Merge "kfence: Use pt_regs to generate stack trace on faults" into tizen
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 #ifdef CONFIG_FINEGRAINED_THP
86 #include <asm/huge_mm.h>
87 #include <asm/finegrained_thp.h>
88 #else
89 #include <asm-generic/huge_mm.h>
90 #include <asm-generic/finegrained_thp.h>
91 #endif
92
93 #include "pgalloc-track.h"
94 #include "internal.h"
95
96 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
97 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 #endif
99
100 #ifndef CONFIG_NEED_MULTIPLE_NODES
101 /* use the per-pgdat data instead for discontigmem - mbligh */
102 unsigned long max_mapnr;
103 EXPORT_SYMBOL(max_mapnr);
104
105 struct page *mem_map;
106 EXPORT_SYMBOL(mem_map);
107 #endif
108
109 /*
110  * A number of key systems in x86 including ioremap() rely on the assumption
111  * that high_memory defines the upper bound on direct map memory, then end
112  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
113  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
114  * and ZONE_HIGHMEM.
115  */
116 void *high_memory;
117 EXPORT_SYMBOL(high_memory);
118
119 /*
120  * Randomize the address space (stacks, mmaps, brk, etc.).
121  *
122  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
123  *   as ancient (libc5 based) binaries can segfault. )
124  */
125 int randomize_va_space __read_mostly =
126 #ifdef CONFIG_COMPAT_BRK
127                                         1;
128 #else
129                                         2;
130 #endif
131
132 #ifndef arch_faults_on_old_pte
133 static inline bool arch_faults_on_old_pte(void)
134 {
135         /*
136          * Those arches which don't have hw access flag feature need to
137          * implement their own helper. By default, "true" means pagefault
138          * will be hit on old pte.
139          */
140         return true;
141 }
142 #endif
143
144 static int __init disable_randmaps(char *s)
145 {
146         randomize_va_space = 0;
147         return 1;
148 }
149 __setup("norandmaps", disable_randmaps);
150
151 unsigned long zero_pfn __read_mostly;
152 EXPORT_SYMBOL(zero_pfn);
153
154 unsigned long highest_memmap_pfn __read_mostly;
155
156 atomic_long_t nr_phys_cont_pte_pages;
157 atomic_long_t nr_phys_huge_pmd_pages;
158
159 unsigned long phys_cont_pte_pages(void)
160 {
161         return atomic_long_read(&nr_phys_cont_pte_pages);
162 }
163
164 unsigned long phys_huge_pmd_pages(void)
165 {
166         return atomic_long_read(&nr_phys_huge_pmd_pages);
167 }
168
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174         zero_pfn = page_to_pfn(ZERO_PAGE(0));
175         return 0;
176 }
177 early_initcall(init_zero_pfn);
178
179 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
180 {
181         trace_rss_stat(mm, member, count);
182 }
183
184 #if defined(SPLIT_RSS_COUNTING)
185
186 void sync_mm_rss(struct mm_struct *mm)
187 {
188         int i;
189
190         for (i = 0; i < NR_MM_COUNTERS; i++) {
191                 if (current->rss_stat.count[i]) {
192                         add_mm_counter(mm, i, current->rss_stat.count[i]);
193                         current->rss_stat.count[i] = 0;
194                 }
195         }
196         current->rss_stat.events = 0;
197 }
198
199 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
200 {
201         struct task_struct *task = current;
202
203         if (likely(task->mm == mm))
204                 task->rss_stat.count[member] += val;
205         else
206                 add_mm_counter(mm, member, val);
207 }
208 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
209 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
210
211 /* sync counter once per 64 page faults */
212 #define TASK_RSS_EVENTS_THRESH  (64)
213 static void check_sync_rss_stat(struct task_struct *task)
214 {
215         if (unlikely(task != current))
216                 return;
217         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
218                 sync_mm_rss(task->mm);
219 }
220 #else /* SPLIT_RSS_COUNTING */
221
222 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
223 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
224
225 static void check_sync_rss_stat(struct task_struct *task)
226 {
227 }
228
229 #endif /* SPLIT_RSS_COUNTING */
230
231 #ifdef CONFIG_FINEGRAINED_THP
232 void thp_print_cont_pte_table(struct mm_struct *mm,
233                         unsigned long addr, pte_t *ptep, unsigned long line);
234 #endif /* CONFIG_FINEGRAINED_THP */
235
236 /*
237  * Note: this doesn't free the actual pages themselves. That
238  * has been handled earlier when unmapping all the memory regions.
239  */
240 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
241                            unsigned long addr)
242 {
243         pgtable_t token = pmd_pgtable(*pmd);
244         pmd_clear(pmd);
245         pte_free_tlb(tlb, token, addr);
246         mm_dec_nr_ptes(tlb->mm);
247 }
248
249 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
250                                 unsigned long addr, unsigned long end,
251                                 unsigned long floor, unsigned long ceiling)
252 {
253         pmd_t *pmd;
254         unsigned long next;
255         unsigned long start;
256
257         start = addr;
258         pmd = pmd_offset(pud, addr);
259         do {
260                 next = pmd_addr_end(addr, end);
261                 if (pmd_none_or_clear_bad(pmd))
262                         continue;
263                 free_pte_range(tlb, pmd, addr);
264         } while (pmd++, addr = next, addr != end);
265
266         start &= PUD_MASK;
267         if (start < floor)
268                 return;
269         if (ceiling) {
270                 ceiling &= PUD_MASK;
271                 if (!ceiling)
272                         return;
273         }
274         if (end - 1 > ceiling - 1)
275                 return;
276
277         pmd = pmd_offset(pud, start);
278         pud_clear(pud);
279         pmd_free_tlb(tlb, pmd, start);
280         mm_dec_nr_pmds(tlb->mm);
281 }
282
283 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
284                                 unsigned long addr, unsigned long end,
285                                 unsigned long floor, unsigned long ceiling)
286 {
287         pud_t *pud;
288         unsigned long next;
289         unsigned long start;
290
291         start = addr;
292         pud = pud_offset(p4d, addr);
293         do {
294                 next = pud_addr_end(addr, end);
295                 if (pud_none_or_clear_bad(pud))
296                         continue;
297                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
298         } while (pud++, addr = next, addr != end);
299
300         start &= P4D_MASK;
301         if (start < floor)
302                 return;
303         if (ceiling) {
304                 ceiling &= P4D_MASK;
305                 if (!ceiling)
306                         return;
307         }
308         if (end - 1 > ceiling - 1)
309                 return;
310
311         pud = pud_offset(p4d, start);
312         p4d_clear(p4d);
313         pud_free_tlb(tlb, pud, start);
314         mm_dec_nr_puds(tlb->mm);
315 }
316
317 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
318                                 unsigned long addr, unsigned long end,
319                                 unsigned long floor, unsigned long ceiling)
320 {
321         p4d_t *p4d;
322         unsigned long next;
323         unsigned long start;
324
325         start = addr;
326         p4d = p4d_offset(pgd, addr);
327         do {
328                 next = p4d_addr_end(addr, end);
329                 if (p4d_none_or_clear_bad(p4d))
330                         continue;
331                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
332         } while (p4d++, addr = next, addr != end);
333
334         start &= PGDIR_MASK;
335         if (start < floor)
336                 return;
337         if (ceiling) {
338                 ceiling &= PGDIR_MASK;
339                 if (!ceiling)
340                         return;
341         }
342         if (end - 1 > ceiling - 1)
343                 return;
344
345         p4d = p4d_offset(pgd, start);
346         pgd_clear(pgd);
347         p4d_free_tlb(tlb, p4d, start);
348 }
349
350 /*
351  * This function frees user-level page tables of a process.
352  */
353 void free_pgd_range(struct mmu_gather *tlb,
354                         unsigned long addr, unsigned long end,
355                         unsigned long floor, unsigned long ceiling)
356 {
357         pgd_t *pgd;
358         unsigned long next;
359
360         /*
361          * The next few lines have given us lots of grief...
362          *
363          * Why are we testing PMD* at this top level?  Because often
364          * there will be no work to do at all, and we'd prefer not to
365          * go all the way down to the bottom just to discover that.
366          *
367          * Why all these "- 1"s?  Because 0 represents both the bottom
368          * of the address space and the top of it (using -1 for the
369          * top wouldn't help much: the masks would do the wrong thing).
370          * The rule is that addr 0 and floor 0 refer to the bottom of
371          * the address space, but end 0 and ceiling 0 refer to the top
372          * Comparisons need to use "end - 1" and "ceiling - 1" (though
373          * that end 0 case should be mythical).
374          *
375          * Wherever addr is brought up or ceiling brought down, we must
376          * be careful to reject "the opposite 0" before it confuses the
377          * subsequent tests.  But what about where end is brought down
378          * by PMD_SIZE below? no, end can't go down to 0 there.
379          *
380          * Whereas we round start (addr) and ceiling down, by different
381          * masks at different levels, in order to test whether a table
382          * now has no other vmas using it, so can be freed, we don't
383          * bother to round floor or end up - the tests don't need that.
384          */
385
386         addr &= PMD_MASK;
387         if (addr < floor) {
388                 addr += PMD_SIZE;
389                 if (!addr)
390                         return;
391         }
392         if (ceiling) {
393                 ceiling &= PMD_MASK;
394                 if (!ceiling)
395                         return;
396         }
397         if (end - 1 > ceiling - 1)
398                 end -= PMD_SIZE;
399         if (addr > end - 1)
400                 return;
401         /*
402          * We add page table cache pages with PAGE_SIZE,
403          * (see pte_free_tlb()), flush the tlb if we need
404          */
405         tlb_change_page_size(tlb, PAGE_SIZE);
406         pgd = pgd_offset(tlb->mm, addr);
407         do {
408                 next = pgd_addr_end(addr, end);
409                 if (pgd_none_or_clear_bad(pgd))
410                         continue;
411                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
412         } while (pgd++, addr = next, addr != end);
413 }
414
415 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
416                 unsigned long floor, unsigned long ceiling)
417 {
418         while (vma) {
419                 struct vm_area_struct *next = vma->vm_next;
420                 unsigned long addr = vma->vm_start;
421
422                 /*
423                  * Hide vma from rmap and truncate_pagecache before freeing
424                  * pgtables
425                  */
426                 unlink_anon_vmas(vma);
427                 unlink_file_vma(vma);
428
429                 if (is_vm_hugetlb_page(vma)) {
430                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 } else {
433                         /*
434                          * Optimization: gather nearby vmas into one call down
435                          */
436                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
437                                && !is_vm_hugetlb_page(next)) {
438                                 vma = next;
439                                 next = vma->vm_next;
440                                 unlink_anon_vmas(vma);
441                                 unlink_file_vma(vma);
442                         }
443                         free_pgd_range(tlb, addr, vma->vm_end,
444                                 floor, next ? next->vm_start : ceiling);
445                 }
446                 vma = next;
447         }
448 }
449
450 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
451 {
452         spinlock_t *ptl;
453         pgtable_t new = pte_alloc_one(mm);
454         if (!new)
455                 return -ENOMEM;
456
457         /*
458          * Ensure all pte setup (eg. pte page lock and page clearing) are
459          * visible before the pte is made visible to other CPUs by being
460          * put into page tables.
461          *
462          * The other side of the story is the pointer chasing in the page
463          * table walking code (when walking the page table without locking;
464          * ie. most of the time). Fortunately, these data accesses consist
465          * of a chain of data-dependent loads, meaning most CPUs (alpha
466          * being the notable exception) will already guarantee loads are
467          * seen in-order. See the alpha page table accessors for the
468          * smp_rmb() barriers in page table walking code.
469          */
470         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
471
472         ptl = pmd_lock(mm, pmd);
473         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
474                 mm_inc_nr_ptes(mm);
475                 pmd_populate(mm, pmd, new);
476                 new = NULL;
477         }
478         spin_unlock(ptl);
479         if (new)
480                 pte_free(mm, new);
481         return 0;
482 }
483
484 int __pte_alloc_kernel(pmd_t *pmd)
485 {
486         pte_t *new = pte_alloc_one_kernel(&init_mm);
487         if (!new)
488                 return -ENOMEM;
489
490         smp_wmb(); /* See comment in __pte_alloc */
491
492         spin_lock(&init_mm.page_table_lock);
493         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
494                 pmd_populate_kernel(&init_mm, pmd, new);
495                 new = NULL;
496         }
497         spin_unlock(&init_mm.page_table_lock);
498         if (new)
499                 pte_free_kernel(&init_mm, new);
500         return 0;
501 }
502
503 static inline void init_rss_vec(int *rss)
504 {
505         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
506 }
507
508 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
509 {
510         int i;
511
512         if (current->mm == mm)
513                 sync_mm_rss(mm);
514         for (i = 0; i < NR_MM_COUNTERS; i++)
515                 if (rss[i])
516                         add_mm_counter(mm, i, rss[i]);
517 }
518
519 /*
520  * This function is called to print an error when a bad pte
521  * is found. For example, we might have a PFN-mapped pte in
522  * a region that doesn't allow it.
523  *
524  * The calling function must still handle the error.
525  */
526 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
527                           pte_t pte, struct page *page)
528 {
529         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
530         p4d_t *p4d = p4d_offset(pgd, addr);
531         pud_t *pud = pud_offset(p4d, addr);
532         pmd_t *pmd = pmd_offset(pud, addr);
533         struct address_space *mapping;
534         pgoff_t index;
535         static unsigned long resume;
536         static unsigned long nr_shown;
537         static unsigned long nr_unshown;
538
539         /*
540          * Allow a burst of 60 reports, then keep quiet for that minute;
541          * or allow a steady drip of one report per second.
542          */
543         if (nr_shown == 60) {
544                 if (time_before(jiffies, resume)) {
545                         nr_unshown++;
546                         return;
547                 }
548                 if (nr_unshown) {
549                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
550                                  nr_unshown);
551                         nr_unshown = 0;
552                 }
553                 nr_shown = 0;
554         }
555         if (nr_shown++ == 0)
556                 resume = jiffies + 60 * HZ;
557
558         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
559         index = linear_page_index(vma, addr);
560
561         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
562                  current->comm,
563                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
564         if (page)
565                 dump_page(page, "bad pte");
566         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
567                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
568         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
569                  vma->vm_file,
570                  vma->vm_ops ? vma->vm_ops->fault : NULL,
571                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
572                  mapping ? mapping->a_ops->readpage : NULL);
573         dump_stack();
574         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
575 }
576
577 /*
578  * vm_normal_page -- This function gets the "struct page" associated with a pte.
579  *
580  * "Special" mappings do not wish to be associated with a "struct page" (either
581  * it doesn't exist, or it exists but they don't want to touch it). In this
582  * case, NULL is returned here. "Normal" mappings do have a struct page.
583  *
584  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
585  * pte bit, in which case this function is trivial. Secondly, an architecture
586  * may not have a spare pte bit, which requires a more complicated scheme,
587  * described below.
588  *
589  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
590  * special mapping (even if there are underlying and valid "struct pages").
591  * COWed pages of a VM_PFNMAP are always normal.
592  *
593  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
594  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
595  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
596  * mapping will always honor the rule
597  *
598  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
599  *
600  * And for normal mappings this is false.
601  *
602  * This restricts such mappings to be a linear translation from virtual address
603  * to pfn. To get around this restriction, we allow arbitrary mappings so long
604  * as the vma is not a COW mapping; in that case, we know that all ptes are
605  * special (because none can have been COWed).
606  *
607  *
608  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
609  *
610  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
611  * page" backing, however the difference is that _all_ pages with a struct
612  * page (that is, those where pfn_valid is true) are refcounted and considered
613  * normal pages by the VM. The disadvantage is that pages are refcounted
614  * (which can be slower and simply not an option for some PFNMAP users). The
615  * advantage is that we don't have to follow the strict linearity rule of
616  * PFNMAP mappings in order to support COWable mappings.
617  *
618  */
619 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
620                             pte_t pte)
621 {
622         unsigned long pfn = pte_pfn(pte);
623
624         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
625                 if (likely(!pte_special(pte)))
626                         goto check_pfn;
627                 if (vma->vm_ops && vma->vm_ops->find_special_page)
628                         return vma->vm_ops->find_special_page(vma, addr);
629                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
630                         return NULL;
631                 if (is_zero_pfn(pfn))
632                         return NULL;
633                 if (pte_devmap(pte))
634                         return NULL;
635
636                 print_bad_pte(vma, addr, pte, NULL);
637                 return NULL;
638         }
639
640         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
641
642         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
643                 if (vma->vm_flags & VM_MIXEDMAP) {
644                         if (!pfn_valid(pfn))
645                                 return NULL;
646                         goto out;
647                 } else {
648                         unsigned long off;
649                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
650                         if (pfn == vma->vm_pgoff + off)
651                                 return NULL;
652                         if (!is_cow_mapping(vma->vm_flags))
653                                 return NULL;
654                 }
655         }
656
657         if (is_zero_pfn(pfn))
658                 return NULL;
659
660 check_pfn:
661         if (unlikely(pfn > highest_memmap_pfn)) {
662                 print_bad_pte(vma, addr, pte, NULL);
663                 return NULL;
664         }
665
666         /*
667          * NOTE! We still have PageReserved() pages in the page tables.
668          * eg. VDSO mappings can cause them to exist.
669          */
670 out:
671         return pfn_to_page(pfn);
672 }
673
674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
675 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
676                                 pmd_t pmd)
677 {
678         unsigned long pfn = pmd_pfn(pmd);
679
680         /*
681          * There is no pmd_special() but there may be special pmds, e.g.
682          * in a direct-access (dax) mapping, so let's just replicate the
683          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
684          */
685         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
686                 if (vma->vm_flags & VM_MIXEDMAP) {
687                         if (!pfn_valid(pfn))
688                                 return NULL;
689                         goto out;
690                 } else {
691                         unsigned long off;
692                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
693                         if (pfn == vma->vm_pgoff + off)
694                                 return NULL;
695                         if (!is_cow_mapping(vma->vm_flags))
696                                 return NULL;
697                 }
698         }
699
700         if (pmd_devmap(pmd))
701                 return NULL;
702         if (is_huge_zero_pmd(pmd))
703                 return NULL;
704         if (unlikely(pfn > highest_memmap_pfn))
705                 return NULL;
706
707         /*
708          * NOTE! We still have PageReserved() pages in the page tables.
709          * eg. VDSO mappings can cause them to exist.
710          */
711 out:
712         return pfn_to_page(pfn);
713 }
714 #endif
715
716 /*
717  * copy one vm_area from one task to the other. Assumes the page tables
718  * already present in the new task to be cleared in the whole range
719  * covered by this vma.
720  */
721
722 static unsigned long
723 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
724                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
725                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
726 {
727         unsigned long vm_flags = dst_vma->vm_flags;
728         pte_t pte = *src_pte;
729         struct page *page;
730         swp_entry_t entry = pte_to_swp_entry(pte);
731
732         if (likely(!non_swap_entry(entry))) {
733                 if (swap_duplicate(entry) < 0)
734                         return entry.val;
735
736                 /* make sure dst_mm is on swapoff's mmlist. */
737                 if (unlikely(list_empty(&dst_mm->mmlist))) {
738                         spin_lock(&mmlist_lock);
739                         if (list_empty(&dst_mm->mmlist))
740                                 list_add(&dst_mm->mmlist,
741                                                 &src_mm->mmlist);
742                         spin_unlock(&mmlist_lock);
743                 }
744                 rss[MM_SWAPENTS]++;
745         } else if (is_migration_entry(entry)) {
746                 page = migration_entry_to_page(entry);
747
748                 rss[mm_counter(page)]++;
749
750                 if (is_write_migration_entry(entry) &&
751                                 is_cow_mapping(vm_flags)) {
752                         /*
753                          * COW mappings require pages in both
754                          * parent and child to be set to read.
755                          */
756                         make_migration_entry_read(&entry);
757                         pte = swp_entry_to_pte(entry);
758                         pte = arch_pte_clearhuge(pte);
759                         if (pte_swp_soft_dirty(*src_pte))
760                                 pte = pte_swp_mksoft_dirty(pte);
761                         if (pte_swp_uffd_wp(*src_pte))
762                                 pte = pte_swp_mkuffd_wp(pte);
763                         set_pte_at(src_mm, addr, src_pte, pte);
764                 }
765         } else if (is_device_private_entry(entry)) {
766                 page = device_private_entry_to_page(entry);
767
768                 /*
769                  * Update rss count even for unaddressable pages, as
770                  * they should treated just like normal pages in this
771                  * respect.
772                  *
773                  * We will likely want to have some new rss counters
774                  * for unaddressable pages, at some point. But for now
775                  * keep things as they are.
776                  */
777                 get_page(page);
778                 rss[mm_counter(page)]++;
779                 page_dup_rmap(page, false);
780
781                 /*
782                  * We do not preserve soft-dirty information, because so
783                  * far, checkpoint/restore is the only feature that
784                  * requires that. And checkpoint/restore does not work
785                  * when a device driver is involved (you cannot easily
786                  * save and restore device driver state).
