mm/page_ext: move functions around for minor cleanups to page_ext
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118                 return false;
119
120         return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141                                         1;
142 #else
143                                         2;
144 #endif
145
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149         /*
150          * Transitioning a PTE from 'old' to 'young' can be expensive on
151          * some architectures, even if it's performed in hardware. By
152          * default, "false" means prefaulted entries will be 'young'.
153          */
154         return false;
155 }
156 #endif
157
158 static int __init disable_randmaps(char *s)
159 {
160         randomize_va_space = 0;
161         return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167
168 unsigned long highest_memmap_pfn __read_mostly;
169
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175         zero_pfn = page_to_pfn(ZERO_PAGE(0));
176         return 0;
177 }
178 early_initcall(init_zero_pfn);
179
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182         trace_rss_stat(mm, member);
183 }
184
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190                            unsigned long addr)
191 {
192         pgtable_t token = pmd_pgtable(*pmd);
193         pmd_clear(pmd);
194         pte_free_tlb(tlb, token, addr);
195         mm_dec_nr_ptes(tlb->mm);
196 }
197
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199                                 unsigned long addr, unsigned long end,
200                                 unsigned long floor, unsigned long ceiling)
201 {
202         pmd_t *pmd;
203         unsigned long next;
204         unsigned long start;
205
206         start = addr;
207         pmd = pmd_offset(pud, addr);
208         do {
209                 next = pmd_addr_end(addr, end);
210                 if (pmd_none_or_clear_bad(pmd))
211                         continue;
212                 free_pte_range(tlb, pmd, addr);
213         } while (pmd++, addr = next, addr != end);
214
215         start &= PUD_MASK;
216         if (start < floor)
217                 return;
218         if (ceiling) {
219                 ceiling &= PUD_MASK;
220                 if (!ceiling)
221                         return;
222         }
223         if (end - 1 > ceiling - 1)
224                 return;
225
226         pmd = pmd_offset(pud, start);
227         pud_clear(pud);
228         pmd_free_tlb(tlb, pmd, start);
229         mm_dec_nr_pmds(tlb->mm);
230 }
231
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233                                 unsigned long addr, unsigned long end,
234                                 unsigned long floor, unsigned long ceiling)
235 {
236         pud_t *pud;
237         unsigned long next;
238         unsigned long start;
239
240         start = addr;
241         pud = pud_offset(p4d, addr);
242         do {
243                 next = pud_addr_end(addr, end);
244                 if (pud_none_or_clear_bad(pud))
245                         continue;
246                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247         } while (pud++, addr = next, addr != end);
248
249         start &= P4D_MASK;
250         if (start < floor)
251                 return;
252         if (ceiling) {
253                 ceiling &= P4D_MASK;
254                 if (!ceiling)
255                         return;
256         }
257         if (end - 1 > ceiling - 1)
258                 return;
259
260         pud = pud_offset(p4d, start);
261         p4d_clear(p4d);
262         pud_free_tlb(tlb, pud, start);
263         mm_dec_nr_puds(tlb->mm);
264 }
265
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267                                 unsigned long addr, unsigned long end,
268                                 unsigned long floor, unsigned long ceiling)
269 {
270         p4d_t *p4d;
271         unsigned long next;
272         unsigned long start;
273
274         start = addr;
275         p4d = p4d_offset(pgd, addr);
276         do {
277                 next = p4d_addr_end(addr, end);
278                 if (p4d_none_or_clear_bad(p4d))
279                         continue;
280                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281         } while (p4d++, addr = next, addr != end);
282
283         start &= PGDIR_MASK;
284         if (start < floor)
285                 return;
286         if (ceiling) {
287                 ceiling &= PGDIR_MASK;
288                 if (!ceiling)
289                         return;
290         }
291         if (end - 1 > ceiling - 1)
292                 return;
293
294         p4d = p4d_offset(pgd, start);
295         pgd_clear(pgd);
296         p4d_free_tlb(tlb, p4d, start);
297 }
298
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303                         unsigned long addr, unsigned long end,
304                         unsigned long floor, unsigned long ceiling)
305 {
306         pgd_t *pgd;
307         unsigned long next;
308
309         /*
310          * The next few lines have given us lots of grief...
311          *
312          * Why are we testing PMD* at this top level?  Because often
313          * there will be no work to do at all, and we'd prefer not to
314          * go all the way down to the bottom just to discover that.
315          *
316          * Why all these "- 1"s?  Because 0 represents both the bottom
317          * of the address space and the top of it (using -1 for the
318          * top wouldn't help much: the masks would do the wrong thing).
319          * The rule is that addr 0 and floor 0 refer to the bottom of
320          * the address space, but end 0 and ceiling 0 refer to the top
321          * Comparisons need to use "end - 1" and "ceiling - 1" (though
322          * that end 0 case should be mythical).
323          *
324          * Wherever addr is brought up or ceiling brought down, we must
325          * be careful to reject "the opposite 0" before it confuses the
326          * subsequent tests.  But what about where end is brought down
327          * by PMD_SIZE below? no, end can't go down to 0 there.
328          *
329          * Whereas we round start (addr) and ceiling down, by different
330          * masks at different levels, in order to test whether a table
331          * now has no other vmas using it, so can be freed, we don't
332          * bother to round floor or end up - the tests don't need that.
333          */
334
335         addr &= PMD_MASK;
336         if (addr < floor) {
337                 addr += PMD_SIZE;
338                 if (!addr)
339                         return;
340         }
341         if (ceiling) {
342                 ceiling &= PMD_MASK;
343                 if (!ceiling)
344                         return;
345         }
346         if (end - 1 > ceiling - 1)
347                 end -= PMD_SIZE;
348         if (addr > end - 1)
349                 return;
350         /*
351          * We add page table cache pages with PAGE_SIZE,
352          * (see pte_free_tlb()), flush the tlb if we need
353          */
354         tlb_change_page_size(tlb, PAGE_SIZE);
355         pgd = pgd_offset(tlb->mm, addr);
356         do {
357                 next = pgd_addr_end(addr, end);
358                 if (pgd_none_or_clear_bad(pgd))
359                         continue;
360                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361         } while (pgd++, addr = next, addr != end);
362 }
363
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365                    struct vm_area_struct *vma, unsigned long floor,
366                    unsigned long ceiling, bool mm_wr_locked)
367 {
368         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369
370         do {
371                 unsigned long addr = vma->vm_start;
372                 struct vm_area_struct *next;
373
374                 /*
375                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376                  * be 0.  This will underflow and is okay.
377                  */
378                 next = mas_find(&mas, ceiling - 1);
379
380                 /*
381                  * Hide vma from rmap and truncate_pagecache before freeing
382                  * pgtables
383                  */
384                 if (mm_wr_locked)
385                         vma_start_write(vma);
386                 unlink_anon_vmas(vma);
387                 unlink_file_vma(vma);
388
389                 if (is_vm_hugetlb_page(vma)) {
390                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391                                 floor, next ? next->vm_start : ceiling);
392                 } else {
393                         /*
394                          * Optimization: gather nearby vmas into one call down
395                          */
396                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397                                && !is_vm_hugetlb_page(next)) {
398                                 vma = next;
399                                 next = mas_find(&mas, ceiling - 1);
400                                 if (mm_wr_locked)
401                                         vma_start_write(vma);
402                                 unlink_anon_vmas(vma);
403                                 unlink_file_vma(vma);
404                         }
405                         free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 }
408                 vma = next;
409         } while (vma);
410 }
411
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414         spinlock_t *ptl = pmd_lock(mm, pmd);
415
416         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
417                 mm_inc_nr_ptes(mm);
418                 /*
419                  * Ensure all pte setup (eg. pte page lock and page clearing) are
420                  * visible before the pte is made visible to other CPUs by being
421                  * put into page tables.
422                  *
423                  * The other side of the story is the pointer chasing in the page
424                  * table walking code (when walking the page table without locking;
425                  * ie. most of the time). Fortunately, these data accesses consist
426                  * of a chain of data-dependent loads, meaning most CPUs (alpha
427                  * being the notable exception) will already guarantee loads are
428                  * seen in-order. See the alpha page table accessors for the
429                  * smp_rmb() barriers in page table walking code.
430                  */
431                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432                 pmd_populate(mm, pmd, *pte);
433                 *pte = NULL;
434         }
435         spin_unlock(ptl);
436 }
437
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440         pgtable_t new = pte_alloc_one(mm);
441         if (!new)
442                 return -ENOMEM;
443
444         pmd_install(mm, pmd, &new);
445         if (new)
446                 pte_free(mm, new);
447         return 0;
448 }
449
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452         pte_t *new = pte_alloc_one_kernel(&init_mm);
453         if (!new)
454                 return -ENOMEM;
455
456         spin_lock(&init_mm.page_table_lock);
457         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
458                 smp_wmb(); /* See comment in pmd_install() */
459                 pmd_populate_kernel(&init_mm, pmd, new);
460                 new = NULL;
461         }
462         spin_unlock(&init_mm.page_table_lock);
463         if (new)
464                 pte_free_kernel(&init_mm, new);
465         return 0;
466 }
467
468 static inline void init_rss_vec(int *rss)
469 {
470         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475         int i;
476
477         if (current->mm == mm)
478                 sync_mm_rss(mm);
479         for (i = 0; i < NR_MM_COUNTERS; i++)
480                 if (rss[i])
481                         add_mm_counter(mm, i, rss[i]);
482 }
483
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492                           pte_t pte, struct page *page)
493 {
494         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495         p4d_t *p4d = p4d_offset(pgd, addr);
496         pud_t *pud = pud_offset(p4d, addr);
497         pmd_t *pmd = pmd_offset(pud, addr);
498         struct address_space *mapping;
499         pgoff_t index;
500         static unsigned long resume;
501         static unsigned long nr_shown;
502         static unsigned long nr_unshown;
503
504         /*
505          * Allow a burst of 60 reports, then keep quiet for that minute;
506          * or allow a steady drip of one report per second.
507          */
508         if (nr_shown == 60) {
509                 if (time_before(jiffies, resume)) {
510                         nr_unshown++;
511                         return;
512                 }
513                 if (nr_unshown) {
514                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515                                  nr_unshown);
516                         nr_unshown = 0;
517                 }
518                 nr_shown = 0;
519         }
520         if (nr_shown++ == 0)
521                 resume = jiffies + 60 * HZ;
522
523         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524         index = linear_page_index(vma, addr);
525
526         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527                  current->comm,
528                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
529         if (page)
530                 dump_page(page, "bad pte");
531         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534                  vma->vm_file,
535                  vma->vm_ops ? vma->vm_ops->fault : NULL,
536                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537                  mapping ? mapping->a_ops->read_folio : NULL);
538         dump_stack();
539         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585                             pte_t pte)
586 {
587         unsigned long pfn = pte_pfn(pte);
588
589         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590                 if (likely(!pte_special(pte)))
591                         goto check_pfn;
592                 if (vma->vm_ops && vma->vm_ops->find_special_page)
593                         return vma->vm_ops->find_special_page(vma, addr);
594                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595                         return NULL;
596                 if (is_zero_pfn(pfn))
597                         return NULL;
598                 if (pte_devmap(pte))
599                 /*
600                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601                  * and will have refcounts incremented on their struct pages
602                  * when they are inserted into PTEs, thus they are safe to
603                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604                  * do not have refcounts. Example of legacy ZONE_DEVICE is
605                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606                  */
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648                             pte_t pte)
649 {
650         struct page *page = vm_normal_page(vma, addr, pte);
651
652         if (page)
653                 return page_folio(page);
654         return NULL;
655 }
656
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659                                 pmd_t pmd)
660 {
661         unsigned long pfn = pmd_pfn(pmd);
662
663         /*
664          * There is no pmd_special() but there may be special pmds, e.g.
665          * in a direct-access (dax) mapping, so let's just replicate the
666          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667          */
668         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669                 if (vma->vm_flags & VM_MIXEDMAP) {
670                         if (!pfn_valid(pfn))
671                                 return NULL;
672                         goto out;
673                 } else {
674                         unsigned long off;
675                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
676                         if (pfn == vma->vm_pgoff + off)
677                                 return NULL;
678                         if (!is_cow_mapping(vma->vm_flags))
679                                 return NULL;
680                 }
681         }
682
683         if (pmd_devmap(pmd))
684                 return NULL;
685         if (is_huge_zero_pmd(pmd))
686                 return NULL;
687         if (unlikely(pfn > highest_memmap_pfn))
688                 return NULL;
689
690         /*
691          * NOTE! We still have PageReserved() pages in the page tables.
692          * eg. VDSO mappings can cause them to exist.
693          */
694 out:
695         return pfn_to_page(pfn);
696 }
697 #endif
698
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700                                   struct page *page, unsigned long address,
701                                   pte_t *ptep)
702 {
703         pte_t orig_pte;
704         pte_t pte;
705         swp_entry_t entry;
706
707         orig_pte = ptep_get(ptep);
708         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709         if (pte_swp_soft_dirty(orig_pte))
710                 pte = pte_mksoft_dirty(pte);
711
712         entry = pte_to_swp_entry(orig_pte);
713         if (pte_swp_uffd_wp(orig_pte))
714                 pte = pte_mkuffd_wp(pte);
715         else if (is_writable_device_exclusive_entry(entry))
716                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717
718         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719
720         /*
721          * No need to take a page reference as one was already
722          * created when the swap entry was made.
723          */
724         if (PageAnon(page))
725                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
726         else
727                 /*
728                  * Currently device exclusive access only supports anonymous
729                  * memory so the entry shouldn't point to a filebacked page.
730                  */
731                 WARN_ON_ONCE(1);
732
733         set_pte_at(vma->vm_mm, address, ptep, pte);
734
735         /*
736          * No need to invalidate - it was non-present before. However
737          * secondary CPUs may have mappings that need invalidating.
738          */
739         update_mmu_cache(vma, address, ptep);
740 }
741
742 /*
743  * Tries to restore an exclusive pte if the page lock can be acquired without
744  * sleeping.
745  */
746 static int
747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748                         unsigned long addr)
749 {
750         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751         struct page *page = pfn_swap_entry_to_page(entry);
752
753         if (trylock_page(page)) {
754                 restore_exclusive_pte(vma, page, addr, src_pte);
755                 unlock_page(page);
756                 return 0;
757         }
758
759         return -EBUSY;
760 }
761
762 /*
763  * copy one vm_area from one task to the other. Assumes the page tables
764  * already present in the new task to be cleared in the whole range
765  * covered by this vma.
766  */
767
768 static unsigned long
769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772 {
773         unsigned long vm_flags = dst_vma->vm_flags;
774         pte_t orig_pte = ptep_get(src_pte);
775         pte_t pte = orig_pte;
776         struct page *page;
777         swp_entry_t entry = pte_to_swp_entry(orig_pte);
778
779         if (likely(!non_swap_entry(entry))) {
780                 if (swap_duplicate(entry) < 0)
781                         return -EIO;
782
783                 /* make sure dst_mm is on swapoff's mmlist. */
784                 if (unlikely(list_empty(&dst_mm->mmlist))) {
785                         spin_lock(&mmlist_lock);
786                         if (list_empty(&dst_mm->mmlist))
787                                 list_add(&dst_mm->mmlist,
788                                                 &src_mm->mmlist);
789                         spin_unlock(&mmlist_lock);
790                 }
791                 /* Mark the swap entry as shared. */
792                 if (pte_swp_exclusive(orig_pte)) {
793                         pte = pte_swp_clear_exclusive(orig_pte);
794                         set_pte_at(src_mm, addr, src_pte, pte);
795                 }
796                 rss[MM_SWAPENTS]++;
797         } else if (is_migration_entry(entry)) {
798                 page = pfn_swap_entry_to_page(entry);
799
800                 rss[mm_counter(page)]++;
801
802                 if (!is_readable_migration_entry(entry) &&
803                                 is_cow_mapping(vm_flags)) {
804                         /*
805                          * COW mappings require pages in both parent and child
806                          * to be set to read. A previously exclusive entry is
807                          * now shared.
808                          */
809                         entry = make_readable_migration_entry(
810                                                         swp_offset(entry));
811                         pte = swp_entry_to_pte(entry);
812                         if (pte_swp_soft_dirty(orig_pte))
813                                 pte = pte_swp_mksoft_dirty(pte);
814                         if (pte_swp_uffd_wp(orig_pte))
815                                 pte = pte_swp_mkuffd_wp(pte);
816                         set_pte_at(src_mm, addr, src_pte, pte);
817                 }
818         } else if (is_device_private_entry(entry)) {
819                 page = pfn_swap_entry_to_page(entry);
820
821                 /*
822                  * Update rss count even for unaddressable pages, as
823                  * they should treated just like normal pages in this
824                  * respect.
825                  *
826                  * We will likely want to have some new rss counters
827                  * for unaddressable pages, at some point. But for now
828                  * keep things as they are.
829                  */
830                 get_page(page);
831                 rss[mm_counter(page)]++;
832                 /* Cannot fail as these pages cannot get pinned. */
833                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834
835                 /*
836                  * We do not preserve soft-dirty information, because so
837                  * far, checkpoint/restore is the only feature that
838                  * requires that. And checkpoint/restore does not work
839                  * when a device driver is involved (you cannot easily
840                  * save and restore device driver state).
841                  */
842                 if (is_writable_device_private_entry(entry) &&
843                     is_cow_mapping(vm_flags)) {
844                         entry = make_readable_device_private_entry(
845                                                         swp_offset(entry));
846                         pte = swp_entry_to_pte(entry);
847                         if (pte_swp_uffd_wp(orig_pte))
848                                 pte = pte_swp_mkuffd_wp(pte);
849                         set_pte_at(src_mm, addr, src_pte, pte);
850                 }
851         } else if (is_device_exclusive_entry(entry)) {
852                 /*
853                  * Make device exclusive entries present by restoring the
854                  * original entry then copying as for a present pte. Device
855                  * exclusive entries currently only support private writable
856                  * (ie. COW) mappings.
857                  */
858                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860                         return -EBUSY;
861                 return -ENOENT;
862         } else if (is_pte_marker_entry(entry)) {
863                 pte_marker marker = copy_pte_marker(entry, dst_vma);
864
865                 if (marker)
866                         set_pte_at(dst_mm, addr, dst_pte,
867                                    make_pte_marker(marker));
868                 return 0;
869         }
870         if (!userfaultfd_wp(dst_vma))
871                 pte = pte_swp_clear_uffd_wp(pte);
872         set_pte_at(dst_mm, addr, dst_pte, pte);
873         return 0;
874 }
875
876 /*
877  * Copy a present and normal page.
878  *
879  * NOTE! The usual case is that this isn't required;
880  * instead, the caller can just increase the page refcount
881  * and re-use the pte the traditional way.
882  *
883  * And if we need a pre-allocated page but don't yet have
884  * one, return a negative error to let the preallocation
885  * code know so that it can do so outside the page table
886  * lock.
887  */
888 static inline int
889 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
890                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
891                   struct folio **prealloc, struct page *page)
892 {
893         struct folio *new_folio;
894         pte_t pte;
895
896         new_folio = *prealloc;
897         if (!new_folio)
898                 return -EAGAIN;
899
900         /*
901          * We have a prealloc page, all good!  Take it
902          * over and copy the page & arm it.
