Merge remote-tracking branch 'stable/linux-5.10.y' into rpi-5.10.y
[platform/kernel/linux-rpi.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139         randomize_va_space = 0;
140         return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154         zero_pfn = page_to_pfn(ZERO_PAGE(0));
155         return 0;
156 }
157 early_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161         trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168         int i;
169
170         for (i = 0; i < NR_MM_COUNTERS; i++) {
171                 if (current->rss_stat.count[i]) {
172                         add_mm_counter(mm, i, current->rss_stat.count[i]);
173                         current->rss_stat.count[i] = 0;
174                 }
175         }
176         current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181         struct task_struct *task = current;
182
183         if (likely(task->mm == mm))
184                 task->rss_stat.count[member] += val;
185         else
186                 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH  (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195         if (unlikely(task != current))
196                 return;
197         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198                 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216                            unsigned long addr)
217 {
218         pgtable_t token = pmd_pgtable(*pmd);
219         pmd_clear(pmd);
220         pte_free_tlb(tlb, token, addr);
221         mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225                                 unsigned long addr, unsigned long end,
226                                 unsigned long floor, unsigned long ceiling)
227 {
228         pmd_t *pmd;
229         unsigned long next;
230         unsigned long start;
231
232         start = addr;
233         pmd = pmd_offset(pud, addr);
234         do {
235                 next = pmd_addr_end(addr, end);
236                 if (pmd_none_or_clear_bad(pmd))
237                         continue;
238                 free_pte_range(tlb, pmd, addr);
239         } while (pmd++, addr = next, addr != end);
240
241         start &= PUD_MASK;
242         if (start < floor)
243                 return;
244         if (ceiling) {
245                 ceiling &= PUD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 return;
251
252         pmd = pmd_offset(pud, start);
253         pud_clear(pud);
254         pmd_free_tlb(tlb, pmd, start);
255         mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259                                 unsigned long addr, unsigned long end,
260                                 unsigned long floor, unsigned long ceiling)
261 {
262         pud_t *pud;
263         unsigned long next;
264         unsigned long start;
265
266         start = addr;
267         pud = pud_offset(p4d, addr);
268         do {
269                 next = pud_addr_end(addr, end);
270                 if (pud_none_or_clear_bad(pud))
271                         continue;
272                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273         } while (pud++, addr = next, addr != end);
274
275         start &= P4D_MASK;
276         if (start < floor)
277                 return;
278         if (ceiling) {
279                 ceiling &= P4D_MASK;
280                 if (!ceiling)
281                         return;
282         }
283         if (end - 1 > ceiling - 1)
284                 return;
285
286         pud = pud_offset(p4d, start);
287         p4d_clear(p4d);
288         pud_free_tlb(tlb, pud, start);
289         mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293                                 unsigned long addr, unsigned long end,
294                                 unsigned long floor, unsigned long ceiling)
295 {
296         p4d_t *p4d;
297         unsigned long next;
298         unsigned long start;
299
300         start = addr;
301         p4d = p4d_offset(pgd, addr);
302         do {
303                 next = p4d_addr_end(addr, end);
304                 if (p4d_none_or_clear_bad(p4d))
305                         continue;
306                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307         } while (p4d++, addr = next, addr != end);
308
309         start &= PGDIR_MASK;
310         if (start < floor)
311                 return;
312         if (ceiling) {
313                 ceiling &= PGDIR_MASK;
314                 if (!ceiling)
315                         return;
316         }
317         if (end - 1 > ceiling - 1)
318                 return;
319
320         p4d = p4d_offset(pgd, start);
321         pgd_clear(pgd);
322         p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329                         unsigned long addr, unsigned long end,
330                         unsigned long floor, unsigned long ceiling)
331 {
332         pgd_t *pgd;
333         unsigned long next;
334
335         /*
336          * The next few lines have given us lots of grief...
337          *
338          * Why are we testing PMD* at this top level?  Because often
339          * there will be no work to do at all, and we'd prefer not to
340          * go all the way down to the bottom just to discover that.
341          *
342          * Why all these "- 1"s?  Because 0 represents both the bottom
343          * of the address space and the top of it (using -1 for the
344          * top wouldn't help much: the masks would do the wrong thing).
345          * The rule is that addr 0 and floor 0 refer to the bottom of
346          * the address space, but end 0 and ceiling 0 refer to the top
347          * Comparisons need to use "end - 1" and "ceiling - 1" (though
348          * that end 0 case should be mythical).
349          *
350          * Wherever addr is brought up or ceiling brought down, we must
351          * be careful to reject "the opposite 0" before it confuses the
352          * subsequent tests.  But what about where end is brought down
353          * by PMD_SIZE below? no, end can't go down to 0 there.
354          *
355          * Whereas we round start (addr) and ceiling down, by different
356          * masks at different levels, in order to test whether a table
357          * now has no other vmas using it, so can be freed, we don't
358          * bother to round floor or end up - the tests don't need that.
359          */
360
361         addr &= PMD_MASK;
362         if (addr < floor) {
363                 addr += PMD_SIZE;
364                 if (!addr)
365                         return;
366         }
367         if (ceiling) {
368                 ceiling &= PMD_MASK;
369                 if (!ceiling)
370                         return;
371         }
372         if (end - 1 > ceiling - 1)
373                 end -= PMD_SIZE;
374         if (addr > end - 1)
375                 return;
376         /*
377          * We add page table cache pages with PAGE_SIZE,
378          * (see pte_free_tlb()), flush the tlb if we need
379          */
380         tlb_change_page_size(tlb, PAGE_SIZE);
381         pgd = pgd_offset(tlb->mm, addr);
382         do {
383                 next = pgd_addr_end(addr, end);
384                 if (pgd_none_or_clear_bad(pgd))
385                         continue;
386                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387         } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391                 unsigned long floor, unsigned long ceiling)
392 {
393         while (vma) {
394                 struct vm_area_struct *next = vma->vm_next;
395                 unsigned long addr = vma->vm_start;
396
397                 /*
398                  * Hide vma from rmap and truncate_pagecache before freeing
399                  * pgtables
400                  */
401                 unlink_anon_vmas(vma);
402                 unlink_file_vma(vma);
403
404                 if (is_vm_hugetlb_page(vma)) {
405                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 } else {
408                         /*
409                          * Optimization: gather nearby vmas into one call down
410                          */
411                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412                                && !is_vm_hugetlb_page(next)) {
413                                 vma = next;
414                                 next = vma->vm_next;
415                                 unlink_anon_vmas(vma);
416                                 unlink_file_vma(vma);
417                         }
418                         free_pgd_range(tlb, addr, vma->vm_end,
419                                 floor, next ? next->vm_start : ceiling);
420                 }
421                 vma = next;
422         }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427         spinlock_t *ptl;
428         pgtable_t new = pte_alloc_one(mm);
429         if (!new)
430                 return -ENOMEM;
431
432         /*
433          * Ensure all pte setup (eg. pte page lock and page clearing) are
434          * visible before the pte is made visible to other CPUs by being
435          * put into page tables.
436          *
437          * The other side of the story is the pointer chasing in the page
438          * table walking code (when walking the page table without locking;
439          * ie. most of the time). Fortunately, these data accesses consist
440          * of a chain of data-dependent loads, meaning most CPUs (alpha
441          * being the notable exception) will already guarantee loads are
442          * seen in-order. See the alpha page table accessors for the
443          * smp_rmb() barriers in page table walking code.
444          */
445         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447         ptl = pmd_lock(mm, pmd);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 mm_inc_nr_ptes(mm);
450                 pmd_populate(mm, pmd, new);
451                 new = NULL;
452         }
453         spin_unlock(ptl);
454         if (new)
455                 pte_free(mm, new);
456         return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461         pte_t *new = pte_alloc_one_kernel(&init_mm);
462         if (!new)
463                 return -ENOMEM;
464
465         smp_wmb(); /* See comment in __pte_alloc */
466
467         spin_lock(&init_mm.page_table_lock);
468         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
469                 pmd_populate_kernel(&init_mm, pmd, new);
470                 new = NULL;
471         }
472         spin_unlock(&init_mm.page_table_lock);
473         if (new)
474                 pte_free_kernel(&init_mm, new);
475         return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485         int i;
486
487         if (current->mm == mm)
488                 sync_mm_rss(mm);
489         for (i = 0; i < NR_MM_COUNTERS; i++)
490                 if (rss[i])
491                         add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502                           pte_t pte, struct page *page)
503 {
504         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505         p4d_t *p4d = p4d_offset(pgd, addr);
506         pud_t *pud = pud_offset(p4d, addr);
507         pmd_t *pmd = pmd_offset(pud, addr);
508         struct address_space *mapping;
509         pgoff_t index;
510         static unsigned long resume;
511         static unsigned long nr_shown;
512         static unsigned long nr_unshown;
513
514         /*
515          * Allow a burst of 60 reports, then keep quiet for that minute;
516          * or allow a steady drip of one report per second.
517          */
518         if (nr_shown == 60) {
519                 if (time_before(jiffies, resume)) {
520                         nr_unshown++;
521                         return;
522                 }
523                 if (nr_unshown) {
524                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525                                  nr_unshown);
526                         nr_unshown = 0;
527                 }
528                 nr_shown = 0;
529         }
530         if (nr_shown++ == 0)
531                 resume = jiffies + 60 * HZ;
532
533         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534         index = linear_page_index(vma, addr);
535
536         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537                  current->comm,
538                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
539         if (page)
540                 dump_page(page, "bad pte");
541         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544                  vma->vm_file,
545                  vma->vm_ops ? vma->vm_ops->fault : NULL,
546                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547                  mapping ? mapping->a_ops->readpage : NULL);
548         dump_stack();
549         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595                             pte_t pte)
596 {
597         unsigned long pfn = pte_pfn(pte);
598
599         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600                 if (likely(!pte_special(pte)))
601                         goto check_pfn;
602                 if (vma->vm_ops && vma->vm_ops->find_special_page)
603                         return vma->vm_ops->find_special_page(vma, addr);
604                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605                         return NULL;
606                 if (is_zero_pfn(pfn))
607                         return NULL;
608                 if (pte_devmap(pte))
609                         return NULL;
610
611                 print_bad_pte(vma, addr, pte, NULL);
612                 return NULL;
613         }
614
615         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618                 if (vma->vm_flags & VM_MIXEDMAP) {
619                         if (!pfn_valid(pfn))
620                                 return NULL;
621                         goto out;
622                 } else {
623                         unsigned long off;
624                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
625                         if (pfn == vma->vm_pgoff + off)
626                                 return NULL;
627                         if (!is_cow_mapping(vma->vm_flags))
628                                 return NULL;
629                 }
630         }
631
632         if (is_zero_pfn(pfn))
633                 return NULL;
634
635 check_pfn:
636         if (unlikely(pfn > highest_memmap_pfn)) {
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /*
642          * NOTE! We still have PageReserved() pages in the page tables.
643          * eg. VDSO mappings can cause them to exist.
644          */
645 out:
646         return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651                                 pmd_t pmd)
652 {
653         unsigned long pfn = pmd_pfn(pmd);
654
655         /*
656          * There is no pmd_special() but there may be special pmds, e.g.
657          * in a direct-access (dax) mapping, so let's just replicate the
658          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659          */
660         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661                 if (vma->vm_flags & VM_MIXEDMAP) {
662                         if (!pfn_valid(pfn))
663                                 return NULL;
664                         goto out;
665                 } else {
666                         unsigned long off;
667                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
668                         if (pfn == vma->vm_pgoff + off)
669                                 return NULL;
670                         if (!is_cow_mapping(vma->vm_flags))
671                                 return NULL;
672                 }
673         }
674
675         if (pmd_devmap(pmd))
676                 return NULL;
677         if (is_huge_zero_pmd(pmd))
678                 return NULL;
679         if (unlikely(pfn > highest_memmap_pfn))
680                 return NULL;
681
682         /*
683          * NOTE! We still have PageReserved() pages in the page tables.
684          * eg. VDSO mappings can cause them to exist.
685          */
686 out:
687         return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
700                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
701 {
702         unsigned long vm_flags = dst_vma->vm_flags;
703         pte_t pte = *src_pte;
704         struct page *page;
705         swp_entry_t entry = pte_to_swp_entry(pte);
706
707         if (likely(!non_swap_entry(entry))) {
708                 if (swap_duplicate(entry) < 0)
709                         return entry.val;
710
711                 /* make sure dst_mm is on swapoff's mmlist. */
712                 if (unlikely(list_empty(&dst_mm->mmlist))) {
713                         spin_lock(&mmlist_lock);
714                         if (list_empty(&dst_mm->mmlist))
715                                 list_add(&dst_mm->mmlist,
716                                                 &src_mm->mmlist);
717                         spin_unlock(&mmlist_lock);
718                 }
719                 rss[MM_SWAPENTS]++;
720         } else if (is_migration_entry(entry)) {
721                 page = migration_entry_to_page(entry);
722
723                 rss[mm_counter(page)]++;
724
725                 if (is_write_migration_entry(entry) &&
726                                 is_cow_mapping(vm_flags)) {
727                         /*
728                          * COW mappings require pages in both
729                          * parent and child to be set to read.
730                          */
731                         make_migration_entry_read(&entry);
732                         pte = swp_entry_to_pte(entry);
733                         if (pte_swp_soft_dirty(*src_pte))
734                                 pte = pte_swp_mksoft_dirty(pte);
735                         if (pte_swp_uffd_wp(*src_pte))
736                                 pte = pte_swp_mkuffd_wp(pte);
737                         set_pte_at(src_mm, addr, src_pte, pte);
738                 }
739         } else if (is_device_private_entry(entry)) {
740                 page = device_private_entry_to_page(entry);
741
742                 /*
743                  * Update rss count even for unaddressable pages, as
744                  * they should treated just like normal pages in this
745                  * respect.
746                  *
747                  * We will likely want to have some new rss counters
748                  * for unaddressable pages, at some point. But for now
749                  * keep things as they are.
750                  */
751                 get_page(page);
752                 rss[mm_counter(page)]++;
753                 page_dup_rmap(page, false);
754
755                 /*
756                  * We do not preserve soft-dirty information, because so
757                  * far, checkpoint/restore is the only feature that
758                  * requires that. And checkpoint/restore does not work
759                  * when a device driver is involved (you cannot easily
760                  * save and restore device driver state).
761                  */
762                 if (is_write_device_private_entry(entry) &&
763                     is_cow_mapping(vm_flags)) {
764                         make_device_private_entry_read(&entry);
765                         pte = swp_entry_to_pte(entry);
766                         if (pte_swp_uffd_wp(*src_pte))
767                                 pte = pte_swp_mkuffd_wp(pte);
768                         set_pte_at(src_mm, addr, src_pte, pte);
769                 }
770         }
771         if (!userfaultfd_wp(dst_vma))
772                 pte = pte_swp_clear_uffd_wp(pte);
773         set_pte_at(dst_mm, addr, dst_pte, pte);
774         return 0;
775 }
776
777 /*
778  * Copy a present and normal page if necessary.
779  *
780  * NOTE! The usual case is that this doesn't need to do
781  * anything, and can just return a positive value. That
782  * will let the caller know that it can just increase
783  * the page refcount and re-use the pte the traditional
784  * way.
785  *
786  * But _if_ we need to copy it because it needs to be
787  * pinned in the parent (and the child should get its own
788  * copy rather than just a reference to the same page),
789  * we'll do that here and return zero to let the caller
790  * know we're done.
791  *
792  * And if we need a pre-allocated page but don't yet have
793  * one, return a negative error to let the preallocation
794  * code know so that it can do so outside the page table
795  * lock.
796  */
797 static inline int
798 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
799                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
800                   struct page **prealloc, pte_t pte, struct page *page)
801 {
802         struct mm_struct *src_mm = src_vma->vm_mm;
803         struct page *new_page;
804
805         if (!is_cow_mapping(src_vma->vm_flags))
806                 return 1;
807
808         /*
809          * What we want to do is to check whether this page may
810          * have been pinned by the parent process.  If so,
811          * instead of wrprotect the pte on both sides, we copy
812          * the page immediately so that we'll always guarantee
813          * the pinned page won't be randomly replaced in the
814          * future.
815          *
816          * The page pinning checks are just "has this mm ever
817          * seen pinning", along with the (inexact) check of
818          * the page count. That might give false positives for
819          * for pinning, but it will work correctly.
820          */
821         if (likely(!atomic_read(&src_mm->has_pinned)))
822                 return 1;
823         if (likely(!page_maybe_dma_pinned(page)))
824                 return 1;
825
826         new_page = *prealloc;
827         if (!new_page)
828                 return -EAGAIN;
829
830         /*
831          * We have a prealloc page, all good!  Take it
832          * over and copy the page & arm it.
833          */
834         *prealloc = NULL;
835         copy_user_highpage(new_page, page, addr, src_vma);
836         __SetPageUptodate(new_page);
837         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
838         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
839         rss[mm_counter(new_page)]++;
840
841         /* All done, just insert the new page copy in the child */
842         pte = mk_pte(new_page, dst_vma->vm_page_prot);
843         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
844         if (userfaultfd_pte_wp(dst_vma, *src_pte))
845                 /* Uffd-wp needs to be delivered to dest pte as well */
846                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
847         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
848         return 0;
849 }
850
851 /*
852  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
853  * is required to copy this pte.
854  */
855 static inline int
856 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
857                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
858                  struct page **prealloc)
859 {
860         struct mm_struct *src_mm = src_vma->vm_mm;
861         unsigned long vm_flags = src_vma->vm_flags;
862         pte_t pte = *src_pte;
863         struct page *page;
864
865         page = vm_normal_page(src_vma, addr, pte);
866         if (page) {
867                 int retval;
868
869                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
870                                            addr, rss, prealloc, pte, page);
871                 if (retval <= 0)
872                         return retval;
873
874                 get_page(page);
875                 page_dup_rmap(page, false);
876                 rss[mm_counter(page)]++;
877         }
878
879         /*
880          * If it's a COW mapping, write protect it both
881          * in the parent and the child
882          */
883         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884                 ptep_set_wrprotect(src_mm, addr, src_pte);
885                 pte = pte_wrprotect(pte);
886         }
887
888         /*
889          * If it's a shared mapping, mark it clean in
890          * the child
891          */
892         if (vm_flags & VM_SHARED)
893                 pte = pte_mkclean(pte);
894         pte = pte_mkold(pte);
895
896         if (!userfaultfd_wp(dst_vma))
897                 pte = pte_clear_uffd_wp(pte);
898
899         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900         return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905                    unsigned long addr)
906 {
907         struct page *new_page;
908
909         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910         if (!new_page)
911                 return NULL;
912
913         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914                 put_page(new_page);
915                 return NULL;
916         }
917         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919         return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925                unsigned long end)
926 {
927         struct mm_struct *dst_mm = dst_vma->vm_mm;
928         struct mm_struct *src_mm = src_vma->vm_mm;
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress, ret = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935         struct page *prealloc = NULL;
936
937 again:
938         progress = 0;
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte) {
943                 ret = -ENOMEM;
944                 goto out;
945         }
946         src_pte = pte_offset_map(src_pmd, addr);
947         src_ptl = pte_lockptr(src_mm, src_pmd);
948         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949         orig_src_pte = src_pte;
950         orig_dst_pte = dst_pte;
951         arch_enter_lazy_mmu_mode();
952
953         do {
954                 /*
955                  * We are holding two locks at this point - either of them
956                  * could generate latencies in another task on another CPU.