787                  */
788                 if (is_write_device_private_entry(entry) &&
789                     is_cow_mapping(vm_flags)) {
790                         make_device_private_entry_read(&entry);
791                         pte = swp_entry_to_pte(entry);
792                         pte = arch_pte_clearhuge(pte);
793                         if (pte_swp_uffd_wp(*src_pte))
794                                 pte = pte_swp_mkuffd_wp(pte);
795                         set_pte_at(src_mm, addr, src_pte, pte);
796                 }
797         }
798         if (!userfaultfd_wp(dst_vma))
799                 pte = pte_swp_clear_uffd_wp(pte);
800         pte = arch_pte_clearhuge(pte);
801         set_pte_at(dst_mm, addr, dst_pte, pte);
802         return 0;
803 }
804
805 /*
806  * Copy a present and normal page if necessary.
807  *
808  * NOTE! The usual case is that this doesn't need to do
809  * anything, and can just return a positive value. That
810  * will let the caller know that it can just increase
811  * the page refcount and re-use the pte the traditional
812  * way.
813  *
814  * But _if_ we need to copy it because it needs to be
815  * pinned in the parent (and the child should get its own
816  * copy rather than just a reference to the same page),
817  * we'll do that here and return zero to let the caller
818  * know we're done.
819  *
820  * And if we need a pre-allocated page but don't yet have
821  * one, return a negative error to let the preallocation
822  * code know so that it can do so outside the page table
823  * lock.
824  */
825 static inline int
826 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
827                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
828                   struct page **prealloc, pte_t pte, struct page *page)
829 {
830         struct mm_struct *src_mm = src_vma->vm_mm;
831         struct page *new_page;
832
833         if (!is_cow_mapping(src_vma->vm_flags))
834                 return 1;
835
836         /*
837          * What we want to do is to check whether this page may
838          * have been pinned by the parent process.  If so,
839          * instead of wrprotect the pte on both sides, we copy
840          * the page immediately so that we'll always guarantee
841          * the pinned page won't be randomly replaced in the
842          * future.
843          *
844          * The page pinning checks are just "has this mm ever
845          * seen pinning", along with the (inexact) check of
846          * the page count. That might give false positives for
847          * for pinning, but it will work correctly.
848          */
849         if (likely(!atomic_read(&src_mm->has_pinned)))
850                 return 1;
851         if (likely(!page_maybe_dma_pinned(page)))
852                 return 1;
853
854         new_page = *prealloc;
855         if (!new_page)
856                 return -EAGAIN;
857
858         /*
859          * We have a prealloc page, all good!  Take it
860          * over and copy the page & arm it.
861          */
862         *prealloc = NULL;
863         copy_user_highpage(new_page, page, addr, src_vma);
864         __SetPageUptodate(new_page);
865         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
866         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
867         rss[mm_counter(new_page)]++;
868
869         /* All done, just insert the new page copy in the child */
870         pte = mk_pte(new_page, dst_vma->vm_page_prot);
871         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
872         if (userfaultfd_pte_wp(dst_vma, *src_pte))
873                 /* Uffd-wp needs to be delivered to dest pte as well */
874                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
875         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
876         return 0;
877 }
878
879 /*
880  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
881  * is required to copy this pte.
882  */
883 static inline int
884 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886                  struct page **prealloc)
887 {
888         struct mm_struct *src_mm = src_vma->vm_mm;
889         unsigned long vm_flags = src_vma->vm_flags;
890         pte_t pte = *src_pte;
891         struct page *page;
892
893         page = vm_normal_page(src_vma, addr, pte);
894         if (page) {
895                 int retval;
896                 /*
897                  * when 64KB hugepage map is copied,
898                  * clear contiguous bit
899                  */
900                 pte = arch_pte_clearhuge(pte);
901
902                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
903                                            addr, rss, prealloc, pte, page);
904                 if (retval <= 0)
905                         return retval;
906
907                 get_page(page);
908                 page_dup_rmap(page, false);
909                 rss[mm_counter(page)]++;
910         }
911
912         /*
913          * If it's a COW mapping, write protect it both
914          * in the parent and the child
915          */
916         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
917                 ptep_set_wrprotect(src_mm, addr, src_pte);
918                 pte = pte_wrprotect(pte);
919         }
920
921         /*
922          * If it's a shared mapping, mark it clean in
923          * the child
924          */
925         if (vm_flags & VM_SHARED)
926                 pte = pte_mkclean(pte);
927         pte = pte_mkold(pte);
928
929         if (!userfaultfd_wp(dst_vma))
930                 pte = pte_clear_uffd_wp(pte);
931
932         pte = arch_pte_clearhuge(pte);
933
934         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
935         return 0;
936 }
937
938 static inline struct page *
939 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
940                    unsigned long addr)
941 {
942         struct page *new_page;
943
944         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
945         if (!new_page)
946                 return NULL;
947
948         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
949                 put_page(new_page);
950                 return NULL;
951         }
952         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
953
954         return new_page;
955 }
956
957 static int
958 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
959                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
960                unsigned long end)
961 {
962         struct mm_struct *dst_mm = dst_vma->vm_mm;
963         struct mm_struct *src_mm = src_vma->vm_mm;
964         pte_t *orig_src_pte, *orig_dst_pte;
965         pte_t *src_pte, *dst_pte;
966         spinlock_t *src_ptl, *dst_ptl;
967         int progress, ret = 0;
968         int rss[NR_MM_COUNTERS];
969         swp_entry_t entry = (swp_entry_t){0};
970         struct page *prealloc = NULL;
971
972 again:
973         progress = 0;
974         init_rss_vec(rss);
975
976         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
977         if (!dst_pte) {
978                 ret = -ENOMEM;
979                 goto out;
980         }
981         src_pte = pte_offset_map(src_pmd, addr);
982         src_ptl = pte_lockptr(src_mm, src_pmd);
983         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
984         orig_src_pte = src_pte;
985         orig_dst_pte = dst_pte;
986         arch_enter_lazy_mmu_mode();
987
988         do {
989                 /*
990                  * We are holding two locks at this point - either of them
991                  * could generate latencies in another task on another CPU.
992                  */
993                 if (progress >= 32) {
994                         progress = 0;
995                         if (need_resched() ||
996                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
997                                 break;
998                 }
999                 if (pte_none(*src_pte)) {
1000                         progress++;
1001                         continue;
1002                 }
1003
1004                 if (unlikely(!pte_present(*src_pte))) {
1005                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
1006                                                         dst_pte, src_pte,
1007                                                         dst_vma, src_vma,
1008                                                         addr, rss);
1009                         if (entry.val)
1010                                 break;
1011                         progress += 8;
1012                         continue;
1013                 }
1014
1015                 /* copy_present_pte() will clear `*prealloc' if consumed */
1016                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1017                                        addr, rss, &prealloc);
1018                 /*
1019                  * If we need a pre-allocated page for this pte, drop the
1020                  * locks, allocate, and try again.
1021                  */
1022                 if (unlikely(ret == -EAGAIN))
1023                         break;
1024                 if (unlikely(prealloc)) {
1025                         /*
1026                          * pre-alloc page cannot be reused by next time so as
1027                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1028                          * will allocate page according to address).  This
1029                          * could only happen if one pinned pte changed.
1030                          */
1031                         put_page(prealloc);
1032                         prealloc = NULL;
1033                 }
1034                 progress += 8;
1035         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1036
1037         arch_leave_lazy_mmu_mode();
1038         spin_unlock(src_ptl);
1039         pte_unmap(orig_src_pte);
1040         add_mm_rss_vec(dst_mm, rss);
1041         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1042         cond_resched();
1043
1044         if (entry.val) {
1045                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1046                         ret = -ENOMEM;
1047                         goto out;
1048                 }
1049                 entry.val = 0;
1050         } else if (ret) {
1051                 WARN_ON_ONCE(ret != -EAGAIN);
1052                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1053                 if (!prealloc)
1054                         return -ENOMEM;
1055                 /* We've captured and resolved the error. Reset, try again. */
1056                 ret = 0;
1057         }
1058         if (addr != end)
1059                 goto again;
1060 out:
1061         if (unlikely(prealloc))
1062                 put_page(prealloc);
1063         return ret;
1064 }
1065
1066 static inline int
1067 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1069                unsigned long end)
1070 {
1071         struct mm_struct *dst_mm = dst_vma->vm_mm;
1072         struct mm_struct *src_mm = src_vma->vm_mm;
1073         pmd_t *src_pmd, *dst_pmd;
1074         unsigned long next;
1075
1076         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1077         if (!dst_pmd)
1078                 return -ENOMEM;
1079         src_pmd = pmd_offset(src_pud, addr);
1080         do {
1081                 next = pmd_addr_end(addr, end);
1082                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1083                         || pmd_devmap(*src_pmd)) {
1084                         int err;
1085                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1086                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1087                                             addr, dst_vma, src_vma);
1088                         if (err == -ENOMEM)
1089                                 return -ENOMEM;
1090                         if (!err)
1091                                 continue;
1092                         /* fall through */
1093                 }
1094                 if (pmd_none_or_clear_bad(src_pmd))
1095                         continue;
1096                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1097                                    addr, next))
1098                         return -ENOMEM;
1099         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1100         return 0;
1101 }
1102
1103 static inline int
1104 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1106                unsigned long end)
1107 {
1108         struct mm_struct *dst_mm = dst_vma->vm_mm;
1109         struct mm_struct *src_mm = src_vma->vm_mm;
1110         pud_t *src_pud, *dst_pud;
1111         unsigned long next;
1112
1113         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1114         if (!dst_pud)
1115                 return -ENOMEM;
1116         src_pud = pud_offset(src_p4d, addr);
1117         do {
1118                 next = pud_addr_end(addr, end);
1119                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1120                         int err;
1121
1122                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1123                         err = copy_huge_pud(dst_mm, src_mm,
1124                                             dst_pud, src_pud, addr, src_vma);
1125                         if (err == -ENOMEM)
1126                                 return -ENOMEM;
1127                         if (!err)
1128                                 continue;
1129                         /* fall through */
1130                 }
1131                 if (pud_none_or_clear_bad(src_pud))
1132                         continue;
1133                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1134                                    addr, next))
1135                         return -ENOMEM;
1136         } while (dst_pud++, src_pud++, addr = next, addr != end);
1137         return 0;
1138 }
1139
1140 static inline int
1141 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1142                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1143                unsigned long end)
1144 {
1145         struct mm_struct *dst_mm = dst_vma->vm_mm;
1146         p4d_t *src_p4d, *dst_p4d;
1147         unsigned long next;
1148
1149         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1150         if (!dst_p4d)
1151                 return -ENOMEM;
1152         src_p4d = p4d_offset(src_pgd, addr);
1153         do {
1154                 next = p4d_addr_end(addr, end);
1155                 if (p4d_none_or_clear_bad(src_p4d))
1156                         continue;
1157                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1158                                    addr, next))
1159                         return -ENOMEM;
1160         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1161         return 0;
1162 }
1163
1164 #ifdef CONFIG_FINEGRAINED_THP
1165 bool zap_cont_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
1166                         pmd_t *pmd, pte_t **ptep, unsigned long *addr,
1167                         unsigned long end, struct page *page,
1168                         int *rss, spinlock_t *ptl);
1169 #else /* CONFIG_FINEGRAINED_THP */
1170 bool zap_cont_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
1171                         pmd_t *pmd, pte_t **ptep, unsigned long *addr,
1172                         unsigned long end, struct page *page,
1173                         int *rss, spinlock_t *ptl)
1174 {
1175         return false;
1176 }
1177 #endif /* CONFIG_FINEGRAINED_THP */
1178
1179 int
1180 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1181 {
1182         pgd_t *src_pgd, *dst_pgd;
1183         unsigned long next;
1184         unsigned long addr = src_vma->vm_start;
1185         unsigned long end = src_vma->vm_end;
1186         struct mm_struct *dst_mm = dst_vma->vm_mm;
1187         struct mm_struct *src_mm = src_vma->vm_mm;
1188         struct mmu_notifier_range range;
1189         bool is_cow;
1190         int ret;
1191
1192         /*
1193          * Don't copy ptes where a page fault will fill them correctly.
1194          * Fork becomes much lighter when there are big shared or private
1195          * readonly mappings. The tradeoff is that copy_page_range is more
1196          * efficient than faulting.
1197          */
1198         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1199             !src_vma->anon_vma)
1200                 return 0;
1201
1202         if (is_vm_hugetlb_page(src_vma))
1203                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1204
1205         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1206                 /*
1207                  * We do not free on error cases below as remove_vma
1208                  * gets called on error from higher level routine
1209                  */
1210                 ret = track_pfn_copy(src_vma);
1211                 if (ret)
1212                         return ret;
1213         }
1214
1215         /*
1216          * We need to invalidate the secondary MMU mappings only when
1217          * there could be a permission downgrade on the ptes of the
1218          * parent mm. And a permission downgrade will only happen if
1219          * is_cow_mapping() returns true.
1220          */
1221         is_cow = is_cow_mapping(src_vma->vm_flags);
1222
1223         if (is_cow) {
1224                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1225                                         0, src_vma, src_mm, addr, end);
1226                 mmu_notifier_invalidate_range_start(&range);
1227                 /*
1228                  * Disabling preemption is not needed for the write side, as
1229                  * the read side doesn't spin, but goes to the mmap_lock.
1230                  *
1231                  * Use the raw variant of the seqcount_t write API to avoid
1232                  * lockdep complaining about preemptibility.
1233                  */
1234                 mmap_assert_write_locked(src_mm);
1235                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1236         }
1237
1238         ret = 0;
1239         dst_pgd = pgd_offset(dst_mm, addr);
1240         src_pgd = pgd_offset(src_mm, addr);
1241         do {
1242                 next = pgd_addr_end(addr, end);
1243                 if (pgd_none_or_clear_bad(src_pgd))
1244                         continue;
1245                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1246                                             addr, next))) {
1247                         ret = -ENOMEM;
1248                         break;
1249                 }
1250         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1251
1252         if (is_cow) {
1253                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1254                 mmu_notifier_invalidate_range_end(&range);
1255         }
1256         return ret;
1257 }
1258
1259 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1260                                 struct vm_area_struct *vma, pmd_t *pmd,
1261                                 unsigned long addr, unsigned long end,
1262                                 struct zap_details *details)
1263 {
1264         struct mm_struct *mm = tlb->mm;
1265         int force_flush = 0;
1266         int rss[NR_MM_COUNTERS];
1267         spinlock_t *ptl;
1268         pte_t *start_pte;
1269         pte_t *pte;
1270         swp_entry_t entry;
1271
1272         tlb_change_page_size(tlb, PAGE_SIZE);
1273 again:
1274         init_rss_vec(rss);
1275         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1276         pte = start_pte;
1277         flush_tlb_batched_pending(mm);
1278         arch_enter_lazy_mmu_mode();
1279         do {
1280                 pte_t ptent = *pte;
1281                 if (pte_none(ptent))
1282                         continue;
1283
1284                 if (need_resched())
1285                         break;
1286
1287                 if (pte_present(ptent)) {
1288                         struct page *page;
1289
1290                         page = vm_normal_page(vma, addr, ptent);
1291                         if (unlikely(details) && page) {
1292                                 /*
1293                                  * unmap_shared_mapping_pages() wants to
1294                                  * invalidate cache without truncating:
1295                                  * unmap shared but keep private pages.
1296                                  */
1297                                 if (details->check_mapping &&
1298                                     details->check_mapping != page_rmapping(page))
1299                                         continue;
1300                         }
1301 #ifdef CONFIG_FINEGRAINED_THP
1302                         if (page && pte_cont(ptent) && PageTransHuge(compound_head(page))) {
1303                                 if (zap_cont_pte_range(tlb, vma, pmd, &pte,
1304                                                 &addr, end, page, rss, ptl)) {
1305                                         force_flush = 1;
1306                                         break;
1307                                 }
1308                         } else if (pte_cont(ptent))
1309                                 atomic_long_dec(&nr_phys_cont_pte_pages);
1310 #endif /* CONFIG_FINEGRAINED_THP */
1311                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1312                                                         tlb->fullmm);
1313                         tlb_remove_tlb_entry(tlb, pte, addr);
1314                         if (unlikely(!page))
1315                                 continue;
1316
1317                         if (!PageAnon(page)) {
1318                                 if (pte_dirty(ptent)) {
1319                                         force_flush = 1;
1320                                         set_page_dirty(page);
1321                                 }
1322                                 if (pte_young(ptent) &&
1323                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1324                                         mark_page_accessed(page);
1325                         }
1326                         rss[mm_counter(page)]--;
1327                         page_remove_rmap(page, false);
1328                         if (unlikely(page_mapcount(page) < 0))
1329                                 print_bad_pte(vma, addr, ptent, page);
1330                         if (unlikely(__tlb_remove_page(tlb, page))) {
1331                                 force_flush = 1;
1332                                 addr += PAGE_SIZE;
1333                                 break;
1334                         }
1335                         continue;
1336                 }
1337
1338                 entry = pte_to_swp_entry(ptent);
1339                 if (is_device_private_entry(entry)) {
1340                         struct page *page = device_private_entry_to_page(entry);
1341
1342                         if (unlikely(details && details->check_mapping)) {
1343                                 /*
1344                                  * unmap_shared_mapping_pages() wants to
1345                                  * invalidate cache without truncating:
1346                                  * unmap shared but keep private pages.
1347                                  */
1348                                 if (details->check_mapping !=
1349                                     page_rmapping(page))
1350                                         continue;
1351                         }
1352
1353                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1354                         rss[mm_counter(page)]--;
1355                         page_remove_rmap(page, false);
1356                         put_page(page);
1357                         continue;
1358                 }
1359
1360                 /* If details->check_mapping, we leave swap entries. */
1361                 if (unlikely(details))
1362                         continue;
1363
1364                 if (!non_swap_entry(entry))
1365                         rss[MM_SWAPENTS]--;
1366                 else if (is_migration_entry(entry)) {
1367                         struct page *page;
1368
1369                         page = migration_entry_to_page(entry);
1370                         rss[mm_counter(page)]--;
1371                 }
1372                 if (unlikely(!free_swap_and_cache(entry)))
1373                         print_bad_pte(vma, addr, ptent, NULL);
1374                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1375         } while (pte++, addr += PAGE_SIZE, addr != end);
1376
1377         add_mm_rss_vec(mm, rss);
1378         arch_leave_lazy_mmu_mode();
1379
1380         /* Do the actual TLB flush before dropping ptl */
1381         if (force_flush)
1382                 tlb_flush_mmu_tlbonly(tlb);
1383         pte_unmap_unlock(start_pte, ptl);
1384
1385         /*
1386          * If we forced a TLB flush (either due to running out of
1387          * batch buffers or because we needed to flush dirty TLB
1388          * entries before releasing the ptl), free the batched
1389          * memory too. Restart if we didn't do everything.
1390          */
1391         if (force_flush) {
1392                 force_flush = 0;
1393                 tlb_flush_mmu(tlb);
1394         }
1395
1396         if (addr != end) {
1397                 cond_resched();
1398                 goto again;
1399         }
1400
1401         return addr;
1402 }
1403
1404 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1405                                 struct vm_area_struct *vma, pud_t *pud,
1406                                 unsigned long addr, unsigned long end,
1407                                 struct zap_details *details)
1408 {
1409         pmd_t *pmd;
1410         unsigned long next;
1411
1412         pmd = pmd_offset(pud, addr);
1413         do {
1414                 next = pmd_addr_end(addr, end);
1415                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1416                         if (next - addr != HPAGE_PMD_SIZE)
1417                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1418                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1419                                 goto next;
1420                         /* fall through */
1421                 } else if (details && details->single_page &&
1422                            PageTransCompound(details->single_page) &&
1423                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1424                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1425                         /*
1426                          * Take and drop THP pmd lock so that we cannot return
1427                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1428                          * but not yet decremented compound_mapcount().
1429                          */
1430                         spin_unlock(ptl);
1431                 }
1432
1433                 /*
1434                  * Here there can be other concurrent MADV_DONTNEED or
1435                  * trans huge page faults running, and if the pmd is
1436                  * none or trans huge it can change under us. This is
1437                  * because MADV_DONTNEED holds the mmap_lock in read
1438                  * mode.