903          */
904         *prealloc = NULL;
905         copy_user_highpage(&new_folio->page, page, addr, src_vma);
906         __folio_mark_uptodate(new_folio);
907         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
908         folio_add_lru_vma(new_folio, dst_vma);
909         rss[MM_ANONPAGES]++;
910
911         /* All done, just insert the new page copy in the child */
912         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
913         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
914         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
915                 /* Uffd-wp needs to be delivered to dest pte as well */
916                 pte = pte_mkuffd_wp(pte);
917         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
918         return 0;
919 }
920
921 /*
922  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
923  * is required to copy this pte.
924  */
925 static inline int
926 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
927                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
928                  struct folio **prealloc)
929 {
930         struct mm_struct *src_mm = src_vma->vm_mm;
931         unsigned long vm_flags = src_vma->vm_flags;
932         pte_t pte = ptep_get(src_pte);
933         struct page *page;
934         struct folio *folio;
935
936         page = vm_normal_page(src_vma, addr, pte);
937         if (page)
938                 folio = page_folio(page);
939         if (page && folio_test_anon(folio)) {
940                 /*
941                  * If this page may have been pinned by the parent process,
942                  * copy the page immediately for the child so that we'll always
943                  * guarantee the pinned page won't be randomly replaced in the
944                  * future.
945                  */
946                 folio_get(folio);
947                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
948                         /* Page may be pinned, we have to copy. */
949                         folio_put(folio);
950                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951                                                  addr, rss, prealloc, page);
952                 }
953                 rss[MM_ANONPAGES]++;
954         } else if (page) {
955                 folio_get(folio);
956                 page_dup_file_rmap(page, false);
957                 rss[mm_counter_file(page)]++;
958         }
959
960         /*
961          * If it's a COW mapping, write protect it both
962          * in the parent and the child
963          */
964         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965                 ptep_set_wrprotect(src_mm, addr, src_pte);
966                 pte = pte_wrprotect(pte);
967         }
968         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
969
970         /*
971          * If it's a shared mapping, mark it clean in
972          * the child
973          */
974         if (vm_flags & VM_SHARED)
975                 pte = pte_mkclean(pte);
976         pte = pte_mkold(pte);
977
978         if (!userfaultfd_wp(dst_vma))
979                 pte = pte_clear_uffd_wp(pte);
980
981         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
982         return 0;
983 }
984
985 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
986                 struct vm_area_struct *vma, unsigned long addr)
987 {
988         struct folio *new_folio;
989
990         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
991         if (!new_folio)
992                 return NULL;
993
994         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
995                 folio_put(new_folio);
996                 return NULL;
997         }
998         folio_throttle_swaprate(new_folio, GFP_KERNEL);
999
1000         return new_folio;
1001 }
1002
1003 static int
1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006                unsigned long end)
1007 {
1008         struct mm_struct *dst_mm = dst_vma->vm_mm;
1009         struct mm_struct *src_mm = src_vma->vm_mm;
1010         pte_t *orig_src_pte, *orig_dst_pte;
1011         pte_t *src_pte, *dst_pte;
1012         pte_t ptent;
1013         spinlock_t *src_ptl, *dst_ptl;
1014         int progress, ret = 0;
1015         int rss[NR_MM_COUNTERS];
1016         swp_entry_t entry = (swp_entry_t){0};
1017         struct folio *prealloc = NULL;
1018
1019 again:
1020         progress = 0;
1021         init_rss_vec(rss);
1022
1023         /*
1024          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1025          * error handling here, assume that exclusive mmap_lock on dst and src
1026          * protects anon from unexpected THP transitions; with shmem and file
1027          * protected by mmap_lock-less collapse skipping areas with anon_vma
1028          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1029          * can remove such assumptions later, but this is good enough for now.
1030          */
1031         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1032         if (!dst_pte) {
1033                 ret = -ENOMEM;
1034                 goto out;
1035         }
1036         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1037         if (!src_pte) {
1038                 pte_unmap_unlock(dst_pte, dst_ptl);
1039                 /* ret == 0 */
1040                 goto out;
1041         }
1042         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043         orig_src_pte = src_pte;
1044         orig_dst_pte = dst_pte;
1045         arch_enter_lazy_mmu_mode();
1046
1047         do {
1048                 /*
1049                  * We are holding two locks at this point - either of them
1050                  * could generate latencies in another task on another CPU.
1051                  */
1052                 if (progress >= 32) {
1053                         progress = 0;
1054                         if (need_resched() ||
1055                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1056                                 break;
1057                 }
1058                 ptent = ptep_get(src_pte);
1059                 if (pte_none(ptent)) {
1060                         progress++;
1061                         continue;
1062                 }
1063                 if (unlikely(!pte_present(ptent))) {
1064                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1065                                                   dst_pte, src_pte,
1066                                                   dst_vma, src_vma,
1067                                                   addr, rss);
1068                         if (ret == -EIO) {
1069                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1070                                 break;
1071                         } else if (ret == -EBUSY) {
1072                                 break;
1073                         } else if (!ret) {
1074                                 progress += 8;
1075                                 continue;
1076                         }
1077
1078                         /*
1079                          * Device exclusive entry restored, continue by copying
1080                          * the now present pte.
1081                          */
1082                         WARN_ON_ONCE(ret != -ENOENT);
1083                 }
1084                 /* copy_present_pte() will clear `*prealloc' if consumed */
1085                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086                                        addr, rss, &prealloc);
1087                 /*
1088                  * If we need a pre-allocated page for this pte, drop the
1089                  * locks, allocate, and try again.
1090                  */
1091                 if (unlikely(ret == -EAGAIN))
1092                         break;
1093                 if (unlikely(prealloc)) {
1094                         /*
1095                          * pre-alloc page cannot be reused by next time so as
1096                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1097                          * will allocate page according to address).  This
1098                          * could only happen if one pinned pte changed.
1099                          */
1100                         folio_put(prealloc);
1101                         prealloc = NULL;
1102                 }
1103                 progress += 8;
1104         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105
1106         arch_leave_lazy_mmu_mode();
1107         pte_unmap_unlock(orig_src_pte, src_ptl);
1108         add_mm_rss_vec(dst_mm, rss);
1109         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110         cond_resched();
1111
1112         if (ret == -EIO) {
1113                 VM_WARN_ON_ONCE(!entry.val);
1114                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1115                         ret = -ENOMEM;
1116                         goto out;
1117                 }
1118                 entry.val = 0;
1119         } else if (ret == -EBUSY) {
1120                 goto out;
1121         } else if (ret ==  -EAGAIN) {
1122                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1123                 if (!prealloc)
1124                         return -ENOMEM;
1125         } else if (ret) {
1126                 VM_WARN_ON_ONCE(1);
1127         }
1128
1129         /* We've captured and resolved the error. Reset, try again. */
1130         ret = 0;
1131
1132         if (addr != end)
1133                 goto again;
1134 out:
1135         if (unlikely(prealloc))
1136                 folio_put(prealloc);
1137         return ret;
1138 }
1139
1140 static inline int
1141 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1142                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1143                unsigned long end)
1144 {
1145         struct mm_struct *dst_mm = dst_vma->vm_mm;
1146         struct mm_struct *src_mm = src_vma->vm_mm;
1147         pmd_t *src_pmd, *dst_pmd;
1148         unsigned long next;
1149
1150         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1151         if (!dst_pmd)
1152                 return -ENOMEM;
1153         src_pmd = pmd_offset(src_pud, addr);
1154         do {
1155                 next = pmd_addr_end(addr, end);
1156                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1157                         || pmd_devmap(*src_pmd)) {
1158                         int err;
1159                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1160                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1161                                             addr, dst_vma, src_vma);
1162                         if (err == -ENOMEM)
1163                                 return -ENOMEM;
1164                         if (!err)
1165                                 continue;
1166                         /* fall through */
1167                 }
1168                 if (pmd_none_or_clear_bad(src_pmd))
1169                         continue;
1170                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1171                                    addr, next))
1172                         return -ENOMEM;
1173         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1174         return 0;
1175 }
1176
1177 static inline int
1178 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1179                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1180                unsigned long end)
1181 {
1182         struct mm_struct *dst_mm = dst_vma->vm_mm;
1183         struct mm_struct *src_mm = src_vma->vm_mm;
1184         pud_t *src_pud, *dst_pud;
1185         unsigned long next;
1186
1187         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1188         if (!dst_pud)
1189                 return -ENOMEM;
1190         src_pud = pud_offset(src_p4d, addr);
1191         do {
1192                 next = pud_addr_end(addr, end);
1193                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1194                         int err;
1195
1196                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1197                         err = copy_huge_pud(dst_mm, src_mm,
1198                                             dst_pud, src_pud, addr, src_vma);
1199                         if (err == -ENOMEM)
1200                                 return -ENOMEM;
1201                         if (!err)
1202                                 continue;
1203                         /* fall through */
1204                 }
1205                 if (pud_none_or_clear_bad(src_pud))
1206                         continue;
1207                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1208                                    addr, next))
1209                         return -ENOMEM;
1210         } while (dst_pud++, src_pud++, addr = next, addr != end);
1211         return 0;
1212 }
1213
1214 static inline int
1215 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1216                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1217                unsigned long end)
1218 {
1219         struct mm_struct *dst_mm = dst_vma->vm_mm;
1220         p4d_t *src_p4d, *dst_p4d;
1221         unsigned long next;
1222
1223         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1224         if (!dst_p4d)
1225                 return -ENOMEM;
1226         src_p4d = p4d_offset(src_pgd, addr);
1227         do {
1228                 next = p4d_addr_end(addr, end);
1229                 if (p4d_none_or_clear_bad(src_p4d))
1230                         continue;
1231                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1232                                    addr, next))
1233                         return -ENOMEM;
1234         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1235         return 0;
1236 }
1237
1238 /*
1239  * Return true if the vma needs to copy the pgtable during this fork().  Return
1240  * false when we can speed up fork() by allowing lazy page faults later until
1241  * when the child accesses the memory range.
1242  */
1243 static bool
1244 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1245 {
1246         /*
1247          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1248          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1249          * contains uffd-wp protection information, that's something we can't
1250          * retrieve from page cache, and skip copying will lose those info.
1251          */
1252         if (userfaultfd_wp(dst_vma))
1253                 return true;
1254
1255         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1256                 return true;
1257
1258         if (src_vma->anon_vma)
1259                 return true;
1260
1261         /*
1262          * Don't copy ptes where a page fault will fill them correctly.  Fork
1263          * becomes much lighter when there are big shared or private readonly
1264          * mappings. The tradeoff is that copy_page_range is more efficient
1265          * than faulting.
1266          */
1267         return false;
1268 }
1269
1270 int
1271 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1272 {
1273         pgd_t *src_pgd, *dst_pgd;
1274         unsigned long next;
1275         unsigned long addr = src_vma->vm_start;
1276         unsigned long end = src_vma->vm_end;
1277         struct mm_struct *dst_mm = dst_vma->vm_mm;
1278         struct mm_struct *src_mm = src_vma->vm_mm;
1279         struct mmu_notifier_range range;
1280         bool is_cow;
1281         int ret;
1282
1283         if (!vma_needs_copy(dst_vma, src_vma))
1284                 return 0;
1285
1286         if (is_vm_hugetlb_page(src_vma))
1287                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1288
1289         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1290                 /*
1291                  * We do not free on error cases below as remove_vma
1292                  * gets called on error from higher level routine
1293                  */
1294                 ret = track_pfn_copy(src_vma);
1295                 if (ret)
1296                         return ret;
1297         }
1298
1299         /*
1300          * We need to invalidate the secondary MMU mappings only when
1301          * there could be a permission downgrade on the ptes of the
1302          * parent mm. And a permission downgrade will only happen if
1303          * is_cow_mapping() returns true.
1304          */
1305         is_cow = is_cow_mapping(src_vma->vm_flags);
1306
1307         if (is_cow) {
1308                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1309                                         0, src_mm, addr, end);
1310                 mmu_notifier_invalidate_range_start(&range);
1311                 /*
1312                  * Disabling preemption is not needed for the write side, as
1313                  * the read side doesn't spin, but goes to the mmap_lock.
1314                  *
1315                  * Use the raw variant of the seqcount_t write API to avoid
1316                  * lockdep complaining about preemptibility.
1317                  */
1318                 mmap_assert_write_locked(src_mm);
1319                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1320         }
1321
1322         ret = 0;
1323         dst_pgd = pgd_offset(dst_mm, addr);
1324         src_pgd = pgd_offset(src_mm, addr);
1325         do {
1326                 next = pgd_addr_end(addr, end);
1327                 if (pgd_none_or_clear_bad(src_pgd))
1328                         continue;
1329                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1330                                             addr, next))) {
1331                         untrack_pfn_clear(dst_vma);
1332                         ret = -ENOMEM;
1333                         break;
1334                 }
1335         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336
1337         if (is_cow) {
1338                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1339                 mmu_notifier_invalidate_range_end(&range);
1340         }
1341         return ret;
1342 }
1343
1344 /* Whether we should zap all COWed (private) pages too */
1345 static inline bool should_zap_cows(struct zap_details *details)
1346 {
1347         /* By default, zap all pages */
1348         if (!details)
1349                 return true;
1350
1351         /* Or, we zap COWed pages only if the caller wants to */
1352         return details->even_cows;
1353 }
1354
1355 /* Decides whether we should zap this page with the page pointer specified */
1356 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1357 {
1358         /* If we can make a decision without *page.. */
1359         if (should_zap_cows(details))
1360                 return true;
1361
1362         /* E.g. the caller passes NULL for the case of a zero page */
1363         if (!page)
1364                 return true;
1365
1366         /* Otherwise we should only zap non-anon pages */
1367         return !PageAnon(page);
1368 }
1369
1370 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1371 {
1372         if (!details)
1373                 return false;
1374
1375         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 }
1377
1378 /*
1379  * This function makes sure that we'll replace the none pte with an uffd-wp
1380  * swap special pte marker when necessary. Must be with the pgtable lock held.
1381  */
1382 static inline void
1383 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1384                               unsigned long addr, pte_t *pte,
1385                               struct zap_details *details, pte_t pteval)
1386 {
1387         /* Zap on anonymous always means dropping everything */
1388         if (vma_is_anonymous(vma))
1389                 return;
1390
1391         if (zap_drop_file_uffd_wp(details))
1392                 return;
1393
1394         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1395 }
1396
1397 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1398                                 struct vm_area_struct *vma, pmd_t *pmd,
1399                                 unsigned long addr, unsigned long end,
1400                                 struct zap_details *details)
1401 {
1402         struct mm_struct *mm = tlb->mm;
1403         int force_flush = 0;
1404         int rss[NR_MM_COUNTERS];
1405         spinlock_t *ptl;
1406         pte_t *start_pte;
1407         pte_t *pte;
1408         swp_entry_t entry;
1409
1410         tlb_change_page_size(tlb, PAGE_SIZE);
1411         init_rss_vec(rss);
1412         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1413         if (!pte)
1414                 return addr;
1415
1416         flush_tlb_batched_pending(mm);
1417         arch_enter_lazy_mmu_mode();
1418         do {
1419                 pte_t ptent = ptep_get(pte);
1420                 struct page *page;
1421
1422                 if (pte_none(ptent))
1423                         continue;
1424
1425                 if (need_resched())
1426                         break;
1427
1428                 if (pte_present(ptent)) {
1429                         unsigned int delay_rmap;
1430
1431                         page = vm_normal_page(vma, addr, ptent);
1432                         if (unlikely(!should_zap_page(details, page)))
1433                                 continue;
1434                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1435                                                         tlb->fullmm);
1436                         tlb_remove_tlb_entry(tlb, pte, addr);
1437                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1438                                                       ptent);
1439                         if (unlikely(!page)) {
1440                                 ksm_might_unmap_zero_page(mm, ptent);
1441                                 continue;
1442                         }
1443
1444                         delay_rmap = 0;
1445                         if (!PageAnon(page)) {
1446                                 if (pte_dirty(ptent)) {
1447                                         set_page_dirty(page);
1448                                         if (tlb_delay_rmap(tlb)) {
1449                                                 delay_rmap = 1;
1450                                                 force_flush = 1;
1451                                         }
1452                                 }
1453                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1454                                         mark_page_accessed(page);
1455                         }
1456                         rss[mm_counter(page)]--;
1457                         if (!delay_rmap) {
1458                                 page_remove_rmap(page, vma, false);
1459                                 if (unlikely(page_mapcount(page) < 0))
1460                                         print_bad_pte(vma, addr, ptent, page);
1461                         }
1462                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1463                                 force_flush = 1;
1464                                 addr += PAGE_SIZE;
1465                                 break;
1466                         }
1467                         continue;
1468                 }
1469
1470                 entry = pte_to_swp_entry(ptent);
1471                 if (is_device_private_entry(entry) ||
1472                     is_device_exclusive_entry(entry)) {
1473                         page = pfn_swap_entry_to_page(entry);
1474                         if (unlikely(!should_zap_page(details, page)))
1475                                 continue;
1476                         /*
1477                          * Both device private/exclusive mappings should only
1478                          * work with anonymous page so far, so we don't need to
1479                          * consider uffd-wp bit when zap. For more information,
1480                          * see zap_install_uffd_wp_if_needed().
1481                          */
1482                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1483                         rss[mm_counter(page)]--;
1484                         if (is_device_private_entry(entry))
1485                                 page_remove_rmap(page, vma, false);
1486                         put_page(page);
1487                 } else if (!non_swap_entry(entry)) {
1488                         /* Genuine swap entry, hence a private anon page */
1489                         if (!should_zap_cows(details))
1490                                 continue;
1491                         rss[MM_SWAPENTS]--;
1492                         if (unlikely(!free_swap_and_cache(entry)))
1493                                 print_bad_pte(vma, addr, ptent, NULL);
1494                 } else if (is_migration_entry(entry)) {
1495                         page = pfn_swap_entry_to_page(entry);
1496                         if (!should_zap_page(details, page))
1497                                 continue;
1498                         rss[mm_counter(page)]--;
1499                 } else if (pte_marker_entry_uffd_wp(entry)) {
1500                         /*
1501                          * For anon: always drop the marker; for file: only
1502                          * drop the marker if explicitly requested.
1503                          */
1504                         if (!vma_is_anonymous(vma) &&
1505                             !zap_drop_file_uffd_wp(details))
1506                                 continue;
1507                 } else if (is_hwpoison_entry(entry) ||
1508                            is_poisoned_swp_entry(entry)) {
1509                         if (!should_zap_cows(details))
1510                                 continue;
1511                 } else {
1512                         /* We should have covered all the swap entry types */
1513                         WARN_ON_ONCE(1);
1514                 }
1515                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1516                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1517         } while (pte++, addr += PAGE_SIZE, addr != end);
1518
1519         add_mm_rss_vec(mm, rss);
1520         arch_leave_lazy_mmu_mode();
1521
1522         /* Do the actual TLB flush before dropping ptl */
1523         if (force_flush) {
1524                 tlb_flush_mmu_tlbonly(tlb);
1525                 tlb_flush_rmaps(tlb, vma);
1526         }
1527         pte_unmap_unlock(start_pte, ptl);
1528
1529         /*
1530          * If we forced a TLB flush (either due to running out of
1531          * batch buffers or because we needed to flush dirty TLB
1532          * entries before releasing the ptl), free the batched
1533          * memory too. Come back again if we didn't do everything.
