Merge tag 'iommu-updates-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117                 return false;
118
119         return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140                                         1;
141 #else
142                                         2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148         /*
149          * Transitioning a PTE from 'old' to 'young' can be expensive on
150          * some architectures, even if it's performed in hardware. By
151          * default, "false" means prefaulted entries will be 'young'.
152          */
153         return false;
154 }
155 #endif
156
157 static int __init disable_randmaps(char *s)
158 {
159         randomize_va_space = 0;
160         return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174         zero_pfn = page_to_pfn(ZERO_PAGE(0));
175         return 0;
176 }
177 early_initcall(init_zero_pfn);
178
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181         trace_rss_stat(mm, member);
182 }
183
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189                            unsigned long addr)
190 {
191         pgtable_t token = pmd_pgtable(*pmd);
192         pmd_clear(pmd);
193         pte_free_tlb(tlb, token, addr);
194         mm_dec_nr_ptes(tlb->mm);
195 }
196
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198                                 unsigned long addr, unsigned long end,
199                                 unsigned long floor, unsigned long ceiling)
200 {
201         pmd_t *pmd;
202         unsigned long next;
203         unsigned long start;
204
205         start = addr;
206         pmd = pmd_offset(pud, addr);
207         do {
208                 next = pmd_addr_end(addr, end);
209                 if (pmd_none_or_clear_bad(pmd))
210                         continue;
211                 free_pte_range(tlb, pmd, addr);
212         } while (pmd++, addr = next, addr != end);
213
214         start &= PUD_MASK;
215         if (start < floor)
216                 return;
217         if (ceiling) {
218                 ceiling &= PUD_MASK;
219                 if (!ceiling)
220                         return;
221         }
222         if (end - 1 > ceiling - 1)
223                 return;
224
225         pmd = pmd_offset(pud, start);
226         pud_clear(pud);
227         pmd_free_tlb(tlb, pmd, start);
228         mm_dec_nr_pmds(tlb->mm);
229 }
230
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232                                 unsigned long addr, unsigned long end,
233                                 unsigned long floor, unsigned long ceiling)
234 {
235         pud_t *pud;
236         unsigned long next;
237         unsigned long start;
238
239         start = addr;
240         pud = pud_offset(p4d, addr);
241         do {
242                 next = pud_addr_end(addr, end);
243                 if (pud_none_or_clear_bad(pud))
244                         continue;
245                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246         } while (pud++, addr = next, addr != end);
247
248         start &= P4D_MASK;
249         if (start < floor)
250                 return;
251         if (ceiling) {
252                 ceiling &= P4D_MASK;
253                 if (!ceiling)
254                         return;
255         }
256         if (end - 1 > ceiling - 1)
257                 return;
258
259         pud = pud_offset(p4d, start);
260         p4d_clear(p4d);
261         pud_free_tlb(tlb, pud, start);
262         mm_dec_nr_puds(tlb->mm);
263 }
264
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266                                 unsigned long addr, unsigned long end,
267                                 unsigned long floor, unsigned long ceiling)
268 {
269         p4d_t *p4d;
270         unsigned long next;
271         unsigned long start;
272
273         start = addr;
274         p4d = p4d_offset(pgd, addr);
275         do {
276                 next = p4d_addr_end(addr, end);
277                 if (p4d_none_or_clear_bad(p4d))
278                         continue;
279                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280         } while (p4d++, addr = next, addr != end);
281
282         start &= PGDIR_MASK;
283         if (start < floor)
284                 return;
285         if (ceiling) {
286                 ceiling &= PGDIR_MASK;
287                 if (!ceiling)
288                         return;
289         }
290         if (end - 1 > ceiling - 1)
291                 return;
292
293         p4d = p4d_offset(pgd, start);
294         pgd_clear(pgd);
295         p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302                         unsigned long addr, unsigned long end,
303                         unsigned long floor, unsigned long ceiling)
304 {
305         pgd_t *pgd;
306         unsigned long next;
307
308         /*
309          * The next few lines have given us lots of grief...
310          *
311          * Why are we testing PMD* at this top level?  Because often
312          * there will be no work to do at all, and we'd prefer not to
313          * go all the way down to the bottom just to discover that.
314          *
315          * Why all these "- 1"s?  Because 0 represents both the bottom
316          * of the address space and the top of it (using -1 for the
317          * top wouldn't help much: the masks would do the wrong thing).
318          * The rule is that addr 0 and floor 0 refer to the bottom of
319          * the address space, but end 0 and ceiling 0 refer to the top
320          * Comparisons need to use "end - 1" and "ceiling - 1" (though
321          * that end 0 case should be mythical).
322          *
323          * Wherever addr is brought up or ceiling brought down, we must
324          * be careful to reject "the opposite 0" before it confuses the
325          * subsequent tests.  But what about where end is brought down
326          * by PMD_SIZE below? no, end can't go down to 0 there.
327          *
328          * Whereas we round start (addr) and ceiling down, by different
329          * masks at different levels, in order to test whether a table
330          * now has no other vmas using it, so can be freed, we don't
331          * bother to round floor or end up - the tests don't need that.
332          */
333
334         addr &= PMD_MASK;
335         if (addr < floor) {
336                 addr += PMD_SIZE;
337                 if (!addr)
338                         return;
339         }
340         if (ceiling) {
341                 ceiling &= PMD_MASK;
342                 if (!ceiling)
343                         return;
344         }
345         if (end - 1 > ceiling - 1)
346                 end -= PMD_SIZE;
347         if (addr > end - 1)
348                 return;
349         /*
350          * We add page table cache pages with PAGE_SIZE,
351          * (see pte_free_tlb()), flush the tlb if we need
352          */
353         tlb_change_page_size(tlb, PAGE_SIZE);
354         pgd = pgd_offset(tlb->mm, addr);
355         do {
356                 next = pgd_addr_end(addr, end);
357                 if (pgd_none_or_clear_bad(pgd))
358                         continue;
359                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360         } while (pgd++, addr = next, addr != end);
361 }
362
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364                    struct vm_area_struct *vma, unsigned long floor,
365                    unsigned long ceiling, bool mm_wr_locked)
366 {
367         do {
368                 unsigned long addr = vma->vm_start;
369                 struct vm_area_struct *next;
370
371                 /*
372                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373                  * be 0.  This will underflow and is okay.
374                  */
375                 next = mas_find(mas, ceiling - 1);
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 if (mm_wr_locked)
382                         vma_start_write(vma);
383                 unlink_anon_vmas(vma);
384                 unlink_file_vma(vma);
385
386                 if (is_vm_hugetlb_page(vma)) {
387                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388                                 floor, next ? next->vm_start : ceiling);
389                 } else {
390                         /*
391                          * Optimization: gather nearby vmas into one call down
392                          */
393                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394                                && !is_vm_hugetlb_page(next)) {
395                                 vma = next;
396                                 next = mas_find(mas, ceiling - 1);
397                                 if (mm_wr_locked)
398                                         vma_start_write(vma);
399                                 unlink_anon_vmas(vma);
400                                 unlink_file_vma(vma);
401                         }
402                         free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 }
405                 vma = next;
406         } while (vma);
407 }
408
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411         spinlock_t *ptl = pmd_lock(mm, pmd);
412
413         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
414                 mm_inc_nr_ptes(mm);
415                 /*
416                  * Ensure all pte setup (eg. pte page lock and page clearing) are
417                  * visible before the pte is made visible to other CPUs by being
418                  * put into page tables.
419                  *
420                  * The other side of the story is the pointer chasing in the page
421                  * table walking code (when walking the page table without locking;
422                  * ie. most of the time). Fortunately, these data accesses consist
423                  * of a chain of data-dependent loads, meaning most CPUs (alpha
424                  * being the notable exception) will already guarantee loads are
425                  * seen in-order. See the alpha page table accessors for the
426                  * smp_rmb() barriers in page table walking code.
427                  */
428                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429                 pmd_populate(mm, pmd, *pte);
430                 *pte = NULL;
431         }
432         spin_unlock(ptl);
433 }
434
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437         pgtable_t new = pte_alloc_one(mm);
438         if (!new)
439                 return -ENOMEM;
440
441         pmd_install(mm, pmd, &new);
442         if (new)
443                 pte_free(mm, new);
444         return 0;
445 }
446
447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449         pte_t *new = pte_alloc_one_kernel(&init_mm);
450         if (!new)
451                 return -ENOMEM;
452
453         spin_lock(&init_mm.page_table_lock);
454         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
455                 smp_wmb(); /* See comment in pmd_install() */
456                 pmd_populate_kernel(&init_mm, pmd, new);
457                 new = NULL;
458         }
459         spin_unlock(&init_mm.page_table_lock);
460         if (new)
461                 pte_free_kernel(&init_mm, new);
462         return 0;
463 }
464
465 static inline void init_rss_vec(int *rss)
466 {
467         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472         int i;
473
474         if (current->mm == mm)
475                 sync_mm_rss(mm);
476         for (i = 0; i < NR_MM_COUNTERS; i++)
477                 if (rss[i])
478                         add_mm_counter(mm, i, rss[i]);
479 }
480
481 /*
482  * This function is called to print an error when a bad pte
483  * is found. For example, we might have a PFN-mapped pte in
484  * a region that doesn't allow it.
485  *
486  * The calling function must still handle the error.
487  */
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489                           pte_t pte, struct page *page)
490 {
491         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492         p4d_t *p4d = p4d_offset(pgd, addr);
493         pud_t *pud = pud_offset(p4d, addr);
494         pmd_t *pmd = pmd_offset(pud, addr);
495         struct address_space *mapping;
496         pgoff_t index;
497         static unsigned long resume;
498         static unsigned long nr_shown;
499         static unsigned long nr_unshown;
500
501         /*
502          * Allow a burst of 60 reports, then keep quiet for that minute;
503          * or allow a steady drip of one report per second.
504          */
505         if (nr_shown == 60) {
506                 if (time_before(jiffies, resume)) {
507                         nr_unshown++;
508                         return;
509                 }
510                 if (nr_unshown) {
511                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512                                  nr_unshown);
513                         nr_unshown = 0;
514                 }
515                 nr_shown = 0;
516         }
517         if (nr_shown++ == 0)
518                 resume = jiffies + 60 * HZ;
519
520         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521         index = linear_page_index(vma, addr);
522
523         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
524                  current->comm,
525                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
526         if (page)
527                 dump_page(page, "bad pte");
528         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531                  vma->vm_file,
532                  vma->vm_ops ? vma->vm_ops->fault : NULL,
533                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534                  mapping ? mapping->a_ops->read_folio : NULL);
535         dump_stack();
536         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538
539 /*
540  * vm_normal_page -- This function gets the "struct page" associated with a pte.
541  *
542  * "Special" mappings do not wish to be associated with a "struct page" (either
543  * it doesn't exist, or it exists but they don't want to touch it). In this
544  * case, NULL is returned here. "Normal" mappings do have a struct page.
545  *
546  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547  * pte bit, in which case this function is trivial. Secondly, an architecture
548  * may not have a spare pte bit, which requires a more complicated scheme,
549  * described below.
550  *
551  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552  * special mapping (even if there are underlying and valid "struct pages").
553  * COWed pages of a VM_PFNMAP are always normal.
554  *
555  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558  * mapping will always honor the rule
559  *
560  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561  *
562  * And for normal mappings this is false.
563  *
564  * This restricts such mappings to be a linear translation from virtual address
565  * to pfn. To get around this restriction, we allow arbitrary mappings so long
566  * as the vma is not a COW mapping; in that case, we know that all ptes are
567  * special (because none can have been COWed).
568  *
569  *
570  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571  *
572  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573  * page" backing, however the difference is that _all_ pages with a struct
574  * page (that is, those where pfn_valid is true) are refcounted and considered
575  * normal pages by the VM. The disadvantage is that pages are refcounted
576  * (which can be slower and simply not an option for some PFNMAP users). The
577  * advantage is that we don't have to follow the strict linearity rule of
578  * PFNMAP mappings in order to support COWable mappings.
579  *
580  */
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582                             pte_t pte)
583 {
584         unsigned long pfn = pte_pfn(pte);
585
586         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587                 if (likely(!pte_special(pte)))
588                         goto check_pfn;
589                 if (vma->vm_ops && vma->vm_ops->find_special_page)
590                         return vma->vm_ops->find_special_page(vma, addr);
591                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592                         return NULL;
593                 if (is_zero_pfn(pfn))
594                         return NULL;
595                 if (pte_devmap(pte))
596                 /*
597                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598                  * and will have refcounts incremented on their struct pages
599                  * when they are inserted into PTEs, thus they are safe to
600                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601                  * do not have refcounts. Example of legacy ZONE_DEVICE is
602                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603                  */
604                         return NULL;
605
606                 print_bad_pte(vma, addr, pte, NULL);
607                 return NULL;
608         }
609
610         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611
612         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613                 if (vma->vm_flags & VM_MIXEDMAP) {
614                         if (!pfn_valid(pfn))
615                                 return NULL;
616                         goto out;
617                 } else {
618                         unsigned long off;
619                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
620                         if (pfn == vma->vm_pgoff + off)
621                                 return NULL;
622                         if (!is_cow_mapping(vma->vm_flags))
623                                 return NULL;
624                 }
625         }
626
627         if (is_zero_pfn(pfn))
628                 return NULL;
629
630 check_pfn:
631         if (unlikely(pfn > highest_memmap_pfn)) {
632                 print_bad_pte(vma, addr, pte, NULL);
633                 return NULL;
634         }
635
636         /*
637          * NOTE! We still have PageReserved() pages in the page tables.
638          * eg. VDSO mappings can cause them to exist.
639          */
640 out:
641         return pfn_to_page(pfn);
642 }
643
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645                             pte_t pte)
646 {
647         struct page *page = vm_normal_page(vma, addr, pte);
648
649         if (page)
650                 return page_folio(page);
651         return NULL;
652 }
653
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656                                 pmd_t pmd)
657 {
658         unsigned long pfn = pmd_pfn(pmd);
659
660         /*
661          * There is no pmd_special() but there may be special pmds, e.g.
662          * in a direct-access (dax) mapping, so let's just replicate the
663          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664          */
665         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666                 if (vma->vm_flags & VM_MIXEDMAP) {
667                         if (!pfn_valid(pfn))
668                                 return NULL;
669                         goto out;
670                 } else {
671                         unsigned long off;
672                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
673                         if (pfn == vma->vm_pgoff + off)
674                                 return NULL;
675                         if (!is_cow_mapping(vma->vm_flags))
676                                 return NULL;
677                 }
678         }
679
680         if (pmd_devmap(pmd))
681                 return NULL;
682         if (is_huge_zero_pmd(pmd))
683                 return NULL;
684         if (unlikely(pfn > highest_memmap_pfn))
685                 return NULL;
686
687         /*
688          * NOTE! We still have PageReserved() pages in the page tables.
689          * eg. VDSO mappings can cause them to exist.
690          */
691 out:
692         return pfn_to_page(pfn);
693 }
694 #endif
695
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697                                   struct page *page, unsigned long address,
698                                   pte_t *ptep)
699 {
700         pte_t orig_pte;
701         pte_t pte;
702         swp_entry_t entry;
703
704         orig_pte = ptep_get(ptep);
705         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706         if (pte_swp_soft_dirty(orig_pte))
707                 pte = pte_mksoft_dirty(pte);
708
709         entry = pte_to_swp_entry(orig_pte);
710         if (pte_swp_uffd_wp(orig_pte))
711                 pte = pte_mkuffd_wp(pte);
712         else if (is_writable_device_exclusive_entry(entry))
713                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717         /*
718          * No need to take a page reference as one was already
719          * created when the swap entry was made.
720          */
721         if (PageAnon(page))
722                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723         else
724                 /*
725                  * Currently device exclusive access only supports anonymous
726                  * memory so the entry shouldn't point to a filebacked page.
727                  */
728                 WARN_ON_ONCE(1);
729
730         set_pte_at(vma->vm_mm, address, ptep, pte);
731
732         /*
733          * No need to invalidate - it was non-present before. However
734          * secondary CPUs may have mappings that need invalidating.
735          */
736         update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745                         unsigned long addr)
746 {
747         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748         struct page *page = pfn_swap_entry_to_page(entry);
749
750         if (trylock_page(page)) {
751                 restore_exclusive_pte(vma, page, addr, src_pte);
752                 unlock_page(page);
753                 return 0;
754         }
755
756         return -EBUSY;
757 }
758
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770         unsigned long vm_flags = dst_vma->vm_flags;
771         pte_t orig_pte = ptep_get(src_pte);
772         pte_t pte = orig_pte;
773         struct page *page;
774         swp_entry_t entry = pte_to_swp_entry(orig_pte);
775
776         if (likely(!non_swap_entry(entry))) {
777                 if (swap_duplicate(entry) < 0)
778                         return -EIO;
779
780                 /* make sure dst_mm is on swapoff's mmlist. */
781                 if (unlikely(list_empty(&dst_mm->mmlist))) {
782                         spin_lock(&mmlist_lock);
783                         if (list_empty(&dst_mm->mmlist))
784                                 list_add(&dst_mm->mmlist,
785                                                 &src_mm->mmlist);
786                         spin_unlock(&mmlist_lock);
787                 }
788                 /* Mark the swap entry as shared. */
789                 if (pte_swp_exclusive(orig_pte)) {
790                         pte = pte_swp_clear_exclusive(orig_pte);
791                         set_pte_at(src_mm, addr, src_pte, pte);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (!is_readable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both parent and child
803                          * to be set to read. A previously exclusive entry is
804                          * now shared.
805                          */
806                         entry = make_readable_migration_entry(
807                                                         swp_offset(entry));
808                         pte = swp_entry_to_pte(entry);
809                         if (pte_swp_soft_dirty(orig_pte))
810                                 pte = pte_swp_mksoft_dirty(pte);
811                         if (pte_swp_uffd_wp(orig_pte))
812                                 pte = pte_swp_mkuffd_wp(pte);
813                         set_pte_at(src_mm, addr, src_pte, pte);
814                 }
815         } else if (is_device_private_entry(entry)) {
816                 page = pfn_swap_entry_to_page(entry);
817
818                 /*
819                  * Update rss count even for unaddressable pages, as
820                  * they should treated just like normal pages in this
821                  * respect.
822                  *
823                  * We will likely want to have some new rss counters
824                  * for unaddressable pages, at some point. But for now
825                  * keep things as they are.
826                  */
827                 get_page(page);
828                 rss[mm_counter(page)]++;
829                 /* Cannot fail as these pages cannot get pinned. */
830                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831
832                 /*
833                  * We do not preserve soft-dirty information, because so
834                  * far, checkpoint/restore is the only feature that
835                  * requires that. And checkpoint/restore does not work
836                  * when a device driver is involved (you cannot easily
837                  * save and restore device driver state).
838                  */
839                 if (is_writable_device_private_entry(entry) &&
840                     is_cow_mapping(vm_flags)) {
841                         entry = make_readable_device_private_entry(
842                                                         swp_offset(entry));
843                         pte = swp_entry_to_pte(entry);
844                         if (pte_swp_uffd_wp(orig_pte))
845                                 pte = pte_swp_mkuffd_wp(pte);
846                         set_pte_at(src_mm, addr, src_pte, pte);
847                 }
848         } else if (is_device_exclusive_entry(entry)) {
849                 /*
850                  * Make device exclusive entries present by restoring the
851                  * original entry then copying as for a present pte. Device
852                  * exclusive entries currently only support private writable
853                  * (ie. COW) mappings.
854                  */
855                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857                         return -EBUSY;
858                 return -ENOENT;
859         } else if (is_pte_marker_entry(entry)) {
860                 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862                 if (marker)
863                         set_pte_at(dst_mm, addr, dst_pte,
864                                    make_pte_marker(marker));
865                 return 0;
866         }
867         if (!userfaultfd_wp(dst_vma))
868                 pte = pte_swp_clear_uffd_wp(pte);
869         set_pte_at(dst_mm, addr, dst_pte, pte);
870         return 0;
871 }
872
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888                   struct folio **prealloc, struct page *page)
889 {
890         struct folio *new_folio;
891         pte_t pte;
892
893         new_folio = *prealloc;
894         if (!new_folio)
895                 return -EAGAIN;
896
897         /*
898          * We have a prealloc page, all good!  Take it
899          * over and copy the page & arm it.
900          */
901         *prealloc = NULL;
902         copy_user_highpage(&new_folio->page, page, addr, src_vma);
903         __folio_mark_uptodate(new_folio);
904         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905         folio_add_lru_vma(new_folio, dst_vma);
906         rss[MM_ANONPAGES]++;
907
908         /* All done, just insert the new page copy in the child */
909         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912                 /* Uffd-wp needs to be delivered to dest pte as well */
913                 pte = pte_mkuffd_wp(pte);
914         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915         return 0;
916 }
917
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925                  struct folio **prealloc)
926 {
927         struct mm_struct *src_mm = src_vma->vm_mm;
928         unsigned long vm_flags = src_vma->vm_flags;
929         pte_t pte = ptep_get(src_pte);
930         struct page *page;
931         struct folio *folio;
932
933         page = vm_normal_page(src_vma, addr, pte);
934         if (page)
935                 folio = page_folio(page);
936         if (page && folio_test_anon(folio)) {
937                 /*
938                  * If this page may have been pinned by the parent process,
939                  * copy the page immediately for the child so that we'll always
940                  * guarantee the pinned page won't be randomly replaced in the
941                  * future.