1439                  */
1440                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1441                         goto next;
1442                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1443 next:
1444                 cond_resched();
1445         } while (pmd++, addr = next, addr != end);
1446
1447         return addr;
1448 }
1449
1450 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1451                                 struct vm_area_struct *vma, p4d_t *p4d,
1452                                 unsigned long addr, unsigned long end,
1453                                 struct zap_details *details)
1454 {
1455         pud_t *pud;
1456         unsigned long next;
1457
1458         pud = pud_offset(p4d, addr);
1459         do {
1460                 next = pud_addr_end(addr, end);
1461                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1462                         if (next - addr != HPAGE_PUD_SIZE) {
1463                                 mmap_assert_locked(tlb->mm);
1464                                 split_huge_pud(vma, pud, addr);
1465                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1466                                 goto next;
1467                         /* fall through */
1468                 }
1469                 if (pud_none_or_clear_bad(pud))
1470                         continue;
1471                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1472 next:
1473                 cond_resched();
1474         } while (pud++, addr = next, addr != end);
1475
1476         return addr;
1477 }
1478
1479 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1480                                 struct vm_area_struct *vma, pgd_t *pgd,
1481                                 unsigned long addr, unsigned long end,
1482                                 struct zap_details *details)
1483 {
1484         p4d_t *p4d;
1485         unsigned long next;
1486
1487         p4d = p4d_offset(pgd, addr);
1488         do {
1489                 next = p4d_addr_end(addr, end);
1490                 if (p4d_none_or_clear_bad(p4d))
1491                         continue;
1492                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1493         } while (p4d++, addr = next, addr != end);
1494
1495         return addr;
1496 }
1497
1498 void unmap_page_range(struct mmu_gather *tlb,
1499                              struct vm_area_struct *vma,
1500                              unsigned long addr, unsigned long end,
1501                              struct zap_details *details)
1502 {
1503         pgd_t *pgd;
1504         unsigned long next;
1505
1506         BUG_ON(addr >= end);
1507         tlb_start_vma(tlb, vma);
1508         pgd = pgd_offset(vma->vm_mm, addr);
1509         do {
1510                 next = pgd_addr_end(addr, end);
1511                 if (pgd_none_or_clear_bad(pgd))
1512                         continue;
1513                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1514         } while (pgd++, addr = next, addr != end);
1515         tlb_end_vma(tlb, vma);
1516 }
1517
1518
1519 static void unmap_single_vma(struct mmu_gather *tlb,
1520                 struct vm_area_struct *vma, unsigned long start_addr,
1521                 unsigned long end_addr,
1522                 struct zap_details *details)
1523 {
1524         unsigned long start = max(vma->vm_start, start_addr);
1525         unsigned long end;
1526
1527         if (start >= vma->vm_end)
1528                 return;
1529         end = min(vma->vm_end, end_addr);
1530         if (end <= vma->vm_start)
1531                 return;
1532
1533         if (vma->vm_file)
1534                 uprobe_munmap(vma, start, end);
1535
1536         if (unlikely(vma->vm_flags & VM_PFNMAP))
1537                 untrack_pfn(vma, 0, 0);
1538
1539         if (start != end) {
1540                 if (unlikely(is_vm_hugetlb_page(vma))) {
1541                         /*
1542                          * It is undesirable to test vma->vm_file as it
1543                          * should be non-null for valid hugetlb area.
1544                          * However, vm_file will be NULL in the error
1545                          * cleanup path of mmap_region. When
1546                          * hugetlbfs ->mmap method fails,
1547                          * mmap_region() nullifies vma->vm_file
1548                          * before calling this function to clean up.
1549                          * Since no pte has actually been setup, it is
1550                          * safe to do nothing in this case.
1551                          */
1552                         if (vma->vm_file) {
1553                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1554                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1555                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1556                         }
1557                 } else
1558                         unmap_page_range(tlb, vma, start, end, details);
1559         }
1560 }
1561
1562 /**
1563  * unmap_vmas - unmap a range of memory covered by a list of vma's
1564  * @tlb: address of the caller's struct mmu_gather
1565  * @vma: the starting vma
1566  * @start_addr: virtual address at which to start unmapping
1567  * @end_addr: virtual address at which to end unmapping
1568  *
1569  * Unmap all pages in the vma list.
1570  *
1571  * Only addresses between `start' and `end' will be unmapped.
1572  *
1573  * The VMA list must be sorted in ascending virtual address order.
1574  *
1575  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1576  * range after unmap_vmas() returns.  So the only responsibility here is to
1577  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1578  * drops the lock and schedules.
1579  */
1580 void unmap_vmas(struct mmu_gather *tlb,
1581                 struct vm_area_struct *vma, unsigned long start_addr,
1582                 unsigned long end_addr)
1583 {
1584         struct mmu_notifier_range range;
1585
1586         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1587                                 start_addr, end_addr);
1588         mmu_notifier_invalidate_range_start(&range);
1589         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1590                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1591         mmu_notifier_invalidate_range_end(&range);
1592 }
1593
1594 /**
1595  * zap_page_range - remove user pages in a given range
1596  * @vma: vm_area_struct holding the applicable pages
1597  * @start: starting address of pages to zap
1598  * @size: number of bytes to zap
1599  *
1600  * Caller must protect the VMA list
1601  */
1602 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1603                 unsigned long size)
1604 {
1605         struct mmu_notifier_range range;
1606         struct mmu_gather tlb;
1607
1608         lru_add_drain();
1609         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1610                                 start, start + size);
1611         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1612         update_hiwater_rss(vma->vm_mm);
1613         mmu_notifier_invalidate_range_start(&range);
1614         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1615                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1616         mmu_notifier_invalidate_range_end(&range);
1617         tlb_finish_mmu(&tlb, start, range.end);
1618 }
1619
1620 /**
1621  * zap_page_range_single - remove user pages in a given range
1622  * @vma: vm_area_struct holding the applicable pages
1623  * @address: starting address of pages to zap
1624  * @size: number of bytes to zap
1625  * @details: details of shared cache invalidation
1626  *
1627  * The range must fit into one VMA.
1628  */
1629 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1630                 unsigned long size, struct zap_details *details)
1631 {
1632         struct mmu_notifier_range range;
1633         struct mmu_gather tlb;
1634
1635         lru_add_drain();
1636         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1637                                 address, address + size);
1638         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1639         update_hiwater_rss(vma->vm_mm);
1640         mmu_notifier_invalidate_range_start(&range);
1641         unmap_single_vma(&tlb, vma, address, range.end, details);
1642         mmu_notifier_invalidate_range_end(&range);
1643         tlb_finish_mmu(&tlb, address, range.end);
1644 }
1645
1646 /**
1647  * zap_vma_ptes - remove ptes mapping the vma
1648  * @vma: vm_area_struct holding ptes to be zapped
1649  * @address: starting address of pages to zap
1650  * @size: number of bytes to zap
1651  *
1652  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1653  *
1654  * The entire address range must be fully contained within the vma.
1655  *
1656  */
1657 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1658                 unsigned long size)
1659 {
1660         if (address < vma->vm_start || address + size > vma->vm_end ||
1661                         !(vma->vm_flags & VM_PFNMAP))
1662                 return;
1663
1664         zap_page_range_single(vma, address, size, NULL);
1665 }
1666 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1667
1668 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1669 {
1670         pgd_t *pgd;
1671         p4d_t *p4d;
1672         pud_t *pud;
1673         pmd_t *pmd;
1674
1675         pgd = pgd_offset(mm, addr);
1676         p4d = p4d_alloc(mm, pgd, addr);
1677         if (!p4d)
1678                 return NULL;
1679         pud = pud_alloc(mm, p4d, addr);
1680         if (!pud)
1681                 return NULL;
1682         pmd = pmd_alloc(mm, pud, addr);
1683         if (!pmd)
1684                 return NULL;
1685
1686         VM_BUG_ON(pmd_trans_huge(*pmd));
1687         return pmd;
1688 }
1689
1690 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1691                         spinlock_t **ptl)
1692 {
1693         pmd_t *pmd = walk_to_pmd(mm, addr);
1694
1695         if (!pmd)
1696                 return NULL;
1697         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1698 }
1699
1700 static int validate_page_before_insert(struct page *page)
1701 {
1702         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1703                 return -EINVAL;
1704         flush_dcache_page(page);
1705         return 0;
1706 }
1707
1708 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1709                         unsigned long addr, struct page *page, pgprot_t prot)
1710 {
1711         if (!pte_none(*pte))
1712                 return -EBUSY;
1713         /* Ok, finally just insert the thing.. */
1714         get_page(page);
1715         inc_mm_counter_fast(mm, mm_counter_file(page));
1716         page_add_file_rmap(page, false);
1717         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1718         return 0;
1719 }
1720
1721 /*
1722  * This is the old fallback for page remapping.
1723  *
1724  * For historical reasons, it only allows reserved pages. Only
1725  * old drivers should use this, and they needed to mark their
1726  * pages reserved for the old functions anyway.
1727  */
1728 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1729                         struct page *page, pgprot_t prot)
1730 {
1731         struct mm_struct *mm = vma->vm_mm;
1732         int retval;
1733         pte_t *pte;
1734         spinlock_t *ptl;
1735
1736         retval = validate_page_before_insert(page);
1737         if (retval)
1738                 goto out;
1739         retval = -ENOMEM;
1740         pte = get_locked_pte(mm, addr, &ptl);
1741         if (!pte)
1742                 goto out;
1743         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1744         pte_unmap_unlock(pte, ptl);
1745 out:
1746         return retval;
1747 }
1748
1749 #ifdef pte_index
1750 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1751                         unsigned long addr, struct page *page, pgprot_t prot)
1752 {
1753         int err;
1754
1755         if (!page_count(page))
1756                 return -EINVAL;
1757         err = validate_page_before_insert(page);
1758         if (err)
1759                 return err;
1760         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1761 }
1762
1763 /* insert_pages() amortizes the cost of spinlock operations
1764  * when inserting pages in a loop. Arch *must* define pte_index.
1765  */
1766 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1767                         struct page **pages, unsigned long *num, pgprot_t prot)
1768 {
1769         pmd_t *pmd = NULL;
1770         pte_t *start_pte, *pte;
1771         spinlock_t *pte_lock;
1772         struct mm_struct *const mm = vma->vm_mm;
1773         unsigned long curr_page_idx = 0;
1774         unsigned long remaining_pages_total = *num;
1775         unsigned long pages_to_write_in_pmd;
1776         int ret;
1777 more:
1778         ret = -EFAULT;
1779         pmd = walk_to_pmd(mm, addr);
1780         if (!pmd)
1781                 goto out;
1782
1783         pages_to_write_in_pmd = min_t(unsigned long,
1784                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1785
1786         /* Allocate the PTE if necessary; takes PMD lock once only. */
1787         ret = -ENOMEM;
1788         if (pte_alloc(mm, pmd))
1789                 goto out;
1790
1791         while (pages_to_write_in_pmd) {
1792                 int pte_idx = 0;
1793                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1794
1795                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1796                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1797                         int err = insert_page_in_batch_locked(mm, pte,
1798                                 addr, pages[curr_page_idx], prot);
1799                         if (unlikely(err)) {
1800                                 pte_unmap_unlock(start_pte, pte_lock);
1801                                 ret = err;
1802                                 remaining_pages_total -= pte_idx;
1803                                 goto out;
1804                         }
1805                         addr += PAGE_SIZE;
1806                         ++curr_page_idx;
1807                 }
1808                 pte_unmap_unlock(start_pte, pte_lock);
1809                 pages_to_write_in_pmd -= batch_size;
1810                 remaining_pages_total -= batch_size;
1811         }
1812         if (remaining_pages_total)
1813                 goto more;
1814         ret = 0;
1815 out:
1816         *num = remaining_pages_total;
1817         return ret;
1818 }
1819 #endif  /* ifdef pte_index */
1820
1821 /**
1822  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1823  * @vma: user vma to map to
1824  * @addr: target start user address of these pages
1825  * @pages: source kernel pages
1826  * @num: in: number of pages to map. out: number of pages that were *not*
1827  * mapped. (0 means all pages were successfully mapped).
1828  *
1829  * Preferred over vm_insert_page() when inserting multiple pages.
1830  *
1831  * In case of error, we may have mapped a subset of the provided
1832  * pages. It is the caller's responsibility to account for this case.
1833  *
1834  * The same restrictions apply as in vm_insert_page().
1835  */
1836 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1837                         struct page **pages, unsigned long *num)
1838 {
1839 #ifdef pte_index
1840         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1841
1842         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1843                 return -EFAULT;
1844         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1845                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1846                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1847                 vma->vm_flags |= VM_MIXEDMAP;
1848         }
1849         /* Defer page refcount checking till we're about to map that page. */
1850         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1851 #else
1852         unsigned long idx = 0, pgcount = *num;
1853         int err = -EINVAL;
1854
1855         for (; idx < pgcount; ++idx) {
1856                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1857                 if (err)
1858                         break;
1859         }
1860         *num = pgcount - idx;
1861         return err;
1862 #endif  /* ifdef pte_index */
1863 }
1864 EXPORT_SYMBOL(vm_insert_pages);
1865
1866 /**
1867  * vm_insert_page - insert single page into user vma
1868  * @vma: user vma to map to
1869  * @addr: target user address of this page
1870  * @page: source kernel page
1871  *
1872  * This allows drivers to insert individual pages they've allocated
1873  * into a user vma.
1874  *
1875  * The page has to be a nice clean _individual_ kernel allocation.
1876  * If you allocate a compound page, you need to have marked it as
1877  * such (__GFP_COMP), or manually just split the page up yourself
1878  * (see split_page()).
1879  *
1880  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1881  * took an arbitrary page protection parameter. This doesn't allow
1882  * that. Your vma protection will have to be set up correctly, which
1883  * means that if you want a shared writable mapping, you'd better
1884  * ask for a shared writable mapping!
1885  *
1886  * The page does not need to be reserved.
1887  *
1888  * Usually this function is called from f_op->mmap() handler
1889  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1890  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1891  * function from other places, for example from page-fault handler.
1892  *
1893  * Return: %0 on success, negative error code otherwise.
1894  */
1895 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1896                         struct page *page)
1897 {
1898         if (addr < vma->vm_start || addr >= vma->vm_end)
1899                 return -EFAULT;
1900         if (!page_count(page))
1901                 return -EINVAL;
1902         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1903                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1904                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1905                 vma->vm_flags |= VM_MIXEDMAP;
1906         }
1907         return insert_page(vma, addr, page, vma->vm_page_prot);
1908 }
1909 EXPORT_SYMBOL(vm_insert_page);
1910
1911 /*
1912  * __vm_map_pages - maps range of kernel pages into user vma
1913  * @vma: user vma to map to
1914  * @pages: pointer to array of source kernel pages
1915  * @num: number of pages in page array
1916  * @offset: user's requested vm_pgoff
1917  *
1918  * This allows drivers to map range of kernel pages into a user vma.
1919  *
1920  * Return: 0 on success and error code otherwise.
1921  */
1922 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1923                                 unsigned long num, unsigned long offset)
1924 {
1925         unsigned long count = vma_pages(vma);
1926         unsigned long uaddr = vma->vm_start;
1927         int ret, i;
1928
1929         /* Fail if the user requested offset is beyond the end of the object */
1930         if (offset >= num)
1931                 return -ENXIO;
1932
1933         /* Fail if the user requested size exceeds available object size */
1934         if (count > num - offset)
1935                 return -ENXIO;
1936
1937         for (i = 0; i < count; i++) {
1938                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1939                 if (ret < 0)
1940                         return ret;
1941                 uaddr += PAGE_SIZE;
1942         }
1943
1944         return 0;
1945 }
1946
1947 /**
1948  * vm_map_pages - maps range of kernel pages starts with non zero offset
1949  * @vma: user vma to map to
1950  * @pages: pointer to array of source kernel pages
1951  * @num: number of pages in page array
1952  *
1953  * Maps an object consisting of @num pages, catering for the user's
1954  * requested vm_pgoff
1955  *
1956  * If we fail to insert any page into the vma, the function will return
1957  * immediately leaving any previously inserted pages present.  Callers
1958  * from the mmap handler may immediately return the error as their caller
1959  * will destroy the vma, removing any successfully inserted pages. Other
1960  * callers should make their own arrangements for calling unmap_region().
1961  *
1962  * Context: Process context. Called by mmap handlers.
1963  * Return: 0 on success and error code otherwise.
1964  */
1965 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1966                                 unsigned long num)
1967 {
1968         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1969 }
1970 EXPORT_SYMBOL(vm_map_pages);
1971
1972 /**
1973  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1974  * @vma: user vma to map to
1975  * @pages: pointer to array of source kernel pages
1976  * @num: number of pages in page array
1977  *
1978  * Similar to vm_map_pages(), except that it explicitly sets the offset
1979  * to 0. This function is intended for the drivers that did not consider
1980  * vm_pgoff.
1981  *
1982  * Context: Process context. Called by mmap handlers.
1983  * Return: 0 on success and error code otherwise.
1984  */
1985 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1986                                 unsigned long num)
1987 {
1988         return __vm_map_pages(vma, pages, num, 0);
1989 }
1990 EXPORT_SYMBOL(vm_map_pages_zero);
1991
1992 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1993                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1994 {
1995         struct mm_struct *mm = vma->vm_mm;
1996         pte_t *pte, entry;
1997         spinlock_t *ptl;
1998
1999         pte = get_locked_pte(mm, addr, &ptl);
2000         if (!pte)
2001                 return VM_FAULT_OOM;
2002         if (!pte_none(*pte)) {
2003                 if (mkwrite) {
2004                         /*
2005                          * For read faults on private mappings the PFN passed
2006                          * in may not match the PFN we have mapped if the
2007                          * mapped PFN is a writeable COW page.  In the mkwrite
2008                          * case we are creating a writable PTE for a shared
2009                          * mapping and we expect the PFNs to match. If they
2010                          * don't match, we are likely racing with block
2011                          * allocation and mapping invalidation so just skip the
2012                          * update.
2013                          */
2014                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2015                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2016                                 goto out_unlock;
2017                         }
2018                         entry = pte_mkyoung(*pte);
2019                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2020                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2021                                 update_mmu_cache(vma, addr, pte);
2022                 }
2023                 goto out_unlock;
2024         }
2025
2026         /* Ok, finally just insert the thing.. */
2027         if (pfn_t_devmap(pfn))
2028                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2029         else
2030                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2031
2032         if (mkwrite) {
2033                 entry = pte_mkyoung(entry);
2034                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2035         }
2036
2037         set_pte_at(mm, addr, pte, entry);
2038         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2039
2040 out_unlock:
2041         pte_unmap_unlock(pte, ptl);
2042         return VM_FAULT_NOPAGE;
2043 }
2044
2045 /**
2046  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2047  * @vma: user vma to map to
2048  * @addr: target user address of this page
2049  * @pfn: source kernel pfn
2050  * @pgprot: pgprot flags for the inserted page
2051  *
2052  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2053  * to override pgprot on a per-page basis.
2054  *
2055  * This only makes sense for IO mappings, and it makes no sense for
2056  * COW mappings.  In general, using multiple vmas is preferable;
2057  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2058  * impractical.
2059  *
2060  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2061  * a value of @pgprot different from that of @vma->vm_page_prot.
2062  *
2063  * Context: Process context.  May allocate using %GFP_KERNEL.
2064  * Return: vm_fault_t value.
2065  */
2066 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2067                         unsigned long pfn, pgprot_t pgprot)
2068 {
2069         /*
2070          * Technically, architectures with pte_special can avoid all these
2071          * restrictions (same for remap_pfn_range).  However we would like
2072          * consistency in testing and feature parity among all, so we should
2073          * try to keep these invariants in place for everybody.
2074          */
2075         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2076         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2077                                                 (VM_PFNMAP|VM_MIXEDMAP));
2078         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2079         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2080
2081         if (addr < vma->vm_start || addr >= vma->vm_end)
2082                 return VM_FAULT_SIGBUS;
2083
2084         if (!pfn_modify_allowed(pfn, pgprot))
2085                 return VM_FAULT_SIGBUS;
2086
2087         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2088
2089         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2090                         false);
2091 }
2092 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2093
2094 /**
2095  * vmf_insert_pfn - insert single pfn into user vma
2096  * @vma: user vma to map to
2097  * @addr: target user address of this page
2098  * @pfn: source kernel pfn
2099  *
2100  * Similar to vm_insert_page, this allows drivers to insert individual pages
2101  * they've allocated into a user vma. Same comments apply.
2102  *
2103  * This function should only be called from a vm_ops->fault handler, and
2104  * in that case the handler should return the result of this function.
2105  *
2106  * vma cannot be a COW mapping.
2107  *
2108  * As this is called only for pages that do not currently exist, we
2109  * do not need to flush old virtual caches or the TLB.
2110  *
2111  * Context: Process context.  May allocate using %GFP_KERNEL.
2112  * Return: vm_fault_t value.