957                  */
958                 if (progress >= 32) {
959                         progress = 0;
960                         if (need_resched() ||
961                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962                                 break;
963                 }
964                 if (pte_none(*src_pte)) {
965                         progress++;
966                         continue;
967                 }
968                 if (unlikely(!pte_present(*src_pte))) {
969                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970                                                         dst_pte, src_pte,
971                                                         dst_vma, src_vma,
972                                                         addr, rss);
973                         if (entry.val)
974                                 break;
975                         progress += 8;
976                         continue;
977                 }
978                 /* copy_present_pte() will clear `*prealloc' if consumed */
979                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
980                                        addr, rss, &prealloc);
981                 /*
982                  * If we need a pre-allocated page for this pte, drop the
983                  * locks, allocate, and try again.
984                  */
985                 if (unlikely(ret == -EAGAIN))
986                         break;
987                 if (unlikely(prealloc)) {
988                         /*
989                          * pre-alloc page cannot be reused by next time so as
990                          * to strictly follow mempolicy (e.g., alloc_page_vma()
991                          * will allocate page according to address).  This
992                          * could only happen if one pinned pte changed.
993                          */
994                         put_page(prealloc);
995                         prealloc = NULL;
996                 }
997                 progress += 8;
998         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
999
1000         arch_leave_lazy_mmu_mode();
1001         spin_unlock(src_ptl);
1002         pte_unmap(orig_src_pte);
1003         add_mm_rss_vec(dst_mm, rss);
1004         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1005         cond_resched();
1006
1007         if (entry.val) {
1008                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1009                         ret = -ENOMEM;
1010                         goto out;
1011                 }
1012                 entry.val = 0;
1013         } else if (ret) {
1014                 WARN_ON_ONCE(ret != -EAGAIN);
1015                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1016                 if (!prealloc)
1017                         return -ENOMEM;
1018                 /* We've captured and resolved the error. Reset, try again. */
1019                 ret = 0;
1020         }
1021         if (addr != end)
1022                 goto again;
1023 out:
1024         if (unlikely(prealloc))
1025                 put_page(prealloc);
1026         return ret;
1027 }
1028
1029 static inline int
1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1031                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1032                unsigned long end)
1033 {
1034         struct mm_struct *dst_mm = dst_vma->vm_mm;
1035         struct mm_struct *src_mm = src_vma->vm_mm;
1036         pmd_t *src_pmd, *dst_pmd;
1037         unsigned long next;
1038
1039         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040         if (!dst_pmd)
1041                 return -ENOMEM;
1042         src_pmd = pmd_offset(src_pud, addr);
1043         do {
1044                 next = pmd_addr_end(addr, end);
1045                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046                         || pmd_devmap(*src_pmd)) {
1047                         int err;
1048                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1049                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1050                                             addr, dst_vma, src_vma);
1051                         if (err == -ENOMEM)
1052                                 return -ENOMEM;
1053                         if (!err)
1054                                 continue;
1055                         /* fall through */
1056                 }
1057                 if (pmd_none_or_clear_bad(src_pmd))
1058                         continue;
1059                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1060                                    addr, next))
1061                         return -ENOMEM;
1062         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063         return 0;
1064 }
1065
1066 static inline int
1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1069                unsigned long end)
1070 {
1071         struct mm_struct *dst_mm = dst_vma->vm_mm;
1072         struct mm_struct *src_mm = src_vma->vm_mm;
1073         pud_t *src_pud, *dst_pud;
1074         unsigned long next;
1075
1076         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1077         if (!dst_pud)
1078                 return -ENOMEM;
1079         src_pud = pud_offset(src_p4d, addr);
1080         do {
1081                 next = pud_addr_end(addr, end);
1082                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1083                         int err;
1084
1085                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1086                         err = copy_huge_pud(dst_mm, src_mm,
1087                                             dst_pud, src_pud, addr, src_vma);
1088                         if (err == -ENOMEM)
1089                                 return -ENOMEM;
1090                         if (!err)
1091                                 continue;
1092                         /* fall through */
1093                 }
1094                 if (pud_none_or_clear_bad(src_pud))
1095                         continue;
1096                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1097                                    addr, next))
1098                         return -ENOMEM;
1099         } while (dst_pud++, src_pud++, addr = next, addr != end);
1100         return 0;
1101 }
1102
1103 static inline int
1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1106                unsigned long end)
1107 {
1108         struct mm_struct *dst_mm = dst_vma->vm_mm;
1109         p4d_t *src_p4d, *dst_p4d;
1110         unsigned long next;
1111
1112         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1113         if (!dst_p4d)
1114                 return -ENOMEM;
1115         src_p4d = p4d_offset(src_pgd, addr);
1116         do {
1117                 next = p4d_addr_end(addr, end);
1118                 if (p4d_none_or_clear_bad(src_p4d))
1119                         continue;
1120                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1121                                    addr, next))
1122                         return -ENOMEM;
1123         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1124         return 0;
1125 }
1126
1127 int
1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1129 {
1130         pgd_t *src_pgd, *dst_pgd;
1131         unsigned long next;
1132         unsigned long addr = src_vma->vm_start;
1133         unsigned long end = src_vma->vm_end;
1134         struct mm_struct *dst_mm = dst_vma->vm_mm;
1135         struct mm_struct *src_mm = src_vma->vm_mm;
1136         struct mmu_notifier_range range;
1137         bool is_cow;
1138         int ret;
1139
1140         /*
1141          * Don't copy ptes where a page fault will fill them correctly.
1142          * Fork becomes much lighter when there are big shared or private
1143          * readonly mappings. The tradeoff is that copy_page_range is more
1144          * efficient than faulting.
1145          */
1146         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1147             !src_vma->anon_vma)
1148                 return 0;
1149
1150         if (is_vm_hugetlb_page(src_vma))
1151                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1152
1153         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1154                 /*
1155                  * We do not free on error cases below as remove_vma
1156                  * gets called on error from higher level routine
1157                  */
1158                 ret = track_pfn_copy(src_vma);
1159                 if (ret)
1160                         return ret;
1161         }
1162
1163         /*
1164          * We need to invalidate the secondary MMU mappings only when
1165          * there could be a permission downgrade on the ptes of the
1166          * parent mm. And a permission downgrade will only happen if
1167          * is_cow_mapping() returns true.
1168          */
1169         is_cow = is_cow_mapping(src_vma->vm_flags);
1170
1171         if (is_cow) {
1172                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1173                                         0, src_vma, src_mm, addr, end);
1174                 mmu_notifier_invalidate_range_start(&range);
1175                 /*
1176                  * Disabling preemption is not needed for the write side, as
1177                  * the read side doesn't spin, but goes to the mmap_lock.
1178                  *
1179                  * Use the raw variant of the seqcount_t write API to avoid
1180                  * lockdep complaining about preemptibility.
1181                  */
1182                 mmap_assert_write_locked(src_mm);
1183                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1184         }
1185
1186         ret = 0;
1187         dst_pgd = pgd_offset(dst_mm, addr);
1188         src_pgd = pgd_offset(src_mm, addr);
1189         do {
1190                 next = pgd_addr_end(addr, end);
1191                 if (pgd_none_or_clear_bad(src_pgd))
1192                         continue;
1193                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1194                                             addr, next))) {
1195                         ret = -ENOMEM;
1196                         break;
1197                 }
1198         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1199
1200         if (is_cow) {
1201                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1202                 mmu_notifier_invalidate_range_end(&range);
1203         }
1204         return ret;
1205 }
1206
1207 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1208                                 struct vm_area_struct *vma, pmd_t *pmd,
1209                                 unsigned long addr, unsigned long end,
1210                                 struct zap_details *details)
1211 {
1212         struct mm_struct *mm = tlb->mm;
1213         int force_flush = 0;
1214         int rss[NR_MM_COUNTERS];
1215         spinlock_t *ptl;
1216         pte_t *start_pte;
1217         pte_t *pte;
1218         swp_entry_t entry;
1219
1220         tlb_change_page_size(tlb, PAGE_SIZE);
1221 again:
1222         init_rss_vec(rss);
1223         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1224         pte = start_pte;
1225         flush_tlb_batched_pending(mm);
1226         arch_enter_lazy_mmu_mode();
1227         do {
1228                 pte_t ptent = *pte;
1229                 if (pte_none(ptent))
1230                         continue;
1231
1232                 if (need_resched())
1233                         break;
1234
1235                 if (pte_present(ptent)) {
1236                         struct page *page;
1237
1238                         page = vm_normal_page(vma, addr, ptent);
1239                         if (unlikely(details) && page) {
1240                                 /*
1241                                  * unmap_shared_mapping_pages() wants to
1242                                  * invalidate cache without truncating:
1243                                  * unmap shared but keep private pages.
1244                                  */
1245                                 if (details->check_mapping &&
1246                                     details->check_mapping != page_rmapping(page))
1247                                         continue;
1248                         }
1249                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1250                                                         tlb->fullmm);
1251                         tlb_remove_tlb_entry(tlb, pte, addr);
1252                         if (unlikely(!page))
1253                                 continue;
1254
1255                         if (!PageAnon(page)) {
1256                                 if (pte_dirty(ptent)) {
1257                                         force_flush = 1;
1258                                         set_page_dirty(page);
1259                                 }
1260                                 if (pte_young(ptent) &&
1261                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1262                                         mark_page_accessed(page);
1263                         }
1264                         rss[mm_counter(page)]--;
1265                         page_remove_rmap(page, false);
1266                         if (unlikely(page_mapcount(page) < 0))
1267                                 print_bad_pte(vma, addr, ptent, page);
1268                         if (unlikely(__tlb_remove_page(tlb, page))) {
1269                                 force_flush = 1;
1270                                 addr += PAGE_SIZE;
1271                                 break;
1272                         }
1273                         continue;
1274                 }
1275
1276                 entry = pte_to_swp_entry(ptent);
1277                 if (is_device_private_entry(entry)) {
1278                         struct page *page = device_private_entry_to_page(entry);
1279
1280                         if (unlikely(details && details->check_mapping)) {
1281                                 /*
1282                                  * unmap_shared_mapping_pages() wants to
1283                                  * invalidate cache without truncating:
1284                                  * unmap shared but keep private pages.
1285                                  */
1286                                 if (details->check_mapping !=
1287                                     page_rmapping(page))
1288                                         continue;
1289                         }
1290
1291                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292                         rss[mm_counter(page)]--;
1293                         page_remove_rmap(page, false);
1294                         put_page(page);
1295                         continue;
1296                 }
1297
1298                 /* If details->check_mapping, we leave swap entries. */
1299                 if (unlikely(details))
1300                         continue;
1301
1302                 if (!non_swap_entry(entry))
1303                         rss[MM_SWAPENTS]--;
1304                 else if (is_migration_entry(entry)) {
1305                         struct page *page;
1306
1307                         page = migration_entry_to_page(entry);
1308                         rss[mm_counter(page)]--;
1309                 }
1310                 if (unlikely(!free_swap_and_cache(entry)))
1311                         print_bad_pte(vma, addr, ptent, NULL);
1312                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1313         } while (pte++, addr += PAGE_SIZE, addr != end);
1314
1315         add_mm_rss_vec(mm, rss);
1316         arch_leave_lazy_mmu_mode();
1317
1318         /* Do the actual TLB flush before dropping ptl */
1319         if (force_flush)
1320                 tlb_flush_mmu_tlbonly(tlb);
1321         pte_unmap_unlock(start_pte, ptl);
1322
1323         /*
1324          * If we forced a TLB flush (either due to running out of
1325          * batch buffers or because we needed to flush dirty TLB
1326          * entries before releasing the ptl), free the batched
1327          * memory too. Restart if we didn't do everything.
1328          */
1329         if (force_flush) {
1330                 force_flush = 0;
1331                 tlb_flush_mmu(tlb);
1332         }
1333
1334         if (addr != end) {
1335                 cond_resched();
1336                 goto again;
1337         }
1338
1339         return addr;
1340 }
1341
1342 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1343                                 struct vm_area_struct *vma, pud_t *pud,
1344                                 unsigned long addr, unsigned long end,
1345                                 struct zap_details *details)
1346 {
1347         pmd_t *pmd;
1348         unsigned long next;
1349
1350         pmd = pmd_offset(pud, addr);
1351         do {
1352                 next = pmd_addr_end(addr, end);
1353                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1354                         if (next - addr != HPAGE_PMD_SIZE)
1355                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1356                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1357                                 goto next;
1358                         /* fall through */
1359                 } else if (details && details->single_page &&
1360                            PageTransCompound(details->single_page) &&
1361                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1362                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1363                         /*
1364                          * Take and drop THP pmd lock so that we cannot return
1365                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1366                          * but not yet decremented compound_mapcount().
1367                          */
1368                         spin_unlock(ptl);
1369                 }
1370
1371                 /*
1372                  * Here there can be other concurrent MADV_DONTNEED or
1373                  * trans huge page faults running, and if the pmd is
1374                  * none or trans huge it can change under us. This is
1375                  * because MADV_DONTNEED holds the mmap_lock in read
1376                  * mode.
1377                  */
1378                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379                         goto next;
1380                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1381 next:
1382                 cond_resched();
1383         } while (pmd++, addr = next, addr != end);
1384
1385         return addr;
1386 }
1387
1388 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1389                                 struct vm_area_struct *vma, p4d_t *p4d,
1390                                 unsigned long addr, unsigned long end,
1391                                 struct zap_details *details)
1392 {
1393         pud_t *pud;
1394         unsigned long next;
1395
1396         pud = pud_offset(p4d, addr);
1397         do {
1398                 next = pud_addr_end(addr, end);
1399                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400                         if (next - addr != HPAGE_PUD_SIZE) {
1401                                 mmap_assert_locked(tlb->mm);
1402                                 split_huge_pud(vma, pud, addr);
1403                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1404                                 goto next;
1405                         /* fall through */
1406                 }
1407                 if (pud_none_or_clear_bad(pud))
1408                         continue;
1409                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1410 next:
1411                 cond_resched();
1412         } while (pud++, addr = next, addr != end);
1413
1414         return addr;
1415 }
1416
1417 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418                                 struct vm_area_struct *vma, pgd_t *pgd,
1419                                 unsigned long addr, unsigned long end,
1420                                 struct zap_details *details)
1421 {
1422         p4d_t *p4d;
1423         unsigned long next;
1424
1425         p4d = p4d_offset(pgd, addr);
1426         do {
1427                 next = p4d_addr_end(addr, end);
1428                 if (p4d_none_or_clear_bad(p4d))
1429                         continue;
1430                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431         } while (p4d++, addr = next, addr != end);
1432
1433         return addr;
1434 }
1435
1436 void unmap_page_range(struct mmu_gather *tlb,
1437                              struct vm_area_struct *vma,
1438                              unsigned long addr, unsigned long end,
1439                              struct zap_details *details)
1440 {
1441         pgd_t *pgd;
1442         unsigned long next;
1443
1444         BUG_ON(addr >= end);
1445         tlb_start_vma(tlb, vma);
1446         pgd = pgd_offset(vma->vm_mm, addr);
1447         do {
1448                 next = pgd_addr_end(addr, end);
1449                 if (pgd_none_or_clear_bad(pgd))
1450                         continue;
1451                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1452         } while (pgd++, addr = next, addr != end);
1453         tlb_end_vma(tlb, vma);
1454 }
1455
1456
1457 static void unmap_single_vma(struct mmu_gather *tlb,
1458                 struct vm_area_struct *vma, unsigned long start_addr,
1459                 unsigned long end_addr,
1460                 struct zap_details *details)
1461 {
1462         unsigned long start = max(vma->vm_start, start_addr);
1463         unsigned long end;
1464
1465         if (start >= vma->vm_end)
1466                 return;
1467         end = min(vma->vm_end, end_addr);
1468         if (end <= vma->vm_start)
1469                 return;
1470
1471         if (vma->vm_file)
1472                 uprobe_munmap(vma, start, end);
1473
1474         if (unlikely(vma->vm_flags & VM_PFNMAP))
1475                 untrack_pfn(vma, 0, 0);
1476
1477         if (start != end) {
1478                 if (unlikely(is_vm_hugetlb_page(vma))) {
1479                         /*
1480                          * It is undesirable to test vma->vm_file as it
1481                          * should be non-null for valid hugetlb area.
1482                          * However, vm_file will be NULL in the error
1483                          * cleanup path of mmap_region. When
1484                          * hugetlbfs ->mmap method fails,
1485                          * mmap_region() nullifies vma->vm_file
1486                          * before calling this function to clean up.
1487                          * Since no pte has actually been setup, it is
1488                          * safe to do nothing in this case.
1489                          */
1490                         if (vma->vm_file) {
1491                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1492                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1493                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1494                         }
1495                 } else
1496                         unmap_page_range(tlb, vma, start, end, details);
1497         }
1498 }
1499
1500 /**
1501  * unmap_vmas - unmap a range of memory covered by a list of vma's
1502  * @tlb: address of the caller's struct mmu_gather
1503  * @vma: the starting vma
1504  * @start_addr: virtual address at which to start unmapping
1505  * @end_addr: virtual address at which to end unmapping
1506  *
1507  * Unmap all pages in the vma list.
1508  *
1509  * Only addresses between `start' and `end' will be unmapped.
1510  *
1511  * The VMA list must be sorted in ascending virtual address order.
1512  *
1513  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514  * range after unmap_vmas() returns.  So the only responsibility here is to
1515  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516  * drops the lock and schedules.
1517  */
1518 void unmap_vmas(struct mmu_gather *tlb,
1519                 struct vm_area_struct *vma, unsigned long start_addr,
1520                 unsigned long end_addr)
1521 {
1522         struct mmu_notifier_range range;
1523
1524         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525                                 start_addr, end_addr);
1526         mmu_notifier_invalidate_range_start(&range);
1527         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1528                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1529         mmu_notifier_invalidate_range_end(&range);
1530 }
1531
1532 /**
1533  * zap_page_range - remove user pages in a given range
1534  * @vma: vm_area_struct holding the applicable pages
1535  * @start: starting address of pages to zap
1536  * @size: number of bytes to zap
1537  *
1538  * Caller must protect the VMA list
1539  */
1540 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1541                 unsigned long size)
1542 {
1543         struct mmu_notifier_range range;
1544         struct mmu_gather tlb;
1545
1546         lru_add_drain();
1547         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548                                 start, start + size);
1549         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1550         update_hiwater_rss(vma->vm_mm);
1551         mmu_notifier_invalidate_range_start(&range);
1552         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554         mmu_notifier_invalidate_range_end(&range);
1555         tlb_finish_mmu(&tlb, start, range.end);
1556 }
1557
1558 /**
1559  * zap_page_range_single - remove user pages in a given range
1560  * @vma: vm_area_struct holding the applicable pages
1561  * @address: starting address of pages to zap
1562  * @size: number of bytes to zap
1563  * @details: details of shared cache invalidation
1564  *
1565  * The range must fit into one VMA.
