Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/lrg/voltage-2.6
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif
195
196 /*
197  * If a p?d_bad entry is found while walking page tables, report
198  * the error, before resetting entry to p?d_none.  Usually (but
199  * very seldom) called out from the p?d_none_or_clear_bad macros.
200  */
201
202 void pgd_clear_bad(pgd_t *pgd)
203 {
204         pgd_ERROR(*pgd);
205         pgd_clear(pgd);
206 }
207
208 void pud_clear_bad(pud_t *pud)
209 {
210         pud_ERROR(*pud);
211         pud_clear(pud);
212 }
213
214 void pmd_clear_bad(pmd_t *pmd)
215 {
216         pmd_ERROR(*pmd);
217         pmd_clear(pmd);
218 }
219
220 /*
221  * Note: this doesn't free the actual pages themselves. That
222  * has been handled earlier when unmapping all the memory regions.
223  */
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225                            unsigned long addr)
226 {
227         pgtable_t token = pmd_pgtable(*pmd);
228         pmd_clear(pmd);
229         pte_free_tlb(tlb, token, addr);
230         tlb->mm->nr_ptes--;
231 }
232
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234                                 unsigned long addr, unsigned long end,
235                                 unsigned long floor, unsigned long ceiling)
236 {
237         pmd_t *pmd;
238         unsigned long next;
239         unsigned long start;
240
241         start = addr;
242         pmd = pmd_offset(pud, addr);
243         do {
244                 next = pmd_addr_end(addr, end);
245                 if (pmd_none_or_clear_bad(pmd))
246                         continue;
247                 free_pte_range(tlb, pmd, addr);
248         } while (pmd++, addr = next, addr != end);
249
250         start &= PUD_MASK;
251         if (start < floor)
252                 return;
253         if (ceiling) {
254                 ceiling &= PUD_MASK;
255                 if (!ceiling)
256                         return;
257         }
258         if (end - 1 > ceiling - 1)
259                 return;
260
261         pmd = pmd_offset(pud, start);
262         pud_clear(pud);
263         pmd_free_tlb(tlb, pmd, start);
264 }
265
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267                                 unsigned long addr, unsigned long end,
268                                 unsigned long floor, unsigned long ceiling)
269 {
270         pud_t *pud;
271         unsigned long next;
272         unsigned long start;
273
274         start = addr;
275         pud = pud_offset(pgd, addr);
276         do {
277                 next = pud_addr_end(addr, end);
278                 if (pud_none_or_clear_bad(pud))
279                         continue;
280                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281         } while (pud++, addr = next, addr != end);
282
283         start &= PGDIR_MASK;
284         if (start < floor)
285                 return;
286         if (ceiling) {
287                 ceiling &= PGDIR_MASK;
288                 if (!ceiling)
289                         return;
290         }
291         if (end - 1 > ceiling - 1)
292                 return;
293
294         pud = pud_offset(pgd, start);
295         pgd_clear(pgd);
296         pud_free_tlb(tlb, pud, start);
297 }
298
299 /*
300  * This function frees user-level page tables of a process.
301  *
302  * Must be called with pagetable lock held.
303  */
304 void free_pgd_range(struct mmu_gather *tlb,
305                         unsigned long addr, unsigned long end,
306                         unsigned long floor, unsigned long ceiling)
307 {
308         pgd_t *pgd;
309         unsigned long next;
310
311         /*
312          * The next few lines have given us lots of grief...
313          *
314          * Why are we testing PMD* at this top level?  Because often
315          * there will be no work to do at all, and we'd prefer not to
316          * go all the way down to the bottom just to discover that.
317          *
318          * Why all these "- 1"s?  Because 0 represents both the bottom
319          * of the address space and the top of it (using -1 for the
320          * top wouldn't help much: the masks would do the wrong thing).
321          * The rule is that addr 0 and floor 0 refer to the bottom of
322          * the address space, but end 0 and ceiling 0 refer to the top
323          * Comparisons need to use "end - 1" and "ceiling - 1" (though
324          * that end 0 case should be mythical).
325          *
326          * Wherever addr is brought up or ceiling brought down, we must
327          * be careful to reject "the opposite 0" before it confuses the
328          * subsequent tests.  But what about where end is brought down
329          * by PMD_SIZE below? no, end can't go down to 0 there.
330          *
331          * Whereas we round start (addr) and ceiling down, by different
332          * masks at different levels, in order to test whether a table
333          * now has no other vmas using it, so can be freed, we don't
334          * bother to round floor or end up - the tests don't need that.
335          */
336
337         addr &= PMD_MASK;
338         if (addr < floor) {
339                 addr += PMD_SIZE;
340                 if (!addr)
341                         return;
342         }
343         if (ceiling) {
344                 ceiling &= PMD_MASK;
345                 if (!ceiling)
346                         return;
347         }
348         if (end - 1 > ceiling - 1)
349                 end -= PMD_SIZE;
350         if (addr > end - 1)
351                 return;
352
353         pgd = pgd_offset(tlb->mm, addr);
354         do {
355                 next = pgd_addr_end(addr, end);
356                 if (pgd_none_or_clear_bad(pgd))
357                         continue;
358                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359         } while (pgd++, addr = next, addr != end);
360 }
361
362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363                 unsigned long floor, unsigned long ceiling)
364 {
365         while (vma) {
366                 struct vm_area_struct *next = vma->vm_next;
367                 unsigned long addr = vma->vm_start;
368
369                 /*
370                  * Hide vma from rmap and truncate_pagecache before freeing
371                  * pgtables
372                  */
373                 unlink_anon_vmas(vma);
374                 unlink_file_vma(vma);
375
376                 if (is_vm_hugetlb_page(vma)) {
377                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378                                 floor, next? next->vm_start: ceiling);
379                 } else {
380                         /*
381                          * Optimization: gather nearby vmas into one call down
382                          */
383                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384                                && !is_vm_hugetlb_page(next)) {
385                                 vma = next;
386                                 next = vma->vm_next;
387                                 unlink_anon_vmas(vma);
388                                 unlink_file_vma(vma);
389                         }
390                         free_pgd_range(tlb, addr, vma->vm_end,
391                                 floor, next? next->vm_start: ceiling);
392                 }
393                 vma = next;
394         }
395 }
396
397 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
398 {
399         pgtable_t new = pte_alloc_one(mm, address);
400         if (!new)
401                 return -ENOMEM;
402
403         /*
404          * Ensure all pte setup (eg. pte page lock and page clearing) are
405          * visible before the pte is made visible to other CPUs by being
406          * put into page tables.
407          *
408          * The other side of the story is the pointer chasing in the page
409          * table walking code (when walking the page table without locking;
410          * ie. most of the time). Fortunately, these data accesses consist
411          * of a chain of data-dependent loads, meaning most CPUs (alpha
412          * being the notable exception) will already guarantee loads are
413          * seen in-order. See the alpha page table accessors for the
414          * smp_read_barrier_depends() barriers in page table walking code.
415          */
416         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
417
418         spin_lock(&mm->page_table_lock);
419         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
420                 mm->nr_ptes++;
421                 pmd_populate(mm, pmd, new);
422                 new = NULL;
423         }
424         spin_unlock(&mm->page_table_lock);
425         if (new)
426                 pte_free(mm, new);
427         return 0;
428 }
429
430 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
431 {
432         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
433         if (!new)
434                 return -ENOMEM;
435
436         smp_wmb(); /* See comment in __pte_alloc */
437
438         spin_lock(&init_mm.page_table_lock);
439         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(current, mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         pud_t *pud = pud_offset(pgd, addr);
477         pmd_t *pmd = pmd_offset(pud, addr);
478         struct address_space *mapping;
479         pgoff_t index;
480         static unsigned long resume;
481         static unsigned long nr_shown;
482         static unsigned long nr_unshown;
483
484         /*
485          * Allow a burst of 60 reports, then keep quiet for that minute;
486          * or allow a steady drip of one report per second.
487          */
488         if (nr_shown == 60) {
489                 if (time_before(jiffies, resume)) {
490                         nr_unshown++;
491                         return;
492                 }
493                 if (nr_unshown) {
494                         printk(KERN_ALERT
495                                 "BUG: Bad page map: %lu messages suppressed\n",
496                                 nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         printk(KERN_ALERT
508                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
509                 current->comm,
510                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
511         if (page)
512                 dump_page(page);
513         printk(KERN_ALERT
514                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
515                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
516         /*
517          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
518          */
519         if (vma->vm_ops)
520                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
521                                 (unsigned long)vma->vm_ops->fault);
522         if (vma->vm_file && vma->vm_file->f_op)
523                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
524                                 (unsigned long)vma->vm_file->f_op->mmap);
525         dump_stack();
526         add_taint(TAINT_BAD_PAGE);
527 }
528
529 static inline int is_cow_mapping(unsigned int flags)
530 {
531         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
532 }
533
534 #ifndef is_zero_pfn
535 static inline int is_zero_pfn(unsigned long pfn)
536 {
537         return pfn == zero_pfn;
538 }
539 #endif
540
541 #ifndef my_zero_pfn
542 static inline unsigned long my_zero_pfn(unsigned long addr)
543 {
544         return zero_pfn;
545 }
546 #endif
547
548 /*
549  * vm_normal_page -- This function gets the "struct page" associated with a pte.
550  *
551  * "Special" mappings do not wish to be associated with a "struct page" (either
552  * it doesn't exist, or it exists but they don't want to touch it). In this
553  * case, NULL is returned here. "Normal" mappings do have a struct page.
554  *
555  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556  * pte bit, in which case this function is trivial. Secondly, an architecture
557  * may not have a spare pte bit, which requires a more complicated scheme,
558  * described below.
559  *
560  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561  * special mapping (even if there are underlying and valid "struct pages").
562  * COWed pages of a VM_PFNMAP are always normal.
563  *
564  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567  * mapping will always honor the rule
568  *
569  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570  *
571  * And for normal mappings this is false.
572  *
573  * This restricts such mappings to be a linear translation from virtual address
574  * to pfn. To get around this restriction, we allow arbitrary mappings so long
575  * as the vma is not a COW mapping; in that case, we know that all ptes are
576  * special (because none can have been COWed).
577  *
578  *
579  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580  *
581  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582  * page" backing, however the difference is that _all_ pages with a struct
583  * page (that is, those where pfn_valid is true) are refcounted and considered
584  * normal pages by the VM. The disadvantage is that pages are refcounted
585  * (which can be slower and simply not an option for some PFNMAP users). The
586  * advantage is that we don't have to follow the strict linearity rule of
587  * PFNMAP mappings in order to support COWable mappings.
588  *
589  */
590 #ifdef __HAVE_ARCH_PTE_SPECIAL
591 # define HAVE_PTE_SPECIAL 1
592 #else
593 # define HAVE_PTE_SPECIAL 0
594 #endif
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596                                 pte_t pte)
597 {
598         unsigned long pfn = pte_pfn(pte);
599
600         if (HAVE_PTE_SPECIAL) {
601                 if (likely(!pte_special(pte)))
602                         goto check_pfn;
603                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604                         return NULL;
605                 if (!is_zero_pfn(pfn))
606                         print_bad_pte(vma, addr, pte, NULL);
607                 return NULL;
608         }
609
610         /* !HAVE_PTE_SPECIAL case follows: */
611
612         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613                 if (vma->vm_flags & VM_MIXEDMAP) {
614                         if (!pfn_valid(pfn))
615                                 return NULL;
616                         goto out;
617                 } else {
618                         unsigned long off;
619                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
620                         if (pfn == vma->vm_pgoff + off)
621                                 return NULL;
622                         if (!is_cow_mapping(vma->vm_flags))
623                                 return NULL;
624                 }
625         }
626
627         if (is_zero_pfn(pfn))
628                 return NULL;
629 check_pfn:
630         if (unlikely(pfn > highest_memmap_pfn)) {
631                 print_bad_pte(vma, addr, pte, NULL);
632                 return NULL;
633         }
634
635         /*
636          * NOTE! We still have PageReserved() pages in the page tables.
637          * eg. VDSO mappings can cause them to exist.
638          */
639 out:
640         return pfn_to_page(pfn);
641 }
642
643 /*
644  * copy one vm_area from one task to the other. Assumes the page tables
645  * already present in the new task to be cleared in the whole range
646  * covered by this vma.
647  */
648
649 static inline unsigned long
650 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
651                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
652                 unsigned long addr, int *rss)
653 {
654         unsigned long vm_flags = vma->vm_flags;
655         pte_t pte = *src_pte;
656         struct page *page;
657
658         /* pte contains position in swap or file, so copy. */
659         if (unlikely(!pte_present(pte))) {
660                 if (!pte_file(pte)) {
661                         swp_entry_t entry = pte_to_swp_entry(pte);
662
663                         if (swap_duplicate(entry) < 0)
664                                 return entry.val;
665
666                         /* make sure dst_mm is on swapoff's mmlist. */
667                         if (unlikely(list_empty(&dst_mm->mmlist))) {
668                                 spin_lock(&mmlist_lock);
669                                 if (list_empty(&dst_mm->mmlist))
670                                         list_add(&dst_mm->mmlist,
671                                                  &src_mm->mmlist);
672                                 spin_unlock(&mmlist_lock);
673                         }
674                         if (likely(!non_swap_entry(entry)))
675                                 rss[MM_SWAPENTS]++;
676                         else if (is_write_migration_entry(entry) &&
677                                         is_cow_mapping(vm_flags)) {
678                                 /*
679                                  * COW mappings require pages in both parent
680                                  * and child to be set to read.