2113  */
2114 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115                         unsigned long pfn)
2116 {
2117         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2118 }
2119 EXPORT_SYMBOL(vmf_insert_pfn);
2120
2121 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2122 {
2123         /* these checks mirror the abort conditions in vm_normal_page */
2124         if (vma->vm_flags & VM_MIXEDMAP)
2125                 return true;
2126         if (pfn_t_devmap(pfn))
2127                 return true;
2128         if (pfn_t_special(pfn))
2129                 return true;
2130         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2131                 return true;
2132         return false;
2133 }
2134
2135 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2136                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2137                 bool mkwrite)
2138 {
2139         int err;
2140
2141         BUG_ON(!vm_mixed_ok(vma, pfn));
2142
2143         if (addr < vma->vm_start || addr >= vma->vm_end)
2144                 return VM_FAULT_SIGBUS;
2145
2146         track_pfn_insert(vma, &pgprot, pfn);
2147
2148         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2149                 return VM_FAULT_SIGBUS;
2150
2151         /*
2152          * If we don't have pte special, then we have to use the pfn_valid()
2153          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2154          * refcount the page if pfn_valid is true (hence insert_page rather
2155          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2156          * without pte special, it would there be refcounted as a normal page.
2157          */
2158         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2159             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2160                 struct page *page;
2161
2162                 /*
2163                  * At this point we are committed to insert_page()
2164                  * regardless of whether the caller specified flags that
2165                  * result in pfn_t_has_page() == false.
2166                  */
2167                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2168                 err = insert_page(vma, addr, page, pgprot);
2169         } else {
2170                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2171         }
2172
2173         if (err == -ENOMEM)
2174                 return VM_FAULT_OOM;
2175         if (err < 0 && err != -EBUSY)
2176                 return VM_FAULT_SIGBUS;
2177
2178         return VM_FAULT_NOPAGE;
2179 }
2180
2181 /**
2182  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2183  * @vma: user vma to map to
2184  * @addr: target user address of this page
2185  * @pfn: source kernel pfn
2186  * @pgprot: pgprot flags for the inserted page
2187  *
2188  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2189  * to override pgprot on a per-page basis.
2190  *
2191  * Typically this function should be used by drivers to set caching- and
2192  * encryption bits different than those of @vma->vm_page_prot, because
2193  * the caching- or encryption mode may not be known at mmap() time.
2194  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2195  * to set caching and encryption bits for those vmas (except for COW pages).
2196  * This is ensured by core vm only modifying these page table entries using
2197  * functions that don't touch caching- or encryption bits, using pte_modify()
2198  * if needed. (See for example mprotect()).
2199  * Also when new page-table entries are created, this is only done using the
2200  * fault() callback, and never using the value of vma->vm_page_prot,
2201  * except for page-table entries that point to anonymous pages as the result
2202  * of COW.
2203  *
2204  * Context: Process context.  May allocate using %GFP_KERNEL.
2205  * Return: vm_fault_t value.
2206  */
2207 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2208                                  pfn_t pfn, pgprot_t pgprot)
2209 {
2210         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2211 }
2212 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2213
2214 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2215                 pfn_t pfn)
2216 {
2217         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2218 }
2219 EXPORT_SYMBOL(vmf_insert_mixed);
2220
2221 /*
2222  *  If the insertion of PTE failed because someone else already added a
2223  *  different entry in the mean time, we treat that as success as we assume
2224  *  the same entry was actually inserted.
2225  */
2226 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2227                 unsigned long addr, pfn_t pfn)
2228 {
2229         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2230 }
2231 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2232
2233
2234 /*
2235  * maps a range of physical memory into the requested pages. the old
2236  * mappings are removed. any references to nonexistent pages results
2237  * in null mappings (currently treated as "copy-on-access")
2238  */
2239 #ifdef CONFIG_FINEGRAINED_THP
2240 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2241                         unsigned long addr, unsigned long end,
2242                         unsigned long pfn, pgprot_t prot)
2243 {
2244         return arch_remap_pte_range(mm, pmd, addr, end, pfn, prot);
2245 }
2246
2247 static int remap_try_huge_pmd(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
2248                                 unsigned long end, unsigned long pfn,
2249                                 pgprot_t prot)
2250 {
2251         phys_addr_t phys_addr = __pfn_to_phys(pfn);
2252         spinlock_t *ptl;
2253         int ret;
2254
2255         if ((end - addr) != PMD_SIZE)
2256                 return 0;
2257
2258         if (!IS_ALIGNED(addr, PMD_SIZE))
2259                 return 0;
2260
2261         if (!IS_ALIGNED(phys_addr, PMD_SIZE))
2262                 return 0;
2263
2264         /* fixme - is this correct? */
2265         if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) {
2266                 pr_info("%s %d - freed pmd page??\n", __func__, __LINE__);
2267                 return 0;
2268         }
2269
2270         ptl = pmd_lock(mm, pmd);
2271         ret = pmd_set_huge(pmd, phys_addr, prot);
2272         spin_unlock(ptl);
2273
2274         atomic_long_add(HPAGE_PMD_NR, &nr_phys_huge_pmd_pages);
2275
2276         return ret;
2277 }
2278 #else /* CONFIG_FINEGRAINED_THP */
2279 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2280                         unsigned long addr, unsigned long end,
2281                         unsigned long pfn, pgprot_t prot)
2282 {
2283         pte_t *pte, *mapped_pte;
2284         spinlock_t *ptl;
2285         int err = 0;
2286
2287         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2288         if (!pte)
2289                 return -ENOMEM;
2290         arch_enter_lazy_mmu_mode();
2291         do {
2292                 BUG_ON(!pte_none(*pte));
2293                 if (!pfn_modify_allowed(pfn, prot)) {
2294                         err = -EACCES;
2295                         break;
2296                 }
2297
2298                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2299                 pfn++;
2300                 pte++;
2301                 addr += PAGE_SIZE;
2302         } while (addr != end);
2303         arch_leave_lazy_mmu_mode();
2304         pte_unmap_unlock(mapped_pte, ptl);
2305         return err;
2306 }
2307 #endif /* CONFIG_FINEGRAINED_THP */
2308
2309 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2310                         unsigned long addr, unsigned long end,
2311                         unsigned long pfn, pgprot_t prot)
2312 {
2313         pmd_t *pmd;
2314         unsigned long next;
2315         int err;
2316
2317         pfn -= addr >> PAGE_SHIFT;
2318         pmd = pmd_alloc(mm, pud, addr);
2319         if (!pmd)
2320                 return -ENOMEM;
2321         VM_BUG_ON(pmd_trans_huge(*pmd));
2322         do {
2323                 next = pmd_addr_end(addr, end);
2324 #ifdef CONFIG_FINEGRAINED_THP
2325                 if (remap_try_huge_pmd(mm, pmd, addr, next,
2326                                        pfn + (addr >> PAGE_SHIFT), prot))
2327                         continue;
2328 #endif /* CONFIG_FINEGRAINED_THP */
2329                 err = remap_pte_range(mm, pmd, addr, next,
2330                                 pfn + (addr >> PAGE_SHIFT), prot);
2331                 if (err)
2332                         return err;
2333         } while (pmd++, addr = next, addr != end);
2334         return 0;
2335 }
2336
2337 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2338                         unsigned long addr, unsigned long end,
2339                         unsigned long pfn, pgprot_t prot)
2340 {
2341         pud_t *pud;
2342         unsigned long next;
2343         int err;
2344
2345         pfn -= addr >> PAGE_SHIFT;
2346         pud = pud_alloc(mm, p4d, addr);
2347         if (!pud)
2348                 return -ENOMEM;
2349         do {
2350                 next = pud_addr_end(addr, end);
2351                 err = remap_pmd_range(mm, pud, addr, next,
2352                                 pfn + (addr >> PAGE_SHIFT), prot);
2353                 if (err)
2354                         return err;
2355         } while (pud++, addr = next, addr != end);
2356         return 0;
2357 }
2358
2359 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2360                         unsigned long addr, unsigned long end,
2361                         unsigned long pfn, pgprot_t prot)
2362 {
2363         p4d_t *p4d;
2364         unsigned long next;
2365         int err;
2366
2367         pfn -= addr >> PAGE_SHIFT;
2368         p4d = p4d_alloc(mm, pgd, addr);
2369         if (!p4d)
2370                 return -ENOMEM;
2371         do {
2372                 next = p4d_addr_end(addr, end);
2373                 err = remap_pud_range(mm, p4d, addr, next,
2374                                 pfn + (addr >> PAGE_SHIFT), prot);
2375                 if (err)
2376                         return err;
2377         } while (p4d++, addr = next, addr != end);
2378         return 0;
2379 }
2380
2381 /**
2382  * remap_pfn_range - remap kernel memory to userspace
2383  * @vma: user vma to map to
2384  * @addr: target page aligned user address to start at
2385  * @pfn: page frame number of kernel physical memory address
2386  * @size: size of mapping area
2387  * @prot: page protection flags for this mapping
2388  *
2389  * Note: this is only safe if the mm semaphore is held when called.
2390  *
2391  * Return: %0 on success, negative error code otherwise.
2392  */
2393 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2394                     unsigned long pfn, unsigned long size, pgprot_t prot)
2395 {
2396         pgd_t *pgd;
2397         unsigned long next;
2398         unsigned long end = addr + PAGE_ALIGN(size);
2399         struct mm_struct *mm = vma->vm_mm;
2400         unsigned long remap_pfn = pfn;
2401         int err;
2402
2403         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2404                 return -EINVAL;
2405
2406         /*
2407          * Physically remapped pages are special. Tell the
2408          * rest of the world about it:
2409          *   VM_IO tells people not to look at these pages
2410          *      (accesses can have side effects).
2411          *   VM_PFNMAP tells the core MM that the base pages are just
2412          *      raw PFN mappings, and do not have a "struct page" associated
2413          *      with them.
2414          *   VM_DONTEXPAND
2415          *      Disable vma merging and expanding with mremap().
2416          *   VM_DONTDUMP
2417          *      Omit vma from core dump, even when VM_IO turned off.
2418          *
2419          * There's a horrible special case to handle copy-on-write
2420          * behaviour that some programs depend on. We mark the "original"
2421          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2422          * See vm_normal_page() for details.
2423          */
2424         if (is_cow_mapping(vma->vm_flags)) {
2425                 if (addr != vma->vm_start || end != vma->vm_end)
2426                         return -EINVAL;
2427                 vma->vm_pgoff = pfn;
2428         }
2429
2430         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2431         if (err)
2432                 return -EINVAL;
2433
2434         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2435
2436         BUG_ON(addr >= end);
2437         pfn -= addr >> PAGE_SHIFT;
2438         pgd = pgd_offset(mm, addr);
2439         flush_cache_range(vma, addr, end);
2440         do {
2441                 next = pgd_addr_end(addr, end);
2442                 err = remap_p4d_range(mm, pgd, addr, next,
2443                                 pfn + (addr >> PAGE_SHIFT), prot);
2444                 if (err)
2445                         break;
2446         } while (pgd++, addr = next, addr != end);
2447
2448         if (err)
2449                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2450
2451         return err;
2452 }
2453 EXPORT_SYMBOL(remap_pfn_range);
2454
2455 /**
2456  * vm_iomap_memory - remap memory to userspace
2457  * @vma: user vma to map to
2458  * @start: start of the physical memory to be mapped
2459  * @len: size of area
2460  *
2461  * This is a simplified io_remap_pfn_range() for common driver use. The
2462  * driver just needs to give us the physical memory range to be mapped,
2463  * we'll figure out the rest from the vma information.
2464  *
2465  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2466  * whatever write-combining details or similar.
2467  *
2468  * Return: %0 on success, negative error code otherwise.
2469  */
2470 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2471 {
2472         unsigned long vm_len, pfn, pages;
2473
2474         /* Check that the physical memory area passed in looks valid */
2475         if (start + len < start)
2476                 return -EINVAL;
2477         /*
2478          * You *really* shouldn't map things that aren't page-aligned,
2479          * but we've historically allowed it because IO memory might
2480          * just have smaller alignment.
2481          */
2482         len += start & ~PAGE_MASK;
2483         pfn = start >> PAGE_SHIFT;
2484         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2485         if (pfn + pages < pfn)
2486                 return -EINVAL;
2487
2488         /* We start the mapping 'vm_pgoff' pages into the area */
2489         if (vma->vm_pgoff > pages)
2490                 return -EINVAL;
2491         pfn += vma->vm_pgoff;
2492         pages -= vma->vm_pgoff;
2493
2494         /* Can we fit all of the mapping? */
2495         vm_len = vma->vm_end - vma->vm_start;
2496         if (vm_len >> PAGE_SHIFT > pages)
2497                 return -EINVAL;
2498
2499         /* Ok, let it rip */
2500         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2501 }
2502 EXPORT_SYMBOL(vm_iomap_memory);
2503
2504 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2505                                      unsigned long addr, unsigned long end,
2506                                      pte_fn_t fn, void *data, bool create,
2507                                      pgtbl_mod_mask *mask)
2508 {
2509         pte_t *pte;
2510         int err = 0;
2511         spinlock_t *ptl;
2512
2513         if (create) {
2514                 pte = (mm == &init_mm) ?
2515                         pte_alloc_kernel_track(pmd, addr, mask) :
2516                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2517                 if (!pte)
2518                         return -ENOMEM;
2519         } else {
2520                 pte = (mm == &init_mm) ?
2521                         pte_offset_kernel(pmd, addr) :
2522                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2523         }
2524
2525         BUG_ON(pmd_huge(*pmd));
2526
2527         arch_enter_lazy_mmu_mode();
2528
2529         if (fn) {
2530                 do {
2531                         if (create || !pte_none(*pte)) {
2532                                 err = fn(pte++, addr, data);
2533                                 if (err)
2534                                         break;
2535                         }
2536                 } while (addr += PAGE_SIZE, addr != end);
2537         }
2538         *mask |= PGTBL_PTE_MODIFIED;
2539
2540         arch_leave_lazy_mmu_mode();
2541
2542         if (mm != &init_mm)
2543                 pte_unmap_unlock(pte-1, ptl);
2544         return err;
2545 }
2546
2547 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2548                                      unsigned long addr, unsigned long end,
2549                                      pte_fn_t fn, void *data, bool create,
2550                                      pgtbl_mod_mask *mask)
2551 {
2552         pmd_t *pmd;
2553         unsigned long next;
2554         int err = 0;
2555
2556         BUG_ON(pud_huge(*pud));
2557
2558         if (create) {
2559                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2560                 if (!pmd)
2561                         return -ENOMEM;
2562         } else {
2563                 pmd = pmd_offset(pud, addr);
2564         }
2565         do {
2566                 next = pmd_addr_end(addr, end);
2567                 if (create || !pmd_none_or_clear_bad(pmd)) {
2568                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2569                                                  create, mask);
2570                         if (err)
2571                                 break;
2572                 }
2573         } while (pmd++, addr = next, addr != end);
2574         return err;
2575 }
2576
2577 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2578                                      unsigned long addr, unsigned long end,
2579                                      pte_fn_t fn, void *data, bool create,
2580                                      pgtbl_mod_mask *mask)
2581 {
2582         pud_t *pud;
2583         unsigned long next;
2584         int err = 0;
2585
2586         if (create) {
2587                 pud = pud_alloc_track(mm, p4d, addr, mask);
2588                 if (!pud)
2589                         return -ENOMEM;
2590         } else {
2591                 pud = pud_offset(p4d, addr);
2592         }
2593         do {
2594                 next = pud_addr_end(addr, end);
2595                 if (create || !pud_none_or_clear_bad(pud)) {
2596                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2597                                                  create, mask);
2598                         if (err)
2599                                 break;
2600                 }
2601         } while (pud++, addr = next, addr != end);
2602         return err;
2603 }
2604
2605 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2606                                      unsigned long addr, unsigned long end,
2607                                      pte_fn_t fn, void *data, bool create,
2608                                      pgtbl_mod_mask *mask)
2609 {
2610         p4d_t *p4d;
2611         unsigned long next;
2612         int err = 0;
2613
2614         if (create) {
2615                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2616                 if (!p4d)
2617                         return -ENOMEM;
2618         } else {
2619                 p4d = p4d_offset(pgd, addr);
2620         }
2621         do {
2622                 next = p4d_addr_end(addr, end);
2623                 if (create || !p4d_none_or_clear_bad(p4d)) {
2624                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2625                                                  create, mask);
2626                         if (err)
2627                                 break;
2628                 }
2629         } while (p4d++, addr = next, addr != end);
2630         return err;
2631 }
2632
2633 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2634                                  unsigned long size, pte_fn_t fn,
2635                                  void *data, bool create)
2636 {
2637         pgd_t *pgd;
2638         unsigned long start = addr, next;
2639         unsigned long end = addr + size;
2640         pgtbl_mod_mask mask = 0;
2641         int err = 0;
2642
2643         if (WARN_ON(addr >= end))
2644                 return -EINVAL;
2645
2646         pgd = pgd_offset(mm, addr);
2647         do {
2648                 next = pgd_addr_end(addr, end);
2649                 if (!create && pgd_none_or_clear_bad(pgd))
2650                         continue;
2651                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2652                 if (err)
2653                         break;
2654         } while (pgd++, addr = next, addr != end);
2655
2656         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2657                 arch_sync_kernel_mappings(start, start + size);
2658
2659         return err;
2660 }
2661
2662 /*
2663  * Scan a region of virtual memory, filling in page tables as necessary
2664  * and calling a provided function on each leaf page table.
2665  */
2666 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2667                         unsigned long size, pte_fn_t fn, void *data)
2668 {
2669         return __apply_to_page_range(mm, addr, size, fn, data, true);
2670 }
2671 EXPORT_SYMBOL_GPL(apply_to_page_range);
2672
2673 /*
2674  * Scan a region of virtual memory, calling a provided function on
2675  * each leaf page table where it exists.
2676  *
2677  * Unlike apply_to_page_range, this does _not_ fill in page tables
2678  * where they are absent.
2679  */
2680 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2681                                  unsigned long size, pte_fn_t fn, void *data)
2682 {
2683         return __apply_to_page_range(mm, addr, size, fn, data, false);
2684 }
2685 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2686
2687 /*
2688  * handle_pte_fault chooses page fault handler according to an entry which was
2689  * read non-atomically.  Before making any commitment, on those architectures
2690  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2691  * parts, do_swap_page must check under lock before unmapping the pte and
2692  * proceeding (but do_wp_page is only called after already making such a check;
2693  * and do_anonymous_page can safely check later on).
2694  */
2695 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2696                                 pte_t *page_table, pte_t orig_pte)
2697 {
2698         int same = 1;
2699 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2700         if (sizeof(pte_t) > sizeof(unsigned long)) {
2701                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2702                 spin_lock(ptl);
2703                 same = pte_same(*page_table, orig_pte);
2704                 spin_unlock(ptl);
2705         }
2706 #endif
2707         pte_unmap(page_table);
2708         return same;
2709 }
2710
2711 static inline bool cow_user_page(struct page *dst, struct page *src,
2712                                  struct vm_fault *vmf)
2713 {
2714         bool ret;
2715         void *kaddr;
2716         void __user *uaddr;
2717         bool locked = false;
2718         struct vm_area_struct *vma = vmf->vma;
2719         struct mm_struct *mm = vma->vm_mm;
2720         unsigned long addr = vmf->address;
2721
2722         if (likely(src)) {
2723                 copy_user_highpage(dst, src, addr, vma);
2724                 return true;
2725         }
2726
2727         /*
2728          * If the source page was a PFN mapping, we don't have
2729          * a "struct page" for it. We do a best-effort copy by
2730          * just copying from the original user address. If that
2731          * fails, we just zero-fill it. Live with it.
2732          */
2733         kaddr = kmap_atomic(dst);
2734         uaddr = (void __user *)(addr & PAGE_MASK);
2735
2736         /*
2737          * On architectures with software "accessed" bits, we would
2738          * take a double page fault, so mark it accessed here.
2739          */
2740         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2741                 pte_t entry;
2742
2743                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2744                 locked = true;
2745                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2746                         /*
2747                          * Other thread has already handled the fault
2748                          * and update local tlb only
2749                          */
2750                         update_mmu_tlb(vma, addr, vmf->pte);
2751                         ret = false;
2752                         goto pte_unlock;
2753                 }
2754
2755                 entry = pte_mkyoung(vmf->orig_pte);
2756                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2757                         update_mmu_cache(vma, addr, vmf->pte);
2758         }
2759
2760         /*
2761          * This really shouldn't fail, because the page is there
2762          * in the page tables. But it might just be unreadable,
2763          * in which case we just give up and fill the result with
2764          * zeroes.
2765          */
2766         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2767                 if (locked)
2768                         goto warn;
2769
2770                 /* Re-validate under PTL if the page is still mapped */
2771                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2772                 locked = true;
2773                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2774                         /* The PTE changed under us, update local tlb */
2775                         update_mmu_tlb(vma, addr, vmf->pte);
2776                         ret = false;
2777                         goto pte_unlock;
2778                 }
2779
2780                 /*
2781                  * The same page can be mapped back since last copy attempt.
2782                  * Try to copy again under PTL.