1534          */
1535         if (force_flush)
1536                 tlb_flush_mmu(tlb);
1537
1538         return addr;
1539 }
1540
1541 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1542                                 struct vm_area_struct *vma, pud_t *pud,
1543                                 unsigned long addr, unsigned long end,
1544                                 struct zap_details *details)
1545 {
1546         pmd_t *pmd;
1547         unsigned long next;
1548
1549         pmd = pmd_offset(pud, addr);
1550         do {
1551                 next = pmd_addr_end(addr, end);
1552                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1553                         if (next - addr != HPAGE_PMD_SIZE)
1554                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1555                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1556                                 addr = next;
1557                                 continue;
1558                         }
1559                         /* fall through */
1560                 } else if (details && details->single_folio &&
1561                            folio_test_pmd_mappable(details->single_folio) &&
1562                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1563                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1564                         /*
1565                          * Take and drop THP pmd lock so that we cannot return
1566                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1567                          * but not yet decremented compound_mapcount().
1568                          */
1569                         spin_unlock(ptl);
1570                 }
1571                 if (pmd_none(*pmd)) {
1572                         addr = next;
1573                         continue;
1574                 }
1575                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576                 if (addr != next)
1577                         pmd--;
1578         } while (pmd++, cond_resched(), addr != end);
1579
1580         return addr;
1581 }
1582
1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1584                                 struct vm_area_struct *vma, p4d_t *p4d,
1585                                 unsigned long addr, unsigned long end,
1586                                 struct zap_details *details)
1587 {
1588         pud_t *pud;
1589         unsigned long next;
1590
1591         pud = pud_offset(p4d, addr);
1592         do {
1593                 next = pud_addr_end(addr, end);
1594                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595                         if (next - addr != HPAGE_PUD_SIZE) {
1596                                 mmap_assert_locked(tlb->mm);
1597                                 split_huge_pud(vma, pud, addr);
1598                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1599                                 goto next;
1600                         /* fall through */
1601                 }
1602                 if (pud_none_or_clear_bad(pud))
1603                         continue;
1604                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 next:
1606                 cond_resched();
1607         } while (pud++, addr = next, addr != end);
1608
1609         return addr;
1610 }
1611
1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613                                 struct vm_area_struct *vma, pgd_t *pgd,
1614                                 unsigned long addr, unsigned long end,
1615                                 struct zap_details *details)
1616 {
1617         p4d_t *p4d;
1618         unsigned long next;
1619
1620         p4d = p4d_offset(pgd, addr);
1621         do {
1622                 next = p4d_addr_end(addr, end);
1623                 if (p4d_none_or_clear_bad(p4d))
1624                         continue;
1625                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626         } while (p4d++, addr = next, addr != end);
1627
1628         return addr;
1629 }
1630
1631 void unmap_page_range(struct mmu_gather *tlb,
1632                              struct vm_area_struct *vma,
1633                              unsigned long addr, unsigned long end,
1634                              struct zap_details *details)
1635 {
1636         pgd_t *pgd;
1637         unsigned long next;
1638
1639         BUG_ON(addr >= end);
1640         tlb_start_vma(tlb, vma);
1641         pgd = pgd_offset(vma->vm_mm, addr);
1642         do {
1643                 next = pgd_addr_end(addr, end);
1644                 if (pgd_none_or_clear_bad(pgd))
1645                         continue;
1646                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1647         } while (pgd++, addr = next, addr != end);
1648         tlb_end_vma(tlb, vma);
1649 }
1650
1651
1652 static void unmap_single_vma(struct mmu_gather *tlb,
1653                 struct vm_area_struct *vma, unsigned long start_addr,
1654                 unsigned long end_addr,
1655                 struct zap_details *details, bool mm_wr_locked)
1656 {
1657         unsigned long start = max(vma->vm_start, start_addr);
1658         unsigned long end;
1659
1660         if (start >= vma->vm_end)
1661                 return;
1662         end = min(vma->vm_end, end_addr);
1663         if (end <= vma->vm_start)
1664                 return;
1665
1666         if (vma->vm_file)
1667                 uprobe_munmap(vma, start, end);
1668
1669         if (unlikely(vma->vm_flags & VM_PFNMAP))
1670                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1671
1672         if (start != end) {
1673                 if (unlikely(is_vm_hugetlb_page(vma))) {
1674                         /*
1675                          * It is undesirable to test vma->vm_file as it
1676                          * should be non-null for valid hugetlb area.
1677                          * However, vm_file will be NULL in the error
1678                          * cleanup path of mmap_region. When
1679                          * hugetlbfs ->mmap method fails,
1680                          * mmap_region() nullifies vma->vm_file
1681                          * before calling this function to clean up.
1682                          * Since no pte has actually been setup, it is
1683                          * safe to do nothing in this case.
1684                          */
1685                         if (vma->vm_file) {
1686                                 zap_flags_t zap_flags = details ?
1687                                     details->zap_flags : 0;
1688                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1689                                                              NULL, zap_flags);
1690                         }
1691                 } else
1692                         unmap_page_range(tlb, vma, start, end, details);
1693         }
1694 }
1695
1696 /**
1697  * unmap_vmas - unmap a range of memory covered by a list of vma's
1698  * @tlb: address of the caller's struct mmu_gather
1699  * @mt: the maple tree
1700  * @vma: the starting vma
1701  * @start_addr: virtual address at which to start unmapping
1702  * @end_addr: virtual address at which to end unmapping
1703  * @mm_wr_locked: lock flag
1704  *
1705  * Unmap all pages in the vma list.
1706  *
1707  * Only addresses between `start' and `end' will be unmapped.
1708  *
1709  * The VMA list must be sorted in ascending virtual address order.
1710  *
1711  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712  * range after unmap_vmas() returns.  So the only responsibility here is to
1713  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714  * drops the lock and schedules.
1715  */
1716 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1717                 struct vm_area_struct *vma, unsigned long start_addr,
1718                 unsigned long end_addr, bool mm_wr_locked)
1719 {
1720         struct mmu_notifier_range range;
1721         struct zap_details details = {
1722                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1723                 /* Careful - we need to zap private pages too! */
1724                 .even_cows = true,
1725         };
1726         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1727
1728         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1729                                 start_addr, end_addr);
1730         mmu_notifier_invalidate_range_start(&range);
1731         do {
1732                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1733                                  mm_wr_locked);
1734         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1735         mmu_notifier_invalidate_range_end(&range);
1736 }
1737
1738 /**
1739  * zap_page_range_single - remove user pages in a given range
1740  * @vma: vm_area_struct holding the applicable pages
1741  * @address: starting address of pages to zap
1742  * @size: number of bytes to zap
1743  * @details: details of shared cache invalidation
1744  *
1745  * The range must fit into one VMA.
1746  */
1747 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1748                 unsigned long size, struct zap_details *details)
1749 {
1750         const unsigned long end = address + size;
1751         struct mmu_notifier_range range;
1752         struct mmu_gather tlb;
1753
1754         lru_add_drain();
1755         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1756                                 address, end);
1757         if (is_vm_hugetlb_page(vma))
1758                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1759                                                      &range.end);
1760         tlb_gather_mmu(&tlb, vma->vm_mm);
1761         update_hiwater_rss(vma->vm_mm);
1762         mmu_notifier_invalidate_range_start(&range);
1763         /*
1764          * unmap 'address-end' not 'range.start-range.end' as range
1765          * could have been expanded for hugetlb pmd sharing.
1766          */
1767         unmap_single_vma(&tlb, vma, address, end, details, false);
1768         mmu_notifier_invalidate_range_end(&range);
1769         tlb_finish_mmu(&tlb);
1770 }
1771
1772 /**
1773  * zap_vma_ptes - remove ptes mapping the vma
1774  * @vma: vm_area_struct holding ptes to be zapped
1775  * @address: starting address of pages to zap
1776  * @size: number of bytes to zap
1777  *
1778  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1779  *
1780  * The entire address range must be fully contained within the vma.
1781  *
1782  */
1783 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1784                 unsigned long size)
1785 {
1786         if (!range_in_vma(vma, address, address + size) ||
1787                         !(vma->vm_flags & VM_PFNMAP))
1788                 return;
1789
1790         zap_page_range_single(vma, address, size, NULL);
1791 }
1792 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1793
1794 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1795 {
1796         pgd_t *pgd;
1797         p4d_t *p4d;
1798         pud_t *pud;
1799         pmd_t *pmd;
1800
1801         pgd = pgd_offset(mm, addr);
1802         p4d = p4d_alloc(mm, pgd, addr);
1803         if (!p4d)
1804                 return NULL;
1805         pud = pud_alloc(mm, p4d, addr);
1806         if (!pud)
1807                 return NULL;
1808         pmd = pmd_alloc(mm, pud, addr);
1809         if (!pmd)
1810                 return NULL;
1811
1812         VM_BUG_ON(pmd_trans_huge(*pmd));
1813         return pmd;
1814 }
1815
1816 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1817                         spinlock_t **ptl)
1818 {
1819         pmd_t *pmd = walk_to_pmd(mm, addr);
1820
1821         if (!pmd)
1822                 return NULL;
1823         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1824 }
1825
1826 static int validate_page_before_insert(struct page *page)
1827 {
1828         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1829                 return -EINVAL;
1830         flush_dcache_page(page);
1831         return 0;
1832 }
1833
1834 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1835                         unsigned long addr, struct page *page, pgprot_t prot)
1836 {
1837         if (!pte_none(ptep_get(pte)))
1838                 return -EBUSY;
1839         /* Ok, finally just insert the thing.. */
1840         get_page(page);
1841         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1842         page_add_file_rmap(page, vma, false);
1843         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1844         return 0;
1845 }
1846
1847 /*
1848  * This is the old fallback for page remapping.
1849  *
1850  * For historical reasons, it only allows reserved pages. Only
1851  * old drivers should use this, and they needed to mark their
1852  * pages reserved for the old functions anyway.
1853  */
1854 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1855                         struct page *page, pgprot_t prot)
1856 {
1857         int retval;
1858         pte_t *pte;
1859         spinlock_t *ptl;
1860
1861         retval = validate_page_before_insert(page);
1862         if (retval)
1863                 goto out;
1864         retval = -ENOMEM;
1865         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1866         if (!pte)
1867                 goto out;
1868         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1869         pte_unmap_unlock(pte, ptl);
1870 out:
1871         return retval;
1872 }
1873
1874 #ifdef pte_index
1875 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1876                         unsigned long addr, struct page *page, pgprot_t prot)
1877 {
1878         int err;
1879
1880         if (!page_count(page))
1881                 return -EINVAL;
1882         err = validate_page_before_insert(page);
1883         if (err)
1884                 return err;
1885         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886 }
1887
1888 /* insert_pages() amortizes the cost of spinlock operations
1889  * when inserting pages in a loop. Arch *must* define pte_index.
1890  */
1891 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1892                         struct page **pages, unsigned long *num, pgprot_t prot)
1893 {
1894         pmd_t *pmd = NULL;
1895         pte_t *start_pte, *pte;
1896         spinlock_t *pte_lock;
1897         struct mm_struct *const mm = vma->vm_mm;
1898         unsigned long curr_page_idx = 0;
1899         unsigned long remaining_pages_total = *num;
1900         unsigned long pages_to_write_in_pmd;
1901         int ret;
1902 more:
1903         ret = -EFAULT;
1904         pmd = walk_to_pmd(mm, addr);
1905         if (!pmd)
1906                 goto out;
1907
1908         pages_to_write_in_pmd = min_t(unsigned long,
1909                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1910
1911         /* Allocate the PTE if necessary; takes PMD lock once only. */
1912         ret = -ENOMEM;
1913         if (pte_alloc(mm, pmd))
1914                 goto out;
1915
1916         while (pages_to_write_in_pmd) {
1917                 int pte_idx = 0;
1918                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1919
1920                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1921                 if (!start_pte) {
1922                         ret = -EFAULT;
1923                         goto out;
1924                 }
1925                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1926                         int err = insert_page_in_batch_locked(vma, pte,
1927                                 addr, pages[curr_page_idx], prot);
1928                         if (unlikely(err)) {
1929                                 pte_unmap_unlock(start_pte, pte_lock);
1930                                 ret = err;
1931                                 remaining_pages_total -= pte_idx;
1932                                 goto out;
1933                         }
1934                         addr += PAGE_SIZE;
1935                         ++curr_page_idx;
1936                 }
1937                 pte_unmap_unlock(start_pte, pte_lock);
1938                 pages_to_write_in_pmd -= batch_size;
1939                 remaining_pages_total -= batch_size;
1940         }
1941         if (remaining_pages_total)
1942                 goto more;
1943         ret = 0;
1944 out:
1945         *num = remaining_pages_total;
1946         return ret;
1947 }
1948 #endif  /* ifdef pte_index */
1949
1950 /**
1951  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1952  * @vma: user vma to map to
1953  * @addr: target start user address of these pages
1954  * @pages: source kernel pages
1955  * @num: in: number of pages to map. out: number of pages that were *not*
1956  * mapped. (0 means all pages were successfully mapped).
1957  *
1958  * Preferred over vm_insert_page() when inserting multiple pages.
1959  *
1960  * In case of error, we may have mapped a subset of the provided
1961  * pages. It is the caller's responsibility to account for this case.
1962  *
1963  * The same restrictions apply as in vm_insert_page().
1964  */
1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1966                         struct page **pages, unsigned long *num)
1967 {
1968 #ifdef pte_index
1969         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1970
1971         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1972                 return -EFAULT;
1973         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1974                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1975                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1976                 vm_flags_set(vma, VM_MIXEDMAP);
1977         }
1978         /* Defer page refcount checking till we're about to map that page. */
1979         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1980 #else
1981         unsigned long idx = 0, pgcount = *num;
1982         int err = -EINVAL;
1983
1984         for (; idx < pgcount; ++idx) {
1985                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1986                 if (err)
1987                         break;
1988         }
1989         *num = pgcount - idx;
1990         return err;
1991 #endif  /* ifdef pte_index */
1992 }
1993 EXPORT_SYMBOL(vm_insert_pages);
1994
1995 /**
1996  * vm_insert_page - insert single page into user vma
1997  * @vma: user vma to map to
1998  * @addr: target user address of this page
1999  * @page: source kernel page
2000  *
2001  * This allows drivers to insert individual pages they've allocated
2002  * into a user vma.
2003  *
2004  * The page has to be a nice clean _individual_ kernel allocation.
2005  * If you allocate a compound page, you need to have marked it as
2006  * such (__GFP_COMP), or manually just split the page up yourself
2007  * (see split_page()).
2008  *
2009  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2010  * took an arbitrary page protection parameter. This doesn't allow
2011  * that. Your vma protection will have to be set up correctly, which
2012  * means that if you want a shared writable mapping, you'd better
2013  * ask for a shared writable mapping!
2014  *
2015  * The page does not need to be reserved.
2016  *
2017  * Usually this function is called from f_op->mmap() handler
2018  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2019  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2020  * function from other places, for example from page-fault handler.
2021  *
2022  * Return: %0 on success, negative error code otherwise.
2023  */
2024 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2025                         struct page *page)
2026 {
2027         if (addr < vma->vm_start || addr >= vma->vm_end)
2028                 return -EFAULT;
2029         if (!page_count(page))
2030                 return -EINVAL;
2031         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2032                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2033                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2034                 vm_flags_set(vma, VM_MIXEDMAP);
2035         }
2036         return insert_page(vma, addr, page, vma->vm_page_prot);
2037 }
2038 EXPORT_SYMBOL(vm_insert_page);
2039
2040 /*
2041  * __vm_map_pages - maps range of kernel pages into user vma
2042  * @vma: user vma to map to
2043  * @pages: pointer to array of source kernel pages
2044  * @num: number of pages in page array
2045  * @offset: user's requested vm_pgoff
2046  *
2047  * This allows drivers to map range of kernel pages into a user vma.
2048  *
2049  * Return: 0 on success and error code otherwise.
2050  */
2051 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2052                                 unsigned long num, unsigned long offset)
2053 {
2054         unsigned long count = vma_pages(vma);
2055         unsigned long uaddr = vma->vm_start;
2056         int ret, i;
2057
2058         /* Fail if the user requested offset is beyond the end of the object */
2059         if (offset >= num)
2060                 return -ENXIO;
2061
2062         /* Fail if the user requested size exceeds available object size */
2063         if (count > num - offset)
2064                 return -ENXIO;
2065
2066         for (i = 0; i < count; i++) {
2067                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2068                 if (ret < 0)
2069                         return ret;
2070                 uaddr += PAGE_SIZE;
2071         }
2072
2073         return 0;
2074 }
2075
2076 /**
2077  * vm_map_pages - maps range of kernel pages starts with non zero offset
2078  * @vma: user vma to map to
2079  * @pages: pointer to array of source kernel pages
2080  * @num: number of pages in page array
2081  *
2082  * Maps an object consisting of @num pages, catering for the user's
2083  * requested vm_pgoff
2084  *
2085  * If we fail to insert any page into the vma, the function will return
2086  * immediately leaving any previously inserted pages present.  Callers
2087  * from the mmap handler may immediately return the error as their caller
2088  * will destroy the vma, removing any successfully inserted pages. Other
2089  * callers should make their own arrangements for calling unmap_region().
2090  *
2091  * Context: Process context. Called by mmap handlers.
2092  * Return: 0 on success and error code otherwise.
2093  */
2094 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2095                                 unsigned long num)
2096 {
2097         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2098 }
2099 EXPORT_SYMBOL(vm_map_pages);
2100
2101 /**
2102  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2103  * @vma: user vma to map to
2104  * @pages: pointer to array of source kernel pages
2105  * @num: number of pages in page array
2106  *
2107  * Similar to vm_map_pages(), except that it explicitly sets the offset
2108  * to 0. This function is intended for the drivers that did not consider
2109  * vm_pgoff.
2110  *
2111  * Context: Process context. Called by mmap handlers.
2112  * Return: 0 on success and error code otherwise.
2113  */
2114 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2115                                 unsigned long num)
2116 {
2117         return __vm_map_pages(vma, pages, num, 0);
2118 }
2119 EXPORT_SYMBOL(vm_map_pages_zero);
2120
2121 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2122                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2123 {
2124         struct mm_struct *mm = vma->vm_mm;
2125         pte_t *pte, entry;
2126         spinlock_t *ptl;
2127
2128         pte = get_locked_pte(mm, addr, &ptl);
2129         if (!pte)
2130                 return VM_FAULT_OOM;
2131         entry = ptep_get(pte);
2132         if (!pte_none(entry)) {
2133                 if (mkwrite) {
2134                         /*
2135                          * For read faults on private mappings the PFN passed
2136                          * in may not match the PFN we have mapped if the
2137                          * mapped PFN is a writeable COW page.  In the mkwrite
2138                          * case we are creating a writable PTE for a shared
2139                          * mapping and we expect the PFNs to match. If they
2140                          * don't match, we are likely racing with block
2141                          * allocation and mapping invalidation so just skip the
2142                          * update.