1566  */
1567 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1568                 unsigned long size, struct zap_details *details)
1569 {
1570         struct mmu_notifier_range range;
1571         struct mmu_gather tlb;
1572
1573         lru_add_drain();
1574         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1575                                 address, address + size);
1576         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1577         update_hiwater_rss(vma->vm_mm);
1578         mmu_notifier_invalidate_range_start(&range);
1579         unmap_single_vma(&tlb, vma, address, range.end, details);
1580         mmu_notifier_invalidate_range_end(&range);
1581         tlb_finish_mmu(&tlb, address, range.end);
1582 }
1583
1584 /**
1585  * zap_vma_ptes - remove ptes mapping the vma
1586  * @vma: vm_area_struct holding ptes to be zapped
1587  * @address: starting address of pages to zap
1588  * @size: number of bytes to zap
1589  *
1590  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591  *
1592  * The entire address range must be fully contained within the vma.
1593  *
1594  */
1595 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1596                 unsigned long size)
1597 {
1598         if (address < vma->vm_start || address + size > vma->vm_end ||
1599                         !(vma->vm_flags & VM_PFNMAP))
1600                 return;
1601
1602         zap_page_range_single(vma, address, size, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605
1606 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1607 {
1608         pgd_t *pgd;
1609         p4d_t *p4d;
1610         pud_t *pud;
1611         pmd_t *pmd;
1612
1613         pgd = pgd_offset(mm, addr);
1614         p4d = p4d_alloc(mm, pgd, addr);
1615         if (!p4d)
1616                 return NULL;
1617         pud = pud_alloc(mm, p4d, addr);
1618         if (!pud)
1619                 return NULL;
1620         pmd = pmd_alloc(mm, pud, addr);
1621         if (!pmd)
1622                 return NULL;
1623
1624         VM_BUG_ON(pmd_trans_huge(*pmd));
1625         return pmd;
1626 }
1627
1628 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629                         spinlock_t **ptl)
1630 {
1631         pmd_t *pmd = walk_to_pmd(mm, addr);
1632
1633         if (!pmd)
1634                 return NULL;
1635         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1636 }
1637
1638 static int validate_page_before_insert(struct page *page)
1639 {
1640         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641                 return -EINVAL;
1642         flush_dcache_page(page);
1643         return 0;
1644 }
1645
1646 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647                         unsigned long addr, struct page *page, pgprot_t prot)
1648 {
1649         if (!pte_none(*pte))
1650                 return -EBUSY;
1651         /* Ok, finally just insert the thing.. */
1652         get_page(page);
1653         inc_mm_counter_fast(mm, mm_counter_file(page));
1654         page_add_file_rmap(page, false);
1655         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656         return 0;
1657 }
1658
1659 /*
1660  * This is the old fallback for page remapping.
1661  *
1662  * For historical reasons, it only allows reserved pages. Only
1663  * old drivers should use this, and they needed to mark their
1664  * pages reserved for the old functions anyway.
1665  */
1666 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667                         struct page *page, pgprot_t prot)
1668 {
1669         struct mm_struct *mm = vma->vm_mm;
1670         int retval;
1671         pte_t *pte;
1672         spinlock_t *ptl;
1673
1674         retval = validate_page_before_insert(page);
1675         if (retval)
1676                 goto out;
1677         retval = -ENOMEM;
1678         pte = get_locked_pte(mm, addr, &ptl);
1679         if (!pte)
1680                 goto out;
1681         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1682         pte_unmap_unlock(pte, ptl);
1683 out:
1684         return retval;
1685 }
1686
1687 #ifdef pte_index
1688 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1689                         unsigned long addr, struct page *page, pgprot_t prot)
1690 {
1691         int err;
1692
1693         if (!page_count(page))
1694                 return -EINVAL;
1695         err = validate_page_before_insert(page);
1696         if (err)
1697                 return err;
1698         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1699 }
1700
1701 /* insert_pages() amortizes the cost of spinlock operations
1702  * when inserting pages in a loop. Arch *must* define pte_index.
1703  */
1704 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705                         struct page **pages, unsigned long *num, pgprot_t prot)
1706 {
1707         pmd_t *pmd = NULL;
1708         pte_t *start_pte, *pte;
1709         spinlock_t *pte_lock;
1710         struct mm_struct *const mm = vma->vm_mm;
1711         unsigned long curr_page_idx = 0;
1712         unsigned long remaining_pages_total = *num;
1713         unsigned long pages_to_write_in_pmd;
1714         int ret;
1715 more:
1716         ret = -EFAULT;
1717         pmd = walk_to_pmd(mm, addr);
1718         if (!pmd)
1719                 goto out;
1720
1721         pages_to_write_in_pmd = min_t(unsigned long,
1722                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723
1724         /* Allocate the PTE if necessary; takes PMD lock once only. */
1725         ret = -ENOMEM;
1726         if (pte_alloc(mm, pmd))
1727                 goto out;
1728
1729         while (pages_to_write_in_pmd) {
1730                 int pte_idx = 0;
1731                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732
1733                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735                         int err = insert_page_in_batch_locked(mm, pte,
1736                                 addr, pages[curr_page_idx], prot);
1737                         if (unlikely(err)) {
1738                                 pte_unmap_unlock(start_pte, pte_lock);
1739                                 ret = err;
1740                                 remaining_pages_total -= pte_idx;
1741                                 goto out;
1742                         }
1743                         addr += PAGE_SIZE;
1744                         ++curr_page_idx;
1745                 }
1746                 pte_unmap_unlock(start_pte, pte_lock);
1747                 pages_to_write_in_pmd -= batch_size;
1748                 remaining_pages_total -= batch_size;
1749         }
1750         if (remaining_pages_total)
1751                 goto more;
1752         ret = 0;
1753 out:
1754         *num = remaining_pages_total;
1755         return ret;
1756 }
1757 #endif  /* ifdef pte_index */
1758
1759 /**
1760  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761  * @vma: user vma to map to
1762  * @addr: target start user address of these pages
1763  * @pages: source kernel pages
1764  * @num: in: number of pages to map. out: number of pages that were *not*
1765  * mapped. (0 means all pages were successfully mapped).
1766  *
1767  * Preferred over vm_insert_page() when inserting multiple pages.
1768  *
1769  * In case of error, we may have mapped a subset of the provided
1770  * pages. It is the caller's responsibility to account for this case.
1771  *
1772  * The same restrictions apply as in vm_insert_page().
1773  */
1774 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775                         struct page **pages, unsigned long *num)
1776 {
1777 #ifdef pte_index
1778         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779
1780         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781                 return -EFAULT;
1782         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1783                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1784                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1785                 vma->vm_flags |= VM_MIXEDMAP;
1786         }
1787         /* Defer page refcount checking till we're about to map that page. */
1788         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789 #else
1790         unsigned long idx = 0, pgcount = *num;
1791         int err = -EINVAL;
1792
1793         for (; idx < pgcount; ++idx) {
1794                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795                 if (err)
1796                         break;
1797         }
1798         *num = pgcount - idx;
1799         return err;
1800 #endif  /* ifdef pte_index */
1801 }
1802 EXPORT_SYMBOL(vm_insert_pages);
1803
1804 /**
1805  * vm_insert_page - insert single page into user vma
1806  * @vma: user vma to map to
1807  * @addr: target user address of this page
1808  * @page: source kernel page
1809  *
1810  * This allows drivers to insert individual pages they've allocated
1811  * into a user vma.
1812  *
1813  * The page has to be a nice clean _individual_ kernel allocation.
1814  * If you allocate a compound page, you need to have marked it as
1815  * such (__GFP_COMP), or manually just split the page up yourself
1816  * (see split_page()).
1817  *
1818  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819  * took an arbitrary page protection parameter. This doesn't allow
1820  * that. Your vma protection will have to be set up correctly, which
1821  * means that if you want a shared writable mapping, you'd better
1822  * ask for a shared writable mapping!
1823  *
1824  * The page does not need to be reserved.
1825  *
1826  * Usually this function is called from f_op->mmap() handler
1827  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1828  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829  * function from other places, for example from page-fault handler.
1830  *
1831  * Return: %0 on success, negative error code otherwise.
1832  */
1833 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834                         struct page *page)
1835 {
1836         if (addr < vma->vm_start || addr >= vma->vm_end)
1837                 return -EFAULT;
1838         if (!page_count(page))
1839                 return -EINVAL;
1840         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1841                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1842                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1843                 vma->vm_flags |= VM_MIXEDMAP;
1844         }
1845         return insert_page(vma, addr, page, vma->vm_page_prot);
1846 }
1847 EXPORT_SYMBOL(vm_insert_page);
1848
1849 /*
1850  * __vm_map_pages - maps range of kernel pages into user vma
1851  * @vma: user vma to map to
1852  * @pages: pointer to array of source kernel pages
1853  * @num: number of pages in page array
1854  * @offset: user's requested vm_pgoff
1855  *
1856  * This allows drivers to map range of kernel pages into a user vma.
1857  *
1858  * Return: 0 on success and error code otherwise.
1859  */
1860 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861                                 unsigned long num, unsigned long offset)
1862 {
1863         unsigned long count = vma_pages(vma);
1864         unsigned long uaddr = vma->vm_start;
1865         int ret, i;
1866
1867         /* Fail if the user requested offset is beyond the end of the object */
1868         if (offset >= num)
1869                 return -ENXIO;
1870
1871         /* Fail if the user requested size exceeds available object size */
1872         if (count > num - offset)
1873                 return -ENXIO;
1874
1875         for (i = 0; i < count; i++) {
1876                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877                 if (ret < 0)
1878                         return ret;
1879                 uaddr += PAGE_SIZE;
1880         }
1881
1882         return 0;
1883 }
1884
1885 /**
1886  * vm_map_pages - maps range of kernel pages starts with non zero offset
1887  * @vma: user vma to map to
1888  * @pages: pointer to array of source kernel pages
1889  * @num: number of pages in page array
1890  *
1891  * Maps an object consisting of @num pages, catering for the user's
1892  * requested vm_pgoff
1893  *
1894  * If we fail to insert any page into the vma, the function will return
1895  * immediately leaving any previously inserted pages present.  Callers
1896  * from the mmap handler may immediately return the error as their caller
1897  * will destroy the vma, removing any successfully inserted pages. Other
1898  * callers should make their own arrangements for calling unmap_region().
1899  *
1900  * Context: Process context. Called by mmap handlers.
1901  * Return: 0 on success and error code otherwise.
1902  */
1903 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904                                 unsigned long num)
1905 {
1906         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907 }
1908 EXPORT_SYMBOL(vm_map_pages);
1909
1910 /**
1911  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912  * @vma: user vma to map to
1913  * @pages: pointer to array of source kernel pages
1914  * @num: number of pages in page array
1915  *
1916  * Similar to vm_map_pages(), except that it explicitly sets the offset
1917  * to 0. This function is intended for the drivers that did not consider
1918  * vm_pgoff.
1919  *
1920  * Context: Process context. Called by mmap handlers.
1921  * Return: 0 on success and error code otherwise.
1922  */
1923 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924                                 unsigned long num)
1925 {
1926         return __vm_map_pages(vma, pages, num, 0);
1927 }
1928 EXPORT_SYMBOL(vm_map_pages_zero);
1929
1930 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1932 {
1933         struct mm_struct *mm = vma->vm_mm;
1934         pte_t *pte, entry;
1935         spinlock_t *ptl;
1936
1937         pte = get_locked_pte(mm, addr, &ptl);
1938         if (!pte)
1939                 return VM_FAULT_OOM;
1940         if (!pte_none(*pte)) {
1941                 if (mkwrite) {
1942                         /*
1943                          * For read faults on private mappings the PFN passed
1944                          * in may not match the PFN we have mapped if the
1945                          * mapped PFN is a writeable COW page.  In the mkwrite
1946                          * case we are creating a writable PTE for a shared
1947                          * mapping and we expect the PFNs to match. If they
1948                          * don't match, we are likely racing with block
1949                          * allocation and mapping invalidation so just skip the
1950                          * update.
1951                          */
1952                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1954                                 goto out_unlock;
1955                         }
1956                         entry = pte_mkyoung(*pte);
1957                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959                                 update_mmu_cache(vma, addr, pte);
1960                 }
1961                 goto out_unlock;
1962         }
1963
1964         /* Ok, finally just insert the thing.. */
1965         if (pfn_t_devmap(pfn))
1966                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967         else
1968                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1969
1970         if (mkwrite) {
1971                 entry = pte_mkyoung(entry);
1972                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973         }
1974
1975         set_pte_at(mm, addr, pte, entry);
1976         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1977
1978 out_unlock:
1979         pte_unmap_unlock(pte, ptl);
1980         return VM_FAULT_NOPAGE;
1981 }
1982
1983 /**
1984  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985  * @vma: user vma to map to
1986  * @addr: target user address of this page
1987  * @pfn: source kernel pfn
1988  * @pgprot: pgprot flags for the inserted page
1989  *
1990  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1991  * to override pgprot on a per-page basis.
1992  *
1993  * This only makes sense for IO mappings, and it makes no sense for
1994  * COW mappings.  In general, using multiple vmas is preferable;
1995  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1996  * impractical.
1997  *
1998  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999  * a value of @pgprot different from that of @vma->vm_page_prot.
2000  *
2001  * Context: Process context.  May allocate using %GFP_KERNEL.
2002  * Return: vm_fault_t value.
2003  */
2004 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005                         unsigned long pfn, pgprot_t pgprot)
2006 {
2007         /*
2008          * Technically, architectures with pte_special can avoid all these
2009          * restrictions (same for remap_pfn_range).  However we would like
2010          * consistency in testing and feature parity among all, so we should
2011          * try to keep these invariants in place for everybody.
2012          */
2013         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015                                                 (VM_PFNMAP|VM_MIXEDMAP));
2016         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018
2019         if (addr < vma->vm_start || addr >= vma->vm_end)
2020                 return VM_FAULT_SIGBUS;
2021
2022         if (!pfn_modify_allowed(pfn, pgprot))
2023                 return VM_FAULT_SIGBUS;
2024
2025         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026
2027         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2028                         false);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2031
2032 /**
2033  * vmf_insert_pfn - insert single pfn into user vma
2034  * @vma: user vma to map to
2035  * @addr: target user address of this page
2036  * @pfn: source kernel pfn
2037  *
2038  * Similar to vm_insert_page, this allows drivers to insert individual pages
2039  * they've allocated into a user vma. Same comments apply.
2040  *
2041  * This function should only be called from a vm_ops->fault handler, and
2042  * in that case the handler should return the result of this function.
2043  *
2044  * vma cannot be a COW mapping.
2045  *
2046  * As this is called only for pages that do not currently exist, we
2047  * do not need to flush old virtual caches or the TLB.
2048  *
2049  * Context: Process context.  May allocate using %GFP_KERNEL.
2050  * Return: vm_fault_t value.
2051  */
2052 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053                         unsigned long pfn)
2054 {
2055         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vmf_insert_pfn);
2058
2059 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060 {
2061         /* these checks mirror the abort conditions in vm_normal_page */
2062         if (vma->vm_flags & VM_MIXEDMAP)
2063                 return true;
2064         if (pfn_t_devmap(pfn))
2065                 return true;
2066         if (pfn_t_special(pfn))
2067                 return true;
2068         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069                 return true;
2070         return false;
2071 }
2072
2073 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2074                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075                 bool mkwrite)
2076 {
2077         int err;
2078
2079         BUG_ON(!vm_mixed_ok(vma, pfn));
2080
2081         if (addr < vma->vm_start || addr >= vma->vm_end)
2082                 return VM_FAULT_SIGBUS;
2083
2084         track_pfn_insert(vma, &pgprot, pfn);
2085
2086         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2087                 return VM_FAULT_SIGBUS;
2088
2089         /*
2090          * If we don't have pte special, then we have to use the pfn_valid()
2091          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092          * refcount the page if pfn_valid is true (hence insert_page rather
2093          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2094          * without pte special, it would there be refcounted as a normal page.
2095          */
2096         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2098                 struct page *page;
2099
2100                 /*
2101                  * At this point we are committed to insert_page()
2102                  * regardless of whether the caller specified flags that
2103                  * result in pfn_t_has_page() == false.
2104                  */
2105                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2106                 err = insert_page(vma, addr, page, pgprot);
2107         } else {
2108                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2109         }
2110
2111         if (err == -ENOMEM)
2112                 return VM_FAULT_OOM;
2113         if (err < 0 && err != -EBUSY)
2114                 return VM_FAULT_SIGBUS;
2115
2116         return VM_FAULT_NOPAGE;
2117 }
2118
2119 /**
2120  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  * @pgprot: pgprot flags for the inserted page
2125  *
2126  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2127  * to override pgprot on a per-page basis.
2128  *
2129  * Typically this function should be used by drivers to set caching- and
2130  * encryption bits different than those of @vma->vm_page_prot, because
2131  * the caching- or encryption mode may not be known at mmap() time.
2132  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133  * to set caching and encryption bits for those vmas (except for COW pages).
2134  * This is ensured by core vm only modifying these page table entries using
2135  * functions that don't touch caching- or encryption bits, using pte_modify()
2136  * if needed. (See for example mprotect()).
2137  * Also when new page-table entries are created, this is only done using the
2138  * fault() callback, and never using the value of vma->vm_page_prot,
2139  * except for page-table entries that point to anonymous pages as the result
2140  * of COW.
2141  *
2142  * Context: Process context.  May allocate using %GFP_KERNEL.
2143  * Return: vm_fault_t value.
2144  */
2145 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146                                  pfn_t pfn, pgprot_t pgprot)
2147 {
2148         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2151
2152 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153                 pfn_t pfn)
2154 {
2155         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed);
2158
2159 /*
2160  *  If the insertion of PTE failed because someone else already added a
2161  *  different entry in the mean time, we treat that as success as we assume
2162  *  the same entry was actually inserted.