2783                  */
2784                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2785                         /*
2786                          * Give a warn in case there can be some obscure
2787                          * use-case
2788                          */
2789 warn:
2790                         WARN_ON_ONCE(1);
2791                         clear_page(kaddr);
2792                 }
2793         }
2794
2795         ret = true;
2796
2797 pte_unlock:
2798         if (locked)
2799                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2800         kunmap_atomic(kaddr);
2801         flush_dcache_page(dst);
2802
2803         return ret;
2804 }
2805
2806 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2807 {
2808         struct file *vm_file = vma->vm_file;
2809
2810         if (vm_file)
2811                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2812
2813         /*
2814          * Special mappings (e.g. VDSO) do not have any file so fake
2815          * a default GFP_KERNEL for them.
2816          */
2817         return GFP_KERNEL;
2818 }
2819
2820 /*
2821  * Notify the address space that the page is about to become writable so that
2822  * it can prohibit this or wait for the page to get into an appropriate state.
2823  *
2824  * We do this without the lock held, so that it can sleep if it needs to.
2825  */
2826 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2827 {
2828         vm_fault_t ret;
2829         struct page *page = vmf->page;
2830         unsigned int old_flags = vmf->flags;
2831
2832         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2833
2834         if (vmf->vma->vm_file &&
2835             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2836                 return VM_FAULT_SIGBUS;
2837
2838         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2839         /* Restore original flags so that caller is not surprised */
2840         vmf->flags = old_flags;
2841         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2842                 return ret;
2843         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2844                 lock_page(page);
2845                 if (!page->mapping) {
2846                         unlock_page(page);
2847                         return 0; /* retry */
2848                 }
2849                 ret |= VM_FAULT_LOCKED;
2850         } else
2851                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2852         return ret;
2853 }
2854
2855 /*
2856  * Handle dirtying of a page in shared file mapping on a write fault.
2857  *
2858  * The function expects the page to be locked and unlocks it.
2859  */
2860 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2861 {
2862         struct vm_area_struct *vma = vmf->vma;
2863         struct address_space *mapping;
2864         struct page *page = vmf->page;
2865         bool dirtied;
2866         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2867
2868         dirtied = set_page_dirty(page);
2869         VM_BUG_ON_PAGE(PageAnon(page), page);
2870         /*
2871          * Take a local copy of the address_space - page.mapping may be zeroed
2872          * by truncate after unlock_page().   The address_space itself remains
2873          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2874          * release semantics to prevent the compiler from undoing this copying.
2875          */
2876         mapping = page_rmapping(page);
2877         unlock_page(page);
2878
2879         if (!page_mkwrite)
2880                 file_update_time(vma->vm_file);
2881
2882         /*
2883          * Throttle page dirtying rate down to writeback speed.
2884          *
2885          * mapping may be NULL here because some device drivers do not
2886          * set page.mapping but still dirty their pages
2887          *
2888          * Drop the mmap_lock before waiting on IO, if we can. The file
2889          * is pinning the mapping, as per above.
2890          */
2891         if ((dirtied || page_mkwrite) && mapping) {
2892                 struct file *fpin;
2893
2894                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2895                 balance_dirty_pages_ratelimited(mapping);
2896                 if (fpin) {
2897                         fput(fpin);
2898                         return VM_FAULT_RETRY;
2899                 }
2900         }
2901
2902         return 0;
2903 }
2904
2905 /*
2906  * Handle write page faults for pages that can be reused in the current vma
2907  *
2908  * This can happen either due to the mapping being with the VM_SHARED flag,
2909  * or due to us being the last reference standing to the page. In either
2910  * case, all we need to do here is to mark the page as writable and update
2911  * any related book-keeping.
2912  */
2913 static inline void wp_page_reuse(struct vm_fault *vmf)
2914         __releases(vmf->ptl)
2915 {
2916         struct vm_area_struct *vma = vmf->vma;
2917         struct page *page = vmf->page;
2918         pte_t entry;
2919         /*
2920          * Clear the pages cpupid information as the existing
2921          * information potentially belongs to a now completely
2922          * unrelated process.
2923          */
2924         if (page)
2925                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2926
2927         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2928         entry = pte_mkyoung(vmf->orig_pte);
2929         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2930         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2931                 update_mmu_cache(vma, vmf->address, vmf->pte);
2932         pte_unmap_unlock(vmf->pte, vmf->ptl);
2933         count_vm_event(PGREUSE);
2934 }
2935
2936 /*
2937  * Handle the case of a page which we actually need to copy to a new page.
2938  *
2939  * Called with mmap_lock locked and the old page referenced, but
2940  * without the ptl held.
2941  *
2942  * High level logic flow:
2943  *
2944  * - Allocate a page, copy the content of the old page to the new one.
2945  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2946  * - Take the PTL. If the pte changed, bail out and release the allocated page
2947  * - If the pte is still the way we remember it, update the page table and all
2948  *   relevant references. This includes dropping the reference the page-table
2949  *   held to the old page, as well as updating the rmap.
2950  * - In any case, unlock the PTL and drop the reference we took to the old page.
2951  */
2952 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2953 {
2954         struct vm_area_struct *vma = vmf->vma;
2955         struct mm_struct *mm = vma->vm_mm;
2956         struct page *old_page = vmf->page;
2957         struct page *new_page = NULL;
2958         pte_t entry;
2959         int page_copied = 0;
2960         struct mmu_notifier_range range;
2961
2962         if (unlikely(anon_vma_prepare(vma)))
2963                 goto oom;
2964
2965         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2966                 new_page = alloc_zeroed_user_highpage_movable(vma,
2967                                                               vmf->address);
2968                 if (!new_page)
2969                         goto oom;
2970         } else {
2971                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2972                                 vmf->address);
2973                 if (!new_page)
2974                         goto oom;
2975
2976                 if (!cow_user_page(new_page, old_page, vmf)) {
2977                         /*
2978                          * COW failed, if the fault was solved by other,
2979                          * it's fine. If not, userspace would re-fault on
2980                          * the same address and we will handle the fault
2981                          * from the second attempt.
2982                          */
2983                         put_page(new_page);
2984                         if (old_page)
2985                                 put_page(old_page);
2986                         return 0;
2987                 }
2988         }
2989
2990         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2991                 goto oom_free_new;
2992         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2993
2994         __SetPageUptodate(new_page);
2995
2996         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2997                                 vmf->address & PAGE_MASK,
2998                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2999         mmu_notifier_invalidate_range_start(&range);
3000
3001         /*
3002          * Re-check the pte - we dropped the lock
3003          */
3004         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3005         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3006                 if (old_page) {
3007                         if (!PageAnon(old_page)) {
3008                                 dec_mm_counter_fast(mm,
3009                                                 mm_counter_file(old_page));
3010                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3011                         }
3012                 } else {
3013                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3014                 }
3015                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3016                 entry = mk_pte(new_page, vma->vm_page_prot);
3017                 entry = pte_sw_mkyoung(entry);
3018                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3019                 /*
3020                  * Clear the pte entry and flush it first, before updating the
3021                  * pte with the new entry. This will avoid a race condition
3022                  * seen in the presence of one thread doing SMC and another
3023                  * thread doing COW.
3024                  */
3025                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3026                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3027                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3028                 /*
3029                  * We call the notify macro here because, when using secondary
3030                  * mmu page tables (such as kvm shadow page tables), we want the
3031                  * new page to be mapped directly into the secondary page table.
3032                  */
3033                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3034                 update_mmu_cache(vma, vmf->address, vmf->pte);
3035                 if (old_page) {
3036                         /*
3037                          * Only after switching the pte to the new page may
3038                          * we remove the mapcount here. Otherwise another
3039                          * process may come and find the rmap count decremented
3040                          * before the pte is switched to the new page, and
3041                          * "reuse" the old page writing into it while our pte
3042                          * here still points into it and can be read by other
3043                          * threads.
3044                          *
3045                          * The critical issue is to order this
3046                          * page_remove_rmap with the ptp_clear_flush above.
3047                          * Those stores are ordered by (if nothing else,)
3048                          * the barrier present in the atomic_add_negative
3049                          * in page_remove_rmap.
3050                          *
3051                          * Then the TLB flush in ptep_clear_flush ensures that
3052                          * no process can access the old page before the
3053                          * decremented mapcount is visible. And the old page
3054                          * cannot be reused until after the decremented
3055                          * mapcount is visible. So transitively, TLBs to
3056                          * old page will be flushed before it can be reused.
3057                          */
3058                         page_remove_rmap(old_page, false);
3059                 }
3060
3061                 /* Free the old page.. */
3062                 new_page = old_page;
3063                 page_copied = 1;
3064         } else {
3065                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3066         }
3067
3068         if (new_page)
3069                 put_page(new_page);
3070
3071         pte_unmap_unlock(vmf->pte, vmf->ptl);
3072         /*
3073          * No need to double call mmu_notifier->invalidate_range() callback as
3074          * the above ptep_clear_flush_notify() did already call it.
3075          */
3076         mmu_notifier_invalidate_range_only_end(&range);
3077         if (old_page) {
3078                 /*
3079                  * Don't let another task, with possibly unlocked vma,
3080                  * keep the mlocked page.
3081                  */
3082                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3083                         lock_page(old_page);    /* LRU manipulation */
3084                         if (PageMlocked(old_page))
3085                                 munlock_vma_page(old_page);
3086                         unlock_page(old_page);
3087                 }
3088                 put_page(old_page);
3089         }
3090         return page_copied ? VM_FAULT_WRITE : 0;
3091 oom_free_new:
3092         put_page(new_page);
3093 oom:
3094         if (old_page)
3095                 put_page(old_page);
3096         return VM_FAULT_OOM;
3097 }
3098
3099 /**
3100  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3101  *                        writeable once the page is prepared
3102  *
3103  * @vmf: structure describing the fault
3104  *
3105  * This function handles all that is needed to finish a write page fault in a
3106  * shared mapping due to PTE being read-only once the mapped page is prepared.
3107  * It handles locking of PTE and modifying it.
3108  *
3109  * The function expects the page to be locked or other protection against
3110  * concurrent faults / writeback (such as DAX radix tree locks).
3111  *
3112  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3113  * we acquired PTE lock.
3114  */
3115 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3116 {
3117         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3118         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3119                                        &vmf->ptl);
3120         /*
3121          * We might have raced with another page fault while we released the
3122          * pte_offset_map_lock.
3123          */
3124         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3125                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3126                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3127                 return VM_FAULT_NOPAGE;
3128         }
3129         wp_page_reuse(vmf);
3130         return 0;
3131 }
3132
3133 /*
3134  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3135  * mapping
3136  */
3137 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3138 {
3139         struct vm_area_struct *vma = vmf->vma;
3140
3141         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3142                 vm_fault_t ret;
3143
3144                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3145                 vmf->flags |= FAULT_FLAG_MKWRITE;
3146                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3147                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3148                         return ret;
3149                 return finish_mkwrite_fault(vmf);
3150         }
3151         wp_page_reuse(vmf);
3152         return VM_FAULT_WRITE;
3153 }
3154
3155 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3156         __releases(vmf->ptl)
3157 {
3158         struct vm_area_struct *vma = vmf->vma;
3159         vm_fault_t ret = VM_FAULT_WRITE;
3160
3161         get_page(vmf->page);
3162
3163         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3164                 vm_fault_t tmp;
3165
3166                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3167                 tmp = do_page_mkwrite(vmf);
3168                 if (unlikely(!tmp || (tmp &
3169                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3170                         put_page(vmf->page);
3171                         return tmp;
3172                 }
3173                 tmp = finish_mkwrite_fault(vmf);
3174                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3175                         unlock_page(vmf->page);
3176                         put_page(vmf->page);
3177                         return tmp;
3178                 }
3179         } else {
3180                 wp_page_reuse(vmf);
3181                 lock_page(vmf->page);
3182         }
3183         ret |= fault_dirty_shared_page(vmf);
3184         put_page(vmf->page);
3185
3186         return ret;
3187 }
3188
3189 /*
3190  * This routine handles present pages, when users try to write
3191  * to a shared page. It is done by copying the page to a new address
3192  * and decrementing the shared-page counter for the old page.
3193  *
3194  * Note that this routine assumes that the protection checks have been
3195  * done by the caller (the low-level page fault routine in most cases).
3196  * Thus we can safely just mark it writable once we've done any necessary
3197  * COW.
3198  *
3199  * We also mark the page dirty at this point even though the page will
3200  * change only once the write actually happens. This avoids a few races,
3201  * and potentially makes it more efficient.
3202  *
3203  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3204  * but allow concurrent faults), with pte both mapped and locked.
3205  * We return with mmap_lock still held, but pte unmapped and unlocked.
3206  */
3207 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3208         __releases(vmf->ptl)
3209 {
3210         struct vm_area_struct *vma = vmf->vma;
3211
3212         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3213                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3214                 return handle_userfault(vmf, VM_UFFD_WP);
3215         }
3216
3217         /*
3218          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3219          * is flushed in this case before copying.
3220          */
3221         if (unlikely(userfaultfd_wp(vmf->vma) &&
3222                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3223                 flush_tlb_page(vmf->vma, vmf->address);
3224
3225         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3226         if (!vmf->page) {
3227                 /*
3228                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3229                  * VM_PFNMAP VMA.
3230                  *
3231                  * We should not cow pages in a shared writeable mapping.
3232                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3233                  */
3234                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3235                                      (VM_WRITE|VM_SHARED))
3236                         return wp_pfn_shared(vmf);
3237
3238                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3239                 return wp_page_copy(vmf);
3240         }
3241
3242         /*
3243          * Take out anonymous pages first, anonymous shared vmas are
3244          * not dirty accountable.
3245          */
3246         if (PageAnon(vmf->page)) {
3247                 struct page *page = vmf->page;
3248
3249                 /* PageKsm() doesn't necessarily raise the page refcount */
3250                 if (PageKsm(page) || page_count(page) != 1)
3251                         goto copy;
3252                 if (!trylock_page(page))
3253                         goto copy;
3254                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3255                         unlock_page(page);
3256                         goto copy;
3257                 }
3258                 /*
3259                  * Ok, we've got the only map reference, and the only
3260                  * page count reference, and the page is locked,
3261                  * it's dark out, and we're wearing sunglasses. Hit it.
3262                  */
3263                 unlock_page(page);
3264                 wp_page_reuse(vmf);
3265                 return VM_FAULT_WRITE;
3266         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3267                                         (VM_WRITE|VM_SHARED))) {
3268                 return wp_page_shared(vmf);
3269         }
3270 copy:
3271         /*
3272          * Ok, we need to copy. Oh, well..
3273          */
3274         get_page(vmf->page);
3275
3276         pte_unmap_unlock(vmf->pte, vmf->ptl);
3277         return wp_page_copy(vmf);
3278 }
3279
3280 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3281                 unsigned long start_addr, unsigned long end_addr,
3282                 struct zap_details *details)
3283 {
3284         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3285 }
3286
3287 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3288                                             struct zap_details *details)
3289 {
3290         struct vm_area_struct *vma;
3291         pgoff_t vba, vea, zba, zea;
3292
3293         vma_interval_tree_foreach(vma, root,
3294                         details->first_index, details->last_index) {
3295
3296                 vba = vma->vm_pgoff;
3297                 vea = vba + vma_pages(vma) - 1;
3298                 zba = details->first_index;
3299                 if (zba < vba)
3300                         zba = vba;
3301                 zea = details->last_index;
3302                 if (zea > vea)
3303                         zea = vea;
3304
3305                 unmap_mapping_range_vma(vma,
3306                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3307                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3308                                 details);
3309         }
3310 }
3311
3312 /**
3313  * unmap_mapping_page() - Unmap single page from processes.
3314  * @page: The locked page to be unmapped.
3315  *
3316  * Unmap this page from any userspace process which still has it mmaped.
3317  * Typically, for efficiency, the range of nearby pages has already been
3318  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3319  * truncation or invalidation holds the lock on a page, it may find that
3320  * the page has been remapped again: and then uses unmap_mapping_page()
3321  * to unmap it finally.
3322  */
3323 void unmap_mapping_page(struct page *page)
3324 {
3325         struct address_space *mapping = page->mapping;
3326         struct zap_details details = { };
3327
3328         VM_BUG_ON(!PageLocked(page));
3329         VM_BUG_ON(PageTail(page));
3330
3331         details.check_mapping = mapping;
3332         details.first_index = page->index;
3333         details.last_index = page->index + thp_nr_pages(page) - 1;
3334         details.single_page = page;
3335
3336         i_mmap_lock_write(mapping);
3337         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3338                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3339         i_mmap_unlock_write(mapping);
3340 }
3341
3342 /**
3343  * unmap_mapping_pages() - Unmap pages from processes.
3344  * @mapping: The address space containing pages to be unmapped.
3345  * @start: Index of first page to be unmapped.
3346  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3347  * @even_cows: Whether to unmap even private COWed pages.
3348  *
3349  * Unmap the pages in this address space from any userspace process which
3350  * has them mmaped.  Generally, you want to remove COWed pages as well when
3351  * a file is being truncated, but not when invalidating pages from the page
3352  * cache.
3353  */
3354 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3355                 pgoff_t nr, bool even_cows)
3356 {
3357         struct zap_details details = { };
3358
3359         details.check_mapping = even_cows ? NULL : mapping;
3360         details.first_index = start;
3361         details.last_index = start + nr - 1;
3362         if (details.last_index < details.first_index)
3363                 details.last_index = ULONG_MAX;
3364
3365         i_mmap_lock_write(mapping);
3366         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3367                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3368         i_mmap_unlock_write(mapping);
3369 }
3370
3371 /**
3372  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3373  * address_space corresponding to the specified byte range in the underlying
3374  * file.
3375  *
3376  * @mapping: the address space containing mmaps to be unmapped.
3377  * @holebegin: byte in first page to unmap, relative to the start of
3378  * the underlying file.  This will be rounded down to a PAGE_SIZE
3379  * boundary.  Note that this is different from truncate_pagecache(), which
3380  * must keep the partial page.  In contrast, we must get rid of
3381  * partial pages.
3382  * @holelen: size of prospective hole in bytes.  This will be rounded
3383  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3384  * end of the file.
3385  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3386  * but 0 when invalidating pagecache, don't throw away private data.
3387  */
3388 void unmap_mapping_range(struct address_space *mapping,
3389                 loff_t const holebegin, loff_t const holelen, int even_cows)
3390 {
3391         pgoff_t hba = holebegin >> PAGE_SHIFT;
3392         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3393
3394         /* Check for overflow. */
3395         if (sizeof(holelen) > sizeof(hlen)) {
3396                 long long holeend =
3397                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3398                 if (holeend & ~(long long)ULONG_MAX)
3399                         hlen = ULONG_MAX - hba + 1;
3400         }
3401
3402         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3403 }
3404 EXPORT_SYMBOL(unmap_mapping_range);
3405
3406 /*
3407  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3408  * but allow concurrent faults), and pte mapped but not yet locked.
3409  * We return with pte unmapped and unlocked.
3410  *
3411  * We return with the mmap_lock locked or unlocked in the same cases
3412  * as does filemap_fault().
3413  */
3414 vm_fault_t do_swap_page(struct vm_fault *vmf)
3415 {
3416         struct vm_area_struct *vma = vmf->vma;
3417         struct page *page = NULL, *swapcache;
3418         swp_entry_t entry;
3419         pte_t pte;
3420         int locked;
3421         int exclusive = 0;
3422         vm_fault_t ret = 0;
3423         void *shadow = NULL;
3424
3425         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3426                 goto out;
3427
3428         entry = pte_to_swp_entry(vmf->orig_pte);
3429         if (unlikely(non_swap_entry(entry))) {
3430                 if (is_migration_entry(entry)) {
3431                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3432                                              vmf->address);
3433                 } else if (is_device_private_entry(entry)) {
3434                         vmf->page = device_private_entry_to_page(entry);
3435                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3436                 } else if (is_hwpoison_entry(entry)) {
3437                         ret = VM_FAULT_HWPOISON;
3438                 } else {
3439                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3440                         ret = VM_FAULT_SIGBUS;
3441                 }
3442                 goto out;
3443         }
3444
3445
3446         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3447         page = lookup_swap_cache(entry, vma, vmf->address);
3448         swapcache = page;
3449
3450         if (!page) {
3451                 struct swap_info_struct *si = swp_swap_info(entry);
3452
3453                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3454                     __swap_count(entry) == 1) {
3455                         /* skip swapcache */
3456                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3457                                                         vmf->address);
3458                         if (page) {
3459                                 int err;
3460
3461                                 __SetPageLocked(page);
3462                                 __SetPageSwapBacked(page);
3463                                 set_page_private(page, entry.val);
3464
3465                                 /* Tell memcg to use swap ownership records */
3466                                 SetPageSwapCache(page);
3467                                 err = mem_cgroup_charge(page, vma->vm_mm,
3468                                                         GFP_KERNEL);
3469                                 ClearPageSwapCache(page);
3470                                 if (err) {
3471                                         ret = VM_FAULT_OOM;
3472                                         goto out_page;
3473                                 }
3474
3475                                 shadow = get_shadow_from_swap_cache(entry);
3476                                 if (shadow)
3477                                         workingset_refault(page, shadow);
3478
3479                                 lru_cache_add(page);
3480                                 swap_readpage(page, true);
3481                         }
3482                 } else {
3483                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3484                                                 vmf);
3485                         swapcache = page;
3486                 }
3487
3488                 if (!page) {
3489                         /*
3490                          * Back out if somebody else faulted in this pte
3491                          * while we released the pte lock.