2143                          */
2144                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2145                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2146                                 goto out_unlock;
2147                         }
2148                         entry = pte_mkyoung(entry);
2149                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2151                                 update_mmu_cache(vma, addr, pte);
2152                 }
2153                 goto out_unlock;
2154         }
2155
2156         /* Ok, finally just insert the thing.. */
2157         if (pfn_t_devmap(pfn))
2158                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2159         else
2160                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2161
2162         if (mkwrite) {
2163                 entry = pte_mkyoung(entry);
2164                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165         }
2166
2167         set_pte_at(mm, addr, pte, entry);
2168         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2169
2170 out_unlock:
2171         pte_unmap_unlock(pte, ptl);
2172         return VM_FAULT_NOPAGE;
2173 }
2174
2175 /**
2176  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2177  * @vma: user vma to map to
2178  * @addr: target user address of this page
2179  * @pfn: source kernel pfn
2180  * @pgprot: pgprot flags for the inserted page
2181  *
2182  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2183  * to override pgprot on a per-page basis.
2184  *
2185  * This only makes sense for IO mappings, and it makes no sense for
2186  * COW mappings.  In general, using multiple vmas is preferable;
2187  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2188  * impractical.
2189  *
2190  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2191  * caching- and encryption bits different than those of @vma->vm_page_prot,
2192  * because the caching- or encryption mode may not be known at mmap() time.
2193  *
2194  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2195  * to set caching and encryption bits for those vmas (except for COW pages).
2196  * This is ensured by core vm only modifying these page table entries using
2197  * functions that don't touch caching- or encryption bits, using pte_modify()
2198  * if needed. (See for example mprotect()).
2199  *
2200  * Also when new page-table entries are created, this is only done using the
2201  * fault() callback, and never using the value of vma->vm_page_prot,
2202  * except for page-table entries that point to anonymous pages as the result
2203  * of COW.
2204  *
2205  * Context: Process context.  May allocate using %GFP_KERNEL.
2206  * Return: vm_fault_t value.
2207  */
2208 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2209                         unsigned long pfn, pgprot_t pgprot)
2210 {
2211         /*
2212          * Technically, architectures with pte_special can avoid all these
2213          * restrictions (same for remap_pfn_range).  However we would like
2214          * consistency in testing and feature parity among all, so we should
2215          * try to keep these invariants in place for everybody.
2216          */
2217         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219                                                 (VM_PFNMAP|VM_MIXEDMAP));
2220         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2222
2223         if (addr < vma->vm_start || addr >= vma->vm_end)
2224                 return VM_FAULT_SIGBUS;
2225
2226         if (!pfn_modify_allowed(pfn, pgprot))
2227                 return VM_FAULT_SIGBUS;
2228
2229         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2230
2231         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2232                         false);
2233 }
2234 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2235
2236 /**
2237  * vmf_insert_pfn - insert single pfn into user vma
2238  * @vma: user vma to map to
2239  * @addr: target user address of this page
2240  * @pfn: source kernel pfn
2241  *
2242  * Similar to vm_insert_page, this allows drivers to insert individual pages
2243  * they've allocated into a user vma. Same comments apply.
2244  *
2245  * This function should only be called from a vm_ops->fault handler, and
2246  * in that case the handler should return the result of this function.
2247  *
2248  * vma cannot be a COW mapping.
2249  *
2250  * As this is called only for pages that do not currently exist, we
2251  * do not need to flush old virtual caches or the TLB.
2252  *
2253  * Context: Process context.  May allocate using %GFP_KERNEL.
2254  * Return: vm_fault_t value.
2255  */
2256 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2257                         unsigned long pfn)
2258 {
2259         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2260 }
2261 EXPORT_SYMBOL(vmf_insert_pfn);
2262
2263 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2264 {
2265         /* these checks mirror the abort conditions in vm_normal_page */
2266         if (vma->vm_flags & VM_MIXEDMAP)
2267                 return true;
2268         if (pfn_t_devmap(pfn))
2269                 return true;
2270         if (pfn_t_special(pfn))
2271                 return true;
2272         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2273                 return true;
2274         return false;
2275 }
2276
2277 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2278                 unsigned long addr, pfn_t pfn, bool mkwrite)
2279 {
2280         pgprot_t pgprot = vma->vm_page_prot;
2281         int err;
2282
2283         BUG_ON(!vm_mixed_ok(vma, pfn));
2284
2285         if (addr < vma->vm_start || addr >= vma->vm_end)
2286                 return VM_FAULT_SIGBUS;
2287
2288         track_pfn_insert(vma, &pgprot, pfn);
2289
2290         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2291                 return VM_FAULT_SIGBUS;
2292
2293         /*
2294          * If we don't have pte special, then we have to use the pfn_valid()
2295          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2296          * refcount the page if pfn_valid is true (hence insert_page rather
2297          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2298          * without pte special, it would there be refcounted as a normal page.
2299          */
2300         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2301             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2302                 struct page *page;
2303
2304                 /*
2305                  * At this point we are committed to insert_page()
2306                  * regardless of whether the caller specified flags that
2307                  * result in pfn_t_has_page() == false.
2308                  */
2309                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2310                 err = insert_page(vma, addr, page, pgprot);
2311         } else {
2312                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2313         }
2314
2315         if (err == -ENOMEM)
2316                 return VM_FAULT_OOM;
2317         if (err < 0 && err != -EBUSY)
2318                 return VM_FAULT_SIGBUS;
2319
2320         return VM_FAULT_NOPAGE;
2321 }
2322
2323 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2324                 pfn_t pfn)
2325 {
2326         return __vm_insert_mixed(vma, addr, pfn, false);
2327 }
2328 EXPORT_SYMBOL(vmf_insert_mixed);
2329
2330 /*
2331  *  If the insertion of PTE failed because someone else already added a
2332  *  different entry in the mean time, we treat that as success as we assume
2333  *  the same entry was actually inserted.
2334  */
2335 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2336                 unsigned long addr, pfn_t pfn)
2337 {
2338         return __vm_insert_mixed(vma, addr, pfn, true);
2339 }
2340 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2341
2342 /*
2343  * maps a range of physical memory into the requested pages. the old
2344  * mappings are removed. any references to nonexistent pages results
2345  * in null mappings (currently treated as "copy-on-access")
2346  */
2347 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2348                         unsigned long addr, unsigned long end,
2349                         unsigned long pfn, pgprot_t prot)
2350 {
2351         pte_t *pte, *mapped_pte;
2352         spinlock_t *ptl;
2353         int err = 0;
2354
2355         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2356         if (!pte)
2357                 return -ENOMEM;
2358         arch_enter_lazy_mmu_mode();
2359         do {
2360                 BUG_ON(!pte_none(ptep_get(pte)));
2361                 if (!pfn_modify_allowed(pfn, prot)) {
2362                         err = -EACCES;
2363                         break;
2364                 }
2365                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2366                 pfn++;
2367         } while (pte++, addr += PAGE_SIZE, addr != end);
2368         arch_leave_lazy_mmu_mode();
2369         pte_unmap_unlock(mapped_pte, ptl);
2370         return err;
2371 }
2372
2373 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2374                         unsigned long addr, unsigned long end,
2375                         unsigned long pfn, pgprot_t prot)
2376 {
2377         pmd_t *pmd;
2378         unsigned long next;
2379         int err;
2380
2381         pfn -= addr >> PAGE_SHIFT;
2382         pmd = pmd_alloc(mm, pud, addr);
2383         if (!pmd)
2384                 return -ENOMEM;
2385         VM_BUG_ON(pmd_trans_huge(*pmd));
2386         do {
2387                 next = pmd_addr_end(addr, end);
2388                 err = remap_pte_range(mm, pmd, addr, next,
2389                                 pfn + (addr >> PAGE_SHIFT), prot);
2390                 if (err)
2391                         return err;
2392         } while (pmd++, addr = next, addr != end);
2393         return 0;
2394 }
2395
2396 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2397                         unsigned long addr, unsigned long end,
2398                         unsigned long pfn, pgprot_t prot)
2399 {
2400         pud_t *pud;
2401         unsigned long next;
2402         int err;
2403
2404         pfn -= addr >> PAGE_SHIFT;
2405         pud = pud_alloc(mm, p4d, addr);
2406         if (!pud)
2407                 return -ENOMEM;
2408         do {
2409                 next = pud_addr_end(addr, end);
2410                 err = remap_pmd_range(mm, pud, addr, next,
2411                                 pfn + (addr >> PAGE_SHIFT), prot);
2412                 if (err)
2413                         return err;
2414         } while (pud++, addr = next, addr != end);
2415         return 0;
2416 }
2417
2418 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2419                         unsigned long addr, unsigned long end,
2420                         unsigned long pfn, pgprot_t prot)
2421 {
2422         p4d_t *p4d;
2423         unsigned long next;
2424         int err;
2425
2426         pfn -= addr >> PAGE_SHIFT;
2427         p4d = p4d_alloc(mm, pgd, addr);
2428         if (!p4d)
2429                 return -ENOMEM;
2430         do {
2431                 next = p4d_addr_end(addr, end);
2432                 err = remap_pud_range(mm, p4d, addr, next,
2433                                 pfn + (addr >> PAGE_SHIFT), prot);
2434                 if (err)
2435                         return err;
2436         } while (p4d++, addr = next, addr != end);
2437         return 0;
2438 }
2439
2440 /*
2441  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2442  * must have pre-validated the caching bits of the pgprot_t.
2443  */
2444 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2445                 unsigned long pfn, unsigned long size, pgprot_t prot)
2446 {
2447         pgd_t *pgd;
2448         unsigned long next;
2449         unsigned long end = addr + PAGE_ALIGN(size);
2450         struct mm_struct *mm = vma->vm_mm;
2451         int err;
2452
2453         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2454                 return -EINVAL;
2455
2456         /*
2457          * Physically remapped pages are special. Tell the
2458          * rest of the world about it:
2459          *   VM_IO tells people not to look at these pages
2460          *      (accesses can have side effects).
2461          *   VM_PFNMAP tells the core MM that the base pages are just
2462          *      raw PFN mappings, and do not have a "struct page" associated
2463          *      with them.
2464          *   VM_DONTEXPAND
2465          *      Disable vma merging and expanding with mremap().
2466          *   VM_DONTDUMP
2467          *      Omit vma from core dump, even when VM_IO turned off.
2468          *
2469          * There's a horrible special case to handle copy-on-write
2470          * behaviour that some programs depend on. We mark the "original"
2471          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2472          * See vm_normal_page() for details.
2473          */
2474         if (is_cow_mapping(vma->vm_flags)) {
2475                 if (addr != vma->vm_start || end != vma->vm_end)
2476                         return -EINVAL;
2477                 vma->vm_pgoff = pfn;
2478         }
2479
2480         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2481
2482         BUG_ON(addr >= end);
2483         pfn -= addr >> PAGE_SHIFT;
2484         pgd = pgd_offset(mm, addr);
2485         flush_cache_range(vma, addr, end);
2486         do {
2487                 next = pgd_addr_end(addr, end);
2488                 err = remap_p4d_range(mm, pgd, addr, next,
2489                                 pfn + (addr >> PAGE_SHIFT), prot);
2490                 if (err)
2491                         return err;
2492         } while (pgd++, addr = next, addr != end);
2493
2494         return 0;
2495 }
2496
2497 /**
2498  * remap_pfn_range - remap kernel memory to userspace
2499  * @vma: user vma to map to
2500  * @addr: target page aligned user address to start at
2501  * @pfn: page frame number of kernel physical memory address
2502  * @size: size of mapping area
2503  * @prot: page protection flags for this mapping
2504  *
2505  * Note: this is only safe if the mm semaphore is held when called.
2506  *
2507  * Return: %0 on success, negative error code otherwise.
2508  */
2509 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2510                     unsigned long pfn, unsigned long size, pgprot_t prot)
2511 {
2512         int err;
2513
2514         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2515         if (err)
2516                 return -EINVAL;
2517
2518         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2519         if (err)
2520                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2521         return err;
2522 }
2523 EXPORT_SYMBOL(remap_pfn_range);
2524
2525 /**
2526  * vm_iomap_memory - remap memory to userspace
2527  * @vma: user vma to map to
2528  * @start: start of the physical memory to be mapped
2529  * @len: size of area
2530  *
2531  * This is a simplified io_remap_pfn_range() for common driver use. The
2532  * driver just needs to give us the physical memory range to be mapped,
2533  * we'll figure out the rest from the vma information.
2534  *
2535  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2536  * whatever write-combining details or similar.
2537  *
2538  * Return: %0 on success, negative error code otherwise.
2539  */
2540 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2541 {
2542         unsigned long vm_len, pfn, pages;
2543
2544         /* Check that the physical memory area passed in looks valid */
2545         if (start + len < start)
2546                 return -EINVAL;
2547         /*
2548          * You *really* shouldn't map things that aren't page-aligned,
2549          * but we've historically allowed it because IO memory might
2550          * just have smaller alignment.
2551          */
2552         len += start & ~PAGE_MASK;
2553         pfn = start >> PAGE_SHIFT;
2554         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2555         if (pfn + pages < pfn)
2556                 return -EINVAL;
2557
2558         /* We start the mapping 'vm_pgoff' pages into the area */
2559         if (vma->vm_pgoff > pages)
2560                 return -EINVAL;
2561         pfn += vma->vm_pgoff;
2562         pages -= vma->vm_pgoff;
2563
2564         /* Can we fit all of the mapping? */
2565         vm_len = vma->vm_end - vma->vm_start;
2566         if (vm_len >> PAGE_SHIFT > pages)
2567                 return -EINVAL;
2568
2569         /* Ok, let it rip */
2570         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2571 }
2572 EXPORT_SYMBOL(vm_iomap_memory);
2573
2574 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2575                                      unsigned long addr, unsigned long end,
2576                                      pte_fn_t fn, void *data, bool create,
2577                                      pgtbl_mod_mask *mask)
2578 {
2579         pte_t *pte, *mapped_pte;
2580         int err = 0;
2581         spinlock_t *ptl;
2582
2583         if (create) {
2584                 mapped_pte = pte = (mm == &init_mm) ?
2585                         pte_alloc_kernel_track(pmd, addr, mask) :
2586                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2587                 if (!pte)
2588                         return -ENOMEM;
2589         } else {
2590                 mapped_pte = pte = (mm == &init_mm) ?
2591                         pte_offset_kernel(pmd, addr) :
2592                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2593                 if (!pte)
2594                         return -EINVAL;
2595         }
2596
2597         arch_enter_lazy_mmu_mode();
2598
2599         if (fn) {
2600                 do {
2601                         if (create || !pte_none(ptep_get(pte))) {
2602                                 err = fn(pte++, addr, data);
2603                                 if (err)
2604                                         break;
2605                         }
2606                 } while (addr += PAGE_SIZE, addr != end);
2607         }
2608         *mask |= PGTBL_PTE_MODIFIED;
2609
2610         arch_leave_lazy_mmu_mode();
2611
2612         if (mm != &init_mm)
2613                 pte_unmap_unlock(mapped_pte, ptl);
2614         return err;
2615 }
2616
2617 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2618                                      unsigned long addr, unsigned long end,
2619                                      pte_fn_t fn, void *data, bool create,
2620                                      pgtbl_mod_mask *mask)
2621 {
2622         pmd_t *pmd;
2623         unsigned long next;
2624         int err = 0;
2625
2626         BUG_ON(pud_huge(*pud));
2627
2628         if (create) {
2629                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2630                 if (!pmd)
2631                         return -ENOMEM;
2632         } else {
2633                 pmd = pmd_offset(pud, addr);
2634         }
2635         do {
2636                 next = pmd_addr_end(addr, end);
2637                 if (pmd_none(*pmd) && !create)
2638                         continue;
2639                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2640                         return -EINVAL;
2641                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2642                         if (!create)
2643                                 continue;
2644                         pmd_clear_bad(pmd);
2645                 }
2646                 err = apply_to_pte_range(mm, pmd, addr, next,
2647                                          fn, data, create, mask);
2648                 if (err)
2649                         break;
2650         } while (pmd++, addr = next, addr != end);
2651
2652         return err;
2653 }
2654
2655 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2656                                      unsigned long addr, unsigned long end,
2657                                      pte_fn_t fn, void *data, bool create,
2658                                      pgtbl_mod_mask *mask)
2659 {
2660         pud_t *pud;
2661         unsigned long next;
2662         int err = 0;
2663
2664         if (create) {
2665                 pud = pud_alloc_track(mm, p4d, addr, mask);
2666                 if (!pud)
2667                         return -ENOMEM;
2668         } else {
2669                 pud = pud_offset(p4d, addr);
2670         }
2671         do {
2672                 next = pud_addr_end(addr, end);
2673                 if (pud_none(*pud) && !create)
2674                         continue;
2675                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2676                         return -EINVAL;
2677                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2678                         if (!create)
2679                                 continue;
2680                         pud_clear_bad(pud);
2681                 }
2682                 err = apply_to_pmd_range(mm, pud, addr, next,
2683                                          fn, data, create, mask);
2684                 if (err)
2685                         break;
2686         } while (pud++, addr = next, addr != end);
2687
2688         return err;
2689 }
2690
2691 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2692                                      unsigned long addr, unsigned long end,
2693                                      pte_fn_t fn, void *data, bool create,
2694                                      pgtbl_mod_mask *mask)
2695 {
2696         p4d_t *p4d;
2697         unsigned long next;
2698         int err = 0;
2699
2700         if (create) {
2701                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2702                 if (!p4d)
2703                         return -ENOMEM;
2704         } else {
2705                 p4d = p4d_offset(pgd, addr);
2706         }
2707         do {
2708                 next = p4d_addr_end(addr, end);
2709                 if (p4d_none(*p4d) && !create)
2710                         continue;
2711                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2712                         return -EINVAL;
2713                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2714                         if (!create)
2715                                 continue;
2716                         p4d_clear_bad(p4d);
2717                 }
2718                 err = apply_to_pud_range(mm, p4d, addr, next,
2719                                          fn, data, create, mask);
2720                 if (err)
2721                         break;
2722         } while (p4d++, addr = next, addr != end);
2723
2724         return err;
2725 }
2726
2727 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2728                                  unsigned long size, pte_fn_t fn,
2729                                  void *data, bool create)
2730 {
2731         pgd_t *pgd;
2732         unsigned long start = addr, next;
2733         unsigned long end = addr + size;
2734         pgtbl_mod_mask mask = 0;
2735         int err = 0;
2736
2737         if (WARN_ON(addr >= end))
2738                 return -EINVAL;
2739
2740         pgd = pgd_offset(mm, addr);
2741         do {
2742                 next = pgd_addr_end(addr, end);
2743                 if (pgd_none(*pgd) && !create)
2744                         continue;
2745                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2746                         return -EINVAL;
2747                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2748                         if (!create)
2749                                 continue;
2750                         pgd_clear_bad(pgd);
2751                 }
2752                 err = apply_to_p4d_range(mm, pgd, addr, next,
2753                                          fn, data, create, &mask);
2754                 if (err)
2755                         break;
2756         } while (pgd++, addr = next, addr != end);
2757
2758         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2759                 arch_sync_kernel_mappings(start, start + size);
2760
2761         return err;
2762 }
2763
2764 /*
2765  * Scan a region of virtual memory, filling in page tables as necessary
2766  * and calling a provided function on each leaf page table.
