447
1448 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1449                                 struct vm_area_struct *vma, p4d_t *p4d,
1450                                 unsigned long addr, unsigned long end,
1451                                 struct zap_details *details)
1452 {
1453         pud_t *pud;
1454         unsigned long next;
1455
1456         pud = pud_offset(p4d, addr);
1457         do {
1458                 next = pud_addr_end(addr, end);
1459                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1460                         if (next - addr != HPAGE_PUD_SIZE) {
1461                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1462                                 split_huge_pud(vma, pud, addr);
1463                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1464                                 goto next;
1465                         /* fall through */
1466                 }
1467                 if (pud_none_or_clear_bad(pud))
1468                         continue;
1469                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1470 next:
1471                 cond_resched();
1472         } while (pud++, addr = next, addr != end);
1473
1474         return addr;
1475 }
1476
1477 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1478                                 struct vm_area_struct *vma, pgd_t *pgd,
1479                                 unsigned long addr, unsigned long end,
1480                                 struct zap_details *details)
1481 {
1482         p4d_t *p4d;
1483         unsigned long next;
1484
1485         p4d = p4d_offset(pgd, addr);
1486         do {
1487                 next = p4d_addr_end(addr, end);
1488                 if (p4d_none_or_clear_bad(p4d))
1489                         continue;
1490                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1491         } while (p4d++, addr = next, addr != end);
1492
1493         return addr;
1494 }
1495
1496 void unmap_page_range(struct mmu_gather *tlb,
1497                              struct vm_area_struct *vma,
1498                              unsigned long addr, unsigned long end,
1499                              struct zap_details *details)
1500 {
1501         pgd_t *pgd;
1502         unsigned long next;
1503
1504         BUG_ON(addr >= end);
1505         tlb_start_vma(tlb, vma);
1506         pgd = pgd_offset(vma->vm_mm, addr);
1507         do {
1508                 next = pgd_addr_end(addr, end);
1509                 if (pgd_none_or_clear_bad(pgd))
1510                         continue;
1511                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1512         } while (pgd++, addr = next, addr != end);
1513         tlb_end_vma(tlb, vma);
1514 }
1515
1516
1517 static void unmap_single_vma(struct mmu_gather *tlb,
1518                 struct vm_area_struct *vma, unsigned long start_addr,
1519                 unsigned long end_addr,
1520                 struct zap_details *details)
1521 {
1522         unsigned long start = max(vma->vm_start, start_addr);
1523         unsigned long end;
1524
1525         if (start >= vma->vm_end)
1526                 return;
1527         end = min(vma->vm_end, end_addr);
1528         if (end <= vma->vm_start)
1529                 return;
1530
1531         if (vma->vm_file)
1532                 uprobe_munmap(vma, start, end);
1533
1534         if (unlikely(vma->vm_flags & VM_PFNMAP))
1535                 untrack_pfn(vma, 0, 0);
1536
1537         if (start != end) {
1538                 if (unlikely(is_vm_hugetlb_page(vma))) {
1539                         /*
1540                          * It is undesirable to test vma->vm_file as it
1541                          * should be non-null for valid hugetlb area.
1542                          * However, vm_file will be NULL in the error
1543                          * cleanup path of mmap_region. When
1544                          * hugetlbfs ->mmap method fails,
1545                          * mmap_region() nullifies vma->vm_file
1546                          * before calling this function to clean up.
1547                          * Since no pte has actually been setup, it is
1548                          * safe to do nothing in this case.
1549                          */
1550                         if (vma->vm_file) {
1551                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1552                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1553                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1554                         }
1555                 } else
1556                         unmap_page_range(tlb, vma, start, end, details);
1557         }
1558 }
1559
1560 /**
1561  * unmap_vmas - unmap a range of memory covered by a list of vma's
1562  * @tlb: address of the caller's struct mmu_gather
1563  * @vma: the starting vma
1564  * @start_addr: virtual address at which to start unmapping
1565  * @end_addr: virtual address at which to end unmapping
1566  *
1567  * Unmap all pages in the vma list.
1568  *
1569  * Only addresses between `start' and `end' will be unmapped.
1570  *
1571  * The VMA list must be sorted in ascending virtual address order.
1572  *
1573  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1574  * range after unmap_vmas() returns.  So the only responsibility here is to
1575  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1576  * drops the lock and schedules.
1577  */
1578 void unmap_vmas(struct mmu_gather *tlb,
1579                 struct vm_area_struct *vma, unsigned long start_addr,
1580                 unsigned long end_addr)
1581 {
1582         struct mm_struct *mm = vma->vm_mm;
1583
1584         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1585         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1586                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1587         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1588 }
1589
1590 /**
1591  * zap_page_range - remove user pages in a given range
1592  * @vma: vm_area_struct holding the applicable pages
1593  * @start: starting address of pages to zap
1594  * @size: number of bytes to zap
1595  *
1596  * Caller must protect the VMA list
1597  */
1598 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1599                 unsigned long size)
1600 {
1601         struct mm_struct *mm = vma->vm_mm;
1602         struct mmu_gather tlb;
1603         unsigned long end = start + size;
1604
1605         lru_add_drain();
1606         tlb_gather_mmu(&tlb, mm, start, end);
1607         update_hiwater_rss(mm);
1608         mmu_notifier_invalidate_range_start(mm, start, end);
1609         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1610                 unmap_single_vma(&tlb, vma, start, end, NULL);
1611         mmu_notifier_invalidate_range_end(mm, start, end);
1612         tlb_finish_mmu(&tlb, start, end);
1613 }
1614
1615 /**
1616  * zap_page_range_single - remove user pages in a given range
1617  * @vma: vm_area_struct holding the applicable pages
1618  * @address: starting address of pages to zap
1619  * @size: number of bytes to zap
1620  * @details: details of shared cache invalidation
1621  *
1622  * The range must fit into one VMA.
1623  */
1624 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1625                 unsigned long size, struct zap_details *details)
1626 {
1627         struct mm_struct *mm = vma->vm_mm;
1628         struct mmu_gather tlb;
1629         unsigned long end = address + size;
1630
1631         lru_add_drain();
1632         tlb_gather_mmu(&tlb, mm, address, end);
1633         update_hiwater_rss(mm);
1634         mmu_notifier_invalidate_range_start(mm, address, end);
1635         unmap_single_vma(&tlb, vma, address, end, details);
1636         mmu_notifier_invalidate_range_end(mm, address, end);
1637         tlb_finish_mmu(&tlb, address, end);
1638 }
1639
1640 /**
1641  * zap_vma_ptes - remove ptes mapping the vma
1642  * @vma: vm_area_struct holding ptes to be zapped
1643  * @address: starting address of pages to zap
1644  * @size: number of bytes to zap
1645  *
1646  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1647  *
1648  * The entire address range must be fully contained within the vma.
1649  *
1650  */
1651 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1652                 unsigned long size)
1653 {
1654         if (address < vma->vm_start || address + size > vma->vm_end ||
1655                         !(vma->vm_flags & VM_PFNMAP))
1656                 return;
1657
1658         zap_page_range_single(vma, address, size, NULL);
1659 }
1660 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1661
1662 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1663                         spinlock_t **ptl)
1664 {
1665         pgd_t *pgd;
1666         p4d_t *p4d;
1667         pud_t *pud;
1668         pmd_t *pmd;
1669
1670         pgd = pgd_offset(mm, addr);
1671         p4d = p4d_alloc(mm, pgd, addr);
1672         if (!p4d)
1673                 return NULL;
1674         pud = pud_alloc(mm, p4d, addr);
1675         if (!pud)
1676                 return NULL;
1677         pmd = pmd_alloc(mm, pud, addr);
1678         if (!pmd)
1679                 return NULL;
1680
1681         VM_BUG_ON(pmd_trans_huge(*pmd));
1682         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1683 }
1684
1685 /*
1686  * This is the old fallback for page remapping.
1687  *
1688  * For historical reasons, it only allows reserved pages. Only
1689  * old drivers should use this, and they needed to mark their
1690  * pages reserved for the old functions anyway.
1691  */
1692 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1693                         struct page *page, pgprot_t prot)
1694 {
1695         struct mm_struct *mm = vma->vm_mm;
1696         int retval;
1697         pte_t *pte;
1698         spinlock_t *ptl;
1699
1700         retval = -EINVAL;
1701         if (PageAnon(page))
1702                 goto out;
1703         retval = -ENOMEM;
1704         flush_dcache_page(page);
1705         pte = get_locked_pte(mm, addr, &ptl);
1706         if (!pte)
1707                 goto out;
1708         retval = -EBUSY;
1709         if (!pte_none(*pte))
1710                 goto out_unlock;
1711
1712         /* Ok, finally just insert the thing.. */
1713         get_page(page);
1714         inc_mm_counter_fast(mm, mm_counter_file(page));
1715         page_add_file_rmap(page, false);
1716         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1717
1718         retval = 0;
1719         pte_unmap_unlock(pte, ptl);
1720         return retval;
1721 out_unlock:
1722         pte_unmap_unlock(pte, ptl);
1723 out:
1724         return retval;
1725 }
1726
1727 /**
1728  * vm_insert_page - insert single page into user vma
1729  * @vma: user vma to map to
1730  * @addr: target user address of this page
1731  * @page: source kernel page
1732  *
1733  * This allows drivers to insert individual pages they've allocated
1734  * into a user vma.
1735  *
1736  * The page has to be a nice clean _individual_ kernel allocation.
1737  * If you allocate a compound page, you need to have marked it as
1738  * such (__GFP_COMP), or manually just split the page up yourself
1739  * (see split_page()).
1740  *
1741  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1742  * took an arbitrary page protection parameter. This doesn't allow
1743  * that. Your vma protection will have to be set up correctly, which
1744  * means that if you want a shared writable mapping, you'd better
1745  * ask for a shared writable mapping!
1746  *
1747  * The page does not need to be reserved.
1748  *
1749  * Usually this function is called from f_op->mmap() handler
1750  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1751  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1752  * function from other places, for example from page-fault handler.
1753  */
1754 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1755                         struct page *page)
1756 {
1757         if (addr < vma->vm_start || addr >= vma->vm_end)
1758                 return -EFAULT;
1759         if (!page_count(page))
1760                 return -EINVAL;
1761         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1762                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1763                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1764                 vma->vm_flags |= VM_MIXEDMAP;
1765         }
1766         return insert_page(vma, addr, page, vma->vm_page_prot);
1767 }
1768 EXPORT_SYMBOL(vm_insert_page);
1769
1770 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1772 {
1773         struct mm_struct *mm = vma->vm_mm;
1774         int retval;
1775         pte_t *pte, entry;
1776         spinlock_t *ptl;
1777
1778         retval = -ENOMEM;
1779         pte = get_locked_pte(mm, addr, &ptl);
1780         if (!pte)
1781                 goto out;
1782         retval = -EBUSY;
1783         if (!pte_none(*pte)) {
1784                 if (mkwrite) {
1785                         /*
1786                          * For read faults on private mappings the PFN passed
1787                          * in may not match the PFN we have mapped if the
1788                          * mapped PFN is a writeable COW page.  In the mkwrite
1789                          * case we are creating a writable PTE for a shared
1790                          * mapping and we expect the PFNs to match.
1791                          */
1792                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1793                                 goto out_unlock;
1794                         entry = *pte;
1795                         goto out_mkwrite;
1796                 } else
1797                         goto out_unlock;
1798         }
1799
1800         /* Ok, finally just insert the thing.. */
1801         if (pfn_t_devmap(pfn))
1802                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1803         else
1804                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1805
1806 out_mkwrite:
1807         if (mkwrite) {
1808                 entry = pte_mkyoung(entry);
1809                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1810         }
1811
1812         set_pte_at(mm, addr, pte, entry);
1813         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1814
1815         retval = 0;
1816 out_unlock:
1817         pte_unmap_unlock(pte, ptl);
1818 out:
1819         return retval;
1820 }
1821
1822 /**
1823  * vm_insert_pfn - insert single pfn into user vma
1824  * @vma: user vma to map to
1825  * @addr: target user address of this page
1826  * @pfn: source kernel pfn
1827  *
1828  * Similar to vm_insert_page, this allows drivers to insert individual pages
1829  * they've allocated into a user vma. Same comments apply.
1830  *
1831  * This function should only be called from a vm_ops->fault handler, and
1832  * in that case the handler should return NULL.
1833  *
1834  * vma cannot be a COW mapping.
1835  *
1836  * As this is called only for pages that do not currently exist, we
1837  * do not need to flush old virtual caches or the TLB.