3492                          */
3493                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3494                                         vmf->address, &vmf->ptl);
3495                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3496                                 ret = VM_FAULT_OOM;
3497                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3498                         goto unlock;
3499                 }
3500
3501                 /* Had to read the page from swap area: Major fault */
3502                 ret = VM_FAULT_MAJOR;
3503                 count_vm_event(PGMAJFAULT);
3504                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3505         } else if (PageHWPoison(page)) {
3506                 /*
3507                  * hwpoisoned dirty swapcache pages are kept for killing
3508                  * owner processes (which may be unknown at hwpoison time)
3509                  */
3510                 ret = VM_FAULT_HWPOISON;
3511                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3512                 goto out_release;
3513         }
3514
3515         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3516
3517         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3518         if (!locked) {
3519                 ret |= VM_FAULT_RETRY;
3520                 goto out_release;
3521         }
3522
3523         /*
3524          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3525          * release the swapcache from under us.  The page pin, and pte_same
3526          * test below, are not enough to exclude that.  Even if it is still
3527          * swapcache, we need to check that the page's swap has not changed.
3528          */
3529         if (unlikely((!PageSwapCache(page) ||
3530                         page_private(page) != entry.val)) && swapcache)
3531                 goto out_page;
3532
3533         page = ksm_might_need_to_copy(page, vma, vmf->address);
3534         if (unlikely(!page)) {
3535                 ret = VM_FAULT_OOM;
3536                 page = swapcache;
3537                 goto out_page;
3538         }
3539
3540         cgroup_throttle_swaprate(page, GFP_KERNEL);
3541
3542         /*
3543          * Back out if somebody else already faulted in this pte.
3544          */
3545         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3546                         &vmf->ptl);
3547         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3548                 goto out_nomap;
3549
3550         if (unlikely(!PageUptodate(page))) {
3551                 ret = VM_FAULT_SIGBUS;
3552                 goto out_nomap;
3553         }
3554
3555         /*
3556          * The page isn't present yet, go ahead with the fault.
3557          *
3558          * Be careful about the sequence of operations here.
3559          * To get its accounting right, reuse_swap_page() must be called
3560          * while the page is counted on swap but not yet in mapcount i.e.
3561          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3562          * must be called after the swap_free(), or it will never succeed.
3563          */
3564
3565         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3566         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3567         pte = mk_pte(page, vma->vm_page_prot);
3568         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3569                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3570                 vmf->flags &= ~FAULT_FLAG_WRITE;
3571                 ret |= VM_FAULT_WRITE;
3572                 exclusive = RMAP_EXCLUSIVE;
3573         }
3574         flush_icache_page(vma, page);
3575         if (pte_swp_soft_dirty(vmf->orig_pte))
3576                 pte = pte_mksoft_dirty(pte);
3577         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3578                 pte = pte_mkuffd_wp(pte);
3579                 pte = pte_wrprotect(pte);
3580         }
3581         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3582         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3583         vmf->orig_pte = pte;
3584
3585         /* ksm created a completely new copy */
3586         if (unlikely(page != swapcache && swapcache)) {
3587                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3588                 lru_cache_add_inactive_or_unevictable(page, vma);
3589         } else {
3590                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3591         }
3592
3593         swap_free(entry);
3594         if (mem_cgroup_swap_full(page) ||
3595             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3596                 try_to_free_swap(page);
3597         unlock_page(page);
3598         if (page != swapcache && swapcache) {
3599                 /*
3600                  * Hold the lock to avoid the swap entry to be reused
3601                  * until we take the PT lock for the pte_same() check
3602                  * (to avoid false positives from pte_same). For
3603                  * further safety release the lock after the swap_free
3604                  * so that the swap count won't change under a
3605                  * parallel locked swapcache.
3606                  */
3607                 unlock_page(swapcache);
3608                 put_page(swapcache);
3609         }
3610
3611         if (vmf->flags & FAULT_FLAG_WRITE) {
3612                 ret |= do_wp_page(vmf);
3613                 if (ret & VM_FAULT_ERROR)
3614                         ret &= VM_FAULT_ERROR;
3615                 goto out;
3616         }
3617
3618         /* No need to invalidate - it was non-present before */
3619         update_mmu_cache(vma, vmf->address, vmf->pte);
3620 unlock:
3621         pte_unmap_unlock(vmf->pte, vmf->ptl);
3622 out:
3623         return ret;
3624 out_nomap:
3625         pte_unmap_unlock(vmf->pte, vmf->ptl);
3626 out_page:
3627         unlock_page(page);
3628 out_release:
3629         put_page(page);
3630         if (page != swapcache && swapcache) {
3631                 unlock_page(swapcache);
3632                 put_page(swapcache);
3633         }
3634         return ret;
3635 }
3636
3637 extern bool eager_allocation;
3638
3639 /*
3640  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3641  * but allow concurrent faults), and pte mapped but not yet locked.
3642  * We return with mmap_lock still held, but pte unmapped and unlocked.
3643  */
3644 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3645 {
3646         struct vm_area_struct *vma = vmf->vma;
3647         struct page *page;
3648         vm_fault_t ret = 0;
3649         pte_t entry;
3650
3651         /* File mapping without ->vm_ops ? */
3652         if (vma->vm_flags & VM_SHARED)
3653                 return VM_FAULT_SIGBUS;
3654
3655         /*
3656          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3657          * pte_offset_map() on pmds where a huge pmd might be created
3658          * from a different thread.
3659          *
3660          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3661          * parallel threads are excluded by other means.
3662          *
3663          * Here we only have mmap_read_lock(mm).
3664          */
3665         if (pte_alloc(vma->vm_mm, vmf->pmd))
3666                 return VM_FAULT_OOM;
3667
3668         /* See the comment in pte_alloc_one_map() */
3669         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3670                 return 0;
3671
3672         /* Use the zero-page for reads */
3673         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3674                         !mm_forbids_zeropage(vma->vm_mm)) {
3675                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3676                                                 vma->vm_page_prot));
3677                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3678                                 vmf->address, &vmf->ptl);
3679                 if (!pte_none(*vmf->pte)) {
3680                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3681                         goto unlock;
3682                 }
3683                 ret = check_stable_address_space(vma->vm_mm);
3684                 if (ret)
3685                         goto unlock;
3686                 /* Deliver the page fault to userland, check inside PT lock */
3687                 if (userfaultfd_missing(vma)) {
3688                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3689                         return handle_userfault(vmf, VM_UFFD_MISSING);
3690                 }
3691                 goto setpte;
3692         }
3693
3694         /* Allocate our own private page. */
3695         if (unlikely(anon_vma_prepare(vma)))
3696                 goto oom;
3697 #ifdef CONFIG_FINEGRAINED_THP
3698 #ifndef CONFIG_THP_CONSERVATIVE
3699         /*
3700          * 64KB hugepage creation on page fault is only allowed
3701          * in an aggressive policy or a near-conservative policy
3702          */
3703         if (__transparent_hugepage_enabled(vma)) {
3704                 ret = arch_do_huge_pte_anonymous_page(vmf);
3705                 if (!(ret & VM_FAULT_FALLBACK)) {
3706                         return ret;
3707                 }
3708                 ret = 0;
3709         }
3710 #endif /* CONFIG_THP_CONSERVATIVE */
3711 #endif /* CONFIG_FINEGRAINED_THP */
3712
3713         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3714         if (!page)
3715                 goto oom;
3716
3717         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3718                 goto oom_free_page;
3719         cgroup_throttle_swaprate(page, GFP_KERNEL);
3720
3721         /*
3722          * The memory barrier inside __SetPageUptodate makes sure that
3723          * preceding stores to the page contents become visible before
3724          * the set_pte_at() write.
3725          */
3726         __SetPageUptodate(page);
3727
3728         entry = mk_pte(page, vma->vm_page_prot);
3729         entry = pte_sw_mkyoung(entry);
3730         if (vma->vm_flags & VM_WRITE)
3731                 entry = pte_mkwrite(pte_mkdirty(entry));
3732
3733         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3734                         &vmf->ptl);
3735         if (!pte_none(*vmf->pte)) {
3736                 update_mmu_cache(vma, vmf->address, vmf->pte);
3737                 goto release;
3738         }
3739
3740         ret = check_stable_address_space(vma->vm_mm);
3741         if (ret)
3742                 goto release;
3743
3744         /* Deliver the page fault to userland, check inside PT lock */
3745         if (userfaultfd_missing(vma)) {
3746                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3747                 put_page(page);
3748                 return handle_userfault(vmf, VM_UFFD_MISSING);
3749         }
3750
3751         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3752         page_add_new_anon_rmap(page, vma, vmf->address, false);
3753         lru_cache_add_inactive_or_unevictable(page, vma);
3754 setpte:
3755         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3756
3757         /* No need to invalidate - it was non-present before */
3758         update_mmu_cache(vma, vmf->address, vmf->pte);
3759 unlock:
3760         pte_unmap_unlock(vmf->pte, vmf->ptl);
3761         return ret;
3762 release:
3763         put_page(page);
3764         goto unlock;
3765 oom_free_page:
3766         put_page(page);
3767 oom:
3768         return VM_FAULT_OOM;
3769 }
3770
3771 /*
3772  * The mmap_lock must have been held on entry, and may have been
3773  * released depending on flags and vma->vm_ops->fault() return value.
3774  * See filemap_fault() and __lock_page_retry().
3775  */
3776 static vm_fault_t __do_fault(struct vm_fault *vmf)
3777 {
3778         struct vm_area_struct *vma = vmf->vma;
3779         vm_fault_t ret;
3780
3781         /*
3782          * Preallocate pte before we take page_lock because this might lead to
3783          * deadlocks for memcg reclaim which waits for pages under writeback:
3784          *                              lock_page(A)
3785          *                              SetPageWriteback(A)
3786          *                              unlock_page(A)
3787          * lock_page(B)
3788          *                              lock_page(B)
3789          * pte_alloc_one
3790          *   shrink_page_list
3791          *     wait_on_page_writeback(A)
3792          *                              SetPageWriteback(B)
3793          *                              unlock_page(B)
3794          *                              # flush A, B to clear the writeback
3795          */
3796         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3797                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3798                 if (!vmf->prealloc_pte)
3799                         return VM_FAULT_OOM;
3800                 smp_wmb(); /* See comment in __pte_alloc() */
3801         }
3802
3803         ret = vma->vm_ops->fault(vmf);
3804         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3805                             VM_FAULT_DONE_COW)))
3806                 return ret;
3807
3808         if (unlikely(PageHWPoison(vmf->page))) {
3809                 if (ret & VM_FAULT_LOCKED)
3810                         unlock_page(vmf->page);
3811                 put_page(vmf->page);
3812                 vmf->page = NULL;
3813                 return VM_FAULT_HWPOISON;
3814         }
3815
3816         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3817                 lock_page(vmf->page);
3818         else
3819                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3820
3821         return ret;
3822 }
3823
3824 /*
3825  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3826  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3827  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3828  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3829  */
3830 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3831 {
3832         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3833 }
3834
3835 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3836 {
3837         struct vm_area_struct *vma = vmf->vma;
3838
3839         if (!pmd_none(*vmf->pmd))
3840                 goto map_pte;
3841         if (vmf->prealloc_pte) {
3842                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3843                 if (unlikely(!pmd_none(*vmf->pmd))) {
3844                         spin_unlock(vmf->ptl);
3845                         goto map_pte;
3846                 }
3847
3848                 mm_inc_nr_ptes(vma->vm_mm);
3849                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3850                 spin_unlock(vmf->ptl);
3851                 vmf->prealloc_pte = NULL;
3852         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3853                 return VM_FAULT_OOM;
3854         }
3855 map_pte:
3856         /*
3857          * If a huge pmd materialized under us just retry later.  Use
3858          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3859          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3860          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3861          * running immediately after a huge pmd fault in a different thread of
3862          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3863          * All we have to ensure is that it is a regular pmd that we can walk
3864          * with pte_offset_map() and we can do that through an atomic read in
3865          * C, which is what pmd_trans_unstable() provides.
3866          */
3867         if (pmd_devmap_trans_unstable(vmf->pmd))
3868                 return VM_FAULT_NOPAGE;
3869
3870         /*
3871          * At this point we know that our vmf->pmd points to a page of ptes
3872          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3873          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3874          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3875          * be valid and we will re-check to make sure the vmf->pte isn't
3876          * pte_none() under vmf->ptl protection when we return to
3877          * alloc_set_pte().
3878          */
3879         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3880                         &vmf->ptl);
3881         return 0;
3882 }
3883
3884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3885 static void deposit_prealloc_pte(struct vm_fault *vmf)
3886 {
3887         struct vm_area_struct *vma = vmf->vma;
3888
3889         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3890         /*
3891          * We are going to consume the prealloc table,
3892          * count that as nr_ptes.
3893          */
3894         mm_inc_nr_ptes(vma->vm_mm);
3895         vmf->prealloc_pte = NULL;
3896 }
3897
3898 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3899 {
3900         struct vm_area_struct *vma = vmf->vma;
3901         bool write = vmf->flags & FAULT_FLAG_WRITE;
3902         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3903         pmd_t entry;
3904         int i;
3905         vm_fault_t ret = VM_FAULT_FALLBACK;
3906
3907         if (!transhuge_vma_suitable(vma, haddr))
3908                 return ret;
3909
3910         page = compound_head(page);
3911         if (compound_order(page) != HPAGE_PMD_ORDER)
3912                 return ret;
3913
3914         /*
3915          * Archs like ppc64 need additonal space to store information
3916          * related to pte entry. Use the preallocated table for that.
3917          */
3918         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3919                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3920                 if (!vmf->prealloc_pte)
3921                         return VM_FAULT_OOM;
3922                 smp_wmb(); /* See comment in __pte_alloc() */
3923         }
3924
3925         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3926         if (unlikely(!pmd_none(*vmf->pmd)))
3927                 goto out;
3928
3929         for (i = 0; i < HPAGE_PMD_NR; i++)
3930                 flush_icache_page(vma, page + i);
3931
3932         entry = mk_huge_pmd(page, vma->vm_page_prot);
3933         if (write)
3934                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3935
3936         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3937         page_add_file_rmap(page, true);
3938         /*
3939          * deposit and withdraw with pmd lock held
3940          */
3941         if (arch_needs_pgtable_deposit())
3942                 deposit_prealloc_pte(vmf);
3943
3944         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3945
3946         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3947
3948         /* fault is handled */
3949         ret = 0;
3950         count_vm_event(THP_FILE_MAPPED);
3951 out:
3952         spin_unlock(vmf->ptl);
3953         return ret;
3954 }
3955 #else
3956 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3957 {
3958         BUILD_BUG();
3959         return 0;
3960 }
3961
3962 #ifdef CONFIG_FINEGRAINED_THP
3963 static vm_fault_t arch_do_set_huge_pte(struct vm_fault *vmf, struct page *page)
3964 {
3965         BUILD_BUG();
3966         return 0;
3967 }
3968 #endif
3969 #endif
3970
3971 /**
3972  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3973  * mapping. If needed, the function allocates page table or use pre-allocated.
3974  *
3975  * @vmf: fault environment
3976  * @page: page to map
3977  *
3978  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3979  * return.
3980  *
3981  * Target users are page handler itself and implementations of
3982  * vm_ops->map_pages.
3983  *
3984  * Return: %0 on success, %VM_FAULT_ code in case of error.
3985  */
3986 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3987 {
3988         struct vm_area_struct *vma = vmf->vma;
3989         bool write = vmf->flags & FAULT_FLAG_WRITE;
3990         pte_t entry;
3991         vm_fault_t ret;
3992
3993         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3994                         compound_nr(compound_head(page)) == HPAGE_PMD_NR) {
3995                 ret = do_set_pmd(vmf, page);
3996                 if (ret != VM_FAULT_FALLBACK)
3997                         return ret;
3998         }
3999
4000 #ifdef CONFIG_FINEGRAINED_THP
4001         /* PageTransHuge cannot find hugepage if the page is not a head */
4002         if (PageTransCompound(page) &&
4003                         compound_nr(compound_head(page)) == HPAGE_CONT_PTE_NR) {
4004                 ret = arch_do_set_huge_pte(vmf, page);
4005                 if (ret != VM_FAULT_FALLBACK)
4006                         return ret;
4007         }
4008 #endif /* CONFIG_FINEGRAINED_THP */
4009
4010         if (!vmf->pte) {
4011                 ret = pte_alloc_one_map(vmf);
4012                 if (ret)
4013                         return ret;
4014         }
4015
4016         /* Re-check under ptl */
4017         if (unlikely(!pte_none(*vmf->pte))) {
4018                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4019                 return VM_FAULT_NOPAGE;
4020         }
4021         /*
4022         if (!strcmp(current->comm, "org.tizen.nlp.s") || !strcmp(current->comm, "memps"))
4023                 pr_info("THP-wp: huge fault for addr (%lx) (%s) %s\n",
4024                         vmf->address, current->comm, __func__);
4025         */
4026         flush_icache_page(vma, page);
4027         entry = mk_pte(page, vma->vm_page_prot);
4028         entry = pte_sw_mkyoung(entry);
4029         if (write)
4030                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4031         /* copy-on-write page */
4032         if (write && !(vma->vm_flags & VM_SHARED)) {
4033                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4034                 page_add_new_anon_rmap(page, vma, vmf->address, false);
4035                 lru_cache_add_inactive_or_unevictable(page, vma);
4036         } else {
4037                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4038                 page_add_file_rmap(page, false);
4039         }
4040         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4041
4042         /* no need to invalidate: a not-present page won't be cached */
4043         update_mmu_cache(vma, vmf->address, vmf->pte);
4044
4045         return 0;
4046 }
4047
4048
4049 /**
4050  * finish_fault - finish page fault once we have prepared the page to fault
4051  *
4052  * @vmf: structure describing the fault
4053  *
4054  * This function handles all that is needed to finish a page fault once the
4055  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4056  * given page, adds reverse page mapping, handles memcg charges and LRU
4057  * addition.
4058  *
4059  * The function expects the page to be locked and on success it consumes a
4060  * reference of a page being mapped (for the PTE which maps it).
4061  *
4062  * Return: %0 on success, %VM_FAULT_ code in case of error.
4063  */
4064 vm_fault_t finish_fault(struct vm_fault *vmf)
4065 {
4066         struct page *page;
4067         vm_fault_t ret = 0;
4068
4069         /* Did we COW the page? */
4070         if ((vmf->flags & FAULT_FLAG_WRITE) &&
4071             !(vmf->vma->vm_flags & VM_SHARED))
4072                 page = vmf->cow_page;
4073         else
4074                 page = vmf->page;
4075
4076         /*
4077          * check even for read faults because we might have lost our CoWed
4078          * page
4079          */
4080         if (!(vmf->vma->vm_flags & VM_SHARED))
4081                 ret = check_stable_address_space(vmf->vma->vm_mm);
4082         if (!ret)
4083                 ret = alloc_set_pte(vmf, page);
4084         if (vmf->pte)
4085                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4086         return ret;
4087 }
4088
4089 static unsigned long fault_around_bytes __read_mostly =
4090         rounddown_pow_of_two(4096);
4091
4092 #ifdef CONFIG_DEBUG_FS
4093 static int fault_around_bytes_get(void *data, u64 *val)
4094 {
4095         *val = fault_around_bytes;
4096         return 0;
4097 }
4098
4099 /*
4100  * fault_around_bytes must be rounded down to the nearest page order as it's
4101  * what do_fault_around() expects to see.
4102  */
4103 static int fault_around_bytes_set(void *data, u64 val)
4104 {
4105         if (val / PAGE_SIZE > PTRS_PER_PTE)
4106                 return -EINVAL;
4107         if (val > PAGE_SIZE)
4108                 fault_around_bytes = rounddown_pow_of_two(val);
4109         else
4110                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4111         return 0;
4112 }
4113 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4114                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4115
4116 static int __init fault_around_debugfs(void)
4117 {
4118         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4119                                    &fault_around_bytes_fops);
4120         return 0;
4121 }
4122 late_initcall(fault_around_debugfs);
4123 #endif
4124
4125 /*
4126  * do_fault_around() tries to map few pages around the fault address. The hope
4127  * is that the pages will be needed soon and this will lower the number of
4128  * faults to handle.
4129  *
4130  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4131  * not ready to be mapped: not up-to-date, locked, etc.
4132  *
4133  * This function is called with the page table lock taken. In the split ptlock
4134  * case the page table lock only protects only those entries which belong to
4135  * the page table corresponding to the fault address.
4136  *
4137  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4138  * only once.