2767  */
2768 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2769                         unsigned long size, pte_fn_t fn, void *data)
2770 {
2771         return __apply_to_page_range(mm, addr, size, fn, data, true);
2772 }
2773 EXPORT_SYMBOL_GPL(apply_to_page_range);
2774
2775 /*
2776  * Scan a region of virtual memory, calling a provided function on
2777  * each leaf page table where it exists.
2778  *
2779  * Unlike apply_to_page_range, this does _not_ fill in page tables
2780  * where they are absent.
2781  */
2782 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2783                                  unsigned long size, pte_fn_t fn, void *data)
2784 {
2785         return __apply_to_page_range(mm, addr, size, fn, data, false);
2786 }
2787 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2788
2789 /*
2790  * handle_pte_fault chooses page fault handler according to an entry which was
2791  * read non-atomically.  Before making any commitment, on those architectures
2792  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2793  * parts, do_swap_page must check under lock before unmapping the pte and
2794  * proceeding (but do_wp_page is only called after already making such a check;
2795  * and do_anonymous_page can safely check later on).
2796  */
2797 static inline int pte_unmap_same(struct vm_fault *vmf)
2798 {
2799         int same = 1;
2800 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2801         if (sizeof(pte_t) > sizeof(unsigned long)) {
2802                 spin_lock(vmf->ptl);
2803                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2804                 spin_unlock(vmf->ptl);
2805         }
2806 #endif
2807         pte_unmap(vmf->pte);
2808         vmf->pte = NULL;
2809         return same;
2810 }
2811
2812 /*
2813  * Return:
2814  *      0:              copied succeeded
2815  *      -EHWPOISON:     copy failed due to hwpoison in source page
2816  *      -EAGAIN:        copied failed (some other reason)
2817  */
2818 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2819                                       struct vm_fault *vmf)
2820 {
2821         int ret;
2822         void *kaddr;
2823         void __user *uaddr;
2824         struct vm_area_struct *vma = vmf->vma;
2825         struct mm_struct *mm = vma->vm_mm;
2826         unsigned long addr = vmf->address;
2827
2828         if (likely(src)) {
2829                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2830                         memory_failure_queue(page_to_pfn(src), 0);
2831                         return -EHWPOISON;
2832                 }
2833                 return 0;
2834         }
2835
2836         /*
2837          * If the source page was a PFN mapping, we don't have
2838          * a "struct page" for it. We do a best-effort copy by
2839          * just copying from the original user address. If that
2840          * fails, we just zero-fill it. Live with it.
2841          */
2842         kaddr = kmap_atomic(dst);
2843         uaddr = (void __user *)(addr & PAGE_MASK);
2844
2845         /*
2846          * On architectures with software "accessed" bits, we would
2847          * take a double page fault, so mark it accessed here.
2848          */
2849         vmf->pte = NULL;
2850         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2851                 pte_t entry;
2852
2853                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2854                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2855                         /*
2856                          * Other thread has already handled the fault
2857                          * and update local tlb only
2858                          */
2859                         if (vmf->pte)
2860                                 update_mmu_tlb(vma, addr, vmf->pte);
2861                         ret = -EAGAIN;
2862                         goto pte_unlock;
2863                 }
2864
2865                 entry = pte_mkyoung(vmf->orig_pte);
2866                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2867                         update_mmu_cache(vma, addr, vmf->pte);
2868         }
2869
2870         /*
2871          * This really shouldn't fail, because the page is there
2872          * in the page tables. But it might just be unreadable,
2873          * in which case we just give up and fill the result with
2874          * zeroes.
2875          */
2876         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2877                 if (vmf->pte)
2878                         goto warn;
2879
2880                 /* Re-validate under PTL if the page is still mapped */
2881                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2882                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2883                         /* The PTE changed under us, update local tlb */
2884                         if (vmf->pte)
2885                                 update_mmu_tlb(vma, addr, vmf->pte);
2886                         ret = -EAGAIN;
2887                         goto pte_unlock;
2888                 }
2889
2890                 /*
2891                  * The same page can be mapped back since last copy attempt.
2892                  * Try to copy again under PTL.
2893                  */
2894                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2895                         /*
2896                          * Give a warn in case there can be some obscure
2897                          * use-case
2898                          */
2899 warn:
2900                         WARN_ON_ONCE(1);
2901                         clear_page(kaddr);
2902                 }
2903         }
2904
2905         ret = 0;
2906
2907 pte_unlock:
2908         if (vmf->pte)
2909                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2910         kunmap_atomic(kaddr);
2911         flush_dcache_page(dst);
2912
2913         return ret;
2914 }
2915
2916 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2917 {
2918         struct file *vm_file = vma->vm_file;
2919
2920         if (vm_file)
2921                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2922
2923         /*
2924          * Special mappings (e.g. VDSO) do not have any file so fake
2925          * a default GFP_KERNEL for them.
2926          */
2927         return GFP_KERNEL;
2928 }
2929
2930 /*
2931  * Notify the address space that the page is about to become writable so that
2932  * it can prohibit this or wait for the page to get into an appropriate state.
2933  *
2934  * We do this without the lock held, so that it can sleep if it needs to.
2935  */
2936 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2937 {
2938         vm_fault_t ret;
2939         unsigned int old_flags = vmf->flags;
2940
2941         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2942
2943         if (vmf->vma->vm_file &&
2944             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2945                 return VM_FAULT_SIGBUS;
2946
2947         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2948         /* Restore original flags so that caller is not surprised */
2949         vmf->flags = old_flags;
2950         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2951                 return ret;
2952         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2953                 folio_lock(folio);
2954                 if (!folio->mapping) {
2955                         folio_unlock(folio);
2956                         return 0; /* retry */
2957                 }
2958                 ret |= VM_FAULT_LOCKED;
2959         } else
2960                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2961         return ret;
2962 }
2963
2964 /*
2965  * Handle dirtying of a page in shared file mapping on a write fault.
2966  *
2967  * The function expects the page to be locked and unlocks it.
2968  */
2969 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2970 {
2971         struct vm_area_struct *vma = vmf->vma;
2972         struct address_space *mapping;
2973         struct folio *folio = page_folio(vmf->page);
2974         bool dirtied;
2975         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2976
2977         dirtied = folio_mark_dirty(folio);
2978         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2979         /*
2980          * Take a local copy of the address_space - folio.mapping may be zeroed
2981          * by truncate after folio_unlock().   The address_space itself remains
2982          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2983          * release semantics to prevent the compiler from undoing this copying.
2984          */
2985         mapping = folio_raw_mapping(folio);
2986         folio_unlock(folio);
2987
2988         if (!page_mkwrite)
2989                 file_update_time(vma->vm_file);
2990
2991         /*
2992          * Throttle page dirtying rate down to writeback speed.
2993          *
2994          * mapping may be NULL here because some device drivers do not
2995          * set page.mapping but still dirty their pages
2996          *
2997          * Drop the mmap_lock before waiting on IO, if we can. The file
2998          * is pinning the mapping, as per above.
2999          */
3000         if ((dirtied || page_mkwrite) && mapping) {
3001                 struct file *fpin;
3002
3003                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3004                 balance_dirty_pages_ratelimited(mapping);
3005                 if (fpin) {
3006                         fput(fpin);
3007                         return VM_FAULT_COMPLETED;
3008                 }
3009         }
3010
3011         return 0;
3012 }
3013
3014 /*
3015  * Handle write page faults for pages that can be reused in the current vma
3016  *
3017  * This can happen either due to the mapping being with the VM_SHARED flag,
3018  * or due to us being the last reference standing to the page. In either
3019  * case, all we need to do here is to mark the page as writable and update
3020  * any related book-keeping.
3021  */
3022 static inline void wp_page_reuse(struct vm_fault *vmf)
3023         __releases(vmf->ptl)
3024 {
3025         struct vm_area_struct *vma = vmf->vma;
3026         struct page *page = vmf->page;
3027         pte_t entry;
3028
3029         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3030         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3031
3032         /*
3033          * Clear the pages cpupid information as the existing
3034          * information potentially belongs to a now completely
3035          * unrelated process.
3036          */
3037         if (page)
3038                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3039
3040         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3041         entry = pte_mkyoung(vmf->orig_pte);
3042         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3043         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3044                 update_mmu_cache(vma, vmf->address, vmf->pte);
3045         pte_unmap_unlock(vmf->pte, vmf->ptl);
3046         count_vm_event(PGREUSE);
3047 }
3048
3049 /*
3050  * Handle the case of a page which we actually need to copy to a new page,
3051  * either due to COW or unsharing.
3052  *
3053  * Called with mmap_lock locked and the old page referenced, but
3054  * without the ptl held.
3055  *
3056  * High level logic flow:
3057  *
3058  * - Allocate a page, copy the content of the old page to the new one.
3059  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3060  * - Take the PTL. If the pte changed, bail out and release the allocated page
3061  * - If the pte is still the way we remember it, update the page table and all
3062  *   relevant references. This includes dropping the reference the page-table
3063  *   held to the old page, as well as updating the rmap.
3064  * - In any case, unlock the PTL and drop the reference we took to the old page.
3065  */
3066 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3067 {
3068         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3069         struct vm_area_struct *vma = vmf->vma;
3070         struct mm_struct *mm = vma->vm_mm;
3071         struct folio *old_folio = NULL;
3072         struct folio *new_folio = NULL;
3073         pte_t entry;
3074         int page_copied = 0;
3075         struct mmu_notifier_range range;
3076         int ret;
3077
3078         delayacct_wpcopy_start();
3079
3080         if (vmf->page)
3081                 old_folio = page_folio(vmf->page);
3082         if (unlikely(anon_vma_prepare(vma)))
3083                 goto oom;
3084
3085         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3086                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3087                 if (!new_folio)
3088                         goto oom;
3089         } else {
3090                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3091                                 vmf->address, false);
3092                 if (!new_folio)
3093                         goto oom;
3094
3095                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3096                 if (ret) {
3097                         /*
3098                          * COW failed, if the fault was solved by other,
3099                          * it's fine. If not, userspace would re-fault on
3100                          * the same address and we will handle the fault
3101                          * from the second attempt.
3102                          * The -EHWPOISON case will not be retried.
3103                          */
3104                         folio_put(new_folio);
3105                         if (old_folio)
3106                                 folio_put(old_folio);
3107
3108                         delayacct_wpcopy_end();
3109                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3110                 }
3111                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3112         }
3113
3114         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3115                 goto oom_free_new;
3116         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3117
3118         __folio_mark_uptodate(new_folio);
3119
3120         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3121                                 vmf->address & PAGE_MASK,
3122                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3123         mmu_notifier_invalidate_range_start(&range);
3124
3125         /*
3126          * Re-check the pte - we dropped the lock
3127          */
3128         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3129         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3130                 if (old_folio) {
3131                         if (!folio_test_anon(old_folio)) {
3132                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3133                                 inc_mm_counter(mm, MM_ANONPAGES);
3134                         }
3135                 } else {
3136                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3137                         inc_mm_counter(mm, MM_ANONPAGES);
3138                 }
3139                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3140                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3141                 entry = pte_sw_mkyoung(entry);
3142                 if (unlikely(unshare)) {
3143                         if (pte_soft_dirty(vmf->orig_pte))
3144                                 entry = pte_mksoft_dirty(entry);
3145                         if (pte_uffd_wp(vmf->orig_pte))
3146                                 entry = pte_mkuffd_wp(entry);
3147                 } else {
3148                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3149                 }
3150
3151                 /*
3152                  * Clear the pte entry and flush it first, before updating the
3153                  * pte with the new entry, to keep TLBs on different CPUs in
3154                  * sync. This code used to set the new PTE then flush TLBs, but
3155                  * that left a window where the new PTE could be loaded into
3156                  * some TLBs while the old PTE remains in others.
3157                  */
3158                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3159                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3160                 folio_add_lru_vma(new_folio, vma);
3161                 /*
3162                  * We call the notify macro here because, when using secondary
3163                  * mmu page tables (such as kvm shadow page tables), we want the
3164                  * new page to be mapped directly into the secondary page table.
3165                  */
3166                 BUG_ON(unshare && pte_write(entry));
3167                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3168                 update_mmu_cache(vma, vmf->address, vmf->pte);
3169                 if (old_folio) {
3170                         /*
3171                          * Only after switching the pte to the new page may
3172                          * we remove the mapcount here. Otherwise another
3173                          * process may come and find the rmap count decremented
3174                          * before the pte is switched to the new page, and
3175                          * "reuse" the old page writing into it while our pte
3176                          * here still points into it and can be read by other
3177                          * threads.
3178                          *
3179                          * The critical issue is to order this
3180                          * page_remove_rmap with the ptp_clear_flush above.
3181                          * Those stores are ordered by (if nothing else,)
3182                          * the barrier present in the atomic_add_negative
3183                          * in page_remove_rmap.
3184                          *
3185                          * Then the TLB flush in ptep_clear_flush ensures that
3186                          * no process can access the old page before the
3187                          * decremented mapcount is visible. And the old page
3188                          * cannot be reused until after the decremented
3189                          * mapcount is visible. So transitively, TLBs to
3190                          * old page will be flushed before it can be reused.
3191                          */
3192                         page_remove_rmap(vmf->page, vma, false);
3193                 }
3194
3195                 /* Free the old page.. */
3196                 new_folio = old_folio;
3197                 page_copied = 1;
3198                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3199         } else if (vmf->pte) {
3200                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3201                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3202         }
3203
3204         /*
3205          * No need to double call mmu_notifier->invalidate_range() callback as
3206          * the above ptep_clear_flush_notify() did already call it.
3207          */
3208         mmu_notifier_invalidate_range_only_end(&range);
3209
3210         if (new_folio)
3211                 folio_put(new_folio);
3212         if (old_folio) {
3213                 if (page_copied)
3214                         free_swap_cache(&old_folio->page);
3215                 folio_put(old_folio);
3216         }
3217
3218         delayacct_wpcopy_end();
3219         return 0;
3220 oom_free_new:
3221         folio_put(new_folio);
3222 oom:
3223         if (old_folio)
3224                 folio_put(old_folio);
3225
3226         delayacct_wpcopy_end();
3227         return VM_FAULT_OOM;
3228 }
3229
3230 /**
3231  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3232  *                        writeable once the page is prepared
3233  *
3234  * @vmf: structure describing the fault
3235  *
3236  * This function handles all that is needed to finish a write page fault in a
3237  * shared mapping due to PTE being read-only once the mapped page is prepared.
3238  * It handles locking of PTE and modifying it.
3239  *
3240  * The function expects the page to be locked or other protection against
3241  * concurrent faults / writeback (such as DAX radix tree locks).
3242  *
3243  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3244  * we acquired PTE lock.
3245  */
3246 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3247 {
3248         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3249         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3250                                        &vmf->ptl);
3251         if (!vmf->pte)
3252                 return VM_FAULT_NOPAGE;
3253         /*
3254          * We might have raced with another page fault while we released the
3255          * pte_offset_map_lock.
3256          */
3257         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3258                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3259                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3260                 return VM_FAULT_NOPAGE;
3261         }
3262         wp_page_reuse(vmf);
3263         return 0;
3264 }
3265
3266 /*
3267  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3268  * mapping
3269  */
3270 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3271 {
3272         struct vm_area_struct *vma = vmf->vma;
3273
3274         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3275                 vm_fault_t ret;
3276
3277                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3278                 vmf->flags |= FAULT_FLAG_MKWRITE;
3279                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3280                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3281                         return ret;
3282                 return finish_mkwrite_fault(vmf);
3283         }
3284         wp_page_reuse(vmf);
3285         return 0;
3286 }
3287
3288 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3289         __releases(vmf->ptl)
3290 {
3291         struct vm_area_struct *vma = vmf->vma;
3292         vm_fault_t ret = 0;
3293
3294         folio_get(folio);
3295
3296         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3297                 vm_fault_t tmp;
3298
3299                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3300                 tmp = do_page_mkwrite(vmf, folio);
3301                 if (unlikely(!tmp || (tmp &
3302                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3303                         folio_put(folio);
3304                         return tmp;
3305                 }
3306                 tmp = finish_mkwrite_fault(vmf);
3307                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3308                         folio_unlock(folio);
3309                         folio_put(folio);
3310                         return tmp;
3311                 }
3312         } else {
3313                 wp_page_reuse(vmf);
3314                 folio_lock(folio);
3315         }
3316         ret |= fault_dirty_shared_page(vmf);
3317         folio_put(folio);
3318
3319         return ret;
3320 }
3321
3322 /*
3323  * This routine handles present pages, when
3324  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3325  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3326  *   (FAULT_FLAG_UNSHARE)
3327  *
3328  * It is done by copying the page to a new address and decrementing the
3329  * shared-page counter for the old page.
3330  *
3331  * Note that this routine assumes that the protection checks have been
3332  * done by the caller (the low-level page fault routine in most cases).
3333  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3334  * done any necessary COW.
3335  *
3336  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3337  * though the page will change only once the write actually happens. This
3338  * avoids a few races, and potentially makes it more efficient.
3339  *
3340  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3341  * but allow concurrent faults), with pte both mapped and locked.
3342  * We return with mmap_lock still held, but pte unmapped and unlocked.
3343  */
3344 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3345         __releases(vmf->ptl)
3346 {
3347         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3348         struct vm_area_struct *vma = vmf->vma;
3349         struct folio *folio = NULL;
3350
3351         if (likely(!unshare)) {
3352                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3353                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3354                         return handle_userfault(vmf, VM_UFFD_WP);
3355                 }
3356
3357                 /*
3358                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3359                  * is flushed in this case before copying.
3360                  */
3361                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3362                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3363                         flush_tlb_page(vmf->vma, vmf->address);
3364         }
3365
3366         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3367
3368         if (vmf->page)
3369                 folio = page_folio(vmf->page);
3370
3371         /*
3372          * Shared mapping: we are guaranteed to have VM_WRITE and
3373          * FAULT_FLAG_WRITE set at this point.
3374          */
3375         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3376                 /*
3377                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3378                  * VM_PFNMAP VMA.
3379                  *
3380                  * We should not cow pages in a shared writeable mapping.
3381                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3382                  */
3383                 if (!vmf->page)
3384                         return wp_pfn_shared(vmf);
3385                 return wp_page_shared(vmf, folio);
3386         }
3387
3388         /*
3389          * Private mapping: create an exclusive anonymous page copy if reuse
3390          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3391          */
3392         if (folio && folio_test_anon(folio)) {
3393                 /*
3394                  * If the page is exclusive to this process we must reuse the
3395                  * page without further checks.