942                  */
943                 folio_get(folio);
944                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945                         /* Page may be pinned, we have to copy. */
946                         folio_put(folio);
947                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948                                                  addr, rss, prealloc, page);
949                 }
950                 rss[MM_ANONPAGES]++;
951         } else if (page) {
952                 folio_get(folio);
953                 page_dup_file_rmap(page, false);
954                 rss[mm_counter_file(page)]++;
955         }
956
957         /*
958          * If it's a COW mapping, write protect it both
959          * in the parent and the child
960          */
961         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962                 ptep_set_wrprotect(src_mm, addr, src_pte);
963                 pte = pte_wrprotect(pte);
964         }
965         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967         /*
968          * If it's a shared mapping, mark it clean in
969          * the child
970          */
971         if (vm_flags & VM_SHARED)
972                 pte = pte_mkclean(pte);
973         pte = pte_mkold(pte);
974
975         if (!userfaultfd_wp(dst_vma))
976                 pte = pte_clear_uffd_wp(pte);
977
978         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979         return 0;
980 }
981
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983                 struct vm_area_struct *vma, unsigned long addr)
984 {
985         struct folio *new_folio;
986
987         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988         if (!new_folio)
989                 return NULL;
990
991         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992                 folio_put(new_folio);
993                 return NULL;
994         }
995         folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997         return new_folio;
998 }
999
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003                unsigned long end)
1004 {
1005         struct mm_struct *dst_mm = dst_vma->vm_mm;
1006         struct mm_struct *src_mm = src_vma->vm_mm;
1007         pte_t *orig_src_pte, *orig_dst_pte;
1008         pte_t *src_pte, *dst_pte;
1009         pte_t ptent;
1010         spinlock_t *src_ptl, *dst_ptl;
1011         int progress, ret = 0;
1012         int rss[NR_MM_COUNTERS];
1013         swp_entry_t entry = (swp_entry_t){0};
1014         struct folio *prealloc = NULL;
1015
1016 again:
1017         progress = 0;
1018         init_rss_vec(rss);
1019
1020         /*
1021          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022          * error handling here, assume that exclusive mmap_lock on dst and src
1023          * protects anon from unexpected THP transitions; with shmem and file
1024          * protected by mmap_lock-less collapse skipping areas with anon_vma
1025          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026          * can remove such assumptions later, but this is good enough for now.
1027          */
1028         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029         if (!dst_pte) {
1030                 ret = -ENOMEM;
1031                 goto out;
1032         }
1033         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034         if (!src_pte) {
1035                 pte_unmap_unlock(dst_pte, dst_ptl);
1036                 /* ret == 0 */
1037                 goto out;
1038         }
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 ptent = ptep_get(src_pte);
1056                 if (pte_none(ptent)) {
1057                         progress++;
1058                         continue;
1059                 }
1060                 if (unlikely(!pte_present(ptent))) {
1061                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1062                                                   dst_pte, src_pte,
1063                                                   dst_vma, src_vma,
1064                                                   addr, rss);
1065                         if (ret == -EIO) {
1066                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1067                                 break;
1068                         } else if (ret == -EBUSY) {
1069                                 break;
1070                         } else if (!ret) {
1071                                 progress += 8;
1072                                 continue;
1073                         }
1074
1075                         /*
1076                          * Device exclusive entry restored, continue by copying
1077                          * the now present pte.
1078                          */
1079                         WARN_ON_ONCE(ret != -ENOENT);
1080                 }
1081                 /* copy_present_pte() will clear `*prealloc' if consumed */
1082                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083                                        addr, rss, &prealloc);
1084                 /*
1085                  * If we need a pre-allocated page for this pte, drop the
1086                  * locks, allocate, and try again.
1087                  */
1088                 if (unlikely(ret == -EAGAIN))
1089                         break;
1090                 if (unlikely(prealloc)) {
1091                         /*
1092                          * pre-alloc page cannot be reused by next time so as
1093                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1094                          * will allocate page according to address).  This
1095                          * could only happen if one pinned pte changed.
1096                          */
1097                         folio_put(prealloc);
1098                         prealloc = NULL;
1099                 }
1100                 progress += 8;
1101         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103         arch_leave_lazy_mmu_mode();
1104         pte_unmap_unlock(orig_src_pte, src_ptl);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 folio_put(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 vma_assert_write_locked(src_vma);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         untrack_pfn_clear(dst_vma);
1329                         ret = -ENOMEM;
1330                         break;
1331                 }
1332         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334         if (is_cow) {
1335                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336                 mmu_notifier_invalidate_range_end(&range);
1337         }
1338         return ret;
1339 }
1340
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344         /* By default, zap all pages */
1345         if (!details)
1346                 return true;
1347
1348         /* Or, we zap COWed pages only if the caller wants to */
1349         return details->even_cows;
1350 }
1351
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355         /* If we can make a decision without *page.. */
1356         if (should_zap_cows(details))
1357                 return true;
1358
1359         /* E.g. the caller passes NULL for the case of a zero page */
1360         if (!page)
1361                 return true;
1362
1363         /* Otherwise we should only zap non-anon pages */
1364         return !PageAnon(page);
1365 }
1366
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369         if (!details)
1370                 return false;
1371
1372         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381                               unsigned long addr, pte_t *pte,
1382                               struct zap_details *details, pte_t pteval)
1383 {
1384         /* Zap on anonymous always means dropping everything */
1385         if (vma_is_anonymous(vma))
1386                 return;
1387
1388         if (zap_drop_file_uffd_wp(details))
1389                 return;
1390
1391         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pmd_t *pmd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         struct mm_struct *mm = tlb->mm;
1400         int force_flush = 0;
1401         int rss[NR_MM_COUNTERS];
1402         spinlock_t *ptl;
1403         pte_t *start_pte;
1404         pte_t *pte;
1405         swp_entry_t entry;
1406
1407         tlb_change_page_size(tlb, PAGE_SIZE);
1408         init_rss_vec(rss);
1409         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410         if (!pte)
1411                 return addr;
1412
1413         flush_tlb_batched_pending(mm);
1414         arch_enter_lazy_mmu_mode();
1415         do {
1416                 pte_t ptent = ptep_get(pte);
1417                 struct page *page;
1418
1419                 if (pte_none(ptent))
1420                         continue;
1421
1422                 if (need_resched())
1423                         break;
1424
1425                 if (pte_present(ptent)) {
1426                         unsigned int delay_rmap;
1427
1428                         page = vm_normal_page(vma, addr, ptent);
1429                         if (unlikely(!should_zap_page(details, page)))
1430                                 continue;
1431                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1432                                                         tlb->fullmm);
1433                         arch_check_zapped_pte(vma, ptent);
1434                         tlb_remove_tlb_entry(tlb, pte, addr);
1435                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1436                                                       ptent);
1437                         if (unlikely(!page)) {
1438                                 ksm_might_unmap_zero_page(mm, ptent);
1439                                 continue;
1440                         }
1441
1442                         delay_rmap = 0;
1443                         if (!PageAnon(page)) {
1444                                 if (pte_dirty(ptent)) {
1445                                         set_page_dirty(page);
1446                                         if (tlb_delay_rmap(tlb)) {
1447                                                 delay_rmap = 1;
1448                                                 force_flush = 1;
1449                                         }
1450                                 }
1451                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1452                                         mark_page_accessed(page);
1453                         }
1454                         rss[mm_counter(page)]--;
1455                         if (!delay_rmap) {
1456                                 page_remove_rmap(page, vma, false);
1457                                 if (unlikely(page_mapcount(page) < 0))
1458                                         print_bad_pte(vma, addr, ptent, page);
1459                         }
1460                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1461                                 force_flush = 1;
1462                                 addr += PAGE_SIZE;
1463                                 break;
1464                         }
1465                         continue;
1466                 }
1467
1468                 entry = pte_to_swp_entry(ptent);
1469                 if (is_device_private_entry(entry) ||
1470                     is_device_exclusive_entry(entry)) {
1471                         page = pfn_swap_entry_to_page(entry);
1472                         if (unlikely(!should_zap_page(details, page)))
1473                                 continue;
1474                         /*
1475                          * Both device private/exclusive mappings should only
1476                          * work with anonymous page so far, so we don't need to
1477                          * consider uffd-wp bit when zap. For more information,
1478                          * see zap_install_uffd_wp_if_needed().
1479                          */
1480                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1481                         rss[mm_counter(page)]--;
1482                         if (is_device_private_entry(entry))
1483                                 page_remove_rmap(page, vma, false);
1484                         put_page(page);
1485                 } else if (!non_swap_entry(entry)) {
1486                         /* Genuine swap entry, hence a private anon page */
1487                         if (!should_zap_cows(details))
1488                                 continue;
1489                         rss[MM_SWAPENTS]--;
1490                         if (unlikely(!free_swap_and_cache(entry)))
1491                                 print_bad_pte(vma, addr, ptent, NULL);
1492                 } else if (is_migration_entry(entry)) {
1493                         page = pfn_swap_entry_to_page(entry);
1494                         if (!should_zap_page(details, page))
1495                                 continue;
1496                         rss[mm_counter(page)]--;
1497                 } else if (pte_marker_entry_uffd_wp(entry)) {
1498                         /*
1499                          * For anon: always drop the marker; for file: only
1500                          * drop the marker if explicitly requested.
1501                          */
1502                         if (!vma_is_anonymous(vma) &&
1503                             !zap_drop_file_uffd_wp(details))
1504                                 continue;
1505                 } else if (is_hwpoison_entry(entry) ||
1506                            is_poisoned_swp_entry(entry)) {
1507                         if (!should_zap_cows(details))
1508                                 continue;
1509                 } else {
1510                         /* We should have covered all the swap entry types */
1511                         WARN_ON_ONCE(1);
1512                 }
1513                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1514                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1515         } while (pte++, addr += PAGE_SIZE, addr != end);
1516
1517         add_mm_rss_vec(mm, rss);
1518         arch_leave_lazy_mmu_mode();
1519
1520         /* Do the actual TLB flush before dropping ptl */
1521         if (force_flush) {
1522                 tlb_flush_mmu_tlbonly(tlb);
1523                 tlb_flush_rmaps(tlb, vma);
1524         }
1525         pte_unmap_unlock(start_pte, ptl);
1526
1527         /*
1528          * If we forced a TLB flush (either due to running out of
1529          * batch buffers or because we needed to flush dirty TLB
1530          * entries before releasing the ptl), free the batched
1531          * memory too. Come back again if we didn't do everything.
1532          */
1533         if (force_flush)
1534                 tlb_flush_mmu(tlb);
1535
1536         return addr;
1537 }
1538
1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1540                                 struct vm_area_struct *vma, pud_t *pud,
1541                                 unsigned long addr, unsigned long end,
1542                                 struct zap_details *details)
1543 {
1544         pmd_t *pmd;
1545         unsigned long next;
1546
1547         pmd = pmd_offset(pud, addr);
1548         do {
1549                 next = pmd_addr_end(addr, end);
1550                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1551                         if (next - addr != HPAGE_PMD_SIZE)
1552                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1553                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1554                                 addr = next;
1555                                 continue;
1556                         }
1557                         /* fall through */
1558                 } else if (details && details->single_folio &&
1559                            folio_test_pmd_mappable(details->single_folio) &&
1560                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1561                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1562                         /*
1563                          * Take and drop THP pmd lock so that we cannot return
1564                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1565                          * but not yet decremented compound_mapcount().
1566                          */
1567                         spin_unlock(ptl);
1568                 }
1569                 if (pmd_none(*pmd)) {
1570                         addr = next;
1571                         continue;
1572                 }
1573                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1574                 if (addr != next)
1575                         pmd--;
1576         } while (pmd++, cond_resched(), addr != end);
1577
1578         return addr;
1579 }
1580
1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1582                                 struct vm_area_struct *vma, p4d_t *p4d,
1583                                 unsigned long addr, unsigned long end,
1584                                 struct zap_details *details)
1585 {
1586         pud_t *pud;
1587         unsigned long next;
1588
1589         pud = pud_offset(p4d, addr);
1590         do {
1591                 next = pud_addr_end(addr, end);
1592                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1593                         if (next - addr != HPAGE_PUD_SIZE) {
1594                                 mmap_assert_locked(tlb->mm);
1595                                 split_huge_pud(vma, pud, addr);
1596                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1597                                 goto next;
1598                         /* fall through */
1599                 }
1600                 if (pud_none_or_clear_bad(pud))
1601                         continue;
1602                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1603 next:
1604                 cond_resched();
1605         } while (pud++, addr = next, addr != end);
1606
1607         return addr;
1608 }
1609
1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1611                                 struct vm_area_struct *vma, pgd_t *pgd,
1612                                 unsigned long addr, unsigned long end,
1613                                 struct zap_details *details)
1614 {
1615         p4d_t *p4d;
1616         unsigned long next;
1617
1618         p4d = p4d_offset(pgd, addr);
1619         do {
1620                 next = p4d_addr_end(addr, end);
1621                 if (p4d_none_or_clear_bad(p4d))
1622                         continue;
1623                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1624         } while (p4d++, addr = next, addr != end);
1625
1626         return addr;
1627 }
1628
1629 void unmap_page_range(struct mmu_gather *tlb,
1630                              struct vm_area_struct *vma,
1631                              unsigned long addr, unsigned long end,
1632                              struct zap_details *details)
1633 {
1634         pgd_t *pgd;
1635         unsigned long next;
1636
1637         BUG_ON(addr >= end);
1638         tlb_start_vma(tlb, vma);
1639         pgd = pgd_offset(vma->vm_mm, addr);
1640         do {
1641                 next = pgd_addr_end(addr, end);
1642                 if (pgd_none_or_clear_bad(pgd))
1643                         continue;
1644                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1645         } while (pgd++, addr = next, addr != end);
1646         tlb_end_vma(tlb, vma);
1647 }
1648
1649
1650 static void unmap_single_vma(struct mmu_gather *tlb,
1651                 struct vm_area_struct *vma, unsigned long start_addr,
1652                 unsigned long end_addr,
1653                 struct zap_details *details, bool mm_wr_locked)
1654 {
1655         unsigned long start = max(vma->vm_start, start_addr);
1656         unsigned long end;
1657
1658         if (start >= vma->vm_end)
1659                 return;
1660         end = min(vma->vm_end, end_addr);
1661         if (end <= vma->vm_start)
1662                 return;
1663
1664         if (vma->vm_file)
1665                 uprobe_munmap(vma, start, end);
1666
1667         if (unlikely(vma->vm_flags & VM_PFNMAP))
1668                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1669
1670         if (start != end) {
1671                 if (unlikely(is_vm_hugetlb_page(vma))) {
1672                         /*
1673                          * It is undesirable to test vma->vm_file as it
1674                          * should be non-null for valid hugetlb area.
1675                          * However, vm_file will be NULL in the error
1676                          * cleanup path of mmap_region. When
1677                          * hugetlbfs ->mmap method fails,
1678                          * mmap_region() nullifies vma->vm_file
1679                          * before calling this function to clean up.
1680                          * Since no pte has actually been setup, it is
1681                          * safe to do nothing in this case.
1682                          */
1683                         if (vma->vm_file) {
1684                                 zap_flags_t zap_flags = details ?
1685                                     details->zap_flags : 0;
1686                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1687                                                              NULL, zap_flags);
1688                         }
1689                 } else
1690                         unmap_page_range(tlb, vma, start, end, details);
1691         }
1692 }
1693
1694 /**
1695  * unmap_vmas - unmap a range of memory covered by a list of vma's
1696  * @tlb: address of the caller's struct mmu_gather
1697  * @mas: the maple state
1698  * @vma: the starting vma
1699  * @start_addr: virtual address at which to start unmapping
1700  * @end_addr: virtual address at which to end unmapping
1701  * @tree_end: The maximum index to check
1702  * @mm_wr_locked: lock flag
1703  *
1704  * Unmap all pages in the vma list.
1705  *
1706  * Only addresses between `start' and `end' will be unmapped.
1707  *
1708  * The VMA list must be sorted in ascending virtual address order.
1709  *
1710  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1711  * range after unmap_vmas() returns.  So the only responsibility here is to
1712  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1713  * drops the lock and schedules.
1714  */
1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1716                 struct vm_area_struct *vma, unsigned long start_addr,
1717                 unsigned long end_addr, unsigned long tree_end,
1718                 bool mm_wr_locked)
1719 {
1720         struct mmu_notifier_range range;
1721         struct zap_details details = {
1722                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1723                 /* Careful - we need to zap private pages too! */
1724                 .even_cows = true,
1725         };
1726
1727         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1728                                 start_addr, end_addr);
1729         mmu_notifier_invalidate_range_start(&range);
1730         do {
1731                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1732                                  mm_wr_locked);
1733         } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1734         mmu_notifier_invalidate_range_end(&range);
1735 }
1736
1737 /**
1738  * zap_page_range_single - remove user pages in a given range
1739  * @vma: vm_area_struct holding the applicable pages
1740  * @address: starting address of pages to zap
1741  * @size: number of bytes to zap
1742  * @details: details of shared cache invalidation
1743  *
1744  * The range must fit into one VMA.
1745  */
1746 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1747                 unsigned long size, struct zap_details *details)
1748 {
1749         const unsigned long end = address + size;
1750         struct mmu_notifier_range range;
1751         struct mmu_gather tlb;
1752
1753         lru_add_drain();
1754         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1755                                 address, end);
1756         if (is_vm_hugetlb_page(vma))
1757                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1758                                                      &range.end);
1759         tlb_gather_mmu(&tlb, vma->vm_mm);
1760         update_hiwater_rss(vma->vm_mm);
1761         mmu_notifier_invalidate_range_start(&range);
1762         /*
1763          * unmap 'address-end' not 'range.start-range.end' as range
1764          * could have been expanded for hugetlb pmd sharing.
1765          */
1766         unmap_single_vma(&tlb, vma, address, end, details, false);
1767         mmu_notifier_invalidate_range_end(&range);
1768         tlb_finish_mmu(&tlb);
1769 }
1770
1771 /**
1772  * zap_vma_ptes - remove ptes mapping the vma
1773  * @vma: vm_area_struct holding ptes to be zapped
1774  * @address: starting address of pages to zap
1775  * @size: number of bytes to zap
1776  *
1777  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1778  *
1779  * The entire address range must be fully contained within the vma.
1780  *
1781  */
1782 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1783                 unsigned long size)
1784 {
1785         if (!range_in_vma(vma, address, address + size) ||
1786                         !(vma->vm_flags & VM_PFNMAP))
1787                 return;
1788
1789         zap_page_range_single(vma, address, size, NULL);
1790 }
1791 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1792
1793 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1794 {
1795         pgd_t *pgd;
1796         p4d_t *p4d;
1797         pud_t *pud;
1798         pmd_t *pmd;
1799
1800         pgd = pgd_offset(mm, addr);
1801         p4d = p4d_alloc(mm, pgd, addr);
1802         if (!p4d)
1803                 return NULL;
1804         pud = pud_alloc(mm, p4d, addr);
1805         if (!pud)
1806                 return NULL;
1807         pmd = pmd_alloc(mm, pud, addr);
1808         if (!pmd)
1809                 return NULL;
1810
1811         VM_BUG_ON(pmd_trans_huge(*pmd));
1812         return pmd;
1813 }
1814
1815 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1816                         spinlock_t **ptl)
1817 {
1818         pmd_t *pmd = walk_to_pmd(mm, addr);
1819
1820         if (!pmd)
1821                 return NULL;
1822         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1823 }
1824
1825 static int validate_page_before_insert(struct page *page)
1826 {
1827         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1828                 return -EINVAL;
1829         flush_dcache_page(page);
1830         return 0;
1831 }
1832
1833 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1834                         unsigned long addr, struct page *page, pgprot_t prot)
1835 {
1836         if (!pte_none(ptep_get(pte)))
1837                 return -EBUSY;
1838         /* Ok, finally just insert the thing.. */
1839         get_page(page);
1840         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1841         page_add_file_rmap(page, vma, false);
1842         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1843         return 0;
1844 }
1845
1846 /*
1847  * This is the old fallback for page remapping.
1848  *
1849  * For historical reasons, it only allows reserved pages. Only
1850  * old drivers should use this, and they needed to mark their
1851  * pages reserved for the old functions anyway.
1852  */
1853 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1854                         struct page *page, pgprot_t prot)
1855 {
1856         int retval;
1857         pte_t *pte;
1858         spinlock_t *ptl;
1859
1860         retval = validate_page_before_insert(page);
1861         if (retval)
1862                 goto out;
1863         retval = -ENOMEM;
1864         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1865         if (!pte)
1866                 goto out;
1867         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868         pte_unmap_unlock(pte, ptl);
1869 out:
1870         return retval;
1871 }
1872
1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1874                         unsigned long addr, struct page *page, pgprot_t prot)
1875 {
1876         int err;
1877
1878         if (!page_count(page))
1879                 return -EINVAL;
1880         err = validate_page_before_insert(page);
1881         if (err)
1882                 return err;
1883         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 }
1885
1886 /* insert_pages() amortizes the cost of spinlock operations
1887  * when inserting pages in a loop.