681                                  */
682                                 make_migration_entry_read(&entry);
683                                 pte = swp_entry_to_pte(entry);
684                                 set_pte_at(src_mm, addr, src_pte, pte);
685                         }
686                 }
687                 goto out_set_pte;
688         }
689
690         /*
691          * If it's a COW mapping, write protect it both
692          * in the parent and the child
693          */
694         if (is_cow_mapping(vm_flags)) {
695                 ptep_set_wrprotect(src_mm, addr, src_pte);
696                 pte = pte_wrprotect(pte);
697         }
698
699         /*
700          * If it's a shared mapping, mark it clean in
701          * the child
702          */
703         if (vm_flags & VM_SHARED)
704                 pte = pte_mkclean(pte);
705         pte = pte_mkold(pte);
706
707         page = vm_normal_page(vma, addr, pte);
708         if (page) {
709                 get_page(page);
710                 page_dup_rmap(page);
711                 if (PageAnon(page))
712                         rss[MM_ANONPAGES]++;
713                 else
714                         rss[MM_FILEPAGES]++;
715         }
716
717 out_set_pte:
718         set_pte_at(dst_mm, addr, dst_pte, pte);
719         return 0;
720 }
721
722 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
723                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
724                 unsigned long addr, unsigned long end)
725 {
726         pte_t *orig_src_pte, *orig_dst_pte;
727         pte_t *src_pte, *dst_pte;
728         spinlock_t *src_ptl, *dst_ptl;
729         int progress = 0;
730         int rss[NR_MM_COUNTERS];
731         swp_entry_t entry = (swp_entry_t){0};
732
733 again:
734         init_rss_vec(rss);
735
736         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
737         if (!dst_pte)
738                 return -ENOMEM;
739         src_pte = pte_offset_map_nested(src_pmd, addr);
740         src_ptl = pte_lockptr(src_mm, src_pmd);
741         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
742         orig_src_pte = src_pte;
743         orig_dst_pte = dst_pte;
744         arch_enter_lazy_mmu_mode();
745
746         do {
747                 /*
748                  * We are holding two locks at this point - either of them
749                  * could generate latencies in another task on another CPU.
750                  */
751                 if (progress >= 32) {
752                         progress = 0;
753                         if (need_resched() ||
754                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
755                                 break;
756                 }
757                 if (pte_none(*src_pte)) {
758                         progress++;
759                         continue;
760                 }
761                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
762                                                         vma, addr, rss);
763                 if (entry.val)
764                         break;
765                 progress += 8;
766         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
767
768         arch_leave_lazy_mmu_mode();
769         spin_unlock(src_ptl);
770         pte_unmap_nested(orig_src_pte);
771         add_mm_rss_vec(dst_mm, rss);
772         pte_unmap_unlock(orig_dst_pte, dst_ptl);
773         cond_resched();
774
775         if (entry.val) {
776                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
777                         return -ENOMEM;
778                 progress = 0;
779         }
780         if (addr != end)
781                 goto again;
782         return 0;
783 }
784
785 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
787                 unsigned long addr, unsigned long end)
788 {
789         pmd_t *src_pmd, *dst_pmd;
790         unsigned long next;
791
792         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
793         if (!dst_pmd)
794                 return -ENOMEM;
795         src_pmd = pmd_offset(src_pud, addr);
796         do {
797                 next = pmd_addr_end(addr, end);
798                 if (pmd_none_or_clear_bad(src_pmd))
799                         continue;
800                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
801                                                 vma, addr, next))
802                         return -ENOMEM;
803         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
804         return 0;
805 }
806
807 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
809                 unsigned long addr, unsigned long end)
810 {
811         pud_t *src_pud, *dst_pud;
812         unsigned long next;
813
814         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
815         if (!dst_pud)
816                 return -ENOMEM;
817         src_pud = pud_offset(src_pgd, addr);
818         do {
819                 next = pud_addr_end(addr, end);
820                 if (pud_none_or_clear_bad(src_pud))
821                         continue;
822                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
823                                                 vma, addr, next))
824                         return -ENOMEM;
825         } while (dst_pud++, src_pud++, addr = next, addr != end);
826         return 0;
827 }
828
829 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830                 struct vm_area_struct *vma)
831 {
832         pgd_t *src_pgd, *dst_pgd;
833         unsigned long next;
834         unsigned long addr = vma->vm_start;
835         unsigned long end = vma->vm_end;
836         int ret;
837
838         /*
839          * Don't copy ptes where a page fault will fill them correctly.
840          * Fork becomes much lighter when there are big shared or private
841          * readonly mappings. The tradeoff is that copy_page_range is more
842          * efficient than faulting.
843          */
844         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
845                 if (!vma->anon_vma)
846                         return 0;
847         }
848
849         if (is_vm_hugetlb_page(vma))
850                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
851
852         if (unlikely(is_pfn_mapping(vma))) {
853                 /*
854                  * We do not free on error cases below as remove_vma
855                  * gets called on error from higher level routine
856                  */
857                 ret = track_pfn_vma_copy(vma);
858                 if (ret)
859                         return ret;
860         }
861
862         /*
863          * We need to invalidate the secondary MMU mappings only when
864          * there could be a permission downgrade on the ptes of the
865          * parent mm. And a permission downgrade will only happen if
866          * is_cow_mapping() returns true.
867          */
868         if (is_cow_mapping(vma->vm_flags))
869                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
870
871         ret = 0;
872         dst_pgd = pgd_offset(dst_mm, addr);
873         src_pgd = pgd_offset(src_mm, addr);
874         do {
875                 next = pgd_addr_end(addr, end);
876                 if (pgd_none_or_clear_bad(src_pgd))
877                         continue;
878                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
879                                             vma, addr, next))) {
880                         ret = -ENOMEM;
881                         break;
882                 }
883         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
884
885         if (is_cow_mapping(vma->vm_flags))
886                 mmu_notifier_invalidate_range_end(src_mm,
887                                                   vma->vm_start, end);
888         return ret;
889 }
890
891 static unsigned long zap_pte_range(struct mmu_gather *tlb,
892                                 struct vm_area_struct *vma, pmd_t *pmd,
893                                 unsigned long addr, unsigned long end,
894                                 long *zap_work, struct zap_details *details)
895 {
896         struct mm_struct *mm = tlb->mm;
897         pte_t *pte;
898         spinlock_t *ptl;
899         int rss[NR_MM_COUNTERS];
900
901         init_rss_vec(rss);
902
903         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
904         arch_enter_lazy_mmu_mode();
905         do {
906                 pte_t ptent = *pte;
907                 if (pte_none(ptent)) {
908                         (*zap_work)--;
909                         continue;
910                 }
911
912                 (*zap_work) -= PAGE_SIZE;
913
914                 if (pte_present(ptent)) {
915                         struct page *page;
916
917                         page = vm_normal_page(vma, addr, ptent);
918                         if (unlikely(details) && page) {
919                                 /*
920                                  * unmap_shared_mapping_pages() wants to
921                                  * invalidate cache without truncating:
922                                  * unmap shared but keep private pages.
923                                  */
924                                 if (details->check_mapping &&
925                                     details->check_mapping != page->mapping)
926                                         continue;
927                                 /*
928                                  * Each page->index must be checked when
929                                  * invalidating or truncating nonlinear.
930                                  */
931                                 if (details->nonlinear_vma &&
932                                     (page->index < details->first_index ||
933                                      page->index > details->last_index))
934                                         continue;
935                         }
936                         ptent = ptep_get_and_clear_full(mm, addr, pte,
937                                                         tlb->fullmm);
938                         tlb_remove_tlb_entry(tlb, pte, addr);
939                         if (unlikely(!page))
940                                 continue;
941                         if (unlikely(details) && details->nonlinear_vma
942                             && linear_page_index(details->nonlinear_vma,
943                                                 addr) != page->index)
944                                 set_pte_at(mm, addr, pte,
945                                            pgoff_to_pte(page->index));
946                         if (PageAnon(page))
947                                 rss[MM_ANONPAGES]--;
948                         else {
949                                 if (pte_dirty(ptent))
950                                         set_page_dirty(page);
951                                 if (pte_young(ptent) &&
952                                     likely(!VM_SequentialReadHint(vma)))
953                                         mark_page_accessed(page);
954                                 rss[MM_FILEPAGES]--;
955                         }
956                         page_remove_rmap(page);
957                         if (unlikely(page_mapcount(page) < 0))
958                                 print_bad_pte(vma, addr, ptent, page);
959                         tlb_remove_page(tlb, page);
960                         continue;
961                 }
962                 /*
963                  * If details->check_mapping, we leave swap entries;
964                  * if details->nonlinear_vma, we leave file entries.
965                  */
966                 if (unlikely(details))
967                         continue;
968                 if (pte_file(ptent)) {
969                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
970                                 print_bad_pte(vma, addr, ptent, NULL);
971                 } else {
972                         swp_entry_t entry = pte_to_swp_entry(ptent);
973
974                         if (!non_swap_entry(entry))
975                                 rss[MM_SWAPENTS]--;
976                         if (unlikely(!free_swap_and_cache(entry)))
977                                 print_bad_pte(vma, addr, ptent, NULL);
978                 }
979                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
980         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
981
982         add_mm_rss_vec(mm, rss);
983         arch_leave_lazy_mmu_mode();
984         pte_unmap_unlock(pte - 1, ptl);
985
986         return addr;
987 }
988
989 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
990                                 struct vm_area_struct *vma, pud_t *pud,
991                                 unsigned long addr, unsigned long end,
992                                 long *zap_work, struct zap_details *details)
993 {
994         pmd_t *pmd;
995         unsigned long next;
996
997         pmd = pmd_offset(pud, addr);
998         do {
999                 next = pmd_addr_end(addr, end);
1000                 if (pmd_none_or_clear_bad(pmd)) {
1001                         (*zap_work)--;
1002                         continue;
1003                 }
1004                 next = zap_pte_range(tlb, vma, pmd, addr, next,
1005                                                 zap_work, details);
1006         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1007
1008         return addr;
1009 }
1010
1011 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1012                                 struct vm_area_struct *vma, pgd_t *pgd,
1013                                 unsigned long addr, unsigned long end,
1014                                 long *zap_work, struct zap_details *details)
1015 {
1016         pud_t *pud;
1017         unsigned long next;
1018
1019         pud = pud_offset(pgd, addr);
1020         do {
1021                 next = pud_addr_end(addr, end);
1022                 if (pud_none_or_clear_bad(pud)) {
1023                         (*zap_work)--;
1024                         continue;
1025                 }
1026                 next = zap_pmd_range(tlb, vma, pud, addr, next,
1027                                                 zap_work, details);
1028         } while (pud++, addr = next, (addr != end && *zap_work > 0));
1029
1030         return addr;
1031 }
1032
1033 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1034                                 struct vm_area_struct *vma,
1035                                 unsigned long addr, unsigned long end,
1036                                 long *zap_work, struct zap_details *details)
1037 {
1038         pgd_t *pgd;
1039         unsigned long next;
1040
1041         if (details && !details->check_mapping && !details->nonlinear_vma)
1042                 details = NULL;
1043
1044         BUG_ON(addr >= end);
1045         mem_cgroup_uncharge_start();
1046         tlb_start_vma(tlb, vma);
1047         pgd = pgd_offset(vma->vm_mm, addr);
1048         do {
1049                 next = pgd_addr_end(addr, end);
1050                 if (pgd_none_or_clear_bad(pgd)) {
1051                         (*zap_work)--;
1052                         continue;
1053                 }
1054                 next = zap_pud_range(tlb, vma, pgd, addr, next,
1055                                                 zap_work, details);
1056         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1057         tlb_end_vma(tlb, vma);
1058         mem_cgroup_uncharge_end();
1059
1060         return addr;
1061 }
1062
1063 #ifdef CONFIG_PREEMPT
1064 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1065 #else
1066 /* No preempt: go for improved straight-line efficiency */
1067 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1068 #endif
1069
1070 /**
1071  * unmap_vmas - unmap a range of memory covered by a list of vma's
1072  * @tlbp: address of the caller's struct mmu_gather
1073  * @vma: the starting vma
1074  * @start_addr: virtual address at which to start unmapping
1075  * @end_addr: virtual address at which to end unmapping
1076  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1077  * @details: details of nonlinear truncation or shared cache invalidation
1078  *
1079  * Returns the end address of the unmapping (restart addr if interrupted).
1080  *
1081  * Unmap all pages in the vma list.
1082  *
1083  * We aim to not hold locks for too long (for scheduling latency reasons).
1084  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1085  * return the ending mmu_gather to the caller.
1086  *
1087  * Only addresses between `start' and `end' will be unmapped.
1088  *
1089  * The VMA list must be sorted in ascending virtual address order.
1090  *
1091  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1092  * range after unmap_vmas() returns.  So the only responsibility here is to
1093  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1094  * drops the lock and schedules.
1095  */
1096 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1097                 struct vm_area_struct *vma, unsigned long start_addr,
1098                 unsigned long end_addr, unsigned long *nr_accounted,
1099                 struct zap_details *details)
1100 {
1101         long zap_work = ZAP_BLOCK_SIZE;
1102         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
1103         int tlb_start_valid = 0;
1104         unsigned long start = start_addr;
1105         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1106         int fullmm = (*tlbp)->fullmm;
1107         struct mm_struct *mm = vma->vm_mm;
1108
1109         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1110         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1111                 unsigned long end;
1112
1113                 start = max(vma->vm_start, start_addr);
1114                 if (start >= vma->vm_end)
1115                         continue;
1116                 end = min(vma->vm_end, end_addr);
1117                 if (end <= vma->vm_start)
1118                         continue;
1119
1120                 if (vma->vm_flags & VM_ACCOUNT)
1121                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1122
1123                 if (unlikely(is_pfn_mapping(vma)))
1124                         untrack_pfn_vma(vma, 0, 0);
1125
1126                 while (start != end) {
1127                         if (!tlb_start_valid) {
1128                                 tlb_start = start;
1129                                 tlb_start_valid = 1;
1130                         }
1131
1132                         if (unlikely(is_vm_hugetlb_page(vma))) {
1133                                 /*
1134                                  * It is undesirable to test vma->vm_file as it
1135                                  * should be non-null for valid hugetlb area.
