6b8c5900e9a4300eba3d52883f8f6ca5376f159a
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 if (pte_swp_uffd_wp(*src_pte))
737                                         pte = pte_swp_mkuffd_wp(pte);
738                                 set_pte_at(src_mm, addr, src_pte, pte);
739                         }
740                 } else if (is_device_private_entry(entry)) {
741                         page = device_private_entry_to_page(entry);
742
743                         /*
744                          * Update rss count even for unaddressable pages, as
745                          * they should treated just like normal pages in this
746                          * respect.
747                          *
748                          * We will likely want to have some new rss counters
749                          * for unaddressable pages, at some point. But for now
750                          * keep things as they are.
751                          */
752                         get_page(page);
753                         rss[mm_counter(page)]++;
754                         page_dup_rmap(page, false);
755
756                         /*
757                          * We do not preserve soft-dirty information, because so
758                          * far, checkpoint/restore is the only feature that
759                          * requires that. And checkpoint/restore does not work
760                          * when a device driver is involved (you cannot easily
761                          * save and restore device driver state).
762                          */
763                         if (is_write_device_private_entry(entry) &&
764                             is_cow_mapping(vm_flags)) {
765                                 make_device_private_entry_read(&entry);
766                                 pte = swp_entry_to_pte(entry);
767                                 if (pte_swp_uffd_wp(*src_pte))
768                                         pte = pte_swp_mkuffd_wp(pte);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         /*
793          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794          * does not have the VM_UFFD_WP, which means that the uffd
795          * fork event is not enabled.
796          */
797         if (!(vm_flags & VM_UFFD_WP))
798                 pte = pte_clear_uffd_wp(pte);
799
800         page = vm_normal_page(vma, addr, pte);
801         if (page) {
802                 get_page(page);
803                 page_dup_rmap(page, false);
804                 rss[mm_counter(page)]++;
805         }
806
807 out_set_pte:
808         set_pte_at(dst_mm, addr, dst_pte, pte);
809         return 0;
810 }
811
812 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
813                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
814                    unsigned long addr, unsigned long end)
815 {
816         pte_t *orig_src_pte, *orig_dst_pte;
817         pte_t *src_pte, *dst_pte;
818         spinlock_t *src_ptl, *dst_ptl;
819         int progress = 0;
820         int rss[NR_MM_COUNTERS];
821         swp_entry_t entry = (swp_entry_t){0};
822
823 again:
824         init_rss_vec(rss);
825
826         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
827         if (!dst_pte)
828                 return -ENOMEM;
829         src_pte = pte_offset_map(src_pmd, addr);
830         src_ptl = pte_lockptr(src_mm, src_pmd);
831         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
832         orig_src_pte = src_pte;
833         orig_dst_pte = dst_pte;
834         arch_enter_lazy_mmu_mode();
835
836         do {
837                 /*
838                  * We are holding two locks at this point - either of them
839                  * could generate latencies in another task on another CPU.
840                  */
841                 if (progress >= 32) {
842                         progress = 0;
843                         if (need_resched() ||
844                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
845                                 break;
846                 }
847                 if (pte_none(*src_pte)) {
848                         progress++;
849                         continue;
850                 }
851                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
852                                                         vma, addr, rss);
853                 if (entry.val)
854                         break;
855                 progress += 8;
856         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
857
858         arch_leave_lazy_mmu_mode();
859         spin_unlock(src_ptl);
860         pte_unmap(orig_src_pte);
861         add_mm_rss_vec(dst_mm, rss);
862         pte_unmap_unlock(orig_dst_pte, dst_ptl);
863         cond_resched();
864
865         if (entry.val) {
866                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
867                         return -ENOMEM;
868                 progress = 0;
869         }
870         if (addr != end)
871                 goto again;
872         return 0;
873 }
874
875 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
876                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
877                 unsigned long addr, unsigned long end)
878 {
879         pmd_t *src_pmd, *dst_pmd;
880         unsigned long next;
881
882         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
883         if (!dst_pmd)
884                 return -ENOMEM;
885         src_pmd = pmd_offset(src_pud, addr);
886         do {
887                 next = pmd_addr_end(addr, end);
888                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
889                         || pmd_devmap(*src_pmd)) {
890                         int err;
891                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
892                         err = copy_huge_pmd(dst_mm, src_mm,
893                                             dst_pmd, src_pmd, addr, vma);
894                         if (err == -ENOMEM)
895                                 return -ENOMEM;
896                         if (!err)
897                                 continue;
898                         /* fall through */
899                 }
900                 if (pmd_none_or_clear_bad(src_pmd))
901                         continue;
902                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
903                                                 vma, addr, next))
904                         return -ENOMEM;
905         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
906         return 0;
907 }
908
909 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
910                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
911                 unsigned long addr, unsigned long end)
912 {
913         pud_t *src_pud, *dst_pud;
914         unsigned long next;
915
916         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
917         if (!dst_pud)
918                 return -ENOMEM;
919         src_pud = pud_offset(src_p4d, addr);
920         do {
921                 next = pud_addr_end(addr, end);
922                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
923                         int err;
924
925                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
926                         err = copy_huge_pud(dst_mm, src_mm,
927                                             dst_pud, src_pud, addr, vma);
928                         if (err == -ENOMEM)
929                                 return -ENOMEM;
930                         if (!err)
931                                 continue;
932                         /* fall through */
933                 }
934                 if (pud_none_or_clear_bad(src_pud))
935                         continue;
936                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
937                                                 vma, addr, next))
938                         return -ENOMEM;
939         } while (dst_pud++, src_pud++, addr = next, addr != end);
940         return 0;
941 }
942
943 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
944                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
945                 unsigned long addr, unsigned long end)
946 {
947         p4d_t *src_p4d, *dst_p4d;
948         unsigned long next;
949
950         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
951         if (!dst_p4d)
952                 return -ENOMEM;
953         src_p4d = p4d_offset(src_pgd, addr);
954         do {
955                 next = p4d_addr_end(addr, end);
956                 if (p4d_none_or_clear_bad(src_p4d))
957                         continue;
958                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
959                                                 vma, addr, next))
960                         return -ENOMEM;
961         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
962         return 0;
963 }
964
965 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
966                 struct vm_area_struct *vma)
967 {
968         pgd_t *src_pgd, *dst_pgd;
969         unsigned long next;
970         unsigned long addr = vma->vm_start;
971         unsigned long end = vma->vm_end;
972         struct mmu_notifier_range range;
973         bool is_cow;
974         int ret;
975
976         /*
977          * Don't copy ptes where a page fault will fill them correctly.
978          * Fork becomes much lighter when there are big shared or private
979          * readonly mappings. The tradeoff is that copy_page_range is more
980          * efficient than faulting.
981          */
982         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
983                         !vma->anon_vma)
984                 return 0;
985
986         if (is_vm_hugetlb_page(vma))
987                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
988
989         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
990                 /*
991                  * We do not free on error cases below as remove_vma
992                  * gets called on error from higher level routine
993                  */
994                 ret = track_pfn_copy(vma);
995                 if (ret)
996                         return ret;
997         }
998
999         /*
1000          * We need to invalidate the secondary MMU mappings only when
1001          * there could be a permission downgrade on the ptes of the
1002          * parent mm. And a permission downgrade will only happen if
1003          * is_cow_mapping() returns true.
1004          */
1005         is_cow = is_cow_mapping(vma->vm_flags);
1006
1007         if (is_cow) {
1008                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1009                                         0, vma, src_mm, addr, end);
1010                 mmu_notifier_invalidate_range_start(&range);
1011         }
1012
1013         ret = 0;
1014         dst_pgd = pgd_offset(dst_mm, addr);
1015         src_pgd = pgd_offset(src_mm, addr);
1016         do {
1017                 next = pgd_addr_end(addr, end);
1018                 if (pgd_none_or_clear_bad(src_pgd))
1019                         continue;
1020                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1021                                             vma, addr, next))) {
1022                         ret = -ENOMEM;
1023                         break;
1024                 }
1025         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1026
1027         if (is_cow)
1028                 mmu_notifier_invalidate_range_end(&range);
1029         return ret;
1030 }
1031
1032 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1033                                 struct vm_area_struct *vma, pmd_t *pmd,
1034                                 unsigned long addr, unsigned long end,
1035                                 struct zap_details *details)
1036 {
1037         struct mm_struct *mm = tlb->mm;
1038         int force_flush = 0;
1039         int rss[NR_MM_COUNTERS];
1040         spinlock_t *ptl;
1041         pte_t *start_pte;
1042         pte_t *pte;
1043         swp_entry_t entry;
1044
1045         tlb_change_page_size(tlb, PAGE_SIZE);
1046 again:
1047         init_rss_vec(rss);
1048         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1049         pte = start_pte;
1050         flush_tlb_batched_pending(mm);
1051         arch_enter_lazy_mmu_mode();
1052         do {
1053                 pte_t ptent = *pte;
1054                 if (pte_none(ptent))
1055                         continue;
1056
1057                 if (need_resched())
1058                         break;
1059
1060                 if (pte_present(ptent)) {
1061                         struct page *page;
1062
1063                         page = vm_normal_page(vma, addr, ptent);
1064                         if (unlikely(details) && page) {
1065                                 /*
1066                                  * unmap_shared_mapping_pages() wants to
1067                                  * invalidate cache without truncating:
1068                                  * unmap shared but keep private pages.
1069                                  */
1070                                 if (details->check_mapping &&
1071                                     details->check_mapping != page_rmapping(page))
1072                                         continue;
1073                         }
1074                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1075                                                         tlb->fullmm);
1076                         tlb_remove_tlb_entry(tlb, pte, addr);
1077                         if (unlikely(!page))
1078                                 continue;
1079
1080                         if (!PageAnon(page)) {
1081                                 if (pte_dirty(ptent)) {
1082                                         force_flush = 1;
1083                                         set_page_dirty(page);
1084                                 }
1085                                 if (pte_young(ptent) &&
1086                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1087                                         mark_page_accessed(page);
1088                         }
1089                         rss[mm_counter(page)]--;
1090                         page_remove_rmap(page, false);
1091                         if (unlikely(page_mapcount(page) < 0))
1092                                 print_bad_pte(vma, addr, ptent, page);
1093                         if (unlikely(__tlb_remove_page(tlb, page))) {
1094                                 force_flush = 1;
1095                                 addr += PAGE_SIZE;
1096                                 break;
1097                         }
1098                         continue;
1099                 }
1100
1101                 entry = pte_to_swp_entry(ptent);
1102                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103                         struct page *page = device_private_entry_to_page(entry);
1104
1105                         if (unlikely(details && details->check_mapping)) {
1106                                 /*
1107                                  * unmap_shared_mapping_pages() wants to
1108                                  * invalidate cache without truncating:
1109                                  * unmap shared but keep private pages.
1110                                  */
1111                                 if (details->check_mapping !=
1112                                     page_rmapping(page))
1113                                         continue;
1114                         }
1115
1116                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117                         rss[mm_counter(page)]--;
1118                         page_remove_rmap(page, false);
1119                         put_page(page);
1120                         continue;
1121                 }
1122
1123                 /* If details->check_mapping, we leave swap entries. */
1124                 if (unlikely(details))
1125                         continue;
1126
1127                 if (!non_swap_entry(entry))
1128                         rss[MM_SWAPENTS]--;
1129                 else if (is_migration_entry(entry)) {
1130                         struct page *page;
1131
1132                         page = migration_entry_to_page(entry);
1133                         rss[mm_counter(page)]--;
1134                 }
1135                 if (unlikely(!free_swap_and_cache(entry)))
1136                         print_bad_pte(vma, addr, ptent, NULL);
1137                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1138         } while (pte++, addr += PAGE_SIZE, addr != end);
1139
1140         add_mm_rss_vec(mm, rss);
1141         arch_leave_lazy_mmu_mode();
1142
1143         /* Do the actual TLB flush before dropping ptl */
1144         if (force_flush)
1145                 tlb_flush_mmu_tlbonly(tlb);
1146         pte_unmap_unlock(start_pte, ptl);
1147
1148         /*
1149          * If we forced a TLB flush (either due to running out of
1150          * batch buffers or because we needed to flush dirty TLB
1151          * entries before releasing the ptl), free the batched
1152          * memory too. Restart if we didn't do everything.
1153          */
1154         if (force_flush) {
1155                 force_flush = 0;
1156                 tlb_flush_mmu(tlb);
1157         }
1158
1159         if (addr != end) {
1160                 cond_resched();
1161                 goto again;
1162         }
1163
1164         return addr;
1165 }
1166
1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168                                 struct vm_area_struct *vma, pud_t *pud,
1169                                 unsigned long addr, unsigned long end,
1170                                 struct zap_details *details)
1171 {
1172         pmd_t *pmd;
1173         unsigned long next;
1174
1175         pmd = pmd_offset(pud, addr);
1176         do {
1177                 next = pmd_addr_end(addr, end);
1178                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179                         if (next - addr != HPAGE_PMD_SIZE)
1180                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1181                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182                                 goto next;
1183                         /* fall through */
1184                 }
1185                 /*
1186                  * Here there can be other concurrent MADV_DONTNEED or
1187                  * trans huge page faults running, and if the pmd is
1188                  * none or trans huge it can change under us. This is
1189                  * because MADV_DONTNEED holds the mmap_sem in read
1190                  * mode.
1191                  */
1192                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193                         goto next;
1194                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195 next:
1196                 cond_resched();
1197         } while (pmd++, addr = next, addr != end);
1198
1199         return addr;
1200 }
1201
1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203                                 struct vm_area_struct *vma, p4d_t *p4d,
1204                                 unsigned long addr, unsigned long end,
1205                                 struct zap_details *details)
1206 {
1207         pud_t *pud;
1208         unsigned long next;
1209
1210         pud = pud_offset(p4d, addr);
1211         do {
1212                 next = pud_addr_end(addr, end);
1213                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214                         if (next - addr != HPAGE_PUD_SIZE) {
1215                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216                                 split_huge_pud(vma, pud, addr);
1217                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1218                                 goto next;
1219                         /* fall through */
1220                 }
1221                 if (pud_none_or_clear_bad(pud))
1222                         continue;
1223                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 next:
1225                 cond_resched();
1226         } while (pud++, addr = next, addr != end);
1227
1228         return addr;
1229 }
1230
1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232                                 struct vm_area_struct *vma, pgd_t *pgd,
1233                                 unsigned long addr, unsigned long end,
1234                                 struct zap_details *details)
1235 {
1236         p4d_t *p4d;
1237         unsigned long next;
1238
1239         p4d = p4d_offset(pgd, addr);
1240         do {
1241                 next = p4d_addr_end(addr, end);
1242                 if (p4d_none_or_clear_bad(p4d))
1243                         continue;
1244                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245         } while (p4d++, addr = next, addr != end);
1246
1247         return addr;
1248 }
1249
1250 void unmap_page_range(struct mmu_gather *tlb,
1251                              struct vm_area_struct *vma,
1252                              unsigned long addr, unsigned long end,
1253                              struct zap_details *details)
1254 {
1255         pgd_t *pgd;
1256         unsigned long next;
1257
1258         BUG_ON(addr >= end);
1259         tlb_start_vma(tlb, vma);
1260         pgd = pgd_offset(vma->vm_mm, addr);
1261         do {
1262                 next = pgd_addr_end(addr, end);
1263                 if (pgd_none_or_clear_bad(pgd))
1264                         continue;
1265                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266         } while (pgd++, addr = next, addr != end);
1267         tlb_end_vma(tlb, vma);
1268 }
1269
1270
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272                 struct vm_area_struct *vma, unsigned long start_addr,
1273                 unsigned long end_addr,
1274                 struct zap_details *details)
1275 {
1276         unsigned long start = max(vma->vm_start, start_addr);
1277         unsigned long end;
1278
1279         if (start >= vma->vm_end)
1280                 return;
1281         end = min(vma->vm_end, end_addr);
1282         if (end <= vma->vm_start)
1283                 return;
1284
1285         if (vma->vm_file)
1286                 uprobe_munmap(vma, start, end);
1287
1288         if (unlikely(vma->vm_flags & VM_PFNMAP))
1289                 untrack_pfn(vma, 0, 0);
1290
1291         if (start != end) {
1292                 if (unlikely(is_vm_hugetlb_page(vma))) {
1293                         /*
1294                          * It is undesirable to test vma->vm_file as it
1295                          * should be non-null for valid hugetlb area.