3396                  */
3397                 if (PageAnonExclusive(vmf->page))
3398                         goto reuse;
3399
3400                 /*
3401                  * We have to verify under folio lock: these early checks are
3402                  * just an optimization to avoid locking the folio and freeing
3403                  * the swapcache if there is little hope that we can reuse.
3404                  *
3405                  * KSM doesn't necessarily raise the folio refcount.
3406                  */
3407                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3408                         goto copy;
3409                 if (!folio_test_lru(folio))
3410                         /*
3411                          * We cannot easily detect+handle references from
3412                          * remote LRU caches or references to LRU folios.
3413                          */
3414                         lru_add_drain();
3415                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3416                         goto copy;
3417                 if (!folio_trylock(folio))
3418                         goto copy;
3419                 if (folio_test_swapcache(folio))
3420                         folio_free_swap(folio);
3421                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3422                         folio_unlock(folio);
3423                         goto copy;
3424                 }
3425                 /*
3426                  * Ok, we've got the only folio reference from our mapping
3427                  * and the folio is locked, it's dark out, and we're wearing
3428                  * sunglasses. Hit it.
3429                  */
3430                 page_move_anon_rmap(vmf->page, vma);
3431                 folio_unlock(folio);
3432 reuse:
3433                 if (unlikely(unshare)) {
3434                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3435                         return 0;
3436                 }
3437                 wp_page_reuse(vmf);
3438                 return 0;
3439         }
3440 copy:
3441         /*
3442          * Ok, we need to copy. Oh, well..
3443          */
3444         if (folio)
3445                 folio_get(folio);
3446
3447         pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 #ifdef CONFIG_KSM
3449         if (folio && folio_test_ksm(folio))
3450                 count_vm_event(COW_KSM);
3451 #endif
3452         return wp_page_copy(vmf);
3453 }
3454
3455 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3456                 unsigned long start_addr, unsigned long end_addr,
3457                 struct zap_details *details)
3458 {
3459         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3460 }
3461
3462 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3463                                             pgoff_t first_index,
3464                                             pgoff_t last_index,
3465                                             struct zap_details *details)
3466 {
3467         struct vm_area_struct *vma;
3468         pgoff_t vba, vea, zba, zea;
3469
3470         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3471                 vba = vma->vm_pgoff;
3472                 vea = vba + vma_pages(vma) - 1;
3473                 zba = max(first_index, vba);
3474                 zea = min(last_index, vea);
3475
3476                 unmap_mapping_range_vma(vma,
3477                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3478                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3479                                 details);
3480         }
3481 }
3482
3483 /**
3484  * unmap_mapping_folio() - Unmap single folio from processes.
3485  * @folio: The locked folio to be unmapped.
3486  *
3487  * Unmap this folio from any userspace process which still has it mmaped.
3488  * Typically, for efficiency, the range of nearby pages has already been
3489  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3490  * truncation or invalidation holds the lock on a folio, it may find that
3491  * the page has been remapped again: and then uses unmap_mapping_folio()
3492  * to unmap it finally.
3493  */
3494 void unmap_mapping_folio(struct folio *folio)
3495 {
3496         struct address_space *mapping = folio->mapping;
3497         struct zap_details details = { };
3498         pgoff_t first_index;
3499         pgoff_t last_index;
3500
3501         VM_BUG_ON(!folio_test_locked(folio));
3502
3503         first_index = folio->index;
3504         last_index = folio_next_index(folio) - 1;
3505
3506         details.even_cows = false;
3507         details.single_folio = folio;
3508         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3509
3510         i_mmap_lock_read(mapping);
3511         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3512                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3513                                          last_index, &details);
3514         i_mmap_unlock_read(mapping);
3515 }
3516
3517 /**
3518  * unmap_mapping_pages() - Unmap pages from processes.
3519  * @mapping: The address space containing pages to be unmapped.
3520  * @start: Index of first page to be unmapped.
3521  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3522  * @even_cows: Whether to unmap even private COWed pages.
3523  *
3524  * Unmap the pages in this address space from any userspace process which
3525  * has them mmaped.  Generally, you want to remove COWed pages as well when
3526  * a file is being truncated, but not when invalidating pages from the page
3527  * cache.
3528  */
3529 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3530                 pgoff_t nr, bool even_cows)
3531 {
3532         struct zap_details details = { };
3533         pgoff_t first_index = start;
3534         pgoff_t last_index = start + nr - 1;
3535
3536         details.even_cows = even_cows;
3537         if (last_index < first_index)
3538                 last_index = ULONG_MAX;
3539
3540         i_mmap_lock_read(mapping);
3541         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3542                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3543                                          last_index, &details);
3544         i_mmap_unlock_read(mapping);
3545 }
3546 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3547
3548 /**
3549  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3550  * address_space corresponding to the specified byte range in the underlying
3551  * file.
3552  *
3553  * @mapping: the address space containing mmaps to be unmapped.
3554  * @holebegin: byte in first page to unmap, relative to the start of
3555  * the underlying file.  This will be rounded down to a PAGE_SIZE
3556  * boundary.  Note that this is different from truncate_pagecache(), which
3557  * must keep the partial page.  In contrast, we must get rid of
3558  * partial pages.
3559  * @holelen: size of prospective hole in bytes.  This will be rounded
3560  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3561  * end of the file.
3562  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3563  * but 0 when invalidating pagecache, don't throw away private data.
3564  */
3565 void unmap_mapping_range(struct address_space *mapping,
3566                 loff_t const holebegin, loff_t const holelen, int even_cows)
3567 {
3568         pgoff_t hba = holebegin >> PAGE_SHIFT;
3569         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3570
3571         /* Check for overflow. */
3572         if (sizeof(holelen) > sizeof(hlen)) {
3573                 long long holeend =
3574                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3575                 if (holeend & ~(long long)ULONG_MAX)
3576                         hlen = ULONG_MAX - hba + 1;
3577         }
3578
3579         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3580 }
3581 EXPORT_SYMBOL(unmap_mapping_range);
3582
3583 /*
3584  * Restore a potential device exclusive pte to a working pte entry
3585  */
3586 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3587 {
3588         struct folio *folio = page_folio(vmf->page);
3589         struct vm_area_struct *vma = vmf->vma;
3590         struct mmu_notifier_range range;
3591
3592         /*
3593          * We need a reference to lock the folio because we don't hold
3594          * the PTL so a racing thread can remove the device-exclusive
3595          * entry and unmap it. If the folio is free the entry must
3596          * have been removed already. If it happens to have already
3597          * been re-allocated after being freed all we do is lock and
3598          * unlock it.
3599          */
3600         if (!folio_try_get(folio))
3601                 return 0;
3602
3603         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3604                 folio_put(folio);
3605                 return VM_FAULT_RETRY;
3606         }
3607         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3608                                 vma->vm_mm, vmf->address & PAGE_MASK,
3609                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3610         mmu_notifier_invalidate_range_start(&range);
3611
3612         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3613                                 &vmf->ptl);
3614         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3615                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3616
3617         if (vmf->pte)
3618                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3619         folio_unlock(folio);
3620         folio_put(folio);
3621
3622         mmu_notifier_invalidate_range_end(&range);
3623         return 0;
3624 }
3625
3626 static inline bool should_try_to_free_swap(struct folio *folio,
3627                                            struct vm_area_struct *vma,
3628                                            unsigned int fault_flags)
3629 {
3630         if (!folio_test_swapcache(folio))
3631                 return false;
3632         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3633             folio_test_mlocked(folio))
3634                 return true;
3635         /*
3636          * If we want to map a page that's in the swapcache writable, we
3637          * have to detect via the refcount if we're really the exclusive
3638          * user. Try freeing the swapcache to get rid of the swapcache
3639          * reference only in case it's likely that we'll be the exlusive user.
3640          */
3641         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3642                 folio_ref_count(folio) == 2;
3643 }
3644
3645 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3646 {
3647         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3648                                        vmf->address, &vmf->ptl);
3649         if (!vmf->pte)
3650                 return 0;
3651         /*
3652          * Be careful so that we will only recover a special uffd-wp pte into a
3653          * none pte.  Otherwise it means the pte could have changed, so retry.
3654          *
3655          * This should also cover the case where e.g. the pte changed
3656          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3657          * So is_pte_marker() check is not enough to safely drop the pte.
3658          */
3659         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3660                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3661         pte_unmap_unlock(vmf->pte, vmf->ptl);
3662         return 0;
3663 }
3664
3665 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3666 {
3667         if (vma_is_anonymous(vmf->vma))
3668                 return do_anonymous_page(vmf);
3669         else
3670                 return do_fault(vmf);
3671 }
3672
3673 /*
3674  * This is actually a page-missing access, but with uffd-wp special pte
3675  * installed.  It means this pte was wr-protected before being unmapped.
3676  */
3677 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3678 {
3679         /*
3680          * Just in case there're leftover special ptes even after the region
3681          * got unregistered - we can simply clear them.
3682          */
3683         if (unlikely(!userfaultfd_wp(vmf->vma)))
3684                 return pte_marker_clear(vmf);
3685
3686         return do_pte_missing(vmf);
3687 }
3688
3689 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3690 {
3691         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3692         unsigned long marker = pte_marker_get(entry);
3693
3694         /*
3695          * PTE markers should never be empty.  If anything weird happened,
3696          * the best thing to do is to kill the process along with its mm.
3697          */
3698         if (WARN_ON_ONCE(!marker))
3699                 return VM_FAULT_SIGBUS;
3700
3701         /* Higher priority than uffd-wp when data corrupted */
3702         if (marker & PTE_MARKER_POISONED)
3703                 return VM_FAULT_HWPOISON;
3704
3705         if (pte_marker_entry_uffd_wp(entry))
3706                 return pte_marker_handle_uffd_wp(vmf);
3707
3708         /* This is an unknown pte marker */
3709         return VM_FAULT_SIGBUS;
3710 }
3711
3712 /*
3713  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3714  * but allow concurrent faults), and pte mapped but not yet locked.
3715  * We return with pte unmapped and unlocked.
3716  *
3717  * We return with the mmap_lock locked or unlocked in the same cases
3718  * as does filemap_fault().
3719  */
3720 vm_fault_t do_swap_page(struct vm_fault *vmf)
3721 {
3722         struct vm_area_struct *vma = vmf->vma;
3723         struct folio *swapcache, *folio = NULL;
3724         struct page *page;
3725         struct swap_info_struct *si = NULL;
3726         rmap_t rmap_flags = RMAP_NONE;
3727         bool exclusive = false;
3728         swp_entry_t entry;
3729         pte_t pte;
3730         int locked;
3731         vm_fault_t ret = 0;
3732         void *shadow = NULL;
3733
3734         if (!pte_unmap_same(vmf))
3735                 goto out;
3736
3737         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3738                 ret = VM_FAULT_RETRY;
3739                 goto out;
3740         }
3741
3742         entry = pte_to_swp_entry(vmf->orig_pte);
3743         if (unlikely(non_swap_entry(entry))) {
3744                 if (is_migration_entry(entry)) {
3745                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3746                                              vmf->address);
3747                 } else if (is_device_exclusive_entry(entry)) {
3748                         vmf->page = pfn_swap_entry_to_page(entry);
3749                         ret = remove_device_exclusive_entry(vmf);
3750                 } else if (is_device_private_entry(entry)) {
3751                         vmf->page = pfn_swap_entry_to_page(entry);
3752                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3753                                         vmf->address, &vmf->ptl);
3754                         if (unlikely(!vmf->pte ||
3755                                      !pte_same(ptep_get(vmf->pte),
3756                                                         vmf->orig_pte)))
3757                                 goto unlock;
3758
3759                         /*
3760                          * Get a page reference while we know the page can't be
3761                          * freed.
3762                          */
3763                         get_page(vmf->page);
3764                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3765                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3766                         put_page(vmf->page);
3767                 } else if (is_hwpoison_entry(entry)) {
3768                         ret = VM_FAULT_HWPOISON;
3769                 } else if (is_pte_marker_entry(entry)) {
3770                         ret = handle_pte_marker(vmf);
3771                 } else {
3772                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3773                         ret = VM_FAULT_SIGBUS;
3774                 }
3775                 goto out;
3776         }
3777
3778         /* Prevent swapoff from happening to us. */
3779         si = get_swap_device(entry);
3780         if (unlikely(!si))
3781                 goto out;
3782
3783         folio = swap_cache_get_folio(entry, vma, vmf->address);
3784         if (folio)
3785                 page = folio_file_page(folio, swp_offset(entry));
3786         swapcache = folio;
3787
3788         if (!folio) {
3789                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3790                     __swap_count(entry) == 1) {
3791                         /* skip swapcache */
3792                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3793                                                 vma, vmf->address, false);
3794                         page = &folio->page;
3795                         if (folio) {
3796                                 __folio_set_locked(folio);
3797                                 __folio_set_swapbacked(folio);
3798
3799                                 if (mem_cgroup_swapin_charge_folio(folio,
3800                                                         vma->vm_mm, GFP_KERNEL,
3801                                                         entry)) {
3802                                         ret = VM_FAULT_OOM;
3803                                         goto out_page;
3804                                 }
3805                                 mem_cgroup_swapin_uncharge_swap(entry);
3806
3807                                 shadow = get_shadow_from_swap_cache(entry);
3808                                 if (shadow)
3809                                         workingset_refault(folio, shadow);
3810
3811                                 folio_add_lru(folio);
3812
3813                                 /* To provide entry to swap_readpage() */
3814                                 folio_set_swap_entry(folio, entry);
3815                                 swap_readpage(page, true, NULL);
3816                                 folio->private = NULL;
3817                         }
3818                 } else {
3819                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3820                                                 vmf);
3821                         if (page)
3822                                 folio = page_folio(page);
3823                         swapcache = folio;
3824                 }
3825
3826                 if (!folio) {
3827                         /*
3828                          * Back out if somebody else faulted in this pte
3829                          * while we released the pte lock.
3830                          */
3831                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3832                                         vmf->address, &vmf->ptl);
3833                         if (likely(vmf->pte &&
3834                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3835                                 ret = VM_FAULT_OOM;
3836                         goto unlock;
3837                 }
3838
3839                 /* Had to read the page from swap area: Major fault */
3840                 ret = VM_FAULT_MAJOR;
3841                 count_vm_event(PGMAJFAULT);
3842                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3843         } else if (PageHWPoison(page)) {
3844                 /*
3845                  * hwpoisoned dirty swapcache pages are kept for killing
3846                  * owner processes (which may be unknown at hwpoison time)
3847                  */
3848                 ret = VM_FAULT_HWPOISON;
3849                 goto out_release;
3850         }
3851
3852         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3853
3854         if (!locked) {
3855                 ret |= VM_FAULT_RETRY;
3856                 goto out_release;
3857         }
3858
3859         if (swapcache) {
3860                 /*
3861                  * Make sure folio_free_swap() or swapoff did not release the
3862                  * swapcache from under us.  The page pin, and pte_same test
3863                  * below, are not enough to exclude that.  Even if it is still
3864                  * swapcache, we need to check that the page's swap has not
3865                  * changed.
3866                  */
3867                 if (unlikely(!folio_test_swapcache(folio) ||
3868                              page_private(page) != entry.val))
3869                         goto out_page;
3870
3871                 /*
3872                  * KSM sometimes has to copy on read faults, for example, if
3873                  * page->index of !PageKSM() pages would be nonlinear inside the
3874                  * anon VMA -- PageKSM() is lost on actual swapout.
3875                  */
3876                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3877                 if (unlikely(!page)) {
3878                         ret = VM_FAULT_OOM;
3879                         goto out_page;
3880                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3881                         ret = VM_FAULT_HWPOISON;
3882                         goto out_page;
3883                 }
3884                 folio = page_folio(page);
3885
3886                 /*
3887                  * If we want to map a page that's in the swapcache writable, we
3888                  * have to detect via the refcount if we're really the exclusive
3889                  * owner. Try removing the extra reference from the local LRU
3890                  * caches if required.
3891                  */
3892                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3893                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3894                         lru_add_drain();
3895         }
3896
3897         folio_throttle_swaprate(folio, GFP_KERNEL);
3898
3899         /*
3900          * Back out if somebody else already faulted in this pte.
3901          */
3902         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3903                         &vmf->ptl);
3904         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3905                 goto out_nomap;
3906
3907         if (unlikely(!folio_test_uptodate(folio))) {
3908                 ret = VM_FAULT_SIGBUS;
3909                 goto out_nomap;
3910         }
3911
3912         /*
3913          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3914          * must never point at an anonymous page in the swapcache that is
3915          * PG_anon_exclusive. Sanity check that this holds and especially, that
3916          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3917          * check after taking the PT lock and making sure that nobody
3918          * concurrently faulted in this page and set PG_anon_exclusive.
3919          */
3920         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3921         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3922
3923         /*
3924          * Check under PT lock (to protect against concurrent fork() sharing
3925          * the swap entry concurrently) for certainly exclusive pages.
3926          */
3927         if (!folio_test_ksm(folio)) {
3928                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3929                 if (folio != swapcache) {
3930                         /*
3931                          * We have a fresh page that is not exposed to the
3932                          * swapcache -> certainly exclusive.
3933                          */
3934                         exclusive = true;
3935                 } else if (exclusive && folio_test_writeback(folio) &&
3936                           data_race(si->flags & SWP_STABLE_WRITES)) {
3937                         /*
3938                          * This is tricky: not all swap backends support
3939                          * concurrent page modifications while under writeback.
3940                          *
3941                          * So if we stumble over such a page in the swapcache
3942                          * we must not set the page exclusive, otherwise we can
3943                          * map it writable without further checks and modify it
3944                          * while still under writeback.
3945                          *
3946                          * For these problematic swap backends, simply drop the
3947                          * exclusive marker: this is perfectly fine as we start
3948                          * writeback only if we fully unmapped the page and
3949                          * there are no unexpected references on the page after
3950                          * unmapping succeeded. After fully unmapped, no
3951                          * further GUP references (FOLL_GET and FOLL_PIN) can
3952                          * appear, so dropping the exclusive marker and mapping
3953                          * it only R/O is fine.
3954                          */
3955                         exclusive = false;
3956                 }
3957         }
3958
3959         /*
3960          * Some architectures may have to restore extra metadata to the page
3961          * when reading from swap. This metadata may be indexed by swap entry
3962          * so this must be called before swap_free().
3963          */
3964         arch_swap_restore(entry, folio);
3965
3966         /*
3967          * Remove the swap entry and conditionally try to free up the swapcache.
3968          * We're already holding a reference on the page but haven't mapped it
3969          * yet.
3970          */
3971         swap_free(entry);
3972         if (should_try_to_free_swap(folio, vma, vmf->flags))
3973                 folio_free_swap(folio);
3974
3975         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3976         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3977         pte = mk_pte(page, vma->vm_page_prot);
3978
3979         /*
3980          * Same logic as in do_wp_page(); however, optimize for pages that are
3981          * certainly not shared either because we just allocated them without
3982          * exposing them to the swapcache or because the swap entry indicates
3983          * exclusivity.