1888  */
1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890                         struct page **pages, unsigned long *num, pgprot_t prot)
1891 {
1892         pmd_t *pmd = NULL;
1893         pte_t *start_pte, *pte;
1894         spinlock_t *pte_lock;
1895         struct mm_struct *const mm = vma->vm_mm;
1896         unsigned long curr_page_idx = 0;
1897         unsigned long remaining_pages_total = *num;
1898         unsigned long pages_to_write_in_pmd;
1899         int ret;
1900 more:
1901         ret = -EFAULT;
1902         pmd = walk_to_pmd(mm, addr);
1903         if (!pmd)
1904                 goto out;
1905
1906         pages_to_write_in_pmd = min_t(unsigned long,
1907                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908
1909         /* Allocate the PTE if necessary; takes PMD lock once only. */
1910         ret = -ENOMEM;
1911         if (pte_alloc(mm, pmd))
1912                 goto out;
1913
1914         while (pages_to_write_in_pmd) {
1915                 int pte_idx = 0;
1916                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917
1918                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1919                 if (!start_pte) {
1920                         ret = -EFAULT;
1921                         goto out;
1922                 }
1923                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1924                         int err = insert_page_in_batch_locked(vma, pte,
1925                                 addr, pages[curr_page_idx], prot);
1926                         if (unlikely(err)) {
1927                                 pte_unmap_unlock(start_pte, pte_lock);
1928                                 ret = err;
1929                                 remaining_pages_total -= pte_idx;
1930                                 goto out;
1931                         }
1932                         addr += PAGE_SIZE;
1933                         ++curr_page_idx;
1934                 }
1935                 pte_unmap_unlock(start_pte, pte_lock);
1936                 pages_to_write_in_pmd -= batch_size;
1937                 remaining_pages_total -= batch_size;
1938         }
1939         if (remaining_pages_total)
1940                 goto more;
1941         ret = 0;
1942 out:
1943         *num = remaining_pages_total;
1944         return ret;
1945 }
1946
1947 /**
1948  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1949  * @vma: user vma to map to
1950  * @addr: target start user address of these pages
1951  * @pages: source kernel pages
1952  * @num: in: number of pages to map. out: number of pages that were *not*
1953  * mapped. (0 means all pages were successfully mapped).
1954  *
1955  * Preferred over vm_insert_page() when inserting multiple pages.
1956  *
1957  * In case of error, we may have mapped a subset of the provided
1958  * pages. It is the caller's responsibility to account for this case.
1959  *
1960  * The same restrictions apply as in vm_insert_page().
1961  */
1962 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1963                         struct page **pages, unsigned long *num)
1964 {
1965         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1966
1967         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1968                 return -EFAULT;
1969         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1970                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1971                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1972                 vm_flags_set(vma, VM_MIXEDMAP);
1973         }
1974         /* Defer page refcount checking till we're about to map that page. */
1975         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1976 }
1977 EXPORT_SYMBOL(vm_insert_pages);
1978
1979 /**
1980  * vm_insert_page - insert single page into user vma
1981  * @vma: user vma to map to
1982  * @addr: target user address of this page
1983  * @page: source kernel page
1984  *
1985  * This allows drivers to insert individual pages they've allocated
1986  * into a user vma.
1987  *
1988  * The page has to be a nice clean _individual_ kernel allocation.
1989  * If you allocate a compound page, you need to have marked it as
1990  * such (__GFP_COMP), or manually just split the page up yourself
1991  * (see split_page()).
1992  *
1993  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1994  * took an arbitrary page protection parameter. This doesn't allow
1995  * that. Your vma protection will have to be set up correctly, which
1996  * means that if you want a shared writable mapping, you'd better
1997  * ask for a shared writable mapping!
1998  *
1999  * The page does not need to be reserved.
2000  *
2001  * Usually this function is called from f_op->mmap() handler
2002  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2003  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2004  * function from other places, for example from page-fault handler.
2005  *
2006  * Return: %0 on success, negative error code otherwise.
2007  */
2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2009                         struct page *page)
2010 {
2011         if (addr < vma->vm_start || addr >= vma->vm_end)
2012                 return -EFAULT;
2013         if (!page_count(page))
2014                 return -EINVAL;
2015         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2016                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2017                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2018                 vm_flags_set(vma, VM_MIXEDMAP);
2019         }
2020         return insert_page(vma, addr, page, vma->vm_page_prot);
2021 }
2022 EXPORT_SYMBOL(vm_insert_page);
2023
2024 /*
2025  * __vm_map_pages - maps range of kernel pages into user vma
2026  * @vma: user vma to map to
2027  * @pages: pointer to array of source kernel pages
2028  * @num: number of pages in page array
2029  * @offset: user's requested vm_pgoff
2030  *
2031  * This allows drivers to map range of kernel pages into a user vma.
2032  *
2033  * Return: 0 on success and error code otherwise.
2034  */
2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2036                                 unsigned long num, unsigned long offset)
2037 {
2038         unsigned long count = vma_pages(vma);
2039         unsigned long uaddr = vma->vm_start;
2040         int ret, i;
2041
2042         /* Fail if the user requested offset is beyond the end of the object */
2043         if (offset >= num)
2044                 return -ENXIO;
2045
2046         /* Fail if the user requested size exceeds available object size */
2047         if (count > num - offset)
2048                 return -ENXIO;
2049
2050         for (i = 0; i < count; i++) {
2051                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2052                 if (ret < 0)
2053                         return ret;
2054                 uaddr += PAGE_SIZE;
2055         }
2056
2057         return 0;
2058 }
2059
2060 /**
2061  * vm_map_pages - maps range of kernel pages starts with non zero offset
2062  * @vma: user vma to map to
2063  * @pages: pointer to array of source kernel pages
2064  * @num: number of pages in page array
2065  *
2066  * Maps an object consisting of @num pages, catering for the user's
2067  * requested vm_pgoff
2068  *
2069  * If we fail to insert any page into the vma, the function will return
2070  * immediately leaving any previously inserted pages present.  Callers
2071  * from the mmap handler may immediately return the error as their caller
2072  * will destroy the vma, removing any successfully inserted pages. Other
2073  * callers should make their own arrangements for calling unmap_region().
2074  *
2075  * Context: Process context. Called by mmap handlers.
2076  * Return: 0 on success and error code otherwise.
2077  */
2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2079                                 unsigned long num)
2080 {
2081         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082 }
2083 EXPORT_SYMBOL(vm_map_pages);
2084
2085 /**
2086  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2087  * @vma: user vma to map to
2088  * @pages: pointer to array of source kernel pages
2089  * @num: number of pages in page array
2090  *
2091  * Similar to vm_map_pages(), except that it explicitly sets the offset
2092  * to 0. This function is intended for the drivers that did not consider
2093  * vm_pgoff.
2094  *
2095  * Context: Process context. Called by mmap handlers.
2096  * Return: 0 on success and error code otherwise.
2097  */
2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2099                                 unsigned long num)
2100 {
2101         return __vm_map_pages(vma, pages, num, 0);
2102 }
2103 EXPORT_SYMBOL(vm_map_pages_zero);
2104
2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2106                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2107 {
2108         struct mm_struct *mm = vma->vm_mm;
2109         pte_t *pte, entry;
2110         spinlock_t *ptl;
2111
2112         pte = get_locked_pte(mm, addr, &ptl);
2113         if (!pte)
2114                 return VM_FAULT_OOM;
2115         entry = ptep_get(pte);
2116         if (!pte_none(entry)) {
2117                 if (mkwrite) {
2118                         /*
2119                          * For read faults on private mappings the PFN passed
2120                          * in may not match the PFN we have mapped if the
2121                          * mapped PFN is a writeable COW page.  In the mkwrite
2122                          * case we are creating a writable PTE for a shared
2123                          * mapping and we expect the PFNs to match. If they
2124                          * don't match, we are likely racing with block
2125                          * allocation and mapping invalidation so just skip the
2126                          * update.
2127                          */
2128                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2129                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2130                                 goto out_unlock;
2131                         }
2132                         entry = pte_mkyoung(entry);
2133                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2135                                 update_mmu_cache(vma, addr, pte);
2136                 }
2137                 goto out_unlock;
2138         }
2139
2140         /* Ok, finally just insert the thing.. */
2141         if (pfn_t_devmap(pfn))
2142                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2143         else
2144                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2145
2146         if (mkwrite) {
2147                 entry = pte_mkyoung(entry);
2148                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149         }
2150
2151         set_pte_at(mm, addr, pte, entry);
2152         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2153
2154 out_unlock:
2155         pte_unmap_unlock(pte, ptl);
2156         return VM_FAULT_NOPAGE;
2157 }
2158
2159 /**
2160  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2161  * @vma: user vma to map to
2162  * @addr: target user address of this page
2163  * @pfn: source kernel pfn
2164  * @pgprot: pgprot flags for the inserted page
2165  *
2166  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2167  * to override pgprot on a per-page basis.
2168  *
2169  * This only makes sense for IO mappings, and it makes no sense for
2170  * COW mappings.  In general, using multiple vmas is preferable;
2171  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2172  * impractical.
2173  *
2174  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2175  * caching- and encryption bits different than those of @vma->vm_page_prot,
2176  * because the caching- or encryption mode may not be known at mmap() time.
2177  *
2178  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2179  * to set caching and encryption bits for those vmas (except for COW pages).
2180  * This is ensured by core vm only modifying these page table entries using
2181  * functions that don't touch caching- or encryption bits, using pte_modify()
2182  * if needed. (See for example mprotect()).
2183  *
2184  * Also when new page-table entries are created, this is only done using the
2185  * fault() callback, and never using the value of vma->vm_page_prot,
2186  * except for page-table entries that point to anonymous pages as the result
2187  * of COW.
2188  *
2189  * Context: Process context.  May allocate using %GFP_KERNEL.
2190  * Return: vm_fault_t value.
2191  */
2192 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2193                         unsigned long pfn, pgprot_t pgprot)
2194 {
2195         /*
2196          * Technically, architectures with pte_special can avoid all these
2197          * restrictions (same for remap_pfn_range).  However we would like
2198          * consistency in testing and feature parity among all, so we should
2199          * try to keep these invariants in place for everybody.
2200          */
2201         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2202         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2203                                                 (VM_PFNMAP|VM_MIXEDMAP));
2204         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2205         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2206
2207         if (addr < vma->vm_start || addr >= vma->vm_end)
2208                 return VM_FAULT_SIGBUS;
2209
2210         if (!pfn_modify_allowed(pfn, pgprot))
2211                 return VM_FAULT_SIGBUS;
2212
2213         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2214
2215         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2216                         false);
2217 }
2218 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2219
2220 /**
2221  * vmf_insert_pfn - insert single pfn into user vma
2222  * @vma: user vma to map to
2223  * @addr: target user address of this page
2224  * @pfn: source kernel pfn
2225  *
2226  * Similar to vm_insert_page, this allows drivers to insert individual pages
2227  * they've allocated into a user vma. Same comments apply.
2228  *
2229  * This function should only be called from a vm_ops->fault handler, and
2230  * in that case the handler should return the result of this function.
2231  *
2232  * vma cannot be a COW mapping.
2233  *
2234  * As this is called only for pages that do not currently exist, we
2235  * do not need to flush old virtual caches or the TLB.
2236  *
2237  * Context: Process context.  May allocate using %GFP_KERNEL.
2238  * Return: vm_fault_t value.
2239  */
2240 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2241                         unsigned long pfn)
2242 {
2243         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2244 }
2245 EXPORT_SYMBOL(vmf_insert_pfn);
2246
2247 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2248 {
2249         /* these checks mirror the abort conditions in vm_normal_page */
2250         if (vma->vm_flags & VM_MIXEDMAP)
2251                 return true;
2252         if (pfn_t_devmap(pfn))
2253                 return true;
2254         if (pfn_t_special(pfn))
2255                 return true;
2256         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2257                 return true;
2258         return false;
2259 }
2260
2261 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2262                 unsigned long addr, pfn_t pfn, bool mkwrite)
2263 {
2264         pgprot_t pgprot = vma->vm_page_prot;
2265         int err;
2266
2267         BUG_ON(!vm_mixed_ok(vma, pfn));
2268
2269         if (addr < vma->vm_start || addr >= vma->vm_end)
2270                 return VM_FAULT_SIGBUS;
2271
2272         track_pfn_insert(vma, &pgprot, pfn);
2273
2274         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2275                 return VM_FAULT_SIGBUS;
2276
2277         /*
2278          * If we don't have pte special, then we have to use the pfn_valid()
2279          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2280          * refcount the page if pfn_valid is true (hence insert_page rather
2281          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2282          * without pte special, it would there be refcounted as a normal page.
2283          */
2284         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2285             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2286                 struct page *page;
2287
2288                 /*
2289                  * At this point we are committed to insert_page()
2290                  * regardless of whether the caller specified flags that
2291                  * result in pfn_t_has_page() == false.
2292                  */
2293                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2294                 err = insert_page(vma, addr, page, pgprot);
2295         } else {
2296                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2297         }
2298
2299         if (err == -ENOMEM)
2300                 return VM_FAULT_OOM;
2301         if (err < 0 && err != -EBUSY)
2302                 return VM_FAULT_SIGBUS;
2303
2304         return VM_FAULT_NOPAGE;
2305 }
2306
2307 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2308                 pfn_t pfn)
2309 {
2310         return __vm_insert_mixed(vma, addr, pfn, false);
2311 }
2312 EXPORT_SYMBOL(vmf_insert_mixed);
2313
2314 /*
2315  *  If the insertion of PTE failed because someone else already added a
2316  *  different entry in the mean time, we treat that as success as we assume
2317  *  the same entry was actually inserted.
2318  */
2319 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2320                 unsigned long addr, pfn_t pfn)
2321 {
2322         return __vm_insert_mixed(vma, addr, pfn, true);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2325
2326 /*
2327  * maps a range of physical memory into the requested pages. the old
2328  * mappings are removed. any references to nonexistent pages results
2329  * in null mappings (currently treated as "copy-on-access")
2330  */
2331 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2332                         unsigned long addr, unsigned long end,
2333                         unsigned long pfn, pgprot_t prot)
2334 {
2335         pte_t *pte, *mapped_pte;
2336         spinlock_t *ptl;
2337         int err = 0;
2338
2339         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2340         if (!pte)
2341                 return -ENOMEM;
2342         arch_enter_lazy_mmu_mode();
2343         do {
2344                 BUG_ON(!pte_none(ptep_get(pte)));
2345                 if (!pfn_modify_allowed(pfn, prot)) {
2346                         err = -EACCES;
2347                         break;
2348                 }
2349                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2350                 pfn++;
2351         } while (pte++, addr += PAGE_SIZE, addr != end);
2352         arch_leave_lazy_mmu_mode();
2353         pte_unmap_unlock(mapped_pte, ptl);
2354         return err;
2355 }
2356
2357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2358                         unsigned long addr, unsigned long end,
2359                         unsigned long pfn, pgprot_t prot)
2360 {
2361         pmd_t *pmd;
2362         unsigned long next;
2363         int err;
2364
2365         pfn -= addr >> PAGE_SHIFT;
2366         pmd = pmd_alloc(mm, pud, addr);
2367         if (!pmd)
2368                 return -ENOMEM;
2369         VM_BUG_ON(pmd_trans_huge(*pmd));
2370         do {
2371                 next = pmd_addr_end(addr, end);
2372                 err = remap_pte_range(mm, pmd, addr, next,
2373                                 pfn + (addr >> PAGE_SHIFT), prot);
2374                 if (err)
2375                         return err;
2376         } while (pmd++, addr = next, addr != end);
2377         return 0;
2378 }
2379
2380 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2381                         unsigned long addr, unsigned long end,
2382                         unsigned long pfn, pgprot_t prot)
2383 {
2384         pud_t *pud;
2385         unsigned long next;
2386         int err;
2387
2388         pfn -= addr >> PAGE_SHIFT;
2389         pud = pud_alloc(mm, p4d, addr);
2390         if (!pud)
2391                 return -ENOMEM;
2392         do {
2393                 next = pud_addr_end(addr, end);
2394                 err = remap_pmd_range(mm, pud, addr, next,
2395                                 pfn + (addr >> PAGE_SHIFT), prot);
2396                 if (err)
2397                         return err;
2398         } while (pud++, addr = next, addr != end);
2399         return 0;
2400 }
2401
2402 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2403                         unsigned long addr, unsigned long end,
2404                         unsigned long pfn, pgprot_t prot)
2405 {
2406         p4d_t *p4d;
2407         unsigned long next;
2408         int err;
2409
2410         pfn -= addr >> PAGE_SHIFT;
2411         p4d = p4d_alloc(mm, pgd, addr);
2412         if (!p4d)
2413                 return -ENOMEM;
2414         do {
2415                 next = p4d_addr_end(addr, end);
2416                 err = remap_pud_range(mm, p4d, addr, next,
2417                                 pfn + (addr >> PAGE_SHIFT), prot);
2418                 if (err)
2419                         return err;
2420         } while (p4d++, addr = next, addr != end);
2421         return 0;
2422 }
2423
2424 /*
2425  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2426  * must have pre-validated the caching bits of the pgprot_t.
2427  */
2428 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2429                 unsigned long pfn, unsigned long size, pgprot_t prot)
2430 {
2431         pgd_t *pgd;
2432         unsigned long next;
2433         unsigned long end = addr + PAGE_ALIGN(size);
2434         struct mm_struct *mm = vma->vm_mm;
2435         int err;
2436
2437         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2438                 return -EINVAL;
2439
2440         /*
2441          * Physically remapped pages are special. Tell the
2442          * rest of the world about it:
2443          *   VM_IO tells people not to look at these pages
2444          *      (accesses can have side effects).
2445          *   VM_PFNMAP tells the core MM that the base pages are just
2446          *      raw PFN mappings, and do not have a "struct page" associated
2447          *      with them.
2448          *   VM_DONTEXPAND
2449          *      Disable vma merging and expanding with mremap().
2450          *   VM_DONTDUMP
2451          *      Omit vma from core dump, even when VM_IO turned off.
2452          *
2453          * There's a horrible special case to handle copy-on-write
2454          * behaviour that some programs depend on. We mark the "original"
2455          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2456          * See vm_normal_page() for details.
2457          */
2458         if (is_cow_mapping(vma->vm_flags)) {
2459                 if (addr != vma->vm_start || end != vma->vm_end)
2460                         return -EINVAL;
2461                 vma->vm_pgoff = pfn;
2462         }
2463
2464         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2465
2466         BUG_ON(addr >= end);
2467         pfn -= addr >> PAGE_SHIFT;
2468         pgd = pgd_offset(mm, addr);
2469         flush_cache_range(vma, addr, end);
2470         do {
2471                 next = pgd_addr_end(addr, end);
2472                 err = remap_p4d_range(mm, pgd, addr, next,
2473                                 pfn + (addr >> PAGE_SHIFT), prot);
2474                 if (err)
2475                         return err;
2476         } while (pgd++, addr = next, addr != end);
2477
2478         return 0;
2479 }
2480
2481 /**
2482  * remap_pfn_range - remap kernel memory to userspace
2483  * @vma: user vma to map to
2484  * @addr: target page aligned user address to start at
2485  * @pfn: page frame number of kernel physical memory address
2486  * @size: size of mapping area
2487  * @prot: page protection flags for this mapping
2488  *
2489  * Note: this is only safe if the mm semaphore is held when called.
2490  *
2491  * Return: %0 on success, negative error code otherwise.
2492  */
2493 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2494                     unsigned long pfn, unsigned long size, pgprot_t prot)
2495 {
2496         int err;
2497
2498         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2499         if (err)
2500                 return -EINVAL;
2501
2502         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2503         if (err)
2504                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2505         return err;
2506 }
2507 EXPORT_SYMBOL(remap_pfn_range);
2508
2509 /**
2510  * vm_iomap_memory - remap memory to userspace
2511  * @vma: user vma to map to
2512  * @start: start of the physical memory to be mapped
2513  * @len: size of area
2514  *
2515  * This is a simplified io_remap_pfn_range() for common driver use. The
2516  * driver just needs to give us the physical memory range to be mapped,
2517  * we'll figure out the rest from the vma information.
2518  *
2519  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2520  * whatever write-combining details or similar.
2521  *
2522  * Return: %0 on success, negative error code otherwise.
2523  */
2524 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2525 {
2526         unsigned long vm_len, pfn, pages;
2527
2528         /* Check that the physical memory area passed in looks valid */
2529         if (start + len < start)
2530                 return -EINVAL;
2531         /*
2532          * You *really* shouldn't map things that aren't page-aligned,
2533          * but we've historically allowed it because IO memory might
2534          * just have smaller alignment.
2535          */
2536         len += start & ~PAGE_MASK;
2537         pfn = start >> PAGE_SHIFT;
2538         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2539         if (pfn + pages < pfn)
2540                 return -EINVAL;
2541
2542         /* We start the mapping 'vm_pgoff' pages into the area */
2543         if (vma->vm_pgoff > pages)
2544                 return -EINVAL;
2545         pfn += vma->vm_pgoff;
2546         pages -= vma->vm_pgoff;
2547
2548         /* Can we fit all of the mapping? */
2549         vm_len = vma->vm_end - vma->vm_start;
2550         if (vm_len >> PAGE_SHIFT > pages)
2551                 return -EINVAL;
2552
2553         /* Ok, let it rip */
2554         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2555 }
2556 EXPORT_SYMBOL(vm_iomap_memory);
2557
2558 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2559                                      unsigned long addr, unsigned long end,
2560                                      pte_fn_t fn, void *data, bool create,
2561                                      pgtbl_mod_mask *mask)
2562 {
2563         pte_t *pte, *mapped_pte;
2564         int err = 0;
2565         spinlock_t *ptl;
2566
2567         if (create) {
2568                 mapped_pte = pte = (mm == &init_mm) ?
2569                         pte_alloc_kernel_track(pmd, addr, mask) :
2570                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2571                 if (!pte)
2572                         return -ENOMEM;
2573         } else {
2574                 mapped_pte = pte = (mm == &init_mm) ?