1296                          * However, vm_file will be NULL in the error
1297                          * cleanup path of mmap_region. When
1298                          * hugetlbfs ->mmap method fails,
1299                          * mmap_region() nullifies vma->vm_file
1300                          * before calling this function to clean up.
1301                          * Since no pte has actually been setup, it is
1302                          * safe to do nothing in this case.
1303                          */
1304                         if (vma->vm_file) {
1305                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1306                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308                         }
1309                 } else
1310                         unmap_page_range(tlb, vma, start, end, details);
1311         }
1312 }
1313
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333                 struct vm_area_struct *vma, unsigned long start_addr,
1334                 unsigned long end_addr)
1335 {
1336         struct mmu_notifier_range range;
1337
1338         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339                                 start_addr, end_addr);
1340         mmu_notifier_invalidate_range_start(&range);
1341         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343         mmu_notifier_invalidate_range_end(&range);
1344 }
1345
1346 /**
1347  * zap_page_range - remove user pages in a given range
1348  * @vma: vm_area_struct holding the applicable pages
1349  * @start: starting address of pages to zap
1350  * @size: number of bytes to zap
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355                 unsigned long size)
1356 {
1357         struct mmu_notifier_range range;
1358         struct mmu_gather tlb;
1359
1360         lru_add_drain();
1361         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1362                                 start, start + size);
1363         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364         update_hiwater_rss(vma->vm_mm);
1365         mmu_notifier_invalidate_range_start(&range);
1366         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368         mmu_notifier_invalidate_range_end(&range);
1369         tlb_finish_mmu(&tlb, start, range.end);
1370 }
1371
1372 /**
1373  * zap_page_range_single - remove user pages in a given range
1374  * @vma: vm_area_struct holding the applicable pages
1375  * @address: starting address of pages to zap
1376  * @size: number of bytes to zap
1377  * @details: details of shared cache invalidation
1378  *
1379  * The range must fit into one VMA.
1380  */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned long size, struct zap_details *details)
1383 {
1384         struct mmu_notifier_range range;
1385         struct mmu_gather tlb;
1386
1387         lru_add_drain();
1388         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389                                 address, address + size);
1390         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391         update_hiwater_rss(vma->vm_mm);
1392         mmu_notifier_invalidate_range_start(&range);
1393         unmap_single_vma(&tlb, vma, address, range.end, details);
1394         mmu_notifier_invalidate_range_end(&range);
1395         tlb_finish_mmu(&tlb, address, range.end);
1396 }
1397
1398 /**
1399  * zap_vma_ptes - remove ptes mapping the vma
1400  * @vma: vm_area_struct holding ptes to be zapped
1401  * @address: starting address of pages to zap
1402  * @size: number of bytes to zap
1403  *
1404  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405  *
1406  * The entire address range must be fully contained within the vma.
1407  *
1408  */
1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410                 unsigned long size)
1411 {
1412         if (address < vma->vm_start || address + size > vma->vm_end ||
1413                         !(vma->vm_flags & VM_PFNMAP))
1414                 return;
1415
1416         zap_page_range_single(vma, address, size, NULL);
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1421 {
1422         pgd_t *pgd;
1423         p4d_t *p4d;
1424         pud_t *pud;
1425         pmd_t *pmd;
1426
1427         pgd = pgd_offset(mm, addr);
1428         p4d = p4d_alloc(mm, pgd, addr);
1429         if (!p4d)
1430                 return NULL;
1431         pud = pud_alloc(mm, p4d, addr);
1432         if (!pud)
1433                 return NULL;
1434         pmd = pmd_alloc(mm, pud, addr);
1435         if (!pmd)
1436                 return NULL;
1437
1438         VM_BUG_ON(pmd_trans_huge(*pmd));
1439         return pmd;
1440 }
1441
1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443                         spinlock_t **ptl)
1444 {
1445         pmd_t *pmd = walk_to_pmd(mm, addr);
1446
1447         if (!pmd)
1448                 return NULL;
1449         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1450 }
1451
1452 static int validate_page_before_insert(struct page *page)
1453 {
1454         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1455                 return -EINVAL;
1456         flush_dcache_page(page);
1457         return 0;
1458 }
1459
1460 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1461                         unsigned long addr, struct page *page, pgprot_t prot)
1462 {
1463         if (!pte_none(*pte))
1464                 return -EBUSY;
1465         /* Ok, finally just insert the thing.. */
1466         get_page(page);
1467         inc_mm_counter_fast(mm, mm_counter_file(page));
1468         page_add_file_rmap(page, false);
1469         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470         return 0;
1471 }
1472
1473 /*
1474  * This is the old fallback for page remapping.
1475  *
1476  * For historical reasons, it only allows reserved pages. Only
1477  * old drivers should use this, and they needed to mark their
1478  * pages reserved for the old functions anyway.
1479  */
1480 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1481                         struct page *page, pgprot_t prot)
1482 {
1483         struct mm_struct *mm = vma->vm_mm;
1484         int retval;
1485         pte_t *pte;
1486         spinlock_t *ptl;
1487
1488         retval = validate_page_before_insert(page);
1489         if (retval)
1490                 goto out;
1491         retval = -ENOMEM;
1492         pte = get_locked_pte(mm, addr, &ptl);
1493         if (!pte)
1494                 goto out;
1495         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1496         pte_unmap_unlock(pte, ptl);
1497 out:
1498         return retval;
1499 }
1500
1501 #ifdef pte_index
1502 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1503                         unsigned long addr, struct page *page, pgprot_t prot)
1504 {
1505         int err;
1506
1507         if (!page_count(page))
1508                 return -EINVAL;
1509         err = validate_page_before_insert(page);
1510         return err ? err : insert_page_into_pte_locked(
1511                 mm, pte_offset_map(pmd, addr), addr, page, prot);
1512 }
1513
1514 /* insert_pages() amortizes the cost of spinlock operations
1515  * when inserting pages in a loop. Arch *must* define pte_index.
1516  */
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518                         struct page **pages, unsigned long *num, pgprot_t prot)
1519 {
1520         pmd_t *pmd = NULL;
1521         spinlock_t *pte_lock = NULL;
1522         struct mm_struct *const mm = vma->vm_mm;
1523         unsigned long curr_page_idx = 0;
1524         unsigned long remaining_pages_total = *num;
1525         unsigned long pages_to_write_in_pmd;
1526         int ret;
1527 more:
1528         ret = -EFAULT;
1529         pmd = walk_to_pmd(mm, addr);
1530         if (!pmd)
1531                 goto out;
1532
1533         pages_to_write_in_pmd = min_t(unsigned long,
1534                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1535
1536         /* Allocate the PTE if necessary; takes PMD lock once only. */
1537         ret = -ENOMEM;
1538         if (pte_alloc(mm, pmd))
1539                 goto out;
1540         pte_lock = pte_lockptr(mm, pmd);
1541
1542         while (pages_to_write_in_pmd) {
1543                 int pte_idx = 0;
1544                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545
1546                 spin_lock(pte_lock);
1547                 for (; pte_idx < batch_size; ++pte_idx) {
1548                         int err = insert_page_in_batch_locked(mm, pmd,
1549                                 addr, pages[curr_page_idx], prot);
1550                         if (unlikely(err)) {
1551                                 spin_unlock(pte_lock);
1552                                 ret = err;
1553                                 remaining_pages_total -= pte_idx;
1554                                 goto out;
1555                         }
1556                         addr += PAGE_SIZE;
1557                         ++curr_page_idx;
1558                 }
1559                 spin_unlock(pte_lock);
1560                 pages_to_write_in_pmd -= batch_size;
1561                 remaining_pages_total -= batch_size;
1562         }
1563         if (remaining_pages_total)
1564                 goto more;
1565         ret = 0;
1566 out:
1567         *num = remaining_pages_total;
1568         return ret;
1569 }
1570 #endif  /* ifdef pte_index */
1571
1572 /**
1573  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574  * @vma: user vma to map to
1575  * @addr: target start user address of these pages
1576  * @pages: source kernel pages
1577  * @num: in: number of pages to map. out: number of pages that were *not*
1578  * mapped. (0 means all pages were successfully mapped).
1579  *
1580  * Preferred over vm_insert_page() when inserting multiple pages.
1581  *
1582  * In case of error, we may have mapped a subset of the provided
1583  * pages. It is the caller's responsibility to account for this case.
1584  *
1585  * The same restrictions apply as in vm_insert_page().
1586  */
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588                         struct page **pages, unsigned long *num)
1589 {
1590 #ifdef pte_index
1591         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592
1593         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594                 return -EFAULT;
1595         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1597                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1598                 vma->vm_flags |= VM_MIXEDMAP;
1599         }
1600         /* Defer page refcount checking till we're about to map that page. */
1601         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603         unsigned long idx = 0, pgcount = *num;
1604         int err;
1605
1606         for (; idx < pgcount; ++idx) {
1607                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608                 if (err)
1609                         break;
1610         }
1611         *num = pgcount - idx;
1612         return err;
1613 #endif  /* ifdef pte_index */
1614 }
1615 EXPORT_SYMBOL(vm_insert_pages);
1616
1617 /**
1618  * vm_insert_page - insert single page into user vma
1619  * @vma: user vma to map to
1620  * @addr: target user address of this page
1621  * @page: source kernel page
1622  *
1623  * This allows drivers to insert individual pages they've allocated
1624  * into a user vma.
1625  *
1626  * The page has to be a nice clean _individual_ kernel allocation.
1627  * If you allocate a compound page, you need to have marked it as
1628  * such (__GFP_COMP), or manually just split the page up yourself
1629  * (see split_page()).
1630  *
1631  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632  * took an arbitrary page protection parameter. This doesn't allow
1633  * that. Your vma protection will have to be set up correctly, which
1634  * means that if you want a shared writable mapping, you'd better
1635  * ask for a shared writable mapping!
1636  *
1637  * The page does not need to be reserved.
1638  *
1639  * Usually this function is called from f_op->mmap() handler
1640  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1641  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642  * function from other places, for example from page-fault handler.
1643  *
1644  * Return: %0 on success, negative error code otherwise.
1645  */
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647                         struct page *page)
1648 {
1649         if (addr < vma->vm_start || addr >= vma->vm_end)
1650                 return -EFAULT;
1651         if (!page_count(page))
1652                 return -EINVAL;
1653         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1655                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1656                 vma->vm_flags |= VM_MIXEDMAP;
1657         }
1658         return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 EXPORT_SYMBOL(vm_insert_page);
1661
1662 /*
1663  * __vm_map_pages - maps range of kernel pages into user vma
1664  * @vma: user vma to map to
1665  * @pages: pointer to array of source kernel pages
1666  * @num: number of pages in page array
1667  * @offset: user's requested vm_pgoff
1668  *
1669  * This allows drivers to map range of kernel pages into a user vma.
1670  *
1671  * Return: 0 on success and error code otherwise.
1672  */
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674                                 unsigned long num, unsigned long offset)
1675 {
1676         unsigned long count = vma_pages(vma);
1677         unsigned long uaddr = vma->vm_start;
1678         int ret, i;
1679
1680         /* Fail if the user requested offset is beyond the end of the object */
1681         if (offset >= num)
1682                 return -ENXIO;
1683
1684         /* Fail if the user requested size exceeds available object size */
1685         if (count > num - offset)
1686                 return -ENXIO;
1687
1688         for (i = 0; i < count; i++) {
1689                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690                 if (ret < 0)
1691                         return ret;
1692                 uaddr += PAGE_SIZE;
1693         }
1694
1695         return 0;
1696 }
1697
1698 /**
1699  * vm_map_pages - maps range of kernel pages starts with non zero offset
1700  * @vma: user vma to map to
1701  * @pages: pointer to array of source kernel pages
1702  * @num: number of pages in page array
1703  *
1704  * Maps an object consisting of @num pages, catering for the user's
1705  * requested vm_pgoff
1706  *
1707  * If we fail to insert any page into the vma, the function will return
1708  * immediately leaving any previously inserted pages present.  Callers
1709  * from the mmap handler may immediately return the error as their caller
1710  * will destroy the vma, removing any successfully inserted pages. Other
1711  * callers should make their own arrangements for calling unmap_region().
1712  *
1713  * Context: Process context. Called by mmap handlers.
1714  * Return: 0 on success and error code otherwise.
1715  */
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717                                 unsigned long num)
1718 {
1719         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720 }
1721 EXPORT_SYMBOL(vm_map_pages);
1722
1723 /**
1724  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725  * @vma: user vma to map to
1726  * @pages: pointer to array of source kernel pages
1727  * @num: number of pages in page array
1728  *
1729  * Similar to vm_map_pages(), except that it explicitly sets the offset
1730  * to 0. This function is intended for the drivers that did not consider
1731  * vm_pgoff.
1732  *
1733  * Context: Process context. Called by mmap handlers.
1734  * Return: 0 on success and error code otherwise.
1735  */
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737                                 unsigned long num)
1738 {
1739         return __vm_map_pages(vma, pages, num, 0);
1740 }
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1742
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1745 {
1746         struct mm_struct *mm = vma->vm_mm;
1747         pte_t *pte, entry;
1748         spinlock_t *ptl;
1749
1750         pte = get_locked_pte(mm, addr, &ptl);
1751         if (!pte)
1752                 return VM_FAULT_OOM;
1753         if (!pte_none(*pte)) {
1754                 if (mkwrite) {
1755                         /*
1756                          * For read faults on private mappings the PFN passed
1757                          * in may not match the PFN we have mapped if the
1758                          * mapped PFN is a writeable COW page.  In the mkwrite
1759                          * case we are creating a writable PTE for a shared
1760                          * mapping and we expect the PFNs to match. If they
1761                          * don't match, we are likely racing with block
1762                          * allocation and mapping invalidation so just skip the
1763                          * update.
1764                          */
1765                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767                                 goto out_unlock;
1768                         }
1769                         entry = pte_mkyoung(*pte);
1770                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772                                 update_mmu_cache(vma, addr, pte);
1773                 }
1774                 goto out_unlock;
1775         }
1776
1777         /* Ok, finally just insert the thing.. */
1778         if (pfn_t_devmap(pfn))
1779                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780         else
1781                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1782
1783         if (mkwrite) {
1784                 entry = pte_mkyoung(entry);
1785                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786         }
1787
1788         set_pte_at(mm, addr, pte, entry);
1789         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790
1791 out_unlock:
1792         pte_unmap_unlock(pte, ptl);
1793         return VM_FAULT_NOPAGE;
1794 }
1795
1796 /**
1797  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798  * @vma: user vma to map to
1799  * @addr: target user address of this page
1800  * @pfn: source kernel pfn
1801  * @pgprot: pgprot flags for the inserted page
1802  *
1803  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804  * to override pgprot on a per-page basis.
1805  *
1806  * This only makes sense for IO mappings, and it makes no sense for
1807  * COW mappings.  In general, using multiple vmas is preferable;
1808  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809  * impractical.
1810  *
1811  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812  * a value of @pgprot different from that of @vma->vm_page_prot.
1813  *
1814  * Context: Process context.  May allocate using %GFP_KERNEL.
1815  * Return: vm_fault_t value.
1816  */
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818                         unsigned long pfn, pgprot_t pgprot)
1819 {
1820         /*
1821          * Technically, architectures with pte_special can avoid all these
1822          * restrictions (same for remap_pfn_range).  However we would like
1823          * consistency in testing and feature parity among all, so we should
1824          * try to keep these invariants in place for everybody.
1825          */
1826         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828                                                 (VM_PFNMAP|VM_MIXEDMAP));
1829         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832         if (addr < vma->vm_start || addr >= vma->vm_end)
1833                 return VM_FAULT_SIGBUS;
1834
1835         if (!pfn_modify_allowed(pfn, pgprot))
1836                 return VM_FAULT_SIGBUS;
1837
1838         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839
1840         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841                         false);
1842 }
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1844
1845 /**
1846  * vmf_insert_pfn - insert single pfn into user vma
1847  * @vma: user vma to map to
1848  * @addr: target user address of this page
1849  * @pfn: source kernel pfn
1850  *
1851  * Similar to vm_insert_page, this allows drivers to insert individual pages
1852  * they've allocated into a user vma. Same comments apply.