2163  */
2164 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165                 unsigned long addr, pfn_t pfn)
2166 {
2167         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2170
2171 /*
2172  * maps a range of physical memory into the requested pages. the old
2173  * mappings are removed. any references to nonexistent pages results
2174  * in null mappings (currently treated as "copy-on-access")
2175  */
2176 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177                         unsigned long addr, unsigned long end,
2178                         unsigned long pfn, pgprot_t prot)
2179 {
2180         pte_t *pte, *mapped_pte;
2181         spinlock_t *ptl;
2182         int err = 0;
2183
2184         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2185         if (!pte)
2186                 return -ENOMEM;
2187         arch_enter_lazy_mmu_mode();
2188         do {
2189                 BUG_ON(!pte_none(*pte));
2190                 if (!pfn_modify_allowed(pfn, prot)) {
2191                         err = -EACCES;
2192                         break;
2193                 }
2194                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195                 pfn++;
2196         } while (pte++, addr += PAGE_SIZE, addr != end);
2197         arch_leave_lazy_mmu_mode();
2198         pte_unmap_unlock(mapped_pte, ptl);
2199         return err;
2200 }
2201
2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203                         unsigned long addr, unsigned long end,
2204                         unsigned long pfn, pgprot_t prot)
2205 {
2206         pmd_t *pmd;
2207         unsigned long next;
2208         int err;
2209
2210         pfn -= addr >> PAGE_SHIFT;
2211         pmd = pmd_alloc(mm, pud, addr);
2212         if (!pmd)
2213                 return -ENOMEM;
2214         VM_BUG_ON(pmd_trans_huge(*pmd));
2215         do {
2216                 next = pmd_addr_end(addr, end);
2217                 err = remap_pte_range(mm, pmd, addr, next,
2218                                 pfn + (addr >> PAGE_SHIFT), prot);
2219                 if (err)
2220                         return err;
2221         } while (pmd++, addr = next, addr != end);
2222         return 0;
2223 }
2224
2225 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2226                         unsigned long addr, unsigned long end,
2227                         unsigned long pfn, pgprot_t prot)
2228 {
2229         pud_t *pud;
2230         unsigned long next;
2231         int err;
2232
2233         pfn -= addr >> PAGE_SHIFT;
2234         pud = pud_alloc(mm, p4d, addr);
2235         if (!pud)
2236                 return -ENOMEM;
2237         do {
2238                 next = pud_addr_end(addr, end);
2239                 err = remap_pmd_range(mm, pud, addr, next,
2240                                 pfn + (addr >> PAGE_SHIFT), prot);
2241                 if (err)
2242                         return err;
2243         } while (pud++, addr = next, addr != end);
2244         return 0;
2245 }
2246
2247 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248                         unsigned long addr, unsigned long end,
2249                         unsigned long pfn, pgprot_t prot)
2250 {
2251         p4d_t *p4d;
2252         unsigned long next;
2253         int err;
2254
2255         pfn -= addr >> PAGE_SHIFT;
2256         p4d = p4d_alloc(mm, pgd, addr);
2257         if (!p4d)
2258                 return -ENOMEM;
2259         do {
2260                 next = p4d_addr_end(addr, end);
2261                 err = remap_pud_range(mm, p4d, addr, next,
2262                                 pfn + (addr >> PAGE_SHIFT), prot);
2263                 if (err)
2264                         return err;
2265         } while (p4d++, addr = next, addr != end);
2266         return 0;
2267 }
2268
2269 /**
2270  * remap_pfn_range - remap kernel memory to userspace
2271  * @vma: user vma to map to
2272  * @addr: target page aligned user address to start at
2273  * @pfn: page frame number of kernel physical memory address
2274  * @size: size of mapping area
2275  * @prot: page protection flags for this mapping
2276  *
2277  * Note: this is only safe if the mm semaphore is held when called.
2278  *
2279  * Return: %0 on success, negative error code otherwise.
2280  */
2281 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282                     unsigned long pfn, unsigned long size, pgprot_t prot)
2283 {
2284         pgd_t *pgd;
2285         unsigned long next;
2286         unsigned long end = addr + PAGE_ALIGN(size);
2287         struct mm_struct *mm = vma->vm_mm;
2288         unsigned long remap_pfn = pfn;
2289         int err;
2290
2291         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292                 return -EINVAL;
2293
2294         /*
2295          * Physically remapped pages are special. Tell the
2296          * rest of the world about it:
2297          *   VM_IO tells people not to look at these pages
2298          *      (accesses can have side effects).
2299          *   VM_PFNMAP tells the core MM that the base pages are just
2300          *      raw PFN mappings, and do not have a "struct page" associated
2301          *      with them.
2302          *   VM_DONTEXPAND
2303          *      Disable vma merging and expanding with mremap().
2304          *   VM_DONTDUMP
2305          *      Omit vma from core dump, even when VM_IO turned off.
2306          *
2307          * There's a horrible special case to handle copy-on-write
2308          * behaviour that some programs depend on. We mark the "original"
2309          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2310          * See vm_normal_page() for details.
2311          */
2312         if (is_cow_mapping(vma->vm_flags)) {
2313                 if (addr != vma->vm_start || end != vma->vm_end)
2314                         return -EINVAL;
2315                 vma->vm_pgoff = pfn;
2316         }
2317
2318         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2319         if (err)
2320                 return -EINVAL;
2321
2322         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2323
2324         BUG_ON(addr >= end);
2325         pfn -= addr >> PAGE_SHIFT;
2326         pgd = pgd_offset(mm, addr);
2327         flush_cache_range(vma, addr, end);
2328         do {
2329                 next = pgd_addr_end(addr, end);
2330                 err = remap_p4d_range(mm, pgd, addr, next,
2331                                 pfn + (addr >> PAGE_SHIFT), prot);
2332                 if (err)
2333                         break;
2334         } while (pgd++, addr = next, addr != end);
2335
2336         if (err)
2337                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2338
2339         return err;
2340 }
2341 EXPORT_SYMBOL(remap_pfn_range);
2342
2343 /**
2344  * vm_iomap_memory - remap memory to userspace
2345  * @vma: user vma to map to
2346  * @start: start of the physical memory to be mapped
2347  * @len: size of area
2348  *
2349  * This is a simplified io_remap_pfn_range() for common driver use. The
2350  * driver just needs to give us the physical memory range to be mapped,
2351  * we'll figure out the rest from the vma information.
2352  *
2353  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354  * whatever write-combining details or similar.
2355  *
2356  * Return: %0 on success, negative error code otherwise.
2357  */
2358 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359 {
2360         unsigned long vm_len, pfn, pages;
2361
2362         /* Check that the physical memory area passed in looks valid */
2363         if (start + len < start)
2364                 return -EINVAL;
2365         /*
2366          * You *really* shouldn't map things that aren't page-aligned,
2367          * but we've historically allowed it because IO memory might
2368          * just have smaller alignment.
2369          */
2370         len += start & ~PAGE_MASK;
2371         pfn = start >> PAGE_SHIFT;
2372         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373         if (pfn + pages < pfn)
2374                 return -EINVAL;
2375
2376         /* We start the mapping 'vm_pgoff' pages into the area */
2377         if (vma->vm_pgoff > pages)
2378                 return -EINVAL;
2379         pfn += vma->vm_pgoff;
2380         pages -= vma->vm_pgoff;
2381
2382         /* Can we fit all of the mapping? */
2383         vm_len = vma->vm_end - vma->vm_start;
2384         if (vm_len >> PAGE_SHIFT > pages)
2385                 return -EINVAL;
2386
2387         /* Ok, let it rip */
2388         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389 }
2390 EXPORT_SYMBOL(vm_iomap_memory);
2391
2392 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393                                      unsigned long addr, unsigned long end,
2394                                      pte_fn_t fn, void *data, bool create,
2395                                      pgtbl_mod_mask *mask)
2396 {
2397         pte_t *pte;
2398         int err = 0;
2399         spinlock_t *ptl;
2400
2401         if (create) {
2402                 pte = (mm == &init_mm) ?
2403                         pte_alloc_kernel_track(pmd, addr, mask) :
2404                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405                 if (!pte)
2406                         return -ENOMEM;
2407         } else {
2408                 pte = (mm == &init_mm) ?
2409                         pte_offset_kernel(pmd, addr) :
2410                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2411         }
2412
2413         BUG_ON(pmd_huge(*pmd));
2414
2415         arch_enter_lazy_mmu_mode();
2416
2417         if (fn) {
2418                 do {
2419                         if (create || !pte_none(*pte)) {
2420                                 err = fn(pte++, addr, data);
2421                                 if (err)
2422                                         break;
2423                         }
2424                 } while (addr += PAGE_SIZE, addr != end);
2425         }
2426         *mask |= PGTBL_PTE_MODIFIED;
2427
2428         arch_leave_lazy_mmu_mode();
2429
2430         if (mm != &init_mm)
2431                 pte_unmap_unlock(pte-1, ptl);
2432         return err;
2433 }
2434
2435 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436                                      unsigned long addr, unsigned long end,
2437                                      pte_fn_t fn, void *data, bool create,
2438                                      pgtbl_mod_mask *mask)
2439 {
2440         pmd_t *pmd;
2441         unsigned long next;
2442         int err = 0;
2443
2444         BUG_ON(pud_huge(*pud));
2445
2446         if (create) {
2447                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2448                 if (!pmd)
2449                         return -ENOMEM;
2450         } else {
2451                 pmd = pmd_offset(pud, addr);
2452         }
2453         do {
2454                 next = pmd_addr_end(addr, end);
2455                 if (create || !pmd_none_or_clear_bad(pmd)) {
2456                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2457                                                  create, mask);
2458                         if (err)
2459                                 break;
2460                 }
2461         } while (pmd++, addr = next, addr != end);
2462         return err;
2463 }
2464
2465 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2466                                      unsigned long addr, unsigned long end,
2467                                      pte_fn_t fn, void *data, bool create,
2468                                      pgtbl_mod_mask *mask)
2469 {
2470         pud_t *pud;
2471         unsigned long next;
2472         int err = 0;
2473
2474         if (create) {
2475                 pud = pud_alloc_track(mm, p4d, addr, mask);
2476                 if (!pud)
2477                         return -ENOMEM;
2478         } else {
2479                 pud = pud_offset(p4d, addr);
2480         }
2481         do {
2482                 next = pud_addr_end(addr, end);
2483                 if (create || !pud_none_or_clear_bad(pud)) {
2484                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2485                                                  create, mask);
2486                         if (err)
2487                                 break;
2488                 }
2489         } while (pud++, addr = next, addr != end);
2490         return err;
2491 }
2492
2493 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494                                      unsigned long addr, unsigned long end,
2495                                      pte_fn_t fn, void *data, bool create,
2496                                      pgtbl_mod_mask *mask)
2497 {
2498         p4d_t *p4d;
2499         unsigned long next;
2500         int err = 0;
2501
2502         if (create) {
2503                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2504                 if (!p4d)
2505                         return -ENOMEM;
2506         } else {
2507                 p4d = p4d_offset(pgd, addr);
2508         }
2509         do {
2510                 next = p4d_addr_end(addr, end);
2511                 if (create || !p4d_none_or_clear_bad(p4d)) {
2512                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2513                                                  create, mask);
2514                         if (err)
2515                                 break;
2516                 }
2517         } while (p4d++, addr = next, addr != end);
2518         return err;
2519 }
2520
2521 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522                                  unsigned long size, pte_fn_t fn,
2523                                  void *data, bool create)
2524 {
2525         pgd_t *pgd;
2526         unsigned long start = addr, next;
2527         unsigned long end = addr + size;
2528         pgtbl_mod_mask mask = 0;
2529         int err = 0;
2530
2531         if (WARN_ON(addr >= end))
2532                 return -EINVAL;
2533
2534         pgd = pgd_offset(mm, addr);
2535         do {
2536                 next = pgd_addr_end(addr, end);
2537                 if (!create && pgd_none_or_clear_bad(pgd))
2538                         continue;
2539                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2540                 if (err)
2541                         break;
2542         } while (pgd++, addr = next, addr != end);
2543
2544         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545                 arch_sync_kernel_mappings(start, start + size);
2546
2547         return err;
2548 }
2549
2550 /*
2551  * Scan a region of virtual memory, filling in page tables as necessary
2552  * and calling a provided function on each leaf page table.
2553  */
2554 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555                         unsigned long size, pte_fn_t fn, void *data)
2556 {
2557         return __apply_to_page_range(mm, addr, size, fn, data, true);
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560
2561 /*
2562  * Scan a region of virtual memory, calling a provided function on
2563  * each leaf page table where it exists.
2564  *
2565  * Unlike apply_to_page_range, this does _not_ fill in page tables
2566  * where they are absent.
2567  */
2568 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569                                  unsigned long size, pte_fn_t fn, void *data)
2570 {
2571         return __apply_to_page_range(mm, addr, size, fn, data, false);
2572 }
2573 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574
2575 /*
2576  * handle_pte_fault chooses page fault handler according to an entry which was
2577  * read non-atomically.  Before making any commitment, on those architectures
2578  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579  * parts, do_swap_page must check under lock before unmapping the pte and
2580  * proceeding (but do_wp_page is only called after already making such a check;
2581  * and do_anonymous_page can safely check later on).
2582  */
2583 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2584                                 pte_t *page_table, pte_t orig_pte)
2585 {
2586         int same = 1;
2587 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2588         if (sizeof(pte_t) > sizeof(unsigned long)) {
2589                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2590                 spin_lock(ptl);
2591                 same = pte_same(*page_table, orig_pte);
2592                 spin_unlock(ptl);
2593         }
2594 #endif
2595         pte_unmap(page_table);
2596         return same;
2597 }
2598
2599 static inline bool cow_user_page(struct page *dst, struct page *src,
2600                                  struct vm_fault *vmf)
2601 {
2602         bool ret;
2603         void *kaddr;
2604         void __user *uaddr;
2605         bool locked = false;
2606         struct vm_area_struct *vma = vmf->vma;
2607         struct mm_struct *mm = vma->vm_mm;
2608         unsigned long addr = vmf->address;
2609
2610         if (likely(src)) {
2611                 copy_user_highpage(dst, src, addr, vma);
2612                 return true;
2613         }
2614
2615         /*
2616          * If the source page was a PFN mapping, we don't have
2617          * a "struct page" for it. We do a best-effort copy by
2618          * just copying from the original user address. If that
2619          * fails, we just zero-fill it. Live with it.
2620          */
2621         kaddr = kmap_atomic(dst);
2622         uaddr = (void __user *)(addr & PAGE_MASK);
2623
2624         /*
2625          * On architectures with software "accessed" bits, we would
2626          * take a double page fault, so mark it accessed here.
2627          */
2628         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2629                 pte_t entry;
2630
2631                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2632                 locked = true;
2633                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634                         /*
2635                          * Other thread has already handled the fault
2636                          * and update local tlb only
2637                          */
2638                         update_mmu_tlb(vma, addr, vmf->pte);
2639                         ret = false;
2640                         goto pte_unlock;
2641                 }
2642
2643                 entry = pte_mkyoung(vmf->orig_pte);
2644                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645                         update_mmu_cache(vma, addr, vmf->pte);
2646         }
2647
2648         /*
2649          * This really shouldn't fail, because the page is there
2650          * in the page tables. But it might just be unreadable,
2651          * in which case we just give up and fill the result with
2652          * zeroes.
2653          */
2654         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2655                 if (locked)
2656                         goto warn;
2657
2658                 /* Re-validate under PTL if the page is still mapped */
2659                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660                 locked = true;
2661                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2662                         /* The PTE changed under us, update local tlb */
2663                         update_mmu_tlb(vma, addr, vmf->pte);
2664                         ret = false;
2665                         goto pte_unlock;
2666                 }
2667
2668                 /*
2669                  * The same page can be mapped back since last copy attempt.
2670                  * Try to copy again under PTL.
2671                  */
2672                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673                         /*
2674                          * Give a warn in case there can be some obscure
2675                          * use-case
2676                          */
2677 warn:
2678                         WARN_ON_ONCE(1);
2679                         clear_page(kaddr);
2680                 }
2681         }
2682
2683         ret = true;
2684
2685 pte_unlock:
2686         if (locked)
2687                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688         kunmap_atomic(kaddr);
2689         flush_dcache_page(dst);
2690
2691         return ret;
2692 }
2693
2694 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695 {
2696         struct file *vm_file = vma->vm_file;
2697
2698         if (vm_file)
2699                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700
2701         /*
2702          * Special mappings (e.g. VDSO) do not have any file so fake
2703          * a default GFP_KERNEL for them.
2704          */
2705         return GFP_KERNEL;
2706 }
2707
2708 /*
2709  * Notify the address space that the page is about to become writable so that
2710  * it can prohibit this or wait for the page to get into an appropriate state.
2711  *
2712  * We do this without the lock held, so that it can sleep if it needs to.
2713  */
2714 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2715 {
2716         vm_fault_t ret;
2717         struct page *page = vmf->page;
2718         unsigned int old_flags = vmf->flags;
2719
2720         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2721
2722         if (vmf->vma->vm_file &&
2723             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724                 return VM_FAULT_SIGBUS;
2725
2726         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2727         /* Restore original flags so that caller is not surprised */
2728         vmf->flags = old_flags;
2729         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730                 return ret;
2731         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732                 lock_page(page);
2733                 if (!page->mapping) {
2734                         unlock_page(page);
2735                         return 0; /* retry */
2736                 }
2737                 ret |= VM_FAULT_LOCKED;
2738         } else
2739                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2740         return ret;
2741 }
2742
2743 /*
2744  * Handle dirtying of a page in shared file mapping on a write fault.
2745  *
2746  * The function expects the page to be locked and unlocks it.
2747  */
2748 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2749 {
2750         struct vm_area_struct *vma = vmf->vma;
2751         struct address_space *mapping;
2752         struct page *page = vmf->page;
2753         bool dirtied;
2754         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755
2756         dirtied = set_page_dirty(page);
2757         VM_BUG_ON_PAGE(PageAnon(page), page);
2758         /*
2759          * Take a local copy of the address_space - page.mapping may be zeroed
2760          * by truncate after unlock_page().   The address_space itself remains
2761          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2762          * release semantics to prevent the compiler from undoing this copying.
2763          */
2764         mapping = page_rmapping(page);
2765         unlock_page(page);
2766
2767         if (!page_mkwrite)
2768                 file_update_time(vma->vm_file);
2769
2770         /*
2771          * Throttle page dirtying rate down to writeback speed.
2772          *
2773          * mapping may be NULL here because some device drivers do not
2774          * set page.mapping but still dirty their pages
2775          *
2776          * Drop the mmap_lock before waiting on IO, if we can. The file
2777          * is pinning the mapping, as per above.
2778          */
2779         if ((dirtied || page_mkwrite) && mapping) {
2780                 struct file *fpin;
2781
2782                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2783                 balance_dirty_pages_ratelimited(mapping);
2784                 if (fpin) {
2785                         fput(fpin);
2786                         return VM_FAULT_RETRY;
2787                 }
2788         }
2789
2790         return 0;
2791 }
2792
2793 /*
2794  * Handle write page faults for pages that can be reused in the current vma
2795  *
2796  * This can happen either due to the mapping being with the VM_SHARED flag,
2797  * or due to us being the last reference standing to the page. In either
2798  * case, all we need to do here is to mark the page as writable and update
2799  * any related book-keeping.
2800  */
2801 static inline void wp_page_reuse(struct vm_fault *vmf)
2802         __releases(vmf->ptl)
2803 {
2804         struct vm_area_struct *vma = vmf->vma;
2805         struct page *page = vmf->page;
2806         pte_t entry;
2807         /*
2808          * Clear the pages cpupid information as the existing
2809          * information potentially belongs to a now completely
2810          * unrelated process.