4139  *
4140  * fault_around_bytes defines how many bytes we'll try to map.
4141  * do_fault_around() expects it to be set to a power of two less than or equal
4142  * to PTRS_PER_PTE.
4143  *
4144  * The virtual address of the area that we map is naturally aligned to
4145  * fault_around_bytes rounded down to the machine page size
4146  * (and therefore to page order).  This way it's easier to guarantee
4147  * that we don't cross page table boundaries.
4148  */
4149 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4150 {
4151         unsigned long address = vmf->address, nr_pages, mask;
4152         pgoff_t start_pgoff = vmf->pgoff;
4153         pgoff_t end_pgoff;
4154         int off;
4155         vm_fault_t ret = 0;
4156
4157         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4158         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4159
4160         vmf->address = max(address & mask, vmf->vma->vm_start);
4161         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4162         start_pgoff -= off;
4163
4164         /*
4165          *  end_pgoff is either the end of the page table, the end of
4166          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4167          */
4168         end_pgoff = start_pgoff -
4169                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4170                 PTRS_PER_PTE - 1;
4171         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4172                         start_pgoff + nr_pages - 1);
4173
4174         if (pmd_none(*vmf->pmd)) {
4175                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4176                 if (!vmf->prealloc_pte)
4177                         goto out;
4178                 smp_wmb(); /* See comment in __pte_alloc() */
4179         }
4180
4181         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4182
4183         /* Huge page is mapped? Page fault is solved */
4184         if (pmd_trans_huge(*vmf->pmd)) {
4185                 ret = VM_FAULT_NOPAGE;
4186                 goto out;
4187         }
4188
4189         /* ->map_pages() haven't done anything useful. Cold page cache? */
4190         if (!vmf->pte)
4191                 goto out;
4192
4193         /* check if the page fault is solved */
4194         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4195         if (!pte_none(*vmf->pte))
4196                 ret = VM_FAULT_NOPAGE;
4197         pte_unmap_unlock(vmf->pte, vmf->ptl);
4198 out:
4199         vmf->address = address;
4200         vmf->pte = NULL;
4201         return ret;
4202 }
4203
4204 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4205 {
4206         struct vm_area_struct *vma = vmf->vma;
4207         vm_fault_t ret = 0;
4208
4209         /*
4210          * Let's call ->map_pages() first and use ->fault() as fallback
4211          * if page by the offset is not ready to be mapped (cold cache or
4212          * something).
4213          */
4214         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4215                 ret = do_fault_around(vmf);
4216                 if (ret)
4217                         return ret;
4218         }
4219
4220         ret = __do_fault(vmf);
4221         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4222                 return ret;
4223
4224         ret |= finish_fault(vmf);
4225         unlock_page(vmf->page);
4226         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4227                 put_page(vmf->page);
4228         return ret;
4229 }
4230
4231 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4232 {
4233         struct vm_area_struct *vma = vmf->vma;
4234         vm_fault_t ret;
4235
4236         if (unlikely(anon_vma_prepare(vma)))
4237                 return VM_FAULT_OOM;
4238
4239         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4240         if (!vmf->cow_page)
4241                 return VM_FAULT_OOM;
4242
4243         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4244                 put_page(vmf->cow_page);
4245                 return VM_FAULT_OOM;
4246         }
4247         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4248
4249         ret = __do_fault(vmf);
4250         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4251                 goto uncharge_out;
4252         if (ret & VM_FAULT_DONE_COW)
4253                 return ret;
4254         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4255         __SetPageUptodate(vmf->cow_page);
4256
4257         ret |= finish_fault(vmf);
4258         unlock_page(vmf->page);
4259         put_page(vmf->page);
4260         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4261                 goto uncharge_out;
4262         return ret;
4263 uncharge_out:
4264         put_page(vmf->cow_page);
4265         return ret;
4266 }
4267
4268 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4269 {
4270         struct vm_area_struct *vma = vmf->vma;
4271         vm_fault_t ret, tmp;
4272
4273         ret = __do_fault(vmf);
4274         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4275                 return ret;
4276
4277         /*
4278          * Check if the backing address space wants to know that the page is
4279          * about to become writable
4280          */
4281         if (vma->vm_ops->page_mkwrite) {
4282                 unlock_page(vmf->page);
4283                 tmp = do_page_mkwrite(vmf);
4284                 if (unlikely(!tmp ||
4285                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4286                         put_page(vmf->page);
4287                         return tmp;
4288                 }
4289         }
4290
4291         ret |= finish_fault(vmf);
4292         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4293                                         VM_FAULT_RETRY))) {
4294                 unlock_page(vmf->page);
4295                 put_page(vmf->page);
4296                 return ret;
4297         }
4298
4299         ret |= fault_dirty_shared_page(vmf);
4300         return ret;
4301 }
4302
4303 /*
4304  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4305  * but allow concurrent faults).
4306  * The mmap_lock may have been released depending on flags and our
4307  * return value.  See filemap_fault() and __lock_page_or_retry().
4308  * If mmap_lock is released, vma may become invalid (for example
4309  * by other thread calling munmap()).
4310  */
4311 static vm_fault_t do_fault(struct vm_fault *vmf)
4312 {
4313         struct vm_area_struct *vma = vmf->vma;
4314         struct mm_struct *vm_mm = vma->vm_mm;
4315         vm_fault_t ret;
4316
4317         /*
4318          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4319          */
4320         if (!vma->vm_ops->fault) {
4321                 /*
4322                  * If we find a migration pmd entry or a none pmd entry, which
4323                  * should never happen, return SIGBUS
4324                  */
4325                 if (unlikely(!pmd_present(*vmf->pmd)))
4326                         ret = VM_FAULT_SIGBUS;
4327                 else {
4328                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4329                                                        vmf->pmd,
4330                                                        vmf->address,
4331                                                        &vmf->ptl);
4332                         /*
4333                          * Make sure this is not a temporary clearing of pte
4334                          * by holding ptl and checking again. A R/M/W update
4335                          * of pte involves: take ptl, clearing the pte so that
4336                          * we don't have concurrent modification by hardware
4337                          * followed by an update.
4338                          */
4339                         if (unlikely(pte_none(*vmf->pte)))
4340                                 ret = VM_FAULT_SIGBUS;
4341                         else
4342                                 ret = VM_FAULT_NOPAGE;
4343
4344                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4345                 }
4346         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4347                 ret = do_read_fault(vmf);
4348         else if (!(vma->vm_flags & VM_SHARED))
4349                 ret = do_cow_fault(vmf);
4350         else
4351                 ret = do_shared_fault(vmf);
4352
4353         /* preallocated pagetable is unused: free it */
4354         if (vmf->prealloc_pte) {
4355                 pte_free(vm_mm, vmf->prealloc_pte);
4356                 vmf->prealloc_pte = NULL;
4357         }
4358         return ret;
4359 }
4360
4361 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4362                                 unsigned long addr, int page_nid,
4363                                 int *flags)
4364 {
4365         get_page(page);
4366
4367         count_vm_numa_event(NUMA_HINT_FAULTS);
4368         if (page_nid == numa_node_id()) {
4369                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4370                 *flags |= TNF_FAULT_LOCAL;
4371         }
4372
4373         return mpol_misplaced(page, vma, addr);
4374 }
4375
4376 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4377 {
4378         struct vm_area_struct *vma = vmf->vma;
4379         struct page *page = NULL;
4380         int page_nid = NUMA_NO_NODE;
4381         int last_cpupid;
4382         int target_nid;
4383         bool migrated = false;
4384         pte_t pte, old_pte;
4385         bool was_writable = pte_savedwrite(vmf->orig_pte);
4386         int flags = 0;
4387
4388         /*
4389          * The "pte" at this point cannot be used safely without
4390          * validation through pte_unmap_same(). It's of NUMA type but
4391          * the pfn may be screwed if the read is non atomic.
4392          */
4393         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4394         spin_lock(vmf->ptl);
4395         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4396                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4397                 goto out;
4398         }
4399
4400         /*
4401          * Make it present again, Depending on how arch implementes non
4402          * accessible ptes, some can allow access by kernel mode.
4403          */
4404         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4405         pte = pte_modify(old_pte, vma->vm_page_prot);
4406         pte = pte_mkyoung(pte);
4407         if (was_writable)
4408                 pte = pte_mkwrite(pte);
4409         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4410         update_mmu_cache(vma, vmf->address, vmf->pte);
4411
4412         page = vm_normal_page(vma, vmf->address, pte);
4413         if (!page) {
4414                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4415                 return 0;
4416         }
4417
4418         /* TODO: handle PTE-mapped THP */
4419         if (PageCompound(page)) {
4420                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4421                 return 0;
4422         }
4423
4424         /*
4425          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4426          * much anyway since they can be in shared cache state. This misses
4427          * the case where a mapping is writable but the process never writes
4428          * to it but pte_write gets cleared during protection updates and
4429          * pte_dirty has unpredictable behaviour between PTE scan updates,
4430          * background writeback, dirty balancing and application behaviour.
4431          */
4432         if (!pte_write(pte))
4433                 flags |= TNF_NO_GROUP;
4434
4435         /*
4436          * Flag if the page is shared between multiple address spaces. This
4437          * is later used when determining whether to group tasks together
4438          */
4439         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4440                 flags |= TNF_SHARED;
4441
4442         last_cpupid = page_cpupid_last(page);
4443         page_nid = page_to_nid(page);
4444         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4445                         &flags);
4446         pte_unmap_unlock(vmf->pte, vmf->ptl);
4447         if (target_nid == NUMA_NO_NODE) {
4448                 put_page(page);
4449                 goto out;
4450         }
4451
4452         /* Migrate to the requested node */
4453         migrated = migrate_misplaced_page(page, vma, target_nid);
4454         if (migrated) {
4455                 page_nid = target_nid;
4456                 flags |= TNF_MIGRATED;
4457         } else
4458                 flags |= TNF_MIGRATE_FAIL;
4459
4460 out:
4461         if (page_nid != NUMA_NO_NODE)
4462                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4463         return 0;
4464 }
4465
4466 #ifdef CONFIG_FINEGRAINED_THP
4467 static inline vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
4468 {
4469         //struct timespec64 ts, te, diff;
4470         int ret;
4471
4472 #ifdef CONFIG_FINEGRAINED_THP
4473         return VM_FAULT_FALLBACK;
4474 #endif
4475
4476         //ktime_get_ts64(&ts);
4477         ret = do_huge_pmd_anonymous_page(vmf);
4478         /*
4479         ktime_get_ts64(&te);
4480         diff = timespec64_sub(te, ts);
4481         if (!(ret & VM_FAULT_FALLBACK))
4482                 pr_info("THP-fault: 2MB hugepage takes %lu nsecs\n",
4483                                 timespec64_to_ns(&diff));
4484         */
4485         return ret;
4486 }
4487 #endif /* CONFIG_FINEGRAINED_THP */
4488
4489 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4490 {
4491         if (vma_is_anonymous(vmf->vma))
4492 #ifdef CONFIG_FINEGRAINED_THP
4493                 return __do_huge_pmd_anonymous_page(vmf);
4494 #else
4495                 return do_huge_pmd_anonymous_page(vmf);
4496 #endif
4497         if (vmf->vma->vm_ops->huge_fault)
4498                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4499         return VM_FAULT_FALLBACK;
4500 }
4501
4502 /* `inline' is required to avoid gcc 4.1.2 build error */
4503 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4504 {
4505         if (vma_is_anonymous(vmf->vma)) {
4506                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4507                         return handle_userfault(vmf, VM_UFFD_WP);
4508                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4509         }
4510         if (vmf->vma->vm_ops->huge_fault) {
4511                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4512
4513                 if (!(ret & VM_FAULT_FALLBACK))
4514                         return ret;
4515         }
4516
4517         /* COW or write-notify handled on pte level: split pmd. */
4518         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4519
4520         return VM_FAULT_FALLBACK;
4521 }
4522
4523 #ifdef CONFIG_FINEGRAINED_THP
4524 vm_fault_t wp_huge_pte(struct vm_fault *vmf, pte_t orig_pte);
4525 #endif /* CONFIG_FINEGRAINED_THP */
4526
4527 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4528 {
4529 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4530         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4531         /* No support for anonymous transparent PUD pages yet */
4532         if (vma_is_anonymous(vmf->vma))
4533                 goto split;
4534         if (vmf->vma->vm_ops->huge_fault) {
4535                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4536
4537                 if (!(ret & VM_FAULT_FALLBACK))
4538                         return ret;
4539         }
4540 split:
4541         /* COW or write-notify not handled on PUD level: split pud.*/
4542         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4543 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4544         return VM_FAULT_FALLBACK;
4545 }
4546
4547 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4548 {
4549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4550         /* No support for anonymous transparent PUD pages yet */
4551         if (vma_is_anonymous(vmf->vma))
4552                 return VM_FAULT_FALLBACK;
4553         if (vmf->vma->vm_ops->huge_fault)
4554                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4555 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4556         return VM_FAULT_FALLBACK;
4557 }
4558
4559 /*
4560  * These routines also need to handle stuff like marking pages dirty
4561  * and/or accessed for architectures that don't do it in hardware (most
4562  * RISC architectures).  The early dirtying is also good on the i386.
4563  *
4564  * There is also a hook called "update_mmu_cache()" that architectures
4565  * with external mmu caches can use to update those (ie the Sparc or
4566  * PowerPC hashed page tables that act as extended TLBs).
4567  *
4568  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4569  * concurrent faults).
4570  *
4571  * The mmap_lock may have been released depending on flags and our return value.
4572  * See filemap_fault() and __lock_page_or_retry().
4573  */
4574 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4575 {
4576         pte_t entry;
4577
4578         if (unlikely(pmd_none(*vmf->pmd))) {
4579                 /*
4580                  * Leave __pte_alloc() until later: because vm_ops->fault may
4581                  * want to allocate huge page, and if we expose page table
4582                  * for an instant, it will be difficult to retract from
4583                  * concurrent faults and from rmap lookups.
4584                  */
4585                 vmf->pte = NULL;
4586         } else {
4587                 /* See comment in pte_alloc_one_map() */
4588                 if (pmd_devmap_trans_unstable(vmf->pmd))
4589                         return 0;
4590                 /*
4591                  * A regular pmd is established and it can't morph into a huge
4592                  * pmd from under us anymore at this point because we hold the
4593                  * mmap_lock read mode and khugepaged takes it in write mode.
4594                  * So now it's safe to run pte_offset_map().
4595                  */
4596                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4597                 vmf->orig_pte = *vmf->pte;
4598
4599                 /*
4600                  * some architectures can have larger ptes than wordsize,
4601                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4602                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4603                  * accesses.  The code below just needs a consistent view
4604                  * for the ifs and we later double check anyway with the
4605                  * ptl lock held. So here a barrier will do.
4606                  */
4607                 barrier();
4608                 if (pte_none(vmf->orig_pte)) {
4609                         pte_unmap(vmf->pte);
4610                         vmf->pte = NULL;
4611                 }
4612         }
4613
4614         if (!vmf->pte) {
4615                 if (vma_is_anonymous(vmf->vma))
4616                         return do_anonymous_page(vmf);
4617                 else
4618                         return do_fault(vmf);
4619         }
4620
4621         if (!pte_present(vmf->orig_pte))
4622                 return do_swap_page(vmf);
4623
4624         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4625                 return do_numa_page(vmf);
4626
4627         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4628         spin_lock(vmf->ptl);
4629         entry = vmf->orig_pte;
4630         if (unlikely(!pte_same(*vmf->pte, entry))) {
4631                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4632                 goto unlock;
4633         }
4634         if (vmf->flags & FAULT_FLAG_WRITE) {
4635                 if (!pte_write(entry)) {
4636                         int ret = arch_do_wp_page(vmf, entry);
4637
4638                         if (!(ret & VM_FAULT_FALLBACK)) {
4639                                 /*
4640                                  * arch_do_wp_page returns
4641                                  * VM_FAULT value with spin lock acquisition.
4642                                  */
4643                                 spin_unlock(vmf->ptl);
4644                                 return ret;
4645                         }
4646                         return do_wp_page(vmf);
4647                 }
4648                 if (arch_huge_pte_set_accessed(vmf, entry))
4649                         goto unlock;
4650                 entry = pte_mkdirty(entry);
4651         }
4652         entry = pte_mkyoung(entry);
4653         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4654                                 vmf->flags & FAULT_FLAG_WRITE)) {
4655                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4656         } else {
4657                 /* Skip spurious TLB flush for retried page fault */
4658                 if (vmf->flags & FAULT_FLAG_TRIED)
4659                         goto unlock;
4660                 /*
4661                  * This is needed only for protection faults but the arch code
4662                  * is not yet telling us if this is a protection fault or not.
4663                  * This still avoids useless tlb flushes for .text page faults
4664                  * with threads.
4665                  */
4666                 if (vmf->flags & FAULT_FLAG_WRITE)
4667                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4668         }
4669 unlock:
4670         pte_unmap_unlock(vmf->pte, vmf->ptl);
4671         return 0;
4672 }
4673
4674 /*
4675  * By the time we get here, we already hold the mm semaphore
4676  *
4677  * The mmap_lock may have been released depending on flags and our
4678  * return value.  See filemap_fault() and __lock_page_or_retry().
4679  */
4680 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4681                 unsigned long address, unsigned int flags)
4682 {
4683         struct vm_fault vmf = {
4684                 .vma = vma,
4685                 .address = address & PAGE_MASK,
4686                 .flags = flags,
4687                 .pgoff = linear_page_index(vma, address),
4688                 .gfp_mask = __get_fault_gfp_mask(vma),
4689         };
4690         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4691         struct mm_struct *mm = vma->vm_mm;
4692         pgd_t *pgd;
4693         p4d_t *p4d;
4694         vm_fault_t ret;
4695
4696         pgd = pgd_offset(mm, address);
4697         p4d = p4d_alloc(mm, pgd, address);
4698         if (!p4d)
4699                 return VM_FAULT_OOM;
4700
4701         vmf.pud = pud_alloc(mm, p4d, address);
4702         if (!vmf.pud)
4703                 return VM_FAULT_OOM;
4704 retry_pud:
4705         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4706                 ret = create_huge_pud(&vmf);
4707                 if (!(ret & VM_FAULT_FALLBACK))
4708                         return ret;
4709         } else {
4710                 pud_t orig_pud = *vmf.pud;
4711
4712                 barrier();
4713                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4714
4715                         /* NUMA case for anonymous PUDs would go here */
4716
4717                         if (dirty && !pud_write(orig_pud)) {
4718                                 ret = wp_huge_pud(&vmf, orig_pud);
4719                                 if (!(ret & VM_FAULT_FALLBACK))
4720                                         return ret;
4721                         } else {
4722                                 huge_pud_set_accessed(&vmf, orig_pud);
4723                                 return 0;
4724                         }
4725                 }
4726         }
4727
4728         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4729         if (!vmf.pmd)
4730                 return VM_FAULT_OOM;
4731
4732         /* Huge pud page fault raced with pmd_alloc? */
4733         if (pud_trans_unstable(vmf.pud))
4734                 goto retry_pud;
4735
4736         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4737                 ret = create_huge_pmd(&vmf);
4738                 if (!(ret & VM_FAULT_FALLBACK))
4739                         return ret;
4740         } else {
4741                 pmd_t orig_pmd = *vmf.pmd;
4742
4743                 barrier();
4744                 if (unlikely(is_swap_pmd(orig_pmd))) {
4745                         VM_BUG_ON(thp_migration_supported() &&
4746                                           !is_pmd_migration_entry(orig_pmd));
4747                         if (is_pmd_migration_entry(orig_pmd))
4748                                 pmd_migration_entry_wait(mm, vmf.pmd);
4749                         return 0;
4750                 }
4751                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4752                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4753                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4754
4755                         if (dirty && !pmd_write(orig_pmd)) {
4756                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4757                                 if (!(ret & VM_FAULT_FALLBACK))
4758                                         return ret;
4759                         } else {
4760                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4761                                 return 0;
4762                         }
4763                 }
4764         }
4765
4766         return handle_pte_fault(&vmf);
4767 }
4768
4769 /**
4770  * mm_account_fault - Do page fault accountings
4771  *
4772  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4773  *        of perf event counters, but we'll still do the per-task accounting to
4774  *        the task who triggered this page fault.
4775  * @address: the faulted address.
4776  * @flags: the fault flags.
4777  * @ret: the fault retcode.
4778  *
4779  * This will take care of most of the page fault accountings.  Meanwhile, it
4780  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4781  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4782  * still be in per-arch page fault handlers at the entry of page fault.
4783  */
4784 static inline void mm_account_fault(struct pt_regs *regs,
4785                                     unsigned long address, unsigned int flags,
4786                                     vm_fault_t ret)
4787 {
4788         bool major;
4789
4790         /*
4791          * We don't do accounting for some specific faults:
4792          *
4793          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4794          *   includes arch_vma_access_permitted() failing before reaching here.