1853  *
1854  * This function should only be called from a vm_ops->fault handler, and
1855  * in that case the handler should return the result of this function.
1856  *
1857  * vma cannot be a COW mapping.
1858  *
1859  * As this is called only for pages that do not currently exist, we
1860  * do not need to flush old virtual caches or the TLB.
1861  *
1862  * Context: Process context.  May allocate using %GFP_KERNEL.
1863  * Return: vm_fault_t value.
1864  */
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866                         unsigned long pfn)
1867 {
1868         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869 }
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1871
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873 {
1874         /* these checks mirror the abort conditions in vm_normal_page */
1875         if (vma->vm_flags & VM_MIXEDMAP)
1876                 return true;
1877         if (pfn_t_devmap(pfn))
1878                 return true;
1879         if (pfn_t_special(pfn))
1880                 return true;
1881         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882                 return true;
1883         return false;
1884 }
1885
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888                 bool mkwrite)
1889 {
1890         int err;
1891
1892         BUG_ON(!vm_mixed_ok(vma, pfn));
1893
1894         if (addr < vma->vm_start || addr >= vma->vm_end)
1895                 return VM_FAULT_SIGBUS;
1896
1897         track_pfn_insert(vma, &pgprot, pfn);
1898
1899         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900                 return VM_FAULT_SIGBUS;
1901
1902         /*
1903          * If we don't have pte special, then we have to use the pfn_valid()
1904          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905          * refcount the page if pfn_valid is true (hence insert_page rather
1906          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1907          * without pte special, it would there be refcounted as a normal page.
1908          */
1909         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911                 struct page *page;
1912
1913                 /*
1914                  * At this point we are committed to insert_page()
1915                  * regardless of whether the caller specified flags that
1916                  * result in pfn_t_has_page() == false.
1917                  */
1918                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1919                 err = insert_page(vma, addr, page, pgprot);
1920         } else {
1921                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1922         }
1923
1924         if (err == -ENOMEM)
1925                 return VM_FAULT_OOM;
1926         if (err < 0 && err != -EBUSY)
1927                 return VM_FAULT_SIGBUS;
1928
1929         return VM_FAULT_NOPAGE;
1930 }
1931
1932 /**
1933  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934  * @vma: user vma to map to
1935  * @addr: target user address of this page
1936  * @pfn: source kernel pfn
1937  * @pgprot: pgprot flags for the inserted page
1938  *
1939  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940  * to override pgprot on a per-page basis.
1941  *
1942  * Typically this function should be used by drivers to set caching- and
1943  * encryption bits different than those of @vma->vm_page_prot, because
1944  * the caching- or encryption mode may not be known at mmap() time.
1945  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946  * to set caching and encryption bits for those vmas (except for COW pages).
1947  * This is ensured by core vm only modifying these page table entries using
1948  * functions that don't touch caching- or encryption bits, using pte_modify()
1949  * if needed. (See for example mprotect()).
1950  * Also when new page-table entries are created, this is only done using the
1951  * fault() callback, and never using the value of vma->vm_page_prot,
1952  * except for page-table entries that point to anonymous pages as the result
1953  * of COW.
1954  *
1955  * Context: Process context.  May allocate using %GFP_KERNEL.
1956  * Return: vm_fault_t value.
1957  */
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959                                  pfn_t pfn, pgprot_t pgprot)
1960 {
1961         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962 }
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1964
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966                 pfn_t pfn)
1967 {
1968         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1971
1972 /*
1973  *  If the insertion of PTE failed because someone else already added a
1974  *  different entry in the mean time, we treat that as success as we assume
1975  *  the same entry was actually inserted.
1976  */
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978                 unsigned long addr, pfn_t pfn)
1979 {
1980         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983
1984 /*
1985  * maps a range of physical memory into the requested pages. the old
1986  * mappings are removed. any references to nonexistent pages results
1987  * in null mappings (currently treated as "copy-on-access")
1988  */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990                         unsigned long addr, unsigned long end,
1991                         unsigned long pfn, pgprot_t prot)
1992 {
1993         pte_t *pte;
1994         spinlock_t *ptl;
1995         int err = 0;
1996
1997         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998         if (!pte)
1999                 return -ENOMEM;
2000         arch_enter_lazy_mmu_mode();
2001         do {
2002                 BUG_ON(!pte_none(*pte));
2003                 if (!pfn_modify_allowed(pfn, prot)) {
2004                         err = -EACCES;
2005                         break;
2006                 }
2007                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008                 pfn++;
2009         } while (pte++, addr += PAGE_SIZE, addr != end);
2010         arch_leave_lazy_mmu_mode();
2011         pte_unmap_unlock(pte - 1, ptl);
2012         return err;
2013 }
2014
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016                         unsigned long addr, unsigned long end,
2017                         unsigned long pfn, pgprot_t prot)
2018 {
2019         pmd_t *pmd;
2020         unsigned long next;
2021         int err;
2022
2023         pfn -= addr >> PAGE_SHIFT;
2024         pmd = pmd_alloc(mm, pud, addr);
2025         if (!pmd)
2026                 return -ENOMEM;
2027         VM_BUG_ON(pmd_trans_huge(*pmd));
2028         do {
2029                 next = pmd_addr_end(addr, end);
2030                 err = remap_pte_range(mm, pmd, addr, next,
2031                                 pfn + (addr >> PAGE_SHIFT), prot);
2032                 if (err)
2033                         return err;
2034         } while (pmd++, addr = next, addr != end);
2035         return 0;
2036 }
2037
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039                         unsigned long addr, unsigned long end,
2040                         unsigned long pfn, pgprot_t prot)
2041 {
2042         pud_t *pud;
2043         unsigned long next;
2044         int err;
2045
2046         pfn -= addr >> PAGE_SHIFT;
2047         pud = pud_alloc(mm, p4d, addr);
2048         if (!pud)
2049                 return -ENOMEM;
2050         do {
2051                 next = pud_addr_end(addr, end);
2052                 err = remap_pmd_range(mm, pud, addr, next,
2053                                 pfn + (addr >> PAGE_SHIFT), prot);
2054                 if (err)
2055                         return err;
2056         } while (pud++, addr = next, addr != end);
2057         return 0;
2058 }
2059
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061                         unsigned long addr, unsigned long end,
2062                         unsigned long pfn, pgprot_t prot)
2063 {
2064         p4d_t *p4d;
2065         unsigned long next;
2066         int err;
2067
2068         pfn -= addr >> PAGE_SHIFT;
2069         p4d = p4d_alloc(mm, pgd, addr);
2070         if (!p4d)
2071                 return -ENOMEM;
2072         do {
2073                 next = p4d_addr_end(addr, end);
2074                 err = remap_pud_range(mm, p4d, addr, next,
2075                                 pfn + (addr >> PAGE_SHIFT), prot);
2076                 if (err)
2077                         return err;
2078         } while (p4d++, addr = next, addr != end);
2079         return 0;
2080 }
2081
2082 /**
2083  * remap_pfn_range - remap kernel memory to userspace
2084  * @vma: user vma to map to
2085  * @addr: target user address to start at
2086  * @pfn: page frame number of kernel physical memory address
2087  * @size: size of mapping area
2088  * @prot: page protection flags for this mapping
2089  *
2090  * Note: this is only safe if the mm semaphore is held when called.
2091  *
2092  * Return: %0 on success, negative error code otherwise.
2093  */
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095                     unsigned long pfn, unsigned long size, pgprot_t prot)
2096 {
2097         pgd_t *pgd;
2098         unsigned long next;
2099         unsigned long end = addr + PAGE_ALIGN(size);
2100         struct mm_struct *mm = vma->vm_mm;
2101         unsigned long remap_pfn = pfn;
2102         int err;
2103
2104         /*
2105          * Physically remapped pages are special. Tell the
2106          * rest of the world about it:
2107          *   VM_IO tells people not to look at these pages
2108          *      (accesses can have side effects).
2109          *   VM_PFNMAP tells the core MM that the base pages are just
2110          *      raw PFN mappings, and do not have a "struct page" associated
2111          *      with them.
2112          *   VM_DONTEXPAND
2113          *      Disable vma merging and expanding with mremap().
2114          *   VM_DONTDUMP
2115          *      Omit vma from core dump, even when VM_IO turned off.
2116          *
2117          * There's a horrible special case to handle copy-on-write
2118          * behaviour that some programs depend on. We mark the "original"
2119          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120          * See vm_normal_page() for details.
2121          */
2122         if (is_cow_mapping(vma->vm_flags)) {
2123                 if (addr != vma->vm_start || end != vma->vm_end)
2124                         return -EINVAL;
2125                 vma->vm_pgoff = pfn;
2126         }
2127
2128         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2129         if (err)
2130                 return -EINVAL;
2131
2132         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2133
2134         BUG_ON(addr >= end);
2135         pfn -= addr >> PAGE_SHIFT;
2136         pgd = pgd_offset(mm, addr);
2137         flush_cache_range(vma, addr, end);
2138         do {
2139                 next = pgd_addr_end(addr, end);
2140                 err = remap_p4d_range(mm, pgd, addr, next,
2141                                 pfn + (addr >> PAGE_SHIFT), prot);
2142                 if (err)
2143                         break;
2144         } while (pgd++, addr = next, addr != end);
2145
2146         if (err)
2147                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2148
2149         return err;
2150 }
2151 EXPORT_SYMBOL(remap_pfn_range);
2152
2153 /**
2154  * vm_iomap_memory - remap memory to userspace
2155  * @vma: user vma to map to
2156  * @start: start of the physical memory to be mapped
2157  * @len: size of area
2158  *
2159  * This is a simplified io_remap_pfn_range() for common driver use. The
2160  * driver just needs to give us the physical memory range to be mapped,
2161  * we'll figure out the rest from the vma information.
2162  *
2163  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164  * whatever write-combining details or similar.
2165  *
2166  * Return: %0 on success, negative error code otherwise.
2167  */
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2169 {
2170         unsigned long vm_len, pfn, pages;
2171
2172         /* Check that the physical memory area passed in looks valid */
2173         if (start + len < start)
2174                 return -EINVAL;
2175         /*
2176          * You *really* shouldn't map things that aren't page-aligned,
2177          * but we've historically allowed it because IO memory might
2178          * just have smaller alignment.
2179          */
2180         len += start & ~PAGE_MASK;
2181         pfn = start >> PAGE_SHIFT;
2182         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183         if (pfn + pages < pfn)
2184                 return -EINVAL;
2185
2186         /* We start the mapping 'vm_pgoff' pages into the area */
2187         if (vma->vm_pgoff > pages)
2188                 return -EINVAL;
2189         pfn += vma->vm_pgoff;
2190         pages -= vma->vm_pgoff;
2191
2192         /* Can we fit all of the mapping? */
2193         vm_len = vma->vm_end - vma->vm_start;
2194         if (vm_len >> PAGE_SHIFT > pages)
2195                 return -EINVAL;
2196
2197         /* Ok, let it rip */
2198         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2199 }
2200 EXPORT_SYMBOL(vm_iomap_memory);
2201
2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203                                      unsigned long addr, unsigned long end,
2204                                      pte_fn_t fn, void *data, bool create)
2205 {
2206         pte_t *pte;
2207         int err = 0;
2208         spinlock_t *uninitialized_var(ptl);
2209
2210         if (create) {
2211                 pte = (mm == &init_mm) ?
2212                         pte_alloc_kernel(pmd, addr) :
2213                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214                 if (!pte)
2215                         return -ENOMEM;
2216         } else {
2217                 pte = (mm == &init_mm) ?
2218                         pte_offset_kernel(pmd, addr) :
2219                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2220         }
2221
2222         BUG_ON(pmd_huge(*pmd));
2223
2224         arch_enter_lazy_mmu_mode();
2225
2226         do {
2227                 if (create || !pte_none(*pte)) {
2228                         err = fn(pte++, addr, data);
2229                         if (err)
2230                                 break;
2231                 }
2232         } while (addr += PAGE_SIZE, addr != end);
2233
2234         arch_leave_lazy_mmu_mode();
2235
2236         if (mm != &init_mm)
2237                 pte_unmap_unlock(pte-1, ptl);
2238         return err;
2239 }
2240
2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242                                      unsigned long addr, unsigned long end,
2243                                      pte_fn_t fn, void *data, bool create)
2244 {
2245         pmd_t *pmd;
2246         unsigned long next;
2247         int err = 0;
2248
2249         BUG_ON(pud_huge(*pud));
2250
2251         if (create) {
2252                 pmd = pmd_alloc(mm, pud, addr);
2253                 if (!pmd)
2254                         return -ENOMEM;
2255         } else {
2256                 pmd = pmd_offset(pud, addr);
2257         }
2258         do {
2259                 next = pmd_addr_end(addr, end);
2260                 if (create || !pmd_none_or_clear_bad(pmd)) {
2261                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262                                                  create);
2263                         if (err)
2264                                 break;
2265                 }
2266         } while (pmd++, addr = next, addr != end);
2267         return err;
2268 }
2269
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271                                      unsigned long addr, unsigned long end,
2272                                      pte_fn_t fn, void *data, bool create)
2273 {
2274         pud_t *pud;
2275         unsigned long next;
2276         int err = 0;
2277
2278         if (create) {
2279                 pud = pud_alloc(mm, p4d, addr);
2280                 if (!pud)
2281                         return -ENOMEM;
2282         } else {
2283                 pud = pud_offset(p4d, addr);
2284         }
2285         do {
2286                 next = pud_addr_end(addr, end);
2287                 if (create || !pud_none_or_clear_bad(pud)) {
2288                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289                                                  create);
2290                         if (err)
2291                                 break;
2292                 }
2293         } while (pud++, addr = next, addr != end);
2294         return err;
2295 }
2296
2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298                                      unsigned long addr, unsigned long end,
2299                                      pte_fn_t fn, void *data, bool create)
2300 {
2301         p4d_t *p4d;
2302         unsigned long next;
2303         int err = 0;
2304
2305         if (create) {
2306                 p4d = p4d_alloc(mm, pgd, addr);
2307                 if (!p4d)
2308                         return -ENOMEM;
2309         } else {
2310                 p4d = p4d_offset(pgd, addr);
2311         }
2312         do {
2313                 next = p4d_addr_end(addr, end);
2314                 if (create || !p4d_none_or_clear_bad(p4d)) {
2315                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316                                                  create);
2317                         if (err)
2318                                 break;
2319                 }
2320         } while (p4d++, addr = next, addr != end);
2321         return err;
2322 }
2323
2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325                                  unsigned long size, pte_fn_t fn,
2326                                  void *data, bool create)
2327 {
2328         pgd_t *pgd;
2329         unsigned long next;
2330         unsigned long end = addr + size;
2331         int err = 0;
2332
2333         if (WARN_ON(addr >= end))
2334                 return -EINVAL;
2335
2336         pgd = pgd_offset(mm, addr);
2337         do {
2338                 next = pgd_addr_end(addr, end);
2339                 if (!create && pgd_none_or_clear_bad(pgd))
2340                         continue;
2341                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2342                 if (err)
2343                         break;
2344         } while (pgd++, addr = next, addr != end);
2345
2346         return err;
2347 }
2348
2349 /*
2350  * Scan a region of virtual memory, filling in page tables as necessary
2351  * and calling a provided function on each leaf page table.
2352  */
2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354                         unsigned long size, pte_fn_t fn, void *data)
2355 {
2356         return __apply_to_page_range(mm, addr, size, fn, data, true);
2357 }
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2359
2360 /*
2361  * Scan a region of virtual memory, calling a provided function on
2362  * each leaf page table where it exists.
2363  *
2364  * Unlike apply_to_page_range, this does _not_ fill in page tables
2365  * where they are absent.