2575                         pte_offset_kernel(pmd, addr) :
2576                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2577                 if (!pte)
2578                         return -EINVAL;
2579         }
2580
2581         arch_enter_lazy_mmu_mode();
2582
2583         if (fn) {
2584                 do {
2585                         if (create || !pte_none(ptep_get(pte))) {
2586                                 err = fn(pte++, addr, data);
2587                                 if (err)
2588                                         break;
2589                         }
2590                 } while (addr += PAGE_SIZE, addr != end);
2591         }
2592         *mask |= PGTBL_PTE_MODIFIED;
2593
2594         arch_leave_lazy_mmu_mode();
2595
2596         if (mm != &init_mm)
2597                 pte_unmap_unlock(mapped_pte, ptl);
2598         return err;
2599 }
2600
2601 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2602                                      unsigned long addr, unsigned long end,
2603                                      pte_fn_t fn, void *data, bool create,
2604                                      pgtbl_mod_mask *mask)
2605 {
2606         pmd_t *pmd;
2607         unsigned long next;
2608         int err = 0;
2609
2610         BUG_ON(pud_huge(*pud));
2611
2612         if (create) {
2613                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2614                 if (!pmd)
2615                         return -ENOMEM;
2616         } else {
2617                 pmd = pmd_offset(pud, addr);
2618         }
2619         do {
2620                 next = pmd_addr_end(addr, end);
2621                 if (pmd_none(*pmd) && !create)
2622                         continue;
2623                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2624                         return -EINVAL;
2625                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2626                         if (!create)
2627                                 continue;
2628                         pmd_clear_bad(pmd);
2629                 }
2630                 err = apply_to_pte_range(mm, pmd, addr, next,
2631                                          fn, data, create, mask);
2632                 if (err)
2633                         break;
2634         } while (pmd++, addr = next, addr != end);
2635
2636         return err;
2637 }
2638
2639 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2640                                      unsigned long addr, unsigned long end,
2641                                      pte_fn_t fn, void *data, bool create,
2642                                      pgtbl_mod_mask *mask)
2643 {
2644         pud_t *pud;
2645         unsigned long next;
2646         int err = 0;
2647
2648         if (create) {
2649                 pud = pud_alloc_track(mm, p4d, addr, mask);
2650                 if (!pud)
2651                         return -ENOMEM;
2652         } else {
2653                 pud = pud_offset(p4d, addr);
2654         }
2655         do {
2656                 next = pud_addr_end(addr, end);
2657                 if (pud_none(*pud) && !create)
2658                         continue;
2659                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2660                         return -EINVAL;
2661                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2662                         if (!create)
2663                                 continue;
2664                         pud_clear_bad(pud);
2665                 }
2666                 err = apply_to_pmd_range(mm, pud, addr, next,
2667                                          fn, data, create, mask);
2668                 if (err)
2669                         break;
2670         } while (pud++, addr = next, addr != end);
2671
2672         return err;
2673 }
2674
2675 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2676                                      unsigned long addr, unsigned long end,
2677                                      pte_fn_t fn, void *data, bool create,
2678                                      pgtbl_mod_mask *mask)
2679 {
2680         p4d_t *p4d;
2681         unsigned long next;
2682         int err = 0;
2683
2684         if (create) {
2685                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2686                 if (!p4d)
2687                         return -ENOMEM;
2688         } else {
2689                 p4d = p4d_offset(pgd, addr);
2690         }
2691         do {
2692                 next = p4d_addr_end(addr, end);
2693                 if (p4d_none(*p4d) && !create)
2694                         continue;
2695                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2696                         return -EINVAL;
2697                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2698                         if (!create)
2699                                 continue;
2700                         p4d_clear_bad(p4d);
2701                 }
2702                 err = apply_to_pud_range(mm, p4d, addr, next,
2703                                          fn, data, create, mask);
2704                 if (err)
2705                         break;
2706         } while (p4d++, addr = next, addr != end);
2707
2708         return err;
2709 }
2710
2711 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2712                                  unsigned long size, pte_fn_t fn,
2713                                  void *data, bool create)
2714 {
2715         pgd_t *pgd;
2716         unsigned long start = addr, next;
2717         unsigned long end = addr + size;
2718         pgtbl_mod_mask mask = 0;
2719         int err = 0;
2720
2721         if (WARN_ON(addr >= end))
2722                 return -EINVAL;
2723
2724         pgd = pgd_offset(mm, addr);
2725         do {
2726                 next = pgd_addr_end(addr, end);
2727                 if (pgd_none(*pgd) && !create)
2728                         continue;
2729                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2730                         return -EINVAL;
2731                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2732                         if (!create)
2733                                 continue;
2734                         pgd_clear_bad(pgd);
2735                 }
2736                 err = apply_to_p4d_range(mm, pgd, addr, next,
2737                                          fn, data, create, &mask);
2738                 if (err)
2739                         break;
2740         } while (pgd++, addr = next, addr != end);
2741
2742         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2743                 arch_sync_kernel_mappings(start, start + size);
2744
2745         return err;
2746 }
2747
2748 /*
2749  * Scan a region of virtual memory, filling in page tables as necessary
2750  * and calling a provided function on each leaf page table.
2751  */
2752 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2753                         unsigned long size, pte_fn_t fn, void *data)
2754 {
2755         return __apply_to_page_range(mm, addr, size, fn, data, true);
2756 }
2757 EXPORT_SYMBOL_GPL(apply_to_page_range);
2758
2759 /*
2760  * Scan a region of virtual memory, calling a provided function on
2761  * each leaf page table where it exists.
2762  *
2763  * Unlike apply_to_page_range, this does _not_ fill in page tables
2764  * where they are absent.
2765  */
2766 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2767                                  unsigned long size, pte_fn_t fn, void *data)
2768 {
2769         return __apply_to_page_range(mm, addr, size, fn, data, false);
2770 }
2771 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2772
2773 /*
2774  * handle_pte_fault chooses page fault handler according to an entry which was
2775  * read non-atomically.  Before making any commitment, on those architectures
2776  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2777  * parts, do_swap_page must check under lock before unmapping the pte and
2778  * proceeding (but do_wp_page is only called after already making such a check;
2779  * and do_anonymous_page can safely check later on).
2780  */
2781 static inline int pte_unmap_same(struct vm_fault *vmf)
2782 {
2783         int same = 1;
2784 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2785         if (sizeof(pte_t) > sizeof(unsigned long)) {
2786                 spin_lock(vmf->ptl);
2787                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2788                 spin_unlock(vmf->ptl);
2789         }
2790 #endif
2791         pte_unmap(vmf->pte);
2792         vmf->pte = NULL;
2793         return same;
2794 }
2795
2796 /*
2797  * Return:
2798  *      0:              copied succeeded
2799  *      -EHWPOISON:     copy failed due to hwpoison in source page
2800  *      -EAGAIN:        copied failed (some other reason)
2801  */
2802 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2803                                       struct vm_fault *vmf)
2804 {
2805         int ret;
2806         void *kaddr;
2807         void __user *uaddr;
2808         struct vm_area_struct *vma = vmf->vma;
2809         struct mm_struct *mm = vma->vm_mm;
2810         unsigned long addr = vmf->address;
2811
2812         if (likely(src)) {
2813                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814                         memory_failure_queue(page_to_pfn(src), 0);
2815                         return -EHWPOISON;
2816                 }
2817                 return 0;
2818         }
2819
2820         /*
2821          * If the source page was a PFN mapping, we don't have
2822          * a "struct page" for it. We do a best-effort copy by
2823          * just copying from the original user address. If that
2824          * fails, we just zero-fill it. Live with it.
2825          */
2826         kaddr = kmap_atomic(dst);
2827         uaddr = (void __user *)(addr & PAGE_MASK);
2828
2829         /*
2830          * On architectures with software "accessed" bits, we would
2831          * take a double page fault, so mark it accessed here.
2832          */
2833         vmf->pte = NULL;
2834         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2835                 pte_t entry;
2836
2837                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2838                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2839                         /*
2840                          * Other thread has already handled the fault
2841                          * and update local tlb only
2842                          */
2843                         if (vmf->pte)
2844                                 update_mmu_tlb(vma, addr, vmf->pte);
2845                         ret = -EAGAIN;
2846                         goto pte_unlock;
2847                 }
2848
2849                 entry = pte_mkyoung(vmf->orig_pte);
2850                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2851                         update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2852         }
2853
2854         /*
2855          * This really shouldn't fail, because the page is there
2856          * in the page tables. But it might just be unreadable,
2857          * in which case we just give up and fill the result with
2858          * zeroes.
2859          */
2860         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2861                 if (vmf->pte)
2862                         goto warn;
2863
2864                 /* Re-validate under PTL if the page is still mapped */
2865                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2867                         /* The PTE changed under us, update local tlb */
2868                         if (vmf->pte)
2869                                 update_mmu_tlb(vma, addr, vmf->pte);
2870                         ret = -EAGAIN;
2871                         goto pte_unlock;
2872                 }
2873
2874                 /*
2875                  * The same page can be mapped back since last copy attempt.
2876                  * Try to copy again under PTL.
2877                  */
2878                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2879                         /*
2880                          * Give a warn in case there can be some obscure
2881                          * use-case
2882                          */
2883 warn:
2884                         WARN_ON_ONCE(1);
2885                         clear_page(kaddr);
2886                 }
2887         }
2888
2889         ret = 0;
2890
2891 pte_unlock:
2892         if (vmf->pte)
2893                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2894         kunmap_atomic(kaddr);
2895         flush_dcache_page(dst);
2896
2897         return ret;
2898 }
2899
2900 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2901 {
2902         struct file *vm_file = vma->vm_file;
2903
2904         if (vm_file)
2905                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2906
2907         /*
2908          * Special mappings (e.g. VDSO) do not have any file so fake
2909          * a default GFP_KERNEL for them.
2910          */
2911         return GFP_KERNEL;
2912 }
2913
2914 /*
2915  * Notify the address space that the page is about to become writable so that
2916  * it can prohibit this or wait for the page to get into an appropriate state.
2917  *
2918  * We do this without the lock held, so that it can sleep if it needs to.
2919  */
2920 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2921 {
2922         vm_fault_t ret;
2923         unsigned int old_flags = vmf->flags;
2924
2925         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2926
2927         if (vmf->vma->vm_file &&
2928             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929                 return VM_FAULT_SIGBUS;
2930
2931         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2932         /* Restore original flags so that caller is not surprised */
2933         vmf->flags = old_flags;
2934         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935                 return ret;
2936         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2937                 folio_lock(folio);
2938                 if (!folio->mapping) {
2939                         folio_unlock(folio);
2940                         return 0; /* retry */
2941                 }
2942                 ret |= VM_FAULT_LOCKED;
2943         } else
2944                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2945         return ret;
2946 }
2947
2948 /*
2949  * Handle dirtying of a page in shared file mapping on a write fault.
2950  *
2951  * The function expects the page to be locked and unlocks it.
2952  */
2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2954 {
2955         struct vm_area_struct *vma = vmf->vma;
2956         struct address_space *mapping;
2957         struct folio *folio = page_folio(vmf->page);
2958         bool dirtied;
2959         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960
2961         dirtied = folio_mark_dirty(folio);
2962         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2963         /*
2964          * Take a local copy of the address_space - folio.mapping may be zeroed
2965          * by truncate after folio_unlock().   The address_space itself remains
2966          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2967          * release semantics to prevent the compiler from undoing this copying.
2968          */
2969         mapping = folio_raw_mapping(folio);
2970         folio_unlock(folio);
2971
2972         if (!page_mkwrite)
2973                 file_update_time(vma->vm_file);
2974
2975         /*
2976          * Throttle page dirtying rate down to writeback speed.
2977          *
2978          * mapping may be NULL here because some device drivers do not
2979          * set page.mapping but still dirty their pages
2980          *
2981          * Drop the mmap_lock before waiting on IO, if we can. The file
2982          * is pinning the mapping, as per above.
2983          */
2984         if ((dirtied || page_mkwrite) && mapping) {
2985                 struct file *fpin;
2986
2987                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2988                 balance_dirty_pages_ratelimited(mapping);
2989                 if (fpin) {
2990                         fput(fpin);
2991                         return VM_FAULT_COMPLETED;
2992                 }
2993         }
2994
2995         return 0;
2996 }
2997
2998 /*
2999  * Handle write page faults for pages that can be reused in the current vma
3000  *
3001  * This can happen either due to the mapping being with the VM_SHARED flag,
3002  * or due to us being the last reference standing to the page. In either
3003  * case, all we need to do here is to mark the page as writable and update
3004  * any related book-keeping.
3005  */
3006 static inline void wp_page_reuse(struct vm_fault *vmf)
3007         __releases(vmf->ptl)
3008 {
3009         struct vm_area_struct *vma = vmf->vma;
3010         struct page *page = vmf->page;
3011         pte_t entry;
3012
3013         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3014         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3015
3016         /*
3017          * Clear the pages cpupid information as the existing
3018          * information potentially belongs to a now completely
3019          * unrelated process.
3020          */
3021         if (page)
3022                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023
3024         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025         entry = pte_mkyoung(vmf->orig_pte);
3026         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3027         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3029         pte_unmap_unlock(vmf->pte, vmf->ptl);
3030         count_vm_event(PGREUSE);
3031 }
3032
3033 /*
3034  * Handle the case of a page which we actually need to copy to a new page,
3035  * either due to COW or unsharing.
3036  *
3037  * Called with mmap_lock locked and the old page referenced, but
3038  * without the ptl held.
3039  *
3040  * High level logic flow:
3041  *
3042  * - Allocate a page, copy the content of the old page to the new one.
3043  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044  * - Take the PTL. If the pte changed, bail out and release the allocated page
3045  * - If the pte is still the way we remember it, update the page table and all
3046  *   relevant references. This includes dropping the reference the page-table
3047  *   held to the old page, as well as updating the rmap.
3048  * - In any case, unlock the PTL and drop the reference we took to the old page.
3049  */
3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3051 {
3052         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3053         struct vm_area_struct *vma = vmf->vma;
3054         struct mm_struct *mm = vma->vm_mm;
3055         struct folio *old_folio = NULL;
3056         struct folio *new_folio = NULL;
3057         pte_t entry;
3058         int page_copied = 0;
3059         struct mmu_notifier_range range;
3060         int ret;
3061
3062         delayacct_wpcopy_start();
3063
3064         if (vmf->page)
3065                 old_folio = page_folio(vmf->page);
3066         if (unlikely(anon_vma_prepare(vma)))
3067                 goto oom;
3068
3069         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3070                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3071                 if (!new_folio)
3072                         goto oom;
3073         } else {
3074                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075                                 vmf->address, false);
3076                 if (!new_folio)
3077                         goto oom;
3078
3079                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3080                 if (ret) {
3081                         /*
3082                          * COW failed, if the fault was solved by other,
3083                          * it's fine. If not, userspace would re-fault on
3084                          * the same address and we will handle the fault
3085                          * from the second attempt.
3086                          * The -EHWPOISON case will not be retried.
3087                          */
3088                         folio_put(new_folio);
3089                         if (old_folio)
3090                                 folio_put(old_folio);
3091
3092                         delayacct_wpcopy_end();
3093                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3094                 }
3095                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3096         }
3097
3098         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3099                 goto oom_free_new;
3100         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3101
3102         __folio_mark_uptodate(new_folio);
3103
3104         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3105                                 vmf->address & PAGE_MASK,
3106                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107         mmu_notifier_invalidate_range_start(&range);
3108
3109         /*
3110          * Re-check the pte - we dropped the lock
3111          */
3112         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3113         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3114                 if (old_folio) {
3115                         if (!folio_test_anon(old_folio)) {
3116                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3117                                 inc_mm_counter(mm, MM_ANONPAGES);
3118                         }
3119                 } else {
3120                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3121                         inc_mm_counter(mm, MM_ANONPAGES);
3122                 }
3123                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3124                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3125                 entry = pte_sw_mkyoung(entry);
3126                 if (unlikely(unshare)) {
3127                         if (pte_soft_dirty(vmf->orig_pte))
3128                                 entry = pte_mksoft_dirty(entry);
3129                         if (pte_uffd_wp(vmf->orig_pte))
3130                                 entry = pte_mkuffd_wp(entry);
3131                 } else {
3132                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3133                 }
3134
3135                 /*
3136                  * Clear the pte entry and flush it first, before updating the
3137                  * pte with the new entry, to keep TLBs on different CPUs in
3138                  * sync. This code used to set the new PTE then flush TLBs, but
3139                  * that left a window where the new PTE could be loaded into
3140                  * some TLBs while the old PTE remains in others.
3141                  */
3142                 ptep_clear_flush(vma, vmf->address, vmf->pte);
3143                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3144                 folio_add_lru_vma(new_folio, vma);
3145                 /*
3146                  * We call the notify macro here because, when using secondary
3147                  * mmu page tables (such as kvm shadow page tables), we want the
3148                  * new page to be mapped directly into the secondary page table.
3149                  */
3150                 BUG_ON(unshare && pte_write(entry));
3151                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3152                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3153                 if (old_folio) {
3154                         /*
3155                          * Only after switching the pte to the new page may
3156                          * we remove the mapcount here. Otherwise another
3157                          * process may come and find the rmap count decremented
3158                          * before the pte is switched to the new page, and
3159                          * "reuse" the old page writing into it while our pte
3160                          * here still points into it and can be read by other
3161                          * threads.
3162                          *
3163                          * The critical issue is to order this
3164                          * page_remove_rmap with the ptp_clear_flush above.
3165                          * Those stores are ordered by (if nothing else,)
3166                          * the barrier present in the atomic_add_negative
3167                          * in page_remove_rmap.
3168                          *
3169                          * Then the TLB flush in ptep_clear_flush ensures that
3170                          * no process can access the old page before the
3171                          * decremented mapcount is visible. And the old page
3172                          * cannot be reused until after the decremented
3173                          * mapcount is visible. So transitively, TLBs to
3174                          * old page will be flushed before it can be reused.
3175                          */
3176                         page_remove_rmap(vmf->page, vma, false);
3177                 }
3178
3179                 /* Free the old page.. */
3180                 new_folio = old_folio;
3181                 page_copied = 1;
3182                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3183         } else if (vmf->pte) {
3184                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3185                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3186         }
3187
3188         mmu_notifier_invalidate_range_end(&range);
3189
3190         if (new_folio)
3191                 folio_put(new_folio);
3192         if (old_folio) {
3193                 if (page_copied)
3194                         free_swap_cache(&old_folio->page);
3195                 folio_put(old_folio);
3196         }
3197
3198         delayacct_wpcopy_end();
3199         return 0;
3200 oom_free_new:
3201         folio_put(new_folio);
3202 oom:
3203         if (old_folio)
3204                 folio_put(old_folio);
3205
3206         delayacct_wpcopy_end();
3207         return VM_FAULT_OOM;
3208 }
3209
3210 /**
3211  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3212  *                        writeable once the page is prepared
3213  *
3214  * @vmf: structure describing the fault
3215  *
3216  * This function handles all that is needed to finish a write page fault in a
3217  * shared mapping due to PTE being read-only once the mapped page is prepared.
3218  * It handles locking of PTE and modifying it.
3219  *
3220  * The function expects the page to be locked or other protection against
3221  * concurrent faults / writeback (such as DAX radix tree locks).
3222  *
3223  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3224  * we acquired PTE lock.
3225  */
3226 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3227 {
3228         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3229         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3230                                        &vmf->ptl);
3231         if (!vmf->pte)
3232                 return VM_FAULT_NOPAGE;
3233         /*
3234          * We might have raced with another page fault while we released the
3235          * pte_offset_map_lock.
3236          */
3237         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3238                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3239                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3240                 return VM_FAULT_NOPAGE;
3241         }
3242         wp_page_reuse(vmf);
3243         return 0;
3244 }
3245
3246 /*
3247  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3248  * mapping
3249  */
3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3251 {
3252         struct vm_area_struct *vma = vmf->vma;
3253
3254         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3255                 vm_fault_t ret;
3256
3257                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3258                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3259                         vma_end_read(vmf->vma);
3260                         return VM_FAULT_RETRY;
3261                 }
3262
3263                 vmf->flags |= FAULT_FLAG_MKWRITE;
3264                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3265                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3266                         return ret;
3267                 return finish_mkwrite_fault(vmf);
3268         }
3269         wp_page_reuse(vmf);
3270         return 0;
3271 }
3272
3273 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3274         __releases(vmf->ptl)
3275 {
3276         struct vm_area_struct *vma = vmf->vma;
3277         vm_fault_t ret = 0;
3278
3279         folio_get(folio);
3280
3281         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3282                 vm_fault_t tmp;
3283
3284                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3285                 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3286                         folio_put(folio);
3287                         vma_end_read(vmf->vma);
3288                         return VM_FAULT_RETRY;
3289                 }
3290
3291                 tmp = do_page_mkwrite(vmf, folio);
3292                 if (unlikely(!tmp || (tmp &
3293                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3294                         folio_put(folio);
3295                         return tmp;
3296                 }
3297                 tmp = finish_mkwrite_fault(vmf);
3298                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299                         folio_unlock(folio);
3300                         folio_put(folio);
3301                         return tmp;
3302                 }
3303         } else {
3304                 wp_page_reuse(vmf);
3305                 folio_lock(folio);
3306         }
3307         ret |= fault_dirty_shared_page(vmf);
3308         folio_put(folio);
3309
3310         return ret;
3311 }
3312
3313 /*
3314  * This routine handles present pages, when
3315  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3316  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3317  *   (FAULT_FLAG_UNSHARE)
3318  *
3319  * It is done by copying the page to a new address and decrementing the
3320  * shared-page counter for the old page.