1136                                  * However, vm_file will be NULL in the error
1137                                  * cleanup path of do_mmap_pgoff. When
1138                                  * hugetlbfs ->mmap method fails,
1139                                  * do_mmap_pgoff() nullifies vma->vm_file
1140                                  * before calling this function to clean up.
1141                                  * Since no pte has actually been setup, it is
1142                                  * safe to do nothing in this case.
1143                                  */
1144                                 if (vma->vm_file) {
1145                                         unmap_hugepage_range(vma, start, end, NULL);
1146                                         zap_work -= (end - start) /
1147                                         pages_per_huge_page(hstate_vma(vma));
1148                                 }
1149
1150                                 start = end;
1151                         } else
1152                                 start = unmap_page_range(*tlbp, vma,
1153                                                 start, end, &zap_work, details);
1154
1155                         if (zap_work > 0) {
1156                                 BUG_ON(start != end);
1157                                 break;
1158                         }
1159
1160                         tlb_finish_mmu(*tlbp, tlb_start, start);
1161
1162                         if (need_resched() ||
1163                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1164                                 if (i_mmap_lock) {
1165                                         *tlbp = NULL;
1166                                         goto out;
1167                                 }
1168                                 cond_resched();
1169                         }
1170
1171                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1172                         tlb_start_valid = 0;
1173                         zap_work = ZAP_BLOCK_SIZE;
1174                 }
1175         }
1176 out:
1177         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1178         return start;   /* which is now the end (or restart) address */
1179 }
1180
1181 /**
1182  * zap_page_range - remove user pages in a given range
1183  * @vma: vm_area_struct holding the applicable pages
1184  * @address: starting address of pages to zap
1185  * @size: number of bytes to zap
1186  * @details: details of nonlinear truncation or shared cache invalidation
1187  */
1188 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1189                 unsigned long size, struct zap_details *details)
1190 {
1191         struct mm_struct *mm = vma->vm_mm;
1192         struct mmu_gather *tlb;
1193         unsigned long end = address + size;
1194         unsigned long nr_accounted = 0;
1195
1196         lru_add_drain();
1197         tlb = tlb_gather_mmu(mm, 0);
1198         update_hiwater_rss(mm);
1199         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1200         if (tlb)
1201                 tlb_finish_mmu(tlb, address, end);
1202         return end;
1203 }
1204
1205 /**
1206  * zap_vma_ptes - remove ptes mapping the vma
1207  * @vma: vm_area_struct holding ptes to be zapped
1208  * @address: starting address of pages to zap
1209  * @size: number of bytes to zap
1210  *
1211  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1212  *
1213  * The entire address range must be fully contained within the vma.
1214  *
1215  * Returns 0 if successful.
1216  */
1217 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1218                 unsigned long size)
1219 {
1220         if (address < vma->vm_start || address + size > vma->vm_end ||
1221                         !(vma->vm_flags & VM_PFNMAP))
1222                 return -1;
1223         zap_page_range(vma, address, size, NULL);
1224         return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1227
1228 /**
1229  * follow_page - look up a page descriptor from a user-virtual address
1230  * @vma: vm_area_struct mapping @address
1231  * @address: virtual address to look up
1232  * @flags: flags modifying lookup behaviour
1233  *
1234  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1235  *
1236  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1237  * an error pointer if there is a mapping to something not represented
1238  * by a page descriptor (see also vm_normal_page()).
1239  */
1240 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1241                         unsigned int flags)
1242 {
1243         pgd_t *pgd;
1244         pud_t *pud;
1245         pmd_t *pmd;
1246         pte_t *ptep, pte;
1247         spinlock_t *ptl;
1248         struct page *page;
1249         struct mm_struct *mm = vma->vm_mm;
1250
1251         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1252         if (!IS_ERR(page)) {
1253                 BUG_ON(flags & FOLL_GET);
1254                 goto out;
1255         }
1256
1257         page = NULL;
1258         pgd = pgd_offset(mm, address);
1259         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1260                 goto no_page_table;
1261
1262         pud = pud_offset(pgd, address);
1263         if (pud_none(*pud))
1264                 goto no_page_table;
1265         if (pud_huge(*pud)) {
1266                 BUG_ON(flags & FOLL_GET);
1267                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1268                 goto out;
1269         }
1270         if (unlikely(pud_bad(*pud)))
1271                 goto no_page_table;
1272
1273         pmd = pmd_offset(pud, address);
1274         if (pmd_none(*pmd))
1275                 goto no_page_table;
1276         if (pmd_huge(*pmd)) {
1277                 BUG_ON(flags & FOLL_GET);
1278                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1279                 goto out;
1280         }
1281         if (unlikely(pmd_bad(*pmd)))
1282                 goto no_page_table;
1283
1284         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1285
1286         pte = *ptep;
1287         if (!pte_present(pte))
1288                 goto no_page;
1289         if ((flags & FOLL_WRITE) && !pte_write(pte))
1290                 goto unlock;
1291
1292         page = vm_normal_page(vma, address, pte);
1293         if (unlikely(!page)) {
1294                 if ((flags & FOLL_DUMP) ||
1295                     !is_zero_pfn(pte_pfn(pte)))
1296                         goto bad_page;
1297                 page = pte_page(pte);
1298         }
1299
1300         if (flags & FOLL_GET)
1301                 get_page(page);
1302         if (flags & FOLL_TOUCH) {
1303                 if ((flags & FOLL_WRITE) &&
1304                     !pte_dirty(pte) && !PageDirty(page))
1305                         set_page_dirty(page);
1306                 /*
1307                  * pte_mkyoung() would be more correct here, but atomic care
1308                  * is needed to avoid losing the dirty bit: it is easier to use
1309                  * mark_page_accessed().
1310                  */
1311                 mark_page_accessed(page);
1312         }
1313 unlock:
1314         pte_unmap_unlock(ptep, ptl);
1315 out:
1316         return page;
1317
1318 bad_page:
1319         pte_unmap_unlock(ptep, ptl);
1320         return ERR_PTR(-EFAULT);
1321
1322 no_page:
1323         pte_unmap_unlock(ptep, ptl);
1324         if (!pte_none(pte))
1325                 return page;
1326
1327 no_page_table:
1328         /*
1329          * When core dumping an enormous anonymous area that nobody
1330          * has touched so far, we don't want to allocate unnecessary pages or
1331          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1332          * then get_dump_page() will return NULL to leave a hole in the dump.
1333          * But we can only make this optimization where a hole would surely
1334          * be zero-filled if handle_mm_fault() actually did handle it.
1335          */
1336         if ((flags & FOLL_DUMP) &&
1337             (!vma->vm_ops || !vma->vm_ops->fault))
1338                 return ERR_PTR(-EFAULT);
1339         return page;
1340 }
1341
1342 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1343                      unsigned long start, int nr_pages, unsigned int gup_flags,
1344                      struct page **pages, struct vm_area_struct **vmas)
1345 {
1346         int i;
1347         unsigned long vm_flags;
1348
1349         if (nr_pages <= 0)
1350                 return 0;
1351
1352         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1353
1354         /* 
1355          * Require read or write permissions.
1356          * If FOLL_FORCE is set, we only require the "MAY" flags.
1357          */
1358         vm_flags  = (gup_flags & FOLL_WRITE) ?
1359                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1360         vm_flags &= (gup_flags & FOLL_FORCE) ?
1361                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1362         i = 0;
1363
1364         do {
1365                 struct vm_area_struct *vma;
1366
1367                 vma = find_extend_vma(mm, start);
1368                 if (!vma && in_gate_area(tsk, start)) {
1369                         unsigned long pg = start & PAGE_MASK;
1370                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1371                         pgd_t *pgd;
1372                         pud_t *pud;
1373                         pmd_t *pmd;
1374                         pte_t *pte;
1375
1376                         /* user gate pages are read-only */
1377                         if (gup_flags & FOLL_WRITE)
1378                                 return i ? : -EFAULT;
1379                         if (pg > TASK_SIZE)
1380                                 pgd = pgd_offset_k(pg);
1381                         else
1382                                 pgd = pgd_offset_gate(mm, pg);
1383                         BUG_ON(pgd_none(*pgd));
1384                         pud = pud_offset(pgd, pg);
1385                         BUG_ON(pud_none(*pud));
1386                         pmd = pmd_offset(pud, pg);
1387                         if (pmd_none(*pmd))
1388                                 return i ? : -EFAULT;
1389                         pte = pte_offset_map(pmd, pg);
1390                         if (pte_none(*pte)) {
1391                                 pte_unmap(pte);
1392                                 return i ? : -EFAULT;
1393                         }
1394                         if (pages) {
1395                                 struct page *page;
1396
1397                                 page = vm_normal_page(gate_vma, start, *pte);
1398                                 if (!page) {
1399                                         if (!(gup_flags & FOLL_DUMP) &&
1400                                              is_zero_pfn(pte_pfn(*pte)))
1401                                                 page = pte_page(*pte);
1402                                         else {
1403                                                 pte_unmap(pte);
1404                                                 return i ? : -EFAULT;
1405                                         }
1406                                 }
1407                                 pages[i] = page;
1408                                 get_page(page);
1409                         }
1410                         pte_unmap(pte);
1411                         if (vmas)
1412                                 vmas[i] = gate_vma;
1413                         i++;
1414                         start += PAGE_SIZE;
1415                         nr_pages--;
1416                         continue;
1417                 }
1418
1419                 if (!vma ||
1420                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1421                     !(vm_flags & vma->vm_flags))
1422                         return i ? : -EFAULT;
1423
1424                 if (is_vm_hugetlb_page(vma)) {
1425                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1426                                         &start, &nr_pages, i, gup_flags);
1427                         continue;
1428                 }
1429
1430                 do {
1431                         struct page *page;
1432                         unsigned int foll_flags = gup_flags;
1433
1434                         /*
1435                          * If we have a pending SIGKILL, don't keep faulting
1436                          * pages and potentially allocating memory.
1437                          */
1438                         if (unlikely(fatal_signal_pending(current)))
1439                                 return i ? i : -ERESTARTSYS;
1440
1441                         cond_resched();
1442                         while (!(page = follow_page(vma, start, foll_flags))) {
1443                                 int ret;
1444
1445                                 ret = handle_mm_fault(mm, vma, start,
1446                                         (foll_flags & FOLL_WRITE) ?
1447                                         FAULT_FLAG_WRITE : 0);
1448
1449                                 if (ret & VM_FAULT_ERROR) {
1450                                         if (ret & VM_FAULT_OOM)
1451                                                 return i ? i : -ENOMEM;
1452                                         if (ret &
1453                                             (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1454                                                 return i ? i : -EFAULT;
1455                                         BUG();
1456                                 }
1457                                 if (ret & VM_FAULT_MAJOR)
1458                                         tsk->maj_flt++;
1459                                 else
1460                                         tsk->min_flt++;
1461
1462                                 /*
1463                                  * The VM_FAULT_WRITE bit tells us that
1464                                  * do_wp_page has broken COW when necessary,
1465                                  * even if maybe_mkwrite decided not to set
1466                                  * pte_write. We can thus safely do subsequent
1467                                  * page lookups as if they were reads. But only
1468                                  * do so when looping for pte_write is futile:
1469                                  * in some cases userspace may also be wanting
1470                                  * to write to the gotten user page, which a
1471                                  * read fault here might prevent (a readonly
1472                                  * page might get reCOWed by userspace write).
1473                                  */
1474                                 if ((ret & VM_FAULT_WRITE) &&
1475                                     !(vma->vm_flags & VM_WRITE))
1476                                         foll_flags &= ~FOLL_WRITE;
1477
1478                                 cond_resched();
1479                         }
1480                         if (IS_ERR(page))
1481                                 return i ? i : PTR_ERR(page);
1482                         if (pages) {
1483                                 pages[i] = page;
1484
1485                                 flush_anon_page(vma, page, start);
1486                                 flush_dcache_page(page);
1487                         }
1488                         if (vmas)
1489                                 vmas[i] = vma;
1490                         i++;
1491                         start += PAGE_SIZE;
1492                         nr_pages--;
1493                 } while (nr_pages && start < vma->vm_end);
1494         } while (nr_pages);
1495         return i;
1496 }
1497
1498 /**
1499  * get_user_pages() - pin user pages in memory
1500  * @tsk:        task_struct of target task
1501  * @mm:         mm_struct of target mm
1502  * @start:      starting user address
1503  * @nr_pages:   number of pages from start to pin
1504  * @write:      whether pages will be written to by the caller
1505  * @force:      whether to force write access even if user mapping is
1506  *              readonly. This will result in the page being COWed even
1507  *              in MAP_SHARED mappings. You do not want this.
1508  * @pages:      array that receives pointers to the pages pinned.
1509  *              Should be at least nr_pages long. Or NULL, if caller
1510  *              only intends to ensure the pages are faulted in.
1511  * @vmas:       array of pointers to vmas corresponding to each page.
1512  *              Or NULL if the caller does not require them.