2366  */
2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368                                  unsigned long size, pte_fn_t fn, void *data)
2369 {
2370         return __apply_to_page_range(mm, addr, size, fn, data, false);
2371 }
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2373
2374 /*
2375  * handle_pte_fault chooses page fault handler according to an entry which was
2376  * read non-atomically.  Before making any commitment, on those architectures
2377  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378  * parts, do_swap_page must check under lock before unmapping the pte and
2379  * proceeding (but do_wp_page is only called after already making such a check;
2380  * and do_anonymous_page can safely check later on).
2381  */
2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2383                                 pte_t *page_table, pte_t orig_pte)
2384 {
2385         int same = 1;
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387         if (sizeof(pte_t) > sizeof(unsigned long)) {
2388                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2389                 spin_lock(ptl);
2390                 same = pte_same(*page_table, orig_pte);
2391                 spin_unlock(ptl);
2392         }
2393 #endif
2394         pte_unmap(page_table);
2395         return same;
2396 }
2397
2398 static inline bool cow_user_page(struct page *dst, struct page *src,
2399                                  struct vm_fault *vmf)
2400 {
2401         bool ret;
2402         void *kaddr;
2403         void __user *uaddr;
2404         bool locked = false;
2405         struct vm_area_struct *vma = vmf->vma;
2406         struct mm_struct *mm = vma->vm_mm;
2407         unsigned long addr = vmf->address;
2408
2409         debug_dma_assert_idle(src);
2410
2411         if (likely(src)) {
2412                 copy_user_highpage(dst, src, addr, vma);
2413                 return true;
2414         }
2415
2416         /*
2417          * If the source page was a PFN mapping, we don't have
2418          * a "struct page" for it. We do a best-effort copy by
2419          * just copying from the original user address. If that
2420          * fails, we just zero-fill it. Live with it.
2421          */
2422         kaddr = kmap_atomic(dst);
2423         uaddr = (void __user *)(addr & PAGE_MASK);
2424
2425         /*
2426          * On architectures with software "accessed" bits, we would
2427          * take a double page fault, so mark it accessed here.
2428          */
2429         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2430                 pte_t entry;
2431
2432                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2433                 locked = true;
2434                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2435                         /*
2436                          * Other thread has already handled the fault
2437                          * and we don't need to do anything. If it's
2438                          * not the case, the fault will be triggered
2439                          * again on the same address.
2440                          */
2441                         ret = false;
2442                         goto pte_unlock;
2443                 }
2444
2445                 entry = pte_mkyoung(vmf->orig_pte);
2446                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2447                         update_mmu_cache(vma, addr, vmf->pte);
2448         }
2449
2450         /*
2451          * This really shouldn't fail, because the page is there
2452          * in the page tables. But it might just be unreadable,
2453          * in which case we just give up and fill the result with
2454          * zeroes.
2455          */
2456         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2457                 if (locked)
2458                         goto warn;
2459
2460                 /* Re-validate under PTL if the page is still mapped */
2461                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2462                 locked = true;
2463                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2464                         /* The PTE changed under us. Retry page fault. */
2465                         ret = false;
2466                         goto pte_unlock;
2467                 }
2468
2469                 /*
2470                  * The same page can be mapped back since last copy attampt.
2471                  * Try to copy again under PTL.
2472                  */
2473                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2474                         /*
2475                          * Give a warn in case there can be some obscure
2476                          * use-case
2477                          */
2478 warn:
2479                         WARN_ON_ONCE(1);
2480                         clear_page(kaddr);
2481                 }
2482         }
2483
2484         ret = true;
2485
2486 pte_unlock:
2487         if (locked)
2488                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2489         kunmap_atomic(kaddr);
2490         flush_dcache_page(dst);
2491
2492         return ret;
2493 }
2494
2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2496 {
2497         struct file *vm_file = vma->vm_file;
2498
2499         if (vm_file)
2500                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2501
2502         /*
2503          * Special mappings (e.g. VDSO) do not have any file so fake
2504          * a default GFP_KERNEL for them.
2505          */
2506         return GFP_KERNEL;
2507 }
2508
2509 /*
2510  * Notify the address space that the page is about to become writable so that
2511  * it can prohibit this or wait for the page to get into an appropriate state.
2512  *
2513  * We do this without the lock held, so that it can sleep if it needs to.
2514  */
2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2516 {
2517         vm_fault_t ret;
2518         struct page *page = vmf->page;
2519         unsigned int old_flags = vmf->flags;
2520
2521         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2522
2523         if (vmf->vma->vm_file &&
2524             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525                 return VM_FAULT_SIGBUS;
2526
2527         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2528         /* Restore original flags so that caller is not surprised */
2529         vmf->flags = old_flags;
2530         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531                 return ret;
2532         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533                 lock_page(page);
2534                 if (!page->mapping) {
2535                         unlock_page(page);
2536                         return 0; /* retry */
2537                 }
2538                 ret |= VM_FAULT_LOCKED;
2539         } else
2540                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2541         return ret;
2542 }
2543
2544 /*
2545  * Handle dirtying of a page in shared file mapping on a write fault.
2546  *
2547  * The function expects the page to be locked and unlocks it.
2548  */
2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2550 {
2551         struct vm_area_struct *vma = vmf->vma;
2552         struct address_space *mapping;
2553         struct page *page = vmf->page;
2554         bool dirtied;
2555         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2556
2557         dirtied = set_page_dirty(page);
2558         VM_BUG_ON_PAGE(PageAnon(page), page);
2559         /*
2560          * Take a local copy of the address_space - page.mapping may be zeroed
2561          * by truncate after unlock_page().   The address_space itself remains
2562          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2563          * release semantics to prevent the compiler from undoing this copying.
2564          */
2565         mapping = page_rmapping(page);
2566         unlock_page(page);
2567
2568         if (!page_mkwrite)
2569                 file_update_time(vma->vm_file);
2570
2571         /*
2572          * Throttle page dirtying rate down to writeback speed.
2573          *
2574          * mapping may be NULL here because some device drivers do not
2575          * set page.mapping but still dirty their pages
2576          *
2577          * Drop the mmap_sem before waiting on IO, if we can. The file
2578          * is pinning the mapping, as per above.
2579          */
2580         if ((dirtied || page_mkwrite) && mapping) {
2581                 struct file *fpin;
2582
2583                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2584                 balance_dirty_pages_ratelimited(mapping);
2585                 if (fpin) {
2586                         fput(fpin);
2587                         return VM_FAULT_RETRY;
2588                 }
2589         }
2590
2591         return 0;
2592 }
2593
2594 /*
2595  * Handle write page faults for pages that can be reused in the current vma
2596  *
2597  * This can happen either due to the mapping being with the VM_SHARED flag,
2598  * or due to us being the last reference standing to the page. In either
2599  * case, all we need to do here is to mark the page as writable and update
2600  * any related book-keeping.
2601  */
2602 static inline void wp_page_reuse(struct vm_fault *vmf)
2603         __releases(vmf->ptl)
2604 {
2605         struct vm_area_struct *vma = vmf->vma;
2606         struct page *page = vmf->page;
2607         pte_t entry;
2608         /*
2609          * Clear the pages cpupid information as the existing
2610          * information potentially belongs to a now completely
2611          * unrelated process.
2612          */
2613         if (page)
2614                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2615
2616         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617         entry = pte_mkyoung(vmf->orig_pte);
2618         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2619         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620                 update_mmu_cache(vma, vmf->address, vmf->pte);
2621         pte_unmap_unlock(vmf->pte, vmf->ptl);
2622 }
2623
2624 /*
2625  * Handle the case of a page which we actually need to copy to a new page.
2626  *
2627  * Called with mmap_sem locked and the old page referenced, but
2628  * without the ptl held.
2629  *
2630  * High level logic flow:
2631  *
2632  * - Allocate a page, copy the content of the old page to the new one.
2633  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634  * - Take the PTL. If the pte changed, bail out and release the allocated page
2635  * - If the pte is still the way we remember it, update the page table and all
2636  *   relevant references. This includes dropping the reference the page-table
2637  *   held to the old page, as well as updating the rmap.
2638  * - In any case, unlock the PTL and drop the reference we took to the old page.
2639  */
2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2641 {
2642         struct vm_area_struct *vma = vmf->vma;
2643         struct mm_struct *mm = vma->vm_mm;
2644         struct page *old_page = vmf->page;
2645         struct page *new_page = NULL;
2646         pte_t entry;
2647         int page_copied = 0;
2648         struct mem_cgroup *memcg;
2649         struct mmu_notifier_range range;
2650
2651         if (unlikely(anon_vma_prepare(vma)))
2652                 goto oom;
2653
2654         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2655                 new_page = alloc_zeroed_user_highpage_movable(vma,
2656                                                               vmf->address);
2657                 if (!new_page)
2658                         goto oom;
2659         } else {
2660                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2661                                 vmf->address);
2662                 if (!new_page)
2663                         goto oom;
2664
2665                 if (!cow_user_page(new_page, old_page, vmf)) {
2666                         /*
2667                          * COW failed, if the fault was solved by other,
2668                          * it's fine. If not, userspace would re-fault on
2669                          * the same address and we will handle the fault
2670                          * from the second attempt.
2671                          */
2672                         put_page(new_page);
2673                         if (old_page)
2674                                 put_page(old_page);
2675                         return 0;
2676                 }
2677         }
2678
2679         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg))
2680                 goto oom_free_new;
2681
2682         __SetPageUptodate(new_page);
2683
2684         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2685                                 vmf->address & PAGE_MASK,
2686                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2687         mmu_notifier_invalidate_range_start(&range);
2688
2689         /*
2690          * Re-check the pte - we dropped the lock
2691          */
2692         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2693         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2694                 if (old_page) {
2695                         if (!PageAnon(old_page)) {
2696                                 dec_mm_counter_fast(mm,
2697                                                 mm_counter_file(old_page));
2698                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2699                         }
2700                 } else {
2701                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2702                 }
2703                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2704                 entry = mk_pte(new_page, vma->vm_page_prot);
2705                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706                 /*
2707                  * Clear the pte entry and flush it first, before updating the
2708                  * pte with the new entry. This will avoid a race condition
2709                  * seen in the presence of one thread doing SMC and another
2710                  * thread doing COW.
2711                  */
2712                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2714                 mem_cgroup_commit_charge(new_page, memcg, false);
2715                 lru_cache_add_active_or_unevictable(new_page, vma);
2716                 /*
2717                  * We call the notify macro here because, when using secondary
2718                  * mmu page tables (such as kvm shadow page tables), we want the
2719                  * new page to be mapped directly into the secondary page table.
2720                  */
2721                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2722                 update_mmu_cache(vma, vmf->address, vmf->pte);
2723                 if (old_page) {
2724                         /*
2725                          * Only after switching the pte to the new page may
2726                          * we remove the mapcount here. Otherwise another
2727                          * process may come and find the rmap count decremented
2728                          * before the pte is switched to the new page, and
2729                          * "reuse" the old page writing into it while our pte
2730                          * here still points into it and can be read by other
2731                          * threads.
2732                          *
2733                          * The critical issue is to order this
2734                          * page_remove_rmap with the ptp_clear_flush above.
2735                          * Those stores are ordered by (if nothing else,)
2736                          * the barrier present in the atomic_add_negative
2737                          * in page_remove_rmap.
2738                          *
2739                          * Then the TLB flush in ptep_clear_flush ensures that
2740                          * no process can access the old page before the
2741                          * decremented mapcount is visible. And the old page
2742                          * cannot be reused until after the decremented
2743                          * mapcount is visible. So transitively, TLBs to
2744                          * old page will be flushed before it can be reused.
2745                          */
2746                         page_remove_rmap(old_page, false);
2747                 }
2748
2749                 /* Free the old page.. */
2750                 new_page = old_page;
2751                 page_copied = 1;
2752         } else {
2753                 mem_cgroup_cancel_charge(new_page, memcg);
2754         }
2755
2756         if (new_page)
2757                 put_page(new_page);
2758
2759         pte_unmap_unlock(vmf->pte, vmf->ptl);
2760         /*
2761          * No need to double call mmu_notifier->invalidate_range() callback as
2762          * the above ptep_clear_flush_notify() did already call it.
2763          */
2764         mmu_notifier_invalidate_range_only_end(&range);
2765         if (old_page) {
2766                 /*
2767                  * Don't let another task, with possibly unlocked vma,
2768                  * keep the mlocked page.
2769                  */
2770                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2771                         lock_page(old_page);    /* LRU manipulation */
2772                         if (PageMlocked(old_page))
2773                                 munlock_vma_page(old_page);
2774                         unlock_page(old_page);
2775                 }
2776                 put_page(old_page);
2777         }
2778         return page_copied ? VM_FAULT_WRITE : 0;
2779 oom_free_new:
2780         put_page(new_page);
2781 oom:
2782         if (old_page)
2783                 put_page(old_page);
2784         return VM_FAULT_OOM;
2785 }
2786
2787 /**
2788  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2789  *                        writeable once the page is prepared
2790  *
2791  * @vmf: structure describing the fault
2792  *
2793  * This function handles all that is needed to finish a write page fault in a
2794  * shared mapping due to PTE being read-only once the mapped page is prepared.
2795  * It handles locking of PTE and modifying it.
2796  *
2797  * The function expects the page to be locked or other protection against
2798  * concurrent faults / writeback (such as DAX radix tree locks).
2799  *
2800  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2801  * we acquired PTE lock.
2802  */
2803 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2804 {
2805         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2806         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2807                                        &vmf->ptl);
2808         /*
2809          * We might have raced with another page fault while we released the
2810          * pte_offset_map_lock.
2811          */
2812         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2813                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2814                 return VM_FAULT_NOPAGE;
2815         }
2816         wp_page_reuse(vmf);
2817         return 0;
2818 }
2819
2820 /*
2821  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2822  * mapping
2823  */
2824 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2825 {
2826         struct vm_area_struct *vma = vmf->vma;
2827
2828         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2829                 vm_fault_t ret;
2830
2831                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2832                 vmf->flags |= FAULT_FLAG_MKWRITE;
2833                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2834                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2835                         return ret;
2836                 return finish_mkwrite_fault(vmf);
2837         }
2838         wp_page_reuse(vmf);
2839         return VM_FAULT_WRITE;
2840 }
2841
2842 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2843         __releases(vmf->ptl)
2844 {
2845         struct vm_area_struct *vma = vmf->vma;
2846         vm_fault_t ret = VM_FAULT_WRITE;
2847
2848         get_page(vmf->page);
2849
2850         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2851                 vm_fault_t tmp;
2852
2853                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2854                 tmp = do_page_mkwrite(vmf);
2855                 if (unlikely(!tmp || (tmp &
2856                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2857                         put_page(vmf->page);
2858                         return tmp;
2859                 }
2860                 tmp = finish_mkwrite_fault(vmf);
2861                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2862                         unlock_page(vmf->page);
2863                         put_page(vmf->page);
2864                         return tmp;
2865                 }
2866         } else {
2867                 wp_page_reuse(vmf);
2868                 lock_page(vmf->page);
2869         }
2870         ret |= fault_dirty_shared_page(vmf);
2871         put_page(vmf->page);
2872
2873         return ret;
2874 }
2875
2876 /*
2877  * This routine handles present pages, when users try to write
2878  * to a shared page. It is done by copying the page to a new address
2879  * and decrementing the shared-page counter for the old page.
2880  *
2881  * Note that this routine assumes that the protection checks have been
2882  * done by the caller (the low-level page fault routine in most cases).
2883  * Thus we can safely just mark it writable once we've done any necessary
2884  * COW.
2885  *
2886  * We also mark the page dirty at this point even though the page will
2887  * change only once the write actually happens. This avoids a few races,
2888  * and potentially makes it more efficient.
2889  *
2890  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2891  * but allow concurrent faults), with pte both mapped and locked.
2892  * We return with mmap_sem still held, but pte unmapped and unlocked.
2893  */
2894 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2895         __releases(vmf->ptl)
2896 {
2897         struct vm_area_struct *vma = vmf->vma;
2898
2899         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2900                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2901                 return handle_userfault(vmf, VM_UFFD_WP);
2902         }
2903
2904         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2905         if (!vmf->page) {
2906                 /*
2907                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2908                  * VM_PFNMAP VMA.