3321  *
3322  * Note that this routine assumes that the protection checks have been
3323  * done by the caller (the low-level page fault routine in most cases).
3324  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3325  * done any necessary COW.
3326  *
3327  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3328  * though the page will change only once the write actually happens. This
3329  * avoids a few races, and potentially makes it more efficient.
3330  *
3331  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3332  * but allow concurrent faults), with pte both mapped and locked.
3333  * We return with mmap_lock still held, but pte unmapped and unlocked.
3334  */
3335 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3336         __releases(vmf->ptl)
3337 {
3338         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3339         struct vm_area_struct *vma = vmf->vma;
3340         struct folio *folio = NULL;
3341
3342         if (likely(!unshare)) {
3343                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3344                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3345                         return handle_userfault(vmf, VM_UFFD_WP);
3346                 }
3347
3348                 /*
3349                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3350                  * is flushed in this case before copying.
3351                  */
3352                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3353                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3354                         flush_tlb_page(vmf->vma, vmf->address);
3355         }
3356
3357         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3358
3359         if (vmf->page)
3360                 folio = page_folio(vmf->page);
3361
3362         /*
3363          * Shared mapping: we are guaranteed to have VM_WRITE and
3364          * FAULT_FLAG_WRITE set at this point.
3365          */
3366         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3367                 /*
3368                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3369                  * VM_PFNMAP VMA.
3370                  *
3371                  * We should not cow pages in a shared writeable mapping.
3372                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3373                  */
3374                 if (!vmf->page)
3375                         return wp_pfn_shared(vmf);
3376                 return wp_page_shared(vmf, folio);
3377         }
3378
3379         /*
3380          * Private mapping: create an exclusive anonymous page copy if reuse
3381          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3382          */
3383         if (folio && folio_test_anon(folio)) {
3384                 /*
3385                  * If the page is exclusive to this process we must reuse the
3386                  * page without further checks.
3387                  */
3388                 if (PageAnonExclusive(vmf->page))
3389                         goto reuse;
3390
3391                 /*
3392                  * We have to verify under folio lock: these early checks are
3393                  * just an optimization to avoid locking the folio and freeing
3394                  * the swapcache if there is little hope that we can reuse.
3395                  *
3396                  * KSM doesn't necessarily raise the folio refcount.
3397                  */
3398                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3399                         goto copy;
3400                 if (!folio_test_lru(folio))
3401                         /*
3402                          * We cannot easily detect+handle references from
3403                          * remote LRU caches or references to LRU folios.
3404                          */
3405                         lru_add_drain();
3406                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3407                         goto copy;
3408                 if (!folio_trylock(folio))
3409                         goto copy;
3410                 if (folio_test_swapcache(folio))
3411                         folio_free_swap(folio);
3412                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3413                         folio_unlock(folio);
3414                         goto copy;
3415                 }
3416                 /*
3417                  * Ok, we've got the only folio reference from our mapping
3418                  * and the folio is locked, it's dark out, and we're wearing
3419                  * sunglasses. Hit it.
3420                  */
3421                 page_move_anon_rmap(vmf->page, vma);
3422                 folio_unlock(folio);
3423 reuse:
3424                 if (unlikely(unshare)) {
3425                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3426                         return 0;
3427                 }
3428                 wp_page_reuse(vmf);
3429                 return 0;
3430         }
3431 copy:
3432         if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3433                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3434                 vma_end_read(vmf->vma);
3435                 return VM_FAULT_RETRY;
3436         }
3437
3438         /*
3439          * Ok, we need to copy. Oh, well..
3440          */
3441         if (folio)
3442                 folio_get(folio);
3443
3444         pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 #ifdef CONFIG_KSM
3446         if (folio && folio_test_ksm(folio))
3447                 count_vm_event(COW_KSM);
3448 #endif
3449         return wp_page_copy(vmf);
3450 }
3451
3452 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3453                 unsigned long start_addr, unsigned long end_addr,
3454                 struct zap_details *details)
3455 {
3456         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3457 }
3458
3459 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3460                                             pgoff_t first_index,
3461                                             pgoff_t last_index,
3462                                             struct zap_details *details)
3463 {
3464         struct vm_area_struct *vma;
3465         pgoff_t vba, vea, zba, zea;
3466
3467         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3468                 vba = vma->vm_pgoff;
3469                 vea = vba + vma_pages(vma) - 1;
3470                 zba = max(first_index, vba);
3471                 zea = min(last_index, vea);
3472
3473                 unmap_mapping_range_vma(vma,
3474                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3475                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3476                                 details);
3477         }
3478 }
3479
3480 /**
3481  * unmap_mapping_folio() - Unmap single folio from processes.
3482  * @folio: The locked folio to be unmapped.
3483  *
3484  * Unmap this folio from any userspace process which still has it mmaped.
3485  * Typically, for efficiency, the range of nearby pages has already been
3486  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3487  * truncation or invalidation holds the lock on a folio, it may find that
3488  * the page has been remapped again: and then uses unmap_mapping_folio()
3489  * to unmap it finally.
3490  */
3491 void unmap_mapping_folio(struct folio *folio)
3492 {
3493         struct address_space *mapping = folio->mapping;
3494         struct zap_details details = { };
3495         pgoff_t first_index;
3496         pgoff_t last_index;
3497
3498         VM_BUG_ON(!folio_test_locked(folio));
3499
3500         first_index = folio->index;
3501         last_index = folio_next_index(folio) - 1;
3502
3503         details.even_cows = false;
3504         details.single_folio = folio;
3505         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3506
3507         i_mmap_lock_read(mapping);
3508         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3509                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3510                                          last_index, &details);
3511         i_mmap_unlock_read(mapping);
3512 }
3513
3514 /**
3515  * unmap_mapping_pages() - Unmap pages from processes.
3516  * @mapping: The address space containing pages to be unmapped.
3517  * @start: Index of first page to be unmapped.
3518  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3519  * @even_cows: Whether to unmap even private COWed pages.
3520  *
3521  * Unmap the pages in this address space from any userspace process which
3522  * has them mmaped.  Generally, you want to remove COWed pages as well when
3523  * a file is being truncated, but not when invalidating pages from the page
3524  * cache.
3525  */
3526 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3527                 pgoff_t nr, bool even_cows)
3528 {
3529         struct zap_details details = { };
3530         pgoff_t first_index = start;
3531         pgoff_t last_index = start + nr - 1;
3532
3533         details.even_cows = even_cows;
3534         if (last_index < first_index)
3535                 last_index = ULONG_MAX;
3536
3537         i_mmap_lock_read(mapping);
3538         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3539                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540                                          last_index, &details);
3541         i_mmap_unlock_read(mapping);
3542 }
3543 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3544
3545 /**
3546  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3547  * address_space corresponding to the specified byte range in the underlying
3548  * file.
3549  *
3550  * @mapping: the address space containing mmaps to be unmapped.
3551  * @holebegin: byte in first page to unmap, relative to the start of
3552  * the underlying file.  This will be rounded down to a PAGE_SIZE
3553  * boundary.  Note that this is different from truncate_pagecache(), which
3554  * must keep the partial page.  In contrast, we must get rid of
3555  * partial pages.
3556  * @holelen: size of prospective hole in bytes.  This will be rounded
3557  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3558  * end of the file.
3559  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3560  * but 0 when invalidating pagecache, don't throw away private data.
3561  */
3562 void unmap_mapping_range(struct address_space *mapping,
3563                 loff_t const holebegin, loff_t const holelen, int even_cows)
3564 {
3565         pgoff_t hba = holebegin >> PAGE_SHIFT;
3566         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3567
3568         /* Check for overflow. */
3569         if (sizeof(holelen) > sizeof(hlen)) {
3570                 long long holeend =
3571                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3572                 if (holeend & ~(long long)ULONG_MAX)
3573                         hlen = ULONG_MAX - hba + 1;
3574         }
3575
3576         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3577 }
3578 EXPORT_SYMBOL(unmap_mapping_range);
3579
3580 /*
3581  * Restore a potential device exclusive pte to a working pte entry
3582  */
3583 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3584 {
3585         struct folio *folio = page_folio(vmf->page);
3586         struct vm_area_struct *vma = vmf->vma;
3587         struct mmu_notifier_range range;
3588         vm_fault_t ret;
3589
3590         /*
3591          * We need a reference to lock the folio because we don't hold
3592          * the PTL so a racing thread can remove the device-exclusive
3593          * entry and unmap it. If the folio is free the entry must
3594          * have been removed already. If it happens to have already
3595          * been re-allocated after being freed all we do is lock and
3596          * unlock it.
3597          */
3598         if (!folio_try_get(folio))
3599                 return 0;
3600
3601         ret = folio_lock_or_retry(folio, vmf);
3602         if (ret) {
3603                 folio_put(folio);
3604                 return ret;
3605         }
3606         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3607                                 vma->vm_mm, vmf->address & PAGE_MASK,
3608                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3609         mmu_notifier_invalidate_range_start(&range);
3610
3611         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3612                                 &vmf->ptl);
3613         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3614                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3615
3616         if (vmf->pte)
3617                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3618         folio_unlock(folio);
3619         folio_put(folio);
3620
3621         mmu_notifier_invalidate_range_end(&range);
3622         return 0;
3623 }
3624
3625 static inline bool should_try_to_free_swap(struct folio *folio,
3626                                            struct vm_area_struct *vma,
3627                                            unsigned int fault_flags)
3628 {
3629         if (!folio_test_swapcache(folio))
3630                 return false;
3631         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3632             folio_test_mlocked(folio))
3633                 return true;
3634         /*
3635          * If we want to map a page that's in the swapcache writable, we
3636          * have to detect via the refcount if we're really the exclusive
3637          * user. Try freeing the swapcache to get rid of the swapcache
3638          * reference only in case it's likely that we'll be the exlusive user.
3639          */
3640         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3641                 folio_ref_count(folio) == 2;
3642 }
3643
3644 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3645 {
3646         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3647                                        vmf->address, &vmf->ptl);
3648         if (!vmf->pte)
3649                 return 0;
3650         /*
3651          * Be careful so that we will only recover a special uffd-wp pte into a
3652          * none pte.  Otherwise it means the pte could have changed, so retry.
3653          *
3654          * This should also cover the case where e.g. the pte changed
3655          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3656          * So is_pte_marker() check is not enough to safely drop the pte.
3657          */
3658         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3659                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3660         pte_unmap_unlock(vmf->pte, vmf->ptl);
3661         return 0;
3662 }
3663
3664 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3665 {
3666         if (vma_is_anonymous(vmf->vma))
3667                 return do_anonymous_page(vmf);
3668         else
3669                 return do_fault(vmf);
3670 }
3671
3672 /*
3673  * This is actually a page-missing access, but with uffd-wp special pte
3674  * installed.  It means this pte was wr-protected before being unmapped.
3675  */
3676 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3677 {
3678         /*
3679          * Just in case there're leftover special ptes even after the region
3680          * got unregistered - we can simply clear them.
3681          */
3682         if (unlikely(!userfaultfd_wp(vmf->vma)))
3683                 return pte_marker_clear(vmf);
3684
3685         return do_pte_missing(vmf);
3686 }
3687
3688 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3689 {
3690         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3691         unsigned long marker = pte_marker_get(entry);
3692
3693         /*
3694          * PTE markers should never be empty.  If anything weird happened,
3695          * the best thing to do is to kill the process along with its mm.
3696          */
3697         if (WARN_ON_ONCE(!marker))
3698                 return VM_FAULT_SIGBUS;
3699
3700         /* Higher priority than uffd-wp when data corrupted */
3701         if (marker & PTE_MARKER_POISONED)
3702                 return VM_FAULT_HWPOISON;
3703
3704         if (pte_marker_entry_uffd_wp(entry))
3705                 return pte_marker_handle_uffd_wp(vmf);
3706
3707         /* This is an unknown pte marker */
3708         return VM_FAULT_SIGBUS;
3709 }
3710
3711 /*
3712  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3713  * but allow concurrent faults), and pte mapped but not yet locked.
3714  * We return with pte unmapped and unlocked.
3715  *
3716  * We return with the mmap_lock locked or unlocked in the same cases
3717  * as does filemap_fault().
3718  */
3719 vm_fault_t do_swap_page(struct vm_fault *vmf)
3720 {
3721         struct vm_area_struct *vma = vmf->vma;
3722         struct folio *swapcache, *folio = NULL;
3723         struct page *page;
3724         struct swap_info_struct *si = NULL;
3725         rmap_t rmap_flags = RMAP_NONE;
3726         bool exclusive = false;
3727         swp_entry_t entry;
3728         pte_t pte;
3729         vm_fault_t ret = 0;
3730         void *shadow = NULL;
3731
3732         if (!pte_unmap_same(vmf))
3733                 goto out;
3734
3735         entry = pte_to_swp_entry(vmf->orig_pte);
3736         if (unlikely(non_swap_entry(entry))) {
3737                 if (is_migration_entry(entry)) {
3738                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3739                                              vmf->address);
3740                 } else if (is_device_exclusive_entry(entry)) {
3741                         vmf->page = pfn_swap_entry_to_page(entry);
3742                         ret = remove_device_exclusive_entry(vmf);
3743                 } else if (is_device_private_entry(entry)) {
3744                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3745                                 /*
3746                                  * migrate_to_ram is not yet ready to operate
3747                                  * under VMA lock.
3748                                  */
3749                                 vma_end_read(vma);
3750                                 ret = VM_FAULT_RETRY;
3751                                 goto out;
3752                         }
3753
3754                         vmf->page = pfn_swap_entry_to_page(entry);
3755                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3756                                         vmf->address, &vmf->ptl);
3757                         if (unlikely(!vmf->pte ||
3758                                      !pte_same(ptep_get(vmf->pte),
3759                                                         vmf->orig_pte)))
3760                                 goto unlock;
3761
3762                         /*
3763                          * Get a page reference while we know the page can't be
3764                          * freed.
3765                          */
3766                         get_page(vmf->page);
3767                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3768                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3769                         put_page(vmf->page);
3770                 } else if (is_hwpoison_entry(entry)) {
3771                         ret = VM_FAULT_HWPOISON;
3772                 } else if (is_pte_marker_entry(entry)) {
3773                         ret = handle_pte_marker(vmf);
3774                 } else {
3775                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3776                         ret = VM_FAULT_SIGBUS;
3777                 }
3778                 goto out;
3779         }
3780
3781         /* Prevent swapoff from happening to us. */
3782         si = get_swap_device(entry);
3783         if (unlikely(!si))
3784                 goto out;
3785
3786         folio = swap_cache_get_folio(entry, vma, vmf->address);
3787         if (folio)
3788                 page = folio_file_page(folio, swp_offset(entry));
3789         swapcache = folio;
3790
3791         if (!folio) {
3792                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3793                     __swap_count(entry) == 1) {
3794                         /* skip swapcache */
3795                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3796                                                 vma, vmf->address, false);
3797                         page = &folio->page;
3798                         if (folio) {
3799                                 __folio_set_locked(folio);
3800                                 __folio_set_swapbacked(folio);
3801
3802                                 if (mem_cgroup_swapin_charge_folio(folio,
3803                                                         vma->vm_mm, GFP_KERNEL,
3804                                                         entry)) {
3805                                         ret = VM_FAULT_OOM;
3806                                         goto out_page;
3807                                 }
3808                                 mem_cgroup_swapin_uncharge_swap(entry);
3809
3810                                 shadow = get_shadow_from_swap_cache(entry);
3811                                 if (shadow)
3812                                         workingset_refault(folio, shadow);
3813
3814                                 folio_add_lru(folio);
3815
3816                                 /* To provide entry to swap_readpage() */
3817                                 folio->swap = entry;
3818                                 swap_readpage(page, true, NULL);
3819                                 folio->private = NULL;
3820                         }
3821                 } else {
3822                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3823                                                 vmf);
3824                         if (page)
3825                                 folio = page_folio(page);
3826                         swapcache = folio;
3827                 }
3828
3829                 if (!folio) {
3830                         /*
3831                          * Back out if somebody else faulted in this pte
3832                          * while we released the pte lock.
3833                          */
3834                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3835                                         vmf->address, &vmf->ptl);
3836                         if (likely(vmf->pte &&
3837                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3838                                 ret = VM_FAULT_OOM;
3839                         goto unlock;
3840                 }
3841
3842                 /* Had to read the page from swap area: Major fault */
3843                 ret = VM_FAULT_MAJOR;
3844                 count_vm_event(PGMAJFAULT);
3845                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3846         } else if (PageHWPoison(page)) {
3847                 /*
3848                  * hwpoisoned dirty swapcache pages are kept for killing
3849                  * owner processes (which may be unknown at hwpoison time)
3850                  */
3851                 ret = VM_FAULT_HWPOISON;
3852                 goto out_release;
3853         }
3854
3855         ret |= folio_lock_or_retry(folio, vmf);
3856         if (ret & VM_FAULT_RETRY)
3857                 goto out_release;
3858
3859         if (swapcache) {
3860                 /*
3861                  * Make sure folio_free_swap() or swapoff did not release the
3862                  * swapcache from under us.  The page pin, and pte_same test
3863                  * below, are not enough to exclude that.  Even if it is still
3864                  * swapcache, we need to check that the page's swap has not
3865                  * changed.
3866                  */
3867                 if (unlikely(!folio_test_swapcache(folio) ||
3868                              page_swap_entry(page).val != entry.val))
3869                         goto out_page;
3870
3871                 /*
3872                  * KSM sometimes has to copy on read faults, for example, if
3873                  * page->index of !PageKSM() pages would be nonlinear inside the
3874                  * anon VMA -- PageKSM() is lost on actual swapout.
3875                  */
3876                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3877                 if (unlikely(!page)) {
3878                         ret = VM_FAULT_OOM;
3879                         goto out_page;
3880                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3881                         ret = VM_FAULT_HWPOISON;
3882                         goto out_page;
3883                 }
3884                 folio = page_folio(page);
3885
3886                 /*
3887                  * If we want to map a page that's in the swapcache writable, we
3888                  * have to detect via the refcount if we're really the exclusive
3889                  * owner. Try removing the extra reference from the local LRU
3890                  * caches if required.
3891                  */
3892                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3893                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3894                         lru_add_drain();
3895         }
3896
3897         folio_throttle_swaprate(folio, GFP_KERNEL);
3898
3899         /*
3900          * Back out if somebody else already faulted in this pte.
3901          */
3902         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3903                         &vmf->ptl);
3904         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3905                 goto out_nomap;
3906
3907         if (unlikely(!folio_test_uptodate(folio))) {
3908                 ret = VM_FAULT_SIGBUS;
3909                 goto out_nomap;
3910         }
3911
3912         /*
3913          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3914          * must never point at an anonymous page in the swapcache that is
3915          * PG_anon_exclusive. Sanity check that this holds and especially, that
3916          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3917          * check after taking the PT lock and making sure that nobody
3918          * concurrently faulted in this page and set PG_anon_exclusive.
3919          */
3920         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3921         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3922
3923         /*
3924          * Check under PT lock (to protect against concurrent fork() sharing
3925          * the swap entry concurrently) for certainly exclusive pages.
3926          */
3927         if (!folio_test_ksm(folio)) {
3928                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3929                 if (folio != swapcache) {
3930                         /*
3931                          * We have a fresh page that is not exposed to the
3932                          * swapcache -> certainly exclusive.
3933                          */
3934                         exclusive = true;
3935                 } else if (exclusive && folio_test_writeback(folio) &&
3936                           data_race(si->flags & SWP_STABLE_WRITES)) {
3937                         /*
3938                          * This is tricky: not all swap backends support
3939                          * concurrent page modifications while under writeback.
3940                          *
3941                          * So if we stumble over such a page in the swapcache
3942                          * we must not set the page exclusive, otherwise we can
3943                          * map it writable without further checks and modify it
3944                          * while still under writeback.
3945                          *
3946                          * For these problematic swap backends, simply drop the
3947                          * exclusive marker: this is perfectly fine as we start
3948                          * writeback only if we fully unmapped the page and
3949                          * there are no unexpected references on the page after
3950                          * unmapping succeeded. After fully unmapped, no
3951                          * further GUP references (FOLL_GET and FOLL_PIN) can
3952                          * appear, so dropping the exclusive marker and mapping
3953                          * it only R/O is fine.
3954                          */
3955                         exclusive = false;
3956                 }
3957         }
3958
3959         /*
3960          * Some architectures may have to restore extra metadata to the page
3961          * when reading from swap. This metadata may be indexed by swap entry
3962          * so this must be called before swap_free().
3963          */
3964         arch_swap_restore(entry, folio);
3965
3966         /*
3967          * Remove the swap entry and conditionally try to free up the swapcache.
3968          * We're already holding a reference on the page but haven't mapped it
3969          * yet.
3970          */
3971         swap_free(entry);
3972         if (should_try_to_free_swap(folio, vma, vmf->flags))
3973                 folio_free_swap(folio);
3974
3975         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3976         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3977         pte = mk_pte(page, vma->vm_page_prot);
3978
3979         /*
3980          * Same logic as in do_wp_page(); however, optimize for pages that are
3981          * certainly not shared either because we just allocated them without
3982          * exposing them to the swapcache or because the swap entry indicates
3983          * exclusivity.