4795          *   So this is not a "this many hardware page faults" counter.  We
4796          *   should use the hw profiling for that.
4797          *
4798          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4799          *   once they're completed.
4800          */
4801         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4802                 return;
4803
4804         /*
4805          * We define the fault as a major fault when the final successful fault
4806          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4807          * handle it immediately previously).
4808          */
4809         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4810
4811         if (major)
4812                 current->maj_flt++;
4813         else
4814                 current->min_flt++;
4815
4816         /*
4817          * If the fault is done for GUP, regs will be NULL.  We only do the
4818          * accounting for the per thread fault counters who triggered the
4819          * fault, and we skip the perf event updates.
4820          */
4821         if (!regs)
4822                 return;
4823
4824         if (major)
4825                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4826         else
4827                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4828 }
4829
4830 /*
4831  * By the time we get here, we already hold the mm semaphore
4832  *
4833  * The mmap_lock may have been released depending on flags and our
4834  * return value.  See filemap_fault() and __lock_page_or_retry().
4835  */
4836 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4837                            unsigned int flags, struct pt_regs *regs)
4838 {
4839         vm_fault_t ret;
4840
4841         __set_current_state(TASK_RUNNING);
4842
4843         count_vm_event(PGFAULT);
4844         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4845
4846         /* do counter updates before entering really critical section. */
4847         check_sync_rss_stat(current);
4848
4849         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4850                                             flags & FAULT_FLAG_INSTRUCTION,
4851                                             flags & FAULT_FLAG_REMOTE))
4852                 return VM_FAULT_SIGSEGV;
4853
4854         /*
4855          * Enable the memcg OOM handling for faults triggered in user
4856          * space.  Kernel faults are handled more gracefully.
4857          */
4858         if (flags & FAULT_FLAG_USER)
4859                 mem_cgroup_enter_user_fault();
4860
4861         if (unlikely(is_vm_hugetlb_page(vma)))
4862                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4863         else
4864                 ret = __handle_mm_fault(vma, address, flags);
4865
4866         if (flags & FAULT_FLAG_USER) {
4867                 mem_cgroup_exit_user_fault();
4868                 /*
4869                  * The task may have entered a memcg OOM situation but
4870                  * if the allocation error was handled gracefully (no
4871                  * VM_FAULT_OOM), there is no need to kill anything.
4872                  * Just clean up the OOM state peacefully.
4873                  */
4874                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4875                         mem_cgroup_oom_synchronize(false);
4876         }
4877
4878         mm_account_fault(regs, address, flags, ret);
4879
4880         return ret;
4881 }
4882 EXPORT_SYMBOL_GPL(handle_mm_fault);
4883
4884 #ifndef __PAGETABLE_P4D_FOLDED
4885 /*
4886  * Allocate p4d page table.
4887  * We've already handled the fast-path in-line.
4888  */
4889 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4890 {
4891         p4d_t *new = p4d_alloc_one(mm, address);
4892         if (!new)
4893                 return -ENOMEM;
4894
4895         smp_wmb(); /* See comment in __pte_alloc */
4896
4897         spin_lock(&mm->page_table_lock);
4898         if (pgd_present(*pgd))          /* Another has populated it */
4899                 p4d_free(mm, new);
4900         else
4901                 pgd_populate(mm, pgd, new);
4902         spin_unlock(&mm->page_table_lock);
4903         return 0;
4904 }
4905 #endif /* __PAGETABLE_P4D_FOLDED */
4906
4907 #ifndef __PAGETABLE_PUD_FOLDED
4908 /*
4909  * Allocate page upper directory.
4910  * We've already handled the fast-path in-line.
4911  */
4912 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4913 {
4914         pud_t *new = pud_alloc_one(mm, address);
4915         if (!new)
4916                 return -ENOMEM;
4917
4918         smp_wmb(); /* See comment in __pte_alloc */
4919
4920         spin_lock(&mm->page_table_lock);
4921         if (!p4d_present(*p4d)) {
4922                 mm_inc_nr_puds(mm);
4923                 p4d_populate(mm, p4d, new);
4924         } else  /* Another has populated it */
4925                 pud_free(mm, new);
4926         spin_unlock(&mm->page_table_lock);
4927         return 0;
4928 }
4929 #endif /* __PAGETABLE_PUD_FOLDED */
4930
4931 #ifndef __PAGETABLE_PMD_FOLDED
4932 /*
4933  * Allocate page middle directory.
4934  * We've already handled the fast-path in-line.
4935  */
4936 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4937 {
4938         spinlock_t *ptl;
4939         pmd_t *new = pmd_alloc_one(mm, address);
4940         if (!new)
4941                 return -ENOMEM;
4942
4943         smp_wmb(); /* See comment in __pte_alloc */
4944
4945         ptl = pud_lock(mm, pud);
4946         if (!pud_present(*pud)) {
4947                 mm_inc_nr_pmds(mm);
4948                 pud_populate(mm, pud, new);
4949         } else  /* Another has populated it */
4950                 pmd_free(mm, new);
4951         spin_unlock(ptl);
4952         return 0;
4953 }
4954 #endif /* __PAGETABLE_PMD_FOLDED */
4955
4956 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4957                           struct mmu_notifier_range *range, pte_t **ptepp,
4958                           pmd_t **pmdpp, spinlock_t **ptlp)
4959 {
4960         pgd_t *pgd;
4961         p4d_t *p4d;
4962         pud_t *pud;
4963         pmd_t *pmd;
4964         pte_t *ptep;
4965
4966         pgd = pgd_offset(mm, address);
4967         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4968                 goto out;
4969
4970         p4d = p4d_offset(pgd, address);
4971         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4972                 goto out;
4973
4974         pud = pud_offset(p4d, address);
4975         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4976                 goto out;
4977
4978         pmd = pmd_offset(pud, address);
4979         VM_BUG_ON(pmd_trans_huge(*pmd));
4980
4981         if (pmd_huge(*pmd)) {
4982                 if (!pmdpp)
4983                         goto out;
4984
4985                 if (range) {
4986                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4987                                                 NULL, mm, address & PMD_MASK,
4988                                                 (address & PMD_MASK) + PMD_SIZE);
4989                         mmu_notifier_invalidate_range_start(range);
4990                 }
4991                 *ptlp = pmd_lock(mm, pmd);
4992                 if (pmd_huge(*pmd)) {
4993                         *pmdpp = pmd;
4994                         return 0;
4995                 }
4996                 spin_unlock(*ptlp);
4997                 if (range)
4998                         mmu_notifier_invalidate_range_end(range);
4999         }
5000
5001         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5002                 goto out;
5003
5004         if (range) {
5005                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5006                                         address & PAGE_MASK,
5007                                         (address & PAGE_MASK) + PAGE_SIZE);
5008                 mmu_notifier_invalidate_range_start(range);
5009         }
5010         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5011         if (!pte_present(*ptep))
5012                 goto unlock;
5013         *ptepp = ptep;
5014         return 0;
5015 unlock:
5016         pte_unmap_unlock(ptep, *ptlp);
5017         if (range)
5018                 mmu_notifier_invalidate_range_end(range);
5019 out:
5020         return -EINVAL;
5021 }
5022
5023 /**
5024  * follow_pte - look up PTE at a user virtual address
5025  * @mm: the mm_struct of the target address space
5026  * @address: user virtual address
5027  * @ptepp: location to store found PTE
5028  * @ptlp: location to store the lock for the PTE
5029  *
5030  * On a successful return, the pointer to the PTE is stored in @ptepp;
5031  * the corresponding lock is taken and its location is stored in @ptlp.
5032  * The contents of the PTE are only stable until @ptlp is released;
5033  * any further use, if any, must be protected against invalidation
5034  * with MMU notifiers.
5035  *
5036  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5037  * should be taken for read.
5038  *
5039  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5040  * it is not a good general-purpose API.
5041  *
5042  * Return: zero on success, -ve otherwise.
5043  */
5044 int follow_pte(struct mm_struct *mm, unsigned long address,
5045                pte_t **ptepp, spinlock_t **ptlp)
5046 {
5047         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5048 }
5049 EXPORT_SYMBOL_GPL(follow_pte);
5050
5051 /**
5052  * follow_pfn - look up PFN at a user virtual address
5053  * @vma: memory mapping
5054  * @address: user virtual address
5055  * @pfn: location to store found PFN
5056  *
5057  * Only IO mappings and raw PFN mappings are allowed.
5058  *
5059  * This function does not allow the caller to read the permissions
5060  * of the PTE.  Do not use it.
5061  *
5062  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5063  */
5064 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5065         unsigned long *pfn)
5066 {
5067         int ret = -EINVAL;
5068         spinlock_t *ptl;
5069         pte_t *ptep;
5070
5071         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5072                 return ret;
5073
5074         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5075         if (ret)
5076                 return ret;
5077         *pfn = pte_pfn(*ptep);
5078         pte_unmap_unlock(ptep, ptl);
5079         return 0;
5080 }
5081 EXPORT_SYMBOL(follow_pfn);
5082
5083 #ifdef CONFIG_HAVE_IOREMAP_PROT
5084 int follow_phys(struct vm_area_struct *vma,
5085                 unsigned long address, unsigned int flags,
5086                 unsigned long *prot, resource_size_t *phys)
5087 {
5088         int ret = -EINVAL;
5089         pte_t *ptep, pte;
5090         spinlock_t *ptl;
5091
5092         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5093                 goto out;
5094
5095         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5096                 goto out;
5097         pte = *ptep;
5098
5099         if ((flags & FOLL_WRITE) && !pte_write(pte))
5100                 goto unlock;
5101
5102         *prot = pgprot_val(pte_pgprot(pte));
5103         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5104
5105         ret = 0;
5106 unlock:
5107         pte_unmap_unlock(ptep, ptl);
5108 out:
5109         return ret;
5110 }
5111
5112 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5113                         void *buf, int len, int write)
5114 {
5115         resource_size_t phys_addr;
5116         unsigned long prot = 0;
5117         void __iomem *maddr;
5118         int offset = addr & (PAGE_SIZE-1);
5119
5120         if (follow_phys(vma, addr, write, &prot, &phys_addr))
5121                 return -EINVAL;
5122
5123         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5124         if (!maddr)
5125                 return -ENOMEM;
5126
5127         if (write)
5128                 memcpy_toio(maddr + offset, buf, len);
5129         else
5130                 memcpy_fromio(buf, maddr + offset, len);
5131         iounmap(maddr);
5132
5133         return len;
5134 }
5135 EXPORT_SYMBOL_GPL(generic_access_phys);
5136 #endif
5137
5138 /*
5139  * Access another process' address space as given in mm.  If non-NULL, use the
5140  * given task for page fault accounting.
5141  */
5142 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
5143                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
5144 {
5145         struct vm_area_struct *vma;
5146         void *old_buf = buf;
5147         int write = gup_flags & FOLL_WRITE;
5148
5149         if (mmap_read_lock_killable(mm))
5150                 return 0;
5151
5152         /* ignore errors, just check how much was successfully transferred */
5153         while (len) {
5154                 int bytes, ret, offset;
5155                 void *maddr;
5156                 struct page *page = NULL;
5157
5158                 ret = get_user_pages_remote(mm, addr, 1,
5159                                 gup_flags, &page, &vma, NULL);
5160                 if (ret <= 0) {
5161 #ifndef CONFIG_HAVE_IOREMAP_PROT
5162                         break;
5163 #else
5164                         /*
5165                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5166                          * we can access using slightly different code.
5167                          */
5168                         vma = find_vma(mm, addr);
5169                         if (!vma || vma->vm_start > addr)
5170                                 break;
5171                         if (vma->vm_ops && vma->vm_ops->access)
5172                                 ret = vma->vm_ops->access(vma, addr, buf,
5173                                                           len, write);
5174                         if (ret <= 0)
5175                                 break;
5176                         bytes = ret;
5177 #endif
5178                 } else {
5179                         bytes = len;
5180                         offset = addr & (PAGE_SIZE-1);
5181                         if (bytes > PAGE_SIZE-offset)
5182                                 bytes = PAGE_SIZE-offset;
5183
5184                         maddr = kmap(page);
5185                         if (write) {
5186                                 copy_to_user_page(vma, page, addr,
5187                                                   maddr + offset, buf, bytes);
5188                                 set_page_dirty_lock(page);
5189                         } else {
5190                                 copy_from_user_page(vma, page, addr,
5191                                                     buf, maddr + offset, bytes);
5192                         }
5193                         kunmap(page);
5194                         put_page(page);
5195                 }
5196                 len -= bytes;
5197                 buf += bytes;
5198                 addr += bytes;
5199         }
5200         mmap_read_unlock(mm);
5201
5202         return buf - old_buf;
5203 }
5204
5205 /**
5206  * access_remote_vm - access another process' address space
5207  * @mm:         the mm_struct of the target address space
5208  * @addr:       start address to access
5209  * @buf:        source or destination buffer
5210  * @len:        number of bytes to transfer
5211  * @gup_flags:  flags modifying lookup behaviour
5212  *
5213  * The caller must hold a reference on @mm.
5214  *
5215  * Return: number of bytes copied from source to destination.
5216  */
5217 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5218                 void *buf, int len, unsigned int gup_flags)
5219 {
5220         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5221 }
5222
5223 /*
5224  * Access another process' address space.
5225  * Source/target buffer must be kernel space,
5226  * Do not walk the page table directly, use get_user_pages
5227  */
5228 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5229                 void *buf, int len, unsigned int gup_flags)
5230 {
5231         struct mm_struct *mm;
5232         int ret;
5233
5234         mm = get_task_mm(tsk);
5235         if (!mm)
5236                 return 0;
5237
5238         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5239
5240         mmput(mm);
5241
5242         return ret;
5243 }
5244 EXPORT_SYMBOL_GPL(access_process_vm);
5245
5246 /*
5247  * Print the name of a VMA.
5248  */
5249 void print_vma_addr(char *prefix, unsigned long ip)
5250 {
5251         struct mm_struct *mm = current->mm;
5252         struct vm_area_struct *vma;
5253
5254         /*
5255          * we might be running from an atomic context so we cannot sleep
5256          */
5257         if (!mmap_read_trylock(mm))
5258                 return;
5259
5260         vma = find_vma(mm, ip);
5261         if (vma && vma->vm_file) {
5262                 struct file *f = vma->vm_file;
5263                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5264                 if (buf) {
5265                         char *p;
5266
5267                         p = file_path(f, buf, PAGE_SIZE);
5268                         if (IS_ERR(p))
5269                                 p = "?";
5270                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5271                                         vma->vm_start,
5272                                         vma->vm_end - vma->vm_start);
5273                         free_page((unsigned long)buf);
5274                 }
5275         }
5276         mmap_read_unlock(mm);
5277 }
5278
5279 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5280 void __might_fault(const char *file, int line)
5281 {
5282         /*
5283          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5284          * holding the mmap_lock, this is safe because kernel memory doesn't
5285          * get paged out, therefore we'll never actually fault, and the
5286          * below annotations will generate false positives.
5287          */
5288         if (uaccess_kernel())
5289                 return;
5290         if (pagefault_disabled())
5291                 return;
5292         __might_sleep(file, line, 0);
5293 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5294         if (current->mm)
5295                 might_lock_read(&current->mm->mmap_lock);
5296 #endif
5297 }
5298 EXPORT_SYMBOL(__might_fault);
5299 #endif
5300
5301 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5302 /*
5303  * Process all subpages of the specified huge page with the specified
5304  * operation.  The target subpage will be processed last to keep its
5305  * cache lines hot.
5306  */
5307 static inline void process_huge_page(
5308         unsigned long addr_hint, unsigned int pages_per_huge_page,
5309         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5310         void *arg)
5311 {
5312         int i, n, base, l;
5313         unsigned long addr = addr_hint &
5314                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5315
5316         /* Process target subpage last to keep its cache lines hot */
5317         might_sleep();
5318         n = (addr_hint - addr) / PAGE_SIZE;
5319         if (2 * n <= pages_per_huge_page) {
5320                 /* If target subpage in first half of huge page */
5321                 base = 0;
5322                 l = n;
5323                 /* Process subpages at the end of huge page */
5324                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5325                         cond_resched();
5326                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5327                 }
5328         } else {
5329                 /* If target subpage in second half of huge page */
5330                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5331                 l = pages_per_huge_page - n;
5332                 /* Process subpages at the begin of huge page */
5333                 for (i = 0; i < base; i++) {
5334                         cond_resched();
5335                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5336                 }
5337         }
5338         /*
5339          * Process remaining subpages in left-right-left-right pattern
5340          * towards the target subpage
5341          */
5342         for (i = 0; i < l; i++) {
5343                 int left_idx = base + i;
5344                 int right_idx = base + 2 * l - 1 - i;
5345
5346                 cond_resched();
5347                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5348                 cond_resched();
5349                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5350         }
5351 }
5352
5353 static void clear_gigantic_page(struct page *page,
5354                                 unsigned long addr,
5355                                 unsigned int pages_per_huge_page)
5356 {
5357         int i;
5358         struct page *p = page;
5359
5360         might_sleep();
5361         for (i = 0; i < pages_per_huge_page;
5362              i++, p = mem_map_next(p, page, i)) {
5363                 cond_resched();
5364                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5365         }
5366 }
5367
5368 static void clear_subpage(unsigned long addr, int idx, void *arg)
5369 {
5370         struct page *page = arg;
5371
5372         clear_user_highpage(page + idx, addr);
5373 }
5374
5375 void clear_huge_page(struct page *page,
5376                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5377 {
5378         unsigned long addr = addr_hint &
5379                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5380
5381         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5382                 clear_gigantic_page(page, addr, pages_per_huge_page);
5383                 return;
5384         }
5385
5386         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5387 }
5388
5389 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5390                                     unsigned long addr,
5391                                     struct vm_area_struct *vma,
5392                                     unsigned int pages_per_huge_page)
5393 {
5394         int i;
5395         struct page *dst_base = dst;
5396         struct page *src_base = src;
5397
5398         for (i = 0; i < pages_per_huge_page; ) {
5399                 cond_resched();
5400                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5401
5402                 i++;
5403                 dst = mem_map_next(dst, dst_base, i);
5404                 src = mem_map_next(src, src_base, i);
5405         }
5406 }
5407
5408 struct copy_subpage_arg {
5409         struct page *dst;
5410         struct page *src;
5411         struct vm_area_struct *vma;
5412 };
5413
5414 static void copy_subpage(unsigned long addr, int idx, void *arg)
5415 {
5416         struct copy_subpage_arg *copy_arg = arg;
5417
5418         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5419                            addr, copy_arg->vma);
5420 }
5421
5422 void copy_user_huge_page(struct page *dst, struct page *src,
5423                          unsigned long addr_hint, struct vm_area_struct *vma,
5424                          unsigned int pages_per_huge_page)
5425 {
5426         unsigned long addr = addr_hint &
5427                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5428         struct copy_subpage_arg arg = {
5429                 .dst = dst,
5430                 .src = src,
5431                 .vma = vma,
5432         };
5433
5434         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5435                 copy_user_gigantic_page(dst, src, addr, vma,
5436                                         pages_per_huge_page);
5437                 return;
5438         }
5439
5440         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5441 }
5442
5443 long copy_huge_page_from_user(struct page *dst_page,
5444                                 const void __user *usr_src,
5445                                 unsigned int pages_per_huge_page,
5446                                 bool allow_pagefault)
5447 {
5448         void *src = (void *)usr_src;
5449         void *page_kaddr;
5450         unsigned long i, rc = 0;
5451         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5452         struct page *subpage = dst_page;
5453
5454         for (i = 0; i < pages_per_huge_page;
5455              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5456                 if (allow_pagefault)
5457                         page_kaddr = kmap(subpage);
5458                 else
5459                         page_kaddr = kmap_atomic(subpage);
5460                 rc = copy_from_user(page_kaddr,
5461                                 (const void __user *)(src + i * PAGE_SIZE),
5462                                 PAGE_SIZE);
5463                 if (allow_pagefault)
5464                         kunmap(subpage);
5465                 else
5466                         kunmap_atomic(page_kaddr);
5467
5468                 ret_val -= (PAGE_SIZE - rc);
5469                 if (rc)
5470                         break;
5471
5472                 cond_resched();
5473         }
5474         return ret_val;
5475 }
5476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5477
5478 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5479
5480 static struct kmem_cache *page_ptl_cachep;
5481
5482 void __init ptlock_cache_init(void)
5483 {
5484         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5485                         SLAB_PANIC, NULL);
5486 }
5487
5488 bool ptlock_alloc(struct page *page)
5489 {
5490         spinlock_t *ptl;
5491
5492         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5493         if (!ptl)
5494                 return false;
5495         page->ptl = ptl;
5496         return true;
5497 }
5498
5499 void ptlock_free(struct page *page)
5500 {
5501         kmem_cache_free(page_ptl_cachep, page->ptl);
5502 }
5503 #endif