1513  *
1514  * Returns number of pages pinned. This may be fewer than the number
1515  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1516  * were pinned, returns -errno. Each page returned must be released
1517  * with a put_page() call when it is finished with. vmas will only
1518  * remain valid while mmap_sem is held.
1519  *
1520  * Must be called with mmap_sem held for read or write.
1521  *
1522  * get_user_pages walks a process's page tables and takes a reference to
1523  * each struct page that each user address corresponds to at a given
1524  * instant. That is, it takes the page that would be accessed if a user
1525  * thread accesses the given user virtual address at that instant.
1526  *
1527  * This does not guarantee that the page exists in the user mappings when
1528  * get_user_pages returns, and there may even be a completely different
1529  * page there in some cases (eg. if mmapped pagecache has been invalidated
1530  * and subsequently re faulted). However it does guarantee that the page
1531  * won't be freed completely. And mostly callers simply care that the page
1532  * contains data that was valid *at some point in time*. Typically, an IO
1533  * or similar operation cannot guarantee anything stronger anyway because
1534  * locks can't be held over the syscall boundary.
1535  *
1536  * If write=0, the page must not be written to. If the page is written to,
1537  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1538  * after the page is finished with, and before put_page is called.
1539  *
1540  * get_user_pages is typically used for fewer-copy IO operations, to get a
1541  * handle on the memory by some means other than accesses via the user virtual
1542  * addresses. The pages may be submitted for DMA to devices or accessed via
1543  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1544  * use the correct cache flushing APIs.
1545  *
1546  * See also get_user_pages_fast, for performance critical applications.
1547  */
1548 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1549                 unsigned long start, int nr_pages, int write, int force,
1550                 struct page **pages, struct vm_area_struct **vmas)
1551 {
1552         int flags = FOLL_TOUCH;
1553
1554         if (pages)
1555                 flags |= FOLL_GET;
1556         if (write)
1557                 flags |= FOLL_WRITE;
1558         if (force)
1559                 flags |= FOLL_FORCE;
1560
1561         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1562 }
1563 EXPORT_SYMBOL(get_user_pages);
1564
1565 /**
1566  * get_dump_page() - pin user page in memory while writing it to core dump
1567  * @addr: user address
1568  *
1569  * Returns struct page pointer of user page pinned for dump,
1570  * to be freed afterwards by page_cache_release() or put_page().
1571  *
1572  * Returns NULL on any kind of failure - a hole must then be inserted into
1573  * the corefile, to preserve alignment with its headers; and also returns
1574  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1575  * allowing a hole to be left in the corefile to save diskspace.
1576  *
1577  * Called without mmap_sem, but after all other threads have been killed.
1578  */
1579 #ifdef CONFIG_ELF_CORE
1580 struct page *get_dump_page(unsigned long addr)
1581 {
1582         struct vm_area_struct *vma;
1583         struct page *page;
1584
1585         if (__get_user_pages(current, current->mm, addr, 1,
1586                         FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1587                 return NULL;
1588         flush_cache_page(vma, addr, page_to_pfn(page));
1589         return page;
1590 }
1591 #endif /* CONFIG_ELF_CORE */
1592
1593 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1594                         spinlock_t **ptl)
1595 {
1596         pgd_t * pgd = pgd_offset(mm, addr);
1597         pud_t * pud = pud_alloc(mm, pgd, addr);
1598         if (pud) {
1599                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1600                 if (pmd)
1601                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1602         }
1603         return NULL;
1604 }
1605
1606 /*
1607  * This is the old fallback for page remapping.
1608  *
1609  * For historical reasons, it only allows reserved pages. Only
1610  * old drivers should use this, and they needed to mark their
1611  * pages reserved for the old functions anyway.
1612  */
1613 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1614                         struct page *page, pgprot_t prot)
1615 {
1616         struct mm_struct *mm = vma->vm_mm;
1617         int retval;
1618         pte_t *pte;
1619         spinlock_t *ptl;
1620
1621         retval = -EINVAL;
1622         if (PageAnon(page))
1623                 goto out;
1624         retval = -ENOMEM;
1625         flush_dcache_page(page);
1626         pte = get_locked_pte(mm, addr, &ptl);
1627         if (!pte)
1628                 goto out;
1629         retval = -EBUSY;
1630         if (!pte_none(*pte))
1631                 goto out_unlock;
1632
1633         /* Ok, finally just insert the thing.. */
1634         get_page(page);
1635         inc_mm_counter_fast(mm, MM_FILEPAGES);
1636         page_add_file_rmap(page);
1637         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1638
1639         retval = 0;
1640         pte_unmap_unlock(pte, ptl);
1641         return retval;
1642 out_unlock:
1643         pte_unmap_unlock(pte, ptl);
1644 out:
1645         return retval;
1646 }
1647
1648 /**
1649  * vm_insert_page - insert single page into user vma
1650  * @vma: user vma to map to
1651  * @addr: target user address of this page
1652  * @page: source kernel page
1653  *
1654  * This allows drivers to insert individual pages they've allocated
1655  * into a user vma.
1656  *
1657  * The page has to be a nice clean _individual_ kernel allocation.
1658  * If you allocate a compound page, you need to have marked it as
1659  * such (__GFP_COMP), or manually just split the page up yourself
1660  * (see split_page()).
1661  *
1662  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1663  * took an arbitrary page protection parameter. This doesn't allow
1664  * that. Your vma protection will have to be set up correctly, which
1665  * means that if you want a shared writable mapping, you'd better
1666  * ask for a shared writable mapping!
1667  *
1668  * The page does not need to be reserved.
1669  */
1670 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1671                         struct page *page)
1672 {
1673         if (addr < vma->vm_start || addr >= vma->vm_end)
1674                 return -EFAULT;
1675         if (!page_count(page))
1676                 return -EINVAL;
1677         vma->vm_flags |= VM_INSERTPAGE;
1678         return insert_page(vma, addr, page, vma->vm_page_prot);
1679 }
1680 EXPORT_SYMBOL(vm_insert_page);
1681
1682 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1683                         unsigned long pfn, pgprot_t prot)
1684 {
1685         struct mm_struct *mm = vma->vm_mm;
1686         int retval;
1687         pte_t *pte, entry;
1688         spinlock_t *ptl;
1689
1690         retval = -ENOMEM;
1691         pte = get_locked_pte(mm, addr, &ptl);
1692         if (!pte)
1693                 goto out;
1694         retval = -EBUSY;
1695         if (!pte_none(*pte))
1696                 goto out_unlock;
1697
1698         /* Ok, finally just insert the thing.. */
1699         entry = pte_mkspecial(pfn_pte(pfn, prot));
1700         set_pte_at(mm, addr, pte, entry);
1701         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1702
1703         retval = 0;
1704 out_unlock:
1705         pte_unmap_unlock(pte, ptl);
1706 out:
1707         return retval;
1708 }
1709
1710 /**
1711  * vm_insert_pfn - insert single pfn into user vma
1712  * @vma: user vma to map to
1713  * @addr: target user address of this page
1714  * @pfn: source kernel pfn
1715  *
1716  * Similar to vm_inert_page, this allows drivers to insert individual pages
1717  * they've allocated into a user vma. Same comments apply.
1718  *
1719  * This function should only be called from a vm_ops->fault handler, and
1720  * in that case the handler should return NULL.
1721  *
1722  * vma cannot be a COW mapping.
1723  *
1724  * As this is called only for pages that do not currently exist, we
1725  * do not need to flush old virtual caches or the TLB.
1726  */
1727 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1728                         unsigned long pfn)
1729 {
1730         int ret;
1731         pgprot_t pgprot = vma->vm_page_prot;
1732         /*
1733          * Technically, architectures with pte_special can avoid all these
1734          * restrictions (same for remap_pfn_range).  However we would like
1735          * consistency in testing and feature parity among all, so we should
1736          * try to keep these invariants in place for everybody.
1737          */
1738         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1739         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1740                                                 (VM_PFNMAP|VM_MIXEDMAP));
1741         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1742         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1743
1744         if (addr < vma->vm_start || addr >= vma->vm_end)
1745                 return -EFAULT;
1746         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1747                 return -EINVAL;
1748
1749         ret = insert_pfn(vma, addr, pfn, pgprot);
1750
1751         if (ret)
1752                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1753
1754         return ret;
1755 }
1756 EXPORT_SYMBOL(vm_insert_pfn);
1757
1758 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1759                         unsigned long pfn)
1760 {
1761         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1762
1763         if (addr < vma->vm_start || addr >= vma->vm_end)
1764                 return -EFAULT;
1765
1766         /*
1767          * If we don't have pte special, then we have to use the pfn_valid()
1768          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1769          * refcount the page if pfn_valid is true (hence insert_page rather
1770          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1771          * without pte special, it would there be refcounted as a normal page.
1772          */
1773         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1774                 struct page *page;
1775
1776                 page = pfn_to_page(pfn);
1777                 return insert_page(vma, addr, page, vma->vm_page_prot);
1778         }
1779         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1780 }
1781 EXPORT_SYMBOL(vm_insert_mixed);
1782
1783 /*
1784  * maps a range of physical memory into the requested pages. the old
1785  * mappings are removed. any references to nonexistent pages results
1786  * in null mappings (currently treated as "copy-on-access")
1787  */
1788 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1789                         unsigned long addr, unsigned long end,
1790                         unsigned long pfn, pgprot_t prot)
1791 {
1792         pte_t *pte;
1793         spinlock_t *ptl;
1794
1795         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1796         if (!pte)
1797                 return -ENOMEM;
1798         arch_enter_lazy_mmu_mode();
1799         do {
1800                 BUG_ON(!pte_none(*pte));
1801                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1802                 pfn++;
1803         } while (pte++, addr += PAGE_SIZE, addr != end);
1804         arch_leave_lazy_mmu_mode();
1805         pte_unmap_unlock(pte - 1, ptl);
1806         return 0;
1807 }
1808
1809 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1810                         unsigned long addr, unsigned long end,
1811                         unsigned long pfn, pgprot_t prot)
1812 {
1813         pmd_t *pmd;
1814         unsigned long next;
1815
1816         pfn -= addr >> PAGE_SHIFT;
1817         pmd = pmd_alloc(mm, pud, addr);
1818         if (!pmd)
1819                 return -ENOMEM;
1820         do {
1821                 next = pmd_addr_end(addr, end);
1822                 if (remap_pte_range(mm, pmd, addr, next,
1823                                 pfn + (addr >> PAGE_SHIFT), prot))
1824                         return -ENOMEM;
1825         } while (pmd++, addr = next, addr != end);
1826         return 0;
1827 }
1828
1829 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1830                         unsigned long addr, unsigned long end,
1831                         unsigned long pfn, pgprot_t prot)
1832 {
1833         pud_t *pud;
1834         unsigned long next;
1835
1836         pfn -= addr >> PAGE_SHIFT;
1837         pud = pud_alloc(mm, pgd, addr);
1838         if (!pud)
1839                 return -ENOMEM;
1840         do {
1841                 next = pud_addr_end(addr, end);
1842                 if (remap_pmd_range(mm, pud, addr, next,
1843                                 pfn + (addr >> PAGE_SHIFT), prot))
1844                         return -ENOMEM;
1845         } while (pud++, addr = next, addr != end);
1846         return 0;
1847 }
1848
1849 /**
1850  * remap_pfn_range - remap kernel memory to userspace
1851  * @vma: user vma to map to
1852  * @addr: target user address to start at
1853  * @pfn: physical address of kernel memory
1854  * @size: size of map area
1855  * @prot: page protection flags for this mapping
1856  *
1857  *  Note: this is only safe if the mm semaphore is held when called.
1858  */
1859 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1860                     unsigned long pfn, unsigned long size, pgprot_t prot)
1861 {
1862         pgd_t *pgd;
1863         unsigned long next;
1864         unsigned long end = addr + PAGE_ALIGN(size);
1865         struct mm_struct *mm = vma->vm_mm;
1866         int err;
1867
1868         /*
1869          * Physically remapped pages are special. Tell the
1870          * rest of the world about it:
1871          *   VM_IO tells people not to look at these pages
1872          *      (accesses can have side effects).
1873          *   VM_RESERVED is specified all over the place, because
1874          *      in 2.4 it kept swapout's vma scan off this vma; but
1875          *      in 2.6 the LRU scan won't even find its pages, so this
1876          *      flag means no more than count its pages in reserved_vm,
1877          *      and omit it from core dump, even when VM_IO turned off.
1878          *   VM_PFNMAP tells the core MM that the base pages are just
1879          *      raw PFN mappings, and do not have a "struct page" associated
1880          *      with them.
1881          *
1882          * There's a horrible special case to handle copy-on-write
1883          * behaviour that some programs depend on. We mark the "original"
1884          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1885          */
1886         if (addr == vma->vm_start && end == vma->vm_end) {
1887                 vma->vm_pgoff = pfn;
1888                 vma->vm_flags |= VM_PFN_AT_MMAP;
1889         } else if (is_cow_mapping(vma->vm_flags))
1890                 return -EINVAL;
1891
1892         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1893
1894         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1895         if (err) {
1896                 /*
1897                  * To indicate that track_pfn related cleanup is not
1898                  * needed from higher level routine calling unmap_vmas
1899                  */
1900                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1901                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1902                 return -EINVAL;
1903         }
1904
1905         BUG_ON(addr >= end);
1906         pfn -= addr >> PAGE_SHIFT;
1907         pgd = pgd_offset(mm, addr);
1908         flush_cache_range(vma, addr, end);
1909         do {
1910                 next = pgd_addr_end(addr, end);
1911                 err = remap_pud_range(mm, pgd, addr, next,
1912                                 pfn + (addr >> PAGE_SHIFT), prot);
1913                 if (err)
1914                         break;
1915         } while (pgd++, addr = next, addr != end);
1916
1917         if (err)
1918                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1919
1920         return err;
1921 }
1922 EXPORT_SYMBOL(remap_pfn_range);
1923
1924 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1925                                      unsigned long addr, unsigned long end,
1926                                      pte_fn_t fn, void *data)
1927 {
1928         pte_t *pte;
1929         int err;
1930         pgtable_t token;
1931         spinlock_t *uninitialized_var(ptl);
1932
1933         pte = (mm == &init_mm) ?