3984          */
3985         if (!folio_test_ksm(folio) &&
3986             (exclusive || folio_ref_count(folio) == 1)) {
3987                 if (vmf->flags & FAULT_FLAG_WRITE) {
3988                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3989                         vmf->flags &= ~FAULT_FLAG_WRITE;
3990                 }
3991                 rmap_flags |= RMAP_EXCLUSIVE;
3992         }
3993         flush_icache_page(vma, page);
3994         if (pte_swp_soft_dirty(vmf->orig_pte))
3995                 pte = pte_mksoft_dirty(pte);
3996         if (pte_swp_uffd_wp(vmf->orig_pte))
3997                 pte = pte_mkuffd_wp(pte);
3998         vmf->orig_pte = pte;
3999
4000         /* ksm created a completely new copy */
4001         if (unlikely(folio != swapcache && swapcache)) {
4002                 page_add_new_anon_rmap(page, vma, vmf->address);
4003                 folio_add_lru_vma(folio, vma);
4004         } else {
4005                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4006         }
4007
4008         VM_BUG_ON(!folio_test_anon(folio) ||
4009                         (pte_write(pte) && !PageAnonExclusive(page)));
4010         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4011         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4012
4013         folio_unlock(folio);
4014         if (folio != swapcache && swapcache) {
4015                 /*
4016                  * Hold the lock to avoid the swap entry to be reused
4017                  * until we take the PT lock for the pte_same() check
4018                  * (to avoid false positives from pte_same). For
4019                  * further safety release the lock after the swap_free
4020                  * so that the swap count won't change under a
4021                  * parallel locked swapcache.
4022                  */
4023                 folio_unlock(swapcache);
4024                 folio_put(swapcache);
4025         }
4026
4027         if (vmf->flags & FAULT_FLAG_WRITE) {
4028                 ret |= do_wp_page(vmf);
4029                 if (ret & VM_FAULT_ERROR)
4030                         ret &= VM_FAULT_ERROR;
4031                 goto out;
4032         }
4033
4034         /* No need to invalidate - it was non-present before */
4035         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4036 unlock:
4037         if (vmf->pte)
4038                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4039 out:
4040         if (si)
4041                 put_swap_device(si);
4042         return ret;
4043 out_nomap:
4044         if (vmf->pte)
4045                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4046 out_page:
4047         folio_unlock(folio);
4048 out_release:
4049         folio_put(folio);
4050         if (folio != swapcache && swapcache) {
4051                 folio_unlock(swapcache);
4052                 folio_put(swapcache);
4053         }
4054         if (si)
4055                 put_swap_device(si);
4056         return ret;
4057 }
4058
4059 /*
4060  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4061  * but allow concurrent faults), and pte mapped but not yet locked.
4062  * We return with mmap_lock still held, but pte unmapped and unlocked.
4063  */
4064 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4065 {
4066         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4067         struct vm_area_struct *vma = vmf->vma;
4068         struct folio *folio;
4069         vm_fault_t ret = 0;
4070         pte_t entry;
4071
4072         /* File mapping without ->vm_ops ? */
4073         if (vma->vm_flags & VM_SHARED)
4074                 return VM_FAULT_SIGBUS;
4075
4076         /*
4077          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4078          * be distinguished from a transient failure of pte_offset_map().
4079          */
4080         if (pte_alloc(vma->vm_mm, vmf->pmd))
4081                 return VM_FAULT_OOM;
4082
4083         /* Use the zero-page for reads */
4084         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4085                         !mm_forbids_zeropage(vma->vm_mm)) {
4086                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4087                                                 vma->vm_page_prot));
4088                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4089                                 vmf->address, &vmf->ptl);
4090                 if (!vmf->pte)
4091                         goto unlock;
4092                 if (vmf_pte_changed(vmf)) {
4093                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4094                         goto unlock;
4095                 }
4096                 ret = check_stable_address_space(vma->vm_mm);
4097                 if (ret)
4098                         goto unlock;
4099                 /* Deliver the page fault to userland, check inside PT lock */
4100                 if (userfaultfd_missing(vma)) {
4101                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4102                         return handle_userfault(vmf, VM_UFFD_MISSING);
4103                 }
4104                 goto setpte;
4105         }
4106
4107         /* Allocate our own private page. */
4108         if (unlikely(anon_vma_prepare(vma)))
4109                 goto oom;
4110         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4111         if (!folio)
4112                 goto oom;
4113
4114         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4115                 goto oom_free_page;
4116         folio_throttle_swaprate(folio, GFP_KERNEL);
4117
4118         /*
4119          * The memory barrier inside __folio_mark_uptodate makes sure that
4120          * preceding stores to the page contents become visible before
4121          * the set_pte_at() write.
4122          */
4123         __folio_mark_uptodate(folio);
4124
4125         entry = mk_pte(&folio->page, vma->vm_page_prot);
4126         entry = pte_sw_mkyoung(entry);
4127         if (vma->vm_flags & VM_WRITE)
4128                 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4129
4130         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4131                         &vmf->ptl);
4132         if (!vmf->pte)
4133                 goto release;
4134         if (vmf_pte_changed(vmf)) {
4135                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4136                 goto release;
4137         }
4138
4139         ret = check_stable_address_space(vma->vm_mm);
4140         if (ret)
4141                 goto release;
4142
4143         /* Deliver the page fault to userland, check inside PT lock */
4144         if (userfaultfd_missing(vma)) {
4145                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4146                 folio_put(folio);
4147                 return handle_userfault(vmf, VM_UFFD_MISSING);
4148         }
4149
4150         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4151         folio_add_new_anon_rmap(folio, vma, vmf->address);
4152         folio_add_lru_vma(folio, vma);
4153 setpte:
4154         if (uffd_wp)
4155                 entry = pte_mkuffd_wp(entry);
4156         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4157
4158         /* No need to invalidate - it was non-present before */
4159         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4160 unlock:
4161         if (vmf->pte)
4162                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4163         return ret;
4164 release:
4165         folio_put(folio);
4166         goto unlock;
4167 oom_free_page:
4168         folio_put(folio);
4169 oom:
4170         return VM_FAULT_OOM;
4171 }
4172
4173 /*
4174  * The mmap_lock must have been held on entry, and may have been
4175  * released depending on flags and vma->vm_ops->fault() return value.
4176  * See filemap_fault() and __lock_page_retry().
4177  */
4178 static vm_fault_t __do_fault(struct vm_fault *vmf)
4179 {
4180         struct vm_area_struct *vma = vmf->vma;
4181         vm_fault_t ret;
4182
4183         /*
4184          * Preallocate pte before we take page_lock because this might lead to
4185          * deadlocks for memcg reclaim which waits for pages under writeback:
4186          *                              lock_page(A)
4187          *                              SetPageWriteback(A)
4188          *                              unlock_page(A)
4189          * lock_page(B)
4190          *                              lock_page(B)
4191          * pte_alloc_one
4192          *   shrink_page_list
4193          *     wait_on_page_writeback(A)
4194          *                              SetPageWriteback(B)
4195          *                              unlock_page(B)
4196          *                              # flush A, B to clear the writeback
4197          */
4198         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4199                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4200                 if (!vmf->prealloc_pte)
4201                         return VM_FAULT_OOM;
4202         }
4203
4204         ret = vma->vm_ops->fault(vmf);
4205         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4206                             VM_FAULT_DONE_COW)))
4207                 return ret;
4208
4209         if (unlikely(PageHWPoison(vmf->page))) {
4210                 struct page *page = vmf->page;
4211                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4212                 if (ret & VM_FAULT_LOCKED) {
4213                         if (page_mapped(page))
4214                                 unmap_mapping_pages(page_mapping(page),
4215                                                     page->index, 1, false);
4216                         /* Retry if a clean page was removed from the cache. */
4217                         if (invalidate_inode_page(page))
4218                                 poisonret = VM_FAULT_NOPAGE;
4219                         unlock_page(page);
4220                 }
4221                 put_page(page);
4222                 vmf->page = NULL;
4223                 return poisonret;
4224         }
4225
4226         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4227                 lock_page(vmf->page);
4228         else
4229                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4230
4231         return ret;
4232 }
4233
4234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4235 static void deposit_prealloc_pte(struct vm_fault *vmf)
4236 {
4237         struct vm_area_struct *vma = vmf->vma;
4238
4239         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4240         /*
4241          * We are going to consume the prealloc table,
4242          * count that as nr_ptes.
4243          */
4244         mm_inc_nr_ptes(vma->vm_mm);
4245         vmf->prealloc_pte = NULL;
4246 }
4247
4248 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4249 {
4250         struct vm_area_struct *vma = vmf->vma;
4251         bool write = vmf->flags & FAULT_FLAG_WRITE;
4252         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4253         pmd_t entry;
4254         vm_fault_t ret = VM_FAULT_FALLBACK;
4255
4256         if (!transhuge_vma_suitable(vma, haddr))
4257                 return ret;
4258
4259         page = compound_head(page);
4260         if (compound_order(page) != HPAGE_PMD_ORDER)
4261                 return ret;
4262
4263         /*
4264          * Just backoff if any subpage of a THP is corrupted otherwise
4265          * the corrupted page may mapped by PMD silently to escape the
4266          * check.  This kind of THP just can be PTE mapped.  Access to
4267          * the corrupted subpage should trigger SIGBUS as expected.
4268          */
4269         if (unlikely(PageHasHWPoisoned(page)))
4270                 return ret;
4271
4272         /*
4273          * Archs like ppc64 need additional space to store information
4274          * related to pte entry. Use the preallocated table for that.
4275          */
4276         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4277                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4278                 if (!vmf->prealloc_pte)
4279                         return VM_FAULT_OOM;
4280         }
4281
4282         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4283         if (unlikely(!pmd_none(*vmf->pmd)))
4284                 goto out;
4285
4286         flush_icache_pages(vma, page, HPAGE_PMD_NR);
4287
4288         entry = mk_huge_pmd(page, vma->vm_page_prot);
4289         if (write)
4290                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4291
4292         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4293         page_add_file_rmap(page, vma, true);
4294
4295         /*
4296          * deposit and withdraw with pmd lock held
4297          */
4298         if (arch_needs_pgtable_deposit())
4299                 deposit_prealloc_pte(vmf);
4300
4301         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4302
4303         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4304
4305         /* fault is handled */
4306         ret = 0;
4307         count_vm_event(THP_FILE_MAPPED);
4308 out:
4309         spin_unlock(vmf->ptl);
4310         return ret;
4311 }
4312 #else
4313 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4314 {
4315         return VM_FAULT_FALLBACK;
4316 }
4317 #endif
4318
4319 /**
4320  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4321  * @vmf: Fault decription.
4322  * @folio: The folio that contains @page.
4323  * @page: The first page to create a PTE for.
4324  * @nr: The number of PTEs to create.
4325  * @addr: The first address to create a PTE for.
4326  */
4327 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4328                 struct page *page, unsigned int nr, unsigned long addr)
4329 {
4330         struct vm_area_struct *vma = vmf->vma;
4331         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4332         bool write = vmf->flags & FAULT_FLAG_WRITE;
4333         bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4334         pte_t entry;
4335
4336         flush_icache_pages(vma, page, nr);
4337         entry = mk_pte(page, vma->vm_page_prot);
4338
4339         if (prefault && arch_wants_old_prefaulted_pte())
4340                 entry = pte_mkold(entry);
4341         else
4342                 entry = pte_sw_mkyoung(entry);
4343
4344         if (write)
4345                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4346         if (unlikely(uffd_wp))
4347                 entry = pte_mkuffd_wp(entry);
4348         /* copy-on-write page */
4349         if (write && !(vma->vm_flags & VM_SHARED)) {
4350                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4351                 VM_BUG_ON_FOLIO(nr != 1, folio);
4352                 folio_add_new_anon_rmap(folio, vma, addr);
4353                 folio_add_lru_vma(folio, vma);
4354         } else {
4355                 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4356                 folio_add_file_rmap_range(folio, page, nr, vma, false);
4357         }
4358         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4359
4360         /* no need to invalidate: a not-present page won't be cached */
4361         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4362 }
4363
4364 static bool vmf_pte_changed(struct vm_fault *vmf)
4365 {
4366         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4367                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4368
4369         return !pte_none(ptep_get(vmf->pte));
4370 }
4371
4372 /**
4373  * finish_fault - finish page fault once we have prepared the page to fault
4374  *
4375  * @vmf: structure describing the fault
4376  *
4377  * This function handles all that is needed to finish a page fault once the
4378  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4379  * given page, adds reverse page mapping, handles memcg charges and LRU
4380  * addition.
4381  *
4382  * The function expects the page to be locked and on success it consumes a
4383  * reference of a page being mapped (for the PTE which maps it).
4384  *
4385  * Return: %0 on success, %VM_FAULT_ code in case of error.
4386  */
4387 vm_fault_t finish_fault(struct vm_fault *vmf)
4388 {
4389         struct vm_area_struct *vma = vmf->vma;
4390         struct page *page;
4391         vm_fault_t ret;
4392
4393         /* Did we COW the page? */
4394         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4395                 page = vmf->cow_page;
4396         else
4397                 page = vmf->page;
4398
4399         /*
4400          * check even for read faults because we might have lost our CoWed
4401          * page
4402          */
4403         if (!(vma->vm_flags & VM_SHARED)) {
4404                 ret = check_stable_address_space(vma->vm_mm);
4405                 if (ret)
4406                         return ret;
4407         }
4408
4409         if (pmd_none(*vmf->pmd)) {
4410                 if (PageTransCompound(page)) {
4411                         ret = do_set_pmd(vmf, page);
4412                         if (ret != VM_FAULT_FALLBACK)
4413                                 return ret;
4414                 }
4415
4416                 if (vmf->prealloc_pte)
4417                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4418                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4419                         return VM_FAULT_OOM;
4420         }
4421
4422         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4423                                       vmf->address, &vmf->ptl);
4424         if (!vmf->pte)
4425                 return VM_FAULT_NOPAGE;
4426
4427         /* Re-check under ptl */
4428         if (likely(!vmf_pte_changed(vmf))) {
4429                 struct folio *folio = page_folio(page);
4430
4431                 set_pte_range(vmf, folio, page, 1, vmf->address);
4432                 ret = 0;
4433         } else {
4434                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4435                 ret = VM_FAULT_NOPAGE;
4436         }
4437
4438         pte_unmap_unlock(vmf->pte, vmf->ptl);
4439         return ret;
4440 }
4441
4442 static unsigned long fault_around_pages __read_mostly =
4443         65536 >> PAGE_SHIFT;
4444
4445 #ifdef CONFIG_DEBUG_FS
4446 static int fault_around_bytes_get(void *data, u64 *val)
4447 {
4448         *val = fault_around_pages << PAGE_SHIFT;
4449         return 0;
4450 }
4451
4452 /*
4453  * fault_around_bytes must be rounded down to the nearest page order as it's
4454  * what do_fault_around() expects to see.
4455  */
4456 static int fault_around_bytes_set(void *data, u64 val)
4457 {
4458         if (val / PAGE_SIZE > PTRS_PER_PTE)
4459                 return -EINVAL;
4460
4461         /*
4462          * The minimum value is 1 page, however this results in no fault-around
4463          * at all. See should_fault_around().
4464          */
4465         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4466
4467         return 0;
4468 }
4469 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4470                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4471
4472 static int __init fault_around_debugfs(void)
4473 {
4474         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4475                                    &fault_around_bytes_fops);
4476         return 0;
4477 }
4478 late_initcall(fault_around_debugfs);
4479 #endif
4480
4481 /*
4482  * do_fault_around() tries to map few pages around the fault address. The hope
4483  * is that the pages will be needed soon and this will lower the number of
4484  * faults to handle.
4485  *
4486  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4487  * not ready to be mapped: not up-to-date, locked, etc.
4488  *
4489  * This function doesn't cross VMA or page table boundaries, in order to call
4490  * map_pages() and acquire a PTE lock only once.
4491  *
4492  * fault_around_pages defines how many pages we'll try to map.
4493  * do_fault_around() expects it to be set to a power of two less than or equal
4494  * to PTRS_PER_PTE.
4495  *
4496  * The virtual address of the area that we map is naturally aligned to
4497  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4498  * (and therefore to page order).  This way it's easier to guarantee
4499  * that we don't cross page table boundaries.
4500  */
4501 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4502 {
4503         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4504         pgoff_t pte_off = pte_index(vmf->address);
4505         /* The page offset of vmf->address within the VMA. */
4506         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4507         pgoff_t from_pte, to_pte;
4508         vm_fault_t ret;
4509
4510         /* The PTE offset of the start address, clamped to the VMA. */
4511         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4512                        pte_off - min(pte_off, vma_off));
4513
4514         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4515         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4516                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4517
4518         if (pmd_none(*vmf->pmd)) {
4519                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4520                 if (!vmf->prealloc_pte)
4521                         return VM_FAULT_OOM;
4522         }
4523
4524         rcu_read_lock();
4525         ret = vmf->vma->vm_ops->map_pages(vmf,
4526                         vmf->pgoff + from_pte - pte_off,
4527                         vmf->pgoff + to_pte - pte_off);
4528         rcu_read_unlock();
4529
4530         return ret;
4531 }
4532
4533 /* Return true if we should do read fault-around, false otherwise */
4534 static inline bool should_fault_around(struct vm_fault *vmf)
4535 {
4536         /* No ->map_pages?  No way to fault around... */
4537         if (!vmf->vma->vm_ops->map_pages)
4538                 return false;
4539
4540         if (uffd_disable_fault_around(vmf->vma))
4541                 return false;
4542
4543         /* A single page implies no faulting 'around' at all. */
4544         return fault_around_pages > 1;
4545 }
4546
4547 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4548 {
4549         vm_fault_t ret = 0;
4550         struct folio *folio;
4551
4552         /*
4553          * Let's call ->map_pages() first and use ->fault() as fallback
4554          * if page by the offset is not ready to be mapped (cold cache or
4555          * something).
4556          */
4557         if (should_fault_around(vmf)) {
4558                 ret = do_fault_around(vmf);
4559                 if (ret)
4560                         return ret;
4561         }
4562
4563         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4564                 vma_end_read(vmf->vma);
4565                 return VM_FAULT_RETRY;
4566         }
4567
4568         ret = __do_fault(vmf);
4569         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4570                 return ret;
4571
4572         ret |= finish_fault(vmf);
4573         folio = page_folio(vmf->page);
4574         folio_unlock(folio);
4575         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4576                 folio_put(folio);
4577         return ret;
4578 }
4579
4580 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4581 {
4582         struct vm_area_struct *vma = vmf->vma;
4583         vm_fault_t ret;
4584
4585         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4586                 vma_end_read(vma);
4587                 return VM_FAULT_RETRY;
4588         }
4589
4590         if (unlikely(anon_vma_prepare(vma)))
4591                 return VM_FAULT_OOM;
4592
4593         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4594         if (!vmf->cow_page)
4595                 return VM_FAULT_OOM;
4596
4597         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4598                                 GFP_KERNEL)) {
4599                 put_page(vmf->cow_page);
4600                 return VM_FAULT_OOM;
4601         }
4602         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4603
4604         ret = __do_fault(vmf);
4605         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4606                 goto uncharge_out;
4607         if (ret & VM_FAULT_DONE_COW)
4608                 return ret;
4609
4610         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4611         __SetPageUptodate(vmf->cow_page);
4612
4613         ret |= finish_fault(vmf);
4614         unlock_page(vmf->page);
4615         put_page(vmf->page);
4616         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4617                 goto uncharge_out;
4618         return ret;
4619 uncharge_out:
4620         put_page(vmf->cow_page);
4621         return ret;
4622 }
4623
4624 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4625 {
4626         struct vm_area_struct *vma = vmf->vma;
4627         vm_fault_t ret, tmp;
4628         struct folio *folio;
4629
4630         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4631                 vma_end_read(vma);
4632                 return VM_FAULT_RETRY;
4633         }
4634
4635         ret = __do_fault(vmf);
4636         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4637                 return ret;
4638
4639         folio = page_folio(vmf->page);
4640
4641         /*
4642          * Check if the backing address space wants to know that the page is
4643          * about to become writable
4644          */
4645         if (vma->vm_ops->page_mkwrite) {
4646                 folio_unlock(folio);
4647                 tmp = do_page_mkwrite(vmf, folio);
4648                 if (unlikely(!tmp ||
4649                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4650                         folio_put(folio);
4651                         return tmp;
4652                 }
4653         }
4654
4655         ret |= finish_fault(vmf);
4656         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4657                                         VM_FAULT_RETRY))) {
4658                 folio_unlock(folio);
4659                 folio_put(folio);
4660                 return ret;
4661         }
4662
4663         ret |= fault_dirty_shared_page(vmf);
4664         return ret;
4665 }
4666
4667 /*
4668  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4669  * but allow concurrent faults).
4670  * The mmap_lock may have been released depending on flags and our
4671  * return value.  See filemap_fault() and __folio_lock_or_retry().
4672  * If mmap_lock is released, vma may become invalid (for example
4673  * by other thread calling munmap()).
4674  */
4675 static vm_fault_t do_fault(struct vm_fault *vmf)
4676 {
4677         struct vm_area_struct *vma = vmf->vma;
4678         struct mm_struct *vm_mm = vma->vm_mm;
4679         vm_fault_t ret;
4680
4681         /*
4682          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4683          */
4684         if (!vma->vm_ops->fault) {
4685                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4686                                                vmf->address, &vmf->ptl);
4687                 if (unlikely(!vmf->pte))
4688                         ret = VM_FAULT_SIGBUS;
4689                 else {
4690                         /*
4691                          * Make sure this is not a temporary clearing of pte
4692                          * by holding ptl and checking again. A R/M/W update
4693                          * of pte involves: take ptl, clearing the pte so that
4694                          * we don't have concurrent modification by hardware
4695                          * followed by an update.