2909                  *
2910                  * We should not cow pages in a shared writeable mapping.
2911                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2912                  */
2913                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2914                                      (VM_WRITE|VM_SHARED))
2915                         return wp_pfn_shared(vmf);
2916
2917                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2918                 return wp_page_copy(vmf);
2919         }
2920
2921         /*
2922          * Take out anonymous pages first, anonymous shared vmas are
2923          * not dirty accountable.
2924          */
2925         if (PageAnon(vmf->page)) {
2926                 int total_map_swapcount;
2927                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2928                                            page_count(vmf->page) != 1))
2929                         goto copy;
2930                 if (!trylock_page(vmf->page)) {
2931                         get_page(vmf->page);
2932                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2933                         lock_page(vmf->page);
2934                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2935                                         vmf->address, &vmf->ptl);
2936                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2937                                 unlock_page(vmf->page);
2938                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2939                                 put_page(vmf->page);
2940                                 return 0;
2941                         }
2942                         put_page(vmf->page);
2943                 }
2944                 if (PageKsm(vmf->page)) {
2945                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2946                                                      vmf->address);
2947                         unlock_page(vmf->page);
2948                         if (!reused)
2949                                 goto copy;
2950                         wp_page_reuse(vmf);
2951                         return VM_FAULT_WRITE;
2952                 }
2953                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2954                         if (total_map_swapcount == 1) {
2955                                 /*
2956                                  * The page is all ours. Move it to
2957                                  * our anon_vma so the rmap code will
2958                                  * not search our parent or siblings.
2959                                  * Protected against the rmap code by
2960                                  * the page lock.
2961                                  */
2962                                 page_move_anon_rmap(vmf->page, vma);
2963                         }
2964                         unlock_page(vmf->page);
2965                         wp_page_reuse(vmf);
2966                         return VM_FAULT_WRITE;
2967                 }
2968                 unlock_page(vmf->page);
2969         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2970                                         (VM_WRITE|VM_SHARED))) {
2971                 return wp_page_shared(vmf);
2972         }
2973 copy:
2974         /*
2975          * Ok, we need to copy. Oh, well..
2976          */
2977         get_page(vmf->page);
2978
2979         pte_unmap_unlock(vmf->pte, vmf->ptl);
2980         return wp_page_copy(vmf);
2981 }
2982
2983 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2984                 unsigned long start_addr, unsigned long end_addr,
2985                 struct zap_details *details)
2986 {
2987         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2988 }
2989
2990 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2991                                             struct zap_details *details)
2992 {
2993         struct vm_area_struct *vma;
2994         pgoff_t vba, vea, zba, zea;
2995
2996         vma_interval_tree_foreach(vma, root,
2997                         details->first_index, details->last_index) {
2998
2999                 vba = vma->vm_pgoff;
3000                 vea = vba + vma_pages(vma) - 1;
3001                 zba = details->first_index;
3002                 if (zba < vba)
3003                         zba = vba;
3004                 zea = details->last_index;
3005                 if (zea > vea)
3006                         zea = vea;
3007
3008                 unmap_mapping_range_vma(vma,
3009                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3010                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3011                                 details);
3012         }
3013 }
3014
3015 /**
3016  * unmap_mapping_pages() - Unmap pages from processes.
3017  * @mapping: The address space containing pages to be unmapped.
3018  * @start: Index of first page to be unmapped.
3019  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3020  * @even_cows: Whether to unmap even private COWed pages.
3021  *
3022  * Unmap the pages in this address space from any userspace process which
3023  * has them mmaped.  Generally, you want to remove COWed pages as well when
3024  * a file is being truncated, but not when invalidating pages from the page
3025  * cache.
3026  */
3027 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3028                 pgoff_t nr, bool even_cows)
3029 {
3030         struct zap_details details = { };
3031
3032         details.check_mapping = even_cows ? NULL : mapping;
3033         details.first_index = start;
3034         details.last_index = start + nr - 1;
3035         if (details.last_index < details.first_index)
3036                 details.last_index = ULONG_MAX;
3037
3038         i_mmap_lock_write(mapping);
3039         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3040                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3041         i_mmap_unlock_write(mapping);
3042 }
3043
3044 /**
3045  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3046  * address_space corresponding to the specified byte range in the underlying
3047  * file.
3048  *
3049  * @mapping: the address space containing mmaps to be unmapped.
3050  * @holebegin: byte in first page to unmap, relative to the start of
3051  * the underlying file.  This will be rounded down to a PAGE_SIZE
3052  * boundary.  Note that this is different from truncate_pagecache(), which
3053  * must keep the partial page.  In contrast, we must get rid of
3054  * partial pages.
3055  * @holelen: size of prospective hole in bytes.  This will be rounded
3056  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3057  * end of the file.
3058  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3059  * but 0 when invalidating pagecache, don't throw away private data.
3060  */
3061 void unmap_mapping_range(struct address_space *mapping,
3062                 loff_t const holebegin, loff_t const holelen, int even_cows)
3063 {
3064         pgoff_t hba = holebegin >> PAGE_SHIFT;
3065         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3066
3067         /* Check for overflow. */
3068         if (sizeof(holelen) > sizeof(hlen)) {
3069                 long long holeend =
3070                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3071                 if (holeend & ~(long long)ULONG_MAX)
3072                         hlen = ULONG_MAX - hba + 1;
3073         }
3074
3075         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3076 }
3077 EXPORT_SYMBOL(unmap_mapping_range);
3078
3079 /*
3080  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3081  * but allow concurrent faults), and pte mapped but not yet locked.
3082  * We return with pte unmapped and unlocked.
3083  *
3084  * We return with the mmap_sem locked or unlocked in the same cases
3085  * as does filemap_fault().
3086  */
3087 vm_fault_t do_swap_page(struct vm_fault *vmf)
3088 {
3089         struct vm_area_struct *vma = vmf->vma;
3090         struct page *page = NULL, *swapcache;
3091         struct mem_cgroup *memcg;
3092         swp_entry_t entry;
3093         pte_t pte;
3094         int locked;
3095         int exclusive = 0;
3096         vm_fault_t ret = 0;
3097
3098         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3099                 goto out;
3100
3101         entry = pte_to_swp_entry(vmf->orig_pte);
3102         if (unlikely(non_swap_entry(entry))) {
3103                 if (is_migration_entry(entry)) {
3104                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3105                                              vmf->address);
3106                 } else if (is_device_private_entry(entry)) {
3107                         vmf->page = device_private_entry_to_page(entry);
3108                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3109                 } else if (is_hwpoison_entry(entry)) {
3110                         ret = VM_FAULT_HWPOISON;
3111                 } else {
3112                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3113                         ret = VM_FAULT_SIGBUS;
3114                 }
3115                 goto out;
3116         }
3117
3118
3119         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3120         page = lookup_swap_cache(entry, vma, vmf->address);
3121         swapcache = page;
3122
3123         if (!page) {
3124                 struct swap_info_struct *si = swp_swap_info(entry);
3125
3126                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3127                                 __swap_count(entry) == 1) {
3128                         /* skip swapcache */
3129                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3130                                                         vmf->address);
3131                         if (page) {
3132                                 __SetPageLocked(page);
3133                                 __SetPageSwapBacked(page);
3134                                 set_page_private(page, entry.val);
3135                                 lru_cache_add_anon(page);
3136                                 swap_readpage(page, true);
3137                         }
3138                 } else {
3139                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3140                                                 vmf);
3141                         swapcache = page;
3142                 }
3143
3144                 if (!page) {
3145                         /*
3146                          * Back out if somebody else faulted in this pte
3147                          * while we released the pte lock.
3148                          */
3149                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3150                                         vmf->address, &vmf->ptl);
3151                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3152                                 ret = VM_FAULT_OOM;
3153                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3154                         goto unlock;
3155                 }
3156
3157                 /* Had to read the page from swap area: Major fault */
3158                 ret = VM_FAULT_MAJOR;
3159                 count_vm_event(PGMAJFAULT);
3160                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3161         } else if (PageHWPoison(page)) {
3162                 /*
3163                  * hwpoisoned dirty swapcache pages are kept for killing
3164                  * owner processes (which may be unknown at hwpoison time)
3165                  */
3166                 ret = VM_FAULT_HWPOISON;
3167                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3168                 goto out_release;
3169         }
3170
3171         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3172
3173         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3174         if (!locked) {
3175                 ret |= VM_FAULT_RETRY;
3176                 goto out_release;
3177         }
3178
3179         /*
3180          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3181          * release the swapcache from under us.  The page pin, and pte_same
3182          * test below, are not enough to exclude that.  Even if it is still
3183          * swapcache, we need to check that the page's swap has not changed.
3184          */
3185         if (unlikely((!PageSwapCache(page) ||
3186                         page_private(page) != entry.val)) && swapcache)
3187                 goto out_page;
3188
3189         page = ksm_might_need_to_copy(page, vma, vmf->address);
3190         if (unlikely(!page)) {
3191                 ret = VM_FAULT_OOM;
3192                 page = swapcache;
3193                 goto out_page;
3194         }
3195
3196         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
3197                 ret = VM_FAULT_OOM;
3198                 goto out_page;
3199         }
3200
3201         /*
3202          * Back out if somebody else already faulted in this pte.
3203          */
3204         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3205                         &vmf->ptl);
3206         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3207                 goto out_nomap;
3208
3209         if (unlikely(!PageUptodate(page))) {
3210                 ret = VM_FAULT_SIGBUS;
3211                 goto out_nomap;
3212         }
3213
3214         /*
3215          * The page isn't present yet, go ahead with the fault.
3216          *
3217          * Be careful about the sequence of operations here.
3218          * To get its accounting right, reuse_swap_page() must be called
3219          * while the page is counted on swap but not yet in mapcount i.e.
3220          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3221          * must be called after the swap_free(), or it will never succeed.
3222          */
3223
3224         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3225         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3226         pte = mk_pte(page, vma->vm_page_prot);
3227         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3228                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3229                 vmf->flags &= ~FAULT_FLAG_WRITE;
3230                 ret |= VM_FAULT_WRITE;
3231                 exclusive = RMAP_EXCLUSIVE;
3232         }
3233         flush_icache_page(vma, page);
3234         if (pte_swp_soft_dirty(vmf->orig_pte))
3235                 pte = pte_mksoft_dirty(pte);
3236         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3237                 pte = pte_mkuffd_wp(pte);
3238                 pte = pte_wrprotect(pte);
3239         }
3240         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3241         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3242         vmf->orig_pte = pte;
3243
3244         /* ksm created a completely new copy */
3245         if (unlikely(page != swapcache && swapcache)) {
3246                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3247                 mem_cgroup_commit_charge(page, memcg, false);
3248                 lru_cache_add_active_or_unevictable(page, vma);
3249         } else {
3250                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3251                 mem_cgroup_commit_charge(page, memcg, true);
3252                 activate_page(page);
3253         }
3254
3255         swap_free(entry);
3256         if (mem_cgroup_swap_full(page) ||
3257             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3258                 try_to_free_swap(page);
3259         unlock_page(page);
3260         if (page != swapcache && swapcache) {
3261                 /*
3262                  * Hold the lock to avoid the swap entry to be reused
3263                  * until we take the PT lock for the pte_same() check
3264                  * (to avoid false positives from pte_same). For
3265                  * further safety release the lock after the swap_free
3266                  * so that the swap count won't change under a
3267                  * parallel locked swapcache.
3268                  */
3269                 unlock_page(swapcache);
3270                 put_page(swapcache);
3271         }
3272
3273         if (vmf->flags & FAULT_FLAG_WRITE) {
3274                 ret |= do_wp_page(vmf);
3275                 if (ret & VM_FAULT_ERROR)
3276                         ret &= VM_FAULT_ERROR;
3277                 goto out;
3278         }
3279
3280         /* No need to invalidate - it was non-present before */
3281         update_mmu_cache(vma, vmf->address, vmf->pte);
3282 unlock:
3283         pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 out:
3285         return ret;
3286 out_nomap:
3287         mem_cgroup_cancel_charge(page, memcg);
3288         pte_unmap_unlock(vmf->pte, vmf->ptl);
3289 out_page:
3290         unlock_page(page);
3291 out_release:
3292         put_page(page);
3293         if (page != swapcache && swapcache) {
3294                 unlock_page(swapcache);
3295                 put_page(swapcache);
3296         }
3297         return ret;
3298 }
3299
3300 /*
3301  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3302  * but allow concurrent faults), and pte mapped but not yet locked.
3303  * We return with mmap_sem still held, but pte unmapped and unlocked.
3304  */
3305 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3306 {
3307         struct vm_area_struct *vma = vmf->vma;
3308         struct mem_cgroup *memcg;
3309         struct page *page;
3310         vm_fault_t ret = 0;
3311         pte_t entry;
3312
3313         /* File mapping without ->vm_ops ? */
3314         if (vma->vm_flags & VM_SHARED)
3315                 return VM_FAULT_SIGBUS;
3316
3317         /*
3318          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3319          * pte_offset_map() on pmds where a huge pmd might be created
3320          * from a different thread.
3321          *
3322          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3323          * parallel threads are excluded by other means.
3324          *
3325          * Here we only have down_read(mmap_sem).
3326          */
3327         if (pte_alloc(vma->vm_mm, vmf->pmd))
3328                 return VM_FAULT_OOM;
3329
3330         /* See the comment in pte_alloc_one_map() */
3331         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3332                 return 0;
3333
3334         /* Use the zero-page for reads */
3335         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3336                         !mm_forbids_zeropage(vma->vm_mm)) {
3337                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3338                                                 vma->vm_page_prot));
3339                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3340                                 vmf->address, &vmf->ptl);
3341                 if (!pte_none(*vmf->pte))
3342                         goto unlock;
3343                 ret = check_stable_address_space(vma->vm_mm);
3344                 if (ret)
3345                         goto unlock;
3346                 /* Deliver the page fault to userland, check inside PT lock */
3347                 if (userfaultfd_missing(vma)) {
3348                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3349                         return handle_userfault(vmf, VM_UFFD_MISSING);
3350                 }
3351                 goto setpte;
3352         }
3353
3354         /* Allocate our own private page. */
3355         if (unlikely(anon_vma_prepare(vma)))
3356                 goto oom;
3357         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3358         if (!page)
3359                 goto oom;
3360
3361         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg))
3362                 goto oom_free_page;
3363
3364         /*
3365          * The memory barrier inside __SetPageUptodate makes sure that
3366          * preceding stores to the page contents become visible before
3367          * the set_pte_at() write.
3368          */
3369         __SetPageUptodate(page);
3370
3371         entry = mk_pte(page, vma->vm_page_prot);
3372         if (vma->vm_flags & VM_WRITE)
3373                 entry = pte_mkwrite(pte_mkdirty(entry));
3374
3375         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3376                         &vmf->ptl);
3377         if (!pte_none(*vmf->pte))
3378                 goto release;
3379
3380         ret = check_stable_address_space(vma->vm_mm);
3381         if (ret)
3382                 goto release;
3383
3384         /* Deliver the page fault to userland, check inside PT lock */
3385         if (userfaultfd_missing(vma)) {
3386                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3387                 mem_cgroup_cancel_charge(page, memcg);
3388                 put_page(page);
3389                 return handle_userfault(vmf, VM_UFFD_MISSING);
3390         }
3391
3392         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3393         page_add_new_anon_rmap(page, vma, vmf->address, false);
3394         mem_cgroup_commit_charge(page, memcg, false);
3395         lru_cache_add_active_or_unevictable(page, vma);
3396 setpte:
3397         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3398
3399         /* No need to invalidate - it was non-present before */
3400         update_mmu_cache(vma, vmf->address, vmf->pte);
3401 unlock:
3402         pte_unmap_unlock(vmf->pte, vmf->ptl);
3403         return ret;
3404 release:
3405         mem_cgroup_cancel_charge(page, memcg);
3406         put_page(page);
3407         goto unlock;
3408 oom_free_page:
3409         put_page(page);
3410 oom:
3411         return VM_FAULT_OOM;
3412 }
3413
3414 /*
3415  * The mmap_sem must have been held on entry, and may have been
3416  * released depending on flags and vma->vm_ops->fault() return value.