1934                 pte_alloc_kernel(pmd, addr) :
1935                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1936         if (!pte)
1937                 return -ENOMEM;
1938
1939         BUG_ON(pmd_huge(*pmd));
1940
1941         arch_enter_lazy_mmu_mode();
1942
1943         token = pmd_pgtable(*pmd);
1944
1945         do {
1946                 err = fn(pte++, token, addr, data);
1947                 if (err)
1948                         break;
1949         } while (addr += PAGE_SIZE, addr != end);
1950
1951         arch_leave_lazy_mmu_mode();
1952
1953         if (mm != &init_mm)
1954                 pte_unmap_unlock(pte-1, ptl);
1955         return err;
1956 }
1957
1958 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1959                                      unsigned long addr, unsigned long end,
1960                                      pte_fn_t fn, void *data)
1961 {
1962         pmd_t *pmd;
1963         unsigned long next;
1964         int err;
1965
1966         BUG_ON(pud_huge(*pud));
1967
1968         pmd = pmd_alloc(mm, pud, addr);
1969         if (!pmd)
1970                 return -ENOMEM;
1971         do {
1972                 next = pmd_addr_end(addr, end);
1973                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1974                 if (err)
1975                         break;
1976         } while (pmd++, addr = next, addr != end);
1977         return err;
1978 }
1979
1980 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1981                                      unsigned long addr, unsigned long end,
1982                                      pte_fn_t fn, void *data)
1983 {
1984         pud_t *pud;
1985         unsigned long next;
1986         int err;
1987
1988         pud = pud_alloc(mm, pgd, addr);
1989         if (!pud)
1990                 return -ENOMEM;
1991         do {
1992                 next = pud_addr_end(addr, end);
1993                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1994                 if (err)
1995                         break;
1996         } while (pud++, addr = next, addr != end);
1997         return err;
1998 }
1999
2000 /*
2001  * Scan a region of virtual memory, filling in page tables as necessary
2002  * and calling a provided function on each leaf page table.
2003  */
2004 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2005                         unsigned long size, pte_fn_t fn, void *data)
2006 {
2007         pgd_t *pgd;
2008         unsigned long next;
2009         unsigned long end = addr + size;
2010         int err;
2011
2012         BUG_ON(addr >= end);
2013         pgd = pgd_offset(mm, addr);
2014         do {
2015                 next = pgd_addr_end(addr, end);
2016                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2017                 if (err)
2018                         break;
2019         } while (pgd++, addr = next, addr != end);
2020
2021         return err;
2022 }
2023 EXPORT_SYMBOL_GPL(apply_to_page_range);
2024
2025 /*
2026  * handle_pte_fault chooses page fault handler according to an entry
2027  * which was read non-atomically.  Before making any commitment, on
2028  * those architectures or configurations (e.g. i386 with PAE) which
2029  * might give a mix of unmatched parts, do_swap_page and do_file_page
2030  * must check under lock before unmapping the pte and proceeding
2031  * (but do_wp_page is only called after already making such a check;
2032  * and do_anonymous_page and do_no_page can safely check later on).
2033  */
2034 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2035                                 pte_t *page_table, pte_t orig_pte)
2036 {
2037         int same = 1;
2038 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2039         if (sizeof(pte_t) > sizeof(unsigned long)) {
2040                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2041                 spin_lock(ptl);
2042                 same = pte_same(*page_table, orig_pte);
2043                 spin_unlock(ptl);
2044         }
2045 #endif
2046         pte_unmap(page_table);
2047         return same;
2048 }
2049
2050 /*
2051  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
2052  * servicing faults for write access.  In the normal case, do always want
2053  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
2054  * that do not have writing enabled, when used by access_process_vm.
2055  */
2056 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2057 {
2058         if (likely(vma->vm_flags & VM_WRITE))
2059                 pte = pte_mkwrite(pte);
2060         return pte;
2061 }
2062
2063 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2064 {
2065         /*
2066          * If the source page was a PFN mapping, we don't have
2067          * a "struct page" for it. We do a best-effort copy by
2068          * just copying from the original user address. If that
2069          * fails, we just zero-fill it. Live with it.
2070          */
2071         if (unlikely(!src)) {
2072                 void *kaddr = kmap_atomic(dst, KM_USER0);
2073                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2074
2075                 /*
2076                  * This really shouldn't fail, because the page is there
2077                  * in the page tables. But it might just be unreadable,
2078                  * in which case we just give up and fill the result with
2079                  * zeroes.
2080                  */
2081                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2082                         memset(kaddr, 0, PAGE_SIZE);
2083                 kunmap_atomic(kaddr, KM_USER0);
2084                 flush_dcache_page(dst);
2085         } else
2086                 copy_user_highpage(dst, src, va, vma);
2087 }
2088
2089 /*
2090  * This routine handles present pages, when users try to write
2091  * to a shared page. It is done by copying the page to a new address
2092  * and decrementing the shared-page counter for the old page.
2093  *
2094  * Note that this routine assumes that the protection checks have been
2095  * done by the caller (the low-level page fault routine in most cases).
2096  * Thus we can safely just mark it writable once we've done any necessary
2097  * COW.
2098  *
2099  * We also mark the page dirty at this point even though the page will
2100  * change only once the write actually happens. This avoids a few races,
2101  * and potentially makes it more efficient.
2102  *
2103  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2104  * but allow concurrent faults), with pte both mapped and locked.
2105  * We return with mmap_sem still held, but pte unmapped and unlocked.
2106  */
2107 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2108                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2109                 spinlock_t *ptl, pte_t orig_pte)
2110 {
2111         struct page *old_page, *new_page;
2112         pte_t entry;
2113         int reuse = 0, ret = 0;
2114         int page_mkwrite = 0;
2115         struct page *dirty_page = NULL;
2116
2117         old_page = vm_normal_page(vma, address, orig_pte);
2118         if (!old_page) {
2119                 /*
2120                  * VM_MIXEDMAP !pfn_valid() case
2121                  *
2122                  * We should not cow pages in a shared writeable mapping.
2123                  * Just mark the pages writable as we can't do any dirty
2124                  * accounting on raw pfn maps.
2125                  */
2126                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2127                                      (VM_WRITE|VM_SHARED))
2128                         goto reuse;
2129                 goto gotten;
2130         }
2131
2132         /*
2133          * Take out anonymous pages first, anonymous shared vmas are
2134          * not dirty accountable.
2135          */
2136         if (PageAnon(old_page) && !PageKsm(old_page)) {
2137                 if (!trylock_page(old_page)) {
2138                         page_cache_get(old_page);
2139                         pte_unmap_unlock(page_table, ptl);
2140                         lock_page(old_page);
2141                         page_table = pte_offset_map_lock(mm, pmd, address,
2142                                                          &ptl);
2143                         if (!pte_same(*page_table, orig_pte)) {
2144                                 unlock_page(old_page);
2145                                 page_cache_release(old_page);
2146                                 goto unlock;
2147                         }
2148                         page_cache_release(old_page);
2149                 }
2150                 reuse = reuse_swap_page(old_page);
2151                 if (reuse)
2152                         /*
2153                          * The page is all ours.  Move it to our anon_vma so
2154                          * the rmap code will not search our parent or siblings.
2155                          * Protected against the rmap code by the page lock.
2156                          */
2157                         page_move_anon_rmap(old_page, vma, address);
2158                 unlock_page(old_page);
2159         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2160                                         (VM_WRITE|VM_SHARED))) {
2161                 /*
2162                  * Only catch write-faults on shared writable pages,
2163                  * read-only shared pages can get COWed by
2164                  * get_user_pages(.write=1, .force=1).
2165                  */
2166                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2167                         struct vm_fault vmf;
2168                         int tmp;
2169
2170                         vmf.virtual_address = (void __user *)(address &
2171                                                                 PAGE_MASK);
2172                         vmf.pgoff = old_page->index;
2173                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2174                         vmf.page = old_page;
2175
2176                         /*
2177                          * Notify the address space that the page is about to
2178                          * become writable so that it can prohibit this or wait
2179                          * for the page to get into an appropriate state.
2180                          *
2181                          * We do this without the lock held, so that it can
2182                          * sleep if it needs to.
2183                          */
2184                         page_cache_get(old_page);
2185                         pte_unmap_unlock(page_table, ptl);
2186
2187                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2188                         if (unlikely(tmp &
2189                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2190                                 ret = tmp;
2191                                 goto unwritable_page;
2192                         }
2193                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2194                                 lock_page(old_page);
2195                                 if (!old_page->mapping) {
2196                                         ret = 0; /* retry the fault */
2197                                         unlock_page(old_page);
2198                                         goto unwritable_page;
2199                                 }
2200                         } else
2201                                 VM_BUG_ON(!PageLocked(old_page));
2202
2203                         /*
2204                          * Since we dropped the lock we need to revalidate
2205                          * the PTE as someone else may have changed it.  If
2206                          * they did, we just return, as we can count on the
2207                          * MMU to tell us if they didn't also make it writable.
2208                          */
2209                         page_table = pte_offset_map_lock(mm, pmd, address,
2210                                                          &ptl);
2211                         if (!pte_same(*page_table, orig_pte)) {
2212                                 unlock_page(old_page);
2213                                 page_cache_release(old_page);
2214                                 goto unlock;
2215                         }
2216
2217                         page_mkwrite = 1;
2218                 }
2219                 dirty_page = old_page;
2220                 get_page(dirty_page);
2221                 reuse = 1;
2222         }
2223
2224         if (reuse) {
2225 reuse:
2226                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2227                 entry = pte_mkyoung(orig_pte);
2228                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2229                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2230                         update_mmu_cache(vma, address, page_table);
2231                 ret |= VM_FAULT_WRITE;
2232                 goto unlock;
2233         }
2234
2235         /*
2236          * Ok, we need to copy. Oh, well..
2237          */
2238         page_cache_get(old_page);
2239 gotten:
2240         pte_unmap_unlock(page_table, ptl);
2241
2242         if (unlikely(anon_vma_prepare(vma)))
2243                 goto oom;
2244
2245         if (is_zero_pfn(pte_pfn(orig_pte))) {
2246                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2247                 if (!new_page)
2248                         goto oom;
2249         } else {
2250                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2251                 if (!new_page)
2252                         goto oom;
2253                 cow_user_page(new_page, old_page, address, vma);
2254         }
2255         __SetPageUptodate(new_page);
2256
2257         /*
2258          * Don't let another task, with possibly unlocked vma,
2259          * keep the mlocked page.
2260          */
2261         if ((vma->vm_flags & VM_LOCKED) && old_page) {
2262                 lock_page(old_page);    /* for LRU manipulation */
2263                 clear_page_mlock(old_page);
2264                 unlock_page(old_page);
2265         }
2266
2267         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2268                 goto oom_free_new;
2269
2270         /*
2271          * Re-check the pte - we dropped the lock
2272          */
2273         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2274         if (likely(pte_same(*page_table, orig_pte))) {
2275                 if (old_page) {
2276                         if (!PageAnon(old_page)) {
2277                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2278                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2279                         }
2280                 } else
2281                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2282                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2283                 entry = mk_pte(new_page, vma->vm_page_prot);
2284                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285                 /*
2286                  * Clear the pte entry and flush it first, before updating the
2287                  * pte with the new entry. This will avoid a race condition
2288                  * seen in the presence of one thread doing SMC and another
2289                  * thread doing COW.
2290                  */
2291                 ptep_clear_flush(vma, address, page_table);
2292                 page_add_new_anon_rmap(new_page, vma, address);
2293                 /*
2294                  * We call the notify macro here because, when using secondary
2295                  * mmu page tables (such as kvm shadow page tables), we want the
2296                  * new page to be mapped directly into the secondary page table.
2297                  */
2298                 set_pte_at_notify(mm, address, page_table, entry);
2299                 update_mmu_cache(vma, address, page_table);
2300                 if (old_page) {
2301                         /*
2302                          * Only after switching the pte to the new page may
2303                          * we remove the mapcount here. Otherwise another
2304                          * process may come and find the rmap count decremented
2305                          * before the pte is switched to the new page, and
2306                          * "reuse" the old page writing into it while our pte
2307                          * here still points into it and can be read by other
2308                          * threads.
2309                          *
2310                          * The critical issue is to order this
2311                          * page_remove_rmap with the ptp_clear_flush above.
2312                          * Those stores are ordered by (if nothing else,)
2313                          * the barrier present in the atomic_add_negative
2314                          * in page_remove_rmap.
2315                          *
2316                          * Then the TLB flush in ptep_clear_flush ensures that
2317                          * no process can access the old page before the
2318                          * decremented mapcount is visible. And the old page
2319                          * cannot be reused until after the decremented
2320                          * mapcount is visible. So transitively, TLBs to
2321                          * old page will be flushed before it can be reused.