2811          */
2812         if (page)
2813                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814
2815         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816         entry = pte_mkyoung(vmf->orig_pte);
2817         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819                 update_mmu_cache(vma, vmf->address, vmf->pte);
2820         pte_unmap_unlock(vmf->pte, vmf->ptl);
2821         count_vm_event(PGREUSE);
2822 }
2823
2824 /*
2825  * Handle the case of a page which we actually need to copy to a new page.
2826  *
2827  * Called with mmap_lock locked and the old page referenced, but
2828  * without the ptl held.
2829  *
2830  * High level logic flow:
2831  *
2832  * - Allocate a page, copy the content of the old page to the new one.
2833  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834  * - Take the PTL. If the pte changed, bail out and release the allocated page
2835  * - If the pte is still the way we remember it, update the page table and all
2836  *   relevant references. This includes dropping the reference the page-table
2837  *   held to the old page, as well as updating the rmap.
2838  * - In any case, unlock the PTL and drop the reference we took to the old page.
2839  */
2840 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2841 {
2842         struct vm_area_struct *vma = vmf->vma;
2843         struct mm_struct *mm = vma->vm_mm;
2844         struct page *old_page = vmf->page;
2845         struct page *new_page = NULL;
2846         pte_t entry;
2847         int page_copied = 0;
2848         struct mmu_notifier_range range;
2849
2850         if (unlikely(anon_vma_prepare(vma)))
2851                 goto oom;
2852
2853         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2854                 new_page = alloc_zeroed_user_highpage_movable(vma,
2855                                                               vmf->address);
2856                 if (!new_page)
2857                         goto oom;
2858         } else {
2859                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2860                                 vmf->address);
2861                 if (!new_page)
2862                         goto oom;
2863
2864                 if (!cow_user_page(new_page, old_page, vmf)) {
2865                         /*
2866                          * COW failed, if the fault was solved by other,
2867                          * it's fine. If not, userspace would re-fault on
2868                          * the same address and we will handle the fault
2869                          * from the second attempt.
2870                          */
2871                         put_page(new_page);
2872                         if (old_page)
2873                                 put_page(old_page);
2874                         return 0;
2875                 }
2876         }
2877
2878         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2879                 goto oom_free_new;
2880         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2881
2882         __SetPageUptodate(new_page);
2883
2884         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2885                                 vmf->address & PAGE_MASK,
2886                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2887         mmu_notifier_invalidate_range_start(&range);
2888
2889         /*
2890          * Re-check the pte - we dropped the lock
2891          */
2892         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2893         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2894                 if (old_page) {
2895                         if (!PageAnon(old_page)) {
2896                                 dec_mm_counter_fast(mm,
2897                                                 mm_counter_file(old_page));
2898                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2899                         }
2900                 } else {
2901                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2902                 }
2903                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2904                 entry = mk_pte(new_page, vma->vm_page_prot);
2905                 entry = pte_sw_mkyoung(entry);
2906                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2907                 /*
2908                  * Clear the pte entry and flush it first, before updating the
2909                  * pte with the new entry. This will avoid a race condition
2910                  * seen in the presence of one thread doing SMC and another
2911                  * thread doing COW.
2912                  */
2913                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2914                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2915                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2916                 /*
2917                  * We call the notify macro here because, when using secondary
2918                  * mmu page tables (such as kvm shadow page tables), we want the
2919                  * new page to be mapped directly into the secondary page table.
2920                  */
2921                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2922                 update_mmu_cache(vma, vmf->address, vmf->pte);
2923                 if (old_page) {
2924                         /*
2925                          * Only after switching the pte to the new page may
2926                          * we remove the mapcount here. Otherwise another
2927                          * process may come and find the rmap count decremented
2928                          * before the pte is switched to the new page, and
2929                          * "reuse" the old page writing into it while our pte
2930                          * here still points into it and can be read by other
2931                          * threads.
2932                          *
2933                          * The critical issue is to order this
2934                          * page_remove_rmap with the ptp_clear_flush above.
2935                          * Those stores are ordered by (if nothing else,)
2936                          * the barrier present in the atomic_add_negative
2937                          * in page_remove_rmap.
2938                          *
2939                          * Then the TLB flush in ptep_clear_flush ensures that
2940                          * no process can access the old page before the
2941                          * decremented mapcount is visible. And the old page
2942                          * cannot be reused until after the decremented
2943                          * mapcount is visible. So transitively, TLBs to
2944                          * old page will be flushed before it can be reused.
2945                          */
2946                         page_remove_rmap(old_page, false);
2947                 }
2948
2949                 /* Free the old page.. */
2950                 new_page = old_page;
2951                 page_copied = 1;
2952         } else {
2953                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2954         }
2955
2956         if (new_page)
2957                 put_page(new_page);
2958
2959         pte_unmap_unlock(vmf->pte, vmf->ptl);
2960         /*
2961          * No need to double call mmu_notifier->invalidate_range() callback as
2962          * the above ptep_clear_flush_notify() did already call it.
2963          */
2964         mmu_notifier_invalidate_range_only_end(&range);
2965         if (old_page) {
2966                 /*
2967                  * Don't let another task, with possibly unlocked vma,
2968                  * keep the mlocked page.
2969                  */
2970                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2971                         lock_page(old_page);    /* LRU manipulation */
2972                         if (PageMlocked(old_page))
2973                                 munlock_vma_page(old_page);
2974                         unlock_page(old_page);
2975                 }
2976                 put_page(old_page);
2977         }
2978         return page_copied ? VM_FAULT_WRITE : 0;
2979 oom_free_new:
2980         put_page(new_page);
2981 oom:
2982         if (old_page)
2983                 put_page(old_page);
2984         return VM_FAULT_OOM;
2985 }
2986
2987 /**
2988  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2989  *                        writeable once the page is prepared
2990  *
2991  * @vmf: structure describing the fault
2992  *
2993  * This function handles all that is needed to finish a write page fault in a
2994  * shared mapping due to PTE being read-only once the mapped page is prepared.
2995  * It handles locking of PTE and modifying it.
2996  *
2997  * The function expects the page to be locked or other protection against
2998  * concurrent faults / writeback (such as DAX radix tree locks).
2999  *
3000  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3001  * we acquired PTE lock.
3002  */
3003 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3004 {
3005         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3006         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3007                                        &vmf->ptl);
3008         /*
3009          * We might have raced with another page fault while we released the
3010          * pte_offset_map_lock.
3011          */
3012         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3013                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3014                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3015                 return VM_FAULT_NOPAGE;
3016         }
3017         wp_page_reuse(vmf);
3018         return 0;
3019 }
3020
3021 /*
3022  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3023  * mapping
3024  */
3025 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3026 {
3027         struct vm_area_struct *vma = vmf->vma;
3028
3029         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3030                 vm_fault_t ret;
3031
3032                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3033                 vmf->flags |= FAULT_FLAG_MKWRITE;
3034                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3035                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3036                         return ret;
3037                 return finish_mkwrite_fault(vmf);
3038         }
3039         wp_page_reuse(vmf);
3040         return VM_FAULT_WRITE;
3041 }
3042
3043 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3044         __releases(vmf->ptl)
3045 {
3046         struct vm_area_struct *vma = vmf->vma;
3047         vm_fault_t ret = VM_FAULT_WRITE;
3048
3049         get_page(vmf->page);
3050
3051         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3052                 vm_fault_t tmp;
3053
3054                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3055                 tmp = do_page_mkwrite(vmf);
3056                 if (unlikely(!tmp || (tmp &
3057                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3058                         put_page(vmf->page);
3059                         return tmp;
3060                 }
3061                 tmp = finish_mkwrite_fault(vmf);
3062                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3063                         unlock_page(vmf->page);
3064                         put_page(vmf->page);
3065                         return tmp;
3066                 }
3067         } else {
3068                 wp_page_reuse(vmf);
3069                 lock_page(vmf->page);
3070         }
3071         ret |= fault_dirty_shared_page(vmf);
3072         put_page(vmf->page);
3073
3074         return ret;
3075 }
3076
3077 /*
3078  * This routine handles present pages, when users try to write
3079  * to a shared page. It is done by copying the page to a new address
3080  * and decrementing the shared-page counter for the old page.
3081  *
3082  * Note that this routine assumes that the protection checks have been
3083  * done by the caller (the low-level page fault routine in most cases).
3084  * Thus we can safely just mark it writable once we've done any necessary
3085  * COW.
3086  *
3087  * We also mark the page dirty at this point even though the page will
3088  * change only once the write actually happens. This avoids a few races,
3089  * and potentially makes it more efficient.
3090  *
3091  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3092  * but allow concurrent faults), with pte both mapped and locked.
3093  * We return with mmap_lock still held, but pte unmapped and unlocked.
3094  */
3095 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3096         __releases(vmf->ptl)
3097 {
3098         struct vm_area_struct *vma = vmf->vma;
3099
3100         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3101                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3102                 return handle_userfault(vmf, VM_UFFD_WP);
3103         }
3104
3105         /*
3106          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3107          * is flushed in this case before copying.
3108          */
3109         if (unlikely(userfaultfd_wp(vmf->vma) &&
3110                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3111                 flush_tlb_page(vmf->vma, vmf->address);
3112
3113         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3114         if (!vmf->page) {
3115                 /*
3116                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3117                  * VM_PFNMAP VMA.
3118                  *
3119                  * We should not cow pages in a shared writeable mapping.
3120                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3121                  */
3122                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3123                                      (VM_WRITE|VM_SHARED))
3124                         return wp_pfn_shared(vmf);
3125
3126                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3127                 return wp_page_copy(vmf);
3128         }
3129
3130         /*
3131          * Take out anonymous pages first, anonymous shared vmas are
3132          * not dirty accountable.
3133          */
3134         if (PageAnon(vmf->page)) {
3135                 struct page *page = vmf->page;
3136
3137                 /* PageKsm() doesn't necessarily raise the page refcount */
3138                 if (PageKsm(page) || page_count(page) != 1)
3139                         goto copy;
3140                 if (!trylock_page(page))
3141                         goto copy;
3142                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3143                         unlock_page(page);
3144                         goto copy;
3145                 }
3146                 /*
3147                  * Ok, we've got the only map reference, and the only
3148                  * page count reference, and the page is locked,
3149                  * it's dark out, and we're wearing sunglasses. Hit it.
3150                  */
3151                 unlock_page(page);
3152                 wp_page_reuse(vmf);
3153                 return VM_FAULT_WRITE;
3154         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3155                                         (VM_WRITE|VM_SHARED))) {
3156                 return wp_page_shared(vmf);
3157         }
3158 copy:
3159         /*
3160          * Ok, we need to copy. Oh, well..
3161          */
3162         get_page(vmf->page);
3163
3164         pte_unmap_unlock(vmf->pte, vmf->ptl);
3165         return wp_page_copy(vmf);
3166 }
3167
3168 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3169                 unsigned long start_addr, unsigned long end_addr,
3170                 struct zap_details *details)
3171 {
3172         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3173 }
3174
3175 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3176                                             struct zap_details *details)
3177 {
3178         struct vm_area_struct *vma;
3179         pgoff_t vba, vea, zba, zea;
3180
3181         vma_interval_tree_foreach(vma, root,
3182                         details->first_index, details->last_index) {
3183
3184                 vba = vma->vm_pgoff;
3185                 vea = vba + vma_pages(vma) - 1;
3186                 zba = details->first_index;
3187                 if (zba < vba)
3188                         zba = vba;
3189                 zea = details->last_index;
3190                 if (zea > vea)
3191                         zea = vea;
3192
3193                 unmap_mapping_range_vma(vma,
3194                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3195                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3196                                 details);
3197         }
3198 }
3199
3200 /**
3201  * unmap_mapping_page() - Unmap single page from processes.
3202  * @page: The locked page to be unmapped.
3203  *
3204  * Unmap this page from any userspace process which still has it mmaped.
3205  * Typically, for efficiency, the range of nearby pages has already been
3206  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3207  * truncation or invalidation holds the lock on a page, it may find that
3208  * the page has been remapped again: and then uses unmap_mapping_page()
3209  * to unmap it finally.
3210  */
3211 void unmap_mapping_page(struct page *page)
3212 {
3213         struct address_space *mapping = page->mapping;
3214         struct zap_details details = { };
3215
3216         VM_BUG_ON(!PageLocked(page));
3217         VM_BUG_ON(PageTail(page));
3218
3219         details.check_mapping = mapping;
3220         details.first_index = page->index;
3221         details.last_index = page->index + thp_nr_pages(page) - 1;
3222         details.single_page = page;
3223
3224         i_mmap_lock_write(mapping);
3225         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3226                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3227         i_mmap_unlock_write(mapping);
3228 }
3229
3230 /**
3231  * unmap_mapping_pages() - Unmap pages from processes.
3232  * @mapping: The address space containing pages to be unmapped.
3233  * @start: Index of first page to be unmapped.
3234  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3235  * @even_cows: Whether to unmap even private COWed pages.
3236  *
3237  * Unmap the pages in this address space from any userspace process which
3238  * has them mmaped.  Generally, you want to remove COWed pages as well when
3239  * a file is being truncated, but not when invalidating pages from the page
3240  * cache.
3241  */
3242 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3243                 pgoff_t nr, bool even_cows)
3244 {
3245         struct zap_details details = { };
3246
3247         details.check_mapping = even_cows ? NULL : mapping;
3248         details.first_index = start;
3249         details.last_index = start + nr - 1;
3250         if (details.last_index < details.first_index)
3251                 details.last_index = ULONG_MAX;
3252
3253         i_mmap_lock_write(mapping);
3254         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3255                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3256         i_mmap_unlock_write(mapping);
3257 }
3258
3259 /**
3260  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3261  * address_space corresponding to the specified byte range in the underlying
3262  * file.
3263  *
3264  * @mapping: the address space containing mmaps to be unmapped.
3265  * @holebegin: byte in first page to unmap, relative to the start of
3266  * the underlying file.  This will be rounded down to a PAGE_SIZE
3267  * boundary.  Note that this is different from truncate_pagecache(), which
3268  * must keep the partial page.  In contrast, we must get rid of
3269  * partial pages.
3270  * @holelen: size of prospective hole in bytes.  This will be rounded
3271  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3272  * end of the file.
3273  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3274  * but 0 when invalidating pagecache, don't throw away private data.
3275  */
3276 void unmap_mapping_range(struct address_space *mapping,
3277                 loff_t const holebegin, loff_t const holelen, int even_cows)
3278 {
3279         pgoff_t hba = holebegin >> PAGE_SHIFT;
3280         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3281
3282         /* Check for overflow. */
3283         if (sizeof(holelen) > sizeof(hlen)) {
3284                 long long holeend =
3285                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3286                 if (holeend & ~(long long)ULONG_MAX)
3287                         hlen = ULONG_MAX - hba + 1;
3288         }
3289
3290         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3291 }
3292 EXPORT_SYMBOL(unmap_mapping_range);
3293
3294 /*
3295  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3296  * but allow concurrent faults), and pte mapped but not yet locked.
3297  * We return with pte unmapped and unlocked.
3298  *
3299  * We return with the mmap_lock locked or unlocked in the same cases
3300  * as does filemap_fault().
3301  */
3302 vm_fault_t do_swap_page(struct vm_fault *vmf)
3303 {
3304         struct vm_area_struct *vma = vmf->vma;
3305         struct page *page = NULL, *swapcache;
3306         swp_entry_t entry;
3307         pte_t pte;
3308         int locked;
3309         int exclusive = 0;
3310         vm_fault_t ret = 0;
3311         void *shadow = NULL;
3312
3313         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3314                 goto out;
3315
3316         entry = pte_to_swp_entry(vmf->orig_pte);
3317         if (unlikely(non_swap_entry(entry))) {
3318                 if (is_migration_entry(entry)) {
3319                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3320                                              vmf->address);
3321                 } else if (is_device_private_entry(entry)) {
3322                         vmf->page = device_private_entry_to_page(entry);
3323                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3324                 } else if (is_hwpoison_entry(entry)) {
3325                         ret = VM_FAULT_HWPOISON;
3326                 } else {
3327                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3328                         ret = VM_FAULT_SIGBUS;
3329                 }
3330                 goto out;
3331         }
3332
3333
3334         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3335         page = lookup_swap_cache(entry, vma, vmf->address);
3336         swapcache = page;
3337
3338         if (!page) {
3339                 struct swap_info_struct *si = swp_swap_info(entry);
3340
3341                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3342                     __swap_count(entry) == 1) {
3343                         /* skip swapcache */
3344                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3345                                                         vmf->address);
3346                         if (page) {
3347                                 int err;
3348
3349                                 __SetPageLocked(page);
3350                                 __SetPageSwapBacked(page);
3351                                 set_page_private(page, entry.val);
3352
3353                                 /* Tell memcg to use swap ownership records */
3354                                 SetPageSwapCache(page);
3355                                 err = mem_cgroup_charge(page, vma->vm_mm,
3356                                                         GFP_KERNEL);
3357                                 ClearPageSwapCache(page);
3358                                 if (err) {
3359                                         ret = VM_FAULT_OOM;
3360                                         goto out_page;
3361                                 }
3362
3363                                 shadow = get_shadow_from_swap_cache(entry);
3364                                 if (shadow)
3365                                         workingset_refault(page, shadow);
3366
3367                                 lru_cache_add(page);
3368                                 swap_readpage(page, true);
3369                         }
3370                 } else {
3371                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3372                                                 vmf);
3373                         swapcache = page;
3374                 }
3375
3376                 if (!page) {
3377                         /*
3378                          * Back out if somebody else faulted in this pte
3379                          * while we released the pte lock.
3380                          */
3381                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3382                                         vmf->address, &vmf->ptl);
3383                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3384                                 ret = VM_FAULT_OOM;
3385                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3386                         goto unlock;
3387                 }
3388
3389                 /* Had to read the page from swap area: Major fault */
3390                 ret = VM_FAULT_MAJOR;
3391                 count_vm_event(PGMAJFAULT);
3392                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3393         } else if (PageHWPoison(page)) {
3394                 /*
3395                  * hwpoisoned dirty swapcache pages are kept for killing
3396                  * owner processes (which may be unknown at hwpoison time)
3397                  */
3398                 ret = VM_FAULT_HWPOISON;
3399                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3400                 goto out_release;
3401         }
3402
3403         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3404
3405         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3406         if (!locked) {
3407                 ret |= VM_FAULT_RETRY;
3408                 goto out_release;
3409         }
3410
3411         /*
3412          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3413          * release the swapcache from under us.  The page pin, and pte_same
3414          * test below, are not enough to exclude that.  Even if it is still
3415          * swapcache, we need to check that the page's swap has not changed.
3416          */
3417         if (unlikely((!PageSwapCache(page) ||
3418                         page_private(page) != entry.val)) && swapcache)
3419                 goto out_page;
3420
3421         page = ksm_might_need_to_copy(page, vma, vmf->address);
3422         if (unlikely(!page)) {
3423                 ret = VM_FAULT_OOM;
3424                 page = swapcache;
3425                 goto out_page;
3426         }
3427
3428         cgroup_throttle_swaprate(page, GFP_KERNEL);
3429
3430         /*
3431          * Back out if somebody else already faulted in this pte.