4696                          */
4697                         if (unlikely(pte_none(ptep_get(vmf->pte))))
4698                                 ret = VM_FAULT_SIGBUS;
4699                         else
4700                                 ret = VM_FAULT_NOPAGE;
4701
4702                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4703                 }
4704         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4705                 ret = do_read_fault(vmf);
4706         else if (!(vma->vm_flags & VM_SHARED))
4707                 ret = do_cow_fault(vmf);
4708         else
4709                 ret = do_shared_fault(vmf);
4710
4711         /* preallocated pagetable is unused: free it */
4712         if (vmf->prealloc_pte) {
4713                 pte_free(vm_mm, vmf->prealloc_pte);
4714                 vmf->prealloc_pte = NULL;
4715         }
4716         return ret;
4717 }
4718
4719 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4720                       unsigned long addr, int page_nid, int *flags)
4721 {
4722         get_page(page);
4723
4724         /* Record the current PID acceesing VMA */
4725         vma_set_access_pid_bit(vma);
4726
4727         count_vm_numa_event(NUMA_HINT_FAULTS);
4728         if (page_nid == numa_node_id()) {
4729                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4730                 *flags |= TNF_FAULT_LOCAL;
4731         }
4732
4733         return mpol_misplaced(page, vma, addr);
4734 }
4735
4736 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4737 {
4738         struct vm_area_struct *vma = vmf->vma;
4739         struct page *page = NULL;
4740         int page_nid = NUMA_NO_NODE;
4741         bool writable = false;
4742         int last_cpupid;
4743         int target_nid;
4744         pte_t pte, old_pte;
4745         int flags = 0;
4746
4747         /*
4748          * The "pte" at this point cannot be used safely without
4749          * validation through pte_unmap_same(). It's of NUMA type but
4750          * the pfn may be screwed if the read is non atomic.
4751          */
4752         spin_lock(vmf->ptl);
4753         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4754                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4755                 goto out;
4756         }
4757
4758         /* Get the normal PTE  */
4759         old_pte = ptep_get(vmf->pte);
4760         pte = pte_modify(old_pte, vma->vm_page_prot);
4761
4762         /*
4763          * Detect now whether the PTE could be writable; this information
4764          * is only valid while holding the PT lock.
4765          */
4766         writable = pte_write(pte);
4767         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4768             can_change_pte_writable(vma, vmf->address, pte))
4769                 writable = true;
4770
4771         page = vm_normal_page(vma, vmf->address, pte);
4772         if (!page || is_zone_device_page(page))
4773                 goto out_map;
4774
4775         /* TODO: handle PTE-mapped THP */
4776         if (PageCompound(page))
4777                 goto out_map;
4778
4779         /*
4780          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4781          * much anyway since they can be in shared cache state. This misses
4782          * the case where a mapping is writable but the process never writes
4783          * to it but pte_write gets cleared during protection updates and
4784          * pte_dirty has unpredictable behaviour between PTE scan updates,
4785          * background writeback, dirty balancing and application behaviour.
4786          */
4787         if (!writable)
4788                 flags |= TNF_NO_GROUP;
4789
4790         /*
4791          * Flag if the page is shared between multiple address spaces. This
4792          * is later used when determining whether to group tasks together
4793          */
4794         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4795                 flags |= TNF_SHARED;
4796
4797         page_nid = page_to_nid(page);
4798         /*
4799          * For memory tiering mode, cpupid of slow memory page is used
4800          * to record page access time.  So use default value.
4801          */
4802         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4803             !node_is_toptier(page_nid))
4804                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4805         else
4806                 last_cpupid = page_cpupid_last(page);
4807         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4808                         &flags);
4809         if (target_nid == NUMA_NO_NODE) {
4810                 put_page(page);
4811                 goto out_map;
4812         }
4813         pte_unmap_unlock(vmf->pte, vmf->ptl);
4814         writable = false;
4815
4816         /* Migrate to the requested node */
4817         if (migrate_misplaced_page(page, vma, target_nid)) {
4818                 page_nid = target_nid;
4819                 flags |= TNF_MIGRATED;
4820         } else {
4821                 flags |= TNF_MIGRATE_FAIL;
4822                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4823                                                vmf->address, &vmf->ptl);
4824                 if (unlikely(!vmf->pte))
4825                         goto out;
4826                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4827                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4828                         goto out;
4829                 }
4830                 goto out_map;
4831         }
4832
4833 out:
4834         if (page_nid != NUMA_NO_NODE)
4835                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4836         return 0;
4837 out_map:
4838         /*
4839          * Make it present again, depending on how arch implements
4840          * non-accessible ptes, some can allow access by kernel mode.
4841          */
4842         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4843         pte = pte_modify(old_pte, vma->vm_page_prot);
4844         pte = pte_mkyoung(pte);
4845         if (writable)
4846                 pte = pte_mkwrite(pte, vma);
4847         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4848         update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4849         pte_unmap_unlock(vmf->pte, vmf->ptl);
4850         goto out;
4851 }
4852
4853 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4854 {
4855         struct vm_area_struct *vma = vmf->vma;
4856         if (vma_is_anonymous(vma))
4857                 return do_huge_pmd_anonymous_page(vmf);
4858         if (vma->vm_ops->huge_fault)
4859                 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4860         return VM_FAULT_FALLBACK;
4861 }
4862
4863 /* `inline' is required to avoid gcc 4.1.2 build error */
4864 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4865 {
4866         struct vm_area_struct *vma = vmf->vma;
4867         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4868         vm_fault_t ret;
4869
4870         if (vma_is_anonymous(vma)) {
4871                 if (likely(!unshare) &&
4872                     userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4873                         return handle_userfault(vmf, VM_UFFD_WP);
4874                 return do_huge_pmd_wp_page(vmf);
4875         }
4876
4877         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4878                 if (vma->vm_ops->huge_fault) {
4879                         ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4880                         if (!(ret & VM_FAULT_FALLBACK))
4881                                 return ret;
4882                 }
4883         }
4884
4885         /* COW or write-notify handled on pte level: split pmd. */
4886         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4887
4888         return VM_FAULT_FALLBACK;
4889 }
4890
4891 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4892 {
4893 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4894         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4895         struct vm_area_struct *vma = vmf->vma;
4896         /* No support for anonymous transparent PUD pages yet */
4897         if (vma_is_anonymous(vma))
4898                 return VM_FAULT_FALLBACK;
4899         if (vma->vm_ops->huge_fault)
4900                 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4902         return VM_FAULT_FALLBACK;
4903 }
4904
4905 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4906 {
4907 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4908         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4909         struct vm_area_struct *vma = vmf->vma;
4910         vm_fault_t ret;
4911
4912         /* No support for anonymous transparent PUD pages yet */
4913         if (vma_is_anonymous(vma))
4914                 goto split;
4915         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4916                 if (vma->vm_ops->huge_fault) {
4917                         ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4918                         if (!(ret & VM_FAULT_FALLBACK))
4919                                 return ret;
4920                 }
4921         }
4922 split:
4923         /* COW or write-notify not handled on PUD level: split pud.*/
4924         __split_huge_pud(vma, vmf->pud, vmf->address);
4925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4926         return VM_FAULT_FALLBACK;
4927 }
4928
4929 /*
4930  * These routines also need to handle stuff like marking pages dirty
4931  * and/or accessed for architectures that don't do it in hardware (most
4932  * RISC architectures).  The early dirtying is also good on the i386.
4933  *
4934  * There is also a hook called "update_mmu_cache()" that architectures
4935  * with external mmu caches can use to update those (ie the Sparc or
4936  * PowerPC hashed page tables that act as extended TLBs).
4937  *
4938  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4939  * concurrent faults).
4940  *
4941  * The mmap_lock may have been released depending on flags and our return value.
4942  * See filemap_fault() and __folio_lock_or_retry().
4943  */
4944 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4945 {
4946         pte_t entry;
4947
4948         if (unlikely(pmd_none(*vmf->pmd))) {
4949                 /*
4950                  * Leave __pte_alloc() until later: because vm_ops->fault may
4951                  * want to allocate huge page, and if we expose page table
4952                  * for an instant, it will be difficult to retract from
4953                  * concurrent faults and from rmap lookups.
4954                  */
4955                 vmf->pte = NULL;
4956                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4957         } else {
4958                 /*
4959                  * A regular pmd is established and it can't morph into a huge
4960                  * pmd by anon khugepaged, since that takes mmap_lock in write
4961                  * mode; but shmem or file collapse to THP could still morph
4962                  * it into a huge pmd: just retry later if so.
4963                  */
4964                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4965                                                  vmf->address, &vmf->ptl);
4966                 if (unlikely(!vmf->pte))
4967                         return 0;
4968                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4969                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4970
4971                 if (pte_none(vmf->orig_pte)) {
4972                         pte_unmap(vmf->pte);
4973                         vmf->pte = NULL;
4974                 }
4975         }
4976
4977         if (!vmf->pte)
4978                 return do_pte_missing(vmf);
4979
4980         if (!pte_present(vmf->orig_pte))
4981                 return do_swap_page(vmf);
4982
4983         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4984                 return do_numa_page(vmf);
4985
4986         spin_lock(vmf->ptl);
4987         entry = vmf->orig_pte;
4988         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4989                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4990                 goto unlock;
4991         }
4992         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4993                 if (!pte_write(entry))
4994                         return do_wp_page(vmf);
4995                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4996                         entry = pte_mkdirty(entry);
4997         }
4998         entry = pte_mkyoung(entry);
4999         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5000                                 vmf->flags & FAULT_FLAG_WRITE)) {
5001                 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5002                                 vmf->pte, 1);
5003         } else {
5004                 /* Skip spurious TLB flush for retried page fault */
5005                 if (vmf->flags & FAULT_FLAG_TRIED)
5006                         goto unlock;
5007                 /*
5008                  * This is needed only for protection faults but the arch code
5009                  * is not yet telling us if this is a protection fault or not.
5010                  * This still avoids useless tlb flushes for .text page faults
5011                  * with threads.
5012                  */
5013                 if (vmf->flags & FAULT_FLAG_WRITE)
5014                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5015                                                      vmf->pte);
5016         }
5017 unlock:
5018         pte_unmap_unlock(vmf->pte, vmf->ptl);
5019         return 0;
5020 }
5021
5022 /*
5023  * On entry, we hold either the VMA lock or the mmap_lock
5024  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5025  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5026  * and __folio_lock_or_retry().
5027  */
5028 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5029                 unsigned long address, unsigned int flags)
5030 {
5031         struct vm_fault vmf = {
5032                 .vma = vma,
5033                 .address = address & PAGE_MASK,
5034                 .real_address = address,
5035                 .flags = flags,
5036                 .pgoff = linear_page_index(vma, address),
5037                 .gfp_mask = __get_fault_gfp_mask(vma),
5038         };
5039         struct mm_struct *mm = vma->vm_mm;
5040         unsigned long vm_flags = vma->vm_flags;
5041         pgd_t *pgd;
5042         p4d_t *p4d;
5043         vm_fault_t ret;
5044
5045         pgd = pgd_offset(mm, address);
5046         p4d = p4d_alloc(mm, pgd, address);
5047         if (!p4d)
5048                 return VM_FAULT_OOM;
5049
5050         vmf.pud = pud_alloc(mm, p4d, address);
5051         if (!vmf.pud)
5052                 return VM_FAULT_OOM;
5053 retry_pud:
5054         if (pud_none(*vmf.pud) &&
5055             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5056                 ret = create_huge_pud(&vmf);
5057                 if (!(ret & VM_FAULT_FALLBACK))
5058                         return ret;
5059         } else {
5060                 pud_t orig_pud = *vmf.pud;
5061
5062                 barrier();
5063                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5064
5065                         /*
5066                          * TODO once we support anonymous PUDs: NUMA case and
5067                          * FAULT_FLAG_UNSHARE handling.
5068                          */
5069                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5070                                 ret = wp_huge_pud(&vmf, orig_pud);
5071                                 if (!(ret & VM_FAULT_FALLBACK))
5072                                         return ret;
5073                         } else {
5074                                 huge_pud_set_accessed(&vmf, orig_pud);
5075                                 return 0;
5076                         }
5077                 }
5078         }
5079
5080         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5081         if (!vmf.pmd)
5082                 return VM_FAULT_OOM;
5083
5084         /* Huge pud page fault raced with pmd_alloc? */
5085         if (pud_trans_unstable(vmf.pud))
5086                 goto retry_pud;
5087
5088         if (pmd_none(*vmf.pmd) &&
5089             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5090                 ret = create_huge_pmd(&vmf);
5091                 if (!(ret & VM_FAULT_FALLBACK))
5092                         return ret;
5093         } else {
5094                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5095
5096                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5097                         VM_BUG_ON(thp_migration_supported() &&
5098                                           !is_pmd_migration_entry(vmf.orig_pmd));
5099                         if (is_pmd_migration_entry(vmf.orig_pmd))
5100                                 pmd_migration_entry_wait(mm, vmf.pmd);
5101                         return 0;
5102                 }
5103                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5104                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5105                                 return do_huge_pmd_numa_page(&vmf);
5106
5107                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5108                             !pmd_write(vmf.orig_pmd)) {
5109                                 ret = wp_huge_pmd(&vmf);
5110                                 if (!(ret & VM_FAULT_FALLBACK))
5111                                         return ret;
5112                         } else {
5113                                 huge_pmd_set_accessed(&vmf);
5114                                 return 0;
5115                         }
5116                 }
5117         }
5118
5119         return handle_pte_fault(&vmf);
5120 }
5121
5122 /**
5123  * mm_account_fault - Do page fault accounting
5124  * @mm: mm from which memcg should be extracted. It can be NULL.
5125  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5126  *        of perf event counters, but we'll still do the per-task accounting to
5127  *        the task who triggered this page fault.
5128  * @address: the faulted address.
5129  * @flags: the fault flags.
5130  * @ret: the fault retcode.
5131  *
5132  * This will take care of most of the page fault accounting.  Meanwhile, it
5133  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5134  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5135  * still be in per-arch page fault handlers at the entry of page fault.
5136  */
5137 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5138                                     unsigned long address, unsigned int flags,
5139                                     vm_fault_t ret)
5140 {
5141         bool major;
5142
5143         /* Incomplete faults will be accounted upon completion. */
5144         if (ret & VM_FAULT_RETRY)
5145                 return;
5146
5147         /*
5148          * To preserve the behavior of older kernels, PGFAULT counters record
5149          * both successful and failed faults, as opposed to perf counters,
5150          * which ignore failed cases.
5151          */
5152         count_vm_event(PGFAULT);
5153         count_memcg_event_mm(mm, PGFAULT);
5154
5155         /*
5156          * Do not account for unsuccessful faults (e.g. when the address wasn't
5157          * valid).  That includes arch_vma_access_permitted() failing before
5158          * reaching here. So this is not a "this many hardware page faults"
5159          * counter.  We should use the hw profiling for that.
5160          */
5161         if (ret & VM_FAULT_ERROR)
5162                 return;
5163
5164         /*
5165          * We define the fault as a major fault when the final successful fault
5166          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5167          * handle it immediately previously).
5168          */
5169         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5170
5171         if (major)
5172                 current->maj_flt++;
5173         else
5174                 current->min_flt++;
5175
5176         /*
5177          * If the fault is done for GUP, regs will be NULL.  We only do the
5178          * accounting for the per thread fault counters who triggered the
5179          * fault, and we skip the perf event updates.
5180          */
5181         if (!regs)
5182                 return;
5183
5184         if (major)
5185                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5186         else
5187                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5188 }
5189
5190 #ifdef CONFIG_LRU_GEN
5191 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5192 {
5193         /* the LRU algorithm only applies to accesses with recency */
5194         current->in_lru_fault = vma_has_recency(vma);
5195 }
5196
5197 static void lru_gen_exit_fault(void)
5198 {
5199         current->in_lru_fault = false;
5200 }
5201 #else
5202 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5203 {
5204 }
5205
5206 static void lru_gen_exit_fault(void)
5207 {
5208 }
5209 #endif /* CONFIG_LRU_GEN */
5210
5211 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5212                                        unsigned int *flags)
5213 {
5214         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5215                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5216                         return VM_FAULT_SIGSEGV;
5217                 /*
5218                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5219                  * just treat it like an ordinary read-fault otherwise.
5220                  */
5221                 if (!is_cow_mapping(vma->vm_flags))
5222                         *flags &= ~FAULT_FLAG_UNSHARE;
5223         } else if (*flags & FAULT_FLAG_WRITE) {
5224                 /* Write faults on read-only mappings are impossible ... */
5225                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5226                         return VM_FAULT_SIGSEGV;
5227                 /* ... and FOLL_FORCE only applies to COW mappings. */
5228                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5229                                  !is_cow_mapping(vma->vm_flags)))
5230                         return VM_FAULT_SIGSEGV;
5231         }
5232 #ifdef CONFIG_PER_VMA_LOCK
5233         /*
5234          * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5235          * the assumption that lock is dropped on VM_FAULT_RETRY.
5236          */
5237         if (WARN_ON_ONCE((*flags &
5238                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5239                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5240                 return VM_FAULT_SIGSEGV;
5241 #endif
5242
5243         return 0;
5244 }
5245
5246 /*
5247  * By the time we get here, we already hold the mm semaphore
5248  *
5249  * The mmap_lock may have been released depending on flags and our
5250  * return value.  See filemap_fault() and __folio_lock_or_retry().
5251  */
5252 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5253                            unsigned int flags, struct pt_regs *regs)
5254 {
5255         /* If the fault handler drops the mmap_lock, vma may be freed */
5256         struct mm_struct *mm = vma->vm_mm;
5257         vm_fault_t ret;
5258
5259         __set_current_state(TASK_RUNNING);
5260
5261         ret = sanitize_fault_flags(vma, &flags);
5262         if (ret)
5263                 goto out;
5264
5265         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5266                                             flags & FAULT_FLAG_INSTRUCTION,
5267                                             flags & FAULT_FLAG_REMOTE)) {
5268                 ret = VM_FAULT_SIGSEGV;
5269                 goto out;
5270         }
5271
5272         /*
5273          * Enable the memcg OOM handling for faults triggered in user
5274          * space.  Kernel faults are handled more gracefully.
5275          */
5276         if (flags & FAULT_FLAG_USER)
5277                 mem_cgroup_enter_user_fault();
5278
5279         lru_gen_enter_fault(vma);
5280
5281         if (unlikely(is_vm_hugetlb_page(vma)))
5282                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5283         else
5284                 ret = __handle_mm_fault(vma, address, flags);
5285
5286         lru_gen_exit_fault();
5287
5288         if (flags & FAULT_FLAG_USER) {
5289                 mem_cgroup_exit_user_fault();
5290                 /*
5291                  * The task may have entered a memcg OOM situation but
5292                  * if the allocation error was handled gracefully (no
5293                  * VM_FAULT_OOM), there is no need to kill anything.
5294                  * Just clean up the OOM state peacefully.
5295                  */
5296                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5297                         mem_cgroup_oom_synchronize(false);
5298         }
5299 out:
5300         mm_account_fault(mm, regs, address, flags, ret);
5301
5302         return ret;
5303 }
5304 EXPORT_SYMBOL_GPL(handle_mm_fault);
5305
5306 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5307 #include <linux/extable.h>
5308
5309 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5310 {
5311         if (likely(mmap_read_trylock(mm)))
5312                 return true;
5313
5314         if (regs && !user_mode(regs)) {
5315                 unsigned long ip = instruction_pointer(regs);
5316                 if (!search_exception_tables(ip))
5317                         return false;
5318         }
5319
5320         return !mmap_read_lock_killable(mm);
5321 }
5322
5323 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5324 {
5325         /*
5326          * We don't have this operation yet.
5327          *
5328          * It should be easy enough to do: it's basically a
5329          *    atomic_long_try_cmpxchg_acquire()
5330          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5331          * it also needs the proper lockdep magic etc.
5332          */
5333         return false;
5334 }
5335
5336 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5337 {
5338         mmap_read_unlock(mm);
5339         if (regs && !user_mode(regs)) {
5340                 unsigned long ip = instruction_pointer(regs);
5341                 if (!search_exception_tables(ip))
5342                         return false;
5343         }
5344         return !mmap_write_lock_killable(mm);
5345 }
5346
5347 /*
5348  * Helper for page fault handling.
5349  *
5350  * This is kind of equivalend to "mmap_read_lock()" followed
5351  * by "find_extend_vma()", except it's a lot more careful about
5352  * the locking (and will drop the lock on failure).
5353  *
5354  * For example, if we have a kernel bug that causes a page
5355  * fault, we don't want to just use mmap_read_lock() to get
5356  * the mm lock, because that would deadlock if the bug were
5357  * to happen while we're holding the mm lock for writing.
5358  *
5359  * So this checks the exception tables on kernel faults in
5360  * order to only do this all for instructions that are actually
5361  * expected to fault.
5362  *
5363  * We can also actually take the mm lock for writing if we
5364  * need to extend the vma, which helps the VM layer a lot.
5365  */
5366 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5367                         unsigned long addr, struct pt_regs *regs)
5368 {
5369         struct vm_area_struct *vma;
5370
5371         if (!get_mmap_lock_carefully(mm, regs))
5372                 return NULL;
5373
5374         vma = find_vma(mm, addr);
5375         if (likely(vma && (vma->vm_start <= addr)))
5376                 return vma;
5377
5378         /*
5379          * Well, dang. We might still be successful, but only
5380          * if we can extend a vma to do so.