2322                          */
2323                         page_remove_rmap(old_page);
2324                 }
2325
2326                 /* Free the old page.. */
2327                 new_page = old_page;
2328                 ret |= VM_FAULT_WRITE;
2329         } else
2330                 mem_cgroup_uncharge_page(new_page);
2331
2332         if (new_page)
2333                 page_cache_release(new_page);
2334         if (old_page)
2335                 page_cache_release(old_page);
2336 unlock:
2337         pte_unmap_unlock(page_table, ptl);
2338         if (dirty_page) {
2339                 /*
2340                  * Yes, Virginia, this is actually required to prevent a race
2341                  * with clear_page_dirty_for_io() from clearing the page dirty
2342                  * bit after it clear all dirty ptes, but before a racing
2343                  * do_wp_page installs a dirty pte.
2344                  *
2345                  * do_no_page is protected similarly.
2346                  */
2347                 if (!page_mkwrite) {
2348                         wait_on_page_locked(dirty_page);
2349                         set_page_dirty_balance(dirty_page, page_mkwrite);
2350                 }
2351                 put_page(dirty_page);
2352                 if (page_mkwrite) {
2353                         struct address_space *mapping = dirty_page->mapping;
2354
2355                         set_page_dirty(dirty_page);
2356                         unlock_page(dirty_page);
2357                         page_cache_release(dirty_page);
2358                         if (mapping)    {
2359                                 /*
2360                                  * Some device drivers do not set page.mapping
2361                                  * but still dirty their pages
2362                                  */
2363                                 balance_dirty_pages_ratelimited(mapping);
2364                         }
2365                 }
2366
2367                 /* file_update_time outside page_lock */
2368                 if (vma->vm_file)
2369                         file_update_time(vma->vm_file);
2370         }
2371         return ret;
2372 oom_free_new:
2373         page_cache_release(new_page);
2374 oom:
2375         if (old_page) {
2376                 if (page_mkwrite) {
2377                         unlock_page(old_page);
2378                         page_cache_release(old_page);
2379                 }
2380                 page_cache_release(old_page);
2381         }
2382         return VM_FAULT_OOM;
2383
2384 unwritable_page:
2385         page_cache_release(old_page);
2386         return ret;
2387 }
2388
2389 /*
2390  * Helper functions for unmap_mapping_range().
2391  *
2392  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2393  *
2394  * We have to restart searching the prio_tree whenever we drop the lock,
2395  * since the iterator is only valid while the lock is held, and anyway
2396  * a later vma might be split and reinserted earlier while lock dropped.
2397  *
2398  * The list of nonlinear vmas could be handled more efficiently, using
2399  * a placeholder, but handle it in the same way until a need is shown.
2400  * It is important to search the prio_tree before nonlinear list: a vma
2401  * may become nonlinear and be shifted from prio_tree to nonlinear list
2402  * while the lock is dropped; but never shifted from list to prio_tree.
2403  *
2404  * In order to make forward progress despite restarting the search,
2405  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2406  * quickly skip it next time around.  Since the prio_tree search only
2407  * shows us those vmas affected by unmapping the range in question, we
2408  * can't efficiently keep all vmas in step with mapping->truncate_count:
2409  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2410  * mapping->truncate_count and vma->vm_truncate_count are protected by
2411  * i_mmap_lock.
2412  *
2413  * In order to make forward progress despite repeatedly restarting some
2414  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2415  * and restart from that address when we reach that vma again.  It might
2416  * have been split or merged, shrunk or extended, but never shifted: so
2417  * restart_addr remains valid so long as it remains in the vma's range.
2418  * unmap_mapping_range forces truncate_count to leap over page-aligned
2419  * values so we can save vma's restart_addr in its truncate_count field.
2420  */
2421 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2422
2423 static void reset_vma_truncate_counts(struct address_space *mapping)
2424 {
2425         struct vm_area_struct *vma;
2426         struct prio_tree_iter iter;
2427
2428         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2429                 vma->vm_truncate_count = 0;
2430         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2431                 vma->vm_truncate_count = 0;
2432 }
2433
2434 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2435                 unsigned long start_addr, unsigned long end_addr,
2436                 struct zap_details *details)
2437 {
2438         unsigned long restart_addr;
2439         int need_break;
2440
2441         /*
2442          * files that support invalidating or truncating portions of the
2443          * file from under mmaped areas must have their ->fault function
2444          * return a locked page (and set VM_FAULT_LOCKED in the return).
2445          * This provides synchronisation against concurrent unmapping here.
2446          */
2447
2448 again:
2449         restart_addr = vma->vm_truncate_count;
2450         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2451                 start_addr = restart_addr;
2452                 if (start_addr >= end_addr) {
2453                         /* Top of vma has been split off since last time */
2454                         vma->vm_truncate_count = details->truncate_count;
2455                         return 0;
2456                 }
2457         }
2458
2459         restart_addr = zap_page_range(vma, start_addr,
2460                                         end_addr - start_addr, details);
2461         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2462
2463         if (restart_addr >= end_addr) {
2464                 /* We have now completed this vma: mark it so */
2465                 vma->vm_truncate_count = details->truncate_count;
2466                 if (!need_break)
2467                         return 0;
2468         } else {
2469                 /* Note restart_addr in vma's truncate_count field */
2470                 vma->vm_truncate_count = restart_addr;
2471                 if (!need_break)
2472                         goto again;
2473         }
2474
2475         spin_unlock(details->i_mmap_lock);
2476         cond_resched();
2477         spin_lock(details->i_mmap_lock);
2478         return -EINTR;
2479 }
2480
2481 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2482                                             struct zap_details *details)
2483 {
2484         struct vm_area_struct *vma;
2485         struct prio_tree_iter iter;
2486         pgoff_t vba, vea, zba, zea;
2487
2488 restart:
2489         vma_prio_tree_foreach(vma, &iter, root,
2490                         details->first_index, details->last_index) {
2491                 /* Skip quickly over those we have already dealt with */
2492                 if (vma->vm_truncate_count == details->truncate_count)
2493                         continue;
2494
2495                 vba = vma->vm_pgoff;
2496                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2497                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2498                 zba = details->first_index;
2499                 if (zba < vba)
2500                         zba = vba;
2501                 zea = details->last_index;
2502                 if (zea > vea)
2503                         zea = vea;
2504
2505                 if (unmap_mapping_range_vma(vma,
2506                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2507                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2508                                 details) < 0)
2509                         goto restart;
2510         }
2511 }
2512
2513 static inline void unmap_mapping_range_list(struct list_head *head,
2514                                             struct zap_details *details)
2515 {
2516         struct vm_area_struct *vma;
2517
2518         /*
2519          * In nonlinear VMAs there is no correspondence between virtual address
2520          * offset and file offset.  So we must perform an exhaustive search
2521          * across *all* the pages in each nonlinear VMA, not just the pages
2522          * whose virtual address lies outside the file truncation point.
2523          */
2524 restart:
2525         list_for_each_entry(vma, head, shared.vm_set.list) {
2526                 /* Skip quickly over those we have already dealt with */
2527                 if (vma->vm_truncate_count == details->truncate_count)
2528                         continue;
2529                 details->nonlinear_vma = vma;
2530                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2531                                         vma->vm_end, details) < 0)
2532                         goto restart;
2533         }
2534 }
2535
2536 /**
2537  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2538  * @mapping: the address space containing mmaps to be unmapped.
2539  * @holebegin: byte in first page to unmap, relative to the start of
2540  * the underlying file.  This will be rounded down to a PAGE_SIZE
2541  * boundary.  Note that this is different from truncate_pagecache(), which
2542  * must keep the partial page.  In contrast, we must get rid of
2543  * partial pages.
2544  * @holelen: size of prospective hole in bytes.  This will be rounded
2545  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2546  * end of the file.
2547  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2548  * but 0 when invalidating pagecache, don't throw away private data.
2549  */
2550 void unmap_mapping_range(struct address_space *mapping,
2551                 loff_t const holebegin, loff_t const holelen, int even_cows)
2552 {
2553         struct zap_details details;
2554         pgoff_t hba = holebegin >> PAGE_SHIFT;
2555         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2556
2557         /* Check for overflow. */
2558         if (sizeof(holelen) > sizeof(hlen)) {
2559                 long long holeend =
2560                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2561                 if (holeend & ~(long long)ULONG_MAX)
2562                         hlen = ULONG_MAX - hba + 1;
2563         }
2564
2565         details.check_mapping = even_cows? NULL: mapping;
2566         details.nonlinear_vma = NULL;
2567         details.first_index = hba;
2568         details.last_index = hba + hlen - 1;
2569         if (details.last_index < details.first_index)
2570                 details.last_index = ULONG_MAX;
2571         details.i_mmap_lock = &mapping->i_mmap_lock;
2572
2573         spin_lock(&mapping->i_mmap_lock);
2574
2575         /* Protect against endless unmapping loops */
2576         mapping->truncate_count++;
2577         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2578                 if (mapping->truncate_count == 0)
2579                         reset_vma_truncate_counts(mapping);
2580                 mapping->truncate_count++;
2581         }
2582         details.truncate_count = mapping->truncate_count;
2583
2584         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2585                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2586         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2587                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2588         spin_unlock(&mapping->i_mmap_lock);
2589 }
2590 EXPORT_SYMBOL(unmap_mapping_range);
2591
2592 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2593 {
2594         struct address_space *mapping = inode->i_mapping;
2595
2596         /*
2597          * If the underlying filesystem is not going to provide
2598          * a way to truncate a range of blocks (punch a hole) -
2599          * we should return failure right now.
2600          */
2601         if (!inode->i_op->truncate_range)
2602                 return -ENOSYS;
2603
2604         mutex_lock(&inode->i_mutex);
2605         down_write(&inode->i_alloc_sem);
2606         unmap_mapping_range(mapping, offset, (end - offset), 1);
2607         truncate_inode_pages_range(mapping, offset, end);
2608         unmap_mapping_range(mapping, offset, (end - offset), 1);
2609         inode->i_op->truncate_range(inode, offset, end);
2610         up_write(&inode->i_alloc_sem);
2611         mutex_unlock(&inode->i_mutex);
2612
2613         return 0;
2614 }
2615
2616 /*
2617  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2618  * but allow concurrent faults), and pte mapped but not yet locked.
2619  * We return with mmap_sem still held, but pte unmapped and unlocked.
2620  */
2621 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2622                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2623                 unsigned int flags, pte_t orig_pte)
2624 {
2625         spinlock_t *ptl;
2626         struct page *page, *swapcache = NULL;
2627         swp_entry_t entry;
2628         pte_t pte;
2629         struct mem_cgroup *ptr = NULL;
2630         int exclusive = 0;
2631         int ret = 0;
2632
2633         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2634                 goto out;
2635
2636         entry = pte_to_swp_entry(orig_pte);
2637         if (unlikely(non_swap_entry(entry))) {
2638                 if (is_migration_entry(entry)) {
2639                         migration_entry_wait(mm, pmd, address);
2640                 } else if (is_hwpoison_entry(entry)) {
2641                         ret = VM_FAULT_HWPOISON;
2642                 } else {
2643                         print_bad_pte(vma, address, orig_pte, NULL);
2644                         ret = VM_FAULT_SIGBUS;
2645                 }
2646                 goto out;
2647         }
2648         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2649         page = lookup_swap_cache(entry);
2650         if (!page) {
2651                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2652                 page = swapin_readahead(entry,
2653                                         GFP_HIGHUSER_MOVABLE, vma, address);
2654                 if (!page) {
2655                         /*
2656                          * Back out if somebody else faulted in this pte
2657                          * while we released the pte lock.
2658                          */
2659                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2660                         if (likely(pte_same(*page_table, orig_pte)))
2661                                 ret = VM_FAULT_OOM;
2662                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2663                         goto unlock;
2664                 }
2665
2666                 /* Had to read the page from swap area: Major fault */
2667                 ret = VM_FAULT_MAJOR;
2668                 count_vm_event(PGMAJFAULT);
2669         } else if (PageHWPoison(page)) {
2670                 /*
2671                  * hwpoisoned dirty swapcache pages are kept for killing
2672                  * owner processes (which may be unknown at hwpoison time)
2673                  */
2674                 ret = VM_FAULT_HWPOISON;
2675                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2676                 goto out_release;
2677         }
2678
2679         lock_page(page);
2680         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2681
2682         /*
2683          * Make sure try_to_free_swap didn't release the swapcache
2684          * from under us. The page pin isn't enough to prevent that.
2685          */
2686         if (unlikely(!PageSwapCache(page)))
2687                 goto out_page;
2688
2689         if (ksm_might_need_to_copy(page, vma, address)) {
2690                 swapcache = page;
2691                 page = ksm_does_need_to_copy(page, vma, address);
2692
2693                 if (unlikely(!page)) {
2694                         ret = VM_FAULT_OOM;
2695                         page = swapcache;
2696                         swapcache = NULL;
2697                         goto out_page;
2698                 }
2699         }
2700
2701         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2702                 ret = VM_FAULT_OOM;
2703                 goto out_page;
2704         }
2705
2706         /*
2707          * Back out if somebody else already faulted in this pte.
2708          */
2709         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2710         if (unlikely(!pte_same(*page_table, orig_pte)))
2711                 goto out_nomap;
2712
2713         if (unlikely(!PageUptodate(page))) {
2714                 ret = VM_FAULT_SIGBUS;
2715                 goto out_nomap;
2716         }
2717
2718         /*
2719          * The page isn't present yet, go ahead with the fault.
2720          *
2721          * Be careful about the sequence of operations here.
2722          * To get its accounting right, reuse_swap_page() must be called
2723          * while the page is counted on swap but not yet in mapcount i.e.
2724          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2725          * must be called after the swap_free(), or it will never succeed.
2726          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2727          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2728          * in page->private. In this case, a record in swap_cgroup  is silently
2729          * discarded at swap_free().