3432          */
3433         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3434                         &vmf->ptl);
3435         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3436                 goto out_nomap;
3437
3438         if (unlikely(!PageUptodate(page))) {
3439                 ret = VM_FAULT_SIGBUS;
3440                 goto out_nomap;
3441         }
3442
3443         /*
3444          * The page isn't present yet, go ahead with the fault.
3445          *
3446          * Be careful about the sequence of operations here.
3447          * To get its accounting right, reuse_swap_page() must be called
3448          * while the page is counted on swap but not yet in mapcount i.e.
3449          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3450          * must be called after the swap_free(), or it will never succeed.
3451          */
3452
3453         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3454         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3455         pte = mk_pte(page, vma->vm_page_prot);
3456         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3457                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3458                 vmf->flags &= ~FAULT_FLAG_WRITE;
3459                 ret |= VM_FAULT_WRITE;
3460                 exclusive = RMAP_EXCLUSIVE;
3461         }
3462         flush_icache_page(vma, page);
3463         if (pte_swp_soft_dirty(vmf->orig_pte))
3464                 pte = pte_mksoft_dirty(pte);
3465         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3466                 pte = pte_mkuffd_wp(pte);
3467                 pte = pte_wrprotect(pte);
3468         }
3469         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3470         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3471         vmf->orig_pte = pte;
3472
3473         /* ksm created a completely new copy */
3474         if (unlikely(page != swapcache && swapcache)) {
3475                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3476                 lru_cache_add_inactive_or_unevictable(page, vma);
3477         } else {
3478                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3479         }
3480
3481         swap_free(entry);
3482         if (mem_cgroup_swap_full(page) ||
3483             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3484                 try_to_free_swap(page);
3485         unlock_page(page);
3486         if (page != swapcache && swapcache) {
3487                 /*
3488                  * Hold the lock to avoid the swap entry to be reused
3489                  * until we take the PT lock for the pte_same() check
3490                  * (to avoid false positives from pte_same). For
3491                  * further safety release the lock after the swap_free
3492                  * so that the swap count won't change under a
3493                  * parallel locked swapcache.
3494                  */
3495                 unlock_page(swapcache);
3496                 put_page(swapcache);
3497         }
3498
3499         if (vmf->flags & FAULT_FLAG_WRITE) {
3500                 ret |= do_wp_page(vmf);
3501                 if (ret & VM_FAULT_ERROR)
3502                         ret &= VM_FAULT_ERROR;
3503                 goto out;
3504         }
3505
3506         /* No need to invalidate - it was non-present before */
3507         update_mmu_cache(vma, vmf->address, vmf->pte);
3508 unlock:
3509         pte_unmap_unlock(vmf->pte, vmf->ptl);
3510 out:
3511         return ret;
3512 out_nomap:
3513         pte_unmap_unlock(vmf->pte, vmf->ptl);
3514 out_page:
3515         unlock_page(page);
3516 out_release:
3517         put_page(page);
3518         if (page != swapcache && swapcache) {
3519                 unlock_page(swapcache);
3520                 put_page(swapcache);
3521         }
3522         return ret;
3523 }
3524
3525 /*
3526  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3527  * but allow concurrent faults), and pte mapped but not yet locked.
3528  * We return with mmap_lock still held, but pte unmapped and unlocked.
3529  */
3530 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3531 {
3532         struct vm_area_struct *vma = vmf->vma;
3533         struct page *page;
3534         vm_fault_t ret = 0;
3535         pte_t entry;
3536
3537         /* File mapping without ->vm_ops ? */
3538         if (vma->vm_flags & VM_SHARED)
3539                 return VM_FAULT_SIGBUS;
3540
3541         /*
3542          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3543          * pte_offset_map() on pmds where a huge pmd might be created
3544          * from a different thread.
3545          *
3546          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3547          * parallel threads are excluded by other means.
3548          *
3549          * Here we only have mmap_read_lock(mm).
3550          */
3551         if (pte_alloc(vma->vm_mm, vmf->pmd))
3552                 return VM_FAULT_OOM;
3553
3554         /* See the comment in pte_alloc_one_map() */
3555         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3556                 return 0;
3557
3558         /* Use the zero-page for reads */
3559         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3560                         !mm_forbids_zeropage(vma->vm_mm)) {
3561                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3562                                                 vma->vm_page_prot));
3563                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3564                                 vmf->address, &vmf->ptl);
3565                 if (!pte_none(*vmf->pte)) {
3566                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3567                         goto unlock;
3568                 }
3569                 ret = check_stable_address_space(vma->vm_mm);
3570                 if (ret)
3571                         goto unlock;
3572                 /* Deliver the page fault to userland, check inside PT lock */
3573                 if (userfaultfd_missing(vma)) {
3574                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3575                         return handle_userfault(vmf, VM_UFFD_MISSING);
3576                 }
3577                 goto setpte;
3578         }
3579
3580         /* Allocate our own private page. */
3581         if (unlikely(anon_vma_prepare(vma)))
3582                 goto oom;
3583         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3584         if (!page)
3585                 goto oom;
3586
3587         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3588                 goto oom_free_page;
3589         cgroup_throttle_swaprate(page, GFP_KERNEL);
3590
3591         /*
3592          * The memory barrier inside __SetPageUptodate makes sure that
3593          * preceding stores to the page contents become visible before
3594          * the set_pte_at() write.
3595          */
3596         __SetPageUptodate(page);
3597
3598         entry = mk_pte(page, vma->vm_page_prot);
3599         entry = pte_sw_mkyoung(entry);
3600         if (vma->vm_flags & VM_WRITE)
3601                 entry = pte_mkwrite(pte_mkdirty(entry));
3602
3603         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3604                         &vmf->ptl);
3605         if (!pte_none(*vmf->pte)) {
3606                 update_mmu_cache(vma, vmf->address, vmf->pte);
3607                 goto release;
3608         }
3609
3610         ret = check_stable_address_space(vma->vm_mm);
3611         if (ret)
3612                 goto release;
3613
3614         /* Deliver the page fault to userland, check inside PT lock */
3615         if (userfaultfd_missing(vma)) {
3616                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3617                 put_page(page);
3618                 return handle_userfault(vmf, VM_UFFD_MISSING);
3619         }
3620
3621         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3622         page_add_new_anon_rmap(page, vma, vmf->address, false);
3623         lru_cache_add_inactive_or_unevictable(page, vma);
3624 setpte:
3625         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3626
3627         /* No need to invalidate - it was non-present before */
3628         update_mmu_cache(vma, vmf->address, vmf->pte);
3629 unlock:
3630         pte_unmap_unlock(vmf->pte, vmf->ptl);
3631         return ret;
3632 release:
3633         put_page(page);
3634         goto unlock;
3635 oom_free_page:
3636         put_page(page);
3637 oom:
3638         return VM_FAULT_OOM;
3639 }
3640
3641 /*
3642  * The mmap_lock must have been held on entry, and may have been
3643  * released depending on flags and vma->vm_ops->fault() return value.
3644  * See filemap_fault() and __lock_page_retry().
3645  */
3646 static vm_fault_t __do_fault(struct vm_fault *vmf)
3647 {
3648         struct vm_area_struct *vma = vmf->vma;
3649         vm_fault_t ret;
3650
3651         /*
3652          * Preallocate pte before we take page_lock because this might lead to
3653          * deadlocks for memcg reclaim which waits for pages under writeback:
3654          *                              lock_page(A)
3655          *                              SetPageWriteback(A)
3656          *                              unlock_page(A)
3657          * lock_page(B)
3658          *                              lock_page(B)
3659          * pte_alloc_one
3660          *   shrink_page_list
3661          *     wait_on_page_writeback(A)
3662          *                              SetPageWriteback(B)
3663          *                              unlock_page(B)
3664          *                              # flush A, B to clear the writeback
3665          */
3666         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3667                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3668                 if (!vmf->prealloc_pte)
3669                         return VM_FAULT_OOM;
3670                 smp_wmb(); /* See comment in __pte_alloc() */
3671         }
3672
3673         ret = vma->vm_ops->fault(vmf);
3674         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3675                             VM_FAULT_DONE_COW)))
3676                 return ret;
3677
3678         if (unlikely(PageHWPoison(vmf->page))) {
3679                 if (ret & VM_FAULT_LOCKED)
3680                         unlock_page(vmf->page);
3681                 put_page(vmf->page);
3682                 vmf->page = NULL;
3683                 return VM_FAULT_HWPOISON;
3684         }
3685
3686         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3687                 lock_page(vmf->page);
3688         else
3689                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3690
3691         return ret;
3692 }
3693
3694 /*
3695  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3696  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3697  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3698  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3699  */
3700 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3701 {
3702         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3703 }
3704
3705 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3706 {
3707         struct vm_area_struct *vma = vmf->vma;
3708
3709         if (!pmd_none(*vmf->pmd))
3710                 goto map_pte;
3711         if (vmf->prealloc_pte) {
3712                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3713                 if (unlikely(!pmd_none(*vmf->pmd))) {
3714                         spin_unlock(vmf->ptl);
3715                         goto map_pte;
3716                 }
3717
3718                 mm_inc_nr_ptes(vma->vm_mm);
3719                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3720                 spin_unlock(vmf->ptl);
3721                 vmf->prealloc_pte = NULL;
3722         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3723                 return VM_FAULT_OOM;
3724         }
3725 map_pte:
3726         /*
3727          * If a huge pmd materialized under us just retry later.  Use
3728          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3729          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3730          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3731          * running immediately after a huge pmd fault in a different thread of
3732          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3733          * All we have to ensure is that it is a regular pmd that we can walk
3734          * with pte_offset_map() and we can do that through an atomic read in
3735          * C, which is what pmd_trans_unstable() provides.
3736          */
3737         if (pmd_devmap_trans_unstable(vmf->pmd))
3738                 return VM_FAULT_NOPAGE;
3739
3740         /*
3741          * At this point we know that our vmf->pmd points to a page of ptes
3742          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3743          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3744          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3745          * be valid and we will re-check to make sure the vmf->pte isn't
3746          * pte_none() under vmf->ptl protection when we return to
3747          * alloc_set_pte().
3748          */
3749         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3750                         &vmf->ptl);
3751         return 0;
3752 }
3753
3754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3755 static void deposit_prealloc_pte(struct vm_fault *vmf)
3756 {
3757         struct vm_area_struct *vma = vmf->vma;
3758
3759         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3760         /*
3761          * We are going to consume the prealloc table,
3762          * count that as nr_ptes.
3763          */
3764         mm_inc_nr_ptes(vma->vm_mm);
3765         vmf->prealloc_pte = NULL;
3766 }
3767
3768 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3769 {
3770         struct vm_area_struct *vma = vmf->vma;
3771         bool write = vmf->flags & FAULT_FLAG_WRITE;
3772         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3773         pmd_t entry;
3774         int i;
3775         vm_fault_t ret = VM_FAULT_FALLBACK;
3776
3777         if (!transhuge_vma_suitable(vma, haddr))
3778                 return ret;
3779
3780         page = compound_head(page);
3781         if (compound_order(page) != HPAGE_PMD_ORDER)
3782                 return ret;
3783
3784         /*
3785          * Archs like ppc64 need additonal space to store information
3786          * related to pte entry. Use the preallocated table for that.
3787          */
3788         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3789                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3790                 if (!vmf->prealloc_pte)
3791                         return VM_FAULT_OOM;
3792                 smp_wmb(); /* See comment in __pte_alloc() */
3793         }
3794
3795         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3796         if (unlikely(!pmd_none(*vmf->pmd)))
3797                 goto out;
3798
3799         for (i = 0; i < HPAGE_PMD_NR; i++)
3800                 flush_icache_page(vma, page + i);
3801
3802         entry = mk_huge_pmd(page, vma->vm_page_prot);
3803         if (write)
3804                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3805
3806         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3807         page_add_file_rmap(page, true);
3808         /*
3809          * deposit and withdraw with pmd lock held
3810          */
3811         if (arch_needs_pgtable_deposit())
3812                 deposit_prealloc_pte(vmf);
3813
3814         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3815
3816         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3817
3818         /* fault is handled */
3819         ret = 0;
3820         count_vm_event(THP_FILE_MAPPED);
3821 out:
3822         spin_unlock(vmf->ptl);
3823         return ret;
3824 }
3825 #else
3826 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3827 {
3828         BUILD_BUG();
3829         return 0;
3830 }
3831 #endif
3832
3833 /**
3834  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3835  * mapping. If needed, the function allocates page table or use pre-allocated.
3836  *
3837  * @vmf: fault environment
3838  * @page: page to map
3839  *
3840  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3841  * return.
3842  *
3843  * Target users are page handler itself and implementations of
3844  * vm_ops->map_pages.
3845  *
3846  * Return: %0 on success, %VM_FAULT_ code in case of error.
3847  */
3848 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3849 {
3850         struct vm_area_struct *vma = vmf->vma;
3851         bool write = vmf->flags & FAULT_FLAG_WRITE;
3852         pte_t entry;
3853         vm_fault_t ret;
3854
3855         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3856                 ret = do_set_pmd(vmf, page);
3857                 if (ret != VM_FAULT_FALLBACK)
3858                         return ret;
3859         }
3860
3861         if (!vmf->pte) {
3862                 ret = pte_alloc_one_map(vmf);
3863                 if (ret)
3864                         return ret;
3865         }
3866
3867         /* Re-check under ptl */
3868         if (unlikely(!pte_none(*vmf->pte))) {
3869                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3870                 return VM_FAULT_NOPAGE;
3871         }
3872
3873         flush_icache_page(vma, page);
3874         entry = mk_pte(page, vma->vm_page_prot);
3875         entry = pte_sw_mkyoung(entry);
3876         if (write)
3877                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3878         /* copy-on-write page */
3879         if (write && !(vma->vm_flags & VM_SHARED)) {
3880                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3881                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3882                 lru_cache_add_inactive_or_unevictable(page, vma);
3883         } else {
3884                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3885                 page_add_file_rmap(page, false);
3886         }
3887         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3888
3889         /* no need to invalidate: a not-present page won't be cached */
3890         update_mmu_cache(vma, vmf->address, vmf->pte);
3891
3892         return 0;
3893 }
3894
3895
3896 /**
3897  * finish_fault - finish page fault once we have prepared the page to fault
3898  *
3899  * @vmf: structure describing the fault
3900  *
3901  * This function handles all that is needed to finish a page fault once the
3902  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3903  * given page, adds reverse page mapping, handles memcg charges and LRU
3904  * addition.
3905  *
3906  * The function expects the page to be locked and on success it consumes a
3907  * reference of a page being mapped (for the PTE which maps it).
3908  *
3909  * Return: %0 on success, %VM_FAULT_ code in case of error.
3910  */
3911 vm_fault_t finish_fault(struct vm_fault *vmf)
3912 {
3913         struct page *page;
3914         vm_fault_t ret = 0;
3915
3916         /* Did we COW the page? */
3917         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3918             !(vmf->vma->vm_flags & VM_SHARED))
3919                 page = vmf->cow_page;
3920         else
3921                 page = vmf->page;
3922
3923         /*
3924          * check even for read faults because we might have lost our CoWed
3925          * page
3926          */
3927         if (!(vmf->vma->vm_flags & VM_SHARED))
3928                 ret = check_stable_address_space(vmf->vma->vm_mm);
3929         if (!ret)
3930                 ret = alloc_set_pte(vmf, page);
3931         if (vmf->pte)
3932                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3933         return ret;
3934 }
3935
3936 static unsigned long fault_around_bytes __read_mostly =
3937         rounddown_pow_of_two(65536);
3938
3939 #ifdef CONFIG_DEBUG_FS
3940 static int fault_around_bytes_get(void *data, u64 *val)
3941 {
3942         *val = fault_around_bytes;
3943         return 0;
3944 }
3945
3946 /*
3947  * fault_around_bytes must be rounded down to the nearest page order as it's
3948  * what do_fault_around() expects to see.
3949  */
3950 static int fault_around_bytes_set(void *data, u64 val)
3951 {
3952         if (val / PAGE_SIZE > PTRS_PER_PTE)
3953                 return -EINVAL;
3954         if (val > PAGE_SIZE)
3955                 fault_around_bytes = rounddown_pow_of_two(val);
3956         else
3957                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3958         return 0;
3959 }
3960 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3961                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3962
3963 static int __init fault_around_debugfs(void)
3964 {
3965         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3966                                    &fault_around_bytes_fops);
3967         return 0;
3968 }
3969 late_initcall(fault_around_debugfs);
3970 #endif
3971
3972 /*
3973  * do_fault_around() tries to map few pages around the fault address. The hope
3974  * is that the pages will be needed soon and this will lower the number of
3975  * faults to handle.
3976  *
3977  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3978  * not ready to be mapped: not up-to-date, locked, etc.
3979  *
3980  * This function is called with the page table lock taken. In the split ptlock
3981  * case the page table lock only protects only those entries which belong to
3982  * the page table corresponding to the fault address.
3983  *
3984  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3985  * only once.
3986  *
3987  * fault_around_bytes defines how many bytes we'll try to map.
3988  * do_fault_around() expects it to be set to a power of two less than or equal
3989  * to PTRS_PER_PTE.
3990  *
3991  * The virtual address of the area that we map is naturally aligned to
3992  * fault_around_bytes rounded down to the machine page size
3993  * (and therefore to page order).  This way it's easier to guarantee
3994  * that we don't cross page table boundaries.
3995  */
3996 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3997 {
3998         unsigned long address = vmf->address, nr_pages, mask;
3999         pgoff_t start_pgoff = vmf->pgoff;
4000         pgoff_t end_pgoff;
4001         int off;
4002         vm_fault_t ret = 0;
4003
4004         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4005         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4006
4007         vmf->address = max(address & mask, vmf->vma->vm_start);
4008         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4009         start_pgoff -= off;
4010
4011         /*
4012          *  end_pgoff is either the end of the page table, the end of
4013          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4014          */
4015         end_pgoff = start_pgoff -
4016                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4017                 PTRS_PER_PTE - 1;
4018         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4019                         start_pgoff + nr_pages - 1);
4020
4021         if (pmd_none(*vmf->pmd)) {
4022                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4023                 if (!vmf->prealloc_pte)
4024                         goto out;
4025                 smp_wmb(); /* See comment in __pte_alloc() */
4026         }
4027
4028         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4029
4030         /* Huge page is mapped? Page fault is solved */
4031         if (pmd_trans_huge(*vmf->pmd)) {
4032                 ret = VM_FAULT_NOPAGE;
4033                 goto out;
4034         }
4035
4036         /* ->map_pages() haven't done anything useful. Cold page cache? */
4037         if (!vmf->pte)
4038                 goto out;
4039
4040         /* check if the page fault is solved */
4041         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4042         if (!pte_none(*vmf->pte))
4043                 ret = VM_FAULT_NOPAGE;
4044         pte_unmap_unlock(vmf->pte, vmf->ptl);
4045 out:
4046         vmf->address = address;
4047         vmf->pte = NULL;
4048         return ret;
4049 }
4050
4051 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4052 {
4053         struct vm_area_struct *vma = vmf->vma;
4054         vm_fault_t ret = 0;
4055
4056         /*
4057          * Let's call ->map_pages() first and use ->fault() as fallback
4058          * if page by the offset is not ready to be mapped (cold cache or
4059          * something).