1838  */
1839 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1840                         unsigned long pfn)
1841 {
1842         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1843 }
1844 EXPORT_SYMBOL(vm_insert_pfn);
1845
1846 /**
1847  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1848  * @vma: user vma to map to
1849  * @addr: target user address of this page
1850  * @pfn: source kernel pfn
1851  * @pgprot: pgprot flags for the inserted page
1852  *
1853  * This is exactly like vm_insert_pfn, except that it allows drivers to
1854  * to override pgprot on a per-page basis.
1855  *
1856  * This only makes sense for IO mappings, and it makes no sense for
1857  * cow mappings.  In general, using multiple vmas is preferable;
1858  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1859  * impractical.
1860  */
1861 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1862                         unsigned long pfn, pgprot_t pgprot)
1863 {
1864         int ret;
1865         /*
1866          * Technically, architectures with pte_special can avoid all these
1867          * restrictions (same for remap_pfn_range).  However we would like
1868          * consistency in testing and feature parity among all, so we should
1869          * try to keep these invariants in place for everybody.
1870          */
1871         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1872         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1873                                                 (VM_PFNMAP|VM_MIXEDMAP));
1874         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1875         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1876
1877         if (addr < vma->vm_start || addr >= vma->vm_end)
1878                 return -EFAULT;
1879
1880         if (!pfn_modify_allowed(pfn, pgprot))
1881                 return -EACCES;
1882
1883         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1884
1885         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1886                         false);
1887
1888         return ret;
1889 }
1890 EXPORT_SYMBOL(vm_insert_pfn_prot);
1891
1892 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1893 {
1894         /* these checks mirror the abort conditions in vm_normal_page */
1895         if (vma->vm_flags & VM_MIXEDMAP)
1896                 return true;
1897         if (pfn_t_devmap(pfn))
1898                 return true;
1899         if (pfn_t_special(pfn))
1900                 return true;
1901         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1902                 return true;
1903         return false;
1904 }
1905
1906 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1907                         pfn_t pfn, bool mkwrite)
1908 {
1909         pgprot_t pgprot = vma->vm_page_prot;
1910
1911         BUG_ON(!vm_mixed_ok(vma, pfn));
1912
1913         if (addr < vma->vm_start || addr >= vma->vm_end)
1914                 return -EFAULT;
1915
1916         track_pfn_insert(vma, &pgprot, pfn);
1917
1918         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1919                 return -EACCES;
1920
1921         /*
1922          * If we don't have pte special, then we have to use the pfn_valid()
1923          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1924          * refcount the page if pfn_valid is true (hence insert_page rather
1925          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1926          * without pte special, it would there be refcounted as a normal page.
1927          */
1928         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1929             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1930                 struct page *page;
1931
1932                 /*
1933                  * At this point we are committed to insert_page()
1934                  * regardless of whether the caller specified flags that
1935                  * result in pfn_t_has_page() == false.
1936                  */
1937                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1938                 return insert_page(vma, addr, page, pgprot);
1939         }
1940         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1941 }
1942
1943 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1944                         pfn_t pfn)
1945 {
1946         return __vm_insert_mixed(vma, addr, pfn, false);
1947
1948 }
1949 EXPORT_SYMBOL(vm_insert_mixed);
1950
1951 /*
1952  *  If the insertion of PTE failed because someone else already added a
1953  *  different entry in the mean time, we treat that as success as we assume
1954  *  the same entry was actually inserted.
1955  */
1956
1957 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1958                 unsigned long addr, pfn_t pfn)
1959 {
1960         int err;
1961
1962         err =  __vm_insert_mixed(vma, addr, pfn, true);
1963         if (err == -ENOMEM)
1964                 return VM_FAULT_OOM;
1965         if (err < 0 && err != -EBUSY)
1966                 return VM_FAULT_SIGBUS;
1967         return VM_FAULT_NOPAGE;
1968 }
1969 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1970
1971 /*
1972  * maps a range of physical memory into the requested pages. the old
1973  * mappings are removed. any references to nonexistent pages results
1974  * in null mappings (currently treated as "copy-on-access")
1975  */
1976 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1977                         unsigned long addr, unsigned long end,
1978                         unsigned long pfn, pgprot_t prot)
1979 {
1980         pte_t *pte;
1981         spinlock_t *ptl;
1982         int err = 0;
1983
1984         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985         if (!pte)
1986                 return -ENOMEM;
1987         arch_enter_lazy_mmu_mode();
1988         do {
1989                 BUG_ON(!pte_none(*pte));
1990                 if (!pfn_modify_allowed(pfn, prot)) {
1991                         err = -EACCES;
1992                         break;
1993                 }
1994                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1995                 pfn++;
1996         } while (pte++, addr += PAGE_SIZE, addr != end);
1997         arch_leave_lazy_mmu_mode();
1998         pte_unmap_unlock(pte - 1, ptl);
1999         return err;
2000 }
2001
2002 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2003                         unsigned long addr, unsigned long end,
2004                         unsigned long pfn, pgprot_t prot)
2005 {
2006         pmd_t *pmd;
2007         unsigned long next;
2008         int err;
2009
2010         pfn -= addr >> PAGE_SHIFT;
2011         pmd = pmd_alloc(mm, pud, addr);
2012         if (!pmd)
2013                 return -ENOMEM;
2014         VM_BUG_ON(pmd_trans_huge(*pmd));
2015         do {
2016                 next = pmd_addr_end(addr, end);
2017                 err = remap_pte_range(mm, pmd, addr, next,
2018                                 pfn + (addr >> PAGE_SHIFT), prot);
2019                 if (err)
2020                         return err;
2021         } while (pmd++, addr = next, addr != end);
2022         return 0;
2023 }
2024
2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2026                         unsigned long addr, unsigned long end,
2027                         unsigned long pfn, pgprot_t prot)
2028 {
2029         pud_t *pud;
2030         unsigned long next;
2031         int err;
2032
2033         pfn -= addr >> PAGE_SHIFT;
2034         pud = pud_alloc(mm, p4d, addr);
2035         if (!pud)
2036                 return -ENOMEM;
2037         do {
2038                 next = pud_addr_end(addr, end);
2039                 err = remap_pmd_range(mm, pud, addr, next,
2040                                 pfn + (addr >> PAGE_SHIFT), prot);
2041                 if (err)
2042                         return err;
2043         } while (pud++, addr = next, addr != end);
2044         return 0;
2045 }
2046
2047 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2048                         unsigned long addr, unsigned long end,
2049                         unsigned long pfn, pgprot_t prot)
2050 {
2051         p4d_t *p4d;
2052         unsigned long next;
2053         int err;
2054
2055         pfn -= addr >> PAGE_SHIFT;
2056         p4d = p4d_alloc(mm, pgd, addr);
2057         if (!p4d)
2058                 return -ENOMEM;
2059         do {
2060                 next = p4d_addr_end(addr, end);
2061                 err = remap_pud_range(mm, p4d, addr, next,
2062                                 pfn + (addr >> PAGE_SHIFT), prot);
2063                 if (err)
2064                         return err;
2065         } while (p4d++, addr = next, addr != end);
2066         return 0;
2067 }
2068
2069 /**
2070  * remap_pfn_range - remap kernel memory to userspace
2071  * @vma: user vma to map to
2072  * @addr: target user address to start at
2073  * @pfn: physical address of kernel memory
2074  * @size: size of map area
2075  * @prot: page protection flags for this mapping
2076  *
2077  *  Note: this is only safe if the mm semaphore is held when called.
2078  */
2079 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2080                     unsigned long pfn, unsigned long size, pgprot_t prot)
2081 {
2082         pgd_t *pgd;
2083         unsigned long next;
2084         unsigned long end = addr + PAGE_ALIGN(size);
2085         struct mm_struct *mm = vma->vm_mm;
2086         unsigned long remap_pfn = pfn;
2087         int err;
2088
2089         /*
2090          * Physically remapped pages are special. Tell the
2091          * rest of the world about it:
2092          *   VM_IO tells people not to look at these pages
2093          *      (accesses can have side effects).
2094          *   VM_PFNMAP tells the core MM that the base pages are just
2095          *      raw PFN mappings, and do not have a "struct page" associated
2096          *      with them.
2097          *   VM_DONTEXPAND
2098          *      Disable vma merging and expanding with mremap().
2099          *   VM_DONTDUMP
2100          *      Omit vma from core dump, even when VM_IO turned off.
2101          *
2102          * There's a horrible special case to handle copy-on-write
2103          * behaviour that some programs depend on. We mark the "original"
2104          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2105          * See vm_normal_page() for details.
2106          */
2107         if (is_cow_mapping(vma->vm_flags)) {
2108                 if (addr != vma->vm_start || end != vma->vm_end)
2109                         return -EINVAL;
2110                 vma->vm_pgoff = pfn;
2111         }
2112
2113         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2114         if (err)
2115                 return -EINVAL;
2116
2117         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2118
2119         BUG_ON(addr >= end);
2120         pfn -= addr >> PAGE_SHIFT;
2121         pgd = pgd_offset(mm, addr);
2122         flush_cache_range(vma, addr, end);
2123         do {
2124                 next = pgd_addr_end(addr, end);
2125                 err = remap_p4d_range(mm, pgd, addr, next,
2126                                 pfn + (addr >> PAGE_SHIFT), prot);
2127                 if (err)
2128                         break;
2129         } while (pgd++, addr = next, addr != end);
2130
2131         if (err)
2132                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2133
2134         return err;
2135 }
2136 EXPORT_SYMBOL(remap_pfn_range);
2137
2138 /**
2139  * vm_iomap_memory - remap memory to userspace
2140  * @vma: user vma to map to
2141  * @start: start of area
2142  * @len: size of area
2143  *
2144  * This is a simplified io_remap_pfn_range() for common driver use. The
2145  * driver just needs to give us the physical memory range to be mapped,
2146  * we'll figure out the rest from the vma information.
2147  *
2148  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2149  * whatever write-combining details or similar.
2150  */
2151 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2152 {
2153         unsigned long vm_len, pfn, pages;
2154
2155         /* Check that the physical memory area passed in looks valid */
2156         if (start + len < start)
2157                 return -EINVAL;
2158         /*
2159          * You *really* shouldn't map things that aren't page-aligned,
2160          * but we've historically allowed it because IO memory might
2161          * just have smaller alignment.
2162          */
2163         len += start & ~PAGE_MASK;
2164         pfn = start >> PAGE_SHIFT;
2165         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2166         if (pfn + pages < pfn)
2167                 return -EINVAL;
2168
2169         /* We start the mapping 'vm_pgoff' pages into the area */
2170         if (vma->vm_pgoff > pages)
2171                 return -EINVAL;
2172         pfn += vma->vm_pgoff;
2173         pages -= vma->vm_pgoff;
2174
2175         /* Can we fit all of the mapping? */
2176         vm_len = vma->vm_end - vma->vm_start;
2177         if (vm_len >> PAGE_SHIFT > pages)
2178                 return -EINVAL;
2179
2180         /* Ok, let it rip */
2181         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2182 }
2183 EXPORT_SYMBOL(vm_iomap_memory);
2184
2185 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2186                                      unsigned long addr, unsigned long end,
2187                                      pte_fn_t fn, void *data)
2188 {
2189         pte_t *pte;
2190         int err;
2191         pgtable_t token;
2192         spinlock_t *uninitialized_var(ptl);
2193
2194         pte = (mm == &init_mm) ?
2195                 pte_alloc_kernel(pmd, addr) :
2196                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2197         if (!pte)
2198                 return -ENOMEM;
2199
2200         BUG_ON(pmd_huge(*pmd));
2201
2202         arch_enter_lazy_mmu_mode();
2203
2204         token = pmd_pgtable(*pmd);
2205
2206         do {
2207                 err = fn(pte++, token, addr, data);
2208                 if (err)
2209                         break;
2210         } while (addr += PAGE_SIZE, addr != end);
2211
2212         arch_leave_lazy_mmu_mode();
2213
2214         if (mm != &init_mm)
2215                 pte_unmap_unlock(pte-1, ptl);
2216         return err;
2217 }
2218
2219 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2220                                      unsigned long addr, unsigned long end,
2221                                      pte_fn_t fn, void *data)
2222 {
2223         pmd_t *pmd;
2224         unsigned long next;
2225         int err;
2226
2227         BUG_ON(pud_huge(*pud));
2228
2229         pmd = pmd_alloc(mm, pud, addr);
2230         if (!pmd)
2231                 return -ENOMEM;
2232         do {
2233                 next = pmd_addr_end(addr, end);
2234                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2235                 if (err)
2236                         break;
2237         } while (pmd++, addr = next, addr != end);
2238         return err;
2239 }
2240
2241 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2242                                      unsigned long addr, unsigned long end,
2243                                      pte_fn_t fn, void *data)
2244 {
2245         pud_t *pud;
2246         unsigned long next;
2247         int err;
2248
2249         pud = pud_alloc(mm, p4d, addr);
2250         if (!pud)
2251                 return -ENOMEM;
2252         do {
2253                 next = pud_addr_end(addr, end);
2254                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2255                 if (err)
2256                         break;
2257         } while (pud++, addr = next, addr != end);
2258         return err;
2259 }
2260
2261 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2262                                      unsigned long addr, unsigned long end,
2263                                      pte_fn_t fn, void *data)
2264 {
2265         p4d_t *p4d;
2266         unsigned long next;
2267         int err;
2268
2269         p4d = p4d_alloc(mm, pgd, addr);
2270         if (!p4d)
2271                 return -ENOMEM;
2272         do {
2273                 next = p4d_addr_end(addr, end);
2274                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2275                 if (err)
2276                         break;
2277         } while (p4d++, addr = next, addr != end);
2278         return err;
2279 }
2280
2281 /*
2282  * Scan a region of virtual memory, filling in page tables as necessary
2283  * and calling a provided function on each leaf page table.