3417  * See filemap_fault() and __lock_page_retry().
3418  */
3419 static vm_fault_t __do_fault(struct vm_fault *vmf)
3420 {
3421         struct vm_area_struct *vma = vmf->vma;
3422         vm_fault_t ret;
3423
3424         /*
3425          * Preallocate pte before we take page_lock because this might lead to
3426          * deadlocks for memcg reclaim which waits for pages under writeback:
3427          *                              lock_page(A)
3428          *                              SetPageWriteback(A)
3429          *                              unlock_page(A)
3430          * lock_page(B)
3431          *                              lock_page(B)
3432          * pte_alloc_pne
3433          *   shrink_page_list
3434          *     wait_on_page_writeback(A)
3435          *                              SetPageWriteback(B)
3436          *                              unlock_page(B)
3437          *                              # flush A, B to clear the writeback
3438          */
3439         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3440                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3441                 if (!vmf->prealloc_pte)
3442                         return VM_FAULT_OOM;
3443                 smp_wmb(); /* See comment in __pte_alloc() */
3444         }
3445
3446         ret = vma->vm_ops->fault(vmf);
3447         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3448                             VM_FAULT_DONE_COW)))
3449                 return ret;
3450
3451         if (unlikely(PageHWPoison(vmf->page))) {
3452                 if (ret & VM_FAULT_LOCKED)
3453                         unlock_page(vmf->page);
3454                 put_page(vmf->page);
3455                 vmf->page = NULL;
3456                 return VM_FAULT_HWPOISON;
3457         }
3458
3459         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3460                 lock_page(vmf->page);
3461         else
3462                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3463
3464         return ret;
3465 }
3466
3467 /*
3468  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3469  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3470  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3471  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3472  */
3473 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3474 {
3475         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3476 }
3477
3478 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3479 {
3480         struct vm_area_struct *vma = vmf->vma;
3481
3482         if (!pmd_none(*vmf->pmd))
3483                 goto map_pte;
3484         if (vmf->prealloc_pte) {
3485                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3486                 if (unlikely(!pmd_none(*vmf->pmd))) {
3487                         spin_unlock(vmf->ptl);
3488                         goto map_pte;
3489                 }
3490
3491                 mm_inc_nr_ptes(vma->vm_mm);
3492                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3493                 spin_unlock(vmf->ptl);
3494                 vmf->prealloc_pte = NULL;
3495         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3496                 return VM_FAULT_OOM;
3497         }
3498 map_pte:
3499         /*
3500          * If a huge pmd materialized under us just retry later.  Use
3501          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3502          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3503          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3504          * running immediately after a huge pmd fault in a different thread of
3505          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3506          * All we have to ensure is that it is a regular pmd that we can walk
3507          * with pte_offset_map() and we can do that through an atomic read in
3508          * C, which is what pmd_trans_unstable() provides.
3509          */
3510         if (pmd_devmap_trans_unstable(vmf->pmd))
3511                 return VM_FAULT_NOPAGE;
3512
3513         /*
3514          * At this point we know that our vmf->pmd points to a page of ptes
3515          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3516          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3517          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3518          * be valid and we will re-check to make sure the vmf->pte isn't
3519          * pte_none() under vmf->ptl protection when we return to
3520          * alloc_set_pte().
3521          */
3522         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3523                         &vmf->ptl);
3524         return 0;
3525 }
3526
3527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3528 static void deposit_prealloc_pte(struct vm_fault *vmf)
3529 {
3530         struct vm_area_struct *vma = vmf->vma;
3531
3532         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3533         /*
3534          * We are going to consume the prealloc table,
3535          * count that as nr_ptes.
3536          */
3537         mm_inc_nr_ptes(vma->vm_mm);
3538         vmf->prealloc_pte = NULL;
3539 }
3540
3541 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3542 {
3543         struct vm_area_struct *vma = vmf->vma;
3544         bool write = vmf->flags & FAULT_FLAG_WRITE;
3545         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3546         pmd_t entry;
3547         int i;
3548         vm_fault_t ret;
3549
3550         if (!transhuge_vma_suitable(vma, haddr))
3551                 return VM_FAULT_FALLBACK;
3552
3553         ret = VM_FAULT_FALLBACK;
3554         page = compound_head(page);
3555
3556         /*
3557          * Archs like ppc64 need additonal space to store information
3558          * related to pte entry. Use the preallocated table for that.
3559          */
3560         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3561                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3562                 if (!vmf->prealloc_pte)
3563                         return VM_FAULT_OOM;
3564                 smp_wmb(); /* See comment in __pte_alloc() */
3565         }
3566
3567         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3568         if (unlikely(!pmd_none(*vmf->pmd)))
3569                 goto out;
3570
3571         for (i = 0; i < HPAGE_PMD_NR; i++)
3572                 flush_icache_page(vma, page + i);
3573
3574         entry = mk_huge_pmd(page, vma->vm_page_prot);
3575         if (write)
3576                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3577
3578         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3579         page_add_file_rmap(page, true);
3580         /*
3581          * deposit and withdraw with pmd lock held
3582          */
3583         if (arch_needs_pgtable_deposit())
3584                 deposit_prealloc_pte(vmf);
3585
3586         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3587
3588         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3589
3590         /* fault is handled */
3591         ret = 0;
3592         count_vm_event(THP_FILE_MAPPED);
3593 out:
3594         spin_unlock(vmf->ptl);
3595         return ret;
3596 }
3597 #else
3598 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3599 {
3600         BUILD_BUG();
3601         return 0;
3602 }
3603 #endif
3604
3605 /**
3606  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3607  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3608  *
3609  * @vmf: fault environment
3610  * @memcg: memcg to charge page (only for private mappings)
3611  * @page: page to map
3612  *
3613  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3614  * return.
3615  *
3616  * Target users are page handler itself and implementations of
3617  * vm_ops->map_pages.
3618  *
3619  * Return: %0 on success, %VM_FAULT_ code in case of error.
3620  */
3621 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3622                 struct page *page)
3623 {
3624         struct vm_area_struct *vma = vmf->vma;
3625         bool write = vmf->flags & FAULT_FLAG_WRITE;
3626         pte_t entry;
3627         vm_fault_t ret;
3628
3629         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3630                 /* THP on COW? */
3631                 VM_BUG_ON_PAGE(memcg, page);
3632
3633                 ret = do_set_pmd(vmf, page);
3634                 if (ret != VM_FAULT_FALLBACK)
3635                         return ret;
3636         }
3637
3638         if (!vmf->pte) {
3639                 ret = pte_alloc_one_map(vmf);
3640                 if (ret)
3641                         return ret;
3642         }
3643
3644         /* Re-check under ptl */
3645         if (unlikely(!pte_none(*vmf->pte)))
3646                 return VM_FAULT_NOPAGE;
3647
3648         flush_icache_page(vma, page);
3649         entry = mk_pte(page, vma->vm_page_prot);
3650         if (write)
3651                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3652         /* copy-on-write page */
3653         if (write && !(vma->vm_flags & VM_SHARED)) {
3654                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3655                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3656                 mem_cgroup_commit_charge(page, memcg, false);
3657                 lru_cache_add_active_or_unevictable(page, vma);
3658         } else {
3659                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3660                 page_add_file_rmap(page, false);
3661         }
3662         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3663
3664         /* no need to invalidate: a not-present page won't be cached */
3665         update_mmu_cache(vma, vmf->address, vmf->pte);
3666
3667         return 0;
3668 }
3669
3670
3671 /**
3672  * finish_fault - finish page fault once we have prepared the page to fault
3673  *
3674  * @vmf: structure describing the fault
3675  *
3676  * This function handles all that is needed to finish a page fault once the
3677  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3678  * given page, adds reverse page mapping, handles memcg charges and LRU
3679  * addition.
3680  *
3681  * The function expects the page to be locked and on success it consumes a
3682  * reference of a page being mapped (for the PTE which maps it).
3683  *
3684  * Return: %0 on success, %VM_FAULT_ code in case of error.
3685  */
3686 vm_fault_t finish_fault(struct vm_fault *vmf)
3687 {
3688         struct page *page;
3689         vm_fault_t ret = 0;
3690
3691         /* Did we COW the page? */
3692         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3693             !(vmf->vma->vm_flags & VM_SHARED))
3694                 page = vmf->cow_page;
3695         else
3696                 page = vmf->page;
3697
3698         /*
3699          * check even for read faults because we might have lost our CoWed
3700          * page
3701          */
3702         if (!(vmf->vma->vm_flags & VM_SHARED))
3703                 ret = check_stable_address_space(vmf->vma->vm_mm);
3704         if (!ret)
3705                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3706         if (vmf->pte)
3707                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3708         return ret;
3709 }
3710
3711 static unsigned long fault_around_bytes __read_mostly =
3712         rounddown_pow_of_two(65536);
3713
3714 #ifdef CONFIG_DEBUG_FS
3715 static int fault_around_bytes_get(void *data, u64 *val)
3716 {
3717         *val = fault_around_bytes;
3718         return 0;
3719 }
3720
3721 /*
3722  * fault_around_bytes must be rounded down to the nearest page order as it's
3723  * what do_fault_around() expects to see.
3724  */
3725 static int fault_around_bytes_set(void *data, u64 val)
3726 {
3727         if (val / PAGE_SIZE > PTRS_PER_PTE)
3728                 return -EINVAL;
3729         if (val > PAGE_SIZE)
3730                 fault_around_bytes = rounddown_pow_of_two(val);
3731         else
3732                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3733         return 0;
3734 }
3735 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3736                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3737
3738 static int __init fault_around_debugfs(void)
3739 {
3740         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3741                                    &fault_around_bytes_fops);
3742         return 0;
3743 }
3744 late_initcall(fault_around_debugfs);
3745 #endif
3746
3747 /*
3748  * do_fault_around() tries to map few pages around the fault address. The hope
3749  * is that the pages will be needed soon and this will lower the number of
3750  * faults to handle.
3751  *
3752  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3753  * not ready to be mapped: not up-to-date, locked, etc.
3754  *
3755  * This function is called with the page table lock taken. In the split ptlock
3756  * case the page table lock only protects only those entries which belong to
3757  * the page table corresponding to the fault address.
3758  *
3759  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3760  * only once.
3761  *
3762  * fault_around_bytes defines how many bytes we'll try to map.
3763  * do_fault_around() expects it to be set to a power of two less than or equal
3764  * to PTRS_PER_PTE.
3765  *
3766  * The virtual address of the area that we map is naturally aligned to
3767  * fault_around_bytes rounded down to the machine page size
3768  * (and therefore to page order).  This way it's easier to guarantee
3769  * that we don't cross page table boundaries.
3770  */
3771 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3772 {
3773         unsigned long address = vmf->address, nr_pages, mask;
3774         pgoff_t start_pgoff = vmf->pgoff;
3775         pgoff_t end_pgoff;
3776         int off;
3777         vm_fault_t ret = 0;
3778
3779         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3780         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3781
3782         vmf->address = max(address & mask, vmf->vma->vm_start);
3783         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3784         start_pgoff -= off;
3785
3786         /*
3787          *  end_pgoff is either the end of the page table, the end of
3788          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3789          */
3790         end_pgoff = start_pgoff -
3791                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3792                 PTRS_PER_PTE - 1;
3793         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3794                         start_pgoff + nr_pages - 1);
3795
3796         if (pmd_none(*vmf->pmd)) {
3797                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3798                 if (!vmf->prealloc_pte)
3799                         goto out;
3800                 smp_wmb(); /* See comment in __pte_alloc() */
3801         }
3802
3803         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3804
3805         /* Huge page is mapped? Page fault is solved */
3806         if (pmd_trans_huge(*vmf->pmd)) {
3807                 ret = VM_FAULT_NOPAGE;
3808                 goto out;
3809         }
3810
3811         /* ->map_pages() haven't done anything useful. Cold page cache? */
3812         if (!vmf->pte)
3813                 goto out;
3814
3815         /* check if the page fault is solved */
3816         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3817         if (!pte_none(*vmf->pte))
3818                 ret = VM_FAULT_NOPAGE;
3819         pte_unmap_unlock(vmf->pte, vmf->ptl);
3820 out:
3821         vmf->address = address;
3822         vmf->pte = NULL;
3823         return ret;
3824 }
3825
3826 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3827 {
3828         struct vm_area_struct *vma = vmf->vma;
3829         vm_fault_t ret = 0;
3830
3831         /*
3832          * Let's call ->map_pages() first and use ->fault() as fallback
3833          * if page by the offset is not ready to be mapped (cold cache or
3834          * something).
3835          */
3836         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3837                 ret = do_fault_around(vmf);
3838                 if (ret)
3839                         return ret;
3840         }
3841
3842         ret = __do_fault(vmf);
3843         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3844                 return ret;
3845
3846         ret |= finish_fault(vmf);
3847         unlock_page(vmf->page);
3848         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3849                 put_page(vmf->page);
3850         return ret;
3851 }
3852
3853 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3854 {
3855         struct vm_area_struct *vma = vmf->vma;
3856         vm_fault_t ret;
3857
3858         if (unlikely(anon_vma_prepare(vma)))
3859                 return VM_FAULT_OOM;
3860
3861         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3862         if (!vmf->cow_page)
3863                 return VM_FAULT_OOM;
3864
3865         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm,
3866                                         GFP_KERNEL, &vmf->memcg)) {
3867                 put_page(vmf->cow_page);
3868                 return VM_FAULT_OOM;
3869         }
3870
3871         ret = __do_fault(vmf);
3872         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3873                 goto uncharge_out;
3874         if (ret & VM_FAULT_DONE_COW)
3875                 return ret;
3876
3877         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3878         __SetPageUptodate(vmf->cow_page);
3879
3880         ret |= finish_fault(vmf);
3881         unlock_page(vmf->page);
3882         put_page(vmf->page);
3883         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3884                 goto uncharge_out;
3885         return ret;
3886 uncharge_out:
3887         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg);
3888         put_page(vmf->cow_page);
3889         return ret;
3890 }
3891
3892 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3893 {
3894         struct vm_area_struct *vma = vmf->vma;
3895         vm_fault_t ret, tmp;
3896
3897         ret = __do_fault(vmf);
3898         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3899                 return ret;
3900
3901         /*
3902          * Check if the backing address space wants to know that the page is
3903          * about to become writable
3904          */
3905         if (vma->vm_ops->page_mkwrite) {
3906                 unlock_page(vmf->page);
3907                 tmp = do_page_mkwrite(vmf);
3908                 if (unlikely(!tmp ||
3909                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3910                         put_page(vmf->page);
3911                         return tmp;
3912                 }
3913         }
3914
3915         ret |= finish_fault(vmf);
3916         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3917                                         VM_FAULT_RETRY))) {
3918                 unlock_page(vmf->page);
3919                 put_page(vmf->page);
3920                 return ret;
3921         }
3922
3923         ret |= fault_dirty_shared_page(vmf);
3924         return ret;
3925 }
3926
3927 /*
3928  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3929  * but allow concurrent faults).
3930  * The mmap_sem may have been released depending on flags and our
3931  * return value.  See filemap_fault() and __lock_page_or_retry().
3932  * If mmap_sem is released, vma may become invalid (for example
3933  * by other thread calling munmap()).
3934  */
3935 static vm_fault_t do_fault(struct vm_fault *vmf)
3936 {
3937         struct vm_area_struct *vma = vmf->vma;
3938         struct mm_struct *vm_mm = vma->vm_mm;
3939         vm_fault_t ret;
3940
3941         /*
3942          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3943          */
3944         if (!vma->vm_ops->fault) {
3945                 /*
3946                  * If we find a migration pmd entry or a none pmd entry, which
3947                  * should never happen, return SIGBUS
3948                  */
3949                 if (unlikely(!pmd_present(*vmf->pmd)))
3950                         ret = VM_FAULT_SIGBUS;
3951                 else {
3952                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3953                                                        vmf->pmd,
3954                                                        vmf->address,
3955                                                        &vmf->ptl);
3956                         /*
3957                          * Make sure this is not a temporary clearing of pte
3958                          * by holding ptl and checking again. A R/M/W update
3959                          * of pte involves: take ptl, clearing the pte so that
3960                          * we don't have concurrent modification by hardware
3961                          * followed by an update.