3984          */
3985         if (!folio_test_ksm(folio) &&
3986             (exclusive || folio_ref_count(folio) == 1)) {
3987                 if (vmf->flags & FAULT_FLAG_WRITE) {
3988                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3989                         vmf->flags &= ~FAULT_FLAG_WRITE;
3990                 }
3991                 rmap_flags |= RMAP_EXCLUSIVE;
3992         }
3993         flush_icache_page(vma, page);
3994         if (pte_swp_soft_dirty(vmf->orig_pte))
3995                 pte = pte_mksoft_dirty(pte);
3996         if (pte_swp_uffd_wp(vmf->orig_pte))
3997                 pte = pte_mkuffd_wp(pte);
3998         vmf->orig_pte = pte;
3999
4000         /* ksm created a completely new copy */
4001         if (unlikely(folio != swapcache && swapcache)) {
4002                 page_add_new_anon_rmap(page, vma, vmf->address);
4003                 folio_add_lru_vma(folio, vma);
4004         } else {
4005                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4006         }
4007
4008         VM_BUG_ON(!folio_test_anon(folio) ||
4009                         (pte_write(pte) && !PageAnonExclusive(page)));
4010         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4011         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4012
4013         folio_unlock(folio);
4014         if (folio != swapcache && swapcache) {
4015                 /*
4016                  * Hold the lock to avoid the swap entry to be reused
4017                  * until we take the PT lock for the pte_same() check
4018                  * (to avoid false positives from pte_same). For
4019                  * further safety release the lock after the swap_free
4020                  * so that the swap count won't change under a
4021                  * parallel locked swapcache.
4022                  */
4023                 folio_unlock(swapcache);
4024                 folio_put(swapcache);
4025         }
4026
4027         if (vmf->flags & FAULT_FLAG_WRITE) {
4028                 ret |= do_wp_page(vmf);
4029                 if (ret & VM_FAULT_ERROR)
4030                         ret &= VM_FAULT_ERROR;
4031                 goto out;
4032         }
4033
4034         /* No need to invalidate - it was non-present before */
4035         update_mmu_cache(vma, vmf->address, vmf->pte);
4036 unlock:
4037         if (vmf->pte)
4038                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4039 out:
4040         if (si)
4041                 put_swap_device(si);
4042         return ret;
4043 out_nomap:
4044         if (vmf->pte)
4045                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4046 out_page:
4047         folio_unlock(folio);
4048 out_release:
4049         folio_put(folio);
4050         if (folio != swapcache && swapcache) {
4051                 folio_unlock(swapcache);
4052                 folio_put(swapcache);
4053         }
4054         if (si)
4055                 put_swap_device(si);
4056         return ret;
4057 }
4058
4059 /*
4060  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4061  * but allow concurrent faults), and pte mapped but not yet locked.
4062  * We return with mmap_lock still held, but pte unmapped and unlocked.
4063  */
4064 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4065 {
4066         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4067         struct vm_area_struct *vma = vmf->vma;
4068         struct folio *folio;
4069         vm_fault_t ret = 0;
4070         pte_t entry;
4071
4072         /* File mapping without ->vm_ops ? */
4073         if (vma->vm_flags & VM_SHARED)
4074                 return VM_FAULT_SIGBUS;
4075
4076         /*
4077          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4078          * be distinguished from a transient failure of pte_offset_map().
4079          */
4080         if (pte_alloc(vma->vm_mm, vmf->pmd))
4081                 return VM_FAULT_OOM;
4082
4083         /* Use the zero-page for reads */
4084         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4085                         !mm_forbids_zeropage(vma->vm_mm)) {
4086                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4087                                                 vma->vm_page_prot));
4088                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4089                                 vmf->address, &vmf->ptl);
4090                 if (!vmf->pte)
4091                         goto unlock;
4092                 if (vmf_pte_changed(vmf)) {
4093                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4094                         goto unlock;
4095                 }
4096                 ret = check_stable_address_space(vma->vm_mm);
4097                 if (ret)
4098                         goto unlock;
4099                 /* Deliver the page fault to userland, check inside PT lock */
4100                 if (userfaultfd_missing(vma)) {
4101                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4102                         return handle_userfault(vmf, VM_UFFD_MISSING);
4103                 }
4104                 goto setpte;
4105         }
4106
4107         /* Allocate our own private page. */
4108         if (unlikely(anon_vma_prepare(vma)))
4109                 goto oom;
4110         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4111         if (!folio)
4112                 goto oom;
4113
4114         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4115                 goto oom_free_page;
4116         folio_throttle_swaprate(folio, GFP_KERNEL);
4117
4118         /*
4119          * The memory barrier inside __folio_mark_uptodate makes sure that
4120          * preceding stores to the page contents become visible before
4121          * the set_pte_at() write.
4122          */
4123         __folio_mark_uptodate(folio);
4124
4125         entry = mk_pte(&folio->page, vma->vm_page_prot);
4126         entry = pte_sw_mkyoung(entry);
4127         if (vma->vm_flags & VM_WRITE)
4128                 entry = pte_mkwrite(pte_mkdirty(entry));
4129
4130         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4131                         &vmf->ptl);
4132         if (!vmf->pte)
4133                 goto release;
4134         if (vmf_pte_changed(vmf)) {
4135                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4136                 goto release;
4137         }
4138
4139         ret = check_stable_address_space(vma->vm_mm);
4140         if (ret)
4141                 goto release;
4142
4143         /* Deliver the page fault to userland, check inside PT lock */
4144         if (userfaultfd_missing(vma)) {
4145                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4146                 folio_put(folio);
4147                 return handle_userfault(vmf, VM_UFFD_MISSING);
4148         }
4149
4150         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4151         folio_add_new_anon_rmap(folio, vma, vmf->address);
4152         folio_add_lru_vma(folio, vma);
4153 setpte:
4154         if (uffd_wp)
4155                 entry = pte_mkuffd_wp(entry);
4156         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4157
4158         /* No need to invalidate - it was non-present before */
4159         update_mmu_cache(vma, vmf->address, vmf->pte);
4160 unlock:
4161         if (vmf->pte)
4162                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4163         return ret;
4164 release:
4165         folio_put(folio);
4166         goto unlock;
4167 oom_free_page:
4168         folio_put(folio);
4169 oom:
4170         return VM_FAULT_OOM;
4171 }
4172
4173 /*
4174  * The mmap_lock must have been held on entry, and may have been
4175  * released depending on flags and vma->vm_ops->fault() return value.
4176  * See filemap_fault() and __lock_page_retry().
4177  */
4178 static vm_fault_t __do_fault(struct vm_fault *vmf)
4179 {
4180         struct vm_area_struct *vma = vmf->vma;
4181         vm_fault_t ret;
4182
4183         /*
4184          * Preallocate pte before we take page_lock because this might lead to
4185          * deadlocks for memcg reclaim which waits for pages under writeback:
4186          *                              lock_page(A)
4187          *                              SetPageWriteback(A)
4188          *                              unlock_page(A)
4189          * lock_page(B)
4190          *                              lock_page(B)
4191          * pte_alloc_one
4192          *   shrink_page_list
4193          *     wait_on_page_writeback(A)
4194          *                              SetPageWriteback(B)
4195          *                              unlock_page(B)
4196          *                              # flush A, B to clear the writeback
4197          */
4198         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4199                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4200                 if (!vmf->prealloc_pte)
4201                         return VM_FAULT_OOM;
4202         }
4203
4204         ret = vma->vm_ops->fault(vmf);
4205         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4206                             VM_FAULT_DONE_COW)))
4207                 return ret;
4208
4209         if (unlikely(PageHWPoison(vmf->page))) {
4210                 struct page *page = vmf->page;
4211                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4212                 if (ret & VM_FAULT_LOCKED) {
4213                         if (page_mapped(page))
4214                                 unmap_mapping_pages(page_mapping(page),
4215                                                     page->index, 1, false);
4216                         /* Retry if a clean page was removed from the cache. */
4217                         if (invalidate_inode_page(page))
4218                                 poisonret = VM_FAULT_NOPAGE;
4219                         unlock_page(page);
4220                 }
4221                 put_page(page);
4222                 vmf->page = NULL;
4223                 return poisonret;
4224         }
4225
4226         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4227                 lock_page(vmf->page);
4228         else
4229                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4230
4231         return ret;
4232 }
4233
4234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4235 static void deposit_prealloc_pte(struct vm_fault *vmf)
4236 {
4237         struct vm_area_struct *vma = vmf->vma;
4238
4239         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4240         /*
4241          * We are going to consume the prealloc table,
4242          * count that as nr_ptes.
4243          */
4244         mm_inc_nr_ptes(vma->vm_mm);
4245         vmf->prealloc_pte = NULL;
4246 }
4247
4248 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4249 {
4250         struct vm_area_struct *vma = vmf->vma;
4251         bool write = vmf->flags & FAULT_FLAG_WRITE;
4252         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4253         pmd_t entry;
4254         int i;
4255         vm_fault_t ret = VM_FAULT_FALLBACK;
4256
4257         if (!transhuge_vma_suitable(vma, haddr))
4258                 return ret;
4259
4260         page = compound_head(page);
4261         if (compound_order(page) != HPAGE_PMD_ORDER)
4262                 return ret;
4263
4264         /*
4265          * Just backoff if any subpage of a THP is corrupted otherwise
4266          * the corrupted page may mapped by PMD silently to escape the
4267          * check.  This kind of THP just can be PTE mapped.  Access to
4268          * the corrupted subpage should trigger SIGBUS as expected.
4269          */
4270         if (unlikely(PageHasHWPoisoned(page)))
4271                 return ret;
4272
4273         /*
4274          * Archs like ppc64 need additional space to store information
4275          * related to pte entry. Use the preallocated table for that.
4276          */
4277         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4278                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4279                 if (!vmf->prealloc_pte)
4280                         return VM_FAULT_OOM;
4281         }
4282
4283         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4284         if (unlikely(!pmd_none(*vmf->pmd)))
4285                 goto out;
4286
4287         for (i = 0; i < HPAGE_PMD_NR; i++)
4288                 flush_icache_page(vma, page + i);
4289
4290         entry = mk_huge_pmd(page, vma->vm_page_prot);
4291         if (write)
4292                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4293
4294         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4295         page_add_file_rmap(page, vma, true);
4296
4297         /*
4298          * deposit and withdraw with pmd lock held
4299          */
4300         if (arch_needs_pgtable_deposit())
4301                 deposit_prealloc_pte(vmf);
4302
4303         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4304
4305         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4306
4307         /* fault is handled */
4308         ret = 0;
4309         count_vm_event(THP_FILE_MAPPED);
4310 out:
4311         spin_unlock(vmf->ptl);
4312         return ret;
4313 }
4314 #else
4315 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4316 {
4317         return VM_FAULT_FALLBACK;
4318 }
4319 #endif
4320
4321 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4322 {
4323         struct vm_area_struct *vma = vmf->vma;
4324         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4325         bool write = vmf->flags & FAULT_FLAG_WRITE;
4326         bool prefault = vmf->address != addr;
4327         pte_t entry;
4328
4329         flush_icache_page(vma, page);
4330         entry = mk_pte(page, vma->vm_page_prot);
4331
4332         if (prefault && arch_wants_old_prefaulted_pte())
4333                 entry = pte_mkold(entry);
4334         else
4335                 entry = pte_sw_mkyoung(entry);
4336
4337         if (write)
4338                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4339         if (unlikely(uffd_wp))
4340                 entry = pte_mkuffd_wp(entry);
4341         /* copy-on-write page */
4342         if (write && !(vma->vm_flags & VM_SHARED)) {
4343                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4344                 page_add_new_anon_rmap(page, vma, addr);
4345                 lru_cache_add_inactive_or_unevictable(page, vma);
4346         } else {
4347                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4348                 page_add_file_rmap(page, vma, false);
4349         }
4350         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4351 }
4352
4353 static bool vmf_pte_changed(struct vm_fault *vmf)
4354 {
4355         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4356                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4357
4358         return !pte_none(ptep_get(vmf->pte));
4359 }
4360
4361 /**
4362  * finish_fault - finish page fault once we have prepared the page to fault
4363  *
4364  * @vmf: structure describing the fault
4365  *
4366  * This function handles all that is needed to finish a page fault once the
4367  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4368  * given page, adds reverse page mapping, handles memcg charges and LRU
4369  * addition.
4370  *
4371  * The function expects the page to be locked and on success it consumes a
4372  * reference of a page being mapped (for the PTE which maps it).
4373  *
4374  * Return: %0 on success, %VM_FAULT_ code in case of error.
4375  */
4376 vm_fault_t finish_fault(struct vm_fault *vmf)
4377 {
4378         struct vm_area_struct *vma = vmf->vma;
4379         struct page *page;
4380         vm_fault_t ret;
4381
4382         /* Did we COW the page? */
4383         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4384                 page = vmf->cow_page;
4385         else
4386                 page = vmf->page;
4387
4388         /*
4389          * check even for read faults because we might have lost our CoWed
4390          * page
4391          */
4392         if (!(vma->vm_flags & VM_SHARED)) {
4393                 ret = check_stable_address_space(vma->vm_mm);
4394                 if (ret)
4395                         return ret;
4396         }
4397
4398         if (pmd_none(*vmf->pmd)) {
4399                 if (PageTransCompound(page)) {
4400                         ret = do_set_pmd(vmf, page);
4401                         if (ret != VM_FAULT_FALLBACK)
4402                                 return ret;
4403                 }
4404
4405                 if (vmf->prealloc_pte)
4406                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4407                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4408                         return VM_FAULT_OOM;
4409         }
4410
4411         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4412                                       vmf->address, &vmf->ptl);
4413         if (!vmf->pte)
4414                 return VM_FAULT_NOPAGE;
4415
4416         /* Re-check under ptl */
4417         if (likely(!vmf_pte_changed(vmf))) {
4418                 do_set_pte(vmf, page, vmf->address);
4419
4420                 /* no need to invalidate: a not-present page won't be cached */
4421                 update_mmu_cache(vma, vmf->address, vmf->pte);
4422
4423                 ret = 0;
4424         } else {
4425                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4426                 ret = VM_FAULT_NOPAGE;
4427         }
4428
4429         pte_unmap_unlock(vmf->pte, vmf->ptl);
4430         return ret;
4431 }
4432
4433 static unsigned long fault_around_pages __read_mostly =
4434         65536 >> PAGE_SHIFT;
4435
4436 #ifdef CONFIG_DEBUG_FS
4437 static int fault_around_bytes_get(void *data, u64 *val)
4438 {
4439         *val = fault_around_pages << PAGE_SHIFT;
4440         return 0;
4441 }
4442
4443 /*
4444  * fault_around_bytes must be rounded down to the nearest page order as it's
4445  * what do_fault_around() expects to see.
4446  */
4447 static int fault_around_bytes_set(void *data, u64 val)
4448 {
4449         if (val / PAGE_SIZE > PTRS_PER_PTE)
4450                 return -EINVAL;
4451
4452         /*
4453          * The minimum value is 1 page, however this results in no fault-around
4454          * at all. See should_fault_around().
4455          */
4456         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4457
4458         return 0;
4459 }
4460 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4461                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4462
4463 static int __init fault_around_debugfs(void)
4464 {
4465         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4466                                    &fault_around_bytes_fops);
4467         return 0;
4468 }
4469 late_initcall(fault_around_debugfs);
4470 #endif
4471
4472 /*
4473  * do_fault_around() tries to map few pages around the fault address. The hope
4474  * is that the pages will be needed soon and this will lower the number of
4475  * faults to handle.
4476  *
4477  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4478  * not ready to be mapped: not up-to-date, locked, etc.
4479  *
4480  * This function doesn't cross VMA or page table boundaries, in order to call
4481  * map_pages() and acquire a PTE lock only once.
4482  *
4483  * fault_around_pages defines how many pages we'll try to map.
4484  * do_fault_around() expects it to be set to a power of two less than or equal
4485  * to PTRS_PER_PTE.
4486  *
4487  * The virtual address of the area that we map is naturally aligned to
4488  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4489  * (and therefore to page order).  This way it's easier to guarantee
4490  * that we don't cross page table boundaries.
4491  */
4492 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4493 {
4494         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4495         pgoff_t pte_off = pte_index(vmf->address);
4496         /* The page offset of vmf->address within the VMA. */
4497         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4498         pgoff_t from_pte, to_pte;
4499         vm_fault_t ret;
4500
4501         /* The PTE offset of the start address, clamped to the VMA. */
4502         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4503                        pte_off - min(pte_off, vma_off));
4504
4505         /* The PTE offset of the end address, clamped to the VMA and PTE. */
4506         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4507                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4508
4509         if (pmd_none(*vmf->pmd)) {
4510                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4511                 if (!vmf->prealloc_pte)
4512                         return VM_FAULT_OOM;
4513         }
4514
4515         rcu_read_lock();
4516         ret = vmf->vma->vm_ops->map_pages(vmf,
4517                         vmf->pgoff + from_pte - pte_off,
4518                         vmf->pgoff + to_pte - pte_off);
4519         rcu_read_unlock();
4520
4521         return ret;
4522 }
4523
4524 /* Return true if we should do read fault-around, false otherwise */
4525 static inline bool should_fault_around(struct vm_fault *vmf)
4526 {
4527         /* No ->map_pages?  No way to fault around... */
4528         if (!vmf->vma->vm_ops->map_pages)
4529                 return false;
4530
4531         if (uffd_disable_fault_around(vmf->vma))
4532                 return false;
4533
4534         /* A single page implies no faulting 'around' at all. */
4535         return fault_around_pages > 1;
4536 }
4537
4538 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4539 {
4540         vm_fault_t ret = 0;
4541         struct folio *folio;
4542
4543         /*
4544          * Let's call ->map_pages() first and use ->fault() as fallback
4545          * if page by the offset is not ready to be mapped (cold cache or
4546          * something).