2284  */
2285 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2286                         unsigned long size, pte_fn_t fn, void *data)
2287 {
2288         pgd_t *pgd;
2289         unsigned long next;
2290         unsigned long end = addr + size;
2291         int err;
2292
2293         if (WARN_ON(addr >= end))
2294                 return -EINVAL;
2295
2296         pgd = pgd_offset(mm, addr);
2297         do {
2298                 next = pgd_addr_end(addr, end);
2299                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2300                 if (err)
2301                         break;
2302         } while (pgd++, addr = next, addr != end);
2303
2304         return err;
2305 }
2306 EXPORT_SYMBOL_GPL(apply_to_page_range);
2307
2308 /*
2309  * handle_pte_fault chooses page fault handler according to an entry which was
2310  * read non-atomically.  Before making any commitment, on those architectures
2311  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2312  * parts, do_swap_page must check under lock before unmapping the pte and
2313  * proceeding (but do_wp_page is only called after already making such a check;
2314  * and do_anonymous_page can safely check later on).
2315  */
2316 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2317                                 pte_t *page_table, pte_t orig_pte)
2318 {
2319         int same = 1;
2320 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2321         if (sizeof(pte_t) > sizeof(unsigned long)) {
2322                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2323                 spin_lock(ptl);
2324                 same = pte_same(*page_table, orig_pte);
2325                 spin_unlock(ptl);
2326         }
2327 #endif
2328         pte_unmap(page_table);
2329         return same;
2330 }
2331
2332 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2333 {
2334         debug_dma_assert_idle(src);
2335
2336         /*
2337          * If the source page was a PFN mapping, we don't have
2338          * a "struct page" for it. We do a best-effort copy by
2339          * just copying from the original user address. If that
2340          * fails, we just zero-fill it. Live with it.
2341          */
2342         if (unlikely(!src)) {
2343                 void *kaddr = kmap_atomic(dst);
2344                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2345
2346                 /*
2347                  * This really shouldn't fail, because the page is there
2348                  * in the page tables. But it might just be unreadable,
2349                  * in which case we just give up and fill the result with
2350                  * zeroes.
2351                  */
2352                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2353                         clear_page(kaddr);
2354                 kunmap_atomic(kaddr);
2355                 flush_dcache_page(dst);
2356         } else
2357                 copy_user_highpage(dst, src, va, vma);
2358 }
2359
2360 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2361 {
2362         struct file *vm_file = vma->vm_file;
2363
2364         if (vm_file)
2365                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2366
2367         /*
2368          * Special mappings (e.g. VDSO) do not have any file so fake
2369          * a default GFP_KERNEL for them.
2370          */
2371         return GFP_KERNEL;
2372 }
2373
2374 /*
2375  * Notify the address space that the page is about to become writable so that
2376  * it can prohibit this or wait for the page to get into an appropriate state.
2377  *
2378  * We do this without the lock held, so that it can sleep if it needs to.
2379  */
2380 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2381 {
2382         vm_fault_t ret;
2383         struct page *page = vmf->page;
2384         unsigned int old_flags = vmf->flags;
2385
2386         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2387
2388         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2389         /* Restore original flags so that caller is not surprised */
2390         vmf->flags = old_flags;
2391         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2392                 return ret;
2393         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2394                 lock_page(page);
2395                 if (!page->mapping) {
2396                         unlock_page(page);
2397                         return 0; /* retry */
2398                 }
2399                 ret |= VM_FAULT_LOCKED;
2400         } else
2401                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2402         return ret;
2403 }
2404
2405 /*
2406  * Handle dirtying of a page in shared file mapping on a write fault.
2407  *
2408  * The function expects the page to be locked and unlocks it.
2409  */
2410 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2411                                     struct page *page)
2412 {
2413         struct address_space *mapping;
2414         bool dirtied;
2415         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2416
2417         dirtied = set_page_dirty(page);
2418         VM_BUG_ON_PAGE(PageAnon(page), page);
2419         /*
2420          * Take a local copy of the address_space - page.mapping may be zeroed
2421          * by truncate after unlock_page().   The address_space itself remains
2422          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2423          * release semantics to prevent the compiler from undoing this copying.
2424          */
2425         mapping = page_rmapping(page);
2426         unlock_page(page);
2427
2428         if ((dirtied || page_mkwrite) && mapping) {
2429                 /*
2430                  * Some device drivers do not set page.mapping
2431                  * but still dirty their pages
2432                  */
2433                 balance_dirty_pages_ratelimited(mapping);
2434         }
2435
2436         if (!page_mkwrite)
2437                 file_update_time(vma->vm_file);
2438 }
2439
2440 /*
2441  * Handle write page faults for pages that can be reused in the current vma
2442  *
2443  * This can happen either due to the mapping being with the VM_SHARED flag,
2444  * or due to us being the last reference standing to the page. In either
2445  * case, all we need to do here is to mark the page as writable and update
2446  * any related book-keeping.
2447  */
2448 static inline void wp_page_reuse(struct vm_fault *vmf)
2449         __releases(vmf->ptl)
2450 {
2451         struct vm_area_struct *vma = vmf->vma;
2452         struct page *page = vmf->page;
2453         pte_t entry;
2454         /*
2455          * Clear the pages cpupid information as the existing
2456          * information potentially belongs to a now completely
2457          * unrelated process.
2458          */
2459         if (page)
2460                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2461
2462         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2463         entry = pte_mkyoung(vmf->orig_pte);
2464         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2465         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2466                 update_mmu_cache(vma, vmf->address, vmf->pte);
2467         pte_unmap_unlock(vmf->pte, vmf->ptl);
2468 }
2469
2470 /*
2471  * Handle the case of a page which we actually need to copy to a new page.
2472  *
2473  * Called with mmap_sem locked and the old page referenced, but
2474  * without the ptl held.
2475  *
2476  * High level logic flow:
2477  *
2478  * - Allocate a page, copy the content of the old page to the new one.
2479  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2480  * - Take the PTL. If the pte changed, bail out and release the allocated page
2481  * - If the pte is still the way we remember it, update the page table and all
2482  *   relevant references. This includes dropping the reference the page-table
2483  *   held to the old page, as well as updating the rmap.
2484  * - In any case, unlock the PTL and drop the reference we took to the old page.
2485  */
2486 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2487 {
2488         struct vm_area_struct *vma = vmf->vma;
2489         struct mm_struct *mm = vma->vm_mm;
2490         struct page *old_page = vmf->page;
2491         struct page *new_page = NULL;
2492         pte_t entry;
2493         int page_copied = 0;
2494         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2495         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2496         struct mem_cgroup *memcg;
2497
2498         if (unlikely(anon_vma_prepare(vma)))
2499                 goto oom;
2500
2501         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2502                 new_page = alloc_zeroed_user_highpage_movable(vma,
2503                                                               vmf->address);
2504                 if (!new_page)
2505                         goto oom;
2506         } else {
2507                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2508                                 vmf->address);
2509                 if (!new_page)
2510                         goto oom;
2511                 cow_user_page(new_page, old_page, vmf->address, vma);
2512         }
2513
2514         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2515                 goto oom_free_new;
2516
2517         __SetPageUptodate(new_page);
2518
2519         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2520
2521         /*
2522          * Re-check the pte - we dropped the lock
2523          */
2524         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2525         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2526                 if (old_page) {
2527                         if (!PageAnon(old_page)) {
2528                                 dec_mm_counter_fast(mm,
2529                                                 mm_counter_file(old_page));
2530                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2531                         }
2532                 } else {
2533                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2534                 }
2535                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2536                 entry = mk_pte(new_page, vma->vm_page_prot);
2537                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2538                 /*
2539                  * Clear the pte entry and flush it first, before updating the
2540                  * pte with the new entry. This will avoid a race condition
2541                  * seen in the presence of one thread doing SMC and another
2542                  * thread doing COW.
2543                  */
2544                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2545                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2546                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2547                 lru_cache_add_active_or_unevictable(new_page, vma);
2548                 /*
2549                  * We call the notify macro here because, when using secondary
2550                  * mmu page tables (such as kvm shadow page tables), we want the
2551                  * new page to be mapped directly into the secondary page table.
2552                  */
2553                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2554                 update_mmu_cache(vma, vmf->address, vmf->pte);
2555                 if (old_page) {
2556                         /*
2557                          * Only after switching the pte to the new page may
2558                          * we remove the mapcount here. Otherwise another
2559                          * process may come and find the rmap count decremented
2560                          * before the pte is switched to the new page, and
2561                          * "reuse" the old page writing into it while our pte
2562                          * here still points into it and can be read by other
2563                          * threads.
2564                          *
2565                          * The critical issue is to order this
2566                          * page_remove_rmap with the ptp_clear_flush above.
2567                          * Those stores are ordered by (if nothing else,)
2568                          * the barrier present in the atomic_add_negative
2569                          * in page_remove_rmap.
2570                          *
2571                          * Then the TLB flush in ptep_clear_flush ensures that
2572                          * no process can access the old page before the
2573                          * decremented mapcount is visible. And the old page
2574                          * cannot be reused until after the decremented
2575                          * mapcount is visible. So transitively, TLBs to
2576                          * old page will be flushed before it can be reused.
2577                          */
2578                         page_remove_rmap(old_page, false);
2579                 }
2580
2581                 /* Free the old page.. */
2582                 new_page = old_page;
2583                 page_copied = 1;
2584         } else {
2585                 mem_cgroup_cancel_charge(new_page, memcg, false);
2586         }
2587
2588         if (new_page)
2589                 put_page(new_page);
2590
2591         pte_unmap_unlock(vmf->pte, vmf->ptl);
2592         /*
2593          * No need to double call mmu_notifier->invalidate_range() callback as
2594          * the above ptep_clear_flush_notify() did already call it.
2595          */
2596         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2597         if (old_page) {
2598                 /*
2599                  * Don't let another task, with possibly unlocked vma,
2600                  * keep the mlocked page.
2601                  */
2602                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2603                         lock_page(old_page);    /* LRU manipulation */
2604                         if (PageMlocked(old_page))
2605                                 munlock_vma_page(old_page);
2606                         unlock_page(old_page);
2607                 }
2608                 put_page(old_page);
2609         }
2610         return page_copied ? VM_FAULT_WRITE : 0;
2611 oom_free_new:
2612         put_page(new_page);
2613 oom:
2614         if (old_page)
2615                 put_page(old_page);
2616         return VM_FAULT_OOM;
2617 }
2618
2619 /**
2620  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2621  *                        writeable once the page is prepared
2622  *
2623  * @vmf: structure describing the fault
2624  *
2625  * This function handles all that is needed to finish a write page fault in a
2626  * shared mapping due to PTE being read-only once the mapped page is prepared.
2627  * It handles locking of PTE and modifying it. The function returns
2628  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2629  * lock.
2630  *
2631  * The function expects the page to be locked or other protection against
2632  * concurrent faults / writeback (such as DAX radix tree locks).
2633  */
2634 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2635 {
2636         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2637         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2638                                        &vmf->ptl);
2639         /*
2640          * We might have raced with another page fault while we released the
2641          * pte_offset_map_lock.