3962                          */
3963                         if (unlikely(pte_none(*vmf->pte)))
3964                                 ret = VM_FAULT_SIGBUS;
3965                         else
3966                                 ret = VM_FAULT_NOPAGE;
3967
3968                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3969                 }
3970         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3971                 ret = do_read_fault(vmf);
3972         else if (!(vma->vm_flags & VM_SHARED))
3973                 ret = do_cow_fault(vmf);
3974         else
3975                 ret = do_shared_fault(vmf);
3976
3977         /* preallocated pagetable is unused: free it */
3978         if (vmf->prealloc_pte) {
3979                 pte_free(vm_mm, vmf->prealloc_pte);
3980                 vmf->prealloc_pte = NULL;
3981         }
3982         return ret;
3983 }
3984
3985 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3986                                 unsigned long addr, int page_nid,
3987                                 int *flags)
3988 {
3989         get_page(page);
3990
3991         count_vm_numa_event(NUMA_HINT_FAULTS);
3992         if (page_nid == numa_node_id()) {
3993                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3994                 *flags |= TNF_FAULT_LOCAL;
3995         }
3996
3997         return mpol_misplaced(page, vma, addr);
3998 }
3999
4000 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4001 {
4002         struct vm_area_struct *vma = vmf->vma;
4003         struct page *page = NULL;
4004         int page_nid = NUMA_NO_NODE;
4005         int last_cpupid;
4006         int target_nid;
4007         bool migrated = false;
4008         pte_t pte, old_pte;
4009         bool was_writable = pte_savedwrite(vmf->orig_pte);
4010         int flags = 0;
4011
4012         /*
4013          * The "pte" at this point cannot be used safely without
4014          * validation through pte_unmap_same(). It's of NUMA type but
4015          * the pfn may be screwed if the read is non atomic.
4016          */
4017         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4018         spin_lock(vmf->ptl);
4019         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4020                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4021                 goto out;
4022         }
4023
4024         /*
4025          * Make it present again, Depending on how arch implementes non
4026          * accessible ptes, some can allow access by kernel mode.
4027          */
4028         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4029         pte = pte_modify(old_pte, vma->vm_page_prot);
4030         pte = pte_mkyoung(pte);
4031         if (was_writable)
4032                 pte = pte_mkwrite(pte);
4033         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4034         update_mmu_cache(vma, vmf->address, vmf->pte);
4035
4036         page = vm_normal_page(vma, vmf->address, pte);
4037         if (!page) {
4038                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4039                 return 0;
4040         }
4041
4042         /* TODO: handle PTE-mapped THP */
4043         if (PageCompound(page)) {
4044                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045                 return 0;
4046         }
4047
4048         /*
4049          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4050          * much anyway since they can be in shared cache state. This misses
4051          * the case where a mapping is writable but the process never writes
4052          * to it but pte_write gets cleared during protection updates and
4053          * pte_dirty has unpredictable behaviour between PTE scan updates,
4054          * background writeback, dirty balancing and application behaviour.
4055          */
4056         if (!pte_write(pte))
4057                 flags |= TNF_NO_GROUP;
4058
4059         /*
4060          * Flag if the page is shared between multiple address spaces. This
4061          * is later used when determining whether to group tasks together
4062          */
4063         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4064                 flags |= TNF_SHARED;
4065
4066         last_cpupid = page_cpupid_last(page);
4067         page_nid = page_to_nid(page);
4068         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4069                         &flags);
4070         pte_unmap_unlock(vmf->pte, vmf->ptl);
4071         if (target_nid == NUMA_NO_NODE) {
4072                 put_page(page);
4073                 goto out;
4074         }
4075
4076         /* Migrate to the requested node */
4077         migrated = migrate_misplaced_page(page, vma, target_nid);
4078         if (migrated) {
4079                 page_nid = target_nid;
4080                 flags |= TNF_MIGRATED;
4081         } else
4082                 flags |= TNF_MIGRATE_FAIL;
4083
4084 out:
4085         if (page_nid != NUMA_NO_NODE)
4086                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4087         return 0;
4088 }
4089
4090 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4091 {
4092         if (vma_is_anonymous(vmf->vma))
4093                 return do_huge_pmd_anonymous_page(vmf);
4094         if (vmf->vma->vm_ops->huge_fault)
4095                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4096         return VM_FAULT_FALLBACK;
4097 }
4098
4099 /* `inline' is required to avoid gcc 4.1.2 build error */
4100 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4101 {
4102         if (vma_is_anonymous(vmf->vma)) {
4103                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4104                         return handle_userfault(vmf, VM_UFFD_WP);
4105                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4106         }
4107         if (vmf->vma->vm_ops->huge_fault) {
4108                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4109
4110                 if (!(ret & VM_FAULT_FALLBACK))
4111                         return ret;
4112         }
4113
4114         /* COW or write-notify handled on pte level: split pmd. */
4115         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4116
4117         return VM_FAULT_FALLBACK;
4118 }
4119
4120 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4121 {
4122 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4123         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4124         /* No support for anonymous transparent PUD pages yet */
4125         if (vma_is_anonymous(vmf->vma))
4126                 goto split;
4127         if (vmf->vma->vm_ops->huge_fault) {
4128                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4129
4130                 if (!(ret & VM_FAULT_FALLBACK))
4131                         return ret;
4132         }
4133 split:
4134         /* COW or write-notify not handled on PUD level: split pud.*/
4135         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4137         return VM_FAULT_FALLBACK;
4138 }
4139
4140 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4141 {
4142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4143         /* No support for anonymous transparent PUD pages yet */
4144         if (vma_is_anonymous(vmf->vma))
4145                 return VM_FAULT_FALLBACK;
4146         if (vmf->vma->vm_ops->huge_fault)
4147                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4149         return VM_FAULT_FALLBACK;
4150 }
4151
4152 /*
4153  * These routines also need to handle stuff like marking pages dirty
4154  * and/or accessed for architectures that don't do it in hardware (most
4155  * RISC architectures).  The early dirtying is also good on the i386.
4156  *
4157  * There is also a hook called "update_mmu_cache()" that architectures
4158  * with external mmu caches can use to update those (ie the Sparc or
4159  * PowerPC hashed page tables that act as extended TLBs).
4160  *
4161  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4162  * concurrent faults).
4163  *
4164  * The mmap_sem may have been released depending on flags and our return value.
4165  * See filemap_fault() and __lock_page_or_retry().
4166  */
4167 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4168 {
4169         pte_t entry;
4170
4171         if (unlikely(pmd_none(*vmf->pmd))) {
4172                 /*
4173                  * Leave __pte_alloc() until later: because vm_ops->fault may
4174                  * want to allocate huge page, and if we expose page table
4175                  * for an instant, it will be difficult to retract from
4176                  * concurrent faults and from rmap lookups.
4177                  */
4178                 vmf->pte = NULL;
4179         } else {
4180                 /* See comment in pte_alloc_one_map() */
4181                 if (pmd_devmap_trans_unstable(vmf->pmd))
4182                         return 0;
4183                 /*
4184                  * A regular pmd is established and it can't morph into a huge
4185                  * pmd from under us anymore at this point because we hold the
4186                  * mmap_sem read mode and khugepaged takes it in write mode.
4187                  * So now it's safe to run pte_offset_map().
4188                  */
4189                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4190                 vmf->orig_pte = *vmf->pte;
4191
4192                 /*
4193                  * some architectures can have larger ptes than wordsize,
4194                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4195                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4196                  * accesses.  The code below just needs a consistent view
4197                  * for the ifs and we later double check anyway with the
4198                  * ptl lock held. So here a barrier will do.
4199                  */
4200                 barrier();
4201                 if (pte_none(vmf->orig_pte)) {
4202                         pte_unmap(vmf->pte);
4203                         vmf->pte = NULL;
4204                 }
4205         }
4206
4207         if (!vmf->pte) {
4208                 if (vma_is_anonymous(vmf->vma))
4209                         return do_anonymous_page(vmf);
4210                 else
4211                         return do_fault(vmf);
4212         }
4213
4214         if (!pte_present(vmf->orig_pte))
4215                 return do_swap_page(vmf);
4216
4217         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4218                 return do_numa_page(vmf);
4219
4220         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4221         spin_lock(vmf->ptl);
4222         entry = vmf->orig_pte;
4223         if (unlikely(!pte_same(*vmf->pte, entry)))
4224                 goto unlock;
4225         if (vmf->flags & FAULT_FLAG_WRITE) {
4226                 if (!pte_write(entry))
4227                         return do_wp_page(vmf);
4228                 entry = pte_mkdirty(entry);
4229         }
4230         entry = pte_mkyoung(entry);
4231         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4232                                 vmf->flags & FAULT_FLAG_WRITE)) {
4233                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4234         } else {
4235                 /*
4236                  * This is needed only for protection faults but the arch code
4237                  * is not yet telling us if this is a protection fault or not.
4238                  * This still avoids useless tlb flushes for .text page faults
4239                  * with threads.
4240                  */
4241                 if (vmf->flags & FAULT_FLAG_WRITE)
4242                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4243         }
4244 unlock:
4245         pte_unmap_unlock(vmf->pte, vmf->ptl);
4246         return 0;
4247 }
4248
4249 /*
4250  * By the time we get here, we already hold the mm semaphore
4251  *
4252  * The mmap_sem may have been released depending on flags and our
4253  * return value.  See filemap_fault() and __lock_page_or_retry().
4254  */
4255 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4256                 unsigned long address, unsigned int flags)
4257 {
4258         struct vm_fault vmf = {
4259                 .vma = vma,
4260                 .address = address & PAGE_MASK,
4261                 .flags = flags,
4262                 .pgoff = linear_page_index(vma, address),
4263                 .gfp_mask = __get_fault_gfp_mask(vma),
4264         };
4265         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4266         struct mm_struct *mm = vma->vm_mm;
4267         pgd_t *pgd;
4268         p4d_t *p4d;
4269         vm_fault_t ret;
4270
4271         pgd = pgd_offset(mm, address);
4272         p4d = p4d_alloc(mm, pgd, address);
4273         if (!p4d)
4274                 return VM_FAULT_OOM;
4275
4276         vmf.pud = pud_alloc(mm, p4d, address);
4277         if (!vmf.pud)
4278                 return VM_FAULT_OOM;
4279 retry_pud:
4280         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4281                 ret = create_huge_pud(&vmf);
4282                 if (!(ret & VM_FAULT_FALLBACK))
4283                         return ret;
4284         } else {
4285                 pud_t orig_pud = *vmf.pud;
4286
4287                 barrier();
4288                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4289
4290                         /* NUMA case for anonymous PUDs would go here */
4291
4292                         if (dirty && !pud_write(orig_pud)) {
4293                                 ret = wp_huge_pud(&vmf, orig_pud);
4294                                 if (!(ret & VM_FAULT_FALLBACK))
4295                                         return ret;
4296                         } else {
4297                                 huge_pud_set_accessed(&vmf, orig_pud);
4298                                 return 0;
4299                         }
4300                 }
4301         }
4302
4303         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4304         if (!vmf.pmd)
4305                 return VM_FAULT_OOM;
4306
4307         /* Huge pud page fault raced with pmd_alloc? */
4308         if (pud_trans_unstable(vmf.pud))
4309                 goto retry_pud;
4310
4311         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4312                 ret = create_huge_pmd(&vmf);
4313                 if (!(ret & VM_FAULT_FALLBACK))
4314                         return ret;
4315         } else {
4316                 pmd_t orig_pmd = *vmf.pmd;
4317
4318                 barrier();
4319                 if (unlikely(is_swap_pmd(orig_pmd))) {
4320                         VM_BUG_ON(thp_migration_supported() &&
4321                                           !is_pmd_migration_entry(orig_pmd));
4322                         if (is_pmd_migration_entry(orig_pmd))
4323                                 pmd_migration_entry_wait(mm, vmf.pmd);
4324                         return 0;
4325                 }
4326                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4327                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4328                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4329
4330                         if (dirty && !pmd_write(orig_pmd)) {
4331                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4332                                 if (!(ret & VM_FAULT_FALLBACK))
4333                                         return ret;
4334                         } else {
4335                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4336                                 return 0;
4337                         }
4338                 }
4339         }
4340
4341         return handle_pte_fault(&vmf);
4342 }
4343
4344 /*
4345  * By the time we get here, we already hold the mm semaphore
4346  *
4347  * The mmap_sem may have been released depending on flags and our
4348  * return value.  See filemap_fault() and __lock_page_or_retry().
4349  */
4350 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4351                 unsigned int flags)
4352 {
4353         vm_fault_t ret;
4354
4355         __set_current_state(TASK_RUNNING);
4356
4357         count_vm_event(PGFAULT);
4358         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4359
4360         /* do counter updates before entering really critical section. */
4361         check_sync_rss_stat(current);
4362
4363         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4364                                             flags & FAULT_FLAG_INSTRUCTION,
4365                                             flags & FAULT_FLAG_REMOTE))
4366                 return VM_FAULT_SIGSEGV;
4367
4368         /*
4369          * Enable the memcg OOM handling for faults triggered in user
4370          * space.  Kernel faults are handled more gracefully.
4371          */
4372         if (flags & FAULT_FLAG_USER)
4373                 mem_cgroup_enter_user_fault();
4374
4375         if (unlikely(is_vm_hugetlb_page(vma)))
4376                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4377         else
4378                 ret = __handle_mm_fault(vma, address, flags);
4379
4380         if (flags & FAULT_FLAG_USER) {
4381                 mem_cgroup_exit_user_fault();
4382                 /*
4383                  * The task may have entered a memcg OOM situation but
4384                  * if the allocation error was handled gracefully (no
4385                  * VM_FAULT_OOM), there is no need to kill anything.
4386                  * Just clean up the OOM state peacefully.
4387                  */
4388                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4389                         mem_cgroup_oom_synchronize(false);
4390         }
4391
4392         return ret;
4393 }
4394 EXPORT_SYMBOL_GPL(handle_mm_fault);
4395
4396 #ifndef __PAGETABLE_P4D_FOLDED
4397 /*
4398  * Allocate p4d page table.
4399  * We've already handled the fast-path in-line.
4400  */
4401 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4402 {
4403         p4d_t *new = p4d_alloc_one(mm, address);
4404         if (!new)
4405                 return -ENOMEM;
4406
4407         smp_wmb(); /* See comment in __pte_alloc */
4408
4409         spin_lock(&mm->page_table_lock);
4410         if (pgd_present(*pgd))          /* Another has populated it */
4411                 p4d_free(mm, new);
4412         else
4413                 pgd_populate(mm, pgd, new);
4414         spin_unlock(&mm->page_table_lock);
4415         return 0;
4416 }
4417 #endif /* __PAGETABLE_P4D_FOLDED */
4418
4419 #ifndef __PAGETABLE_PUD_FOLDED
4420 /*
4421  * Allocate page upper directory.
4422  * We've already handled the fast-path in-line.
4423  */
4424 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4425 {
4426         pud_t *new = pud_alloc_one(mm, address);
4427         if (!new)
4428                 return -ENOMEM;
4429
4430         smp_wmb(); /* See comment in __pte_alloc */
4431
4432         spin_lock(&mm->page_table_lock);
4433 #ifndef __ARCH_HAS_5LEVEL_HACK
4434         if (!p4d_present(*p4d)) {
4435                 mm_inc_nr_puds(mm);
4436                 p4d_populate(mm, p4d, new);
4437         } else  /* Another has populated it */
4438                 pud_free(mm, new);
4439 #else
4440         if (!pgd_present(*p4d)) {
4441                 mm_inc_nr_puds(mm);
4442                 pgd_populate(mm, p4d, new);
4443         } else  /* Another has populated it */
4444                 pud_free(mm, new);
4445 #endif /* __ARCH_HAS_5LEVEL_HACK */
4446         spin_unlock(&mm->page_table_lock);
4447         return 0;
4448 }
4449 #endif /* __PAGETABLE_PUD_FOLDED */
4450
4451 #ifndef __PAGETABLE_PMD_FOLDED
4452 /*
4453  * Allocate page middle directory.