2730          */
2731
2732         inc_mm_counter_fast(mm, MM_ANONPAGES);
2733         dec_mm_counter_fast(mm, MM_SWAPENTS);
2734         pte = mk_pte(page, vma->vm_page_prot);
2735         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2736                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2737                 flags &= ~FAULT_FLAG_WRITE;
2738                 ret |= VM_FAULT_WRITE;
2739                 exclusive = 1;
2740         }
2741         flush_icache_page(vma, page);
2742         set_pte_at(mm, address, page_table, pte);
2743         do_page_add_anon_rmap(page, vma, address, exclusive);
2744         /* It's better to call commit-charge after rmap is established */
2745         mem_cgroup_commit_charge_swapin(page, ptr);
2746
2747         swap_free(entry);
2748         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2749                 try_to_free_swap(page);
2750         unlock_page(page);
2751         if (swapcache) {
2752                 /*
2753                  * Hold the lock to avoid the swap entry to be reused
2754                  * until we take the PT lock for the pte_same() check
2755                  * (to avoid false positives from pte_same). For
2756                  * further safety release the lock after the swap_free
2757                  * so that the swap count won't change under a
2758                  * parallel locked swapcache.
2759                  */
2760                 unlock_page(swapcache);
2761                 page_cache_release(swapcache);
2762         }
2763
2764         if (flags & FAULT_FLAG_WRITE) {
2765                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2766                 if (ret & VM_FAULT_ERROR)
2767                         ret &= VM_FAULT_ERROR;
2768                 goto out;
2769         }
2770
2771         /* No need to invalidate - it was non-present before */
2772         update_mmu_cache(vma, address, page_table);
2773 unlock:
2774         pte_unmap_unlock(page_table, ptl);
2775 out:
2776         return ret;
2777 out_nomap:
2778         mem_cgroup_cancel_charge_swapin(ptr);
2779         pte_unmap_unlock(page_table, ptl);
2780 out_page:
2781         unlock_page(page);
2782 out_release:
2783         page_cache_release(page);
2784         if (swapcache) {
2785                 unlock_page(swapcache);
2786                 page_cache_release(swapcache);
2787         }
2788         return ret;
2789 }
2790
2791 /*
2792  * This is like a special single-page "expand_{down|up}wards()",
2793  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2794  * doesn't hit another vma.
2795  */
2796 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2797 {
2798         address &= PAGE_MASK;
2799         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2800                 struct vm_area_struct *prev = vma->vm_prev;
2801
2802                 /*
2803                  * Is there a mapping abutting this one below?
2804                  *
2805                  * That's only ok if it's the same stack mapping
2806                  * that has gotten split..
2807                  */
2808                 if (prev && prev->vm_end == address)
2809                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2810
2811                 expand_stack(vma, address - PAGE_SIZE);
2812         }
2813         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2814                 struct vm_area_struct *next = vma->vm_next;
2815
2816                 /* As VM_GROWSDOWN but s/below/above/ */
2817                 if (next && next->vm_start == address + PAGE_SIZE)
2818                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2819
2820                 expand_upwards(vma, address + PAGE_SIZE);
2821         }
2822         return 0;
2823 }
2824
2825 /*
2826  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2827  * but allow concurrent faults), and pte mapped but not yet locked.
2828  * We return with mmap_sem still held, but pte unmapped and unlocked.
2829  */
2830 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2831                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2832                 unsigned int flags)
2833 {
2834         struct page *page;
2835         spinlock_t *ptl;
2836         pte_t entry;
2837
2838         pte_unmap(page_table);
2839
2840         /* Check if we need to add a guard page to the stack */
2841         if (check_stack_guard_page(vma, address) < 0)
2842                 return VM_FAULT_SIGBUS;
2843
2844         /* Use the zero-page for reads */
2845         if (!(flags & FAULT_FLAG_WRITE)) {
2846                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2847                                                 vma->vm_page_prot));
2848                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2849                 if (!pte_none(*page_table))
2850                         goto unlock;
2851                 goto setpte;
2852         }
2853
2854         /* Allocate our own private page. */
2855         if (unlikely(anon_vma_prepare(vma)))
2856                 goto oom;
2857         page = alloc_zeroed_user_highpage_movable(vma, address);
2858         if (!page)
2859                 goto oom;
2860         __SetPageUptodate(page);
2861
2862         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2863                 goto oom_free_page;
2864
2865         entry = mk_pte(page, vma->vm_page_prot);
2866         if (vma->vm_flags & VM_WRITE)
2867                 entry = pte_mkwrite(pte_mkdirty(entry));
2868
2869         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2870         if (!pte_none(*page_table))
2871                 goto release;
2872
2873         inc_mm_counter_fast(mm, MM_ANONPAGES);
2874         page_add_new_anon_rmap(page, vma, address);
2875 setpte:
2876         set_pte_at(mm, address, page_table, entry);
2877
2878         /* No need to invalidate - it was non-present before */
2879         update_mmu_cache(vma, address, page_table);
2880 unlock:
2881         pte_unmap_unlock(page_table, ptl);
2882         return 0;
2883 release:
2884         mem_cgroup_uncharge_page(page);
2885         page_cache_release(page);
2886         goto unlock;
2887 oom_free_page:
2888         page_cache_release(page);
2889 oom:
2890         return VM_FAULT_OOM;
2891 }
2892
2893 /*
2894  * __do_fault() tries to create a new page mapping. It aggressively
2895  * tries to share with existing pages, but makes a separate copy if
2896  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2897  * the next page fault.
2898  *
2899  * As this is called only for pages that do not currently exist, we
2900  * do not need to flush old virtual caches or the TLB.
2901  *
2902  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2903  * but allow concurrent faults), and pte neither mapped nor locked.
2904  * We return with mmap_sem still held, but pte unmapped and unlocked.
2905  */
2906 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2907                 unsigned long address, pmd_t *pmd,
2908                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2909 {
2910         pte_t *page_table;
2911         spinlock_t *ptl;
2912         struct page *page;
2913         pte_t entry;
2914         int anon = 0;
2915         int charged = 0;
2916         struct page *dirty_page = NULL;
2917         struct vm_fault vmf;
2918         int ret;
2919         int page_mkwrite = 0;
2920
2921         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2922         vmf.pgoff = pgoff;
2923         vmf.flags = flags;
2924         vmf.page = NULL;
2925
2926         ret = vma->vm_ops->fault(vma, &vmf);
2927         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2928                 return ret;
2929
2930         if (unlikely(PageHWPoison(vmf.page))) {
2931                 if (ret & VM_FAULT_LOCKED)
2932                         unlock_page(vmf.page);
2933                 return VM_FAULT_HWPOISON;
2934         }
2935
2936         /*
2937          * For consistency in subsequent calls, make the faulted page always
2938          * locked.
2939          */
2940         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2941                 lock_page(vmf.page);
2942         else
2943                 VM_BUG_ON(!PageLocked(vmf.page));
2944
2945         /*
2946          * Should we do an early C-O-W break?
2947          */
2948         page = vmf.page;
2949         if (flags & FAULT_FLAG_WRITE) {
2950                 if (!(vma->vm_flags & VM_SHARED)) {
2951                         anon = 1;
2952                         if (unlikely(anon_vma_prepare(vma))) {
2953                                 ret = VM_FAULT_OOM;
2954                                 goto out;
2955                         }
2956                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2957                                                 vma, address);
2958                         if (!page) {
2959                                 ret = VM_FAULT_OOM;
2960                                 goto out;
2961                         }
2962                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2963                                 ret = VM_FAULT_OOM;
2964                                 page_cache_release(page);
2965                                 goto out;
2966                         }
2967                         charged = 1;
2968                         /*
2969                          * Don't let another task, with possibly unlocked vma,
2970                          * keep the mlocked page.
2971                          */
2972                         if (vma->vm_flags & VM_LOCKED)
2973                                 clear_page_mlock(vmf.page);
2974                         copy_user_highpage(page, vmf.page, address, vma);
2975                         __SetPageUptodate(page);
2976                 } else {
2977                         /*
2978                          * If the page will be shareable, see if the backing
2979                          * address space wants to know that the page is about
2980                          * to become writable
2981                          */
2982                         if (vma->vm_ops->page_mkwrite) {
2983                                 int tmp;
2984
2985                                 unlock_page(page);
2986                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2987                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2988                                 if (unlikely(tmp &
2989                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2990                                         ret = tmp;
2991                                         goto unwritable_page;
2992                                 }
2993                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2994                                         lock_page(page);
2995                                         if (!page->mapping) {
2996                                                 ret = 0; /* retry the fault */
2997                                                 unlock_page(page);
2998                                                 goto unwritable_page;
2999                                         }
3000                                 } else
3001                                         VM_BUG_ON(!PageLocked(page));
3002                                 page_mkwrite = 1;
3003                         }
3004                 }
3005
3006         }
3007
3008         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3009
3010         /*
3011          * This silly early PAGE_DIRTY setting removes a race
3012          * due to the bad i386 page protection. But it's valid
3013          * for other architectures too.
3014          *
3015          * Note that if FAULT_FLAG_WRITE is set, we either now have
3016          * an exclusive copy of the page, or this is a shared mapping,
3017          * so we can make it writable and dirty to avoid having to
3018          * handle that later.
3019          */
3020         /* Only go through if we didn't race with anybody else... */
3021         if (likely(pte_same(*page_table, orig_pte))) {
3022                 flush_icache_page(vma, page);
3023                 entry = mk_pte(page, vma->vm_page_prot);
3024                 if (flags & FAULT_FLAG_WRITE)
3025                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3026                 if (anon) {
3027                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3028                         page_add_new_anon_rmap(page, vma, address);
3029                 } else {
3030                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3031                         page_add_file_rmap(page);
3032                         if (flags & FAULT_FLAG_WRITE) {
3033                                 dirty_page = page;
3034                                 get_page(dirty_page);
3035                         }
3036                 }
3037                 set_pte_at(mm, address, page_table, entry);
3038
3039                 /* no need to invalidate: a not-present page won't be cached */
3040                 update_mmu_cache(vma, address, page_table);
3041         } else {
3042                 if (charged)
3043                         mem_cgroup_uncharge_page(page);
3044                 if (anon)
3045                         page_cache_release(page);
3046                 else
3047                         anon = 1; /* no anon but release faulted_page */
3048         }
3049
3050         pte_unmap_unlock(page_table, ptl);
3051
3052 out:
3053         if (dirty_page) {
3054                 struct address_space *mapping = page->mapping;
3055
3056                 if (set_page_dirty(dirty_page))
3057                         page_mkwrite = 1;
3058                 unlock_page(dirty_page);
3059                 put_page(dirty_page);
3060                 if (page_mkwrite && mapping) {
3061                         /*
3062                          * Some device drivers do not set page.mapping but still
3063                          * dirty their pages
3064                          */
3065                         balance_dirty_pages_ratelimited(mapping);
3066                 }
3067
3068                 /* file_update_time outside page_lock */
3069                 if (vma->vm_file)
3070                         file_update_time(vma->vm_file);
3071         } else {
3072                 unlock_page(vmf.page);
3073                 if (anon)
3074                         page_cache_release(vmf.page);
3075         }
3076
3077         return ret;
3078
3079 unwritable_page:
3080         page_cache_release(page);
3081         return ret;
3082 }
3083
3084 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3085                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3086                 unsigned int flags, pte_t orig_pte)
3087 {
3088         pgoff_t pgoff = (((address & PAGE_MASK)
3089                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3090
3091         pte_unmap(page_table);
3092         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3093 }
3094
3095 /*
3096  * Fault of a previously existing named mapping. Repopulate the pte
3097  * from the encoded file_pte if possible. This enables swappable
3098  * nonlinear vmas.
3099  *
3100  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3101  * but allow concurrent faults), and pte mapped but not yet locked.
3102  * We return with mmap_sem still held, but pte unmapped and unlocked.
3103  */
3104 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3105                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3106                 unsigned int flags, pte_t orig_pte)
3107 {
3108         pgoff_t pgoff;
3109
3110         flags |= FAULT_FLAG_NONLINEAR;
3111
3112         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3113                 return 0;
3114
3115         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3116                 /*
3117                  * Page table corrupted: show pte and kill process.
3118                  */
3119                 print_bad_pte(vma, address, orig_pte, NULL);
3120                 return VM_FAULT_SIGBUS;
3121         }
3122
3123         pgoff = pte_to_pgoff(orig_pte);
3124         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3125 }
3126
3127 /*
3128  * These routines also need to handle stuff like marking pages dirty
3129  * and/or accessed for architectures that don't do it in hardware (most
3130  * RISC architectures).  The early dirtying is also good on the i386.
3131  *
3132  * There is also a hook called "update_mmu_cache()" that architectures
3133  * with external mmu caches can use to update those (ie the Sparc or
3134  * PowerPC hashed page tables that act as extended TLBs).
3135  *
3136  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3137  * but allow concurrent faults), and pte mapped but not yet locked.
3138  * We return with mmap_sem still held, but pte unmapped and unlocked.