2642          */
2643         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2644                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2645                 return VM_FAULT_NOPAGE;
2646         }
2647         wp_page_reuse(vmf);
2648         return 0;
2649 }
2650
2651 /*
2652  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2653  * mapping
2654  */
2655 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2656 {
2657         struct vm_area_struct *vma = vmf->vma;
2658
2659         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2660                 vm_fault_t ret;
2661
2662                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2663                 vmf->flags |= FAULT_FLAG_MKWRITE;
2664                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2665                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2666                         return ret;
2667                 return finish_mkwrite_fault(vmf);
2668         }
2669         wp_page_reuse(vmf);
2670         return VM_FAULT_WRITE;
2671 }
2672
2673 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2674         __releases(vmf->ptl)
2675 {
2676         struct vm_area_struct *vma = vmf->vma;
2677
2678         get_page(vmf->page);
2679
2680         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2681                 vm_fault_t tmp;
2682
2683                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2684                 tmp = do_page_mkwrite(vmf);
2685                 if (unlikely(!tmp || (tmp &
2686                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2687                         put_page(vmf->page);
2688                         return tmp;
2689                 }
2690                 tmp = finish_mkwrite_fault(vmf);
2691                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692                         unlock_page(vmf->page);
2693                         put_page(vmf->page);
2694                         return tmp;
2695                 }
2696         } else {
2697                 wp_page_reuse(vmf);
2698                 lock_page(vmf->page);
2699         }
2700         fault_dirty_shared_page(vma, vmf->page);
2701         put_page(vmf->page);
2702
2703         return VM_FAULT_WRITE;
2704 }
2705
2706 /*
2707  * This routine handles present pages, when users try to write
2708  * to a shared page. It is done by copying the page to a new address
2709  * and decrementing the shared-page counter for the old page.
2710  *
2711  * Note that this routine assumes that the protection checks have been
2712  * done by the caller (the low-level page fault routine in most cases).
2713  * Thus we can safely just mark it writable once we've done any necessary
2714  * COW.
2715  *
2716  * We also mark the page dirty at this point even though the page will
2717  * change only once the write actually happens. This avoids a few races,
2718  * and potentially makes it more efficient.
2719  *
2720  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2721  * but allow concurrent faults), with pte both mapped and locked.
2722  * We return with mmap_sem still held, but pte unmapped and unlocked.
2723  */
2724 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2725         __releases(vmf->ptl)
2726 {
2727         struct vm_area_struct *vma = vmf->vma;
2728
2729         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2730         if (!vmf->page) {
2731                 /*
2732                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2733                  * VM_PFNMAP VMA.
2734                  *
2735                  * We should not cow pages in a shared writeable mapping.
2736                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2737                  */
2738                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2739                                      (VM_WRITE|VM_SHARED))
2740                         return wp_pfn_shared(vmf);
2741
2742                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2743                 return wp_page_copy(vmf);
2744         }
2745
2746         /*
2747          * Take out anonymous pages first, anonymous shared vmas are
2748          * not dirty accountable.
2749          */
2750         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2751                 int total_map_swapcount;
2752                 if (!trylock_page(vmf->page)) {
2753                         get_page(vmf->page);
2754                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2755                         lock_page(vmf->page);
2756                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2757                                         vmf->address, &vmf->ptl);
2758                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2759                                 unlock_page(vmf->page);
2760                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2761                                 put_page(vmf->page);
2762                                 return 0;
2763                         }
2764                         put_page(vmf->page);
2765                 }
2766                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2767                         if (total_map_swapcount == 1) {
2768                                 /*
2769                                  * The page is all ours. Move it to
2770                                  * our anon_vma so the rmap code will
2771                                  * not search our parent or siblings.
2772                                  * Protected against the rmap code by
2773                                  * the page lock.
2774                                  */
2775                                 page_move_anon_rmap(vmf->page, vma);
2776                         }
2777                         unlock_page(vmf->page);
2778                         wp_page_reuse(vmf);
2779                         return VM_FAULT_WRITE;
2780                 }
2781                 unlock_page(vmf->page);
2782         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2783                                         (VM_WRITE|VM_SHARED))) {
2784                 return wp_page_shared(vmf);
2785         }
2786
2787         /*
2788          * Ok, we need to copy. Oh, well..
2789          */
2790         get_page(vmf->page);
2791
2792         pte_unmap_unlock(vmf->pte, vmf->ptl);
2793         return wp_page_copy(vmf);
2794 }
2795
2796 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2797                 unsigned long start_addr, unsigned long end_addr,
2798                 struct zap_details *details)
2799 {
2800         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2801 }
2802
2803 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2804                                             struct zap_details *details)
2805 {
2806         struct vm_area_struct *vma;
2807         pgoff_t vba, vea, zba, zea;
2808
2809         vma_interval_tree_foreach(vma, root,
2810                         details->first_index, details->last_index) {
2811
2812                 vba = vma->vm_pgoff;
2813                 vea = vba + vma_pages(vma) - 1;
2814                 zba = details->first_index;
2815                 if (zba < vba)
2816                         zba = vba;
2817                 zea = details->last_index;
2818                 if (zea > vea)
2819                         zea = vea;
2820
2821                 unmap_mapping_range_vma(vma,
2822                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2823                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2824                                 details);
2825         }
2826 }
2827
2828 /**
2829  * unmap_mapping_pages() - Unmap pages from processes.
2830  * @mapping: The address space containing pages to be unmapped.
2831  * @start: Index of first page to be unmapped.
2832  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2833  * @even_cows: Whether to unmap even private COWed pages.
2834  *
2835  * Unmap the pages in this address space from any userspace process which
2836  * has them mmaped.  Generally, you want to remove COWed pages as well when
2837  * a file is being truncated, but not when invalidating pages from the page
2838  * cache.
2839  */
2840 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2841                 pgoff_t nr, bool even_cows)
2842 {
2843         struct zap_details details = { };
2844
2845         details.check_mapping = even_cows ? NULL : mapping;
2846         details.first_index = start;
2847         details.last_index = start + nr - 1;
2848         if (details.last_index < details.first_index)
2849                 details.last_index = ULONG_MAX;
2850
2851         i_mmap_lock_write(mapping);
2852         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2853                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2854         i_mmap_unlock_write(mapping);
2855 }
2856
2857 /**
2858  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2859  * address_space corresponding to the specified byte range in the underlying
2860  * file.
2861  *
2862  * @mapping: the address space containing mmaps to be unmapped.
2863  * @holebegin: byte in first page to unmap, relative to the start of
2864  * the underlying file.  This will be rounded down to a PAGE_SIZE
2865  * boundary.  Note that this is different from truncate_pagecache(), which
2866  * must keep the partial page.  In contrast, we must get rid of
2867  * partial pages.
2868  * @holelen: size of prospective hole in bytes.  This will be rounded
2869  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2870  * end of the file.
2871  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2872  * but 0 when invalidating pagecache, don't throw away private data.
2873  */
2874 void unmap_mapping_range(struct address_space *mapping,
2875                 loff_t const holebegin, loff_t const holelen, int even_cows)
2876 {
2877         pgoff_t hba = holebegin >> PAGE_SHIFT;
2878         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2879
2880         /* Check for overflow. */
2881         if (sizeof(holelen) > sizeof(hlen)) {
2882                 long long holeend =
2883                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2884                 if (holeend & ~(long long)ULONG_MAX)
2885                         hlen = ULONG_MAX - hba + 1;
2886         }
2887
2888         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2889 }
2890 EXPORT_SYMBOL(unmap_mapping_range);
2891
2892 /*
2893  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894  * but allow concurrent faults), and pte mapped but not yet locked.
2895  * We return with pte unmapped and unlocked.
2896  *
2897  * We return with the mmap_sem locked or unlocked in the same cases
2898  * as does filemap_fault().
2899  */
2900 vm_fault_t do_swap_page(struct vm_fault *vmf)
2901 {
2902         struct vm_area_struct *vma = vmf->vma;
2903         struct page *page = NULL, *swapcache;
2904         struct mem_cgroup *memcg;
2905         swp_entry_t entry;
2906         pte_t pte;
2907         int locked;
2908         int exclusive = 0;
2909         vm_fault_t ret = 0;
2910
2911         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2912                 goto out;
2913
2914         entry = pte_to_swp_entry(vmf->orig_pte);
2915         if (unlikely(non_swap_entry(entry))) {
2916                 if (is_migration_entry(entry)) {
2917                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2918                                              vmf->address);
2919                 } else if (is_device_private_entry(entry)) {
2920                         /*
2921                          * For un-addressable device memory we call the pgmap
2922                          * fault handler callback. The callback must migrate
2923                          * the page back to some CPU accessible page.
2924                          */
2925                         ret = device_private_entry_fault(vma, vmf->address, entry,
2926                                                  vmf->flags, vmf->pmd);
2927                 } else if (is_hwpoison_entry(entry)) {
2928                         ret = VM_FAULT_HWPOISON;
2929                 } else {
2930                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2931                         ret = VM_FAULT_SIGBUS;
2932                 }
2933                 goto out;
2934         }
2935
2936
2937         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2938         page = lookup_swap_cache(entry, vma, vmf->address);
2939         swapcache = page;
2940
2941         if (!page) {
2942                 struct swap_info_struct *si = swp_swap_info(entry);
2943
2944                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2945                                 __swap_count(si, entry) == 1) {
2946                         /* skip swapcache */
2947                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2948                                                         vmf->address);
2949                         if (page) {
2950                                 __SetPageLocked(page);
2951                                 __SetPageSwapBacked(page);
2952                                 set_page_private(page, entry.val);
2953                                 lru_cache_add_anon(page);
2954                                 swap_readpage(page, true);
2955                         }
2956                 } else {
2957                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2958                                                 vmf);
2959                         swapcache = page;
2960                 }
2961
2962                 if (!page) {
2963                         /*
2964                          * Back out if somebody else faulted in this pte
2965                          * while we released the pte lock.
2966                          */
2967                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2968                                         vmf->address, &vmf->ptl);
2969                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2970                                 ret = VM_FAULT_OOM;
2971                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972                         goto unlock;
2973                 }
2974
2975                 /* Had to read the page from swap area: Major fault */
2976                 ret = VM_FAULT_MAJOR;
2977                 count_vm_event(PGMAJFAULT);
2978                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2979         } else if (PageHWPoison(page)) {
2980                 /*
2981                  * hwpoisoned dirty swapcache pages are kept for killing
2982                  * owner processes (which may be unknown at hwpoison time)
2983                  */
2984                 ret = VM_FAULT_HWPOISON;
2985                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986                 goto out_release;
2987         }
2988
2989         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2990
2991         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992         if (!locked) {
2993                 ret |= VM_FAULT_RETRY;
2994                 goto out_release;
2995         }
2996
2997         /*
2998          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999          * release the swapcache from under us.  The page pin, and pte_same
3000          * test below, are not enough to exclude that.  Even if it is still
3001          * swapcache, we need to check that the page's swap has not changed.
3002          */
3003         if (unlikely((!PageSwapCache(page) ||
3004                         page_private(page) != entry.val)) && swapcache)
3005                 goto out_page;
3006
3007         page = ksm_might_need_to_copy(page, vma, vmf->address);
3008         if (unlikely(!page)) {
3009                 ret = VM_FAULT_OOM;
3010                 page = swapcache;
3011                 goto out_page;
3012         }
3013
3014         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3015                                         &memcg, false)) {
3016                 ret = VM_FAULT_OOM;
3017                 goto out_page;
3018         }
3019
3020         /*
3021          * Back out if somebody else already faulted in this pte.
3022          */
3023         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3024                         &vmf->ptl);
3025         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3026                 goto out_nomap;
3027
3028         if (unlikely(!PageUptodate(page))) {
3029                 ret = VM_FAULT_SIGBUS;
3030                 goto out_nomap;
3031         }
3032
3033         /*
3034          * The page isn't present yet, go ahead with the fault.
3035          *
3036          * Be careful about the sequence of operations here.
3037          * To get its accounting right, reuse_swap_page() must be called
3038          * while the page is counted on swap but not yet in mapcount i.e.
3039          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3040          * must be called after the swap_free(), or it will never succeed.
3041          */
3042
3043         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3044         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3045         pte = mk_pte(page, vma->vm_page_prot);
3046         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3047                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3048                 vmf->flags &= ~FAULT_FLAG_WRITE;
3049                 ret |= VM_FAULT_WRITE;
3050                 exclusive = RMAP_EXCLUSIVE;
3051         }
3052         flush_icache_page(vma, page);
3053         if (pte_swp_soft_dirty(vmf->orig_pte))
3054                 pte = pte_mksoft_dirty(pte);
3055         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3056         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3057         vmf->orig_pte = pte;
3058
3059         /* ksm created a completely new copy */
3060         if (unlikely(page != swapcache && swapcache)) {
3061                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3062                 mem_cgroup_commit_charge(page, memcg, false, false);
3063                 lru_cache_add_active_or_unevictable(page, vma);
3064         } else {
3065                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3066                 mem_cgroup_commit_charge(page, memcg, true, false);
3067                 activate_page(page);
3068         }
3069
3070         swap_free(entry);
3071         if (mem_cgroup_swap_full(page) ||
3072             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3073                 try_to_free_swap(page);
3074         unlock_page(page);
3075         if (page != swapcache && swapcache) {
3076                 /*
3077                  * Hold the lock to avoid the swap entry to be reused
3078                  * until we take the PT lock for the pte_same() check
3079                  * (to avoid false positives from pte_same). For
3080                  * further safety release the lock after the swap_free
3081                  * so that the swap count won't change under a
3082                  * parallel locked swapcache.