4060          */
4061         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4062                 ret = do_fault_around(vmf);
4063                 if (ret)
4064                         return ret;
4065         }
4066
4067         ret = __do_fault(vmf);
4068         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4069                 return ret;
4070
4071         ret |= finish_fault(vmf);
4072         unlock_page(vmf->page);
4073         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4074                 put_page(vmf->page);
4075         return ret;
4076 }
4077
4078 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4079 {
4080         struct vm_area_struct *vma = vmf->vma;
4081         vm_fault_t ret;
4082
4083         if (unlikely(anon_vma_prepare(vma)))
4084                 return VM_FAULT_OOM;
4085
4086         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4087         if (!vmf->cow_page)
4088                 return VM_FAULT_OOM;
4089
4090         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4091                 put_page(vmf->cow_page);
4092                 return VM_FAULT_OOM;
4093         }
4094         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4095
4096         ret = __do_fault(vmf);
4097         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4098                 goto uncharge_out;
4099         if (ret & VM_FAULT_DONE_COW)
4100                 return ret;
4101
4102         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4103         __SetPageUptodate(vmf->cow_page);
4104
4105         ret |= finish_fault(vmf);
4106         unlock_page(vmf->page);
4107         put_page(vmf->page);
4108         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4109                 goto uncharge_out;
4110         return ret;
4111 uncharge_out:
4112         put_page(vmf->cow_page);
4113         return ret;
4114 }
4115
4116 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4117 {
4118         struct vm_area_struct *vma = vmf->vma;
4119         vm_fault_t ret, tmp;
4120
4121         ret = __do_fault(vmf);
4122         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4123                 return ret;
4124
4125         /*
4126          * Check if the backing address space wants to know that the page is
4127          * about to become writable
4128          */
4129         if (vma->vm_ops->page_mkwrite) {
4130                 unlock_page(vmf->page);
4131                 tmp = do_page_mkwrite(vmf);
4132                 if (unlikely(!tmp ||
4133                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4134                         put_page(vmf->page);
4135                         return tmp;
4136                 }
4137         }
4138
4139         ret |= finish_fault(vmf);
4140         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4141                                         VM_FAULT_RETRY))) {
4142                 unlock_page(vmf->page);
4143                 put_page(vmf->page);
4144                 return ret;
4145         }
4146
4147         ret |= fault_dirty_shared_page(vmf);
4148         return ret;
4149 }
4150
4151 /*
4152  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4153  * but allow concurrent faults).
4154  * The mmap_lock may have been released depending on flags and our
4155  * return value.  See filemap_fault() and __lock_page_or_retry().
4156  * If mmap_lock is released, vma may become invalid (for example
4157  * by other thread calling munmap()).
4158  */
4159 static vm_fault_t do_fault(struct vm_fault *vmf)
4160 {
4161         struct vm_area_struct *vma = vmf->vma;
4162         struct mm_struct *vm_mm = vma->vm_mm;
4163         vm_fault_t ret;
4164
4165         /*
4166          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4167          */
4168         if (!vma->vm_ops->fault) {
4169                 /*
4170                  * If we find a migration pmd entry or a none pmd entry, which
4171                  * should never happen, return SIGBUS
4172                  */
4173                 if (unlikely(!pmd_present(*vmf->pmd)))
4174                         ret = VM_FAULT_SIGBUS;
4175                 else {
4176                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4177                                                        vmf->pmd,
4178                                                        vmf->address,
4179                                                        &vmf->ptl);
4180                         /*
4181                          * Make sure this is not a temporary clearing of pte
4182                          * by holding ptl and checking again. A R/M/W update
4183                          * of pte involves: take ptl, clearing the pte so that
4184                          * we don't have concurrent modification by hardware
4185                          * followed by an update.
4186                          */
4187                         if (unlikely(pte_none(*vmf->pte)))
4188                                 ret = VM_FAULT_SIGBUS;
4189                         else
4190                                 ret = VM_FAULT_NOPAGE;
4191
4192                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4193                 }
4194         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4195                 ret = do_read_fault(vmf);
4196         else if (!(vma->vm_flags & VM_SHARED))
4197                 ret = do_cow_fault(vmf);
4198         else
4199                 ret = do_shared_fault(vmf);
4200
4201         /* preallocated pagetable is unused: free it */
4202         if (vmf->prealloc_pte) {
4203                 pte_free(vm_mm, vmf->prealloc_pte);
4204                 vmf->prealloc_pte = NULL;
4205         }
4206         return ret;
4207 }
4208
4209 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4210                                 unsigned long addr, int page_nid,
4211                                 int *flags)
4212 {
4213         get_page(page);
4214
4215         count_vm_numa_event(NUMA_HINT_FAULTS);
4216         if (page_nid == numa_node_id()) {
4217                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4218                 *flags |= TNF_FAULT_LOCAL;
4219         }
4220
4221         return mpol_misplaced(page, vma, addr);
4222 }
4223
4224 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4225 {
4226         struct vm_area_struct *vma = vmf->vma;
4227         struct page *page = NULL;
4228         int page_nid = NUMA_NO_NODE;
4229         int last_cpupid;
4230         int target_nid;
4231         bool migrated = false;
4232         pte_t pte, old_pte;
4233         bool was_writable = pte_savedwrite(vmf->orig_pte);
4234         int flags = 0;
4235
4236         /*
4237          * The "pte" at this point cannot be used safely without
4238          * validation through pte_unmap_same(). It's of NUMA type but
4239          * the pfn may be screwed if the read is non atomic.
4240          */
4241         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4242         spin_lock(vmf->ptl);
4243         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4244                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4245                 goto out;
4246         }
4247
4248         /*
4249          * Make it present again, Depending on how arch implementes non
4250          * accessible ptes, some can allow access by kernel mode.
4251          */
4252         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4253         pte = pte_modify(old_pte, vma->vm_page_prot);
4254         pte = pte_mkyoung(pte);
4255         if (was_writable)
4256                 pte = pte_mkwrite(pte);
4257         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4258         update_mmu_cache(vma, vmf->address, vmf->pte);
4259
4260         page = vm_normal_page(vma, vmf->address, pte);
4261         if (!page) {
4262                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4263                 return 0;
4264         }
4265
4266         /* TODO: handle PTE-mapped THP */
4267         if (PageCompound(page)) {
4268                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4269                 return 0;
4270         }
4271
4272         /*
4273          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4274          * much anyway since they can be in shared cache state. This misses
4275          * the case where a mapping is writable but the process never writes
4276          * to it but pte_write gets cleared during protection updates and
4277          * pte_dirty has unpredictable behaviour between PTE scan updates,
4278          * background writeback, dirty balancing and application behaviour.
4279          */
4280         if (!pte_write(pte))
4281                 flags |= TNF_NO_GROUP;
4282
4283         /*
4284          * Flag if the page is shared between multiple address spaces. This
4285          * is later used when determining whether to group tasks together
4286          */
4287         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4288                 flags |= TNF_SHARED;
4289
4290         last_cpupid = page_cpupid_last(page);
4291         page_nid = page_to_nid(page);
4292         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4293                         &flags);
4294         pte_unmap_unlock(vmf->pte, vmf->ptl);
4295         if (target_nid == NUMA_NO_NODE) {
4296                 put_page(page);
4297                 goto out;
4298         }
4299
4300         /* Migrate to the requested node */
4301         migrated = migrate_misplaced_page(page, vma, target_nid);
4302         if (migrated) {
4303                 page_nid = target_nid;
4304                 flags |= TNF_MIGRATED;
4305         } else
4306                 flags |= TNF_MIGRATE_FAIL;
4307
4308 out:
4309         if (page_nid != NUMA_NO_NODE)
4310                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4311         return 0;
4312 }
4313
4314 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4315 {
4316         if (vma_is_anonymous(vmf->vma))
4317                 return do_huge_pmd_anonymous_page(vmf);
4318         if (vmf->vma->vm_ops->huge_fault)
4319                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4320         return VM_FAULT_FALLBACK;
4321 }
4322
4323 /* `inline' is required to avoid gcc 4.1.2 build error */
4324 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4325 {
4326         if (vma_is_anonymous(vmf->vma)) {
4327                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4328                         return handle_userfault(vmf, VM_UFFD_WP);
4329                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4330         }
4331         if (vmf->vma->vm_ops->huge_fault) {
4332                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4333
4334                 if (!(ret & VM_FAULT_FALLBACK))
4335                         return ret;
4336         }
4337
4338         /* COW or write-notify handled on pte level: split pmd. */
4339         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4340
4341         return VM_FAULT_FALLBACK;
4342 }
4343
4344 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4345 {
4346 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4347         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4348         /* No support for anonymous transparent PUD pages yet */
4349         if (vma_is_anonymous(vmf->vma))
4350                 goto split;
4351         if (vmf->vma->vm_ops->huge_fault) {
4352                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4353
4354                 if (!(ret & VM_FAULT_FALLBACK))
4355                         return ret;
4356         }
4357 split:
4358         /* COW or write-notify not handled on PUD level: split pud.*/
4359         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4360 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4361         return VM_FAULT_FALLBACK;
4362 }
4363
4364 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4365 {
4366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4367         /* No support for anonymous transparent PUD pages yet */
4368         if (vma_is_anonymous(vmf->vma))
4369                 return VM_FAULT_FALLBACK;
4370         if (vmf->vma->vm_ops->huge_fault)
4371                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4372 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4373         return VM_FAULT_FALLBACK;
4374 }
4375
4376 /*
4377  * These routines also need to handle stuff like marking pages dirty
4378  * and/or accessed for architectures that don't do it in hardware (most
4379  * RISC architectures).  The early dirtying is also good on the i386.
4380  *
4381  * There is also a hook called "update_mmu_cache()" that architectures
4382  * with external mmu caches can use to update those (ie the Sparc or
4383  * PowerPC hashed page tables that act as extended TLBs).
4384  *
4385  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4386  * concurrent faults).
4387  *
4388  * The mmap_lock may have been released depending on flags and our return value.
4389  * See filemap_fault() and __lock_page_or_retry().
4390  */
4391 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4392 {
4393         pte_t entry;
4394
4395         if (unlikely(pmd_none(*vmf->pmd))) {
4396                 /*
4397                  * Leave __pte_alloc() until later: because vm_ops->fault may
4398                  * want to allocate huge page, and if we expose page table
4399                  * for an instant, it will be difficult to retract from
4400                  * concurrent faults and from rmap lookups.
4401                  */
4402                 vmf->pte = NULL;
4403         } else {
4404                 /* See comment in pte_alloc_one_map() */
4405                 if (pmd_devmap_trans_unstable(vmf->pmd))
4406                         return 0;
4407                 /*
4408                  * A regular pmd is established and it can't morph into a huge
4409                  * pmd from under us anymore at this point because we hold the
4410                  * mmap_lock read mode and khugepaged takes it in write mode.
4411                  * So now it's safe to run pte_offset_map().
4412                  */
4413                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4414                 vmf->orig_pte = *vmf->pte;
4415
4416                 /*
4417                  * some architectures can have larger ptes than wordsize,
4418                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4419                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4420                  * accesses.  The code below just needs a consistent view
4421                  * for the ifs and we later double check anyway with the
4422                  * ptl lock held. So here a barrier will do.
4423                  */
4424                 barrier();
4425                 if (pte_none(vmf->orig_pte)) {
4426                         pte_unmap(vmf->pte);
4427                         vmf->pte = NULL;
4428                 }
4429         }
4430
4431         if (!vmf->pte) {
4432                 if (vma_is_anonymous(vmf->vma))
4433                         return do_anonymous_page(vmf);
4434                 else
4435                         return do_fault(vmf);
4436         }
4437
4438         if (!pte_present(vmf->orig_pte))
4439                 return do_swap_page(vmf);
4440
4441         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4442                 return do_numa_page(vmf);
4443
4444         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4445         spin_lock(vmf->ptl);
4446         entry = vmf->orig_pte;
4447         if (unlikely(!pte_same(*vmf->pte, entry))) {
4448                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4449                 goto unlock;
4450         }
4451         if (vmf->flags & FAULT_FLAG_WRITE) {
4452                 if (!pte_write(entry))
4453                         return do_wp_page(vmf);
4454                 entry = pte_mkdirty(entry);
4455         }
4456         entry = pte_mkyoung(entry);
4457         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4458                                 vmf->flags & FAULT_FLAG_WRITE)) {
4459                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4460         } else {
4461                 /* Skip spurious TLB flush for retried page fault */
4462                 if (vmf->flags & FAULT_FLAG_TRIED)
4463                         goto unlock;
4464                 /*
4465                  * This is needed only for protection faults but the arch code
4466                  * is not yet telling us if this is a protection fault or not.
4467                  * This still avoids useless tlb flushes for .text page faults
4468                  * with threads.
4469                  */
4470                 if (vmf->flags & FAULT_FLAG_WRITE)
4471                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4472         }
4473 unlock:
4474         pte_unmap_unlock(vmf->pte, vmf->ptl);
4475         return 0;
4476 }
4477
4478 /*
4479  * By the time we get here, we already hold the mm semaphore
4480  *
4481  * The mmap_lock may have been released depending on flags and our
4482  * return value.  See filemap_fault() and __lock_page_or_retry().
4483  */
4484 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4485                 unsigned long address, unsigned int flags)
4486 {
4487         struct vm_fault vmf = {
4488                 .vma = vma,
4489                 .address = address & PAGE_MASK,
4490                 .flags = flags,
4491                 .pgoff = linear_page_index(vma, address),
4492                 .gfp_mask = __get_fault_gfp_mask(vma),
4493         };
4494         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4495         struct mm_struct *mm = vma->vm_mm;
4496         pgd_t *pgd;
4497         p4d_t *p4d;
4498         vm_fault_t ret;
4499
4500         pgd = pgd_offset(mm, address);
4501         p4d = p4d_alloc(mm, pgd, address);
4502         if (!p4d)
4503                 return VM_FAULT_OOM;
4504
4505         vmf.pud = pud_alloc(mm, p4d, address);
4506         if (!vmf.pud)
4507                 return VM_FAULT_OOM;
4508 retry_pud:
4509         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4510                 ret = create_huge_pud(&vmf);
4511                 if (!(ret & VM_FAULT_FALLBACK))
4512                         return ret;
4513         } else {
4514                 pud_t orig_pud = *vmf.pud;
4515
4516                 barrier();
4517                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4518
4519                         /* NUMA case for anonymous PUDs would go here */
4520
4521                         if (dirty && !pud_write(orig_pud)) {
4522                                 ret = wp_huge_pud(&vmf, orig_pud);
4523                                 if (!(ret & VM_FAULT_FALLBACK))
4524                                         return ret;
4525                         } else {
4526                                 huge_pud_set_accessed(&vmf, orig_pud);
4527                                 return 0;
4528                         }
4529                 }
4530         }
4531
4532         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4533         if (!vmf.pmd)
4534                 return VM_FAULT_OOM;
4535
4536         /* Huge pud page fault raced with pmd_alloc? */
4537         if (pud_trans_unstable(vmf.pud))
4538                 goto retry_pud;
4539
4540         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4541                 ret = create_huge_pmd(&vmf);
4542                 if (!(ret & VM_FAULT_FALLBACK))
4543                         return ret;
4544         } else {
4545                 pmd_t orig_pmd = *vmf.pmd;
4546
4547                 barrier();
4548                 if (unlikely(is_swap_pmd(orig_pmd))) {
4549                         VM_BUG_ON(thp_migration_supported() &&
4550                                           !is_pmd_migration_entry(orig_pmd));
4551                         if (is_pmd_migration_entry(orig_pmd))
4552                                 pmd_migration_entry_wait(mm, vmf.pmd);
4553                         return 0;
4554                 }
4555                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4556                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4557                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4558
4559                         if (dirty && !pmd_write(orig_pmd)) {
4560                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4561                                 if (!(ret & VM_FAULT_FALLBACK))
4562                                         return ret;
4563                         } else {
4564                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4565                                 return 0;
4566                         }
4567                 }
4568         }
4569
4570         return handle_pte_fault(&vmf);
4571 }
4572
4573 /**
4574  * mm_account_fault - Do page fault accountings
4575  *
4576  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4577  *        of perf event counters, but we'll still do the per-task accounting to
4578  *        the task who triggered this page fault.
4579  * @address: the faulted address.
4580  * @flags: the fault flags.
4581  * @ret: the fault retcode.
4582  *
4583  * This will take care of most of the page fault accountings.  Meanwhile, it
4584  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4585  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4586  * still be in per-arch page fault handlers at the entry of page fault.
4587  */
4588 static inline void mm_account_fault(struct pt_regs *regs,
4589                                     unsigned long address, unsigned int flags,
4590                                     vm_fault_t ret)
4591 {
4592         bool major;
4593
4594         /*
4595          * We don't do accounting for some specific faults:
4596          *
4597          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4598          *   includes arch_vma_access_permitted() failing before reaching here.
4599          *   So this is not a "this many hardware page faults" counter.  We
4600          *   should use the hw profiling for that.
4601          *
4602          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4603          *   once they're completed.
4604          */
4605         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4606                 return;
4607
4608         /*
4609          * We define the fault as a major fault when the final successful fault
4610          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4611          * handle it immediately previously).
4612          */
4613         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4614
4615         if (major)
4616                 current->maj_flt++;
4617         else
4618                 current->min_flt++;
4619
4620         /*
4621          * If the fault is done for GUP, regs will be NULL.  We only do the
4622          * accounting for the per thread fault counters who triggered the
4623          * fault, and we skip the perf event updates.
4624          */
4625         if (!regs)
4626                 return;
4627
4628         if (major)
4629                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4630         else
4631                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4632 }
4633
4634 /*
4635  * By the time we get here, we already hold the mm semaphore
4636  *
4637  * The mmap_lock may have been released depending on flags and our
4638  * return value.  See filemap_fault() and __lock_page_or_retry().
4639  */
4640 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4641                            unsigned int flags, struct pt_regs *regs)
4642 {
4643         vm_fault_t ret;
4644
4645         __set_current_state(TASK_RUNNING);
4646
4647         count_vm_event(PGFAULT);
4648         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4649
4650         /* do counter updates before entering really critical section. */
4651         check_sync_rss_stat(current);
4652
4653         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4654                                             flags & FAULT_FLAG_INSTRUCTION,
4655                                             flags & FAULT_FLAG_REMOTE))
4656                 return VM_FAULT_SIGSEGV;
4657
4658         /*
4659          * Enable the memcg OOM handling for faults triggered in user
4660          * space.  Kernel faults are handled more gracefully.