4454  * We've already handled the fast-path in-line.
4455  */
4456 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4457 {
4458         spinlock_t *ptl;
4459         pmd_t *new = pmd_alloc_one(mm, address);
4460         if (!new)
4461                 return -ENOMEM;
4462
4463         smp_wmb(); /* See comment in __pte_alloc */
4464
4465         ptl = pud_lock(mm, pud);
4466         if (!pud_present(*pud)) {
4467                 mm_inc_nr_pmds(mm);
4468                 pud_populate(mm, pud, new);
4469         } else  /* Another has populated it */
4470                 pmd_free(mm, new);
4471         spin_unlock(ptl);
4472         return 0;
4473 }
4474 #endif /* __PAGETABLE_PMD_FOLDED */
4475
4476 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4477                             struct mmu_notifier_range *range,
4478                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4479 {
4480         pgd_t *pgd;
4481         p4d_t *p4d;
4482         pud_t *pud;
4483         pmd_t *pmd;
4484         pte_t *ptep;
4485
4486         pgd = pgd_offset(mm, address);
4487         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4488                 goto out;
4489
4490         p4d = p4d_offset(pgd, address);
4491         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4492                 goto out;
4493
4494         pud = pud_offset(p4d, address);
4495         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4496                 goto out;
4497
4498         pmd = pmd_offset(pud, address);
4499         VM_BUG_ON(pmd_trans_huge(*pmd));
4500
4501         if (pmd_huge(*pmd)) {
4502                 if (!pmdpp)
4503                         goto out;
4504
4505                 if (range) {
4506                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4507                                                 NULL, mm, address & PMD_MASK,
4508                                                 (address & PMD_MASK) + PMD_SIZE);
4509                         mmu_notifier_invalidate_range_start(range);
4510                 }
4511                 *ptlp = pmd_lock(mm, pmd);
4512                 if (pmd_huge(*pmd)) {
4513                         *pmdpp = pmd;
4514                         return 0;
4515                 }
4516                 spin_unlock(*ptlp);
4517                 if (range)
4518                         mmu_notifier_invalidate_range_end(range);
4519         }
4520
4521         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4522                 goto out;
4523
4524         if (range) {
4525                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4526                                         address & PAGE_MASK,
4527                                         (address & PAGE_MASK) + PAGE_SIZE);
4528                 mmu_notifier_invalidate_range_start(range);
4529         }
4530         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4531         if (!pte_present(*ptep))
4532                 goto unlock;
4533         *ptepp = ptep;
4534         return 0;
4535 unlock:
4536         pte_unmap_unlock(ptep, *ptlp);
4537         if (range)
4538                 mmu_notifier_invalidate_range_end(range);
4539 out:
4540         return -EINVAL;
4541 }
4542
4543 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4544                              pte_t **ptepp, spinlock_t **ptlp)
4545 {
4546         int res;
4547
4548         /* (void) is needed to make gcc happy */
4549         (void) __cond_lock(*ptlp,
4550                            !(res = __follow_pte_pmd(mm, address, NULL,
4551                                                     ptepp, NULL, ptlp)));
4552         return res;
4553 }
4554
4555 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4556                    struct mmu_notifier_range *range,
4557                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4558 {
4559         int res;
4560
4561         /* (void) is needed to make gcc happy */
4562         (void) __cond_lock(*ptlp,
4563                            !(res = __follow_pte_pmd(mm, address, range,
4564                                                     ptepp, pmdpp, ptlp)));
4565         return res;
4566 }
4567 EXPORT_SYMBOL(follow_pte_pmd);
4568
4569 /**
4570  * follow_pfn - look up PFN at a user virtual address
4571  * @vma: memory mapping
4572  * @address: user virtual address
4573  * @pfn: location to store found PFN
4574  *
4575  * Only IO mappings and raw PFN mappings are allowed.
4576  *
4577  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4578  */
4579 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4580         unsigned long *pfn)
4581 {
4582         int ret = -EINVAL;
4583         spinlock_t *ptl;
4584         pte_t *ptep;
4585
4586         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4587                 return ret;
4588
4589         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4590         if (ret)
4591                 return ret;
4592         *pfn = pte_pfn(*ptep);
4593         pte_unmap_unlock(ptep, ptl);
4594         return 0;
4595 }
4596 EXPORT_SYMBOL(follow_pfn);
4597
4598 #ifdef CONFIG_HAVE_IOREMAP_PROT
4599 int follow_phys(struct vm_area_struct *vma,
4600                 unsigned long address, unsigned int flags,
4601                 unsigned long *prot, resource_size_t *phys)
4602 {
4603         int ret = -EINVAL;
4604         pte_t *ptep, pte;
4605         spinlock_t *ptl;
4606
4607         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4608                 goto out;
4609
4610         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4611                 goto out;
4612         pte = *ptep;
4613
4614         if ((flags & FOLL_WRITE) && !pte_write(pte))
4615                 goto unlock;
4616
4617         *prot = pgprot_val(pte_pgprot(pte));
4618         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4619
4620         ret = 0;
4621 unlock:
4622         pte_unmap_unlock(ptep, ptl);
4623 out:
4624         return ret;
4625 }
4626
4627 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4628                         void *buf, int len, int write)
4629 {
4630         resource_size_t phys_addr;
4631         unsigned long prot = 0;
4632         void __iomem *maddr;
4633         int offset = addr & (PAGE_SIZE-1);
4634
4635         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4636                 return -EINVAL;
4637
4638         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4639         if (!maddr)
4640                 return -ENOMEM;
4641
4642         if (write)
4643                 memcpy_toio(maddr + offset, buf, len);
4644         else
4645                 memcpy_fromio(buf, maddr + offset, len);
4646         iounmap(maddr);
4647
4648         return len;
4649 }
4650 EXPORT_SYMBOL_GPL(generic_access_phys);
4651 #endif
4652
4653 /*
4654  * Access another process' address space as given in mm.  If non-NULL, use the
4655  * given task for page fault accounting.
4656  */
4657 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4658                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4659 {
4660         struct vm_area_struct *vma;
4661         void *old_buf = buf;
4662         int write = gup_flags & FOLL_WRITE;
4663
4664         if (down_read_killable(&mm->mmap_sem))
4665                 return 0;
4666
4667         /* ignore errors, just check how much was successfully transferred */
4668         while (len) {
4669                 int bytes, ret, offset;
4670                 void *maddr;
4671                 struct page *page = NULL;
4672
4673                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4674                                 gup_flags, &page, &vma, NULL);
4675                 if (ret <= 0) {
4676 #ifndef CONFIG_HAVE_IOREMAP_PROT
4677                         break;
4678 #else
4679                         /*
4680                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4681                          * we can access using slightly different code.
4682                          */
4683                         vma = find_vma(mm, addr);
4684                         if (!vma || vma->vm_start > addr)
4685                                 break;
4686                         if (vma->vm_ops && vma->vm_ops->access)
4687                                 ret = vma->vm_ops->access(vma, addr, buf,
4688                                                           len, write);
4689                         if (ret <= 0)
4690                                 break;
4691                         bytes = ret;
4692 #endif
4693                 } else {
4694                         bytes = len;
4695                         offset = addr & (PAGE_SIZE-1);
4696                         if (bytes > PAGE_SIZE-offset)
4697                                 bytes = PAGE_SIZE-offset;
4698
4699                         maddr = kmap(page);
4700                         if (write) {
4701                                 copy_to_user_page(vma, page, addr,
4702                                                   maddr + offset, buf, bytes);
4703                                 set_page_dirty_lock(page);
4704                         } else {
4705                                 copy_from_user_page(vma, page, addr,
4706                                                     buf, maddr + offset, bytes);
4707                         }
4708                         kunmap(page);
4709                         put_page(page);
4710                 }
4711                 len -= bytes;
4712                 buf += bytes;
4713                 addr += bytes;
4714         }
4715         up_read(&mm->mmap_sem);
4716
4717         return buf - old_buf;
4718 }
4719
4720 /**
4721  * access_remote_vm - access another process' address space
4722  * @mm:         the mm_struct of the target address space
4723  * @addr:       start address to access
4724  * @buf:        source or destination buffer
4725  * @len:        number of bytes to transfer
4726  * @gup_flags:  flags modifying lookup behaviour
4727  *
4728  * The caller must hold a reference on @mm.
4729  *
4730  * Return: number of bytes copied from source to destination.
4731  */
4732 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4733                 void *buf, int len, unsigned int gup_flags)
4734 {
4735         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4736 }
4737
4738 /*
4739  * Access another process' address space.
4740  * Source/target buffer must be kernel space,
4741  * Do not walk the page table directly, use get_user_pages
4742  */
4743 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4744                 void *buf, int len, unsigned int gup_flags)
4745 {
4746         struct mm_struct *mm;
4747         int ret;
4748
4749         mm = get_task_mm(tsk);
4750         if (!mm)
4751                 return 0;
4752
4753         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4754
4755         mmput(mm);
4756
4757         return ret;
4758 }
4759 EXPORT_SYMBOL_GPL(access_process_vm);
4760
4761 /*
4762  * Print the name of a VMA.
4763  */
4764 void print_vma_addr(char *prefix, unsigned long ip)
4765 {
4766         struct mm_struct *mm = current->mm;
4767         struct vm_area_struct *vma;
4768
4769         /*
4770          * we might be running from an atomic context so we cannot sleep
4771          */
4772         if (!down_read_trylock(&mm->mmap_sem))
4773                 return;
4774
4775         vma = find_vma(mm, ip);
4776         if (vma && vma->vm_file) {
4777                 struct file *f = vma->vm_file;
4778                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4779                 if (buf) {
4780                         char *p;
4781
4782                         p = file_path(f, buf, PAGE_SIZE);
4783                         if (IS_ERR(p))
4784                                 p = "?";
4785                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4786                                         vma->vm_start,
4787                                         vma->vm_end - vma->vm_start);
4788                         free_page((unsigned long)buf);
4789                 }
4790         }
4791         up_read(&mm->mmap_sem);
4792 }
4793
4794 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4795 void __might_fault(const char *file, int line)
4796 {
4797         /*
4798          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4799          * holding the mmap_sem, this is safe because kernel memory doesn't
4800          * get paged out, therefore we'll never actually fault, and the
4801          * below annotations will generate false positives.
4802          */
4803         if (uaccess_kernel())
4804                 return;
4805         if (pagefault_disabled())
4806                 return;
4807         __might_sleep(file, line, 0);
4808 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4809         if (current->mm)
4810                 might_lock_read(&current->mm->mmap_sem);
4811 #endif
4812 }
4813 EXPORT_SYMBOL(__might_fault);
4814 #endif
4815
4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4817 /*
4818  * Process all subpages of the specified huge page with the specified
4819  * operation.  The target subpage will be processed last to keep its
4820  * cache lines hot.
4821  */
4822 static inline void process_huge_page(
4823         unsigned long addr_hint, unsigned int pages_per_huge_page,
4824         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4825         void *arg)
4826 {
4827         int i, n, base, l;
4828         unsigned long addr = addr_hint &
4829                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4830
4831         /* Process target subpage last to keep its cache lines hot */
4832         might_sleep();
4833         n = (addr_hint - addr) / PAGE_SIZE;
4834         if (2 * n <= pages_per_huge_page) {
4835                 /* If target subpage in first half of huge page */
4836                 base = 0;
4837                 l = n;
4838                 /* Process subpages at the end of huge page */
4839                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4840                         cond_resched();
4841                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4842                 }
4843         } else {
4844                 /* If target subpage in second half of huge page */
4845                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4846                 l = pages_per_huge_page - n;
4847                 /* Process subpages at the begin of huge page */
4848                 for (i = 0; i < base; i++) {
4849                         cond_resched();
4850                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4851                 }
4852         }
4853         /*
4854          * Process remaining subpages in left-right-left-right pattern
4855          * towards the target subpage
4856          */
4857         for (i = 0; i < l; i++) {
4858                 int left_idx = base + i;
4859                 int right_idx = base + 2 * l - 1 - i;
4860
4861                 cond_resched();
4862                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4863                 cond_resched();
4864                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4865         }
4866 }
4867
4868 static void clear_gigantic_page(struct page *page,
4869                                 unsigned long addr,
4870                                 unsigned int pages_per_huge_page)
4871 {
4872         int i;
4873         struct page *p = page;
4874
4875         might_sleep();
4876         for (i = 0; i < pages_per_huge_page;
4877              i++, p = mem_map_next(p, page, i)) {
4878                 cond_resched();
4879                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4880         }
4881 }
4882
4883 static void clear_subpage(unsigned long addr, int idx, void *arg)
4884 {
4885         struct page *page = arg;
4886
4887         clear_user_highpage(page + idx, addr);
4888 }
4889
4890 void clear_huge_page(struct page *page,
4891                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4892 {
4893         unsigned long addr = addr_hint &
4894                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4895
4896         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4897                 clear_gigantic_page(page, addr, pages_per_huge_page);
4898                 return;
4899         }
4900
4901         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4902 }
4903
4904 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4905                                     unsigned long addr,
4906                                     struct vm_area_struct *vma,
4907                                     unsigned int pages_per_huge_page)
4908 {
4909         int i;
4910         struct page *dst_base = dst;
4911         struct page *src_base = src;
4912
4913         for (i = 0; i < pages_per_huge_page; ) {
4914                 cond_resched();
4915                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4916
4917                 i++;
4918                 dst = mem_map_next(dst, dst_base, i);
4919                 src = mem_map_next(src, src_base, i);
4920         }
4921 }
4922
4923 struct copy_subpage_arg {
4924         struct page *dst;
4925         struct page *src;
4926         struct vm_area_struct *vma;
4927 };
4928
4929 static void copy_subpage(unsigned long addr, int idx, void *arg)
4930 {
4931         struct copy_subpage_arg *copy_arg = arg;
4932
4933         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4934                            addr, copy_arg->vma);
4935 }
4936
4937 void copy_user_huge_page(struct page *dst, struct page *src,
4938                          unsigned long addr_hint, struct vm_area_struct *vma,
4939                          unsigned int pages_per_huge_page)
4940 {
4941         unsigned long addr = addr_hint &
4942                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4943         struct copy_subpage_arg arg = {
4944                 .dst = dst,
4945                 .src = src,
4946                 .vma = vma,
4947         };
4948
4949         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4950                 copy_user_gigantic_page(dst, src, addr, vma,
4951                                         pages_per_huge_page);
4952                 return;
4953         }
4954
4955         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4956 }
4957
4958 long copy_huge_page_from_user(struct page *dst_page,
4959                                 const void __user *usr_src,
4960                                 unsigned int pages_per_huge_page,
4961                                 bool allow_pagefault)
4962 {
4963         void *src = (void *)usr_src;
4964         void *page_kaddr;
4965         unsigned long i, rc = 0;
4966         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4967
4968         for (i = 0; i < pages_per_huge_page; i++) {
4969                 if (allow_pagefault)
4970                         page_kaddr = kmap(dst_page + i);
4971                 else
4972                         page_kaddr = kmap_atomic(dst_page + i);
4973                 rc = copy_from_user(page_kaddr,
4974                                 (const void __user *)(src + i * PAGE_SIZE),
4975                                 PAGE_SIZE);
4976                 if (allow_pagefault)
4977                         kunmap(dst_page + i);
4978                 else
4979                         kunmap_atomic(page_kaddr);
4980
4981                 ret_val -= (PAGE_SIZE - rc);
4982                 if (rc)
4983                         break;
4984
4985                 cond_resched();
4986         }
4987         return ret_val;
4988 }
4989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4990
4991 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4992
4993 static struct kmem_cache *page_ptl_cachep;
4994
4995 void __init ptlock_cache_init(void)
4996 {
4997         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4998                         SLAB_PANIC, NULL);
4999 }
5000
5001 bool ptlock_alloc(struct page *page)
5002 {
5003         spinlock_t *ptl;
5004
5005         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5006         if (!ptl)
5007                 return false;
5008         page->ptl = ptl;
5009         return true;
5010 }
5011
5012 void ptlock_free(struct page *page)
5013 {
5014         kmem_cache_free(page_ptl_cachep, page->ptl);
5015 }
5016 #endif