3083                  */
3084                 unlock_page(swapcache);
3085                 put_page(swapcache);
3086         }
3087
3088         if (vmf->flags & FAULT_FLAG_WRITE) {
3089                 ret |= do_wp_page(vmf);
3090                 if (ret & VM_FAULT_ERROR)
3091                         ret &= VM_FAULT_ERROR;
3092                 goto out;
3093         }
3094
3095         /* No need to invalidate - it was non-present before */
3096         update_mmu_cache(vma, vmf->address, vmf->pte);
3097 unlock:
3098         pte_unmap_unlock(vmf->pte, vmf->ptl);
3099 out:
3100         return ret;
3101 out_nomap:
3102         mem_cgroup_cancel_charge(page, memcg, false);
3103         pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 out_page:
3105         unlock_page(page);
3106 out_release:
3107         put_page(page);
3108         if (page != swapcache && swapcache) {
3109                 unlock_page(swapcache);
3110                 put_page(swapcache);
3111         }
3112         return ret;
3113 }
3114
3115 /*
3116  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117  * but allow concurrent faults), and pte mapped but not yet locked.
3118  * We return with mmap_sem still held, but pte unmapped and unlocked.
3119  */
3120 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3121 {
3122         struct vm_area_struct *vma = vmf->vma;
3123         struct mem_cgroup *memcg;
3124         struct page *page;
3125         vm_fault_t ret = 0;
3126         pte_t entry;
3127
3128         /* File mapping without ->vm_ops ? */
3129         if (vma->vm_flags & VM_SHARED)
3130                 return VM_FAULT_SIGBUS;
3131
3132         /*
3133          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3134          * pte_offset_map() on pmds where a huge pmd might be created
3135          * from a different thread.
3136          *
3137          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3138          * parallel threads are excluded by other means.
3139          *
3140          * Here we only have down_read(mmap_sem).
3141          */
3142         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3143                 return VM_FAULT_OOM;
3144
3145         /* See the comment in pte_alloc_one_map() */
3146         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3147                 return 0;
3148
3149         /* Use the zero-page for reads */
3150         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3151                         !mm_forbids_zeropage(vma->vm_mm)) {
3152                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3153                                                 vma->vm_page_prot));
3154                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3155                                 vmf->address, &vmf->ptl);
3156                 if (!pte_none(*vmf->pte))
3157                         goto unlock;
3158                 ret = check_stable_address_space(vma->vm_mm);
3159                 if (ret)
3160                         goto unlock;
3161                 /* Deliver the page fault to userland, check inside PT lock */
3162                 if (userfaultfd_missing(vma)) {
3163                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3164                         return handle_userfault(vmf, VM_UFFD_MISSING);
3165                 }
3166                 goto setpte;
3167         }
3168
3169         /* Allocate our own private page. */
3170         if (unlikely(anon_vma_prepare(vma)))
3171                 goto oom;
3172         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3173         if (!page)
3174                 goto oom;
3175
3176         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3177                                         false))
3178                 goto oom_free_page;
3179
3180         /*
3181          * The memory barrier inside __SetPageUptodate makes sure that
3182          * preceeding stores to the page contents become visible before
3183          * the set_pte_at() write.
3184          */
3185         __SetPageUptodate(page);
3186
3187         entry = mk_pte(page, vma->vm_page_prot);
3188         if (vma->vm_flags & VM_WRITE)
3189                 entry = pte_mkwrite(pte_mkdirty(entry));
3190
3191         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3192                         &vmf->ptl);
3193         if (!pte_none(*vmf->pte))
3194                 goto release;
3195
3196         ret = check_stable_address_space(vma->vm_mm);
3197         if (ret)
3198                 goto release;
3199
3200         /* Deliver the page fault to userland, check inside PT lock */
3201         if (userfaultfd_missing(vma)) {
3202                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3203                 mem_cgroup_cancel_charge(page, memcg, false);
3204                 put_page(page);
3205                 return handle_userfault(vmf, VM_UFFD_MISSING);
3206         }
3207
3208         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3209         page_add_new_anon_rmap(page, vma, vmf->address, false);
3210         mem_cgroup_commit_charge(page, memcg, false, false);
3211         lru_cache_add_active_or_unevictable(page, vma);
3212 setpte:
3213         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3214
3215         /* No need to invalidate - it was non-present before */
3216         update_mmu_cache(vma, vmf->address, vmf->pte);
3217 unlock:
3218         pte_unmap_unlock(vmf->pte, vmf->ptl);
3219         return ret;
3220 release:
3221         mem_cgroup_cancel_charge(page, memcg, false);
3222         put_page(page);
3223         goto unlock;
3224 oom_free_page:
3225         put_page(page);
3226 oom:
3227         return VM_FAULT_OOM;
3228 }
3229
3230 /*
3231  * The mmap_sem must have been held on entry, and may have been
3232  * released depending on flags and vma->vm_ops->fault() return value.
3233  * See filemap_fault() and __lock_page_retry().
3234  */
3235 static vm_fault_t __do_fault(struct vm_fault *vmf)
3236 {
3237         struct vm_area_struct *vma = vmf->vma;
3238         vm_fault_t ret;
3239
3240         ret = vma->vm_ops->fault(vmf);
3241         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3242                             VM_FAULT_DONE_COW)))
3243                 return ret;
3244
3245         if (unlikely(PageHWPoison(vmf->page))) {
3246                 if (ret & VM_FAULT_LOCKED)
3247                         unlock_page(vmf->page);
3248                 put_page(vmf->page);
3249                 vmf->page = NULL;
3250                 return VM_FAULT_HWPOISON;
3251         }
3252
3253         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254                 lock_page(vmf->page);
3255         else
3256                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3257
3258         return ret;
3259 }
3260
3261 /*
3262  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3266  */
3267 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3268 {
3269         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3270 }
3271
3272 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3273 {
3274         struct vm_area_struct *vma = vmf->vma;
3275
3276         if (!pmd_none(*vmf->pmd))
3277                 goto map_pte;
3278         if (vmf->prealloc_pte) {
3279                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3280                 if (unlikely(!pmd_none(*vmf->pmd))) {
3281                         spin_unlock(vmf->ptl);
3282                         goto map_pte;
3283                 }
3284
3285                 mm_inc_nr_ptes(vma->vm_mm);
3286                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3287                 spin_unlock(vmf->ptl);
3288                 vmf->prealloc_pte = NULL;
3289         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3290                 return VM_FAULT_OOM;
3291         }
3292 map_pte:
3293         /*
3294          * If a huge pmd materialized under us just retry later.  Use
3295          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298          * running immediately after a huge pmd fault in a different thread of
3299          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300          * All we have to ensure is that it is a regular pmd that we can walk
3301          * with pte_offset_map() and we can do that through an atomic read in
3302          * C, which is what pmd_trans_unstable() provides.
3303          */
3304         if (pmd_devmap_trans_unstable(vmf->pmd))
3305                 return VM_FAULT_NOPAGE;
3306
3307         /*
3308          * At this point we know that our vmf->pmd points to a page of ptes
3309          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3311          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312          * be valid and we will re-check to make sure the vmf->pte isn't
3313          * pte_none() under vmf->ptl protection when we return to
3314          * alloc_set_pte().
3315          */
3316         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3317                         &vmf->ptl);
3318         return 0;
3319 }
3320
3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3322
3323 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3324 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3325                 unsigned long haddr)
3326 {
3327         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3328                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3329                 return false;
3330         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3331                 return false;
3332         return true;
3333 }
3334
3335 static void deposit_prealloc_pte(struct vm_fault *vmf)
3336 {
3337         struct vm_area_struct *vma = vmf->vma;
3338
3339         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3340         /*
3341          * We are going to consume the prealloc table,
3342          * count that as nr_ptes.
3343          */
3344         mm_inc_nr_ptes(vma->vm_mm);
3345         vmf->prealloc_pte = NULL;
3346 }
3347
3348 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3349 {
3350         struct vm_area_struct *vma = vmf->vma;
3351         bool write = vmf->flags & FAULT_FLAG_WRITE;
3352         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3353         pmd_t entry;
3354         int i;
3355         vm_fault_t ret;
3356
3357         if (!transhuge_vma_suitable(vma, haddr))
3358                 return VM_FAULT_FALLBACK;
3359
3360         ret = VM_FAULT_FALLBACK;
3361         page = compound_head(page);
3362
3363         /*
3364          * Archs like ppc64 need additonal space to store information
3365          * related to pte entry. Use the preallocated table for that.
3366          */
3367         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3368                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3369                 if (!vmf->prealloc_pte)
3370                         return VM_FAULT_OOM;
3371                 smp_wmb(); /* See comment in __pte_alloc() */
3372         }
3373
3374         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3375         if (unlikely(!pmd_none(*vmf->pmd)))
3376                 goto out;
3377
3378         for (i = 0; i < HPAGE_PMD_NR; i++)
3379                 flush_icache_page(vma, page + i);
3380
3381         entry = mk_huge_pmd(page, vma->vm_page_prot);
3382         if (write)
3383                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3384
3385         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3386         page_add_file_rmap(page, true);
3387         /*
3388          * deposit and withdraw with pmd lock held
3389          */
3390         if (arch_needs_pgtable_deposit())
3391                 deposit_prealloc_pte(vmf);
3392
3393         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3394
3395         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3396
3397         /* fault is handled */
3398         ret = 0;
3399         count_vm_event(THP_FILE_MAPPED);
3400 out:
3401         spin_unlock(vmf->ptl);
3402         return ret;
3403 }
3404 #else
3405 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3406 {
3407         BUILD_BUG();
3408         return 0;
3409 }
3410 #endif
3411
3412 /**
3413  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3414  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3415  *
3416  * @vmf: fault environment
3417  * @memcg: memcg to charge page (only for private mappings)
3418  * @page: page to map
3419  *
3420  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3421  * return.
3422  *
3423  * Target users are page handler itself and implementations of
3424  * vm_ops->map_pages.
3425  */
3426 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3427                 struct page *page)
3428 {
3429         struct vm_area_struct *vma = vmf->vma;
3430         bool write = vmf->flags & FAULT_FLAG_WRITE;
3431         pte_t entry;
3432         vm_fault_t ret;
3433
3434         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3435                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3436                 /* THP on COW? */
3437                 VM_BUG_ON_PAGE(memcg, page);
3438
3439                 ret = do_set_pmd(vmf, page);
3440                 if (ret != VM_FAULT_FALLBACK)
3441                         return ret;
3442         }
3443
3444         if (!vmf->pte) {
3445                 ret = pte_alloc_one_map(vmf);
3446                 if (ret)
3447                         return ret;
3448         }
3449
3450         /* Re-check under ptl */
3451         if (unlikely(!pte_none(*vmf->pte)))
3452                 return VM_FAULT_NOPAGE;
3453
3454         flush_icache_page(vma, page);
3455         entry = mk_pte(page, vma->vm_page_prot);
3456         if (write)
3457                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3458         /* copy-on-write page */
3459         if (write && !(vma->vm_flags & VM_SHARED)) {
3460                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3461                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3462                 mem_cgroup_commit_charge(page, memcg, false, false);
3463                 lru_cache_add_active_or_unevictable(page, vma);
3464         } else {
3465                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3466                 page_add_file_rmap(page, false);
3467         }
3468         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3469
3470         /* no need to invalidate: a not-present page won't be cached */
3471         update_mmu_cache(vma, vmf->address, vmf->pte);
3472
3473         return 0;
3474 }
3475
3476
3477 /**
3478  * finish_fault - finish page fault once we have prepared the page to fault
3479  *
3480  * @vmf: structure describing the fault
3481  *
3482  * This function handles all that is needed to finish a page fault once the
3483  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3484  * given page, adds reverse page mapping, handles memcg charges and LRU
3485  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3486  * error.
3487  *
3488  * The function expects the page to be locked and on success it consumes a
3489  * reference of a page being mapped (for the PTE which maps it).
3490  */
3491 vm_fault_t finish_fault(struct vm_fault *vmf)
3492 {
3493         struct page *page;
3494         vm_fault_t ret = 0;
3495
3496         /* Did we COW the page? */
3497         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3498             !(vmf->vma->vm_flags & VM_SHARED))
3499                 page = vmf->cow_page;
3500         else
3501                 page = vmf->page;
3502
3503         /*
3504          * check even for read faults because we might have lost our CoWed
3505          * page
3506          */
3507         if (!(vmf->vma->vm_flags & VM_SHARED))
3508                 ret = check_stable_address_space(vmf->vma->vm_mm);
3509         if (!ret)
3510                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3511         if (vmf->pte)
3512                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513         return ret;
3514 }
3515
3516 static unsigned long fault_around_bytes __read_mostly =
3517         rounddown_pow_of_two(65536);
3518
3519 #ifdef CONFIG_DEBUG_FS
3520 static int fault_around_bytes_get(void *data, u64 *val)
3521 {
3522         *val = fault_around_bytes;
3523         return 0;
3524 }
3525
3526 /*
3527  * fault_around_bytes must be rounded down to the nearest page order as it's
3528  * what do_fault_around() expects to see.