3139  */
3140 static inline int handle_pte_fault(struct mm_struct *mm,
3141                 struct vm_area_struct *vma, unsigned long address,
3142                 pte_t *pte, pmd_t *pmd, unsigned int flags)
3143 {
3144         pte_t entry;
3145         spinlock_t *ptl;
3146
3147         entry = *pte;
3148         if (!pte_present(entry)) {
3149                 if (pte_none(entry)) {
3150                         if (vma->vm_ops) {
3151                                 if (likely(vma->vm_ops->fault))
3152                                         return do_linear_fault(mm, vma, address,
3153                                                 pte, pmd, flags, entry);
3154                         }
3155                         return do_anonymous_page(mm, vma, address,
3156                                                  pte, pmd, flags);
3157                 }
3158                 if (pte_file(entry))
3159                         return do_nonlinear_fault(mm, vma, address,
3160                                         pte, pmd, flags, entry);
3161                 return do_swap_page(mm, vma, address,
3162                                         pte, pmd, flags, entry);
3163         }
3164
3165         ptl = pte_lockptr(mm, pmd);
3166         spin_lock(ptl);
3167         if (unlikely(!pte_same(*pte, entry)))
3168                 goto unlock;
3169         if (flags & FAULT_FLAG_WRITE) {
3170                 if (!pte_write(entry))
3171                         return do_wp_page(mm, vma, address,
3172                                         pte, pmd, ptl, entry);
3173                 entry = pte_mkdirty(entry);
3174         }
3175         entry = pte_mkyoung(entry);
3176         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3177                 update_mmu_cache(vma, address, pte);
3178         } else {
3179                 /*
3180                  * This is needed only for protection faults but the arch code
3181                  * is not yet telling us if this is a protection fault or not.
3182                  * This still avoids useless tlb flushes for .text page faults
3183                  * with threads.
3184                  */
3185                 if (flags & FAULT_FLAG_WRITE)
3186                         flush_tlb_page(vma, address);
3187         }
3188 unlock:
3189         pte_unmap_unlock(pte, ptl);
3190         return 0;
3191 }
3192
3193 /*
3194  * By the time we get here, we already hold the mm semaphore
3195  */
3196 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3197                 unsigned long address, unsigned int flags)
3198 {
3199         pgd_t *pgd;
3200         pud_t *pud;
3201         pmd_t *pmd;
3202         pte_t *pte;
3203
3204         __set_current_state(TASK_RUNNING);
3205
3206         count_vm_event(PGFAULT);
3207
3208         /* do counter updates before entering really critical section. */
3209         check_sync_rss_stat(current);
3210
3211         if (unlikely(is_vm_hugetlb_page(vma)))
3212                 return hugetlb_fault(mm, vma, address, flags);
3213
3214         pgd = pgd_offset(mm, address);
3215         pud = pud_alloc(mm, pgd, address);
3216         if (!pud)
3217                 return VM_FAULT_OOM;
3218         pmd = pmd_alloc(mm, pud, address);
3219         if (!pmd)
3220                 return VM_FAULT_OOM;
3221         pte = pte_alloc_map(mm, pmd, address);
3222         if (!pte)
3223                 return VM_FAULT_OOM;
3224
3225         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3226 }
3227
3228 #ifndef __PAGETABLE_PUD_FOLDED
3229 /*
3230  * Allocate page upper directory.
3231  * We've already handled the fast-path in-line.
3232  */
3233 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3234 {
3235         pud_t *new = pud_alloc_one(mm, address);
3236         if (!new)
3237                 return -ENOMEM;
3238
3239         smp_wmb(); /* See comment in __pte_alloc */
3240
3241         spin_lock(&mm->page_table_lock);
3242         if (pgd_present(*pgd))          /* Another has populated it */
3243                 pud_free(mm, new);
3244         else
3245                 pgd_populate(mm, pgd, new);
3246         spin_unlock(&mm->page_table_lock);
3247         return 0;
3248 }
3249 #endif /* __PAGETABLE_PUD_FOLDED */
3250
3251 #ifndef __PAGETABLE_PMD_FOLDED
3252 /*
3253  * Allocate page middle directory.
3254  * We've already handled the fast-path in-line.
3255  */
3256 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3257 {
3258         pmd_t *new = pmd_alloc_one(mm, address);
3259         if (!new)
3260                 return -ENOMEM;
3261
3262         smp_wmb(); /* See comment in __pte_alloc */
3263
3264         spin_lock(&mm->page_table_lock);
3265 #ifndef __ARCH_HAS_4LEVEL_HACK
3266         if (pud_present(*pud))          /* Another has populated it */
3267                 pmd_free(mm, new);
3268         else
3269                 pud_populate(mm, pud, new);
3270 #else
3271         if (pgd_present(*pud))          /* Another has populated it */
3272                 pmd_free(mm, new);
3273         else
3274                 pgd_populate(mm, pud, new);
3275 #endif /* __ARCH_HAS_4LEVEL_HACK */
3276         spin_unlock(&mm->page_table_lock);
3277         return 0;
3278 }
3279 #endif /* __PAGETABLE_PMD_FOLDED */
3280
3281 int make_pages_present(unsigned long addr, unsigned long end)
3282 {
3283         int ret, len, write;
3284         struct vm_area_struct * vma;
3285
3286         vma = find_vma(current->mm, addr);
3287         if (!vma)
3288                 return -ENOMEM;
3289         write = (vma->vm_flags & VM_WRITE) != 0;
3290         BUG_ON(addr >= end);
3291         BUG_ON(end > vma->vm_end);
3292         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3293         ret = get_user_pages(current, current->mm, addr,
3294                         len, write, 0, NULL, NULL);
3295         if (ret < 0)
3296                 return ret;
3297         return ret == len ? 0 : -EFAULT;
3298 }
3299
3300 #if !defined(__HAVE_ARCH_GATE_AREA)
3301
3302 #if defined(AT_SYSINFO_EHDR)
3303 static struct vm_area_struct gate_vma;
3304
3305 static int __init gate_vma_init(void)
3306 {
3307         gate_vma.vm_mm = NULL;
3308         gate_vma.vm_start = FIXADDR_USER_START;
3309         gate_vma.vm_end = FIXADDR_USER_END;
3310         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3311         gate_vma.vm_page_prot = __P101;
3312         /*
3313          * Make sure the vDSO gets into every core dump.
3314          * Dumping its contents makes post-mortem fully interpretable later
3315          * without matching up the same kernel and hardware config to see
3316          * what PC values meant.
3317          */
3318         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3319         return 0;
3320 }
3321 __initcall(gate_vma_init);
3322 #endif
3323
3324 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3325 {
3326 #ifdef AT_SYSINFO_EHDR
3327         return &gate_vma;
3328 #else
3329         return NULL;
3330 #endif
3331 }
3332
3333 int in_gate_area_no_task(unsigned long addr)
3334 {
3335 #ifdef AT_SYSINFO_EHDR
3336         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3337                 return 1;
3338 #endif
3339         return 0;
3340 }
3341
3342 #endif  /* __HAVE_ARCH_GATE_AREA */
3343
3344 static int follow_pte(struct mm_struct *mm, unsigned long address,
3345                 pte_t **ptepp, spinlock_t **ptlp)
3346 {
3347         pgd_t *pgd;
3348         pud_t *pud;
3349         pmd_t *pmd;
3350         pte_t *ptep;
3351
3352         pgd = pgd_offset(mm, address);
3353         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3354                 goto out;
3355
3356         pud = pud_offset(pgd, address);
3357         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3358                 goto out;
3359
3360         pmd = pmd_offset(pud, address);
3361         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3362                 goto out;
3363
3364         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3365         if (pmd_huge(*pmd))
3366                 goto out;
3367
3368         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3369         if (!ptep)
3370                 goto out;
3371         if (!pte_present(*ptep))
3372                 goto unlock;
3373         *ptepp = ptep;
3374         return 0;
3375 unlock:
3376         pte_unmap_unlock(ptep, *ptlp);
3377 out:
3378         return -EINVAL;
3379 }
3380
3381 /**
3382  * follow_pfn - look up PFN at a user virtual address
3383  * @vma: memory mapping
3384  * @address: user virtual address
3385  * @pfn: location to store found PFN
3386  *
3387  * Only IO mappings and raw PFN mappings are allowed.
3388  *
3389  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3390  */
3391 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3392         unsigned long *pfn)
3393 {
3394         int ret = -EINVAL;
3395         spinlock_t *ptl;
3396         pte_t *ptep;
3397
3398         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3399                 return ret;
3400
3401         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3402         if (ret)
3403                 return ret;
3404         *pfn = pte_pfn(*ptep);
3405         pte_unmap_unlock(ptep, ptl);
3406         return 0;
3407 }
3408 EXPORT_SYMBOL(follow_pfn);
3409
3410 #ifdef CONFIG_HAVE_IOREMAP_PROT
3411 int follow_phys(struct vm_area_struct *vma,
3412                 unsigned long address, unsigned int flags,
3413                 unsigned long *prot, resource_size_t *phys)
3414 {
3415         int ret = -EINVAL;
3416         pte_t *ptep, pte;
3417         spinlock_t *ptl;
3418
3419         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3420                 goto out;
3421
3422         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3423                 goto out;
3424         pte = *ptep;
3425
3426         if ((flags & FOLL_WRITE) && !pte_write(pte))
3427                 goto unlock;
3428
3429         *prot = pgprot_val(pte_pgprot(pte));
3430         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3431
3432         ret = 0;
3433 unlock:
3434         pte_unmap_unlock(ptep, ptl);
3435 out:
3436         return ret;
3437 }
3438
3439 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3440                         void *buf, int len, int write)
3441 {
3442         resource_size_t phys_addr;
3443         unsigned long prot = 0;
3444         void __iomem *maddr;
3445         int offset = addr & (PAGE_SIZE-1);
3446
3447         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3448                 return -EINVAL;
3449
3450         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3451         if (write)
3452                 memcpy_toio(maddr + offset, buf, len);
3453         else
3454                 memcpy_fromio(buf, maddr + offset, len);
3455         iounmap(maddr);
3456
3457         return len;
3458 }
3459 #endif
3460
3461 /*
3462  * Access another process' address space.
3463  * Source/target buffer must be kernel space,
3464  * Do not walk the page table directly, use get_user_pages
3465  */
3466 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3467 {
3468         struct mm_struct *mm;
3469         struct vm_area_struct *vma;
3470         void *old_buf = buf;
3471
3472         mm = get_task_mm(tsk);
3473         if (!mm)
3474                 return 0;
3475
3476         down_read(&mm->mmap_sem);
3477         /* ignore errors, just check how much was successfully transferred */
3478         while (len) {
3479                 int bytes, ret, offset;
3480                 void *maddr;
3481                 struct page *page = NULL;
3482
3483                 ret = get_user_pages(tsk, mm, addr, 1,
3484                                 write, 1, &page, &vma);
3485                 if (ret <= 0) {
3486                         /*
3487                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3488                          * we can access using slightly different code.
3489                          */
3490 #ifdef CONFIG_HAVE_IOREMAP_PROT
3491                         vma = find_vma(mm, addr);
3492                         if (!vma)
3493                                 break;
3494                         if (vma->vm_ops && vma->vm_ops->access)
3495                                 ret = vma->vm_ops->access(vma, addr, buf,
3496                                                           len, write);
3497                         if (ret <= 0)
3498 #endif
3499                                 break;
3500                         bytes = ret;
3501                 } else {
3502                         bytes = len;
3503                         offset = addr & (PAGE_SIZE-1);
3504                         if (bytes > PAGE_SIZE-offset)
3505                                 bytes = PAGE_SIZE-offset;
3506
3507                         maddr = kmap(page);
3508                         if (write) {
3509                                 copy_to_user_page(vma, page, addr,
3510                                                   maddr + offset, buf, bytes);
3511                                 set_page_dirty_lock(page);
3512                         } else {
3513                                 copy_from_user_page(vma, page, addr,
3514                                                     buf, maddr + offset, bytes);
3515                         }
3516                         kunmap(page);
3517                         page_cache_release(page);
3518                 }
3519                 len -= bytes;
3520                 buf += bytes;
3521                 addr += bytes;
3522         }
3523         up_read(&mm->mmap_sem);
3524         mmput(mm);
3525
3526         return buf - old_buf;
3527 }
3528
3529 /*
3530  * Print the name of a VMA.
3531  */
3532 void print_vma_addr(char *prefix, unsigned long ip)
3533 {
3534         struct mm_struct *mm = current->mm;
3535         struct vm_area_struct *vma;
3536
3537         /*
3538          * Do not print if we are in atomic
3539          * contexts (in exception stacks, etc.):
3540          */
3541         if (preempt_count())
3542                 return;
3543
3544         down_read(&mm->mmap_sem);
3545         vma = find_vma(mm, ip);
3546         if (vma && vma->vm_file) {
3547                 struct file *f = vma->vm_file;
3548                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3549                 if (buf) {
3550                         char *p, *s;
3551
3552                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3553                         if (IS_ERR(p))
3554                                 p = "?";
3555                         s = strrchr(p, '/');
3556                         if (s)
3557                                 p = s+1;
3558                         printk("%s%s[%lx+%lx]", prefix, p,
3559                                         vma->vm_start,
3560                                         vma->vm_end - vma->vm_start);
3561                         free_page((unsigned long)buf);
3562                 }
3563         }
3564         up_read(&current->mm->mmap_sem);
3565 }
3566
3567 #ifdef CONFIG_PROVE_LOCKING
3568 void might_fault(void)
3569 {
3570         /*
3571          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3572          * holding the mmap_sem, this is safe because kernel memory doesn't
3573          * get paged out, therefore we'll never actually fault, and the
3574          * below annotations will generate false positives.
3575          */
3576         if (segment_eq(get_fs(), KERNEL_DS))
3577                 return;
3578
3579         might_sleep();
3580         /*
3581          * it would be nicer only to annotate paths which are not under
3582          * pagefault_disable, however that requires a larger audit and
3583          * providing helpers like get_user_atomic.
3584          */
3585         if (!in_atomic() && current->mm)
3586                 might_lock_read(&current->mm->mmap_sem);
3587 }
3588 EXPORT_SYMBOL(might_fault);
3589 #endif