4661          */
4662         if (flags & FAULT_FLAG_USER)
4663                 mem_cgroup_enter_user_fault();
4664
4665         if (unlikely(is_vm_hugetlb_page(vma)))
4666                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4667         else
4668                 ret = __handle_mm_fault(vma, address, flags);
4669
4670         if (flags & FAULT_FLAG_USER) {
4671                 mem_cgroup_exit_user_fault();
4672                 /*
4673                  * The task may have entered a memcg OOM situation but
4674                  * if the allocation error was handled gracefully (no
4675                  * VM_FAULT_OOM), there is no need to kill anything.
4676                  * Just clean up the OOM state peacefully.
4677                  */
4678                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4679                         mem_cgroup_oom_synchronize(false);
4680         }
4681
4682         mm_account_fault(regs, address, flags, ret);
4683
4684         return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(handle_mm_fault);
4687
4688 #ifndef __PAGETABLE_P4D_FOLDED
4689 /*
4690  * Allocate p4d page table.
4691  * We've already handled the fast-path in-line.
4692  */
4693 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4694 {
4695         p4d_t *new = p4d_alloc_one(mm, address);
4696         if (!new)
4697                 return -ENOMEM;
4698
4699         smp_wmb(); /* See comment in __pte_alloc */
4700
4701         spin_lock(&mm->page_table_lock);
4702         if (pgd_present(*pgd))          /* Another has populated it */
4703                 p4d_free(mm, new);
4704         else
4705                 pgd_populate(mm, pgd, new);
4706         spin_unlock(&mm->page_table_lock);
4707         return 0;
4708 }
4709 #endif /* __PAGETABLE_P4D_FOLDED */
4710
4711 #ifndef __PAGETABLE_PUD_FOLDED
4712 /*
4713  * Allocate page upper directory.
4714  * We've already handled the fast-path in-line.
4715  */
4716 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4717 {
4718         pud_t *new = pud_alloc_one(mm, address);
4719         if (!new)
4720                 return -ENOMEM;
4721
4722         smp_wmb(); /* See comment in __pte_alloc */
4723
4724         spin_lock(&mm->page_table_lock);
4725         if (!p4d_present(*p4d)) {
4726                 mm_inc_nr_puds(mm);
4727                 p4d_populate(mm, p4d, new);
4728         } else  /* Another has populated it */
4729                 pud_free(mm, new);
4730         spin_unlock(&mm->page_table_lock);
4731         return 0;
4732 }
4733 #endif /* __PAGETABLE_PUD_FOLDED */
4734
4735 #ifndef __PAGETABLE_PMD_FOLDED
4736 /*
4737  * Allocate page middle directory.
4738  * We've already handled the fast-path in-line.
4739  */
4740 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4741 {
4742         spinlock_t *ptl;
4743         pmd_t *new = pmd_alloc_one(mm, address);
4744         if (!new)
4745                 return -ENOMEM;
4746
4747         smp_wmb(); /* See comment in __pte_alloc */
4748
4749         ptl = pud_lock(mm, pud);
4750         if (!pud_present(*pud)) {
4751                 mm_inc_nr_pmds(mm);
4752                 pud_populate(mm, pud, new);
4753         } else  /* Another has populated it */
4754                 pmd_free(mm, new);
4755         spin_unlock(ptl);
4756         return 0;
4757 }
4758 #endif /* __PAGETABLE_PMD_FOLDED */
4759
4760 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4761                           struct mmu_notifier_range *range, pte_t **ptepp,
4762                           pmd_t **pmdpp, spinlock_t **ptlp)
4763 {
4764         pgd_t *pgd;
4765         p4d_t *p4d;
4766         pud_t *pud;
4767         pmd_t *pmd;
4768         pte_t *ptep;
4769
4770         pgd = pgd_offset(mm, address);
4771         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4772                 goto out;
4773
4774         p4d = p4d_offset(pgd, address);
4775         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4776                 goto out;
4777
4778         pud = pud_offset(p4d, address);
4779         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4780                 goto out;
4781
4782         pmd = pmd_offset(pud, address);
4783         VM_BUG_ON(pmd_trans_huge(*pmd));
4784
4785         if (pmd_huge(*pmd)) {
4786                 if (!pmdpp)
4787                         goto out;
4788
4789                 if (range) {
4790                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4791                                                 NULL, mm, address & PMD_MASK,
4792                                                 (address & PMD_MASK) + PMD_SIZE);
4793                         mmu_notifier_invalidate_range_start(range);
4794                 }
4795                 *ptlp = pmd_lock(mm, pmd);
4796                 if (pmd_huge(*pmd)) {
4797                         *pmdpp = pmd;
4798                         return 0;
4799                 }
4800                 spin_unlock(*ptlp);
4801                 if (range)
4802                         mmu_notifier_invalidate_range_end(range);
4803         }
4804
4805         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4806                 goto out;
4807
4808         if (range) {
4809                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4810                                         address & PAGE_MASK,
4811                                         (address & PAGE_MASK) + PAGE_SIZE);
4812                 mmu_notifier_invalidate_range_start(range);
4813         }
4814         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4815         if (!pte_present(*ptep))
4816                 goto unlock;
4817         *ptepp = ptep;
4818         return 0;
4819 unlock:
4820         pte_unmap_unlock(ptep, *ptlp);
4821         if (range)
4822                 mmu_notifier_invalidate_range_end(range);
4823 out:
4824         return -EINVAL;
4825 }
4826
4827 /**
4828  * follow_pte - look up PTE at a user virtual address
4829  * @mm: the mm_struct of the target address space
4830  * @address: user virtual address
4831  * @ptepp: location to store found PTE
4832  * @ptlp: location to store the lock for the PTE
4833  *
4834  * On a successful return, the pointer to the PTE is stored in @ptepp;
4835  * the corresponding lock is taken and its location is stored in @ptlp.
4836  * The contents of the PTE are only stable until @ptlp is released;
4837  * any further use, if any, must be protected against invalidation
4838  * with MMU notifiers.
4839  *
4840  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4841  * should be taken for read.
4842  *
4843  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4844  * it is not a good general-purpose API.
4845  *
4846  * Return: zero on success, -ve otherwise.
4847  */
4848 int follow_pte(struct mm_struct *mm, unsigned long address,
4849                pte_t **ptepp, spinlock_t **ptlp)
4850 {
4851         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4852 }
4853 EXPORT_SYMBOL_GPL(follow_pte);
4854
4855 /**
4856  * follow_pfn - look up PFN at a user virtual address
4857  * @vma: memory mapping
4858  * @address: user virtual address
4859  * @pfn: location to store found PFN
4860  *
4861  * Only IO mappings and raw PFN mappings are allowed.
4862  *
4863  * This function does not allow the caller to read the permissions
4864  * of the PTE.  Do not use it.
4865  *
4866  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4867  */
4868 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4869         unsigned long *pfn)
4870 {
4871         int ret = -EINVAL;
4872         spinlock_t *ptl;
4873         pte_t *ptep;
4874
4875         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4876                 return ret;
4877
4878         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4879         if (ret)
4880                 return ret;
4881         *pfn = pte_pfn(*ptep);
4882         pte_unmap_unlock(ptep, ptl);
4883         return 0;
4884 }
4885 EXPORT_SYMBOL(follow_pfn);
4886
4887 #ifdef CONFIG_HAVE_IOREMAP_PROT
4888 int follow_phys(struct vm_area_struct *vma,
4889                 unsigned long address, unsigned int flags,
4890                 unsigned long *prot, resource_size_t *phys)
4891 {
4892         int ret = -EINVAL;
4893         pte_t *ptep, pte;
4894         spinlock_t *ptl;
4895
4896         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4897                 goto out;
4898
4899         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4900                 goto out;
4901         pte = *ptep;
4902
4903         if ((flags & FOLL_WRITE) && !pte_write(pte))
4904                 goto unlock;
4905
4906         *prot = pgprot_val(pte_pgprot(pte));
4907         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4908
4909         ret = 0;
4910 unlock:
4911         pte_unmap_unlock(ptep, ptl);
4912 out:
4913         return ret;
4914 }
4915
4916 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4917                         void *buf, int len, int write)
4918 {
4919         resource_size_t phys_addr;
4920         unsigned long prot = 0;
4921         void __iomem *maddr;
4922         int offset = addr & (PAGE_SIZE-1);
4923
4924         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4925                 return -EINVAL;
4926
4927         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4928         if (!maddr)
4929                 return -ENOMEM;
4930
4931         if (write)
4932                 memcpy_toio(maddr + offset, buf, len);
4933         else
4934                 memcpy_fromio(buf, maddr + offset, len);
4935         iounmap(maddr);
4936
4937         return len;
4938 }
4939 EXPORT_SYMBOL_GPL(generic_access_phys);
4940 #endif
4941
4942 /*
4943  * Access another process' address space as given in mm.  If non-NULL, use the
4944  * given task for page fault accounting.
4945  */
4946 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4947                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4948 {
4949         struct vm_area_struct *vma;
4950         void *old_buf = buf;
4951         int write = gup_flags & FOLL_WRITE;
4952
4953         if (mmap_read_lock_killable(mm))
4954                 return 0;
4955
4956         /* ignore errors, just check how much was successfully transferred */
4957         while (len) {
4958                 int bytes, ret, offset;
4959                 void *maddr;
4960                 struct page *page = NULL;
4961
4962                 ret = get_user_pages_remote(mm, addr, 1,
4963                                 gup_flags, &page, &vma, NULL);
4964                 if (ret <= 0) {
4965 #ifndef CONFIG_HAVE_IOREMAP_PROT
4966                         break;
4967 #else
4968                         /*
4969                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4970                          * we can access using slightly different code.
4971                          */
4972                         vma = find_vma(mm, addr);
4973                         if (!vma || vma->vm_start > addr)
4974                                 break;
4975                         if (vma->vm_ops && vma->vm_ops->access)
4976                                 ret = vma->vm_ops->access(vma, addr, buf,
4977                                                           len, write);
4978                         if (ret <= 0)
4979                                 break;
4980                         bytes = ret;
4981 #endif
4982                 } else {
4983                         bytes = len;
4984                         offset = addr & (PAGE_SIZE-1);
4985                         if (bytes > PAGE_SIZE-offset)
4986                                 bytes = PAGE_SIZE-offset;
4987
4988                         maddr = kmap(page);
4989                         if (write) {
4990                                 copy_to_user_page(vma, page, addr,
4991                                                   maddr + offset, buf, bytes);
4992                                 set_page_dirty_lock(page);
4993                         } else {
4994                                 copy_from_user_page(vma, page, addr,
4995                                                     buf, maddr + offset, bytes);
4996                         }
4997                         kunmap(page);
4998                         put_page(page);
4999                 }
5000                 len -= bytes;
5001                 buf += bytes;
5002                 addr += bytes;
5003         }
5004         mmap_read_unlock(mm);
5005
5006         return buf - old_buf;
5007 }
5008
5009 /**
5010  * access_remote_vm - access another process' address space
5011  * @mm:         the mm_struct of the target address space
5012  * @addr:       start address to access
5013  * @buf:        source or destination buffer
5014  * @len:        number of bytes to transfer
5015  * @gup_flags:  flags modifying lookup behaviour
5016  *
5017  * The caller must hold a reference on @mm.
5018  *
5019  * Return: number of bytes copied from source to destination.
5020  */
5021 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5022                 void *buf, int len, unsigned int gup_flags)
5023 {
5024         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5025 }
5026
5027 /*
5028  * Access another process' address space.
5029  * Source/target buffer must be kernel space,
5030  * Do not walk the page table directly, use get_user_pages
5031  */
5032 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5033                 void *buf, int len, unsigned int gup_flags)
5034 {
5035         struct mm_struct *mm;
5036         int ret;
5037
5038         mm = get_task_mm(tsk);
5039         if (!mm)
5040                 return 0;
5041
5042         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5043
5044         mmput(mm);
5045
5046         return ret;
5047 }
5048 EXPORT_SYMBOL_GPL(access_process_vm);
5049
5050 /*
5051  * Print the name of a VMA.
5052  */
5053 void print_vma_addr(char *prefix, unsigned long ip)
5054 {
5055         struct mm_struct *mm = current->mm;
5056         struct vm_area_struct *vma;
5057
5058         /*
5059          * we might be running from an atomic context so we cannot sleep
5060          */
5061         if (!mmap_read_trylock(mm))
5062                 return;
5063
5064         vma = find_vma(mm, ip);
5065         if (vma && vma->vm_file) {
5066                 struct file *f = vma->vm_file;
5067                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5068                 if (buf) {
5069                         char *p;
5070
5071                         p = file_path(f, buf, PAGE_SIZE);
5072                         if (IS_ERR(p))
5073                                 p = "?";
5074                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5075                                         vma->vm_start,
5076                                         vma->vm_end - vma->vm_start);
5077                         free_page((unsigned long)buf);
5078                 }
5079         }
5080         mmap_read_unlock(mm);
5081 }
5082
5083 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5084 void __might_fault(const char *file, int line)
5085 {
5086         /*
5087          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5088          * holding the mmap_lock, this is safe because kernel memory doesn't
5089          * get paged out, therefore we'll never actually fault, and the
5090          * below annotations will generate false positives.
5091          */
5092         if (uaccess_kernel())
5093                 return;
5094         if (pagefault_disabled())
5095                 return;
5096         __might_sleep(file, line, 0);
5097 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5098         if (current->mm)
5099                 might_lock_read(&current->mm->mmap_lock);
5100 #endif
5101 }
5102 EXPORT_SYMBOL(__might_fault);
5103 #endif
5104
5105 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5106 /*
5107  * Process all subpages of the specified huge page with the specified
5108  * operation.  The target subpage will be processed last to keep its
5109  * cache lines hot.
5110  */
5111 static inline void process_huge_page(
5112         unsigned long addr_hint, unsigned int pages_per_huge_page,
5113         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5114         void *arg)
5115 {
5116         int i, n, base, l;
5117         unsigned long addr = addr_hint &
5118                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5119
5120         /* Process target subpage last to keep its cache lines hot */
5121         might_sleep();
5122         n = (addr_hint - addr) / PAGE_SIZE;
5123         if (2 * n <= pages_per_huge_page) {
5124                 /* If target subpage in first half of huge page */
5125                 base = 0;
5126                 l = n;
5127                 /* Process subpages at the end of huge page */
5128                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5129                         cond_resched();
5130                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5131                 }
5132         } else {
5133                 /* If target subpage in second half of huge page */
5134                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5135                 l = pages_per_huge_page - n;
5136                 /* Process subpages at the begin of huge page */
5137                 for (i = 0; i < base; i++) {
5138                         cond_resched();
5139                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5140                 }
5141         }
5142         /*
5143          * Process remaining subpages in left-right-left-right pattern
5144          * towards the target subpage
5145          */
5146         for (i = 0; i < l; i++) {
5147                 int left_idx = base + i;
5148                 int right_idx = base + 2 * l - 1 - i;
5149
5150                 cond_resched();
5151                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5152                 cond_resched();
5153                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5154         }
5155 }
5156
5157 static void clear_gigantic_page(struct page *page,
5158                                 unsigned long addr,
5159                                 unsigned int pages_per_huge_page)
5160 {
5161         int i;
5162         struct page *p = page;
5163
5164         might_sleep();
5165         for (i = 0; i < pages_per_huge_page;
5166              i++, p = mem_map_next(p, page, i)) {
5167                 cond_resched();
5168                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5169         }
5170 }
5171
5172 static void clear_subpage(unsigned long addr, int idx, void *arg)
5173 {
5174         struct page *page = arg;
5175
5176         clear_user_highpage(page + idx, addr);
5177 }
5178
5179 void clear_huge_page(struct page *page,
5180                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5181 {
5182         unsigned long addr = addr_hint &
5183                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5184
5185         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5186                 clear_gigantic_page(page, addr, pages_per_huge_page);
5187                 return;
5188         }
5189
5190         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5191 }
5192
5193 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5194                                     unsigned long addr,
5195                                     struct vm_area_struct *vma,
5196                                     unsigned int pages_per_huge_page)
5197 {
5198         int i;
5199         struct page *dst_base = dst;
5200         struct page *src_base = src;
5201
5202         for (i = 0; i < pages_per_huge_page; ) {
5203                 cond_resched();
5204                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5205
5206                 i++;
5207                 dst = mem_map_next(dst, dst_base, i);
5208                 src = mem_map_next(src, src_base, i);
5209         }
5210 }
5211
5212 struct copy_subpage_arg {
5213         struct page *dst;
5214         struct page *src;
5215         struct vm_area_struct *vma;
5216 };
5217
5218 static void copy_subpage(unsigned long addr, int idx, void *arg)
5219 {
5220         struct copy_subpage_arg *copy_arg = arg;
5221
5222         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5223                            addr, copy_arg->vma);
5224 }
5225
5226 void copy_user_huge_page(struct page *dst, struct page *src,
5227                          unsigned long addr_hint, struct vm_area_struct *vma,
5228                          unsigned int pages_per_huge_page)
5229 {
5230         unsigned long addr = addr_hint &
5231                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5232         struct copy_subpage_arg arg = {
5233                 .dst = dst,
5234                 .src = src,
5235                 .vma = vma,
5236         };
5237
5238         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5239                 copy_user_gigantic_page(dst, src, addr, vma,
5240                                         pages_per_huge_page);
5241                 return;
5242         }
5243
5244         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5245 }
5246
5247 long copy_huge_page_from_user(struct page *dst_page,
5248                                 const void __user *usr_src,
5249                                 unsigned int pages_per_huge_page,
5250                                 bool allow_pagefault)
5251 {
5252         void *src = (void *)usr_src;
5253         void *page_kaddr;
5254         unsigned long i, rc = 0;
5255         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5256         struct page *subpage = dst_page;
5257
5258         for (i = 0; i < pages_per_huge_page;
5259              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5260                 if (allow_pagefault)
5261                         page_kaddr = kmap(subpage);
5262                 else
5263                         page_kaddr = kmap_atomic(subpage);
5264                 rc = copy_from_user(page_kaddr,
5265                                 (const void __user *)(src + i * PAGE_SIZE),
5266                                 PAGE_SIZE);
5267                 if (allow_pagefault)
5268                         kunmap(subpage);
5269                 else
5270                         kunmap_atomic(page_kaddr);
5271
5272                 ret_val -= (PAGE_SIZE - rc);
5273                 if (rc)
5274                         break;
5275
5276                 cond_resched();
5277         }
5278         return ret_val;
5279 }
5280 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5281
5282 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5283
5284 static struct kmem_cache *page_ptl_cachep;
5285
5286 void __init ptlock_cache_init(void)
5287 {
5288         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5289                         SLAB_PANIC, NULL);
5290 }
5291
5292 bool ptlock_alloc(struct page *page)
5293 {
5294         spinlock_t *ptl;
5295
5296         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5297         if (!ptl)
5298                 return false;
5299         page->ptl = ptl;
5300         return true;
5301 }
5302
5303 void ptlock_free(struct page *page)
5304 {
5305         kmem_cache_free(page_ptl_cachep, page->ptl);
5306 }
5307 #endif