3529  */
3530 static int fault_around_bytes_set(void *data, u64 val)
3531 {
3532         if (val / PAGE_SIZE > PTRS_PER_PTE)
3533                 return -EINVAL;
3534         if (val > PAGE_SIZE)
3535                 fault_around_bytes = rounddown_pow_of_two(val);
3536         else
3537                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3538         return 0;
3539 }
3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3541                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3542
3543 static int __init fault_around_debugfs(void)
3544 {
3545         void *ret;
3546
3547         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548                         &fault_around_bytes_fops);
3549         if (!ret)
3550                 pr_warn("Failed to create fault_around_bytes in debugfs");
3551         return 0;
3552 }
3553 late_initcall(fault_around_debugfs);
3554 #endif
3555
3556 /*
3557  * do_fault_around() tries to map few pages around the fault address. The hope
3558  * is that the pages will be needed soon and this will lower the number of
3559  * faults to handle.
3560  *
3561  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562  * not ready to be mapped: not up-to-date, locked, etc.
3563  *
3564  * This function is called with the page table lock taken. In the split ptlock
3565  * case the page table lock only protects only those entries which belong to
3566  * the page table corresponding to the fault address.
3567  *
3568  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3569  * only once.
3570  *
3571  * fault_around_bytes defines how many bytes we'll try to map.
3572  * do_fault_around() expects it to be set to a power of two less than or equal
3573  * to PTRS_PER_PTE.
3574  *
3575  * The virtual address of the area that we map is naturally aligned to
3576  * fault_around_bytes rounded down to the machine page size
3577  * (and therefore to page order).  This way it's easier to guarantee
3578  * that we don't cross page table boundaries.
3579  */
3580 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3581 {
3582         unsigned long address = vmf->address, nr_pages, mask;
3583         pgoff_t start_pgoff = vmf->pgoff;
3584         pgoff_t end_pgoff;
3585         int off;
3586         vm_fault_t ret = 0;
3587
3588         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3589         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3590
3591         vmf->address = max(address & mask, vmf->vma->vm_start);
3592         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3593         start_pgoff -= off;
3594
3595         /*
3596          *  end_pgoff is either the end of the page table, the end of
3597          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3598          */
3599         end_pgoff = start_pgoff -
3600                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3601                 PTRS_PER_PTE - 1;
3602         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3603                         start_pgoff + nr_pages - 1);
3604
3605         if (pmd_none(*vmf->pmd)) {
3606                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3607                                                   vmf->address);
3608                 if (!vmf->prealloc_pte)
3609                         goto out;
3610                 smp_wmb(); /* See comment in __pte_alloc() */
3611         }
3612
3613         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3614
3615         /* Huge page is mapped? Page fault is solved */
3616         if (pmd_trans_huge(*vmf->pmd)) {
3617                 ret = VM_FAULT_NOPAGE;
3618                 goto out;
3619         }
3620
3621         /* ->map_pages() haven't done anything useful. Cold page cache? */
3622         if (!vmf->pte)
3623                 goto out;
3624
3625         /* check if the page fault is solved */
3626         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3627         if (!pte_none(*vmf->pte))
3628                 ret = VM_FAULT_NOPAGE;
3629         pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 out:
3631         vmf->address = address;
3632         vmf->pte = NULL;
3633         return ret;
3634 }
3635
3636 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3637 {
3638         struct vm_area_struct *vma = vmf->vma;
3639         vm_fault_t ret = 0;
3640
3641         /*
3642          * Let's call ->map_pages() first and use ->fault() as fallback
3643          * if page by the offset is not ready to be mapped (cold cache or
3644          * something).
3645          */
3646         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3647                 ret = do_fault_around(vmf);
3648                 if (ret)
3649                         return ret;
3650         }
3651
3652         ret = __do_fault(vmf);
3653         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654                 return ret;
3655
3656         ret |= finish_fault(vmf);
3657         unlock_page(vmf->page);
3658         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659                 put_page(vmf->page);
3660         return ret;
3661 }
3662
3663 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3664 {
3665         struct vm_area_struct *vma = vmf->vma;
3666         vm_fault_t ret;
3667
3668         if (unlikely(anon_vma_prepare(vma)))
3669                 return VM_FAULT_OOM;
3670
3671         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3672         if (!vmf->cow_page)
3673                 return VM_FAULT_OOM;
3674
3675         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3676                                 &vmf->memcg, false)) {
3677                 put_page(vmf->cow_page);
3678                 return VM_FAULT_OOM;
3679         }
3680
3681         ret = __do_fault(vmf);
3682         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683                 goto uncharge_out;
3684         if (ret & VM_FAULT_DONE_COW)
3685                 return ret;
3686
3687         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3688         __SetPageUptodate(vmf->cow_page);
3689
3690         ret |= finish_fault(vmf);
3691         unlock_page(vmf->page);
3692         put_page(vmf->page);
3693         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694                 goto uncharge_out;
3695         return ret;
3696 uncharge_out:
3697         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3698         put_page(vmf->cow_page);
3699         return ret;
3700 }
3701
3702 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3703 {
3704         struct vm_area_struct *vma = vmf->vma;
3705         vm_fault_t ret, tmp;
3706
3707         ret = __do_fault(vmf);
3708         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3709                 return ret;
3710
3711         /*
3712          * Check if the backing address space wants to know that the page is
3713          * about to become writable
3714          */
3715         if (vma->vm_ops->page_mkwrite) {
3716                 unlock_page(vmf->page);
3717                 tmp = do_page_mkwrite(vmf);
3718                 if (unlikely(!tmp ||
3719                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3720                         put_page(vmf->page);
3721                         return tmp;
3722                 }
3723         }
3724
3725         ret |= finish_fault(vmf);
3726         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3727                                         VM_FAULT_RETRY))) {
3728                 unlock_page(vmf->page);
3729                 put_page(vmf->page);
3730                 return ret;
3731         }
3732
3733         fault_dirty_shared_page(vma, vmf->page);
3734         return ret;
3735 }
3736
3737 /*
3738  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739  * but allow concurrent faults).
3740  * The mmap_sem may have been released depending on flags and our
3741  * return value.  See filemap_fault() and __lock_page_or_retry().
3742  */
3743 static vm_fault_t do_fault(struct vm_fault *vmf)
3744 {
3745         struct vm_area_struct *vma = vmf->vma;
3746         vm_fault_t ret;
3747
3748         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749         if (!vma->vm_ops->fault)
3750                 ret = VM_FAULT_SIGBUS;
3751         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3752                 ret = do_read_fault(vmf);
3753         else if (!(vma->vm_flags & VM_SHARED))
3754                 ret = do_cow_fault(vmf);
3755         else
3756                 ret = do_shared_fault(vmf);
3757
3758         /* preallocated pagetable is unused: free it */
3759         if (vmf->prealloc_pte) {
3760                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3761                 vmf->prealloc_pte = NULL;
3762         }
3763         return ret;
3764 }
3765
3766 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3767                                 unsigned long addr, int page_nid,
3768                                 int *flags)
3769 {
3770         get_page(page);
3771
3772         count_vm_numa_event(NUMA_HINT_FAULTS);
3773         if (page_nid == numa_node_id()) {
3774                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3775                 *flags |= TNF_FAULT_LOCAL;
3776         }
3777
3778         return mpol_misplaced(page, vma, addr);
3779 }
3780
3781 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3782 {
3783         struct vm_area_struct *vma = vmf->vma;
3784         struct page *page = NULL;
3785         int page_nid = -1;
3786         int last_cpupid;
3787         int target_nid;
3788         bool migrated = false;
3789         pte_t pte;
3790         bool was_writable = pte_savedwrite(vmf->orig_pte);
3791         int flags = 0;
3792
3793         /*
3794          * The "pte" at this point cannot be used safely without
3795          * validation through pte_unmap_same(). It's of NUMA type but
3796          * the pfn may be screwed if the read is non atomic.
3797          */
3798         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3799         spin_lock(vmf->ptl);
3800         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3801                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3802                 goto out;
3803         }
3804
3805         /*
3806          * Make it present again, Depending on how arch implementes non
3807          * accessible ptes, some can allow access by kernel mode.
3808          */
3809         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3810         pte = pte_modify(pte, vma->vm_page_prot);
3811         pte = pte_mkyoung(pte);
3812         if (was_writable)
3813                 pte = pte_mkwrite(pte);
3814         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3815         update_mmu_cache(vma, vmf->address, vmf->pte);
3816
3817         page = vm_normal_page(vma, vmf->address, pte);
3818         if (!page) {
3819                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3820                 return 0;
3821         }
3822
3823         /* TODO: handle PTE-mapped THP */
3824         if (PageCompound(page)) {
3825                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826                 return 0;
3827         }
3828
3829         /*
3830          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831          * much anyway since they can be in shared cache state. This misses
3832          * the case where a mapping is writable but the process never writes
3833          * to it but pte_write gets cleared during protection updates and
3834          * pte_dirty has unpredictable behaviour between PTE scan updates,
3835          * background writeback, dirty balancing and application behaviour.
3836          */
3837         if (!pte_write(pte))
3838                 flags |= TNF_NO_GROUP;
3839
3840         /*
3841          * Flag if the page is shared between multiple address spaces. This
3842          * is later used when determining whether to group tasks together
3843          */
3844         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3845                 flags |= TNF_SHARED;
3846
3847         last_cpupid = page_cpupid_last(page);
3848         page_nid = page_to_nid(page);
3849         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3850                         &flags);
3851         pte_unmap_unlock(vmf->pte, vmf->ptl);
3852         if (target_nid == -1) {
3853                 put_page(page);
3854                 goto out;
3855         }
3856
3857         /* Migrate to the requested node */
3858         migrated = migrate_misplaced_page(page, vma, target_nid);
3859         if (migrated) {
3860                 page_nid = target_nid;
3861                 flags |= TNF_MIGRATED;
3862         } else
3863                 flags |= TNF_MIGRATE_FAIL;
3864
3865 out:
3866         if (page_nid != -1)
3867                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3868         return 0;
3869 }
3870
3871 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3872 {
3873         if (vma_is_anonymous(vmf->vma))
3874                 return do_huge_pmd_anonymous_page(vmf);
3875         if (vmf->vma->vm_ops->huge_fault)
3876                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877         return VM_FAULT_FALLBACK;
3878 }
3879
3880 /* `inline' is required to avoid gcc 4.1.2 build error */
3881 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3882 {
3883         if (vma_is_anonymous(vmf->vma))
3884                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3885         if (vmf->vma->vm_ops->huge_fault)
3886                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3887
3888         /* COW handled on pte level: split pmd */
3889         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3890         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3891
3892         return VM_FAULT_FALLBACK;
3893 }
3894
3895 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3896 {
3897         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3898 }
3899
3900 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3901 {
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903         /* No support for anonymous transparent PUD pages yet */
3904         if (vma_is_anonymous(vmf->vma))
3905                 return VM_FAULT_FALLBACK;
3906         if (vmf->vma->vm_ops->huge_fault)
3907                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909         return VM_FAULT_FALLBACK;
3910 }
3911
3912 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3913 {
3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915         /* No support for anonymous transparent PUD pages yet */
3916         if (vma_is_anonymous(vmf->vma))
3917                 return VM_FAULT_FALLBACK;
3918         if (vmf->vma->vm_ops->huge_fault)
3919                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921         return VM_FAULT_FALLBACK;
3922 }
3923
3924 /*
3925  * These routines also need to handle stuff like marking pages dirty
3926  * and/or accessed for architectures that don't do it in hardware (most
3927  * RISC architectures).  The early dirtying is also good on the i386.
3928  *
3929  * There is also a hook called "update_mmu_cache()" that architectures
3930  * with external mmu caches can use to update those (ie the Sparc or
3931  * PowerPC hashed page tables that act as extended TLBs).
3932  *
3933  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934  * concurrent faults).
3935  *
3936  * The mmap_sem may have been released depending on flags and our return value.
3937  * See filemap_fault() and __lock_page_or_retry().