5381          */
5382         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5383                 mmap_read_unlock(mm);
5384                 return NULL;
5385         }
5386
5387         /*
5388          * We can try to upgrade the mmap lock atomically,
5389          * in which case we can continue to use the vma
5390          * we already looked up.
5391          *
5392          * Otherwise we'll have to drop the mmap lock and
5393          * re-take it, and also look up the vma again,
5394          * re-checking it.
5395          */
5396         if (!mmap_upgrade_trylock(mm)) {
5397                 if (!upgrade_mmap_lock_carefully(mm, regs))
5398                         return NULL;
5399
5400                 vma = find_vma(mm, addr);
5401                 if (!vma)
5402                         goto fail;
5403                 if (vma->vm_start <= addr)
5404                         goto success;
5405                 if (!(vma->vm_flags & VM_GROWSDOWN))
5406                         goto fail;
5407         }
5408
5409         if (expand_stack_locked(vma, addr))
5410                 goto fail;
5411
5412 success:
5413         mmap_write_downgrade(mm);
5414         return vma;
5415
5416 fail:
5417         mmap_write_unlock(mm);
5418         return NULL;
5419 }
5420 #endif
5421
5422 #ifdef CONFIG_PER_VMA_LOCK
5423 /*
5424  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5425  * stable and not isolated. If the VMA is not found or is being modified the
5426  * function returns NULL.
5427  */
5428 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5429                                           unsigned long address)
5430 {
5431         MA_STATE(mas, &mm->mm_mt, address, address);
5432         struct vm_area_struct *vma;
5433
5434         rcu_read_lock();
5435 retry:
5436         vma = mas_walk(&mas);
5437         if (!vma)
5438                 goto inval;
5439
5440         if (!vma_start_read(vma))
5441                 goto inval;
5442
5443         /*
5444          * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5445          * This check must happen after vma_start_read(); otherwise, a
5446          * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5447          * from its anon_vma.
5448          */
5449         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5450                 goto inval_end_read;
5451
5452         /* Check since vm_start/vm_end might change before we lock the VMA */
5453         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5454                 goto inval_end_read;
5455
5456         /* Check if the VMA got isolated after we found it */
5457         if (vma->detached) {
5458                 vma_end_read(vma);
5459                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5460                 /* The area was replaced with another one */
5461                 goto retry;
5462         }
5463
5464         rcu_read_unlock();
5465         return vma;
5466
5467 inval_end_read:
5468         vma_end_read(vma);
5469 inval:
5470         rcu_read_unlock();
5471         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5472         return NULL;
5473 }
5474 #endif /* CONFIG_PER_VMA_LOCK */
5475
5476 #ifndef __PAGETABLE_P4D_FOLDED
5477 /*
5478  * Allocate p4d page table.
5479  * We've already handled the fast-path in-line.
5480  */
5481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5482 {
5483         p4d_t *new = p4d_alloc_one(mm, address);
5484         if (!new)
5485                 return -ENOMEM;
5486
5487         spin_lock(&mm->page_table_lock);
5488         if (pgd_present(*pgd)) {        /* Another has populated it */
5489                 p4d_free(mm, new);
5490         } else {
5491                 smp_wmb(); /* See comment in pmd_install() */
5492                 pgd_populate(mm, pgd, new);
5493         }
5494         spin_unlock(&mm->page_table_lock);
5495         return 0;
5496 }
5497 #endif /* __PAGETABLE_P4D_FOLDED */
5498
5499 #ifndef __PAGETABLE_PUD_FOLDED
5500 /*
5501  * Allocate page upper directory.
5502  * We've already handled the fast-path in-line.
5503  */
5504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5505 {
5506         pud_t *new = pud_alloc_one(mm, address);
5507         if (!new)
5508                 return -ENOMEM;
5509
5510         spin_lock(&mm->page_table_lock);
5511         if (!p4d_present(*p4d)) {
5512                 mm_inc_nr_puds(mm);
5513                 smp_wmb(); /* See comment in pmd_install() */
5514                 p4d_populate(mm, p4d, new);
5515         } else  /* Another has populated it */
5516                 pud_free(mm, new);
5517         spin_unlock(&mm->page_table_lock);
5518         return 0;
5519 }
5520 #endif /* __PAGETABLE_PUD_FOLDED */
5521
5522 #ifndef __PAGETABLE_PMD_FOLDED
5523 /*
5524  * Allocate page middle directory.
5525  * We've already handled the fast-path in-line.
5526  */
5527 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5528 {
5529         spinlock_t *ptl;
5530         pmd_t *new = pmd_alloc_one(mm, address);
5531         if (!new)
5532                 return -ENOMEM;
5533
5534         ptl = pud_lock(mm, pud);
5535         if (!pud_present(*pud)) {
5536                 mm_inc_nr_pmds(mm);
5537                 smp_wmb(); /* See comment in pmd_install() */
5538                 pud_populate(mm, pud, new);
5539         } else {        /* Another has populated it */
5540                 pmd_free(mm, new);
5541         }
5542         spin_unlock(ptl);
5543         return 0;
5544 }
5545 #endif /* __PAGETABLE_PMD_FOLDED */
5546
5547 /**
5548  * follow_pte - look up PTE at a user virtual address
5549  * @mm: the mm_struct of the target address space
5550  * @address: user virtual address
5551  * @ptepp: location to store found PTE
5552  * @ptlp: location to store the lock for the PTE
5553  *
5554  * On a successful return, the pointer to the PTE is stored in @ptepp;
5555  * the corresponding lock is taken and its location is stored in @ptlp.
5556  * The contents of the PTE are only stable until @ptlp is released;
5557  * any further use, if any, must be protected against invalidation
5558  * with MMU notifiers.
5559  *
5560  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5561  * should be taken for read.
5562  *
5563  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5564  * it is not a good general-purpose API.
5565  *
5566  * Return: zero on success, -ve otherwise.
5567  */
5568 int follow_pte(struct mm_struct *mm, unsigned long address,
5569                pte_t **ptepp, spinlock_t **ptlp)
5570 {
5571         pgd_t *pgd;
5572         p4d_t *p4d;
5573         pud_t *pud;
5574         pmd_t *pmd;
5575         pte_t *ptep;
5576
5577         pgd = pgd_offset(mm, address);
5578         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5579                 goto out;
5580
5581         p4d = p4d_offset(pgd, address);
5582         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5583                 goto out;
5584
5585         pud = pud_offset(p4d, address);
5586         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5587                 goto out;
5588
5589         pmd = pmd_offset(pud, address);
5590         VM_BUG_ON(pmd_trans_huge(*pmd));
5591
5592         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5593         if (!ptep)
5594                 goto out;
5595         if (!pte_present(ptep_get(ptep)))
5596                 goto unlock;
5597         *ptepp = ptep;
5598         return 0;
5599 unlock:
5600         pte_unmap_unlock(ptep, *ptlp);
5601 out:
5602         return -EINVAL;
5603 }
5604 EXPORT_SYMBOL_GPL(follow_pte);
5605
5606 /**
5607  * follow_pfn - look up PFN at a user virtual address
5608  * @vma: memory mapping
5609  * @address: user virtual address
5610  * @pfn: location to store found PFN
5611  *
5612  * Only IO mappings and raw PFN mappings are allowed.
5613  *
5614  * This function does not allow the caller to read the permissions
5615  * of the PTE.  Do not use it.
5616  *
5617  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5618  */
5619 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5620         unsigned long *pfn)
5621 {
5622         int ret = -EINVAL;
5623         spinlock_t *ptl;
5624         pte_t *ptep;
5625
5626         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5627                 return ret;
5628
5629         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5630         if (ret)
5631                 return ret;
5632         *pfn = pte_pfn(ptep_get(ptep));
5633         pte_unmap_unlock(ptep, ptl);
5634         return 0;
5635 }
5636 EXPORT_SYMBOL(follow_pfn);
5637
5638 #ifdef CONFIG_HAVE_IOREMAP_PROT
5639 int follow_phys(struct vm_area_struct *vma,
5640                 unsigned long address, unsigned int flags,
5641                 unsigned long *prot, resource_size_t *phys)
5642 {
5643         int ret = -EINVAL;
5644         pte_t *ptep, pte;
5645         spinlock_t *ptl;
5646
5647         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5648                 goto out;
5649
5650         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5651                 goto out;
5652         pte = ptep_get(ptep);
5653
5654         if ((flags & FOLL_WRITE) && !pte_write(pte))
5655                 goto unlock;
5656
5657         *prot = pgprot_val(pte_pgprot(pte));
5658         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5659
5660         ret = 0;
5661 unlock:
5662         pte_unmap_unlock(ptep, ptl);
5663 out:
5664         return ret;
5665 }
5666
5667 /**
5668  * generic_access_phys - generic implementation for iomem mmap access
5669  * @vma: the vma to access
5670  * @addr: userspace address, not relative offset within @vma
5671  * @buf: buffer to read/write
5672  * @len: length of transfer
5673  * @write: set to FOLL_WRITE when writing, otherwise reading
5674  *
5675  * This is a generic implementation for &vm_operations_struct.access for an
5676  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5677  * not page based.
5678  */
5679 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5680                         void *buf, int len, int write)
5681 {
5682         resource_size_t phys_addr;
5683         unsigned long prot = 0;
5684         void __iomem *maddr;
5685         pte_t *ptep, pte;
5686         spinlock_t *ptl;
5687         int offset = offset_in_page(addr);
5688         int ret = -EINVAL;
5689
5690         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5691                 return -EINVAL;
5692
5693 retry:
5694         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5695                 return -EINVAL;
5696         pte = ptep_get(ptep);
5697         pte_unmap_unlock(ptep, ptl);
5698
5699         prot = pgprot_val(pte_pgprot(pte));
5700         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5701
5702         if ((write & FOLL_WRITE) && !pte_write(pte))
5703                 return -EINVAL;
5704
5705         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5706         if (!maddr)
5707                 return -ENOMEM;
5708
5709         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5710                 goto out_unmap;
5711
5712         if (!pte_same(pte, ptep_get(ptep))) {
5713                 pte_unmap_unlock(ptep, ptl);
5714                 iounmap(maddr);
5715
5716                 goto retry;
5717         }
5718
5719         if (write)
5720                 memcpy_toio(maddr + offset, buf, len);
5721         else
5722                 memcpy_fromio(buf, maddr + offset, len);
5723         ret = len;
5724         pte_unmap_unlock(ptep, ptl);
5725 out_unmap:
5726         iounmap(maddr);
5727
5728         return ret;
5729 }
5730 EXPORT_SYMBOL_GPL(generic_access_phys);
5731 #endif
5732
5733 /*
5734  * Access another process' address space as given in mm.
5735  */
5736 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5737                        int len, unsigned int gup_flags)
5738 {
5739         void *old_buf = buf;
5740         int write = gup_flags & FOLL_WRITE;
5741
5742         if (mmap_read_lock_killable(mm))
5743                 return 0;
5744
5745         /* Untag the address before looking up the VMA */
5746         addr = untagged_addr_remote(mm, addr);
5747
5748         /* Avoid triggering the temporary warning in __get_user_pages */
5749         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5750                 return 0;
5751
5752         /* ignore errors, just check how much was successfully transferred */
5753         while (len) {
5754                 int bytes, offset;
5755                 void *maddr;
5756                 struct vm_area_struct *vma = NULL;
5757                 struct page *page = get_user_page_vma_remote(mm, addr,
5758                                                              gup_flags, &vma);
5759
5760                 if (IS_ERR_OR_NULL(page)) {
5761                         /* We might need to expand the stack to access it */
5762                         vma = vma_lookup(mm, addr);
5763                         if (!vma) {
5764                                 vma = expand_stack(mm, addr);
5765
5766                                 /* mmap_lock was dropped on failure */
5767                                 if (!vma)
5768                                         return buf - old_buf;
5769
5770                                 /* Try again if stack expansion worked */
5771                                 continue;
5772                         }
5773
5774
5775                         /*
5776                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5777                          * we can access using slightly different code.
5778                          */
5779                         bytes = 0;
5780 #ifdef CONFIG_HAVE_IOREMAP_PROT
5781                         if (vma->vm_ops && vma->vm_ops->access)
5782                                 bytes = vma->vm_ops->access(vma, addr, buf,
5783                                                             len, write);
5784 #endif
5785                         if (bytes <= 0)
5786                                 break;
5787                 } else {
5788                         bytes = len;
5789                         offset = addr & (PAGE_SIZE-1);
5790                         if (bytes > PAGE_SIZE-offset)
5791                                 bytes = PAGE_SIZE-offset;
5792
5793                         maddr = kmap(page);
5794                         if (write) {
5795                                 copy_to_user_page(vma, page, addr,
5796                                                   maddr + offset, buf, bytes);
5797                                 set_page_dirty_lock(page);
5798                         } else {
5799                                 copy_from_user_page(vma, page, addr,
5800                                                     buf, maddr + offset, bytes);
5801                         }
5802                         kunmap(page);
5803                         put_page(page);
5804                 }
5805                 len -= bytes;
5806                 buf += bytes;
5807                 addr += bytes;
5808         }
5809         mmap_read_unlock(mm);
5810
5811         return buf - old_buf;
5812 }
5813
5814 /**
5815  * access_remote_vm - access another process' address space
5816  * @mm:         the mm_struct of the target address space
5817  * @addr:       start address to access
5818  * @buf:        source or destination buffer
5819  * @len:        number of bytes to transfer
5820  * @gup_flags:  flags modifying lookup behaviour
5821  *
5822  * The caller must hold a reference on @mm.
5823  *
5824  * Return: number of bytes copied from source to destination.
5825  */
5826 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5827                 void *buf, int len, unsigned int gup_flags)
5828 {
5829         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5830 }
5831
5832 /*
5833  * Access another process' address space.
5834  * Source/target buffer must be kernel space,
5835  * Do not walk the page table directly, use get_user_pages
5836  */
5837 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5838                 void *buf, int len, unsigned int gup_flags)
5839 {
5840         struct mm_struct *mm;
5841         int ret;
5842
5843         mm = get_task_mm(tsk);
5844         if (!mm)
5845                 return 0;
5846
5847         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5848
5849         mmput(mm);
5850
5851         return ret;
5852 }
5853 EXPORT_SYMBOL_GPL(access_process_vm);
5854
5855 /*
5856  * Print the name of a VMA.
5857  */
5858 void print_vma_addr(char *prefix, unsigned long ip)
5859 {
5860         struct mm_struct *mm = current->mm;
5861         struct vm_area_struct *vma;
5862
5863         /*
5864          * we might be running from an atomic context so we cannot sleep
5865          */
5866         if (!mmap_read_trylock(mm))
5867                 return;
5868
5869         vma = find_vma(mm, ip);
5870         if (vma && vma->vm_file) {
5871                 struct file *f = vma->vm_file;
5872                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5873                 if (buf) {
5874                         char *p;
5875
5876                         p = file_path(f, buf, PAGE_SIZE);
5877                         if (IS_ERR(p))
5878                                 p = "?";
5879                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5880                                         vma->vm_start,
5881                                         vma->vm_end - vma->vm_start);
5882                         free_page((unsigned long)buf);
5883                 }
5884         }
5885         mmap_read_unlock(mm);
5886 }
5887
5888 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5889 void __might_fault(const char *file, int line)
5890 {
5891         if (pagefault_disabled())
5892                 return;
5893         __might_sleep(file, line);
5894 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5895         if (current->mm)
5896                 might_lock_read(&current->mm->mmap_lock);
5897 #endif
5898 }
5899 EXPORT_SYMBOL(__might_fault);
5900 #endif
5901
5902 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5903 /*
5904  * Process all subpages of the specified huge page with the specified
5905  * operation.  The target subpage will be processed last to keep its
5906  * cache lines hot.
5907  */
5908 static inline int process_huge_page(
5909         unsigned long addr_hint, unsigned int pages_per_huge_page,
5910         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5911         void *arg)
5912 {
5913         int i, n, base, l, ret;
5914         unsigned long addr = addr_hint &
5915                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5916
5917         /* Process target subpage last to keep its cache lines hot */
5918         might_sleep();
5919         n = (addr_hint - addr) / PAGE_SIZE;
5920         if (2 * n <= pages_per_huge_page) {
5921                 /* If target subpage in first half of huge page */
5922                 base = 0;
5923                 l = n;
5924                 /* Process subpages at the end of huge page */
5925                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5926                         cond_resched();
5927                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5928                         if (ret)
5929                                 return ret;
5930                 }
5931         } else {
5932                 /* If target subpage in second half of huge page */
5933                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5934                 l = pages_per_huge_page - n;
5935                 /* Process subpages at the begin of huge page */
5936                 for (i = 0; i < base; i++) {
5937                         cond_resched();
5938                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5939                         if (ret)
5940                                 return ret;
5941                 }
5942         }
5943         /*
5944          * Process remaining subpages in left-right-left-right pattern
5945          * towards the target subpage
5946          */
5947         for (i = 0; i < l; i++) {
5948                 int left_idx = base + i;
5949                 int right_idx = base + 2 * l - 1 - i;
5950
5951                 cond_resched();
5952                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5953                 if (ret)
5954                         return ret;
5955                 cond_resched();
5956                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5957                 if (ret)
5958                         return ret;
5959         }
5960         return 0;
5961 }
5962
5963 static void clear_gigantic_page(struct page *page,
5964                                 unsigned long addr,
5965                                 unsigned int pages_per_huge_page)
5966 {
5967         int i;
5968         struct page *p;
5969
5970         might_sleep();
5971         for (i = 0; i < pages_per_huge_page; i++) {
5972                 p = nth_page(page, i);
5973                 cond_resched();
5974                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5975         }
5976 }
5977
5978 static int clear_subpage(unsigned long addr, int idx, void *arg)
5979 {
5980         struct page *page = arg;
5981
5982         clear_user_highpage(page + idx, addr);
5983         return 0;
5984 }
5985
5986 void clear_huge_page(struct page *page,
5987                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5988 {
5989         unsigned long addr = addr_hint &
5990                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5991
5992         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5993                 clear_gigantic_page(page, addr, pages_per_huge_page);
5994                 return;
5995         }
5996
5997         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5998 }
5999
6000 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6001                                      unsigned long addr,
6002                                      struct vm_area_struct *vma,
6003                                      unsigned int pages_per_huge_page)
6004 {
6005         int i;
6006         struct page *dst_page;
6007         struct page *src_page;
6008
6009         for (i = 0; i < pages_per_huge_page; i++) {
6010                 dst_page = folio_page(dst, i);
6011                 src_page = folio_page(src, i);
6012
6013                 cond_resched();
6014                 if (copy_mc_user_highpage(dst_page, src_page,
6015                                           addr + i*PAGE_SIZE, vma)) {
6016                         memory_failure_queue(page_to_pfn(src_page), 0);
6017                         return -EHWPOISON;
6018                 }
6019         }
6020         return 0;
6021 }
6022
6023 struct copy_subpage_arg {
6024         struct page *dst;
6025         struct page *src;
6026         struct vm_area_struct *vma;
6027 };
6028
6029 static int copy_subpage(unsigned long addr, int idx, void *arg)
6030 {
6031         struct copy_subpage_arg *copy_arg = arg;
6032
6033         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6034                                   addr, copy_arg->vma)) {
6035                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6036                 return -EHWPOISON;
6037         }
6038         return 0;
6039 }
6040
6041 int copy_user_large_folio(struct folio *dst, struct folio *src,
6042                           unsigned long addr_hint, struct vm_area_struct *vma)
6043 {
6044         unsigned int pages_per_huge_page = folio_nr_pages(dst);
6045         unsigned long addr = addr_hint &
6046                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6047         struct copy_subpage_arg arg = {
6048                 .dst = &dst->page,
6049                 .src = &src->page,
6050                 .vma = vma,
6051         };
6052
6053         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6054                 return copy_user_gigantic_page(dst, src, addr, vma,
6055                                                pages_per_huge_page);
6056
6057         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6058 }
6059
6060 long copy_folio_from_user(struct folio *dst_folio,
6061                            const void __user *usr_src,
6062                            bool allow_pagefault)
6063 {
6064         void *kaddr;
6065         unsigned long i, rc = 0;
6066         unsigned int nr_pages = folio_nr_pages(dst_folio);
6067         unsigned long ret_val = nr_pages * PAGE_SIZE;
6068         struct page *subpage;
6069
6070         for (i = 0; i < nr_pages; i++) {
6071                 subpage = folio_page(dst_folio, i);
6072                 kaddr = kmap_local_page(subpage);
6073                 if (!allow_pagefault)
6074                         pagefault_disable();
6075                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6076                 if (!allow_pagefault)
6077                         pagefault_enable();
6078                 kunmap_local(kaddr);
6079
6080                 ret_val -= (PAGE_SIZE - rc);
6081                 if (rc)
6082                         break;
6083
6084                 flush_dcache_page(subpage);
6085
6086                 cond_resched();
6087         }
6088         return ret_val;
6089 }
6090 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6091
6092 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6093
6094 static struct kmem_cache *page_ptl_cachep;
6095
6096 void __init ptlock_cache_init(void)
6097 {
6098         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6099                         SLAB_PANIC, NULL);
6100 }
6101
6102 bool ptlock_alloc(struct ptdesc *ptdesc)
6103 {
6104         spinlock_t *ptl;
6105
6106         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6107         if (!ptl)
6108                 return false;
6109         ptdesc->ptl = ptl;
6110         return true;
6111 }
6112
6113 void ptlock_free(struct ptdesc *ptdesc)
6114 {
6115         kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6116 }
6117 #endif