3938  */
3939 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3940 {
3941         pte_t entry;
3942
3943         if (unlikely(pmd_none(*vmf->pmd))) {
3944                 /*
3945                  * Leave __pte_alloc() until later: because vm_ops->fault may
3946                  * want to allocate huge page, and if we expose page table
3947                  * for an instant, it will be difficult to retract from
3948                  * concurrent faults and from rmap lookups.
3949                  */
3950                 vmf->pte = NULL;
3951         } else {
3952                 /* See comment in pte_alloc_one_map() */
3953                 if (pmd_devmap_trans_unstable(vmf->pmd))
3954                         return 0;
3955                 /*
3956                  * A regular pmd is established and it can't morph into a huge
3957                  * pmd from under us anymore at this point because we hold the
3958                  * mmap_sem read mode and khugepaged takes it in write mode.
3959                  * So now it's safe to run pte_offset_map().
3960                  */
3961                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3962                 vmf->orig_pte = *vmf->pte;
3963
3964                 /*
3965                  * some architectures can have larger ptes than wordsize,
3966                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968                  * accesses.  The code below just needs a consistent view
3969                  * for the ifs and we later double check anyway with the
3970                  * ptl lock held. So here a barrier will do.
3971                  */
3972                 barrier();
3973                 if (pte_none(vmf->orig_pte)) {
3974                         pte_unmap(vmf->pte);
3975                         vmf->pte = NULL;
3976                 }
3977         }
3978
3979         if (!vmf->pte) {
3980                 if (vma_is_anonymous(vmf->vma))
3981                         return do_anonymous_page(vmf);
3982                 else
3983                         return do_fault(vmf);
3984         }
3985
3986         if (!pte_present(vmf->orig_pte))
3987                 return do_swap_page(vmf);
3988
3989         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3990                 return do_numa_page(vmf);
3991
3992         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3993         spin_lock(vmf->ptl);
3994         entry = vmf->orig_pte;
3995         if (unlikely(!pte_same(*vmf->pte, entry)))
3996                 goto unlock;
3997         if (vmf->flags & FAULT_FLAG_WRITE) {
3998                 if (!pte_write(entry))
3999                         return do_wp_page(vmf);
4000                 entry = pte_mkdirty(entry);
4001         }
4002         entry = pte_mkyoung(entry);
4003         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4004                                 vmf->flags & FAULT_FLAG_WRITE)) {
4005                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4006         } else {
4007                 /*
4008                  * This is needed only for protection faults but the arch code
4009                  * is not yet telling us if this is a protection fault or not.
4010                  * This still avoids useless tlb flushes for .text page faults
4011                  * with threads.
4012                  */
4013                 if (vmf->flags & FAULT_FLAG_WRITE)
4014                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4015         }
4016 unlock:
4017         pte_unmap_unlock(vmf->pte, vmf->ptl);
4018         return 0;
4019 }
4020
4021 /*
4022  * By the time we get here, we already hold the mm semaphore
4023  *
4024  * The mmap_sem may have been released depending on flags and our
4025  * return value.  See filemap_fault() and __lock_page_or_retry().
4026  */
4027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4028                 unsigned long address, unsigned int flags)
4029 {
4030         struct vm_fault vmf = {
4031                 .vma = vma,
4032                 .address = address & PAGE_MASK,
4033                 .flags = flags,
4034                 .pgoff = linear_page_index(vma, address),
4035                 .gfp_mask = __get_fault_gfp_mask(vma),
4036         };
4037         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4038         struct mm_struct *mm = vma->vm_mm;
4039         pgd_t *pgd;
4040         p4d_t *p4d;
4041         vm_fault_t ret;
4042
4043         pgd = pgd_offset(mm, address);
4044         p4d = p4d_alloc(mm, pgd, address);
4045         if (!p4d)
4046                 return VM_FAULT_OOM;
4047
4048         vmf.pud = pud_alloc(mm, p4d, address);
4049         if (!vmf.pud)
4050                 return VM_FAULT_OOM;
4051         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4052                 ret = create_huge_pud(&vmf);
4053                 if (!(ret & VM_FAULT_FALLBACK))
4054                         return ret;
4055         } else {
4056                 pud_t orig_pud = *vmf.pud;
4057
4058                 barrier();
4059                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4060
4061                         /* NUMA case for anonymous PUDs would go here */
4062
4063                         if (dirty && !pud_write(orig_pud)) {
4064                                 ret = wp_huge_pud(&vmf, orig_pud);
4065                                 if (!(ret & VM_FAULT_FALLBACK))
4066                                         return ret;
4067                         } else {
4068                                 huge_pud_set_accessed(&vmf, orig_pud);
4069                                 return 0;
4070                         }
4071                 }
4072         }
4073
4074         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4075         if (!vmf.pmd)
4076                 return VM_FAULT_OOM;
4077         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4078                 ret = create_huge_pmd(&vmf);
4079                 if (!(ret & VM_FAULT_FALLBACK))
4080                         return ret;
4081         } else {
4082                 pmd_t orig_pmd = *vmf.pmd;
4083
4084                 barrier();
4085                 if (unlikely(is_swap_pmd(orig_pmd))) {
4086                         VM_BUG_ON(thp_migration_supported() &&
4087                                           !is_pmd_migration_entry(orig_pmd));
4088                         if (is_pmd_migration_entry(orig_pmd))
4089                                 pmd_migration_entry_wait(mm, vmf.pmd);
4090                         return 0;
4091                 }
4092                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4093                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4094                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4095
4096                         if (dirty && !pmd_write(orig_pmd)) {
4097                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4098                                 if (!(ret & VM_FAULT_FALLBACK))
4099                                         return ret;
4100                         } else {
4101                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4102                                 return 0;
4103                         }
4104                 }
4105         }
4106
4107         return handle_pte_fault(&vmf);
4108 }
4109
4110 /*
4111  * By the time we get here, we already hold the mm semaphore
4112  *
4113  * The mmap_sem may have been released depending on flags and our
4114  * return value.  See filemap_fault() and __lock_page_or_retry().
4115  */
4116 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4117                 unsigned int flags)
4118 {
4119         vm_fault_t ret;
4120
4121         __set_current_state(TASK_RUNNING);
4122
4123         count_vm_event(PGFAULT);
4124         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4125
4126         /* do counter updates before entering really critical section. */
4127         check_sync_rss_stat(current);
4128
4129         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4130                                             flags & FAULT_FLAG_INSTRUCTION,
4131                                             flags & FAULT_FLAG_REMOTE))
4132                 return VM_FAULT_SIGSEGV;
4133
4134         /*
4135          * Enable the memcg OOM handling for faults triggered in user
4136          * space.  Kernel faults are handled more gracefully.
4137          */
4138         if (flags & FAULT_FLAG_USER)
4139                 mem_cgroup_enter_user_fault();
4140
4141         if (unlikely(is_vm_hugetlb_page(vma)))
4142                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4143         else
4144                 ret = __handle_mm_fault(vma, address, flags);
4145
4146         if (flags & FAULT_FLAG_USER) {
4147                 mem_cgroup_exit_user_fault();
4148                 /*
4149                  * The task may have entered a memcg OOM situation but
4150                  * if the allocation error was handled gracefully (no
4151                  * VM_FAULT_OOM), there is no need to kill anything.
4152                  * Just clean up the OOM state peacefully.
4153                  */
4154                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4155                         mem_cgroup_oom_synchronize(false);
4156         }
4157
4158         return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(handle_mm_fault);
4161
4162 #ifndef __PAGETABLE_P4D_FOLDED
4163 /*
4164  * Allocate p4d page table.
4165  * We've already handled the fast-path in-line.
4166  */
4167 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4168 {
4169         p4d_t *new = p4d_alloc_one(mm, address);
4170         if (!new)
4171                 return -ENOMEM;
4172
4173         smp_wmb(); /* See comment in __pte_alloc */
4174
4175         spin_lock(&mm->page_table_lock);
4176         if (pgd_present(*pgd))          /* Another has populated it */
4177                 p4d_free(mm, new);
4178         else
4179                 pgd_populate(mm, pgd, new);
4180         spin_unlock(&mm->page_table_lock);
4181         return 0;
4182 }
4183 #endif /* __PAGETABLE_P4D_FOLDED */
4184
4185 #ifndef __PAGETABLE_PUD_FOLDED
4186 /*
4187  * Allocate page upper directory.
4188  * We've already handled the fast-path in-line.
4189  */
4190 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4191 {
4192         pud_t *new = pud_alloc_one(mm, address);
4193         if (!new)
4194                 return -ENOMEM;
4195
4196         smp_wmb(); /* See comment in __pte_alloc */
4197
4198         spin_lock(&mm->page_table_lock);
4199 #ifndef __ARCH_HAS_5LEVEL_HACK
4200         if (!p4d_present(*p4d)) {
4201                 mm_inc_nr_puds(mm);
4202                 p4d_populate(mm, p4d, new);
4203         } else  /* Another has populated it */
4204                 pud_free(mm, new);
4205 #else
4206         if (!pgd_present(*p4d)) {
4207                 mm_inc_nr_puds(mm);
4208                 pgd_populate(mm, p4d, new);
4209         } else  /* Another has populated it */
4210                 pud_free(mm, new);
4211 #endif /* __ARCH_HAS_5LEVEL_HACK */
4212         spin_unlock(&mm->page_table_lock);
4213         return 0;
4214 }
4215 #endif /* __PAGETABLE_PUD_FOLDED */
4216
4217 #ifndef __PAGETABLE_PMD_FOLDED
4218 /*
4219  * Allocate page middle directory.
4220  * We've already handled the fast-path in-line.
4221  */
4222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4223 {
4224         spinlock_t *ptl;
4225         pmd_t *new = pmd_alloc_one(mm, address);
4226         if (!new)
4227                 return -ENOMEM;
4228
4229         smp_wmb(); /* See comment in __pte_alloc */
4230
4231         ptl = pud_lock(mm, pud);
4232 #ifndef __ARCH_HAS_4LEVEL_HACK
4233         if (!pud_present(*pud)) {
4234                 mm_inc_nr_pmds(mm);
4235                 pud_populate(mm, pud, new);
4236         } else  /* Another has populated it */
4237                 pmd_free(mm, new);
4238 #else
4239         if (!pgd_present(*pud)) {
4240                 mm_inc_nr_pmds(mm);
4241                 pgd_populate(mm, pud, new);
4242         } else /* Another has populated it */
4243                 pmd_free(mm, new);
4244 #endif /* __ARCH_HAS_4LEVEL_HACK */
4245         spin_unlock(ptl);
4246         return 0;
4247 }
4248 #endif /* __PAGETABLE_PMD_FOLDED */
4249
4250 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4251                             unsigned long *start, unsigned long *end,
4252                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4253 {
4254         pgd_t *pgd;
4255         p4d_t *p4d;
4256         pud_t *pud;
4257         pmd_t *pmd;
4258         pte_t *ptep;
4259
4260         pgd = pgd_offset(mm, address);
4261         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4262                 goto out;
4263
4264         p4d = p4d_offset(pgd, address);
4265         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4266                 goto out;
4267
4268         pud = pud_offset(p4d, address);
4269         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4270                 goto out;
4271
4272         pmd = pmd_offset(pud, address);
4273         VM_BUG_ON(pmd_trans_huge(*pmd));
4274
4275         if (pmd_huge(*pmd)) {
4276                 if (!pmdpp)
4277                         goto out;
4278
4279                 if (start && end) {
4280                         *start = address & PMD_MASK;
4281                         *end = *start + PMD_SIZE;
4282                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4283                 }
4284                 *ptlp = pmd_lock(mm, pmd);
4285                 if (pmd_huge(*pmd)) {
4286                         *pmdpp = pmd;
4287                         return 0;
4288                 }
4289                 spin_unlock(*ptlp);
4290                 if (start && end)
4291                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4292         }
4293
4294         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4295                 goto out;
4296
4297         if (start && end) {
4298                 *start = address & PAGE_MASK;
4299                 *end = *start + PAGE_SIZE;
4300                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4301         }
4302         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4303         if (!pte_present(*ptep))
4304                 goto unlock;
4305         *ptepp = ptep;
4306         return 0;
4307 unlock:
4308         pte_unmap_unlock(ptep, *ptlp);
4309         if (start && end)
4310                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4311 out:
4312         return -EINVAL;
4313 }
4314
4315 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4316                              pte_t **ptepp, spinlock_t **ptlp)
4317 {
4318         int res;
4319
4320         /* (void) is needed to make gcc happy */
4321         (void) __cond_lock(*ptlp,
4322                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4323                                                     ptepp, NULL, ptlp)));
4324         return res;
4325 }
4326
4327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4328                              unsigned long *start, unsigned long *end,
4329                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4330 {
4331         int res;
4332
4333         /* (void) is needed to make gcc happy */
4334         (void) __cond_lock(*ptlp,
4335                            !(res = __follow_pte_pmd(mm, address, start, end,
4336                                                     ptepp, pmdpp, ptlp)));
4337         return res;
4338 }
4339 EXPORT_SYMBOL(follow_pte_pmd);
4340
4341 /**
4342  * follow_pfn - look up PFN at a user virtual address
4343  * @vma: memory mapping
4344  * @address: user virtual address
4345  * @pfn: location to store found PFN
4346  *
4347  * Only IO mappings and raw PFN mappings are allowed.
4348  *
4349  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4350  */
4351 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4352         unsigned long *pfn)
4353 {
4354         int ret = -EINVAL;
4355         spinlock_t *ptl;
4356         pte_t *ptep;
4357
4358         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359                 return ret;
4360
4361         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4362         if (ret)
4363                 return ret;
4364         *pfn = pte_pfn(*ptep);
4365         pte_unmap_unlock(ptep, ptl);
4366         return 0;
4367 }
4368 EXPORT_SYMBOL(follow_pfn);
4369
4370 #ifdef CONFIG_HAVE_IOREMAP_PROT
4371 int follow_phys(struct vm_area_struct *vma,
4372                 unsigned long address, unsigned int flags,
4373                 unsigned long *prot, resource_size_t *phys)
4374 {
4375         int ret = -EINVAL;
4376         pte_t *ptep, pte;
4377         spinlock_t *ptl;
4378
4379         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4380                 goto out;
4381
4382         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4383                 goto out;
4384         pte = *ptep;
4385
4386         if ((flags & FOLL_WRITE) && !pte_write(pte))
4387                 goto unlock;
4388
4389         *prot = pgprot_val(pte_pgprot(pte));
4390         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4391
4392         ret = 0;
4393 unlock:
4394         pte_unmap_unlock(ptep, ptl);
4395 out:
4396         return ret;
4397 }
4398
4399 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4400                         void *buf, int len, int write)
4401 {
4402         resource_size_t phys_addr;
4403         unsigned long prot = 0;
4404         void __iomem *maddr;
4405         int offset = addr & (PAGE_SIZE-1);
4406
4407         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4408                 return -EINVAL;
4409
4410         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4411         if (!maddr)
4412                 return -ENOMEM;
4413
4414         if (write)
4415                 memcpy_toio(maddr + offset, buf, len);
4416         else
4417                 memcpy_fromio(buf, maddr + offset, len);
4418         iounmap(maddr);
4419
4420         return len;
4421 }
4422 EXPORT_SYMBOL_GPL(generic_access_phys);
4423 #endif
4424
4425 /*
4426  * Access another process' address space as given in mm.  If non-NULL, use the
4427  * given task for page fault accounting.
4428  */
4429 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4430                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4431 {
4432         struct vm_area_struct *vma;
4433         void *old_buf = buf;
4434         int write = gup_flags & FOLL_WRITE;
4435
4436         down_read(&mm->mmap_sem);
4437         /* ignore errors, just check how much was successfully transferred */
4438         while (len) {
4439                 int bytes, ret, offset;
4440                 void *maddr;
4441                 struct page *page = NULL;
4442
4443                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4444                                 gup_flags, &page, &vma, NULL);
4445                 if (ret <= 0) {
4446 #ifndef CONFIG_HAVE_IOREMAP_PROT
4447                         break;
4448 #else
4449                         /*
4450                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4451                          * we can access using slightly different code.
4452                          */
4453                         vma = find_vma(mm, addr);
4454                         if (!vma || vma->vm_start > addr)
4455                                 break;
4456                         if (vma->vm_ops && vma->vm_ops->access)
4457                                 ret = vma->vm_ops->access(vma, addr, buf,
4458                                                           len, write);
4459                         if (ret <= 0)
4460                                 break;
4461                         bytes = ret;
4462 #endif
4463                 } else {
4464                         bytes = len;
4465                         offset = addr & (PAGE_SIZE-1);
4466                         if (bytes > PAGE_SIZE-offset)
4467                                 bytes = PAGE_SIZE-offset;
4468
4469                         maddr = kmap(page);
4470                         if (write) {
4471                                 copy_to_user_page(vma, page, addr,
4472                                                   maddr + offset, buf, bytes);
4473                                 set_page_dirty_lock(page);
4474                         } else {
4475                                 copy_from_user_page(vma, page, addr,
4476                                                     buf, maddr + offset, bytes);
4477                         }
4478                         kunmap(page);
4479                         put_page(page);
4480                 }
4481                 len -= bytes;
4482                 buf += bytes;
4483                 addr += bytes;
4484         }
4485         up_read(&mm->mmap_sem);
4486
4487         return buf - old_buf;
4488 }
4489
4490 /**
4491  * access_remote_vm - access another process' address space
4492  * @mm:         the mm_struct of the target address space
4493  * @addr:       start address to access
4494  * @buf:        source or destination buffer
4495  * @len:        number of bytes to transfer
4496  * @gup_flags:  flags modifying lookup behaviour
4497  *
4498  * The caller must hold a reference on @mm.
4499  */
4500 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4501                 void *buf, int len, unsigned int gup_flags)
4502 {
4503         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4504 }
4505
4506 /*
4507  * Access another process' address space.
4508  * Source/target buffer must be kernel space,
4509  * Do not walk the page table directly, use get_user_pages
4510  */
4511 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4512                 void *buf, int len, unsigned int gup_flags)
4513 {
4514         struct mm_struct *mm;
4515         int ret;
4516
4517         mm = get_task_mm(tsk);
4518         if (!mm)
4519                 return 0;
4520
4521         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4522
4523         mmput(mm);
4524
4525         return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(access_process_vm);
4528
4529 /*
4530  * Print the name of a VMA.
4531  */
4532 void print_vma_addr(char *prefix, unsigned long ip)
4533 {
4534         struct mm_struct *mm = current->mm;
4535         struct vm_area_struct *vma;
4536
4537         /*
4538          * we might be running from an atomic context so we cannot sleep
4539          */
4540         if (!down_read_trylock(&mm->mmap_sem))
4541                 return;
4542
4543         vma = find_vma(mm, ip);
4544         if (vma && vma->vm_file) {
4545                 struct file *f = vma->vm_file;
4546                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4547                 if (buf) {
4548                         char *p;
4549
4550                         p = file_path(f, buf, PAGE_SIZE);
4551                         if (IS_ERR(p))
4552                                 p = "?";
4553                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4554                                         vma->vm_start,
4555                                         vma->vm_end - vma->vm_start);
4556                         free_page((unsigned long)buf);
4557                 }
4558         }
4559         up_read(&mm->mmap_sem);
4560 }
4561
4562 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563 void __might_fault(const char *file, int line)
4564 {
4565         /*
4566          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4567          * holding the mmap_sem, this is safe because kernel memory doesn't
4568          * get paged out, therefore we'll never actually fault, and the
4569          * below annotations will generate false positives.
4570          */
4571         if (uaccess_kernel())
4572                 return;
4573         if (pagefault_disabled())
4574                 return;
4575         __might_sleep(file, line, 0);
4576 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4577         if (current->mm)
4578                 might_lock_read(&current->mm->mmap_sem);
4579 #endif
4580 }
4581 EXPORT_SYMBOL(__might_fault);
4582 #endif
4583
4584 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4585 /*
4586  * Process all subpages of the specified huge page with the specified
4587  * operation.  The target subpage will be processed last to keep its
4588  * cache lines hot.
4589  */
4590 static inline void process_huge_page(
4591         unsigned long addr_hint, unsigned int pages_per_huge_page,
4592         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4593         void *arg)
4594 {
4595         int i, n, base, l;
4596         unsigned long addr = addr_hint &
4597                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4598
4599         /* Process target subpage last to keep its cache lines hot */
4600         might_sleep();
4601         n = (addr_hint - addr) / PAGE_SIZE;
4602         if (2 * n <= pages_per_huge_page) {
4603                 /* If target subpage in first half of huge page */
4604                 base = 0;
4605                 l = n;
4606                 /* Process subpages at the end of huge page */
4607                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4608                         cond_resched();
4609                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4610                 }
4611         } else {
4612                 /* If target subpage in second half of huge page */
4613                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4614                 l = pages_per_huge_page - n;
4615                 /* Process subpages at the begin of huge page */
4616                 for (i = 0; i < base; i++) {
4617                         cond_resched();
4618                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4619                 }
4620         }
4621         /*
4622          * Process remaining subpages in left-right-left-right pattern
4623          * towards the target subpage
4624          */
4625         for (i = 0; i < l; i++) {
4626                 int left_idx = base + i;
4627                 int right_idx = base + 2 * l - 1 - i;
4628
4629                 cond_resched();
4630                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4631                 cond_resched();
4632                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4633         }
4634 }
4635
4636 static void clear_gigantic_page(struct page *page,
4637                                 unsigned long addr,
4638                                 unsigned int pages_per_huge_page)
4639 {
4640         int i;
4641         struct page *p = page;
4642
4643         might_sleep();
4644         for (i = 0; i < pages_per_huge_page;
4645              i++, p = mem_map_next(p, page, i)) {
4646                 cond_resched();
4647                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4648         }
4649 }
4650
4651 static void clear_subpage(unsigned long addr, int idx, void *arg)
4652 {
4653         struct page *page = arg;
4654
4655         clear_user_highpage(page + idx, addr);
4656 }
4657
4658 void clear_huge_page(struct page *page,
4659                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4660 {
4661         unsigned long addr = addr_hint &
4662                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4663
4664         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4665                 clear_gigantic_page(page, addr, pages_per_huge_page);
4666                 return;
4667         }
4668
4669         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4670 }
4671
4672 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4673                                     unsigned long addr,
4674                                     struct vm_area_struct *vma,
4675                                     unsigned int pages_per_huge_page)
4676 {
4677         int i;
4678         struct page *dst_base = dst;
4679         struct page *src_base = src;
4680
4681         for (i = 0; i < pages_per_huge_page; ) {
4682                 cond_resched();
4683                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4684
4685                 i++;
4686                 dst = mem_map_next(dst, dst_base, i);
4687                 src = mem_map_next(src, src_base, i);
4688         }
4689 }
4690
4691 struct copy_subpage_arg {
4692         struct page *dst;
4693         struct page *src;
4694         struct vm_area_struct *vma;
4695 };
4696
4697 static void copy_subpage(unsigned long addr, int idx, void *arg)
4698 {
4699         struct copy_subpage_arg *copy_arg = arg;
4700
4701         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4702                            addr, copy_arg->vma);
4703 }
4704
4705 void copy_user_huge_page(struct page *dst, struct page *src,
4706                          unsigned long addr_hint, struct vm_area_struct *vma,
4707                          unsigned int pages_per_huge_page)
4708 {
4709         unsigned long addr = addr_hint &
4710                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4711         struct copy_subpage_arg arg = {
4712                 .dst = dst,
4713                 .src = src,
4714                 .vma = vma,
4715         };
4716
4717         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4718                 copy_user_gigantic_page(dst, src, addr, vma,
4719                                         pages_per_huge_page);
4720                 return;
4721         }
4722
4723         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4724 }
4725
4726 long copy_huge_page_from_user(struct page *dst_page,
4727                                 const void __user *usr_src,
4728                                 unsigned int pages_per_huge_page,
4729                                 bool allow_pagefault)
4730 {
4731         void *src = (void *)usr_src;
4732         void *page_kaddr;
4733         unsigned long i, rc = 0;
4734         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4735
4736         for (i = 0; i < pages_per_huge_page; i++) {
4737                 if (allow_pagefault)
4738                         page_kaddr = kmap(dst_page + i);
4739                 else
4740                         page_kaddr = kmap_atomic(dst_page + i);
4741                 rc = copy_from_user(page_kaddr,
4742                                 (const void __user *)(src + i * PAGE_SIZE),
4743                                 PAGE_SIZE);
4744                 if (allow_pagefault)
4745                         kunmap(dst_page + i);
4746                 else
4747                         kunmap_atomic(page_kaddr);
4748
4749                 ret_val -= (PAGE_SIZE - rc);
4750                 if (rc)
4751                         break;
4752
4753                 cond_resched();
4754         }
4755         return ret_val;
4756 }
4757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4758
4759 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4760
4761 static struct kmem_cache *page_ptl_cachep;
4762
4763 void __init ptlock_cache_init(void)
4764 {
4765         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4766                         SLAB_PANIC, NULL);
4767 }
4768
4769 bool ptlock_alloc(struct page *page)
4770 {
4771         spinlock_t *ptl;
4772
4773         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4774         if (!ptl)
4775                 return false;
4776         page->ptl = ptl;
4777         return true;
4778 }
4779
4780 void ptlock_free(struct page *page)
4781 {
4782         kmem_cache_free(page_ptl_cachep, page->ptl);
4783 }
4784 #endif