4547          */
4548         if (should_fault_around(vmf)) {
4549                 ret = do_fault_around(vmf);
4550                 if (ret)
4551                         return ret;
4552         }
4553
4554         ret = __do_fault(vmf);
4555         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556                 return ret;
4557
4558         ret |= finish_fault(vmf);
4559         folio = page_folio(vmf->page);
4560         folio_unlock(folio);
4561         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562                 folio_put(folio);
4563         return ret;
4564 }
4565
4566 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4567 {
4568         struct vm_area_struct *vma = vmf->vma;
4569         vm_fault_t ret;
4570
4571         if (unlikely(anon_vma_prepare(vma)))
4572                 return VM_FAULT_OOM;
4573
4574         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4575         if (!vmf->cow_page)
4576                 return VM_FAULT_OOM;
4577
4578         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4579                                 GFP_KERNEL)) {
4580                 put_page(vmf->cow_page);
4581                 return VM_FAULT_OOM;
4582         }
4583         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4584
4585         ret = __do_fault(vmf);
4586         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4587                 goto uncharge_out;
4588         if (ret & VM_FAULT_DONE_COW)
4589                 return ret;
4590
4591         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4592         __SetPageUptodate(vmf->cow_page);
4593
4594         ret |= finish_fault(vmf);
4595         unlock_page(vmf->page);
4596         put_page(vmf->page);
4597         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4598                 goto uncharge_out;
4599         return ret;
4600 uncharge_out:
4601         put_page(vmf->cow_page);
4602         return ret;
4603 }
4604
4605 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4606 {
4607         struct vm_area_struct *vma = vmf->vma;
4608         vm_fault_t ret, tmp;
4609         struct folio *folio;
4610
4611         ret = __do_fault(vmf);
4612         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4613                 return ret;
4614
4615         folio = page_folio(vmf->page);
4616
4617         /*
4618          * Check if the backing address space wants to know that the page is
4619          * about to become writable
4620          */
4621         if (vma->vm_ops->page_mkwrite) {
4622                 folio_unlock(folio);
4623                 tmp = do_page_mkwrite(vmf, folio);
4624                 if (unlikely(!tmp ||
4625                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4626                         folio_put(folio);
4627                         return tmp;
4628                 }
4629         }
4630
4631         ret |= finish_fault(vmf);
4632         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4633                                         VM_FAULT_RETRY))) {
4634                 folio_unlock(folio);
4635                 folio_put(folio);
4636                 return ret;
4637         }
4638
4639         ret |= fault_dirty_shared_page(vmf);
4640         return ret;
4641 }
4642
4643 /*
4644  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4645  * but allow concurrent faults).
4646  * The mmap_lock may have been released depending on flags and our
4647  * return value.  See filemap_fault() and __folio_lock_or_retry().
4648  * If mmap_lock is released, vma may become invalid (for example
4649  * by other thread calling munmap()).
4650  */
4651 static vm_fault_t do_fault(struct vm_fault *vmf)
4652 {
4653         struct vm_area_struct *vma = vmf->vma;
4654         struct mm_struct *vm_mm = vma->vm_mm;
4655         vm_fault_t ret;
4656
4657         /*
4658          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4659          */
4660         if (!vma->vm_ops->fault) {
4661                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4662                                                vmf->address, &vmf->ptl);
4663                 if (unlikely(!vmf->pte))
4664                         ret = VM_FAULT_SIGBUS;
4665                 else {
4666                         /*
4667                          * Make sure this is not a temporary clearing of pte
4668                          * by holding ptl and checking again. A R/M/W update
4669                          * of pte involves: take ptl, clearing the pte so that
4670                          * we don't have concurrent modification by hardware
4671                          * followed by an update.
4672                          */
4673                         if (unlikely(pte_none(ptep_get(vmf->pte))))
4674                                 ret = VM_FAULT_SIGBUS;
4675                         else
4676                                 ret = VM_FAULT_NOPAGE;
4677
4678                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4679                 }
4680         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4681                 ret = do_read_fault(vmf);
4682         else if (!(vma->vm_flags & VM_SHARED))
4683                 ret = do_cow_fault(vmf);
4684         else
4685                 ret = do_shared_fault(vmf);
4686
4687         /* preallocated pagetable is unused: free it */
4688         if (vmf->prealloc_pte) {
4689                 pte_free(vm_mm, vmf->prealloc_pte);
4690                 vmf->prealloc_pte = NULL;
4691         }
4692         return ret;
4693 }
4694
4695 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4696                       unsigned long addr, int page_nid, int *flags)
4697 {
4698         get_page(page);
4699
4700         /* Record the current PID acceesing VMA */
4701         vma_set_access_pid_bit(vma);
4702
4703         count_vm_numa_event(NUMA_HINT_FAULTS);
4704         if (page_nid == numa_node_id()) {
4705                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4706                 *flags |= TNF_FAULT_LOCAL;
4707         }
4708
4709         return mpol_misplaced(page, vma, addr);
4710 }
4711
4712 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4713 {
4714         struct vm_area_struct *vma = vmf->vma;
4715         struct page *page = NULL;
4716         int page_nid = NUMA_NO_NODE;
4717         bool writable = false;
4718         int last_cpupid;
4719         int target_nid;
4720         pte_t pte, old_pte;
4721         int flags = 0;
4722
4723         /*
4724          * The "pte" at this point cannot be used safely without
4725          * validation through pte_unmap_same(). It's of NUMA type but
4726          * the pfn may be screwed if the read is non atomic.
4727          */
4728         spin_lock(vmf->ptl);
4729         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4730                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4731                 goto out;
4732         }
4733
4734         /* Get the normal PTE  */
4735         old_pte = ptep_get(vmf->pte);
4736         pte = pte_modify(old_pte, vma->vm_page_prot);
4737
4738         /*
4739          * Detect now whether the PTE could be writable; this information
4740          * is only valid while holding the PT lock.
4741          */
4742         writable = pte_write(pte);
4743         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4744             can_change_pte_writable(vma, vmf->address, pte))
4745                 writable = true;
4746
4747         page = vm_normal_page(vma, vmf->address, pte);
4748         if (!page || is_zone_device_page(page))
4749                 goto out_map;
4750
4751         /* TODO: handle PTE-mapped THP */
4752         if (PageCompound(page))
4753                 goto out_map;
4754
4755         /*
4756          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4757          * much anyway since they can be in shared cache state. This misses
4758          * the case where a mapping is writable but the process never writes
4759          * to it but pte_write gets cleared during protection updates and
4760          * pte_dirty has unpredictable behaviour between PTE scan updates,
4761          * background writeback, dirty balancing and application behaviour.
4762          */
4763         if (!writable)
4764                 flags |= TNF_NO_GROUP;
4765
4766         /*
4767          * Flag if the page is shared between multiple address spaces. This
4768          * is later used when determining whether to group tasks together
4769          */
4770         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4771                 flags |= TNF_SHARED;
4772
4773         page_nid = page_to_nid(page);
4774         /*
4775          * For memory tiering mode, cpupid of slow memory page is used
4776          * to record page access time.  So use default value.
4777          */
4778         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4779             !node_is_toptier(page_nid))
4780                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4781         else
4782                 last_cpupid = page_cpupid_last(page);
4783         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4784                         &flags);
4785         if (target_nid == NUMA_NO_NODE) {
4786                 put_page(page);
4787                 goto out_map;
4788         }
4789         pte_unmap_unlock(vmf->pte, vmf->ptl);
4790         writable = false;
4791
4792         /* Migrate to the requested node */
4793         if (migrate_misplaced_page(page, vma, target_nid)) {
4794                 page_nid = target_nid;
4795                 flags |= TNF_MIGRATED;
4796         } else {
4797                 flags |= TNF_MIGRATE_FAIL;
4798                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4799                                                vmf->address, &vmf->ptl);
4800                 if (unlikely(!vmf->pte))
4801                         goto out;
4802                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4803                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4804                         goto out;
4805                 }
4806                 goto out_map;
4807         }
4808
4809 out:
4810         if (page_nid != NUMA_NO_NODE)
4811                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4812         return 0;
4813 out_map:
4814         /*
4815          * Make it present again, depending on how arch implements
4816          * non-accessible ptes, some can allow access by kernel mode.
4817          */
4818         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4819         pte = pte_modify(old_pte, vma->vm_page_prot);
4820         pte = pte_mkyoung(pte);
4821         if (writable)
4822                 pte = pte_mkwrite(pte);
4823         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4824         update_mmu_cache(vma, vmf->address, vmf->pte);
4825         pte_unmap_unlock(vmf->pte, vmf->ptl);
4826         goto out;
4827 }
4828
4829 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4830 {
4831         if (vma_is_anonymous(vmf->vma))
4832                 return do_huge_pmd_anonymous_page(vmf);
4833         if (vmf->vma->vm_ops->huge_fault)
4834                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4835         return VM_FAULT_FALLBACK;
4836 }
4837
4838 /* `inline' is required to avoid gcc 4.1.2 build error */
4839 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4840 {
4841         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4842         vm_fault_t ret;
4843
4844         if (vma_is_anonymous(vmf->vma)) {
4845                 if (likely(!unshare) &&
4846                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4847                         return handle_userfault(vmf, VM_UFFD_WP);
4848                 return do_huge_pmd_wp_page(vmf);
4849         }
4850
4851         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4852                 if (vmf->vma->vm_ops->huge_fault) {
4853                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4854                         if (!(ret & VM_FAULT_FALLBACK))
4855                                 return ret;
4856                 }
4857         }
4858
4859         /* COW or write-notify handled on pte level: split pmd. */
4860         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4861
4862         return VM_FAULT_FALLBACK;
4863 }
4864
4865 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4866 {
4867 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4868         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4869         /* No support for anonymous transparent PUD pages yet */
4870         if (vma_is_anonymous(vmf->vma))
4871                 return VM_FAULT_FALLBACK;
4872         if (vmf->vma->vm_ops->huge_fault)
4873                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4875         return VM_FAULT_FALLBACK;
4876 }
4877
4878 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4879 {
4880 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4881         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4882         vm_fault_t ret;
4883
4884         /* No support for anonymous transparent PUD pages yet */
4885         if (vma_is_anonymous(vmf->vma))
4886                 goto split;
4887         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4888                 if (vmf->vma->vm_ops->huge_fault) {
4889                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4890                         if (!(ret & VM_FAULT_FALLBACK))
4891                                 return ret;
4892                 }
4893         }
4894 split:
4895         /* COW or write-notify not handled on PUD level: split pud.*/
4896         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4898         return VM_FAULT_FALLBACK;
4899 }
4900
4901 /*
4902  * These routines also need to handle stuff like marking pages dirty
4903  * and/or accessed for architectures that don't do it in hardware (most
4904  * RISC architectures).  The early dirtying is also good on the i386.
4905  *
4906  * There is also a hook called "update_mmu_cache()" that architectures
4907  * with external mmu caches can use to update those (ie the Sparc or
4908  * PowerPC hashed page tables that act as extended TLBs).
4909  *
4910  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4911  * concurrent faults).
4912  *
4913  * The mmap_lock may have been released depending on flags and our return value.
4914  * See filemap_fault() and __folio_lock_or_retry().
4915  */
4916 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4917 {
4918         pte_t entry;
4919
4920         if (unlikely(pmd_none(*vmf->pmd))) {
4921                 /*
4922                  * Leave __pte_alloc() until later: because vm_ops->fault may
4923                  * want to allocate huge page, and if we expose page table
4924                  * for an instant, it will be difficult to retract from
4925                  * concurrent faults and from rmap lookups.
4926                  */
4927                 vmf->pte = NULL;
4928                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4929         } else {
4930                 /*
4931                  * A regular pmd is established and it can't morph into a huge
4932                  * pmd by anon khugepaged, since that takes mmap_lock in write
4933                  * mode; but shmem or file collapse to THP could still morph
4934                  * it into a huge pmd: just retry later if so.
4935                  */
4936                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4937                                                  vmf->address, &vmf->ptl);
4938                 if (unlikely(!vmf->pte))
4939                         return 0;
4940                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4941                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4942
4943                 if (pte_none(vmf->orig_pte)) {
4944                         pte_unmap(vmf->pte);
4945                         vmf->pte = NULL;
4946                 }
4947         }
4948
4949         if (!vmf->pte)
4950                 return do_pte_missing(vmf);
4951
4952         if (!pte_present(vmf->orig_pte))
4953                 return do_swap_page(vmf);
4954
4955         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4956                 return do_numa_page(vmf);
4957
4958         spin_lock(vmf->ptl);
4959         entry = vmf->orig_pte;
4960         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4961                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4962                 goto unlock;
4963         }
4964         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4965                 if (!pte_write(entry))
4966                         return do_wp_page(vmf);
4967                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4968                         entry = pte_mkdirty(entry);
4969         }
4970         entry = pte_mkyoung(entry);
4971         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4972                                 vmf->flags & FAULT_FLAG_WRITE)) {
4973                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4974         } else {
4975                 /* Skip spurious TLB flush for retried page fault */
4976                 if (vmf->flags & FAULT_FLAG_TRIED)
4977                         goto unlock;
4978                 /*
4979                  * This is needed only for protection faults but the arch code
4980                  * is not yet telling us if this is a protection fault or not.
4981                  * This still avoids useless tlb flushes for .text page faults
4982                  * with threads.
4983                  */
4984                 if (vmf->flags & FAULT_FLAG_WRITE)
4985                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4986                                                      vmf->pte);
4987         }
4988 unlock:
4989         pte_unmap_unlock(vmf->pte, vmf->ptl);
4990         return 0;
4991 }
4992
4993 /*
4994  * By the time we get here, we already hold the mm semaphore
4995  *
4996  * The mmap_lock may have been released depending on flags and our
4997  * return value.  See filemap_fault() and __folio_lock_or_retry().
4998  */
4999 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5000                 unsigned long address, unsigned int flags)
5001 {
5002         struct vm_fault vmf = {
5003                 .vma = vma,
5004                 .address = address & PAGE_MASK,
5005                 .real_address = address,
5006                 .flags = flags,
5007                 .pgoff = linear_page_index(vma, address),
5008                 .gfp_mask = __get_fault_gfp_mask(vma),
5009         };
5010         struct mm_struct *mm = vma->vm_mm;
5011         unsigned long vm_flags = vma->vm_flags;
5012         pgd_t *pgd;
5013         p4d_t *p4d;
5014         vm_fault_t ret;
5015
5016         pgd = pgd_offset(mm, address);
5017         p4d = p4d_alloc(mm, pgd, address);
5018         if (!p4d)
5019                 return VM_FAULT_OOM;
5020
5021         vmf.pud = pud_alloc(mm, p4d, address);
5022         if (!vmf.pud)
5023                 return VM_FAULT_OOM;
5024 retry_pud:
5025         if (pud_none(*vmf.pud) &&
5026             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5027                 ret = create_huge_pud(&vmf);
5028                 if (!(ret & VM_FAULT_FALLBACK))
5029                         return ret;
5030         } else {
5031                 pud_t orig_pud = *vmf.pud;
5032
5033                 barrier();
5034                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5035
5036                         /*
5037                          * TODO once we support anonymous PUDs: NUMA case and
5038                          * FAULT_FLAG_UNSHARE handling.
5039                          */
5040                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5041                                 ret = wp_huge_pud(&vmf, orig_pud);
5042                                 if (!(ret & VM_FAULT_FALLBACK))
5043                                         return ret;
5044                         } else {
5045                                 huge_pud_set_accessed(&vmf, orig_pud);
5046                                 return 0;
5047                         }
5048                 }
5049         }
5050
5051         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5052         if (!vmf.pmd)
5053                 return VM_FAULT_OOM;
5054
5055         /* Huge pud page fault raced with pmd_alloc? */
5056         if (pud_trans_unstable(vmf.pud))
5057                 goto retry_pud;
5058
5059         if (pmd_none(*vmf.pmd) &&
5060             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5061                 ret = create_huge_pmd(&vmf);
5062                 if (!(ret & VM_FAULT_FALLBACK))
5063                         return ret;
5064         } else {
5065                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5066
5067                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5068                         VM_BUG_ON(thp_migration_supported() &&
5069                                           !is_pmd_migration_entry(vmf.orig_pmd));
5070                         if (is_pmd_migration_entry(vmf.orig_pmd))
5071                                 pmd_migration_entry_wait(mm, vmf.pmd);
5072                         return 0;
5073                 }
5074                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5075                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5076                                 return do_huge_pmd_numa_page(&vmf);
5077
5078                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5079                             !pmd_write(vmf.orig_pmd)) {
5080                                 ret = wp_huge_pmd(&vmf);
5081                                 if (!(ret & VM_FAULT_FALLBACK))
5082                                         return ret;
5083                         } else {
5084                                 huge_pmd_set_accessed(&vmf);
5085                                 return 0;
5086                         }
5087                 }
5088         }
5089
5090         return handle_pte_fault(&vmf);
5091 }
5092
5093 /**
5094  * mm_account_fault - Do page fault accounting
5095  * @mm: mm from which memcg should be extracted. It can be NULL.
5096  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5097  *        of perf event counters, but we'll still do the per-task accounting to
5098  *        the task who triggered this page fault.
5099  * @address: the faulted address.
5100  * @flags: the fault flags.
5101  * @ret: the fault retcode.
5102  *
5103  * This will take care of most of the page fault accounting.  Meanwhile, it
5104  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5105  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5106  * still be in per-arch page fault handlers at the entry of page fault.
5107  */
5108 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5109                                     unsigned long address, unsigned int flags,
5110                                     vm_fault_t ret)
5111 {
5112         bool major;
5113
5114         /* Incomplete faults will be accounted upon completion. */
5115         if (ret & VM_FAULT_RETRY)
5116                 return;
5117
5118         /*
5119          * To preserve the behavior of older kernels, PGFAULT counters record
5120          * both successful and failed faults, as opposed to perf counters,
5121          * which ignore failed cases.
5122          */
5123         count_vm_event(PGFAULT);
5124         count_memcg_event_mm(mm, PGFAULT);
5125
5126         /*
5127          * Do not account for unsuccessful faults (e.g. when the address wasn't
5128          * valid).  That includes arch_vma_access_permitted() failing before
5129          * reaching here. So this is not a "this many hardware page faults"
5130          * counter.  We should use the hw profiling for that.
5131          */
5132         if (ret & VM_FAULT_ERROR)
5133                 return;
5134
5135         /*
5136          * We define the fault as a major fault when the final successful fault
5137          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138          * handle it immediately previously).
5139          */
5140         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141
5142         if (major)
5143                 current->maj_flt++;
5144         else
5145                 current->min_flt++;
5146
5147         /*
5148          * If the fault is done for GUP, regs will be NULL.  We only do the
5149          * accounting for the per thread fault counters who triggered the
5150          * fault, and we skip the perf event updates.
5151          */
5152         if (!regs)
5153                 return;
5154
5155         if (major)
5156                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5157         else
5158                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5159 }
5160
5161 #ifdef CONFIG_LRU_GEN
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164         /* the LRU algorithm only applies to accesses with recency */
5165         current->in_lru_fault = vma_has_recency(vma);
5166 }
5167
5168 static void lru_gen_exit_fault(void)
5169 {
5170         current->in_lru_fault = false;
5171 }
5172 #else
5173 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174 {
5175 }
5176
5177 static void lru_gen_exit_fault(void)
5178 {
5179 }
5180 #endif /* CONFIG_LRU_GEN */
5181
5182 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5183                                        unsigned int *flags)
5184 {
5185         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5186                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5187                         return VM_FAULT_SIGSEGV;
5188                 /*
5189                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5190                  * just treat it like an ordinary read-fault otherwise.
5191                  */
5192                 if (!is_cow_mapping(vma->vm_flags))
5193                         *flags &= ~FAULT_FLAG_UNSHARE;
5194         } else if (*flags & FAULT_FLAG_WRITE) {
5195                 /* Write faults on read-only mappings are impossible ... */
5196                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5197                         return VM_FAULT_SIGSEGV;
5198                 /* ... and FOLL_FORCE only applies to COW mappings. */
5199                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5200                                  !is_cow_mapping(vma->vm_flags)))
5201                         return VM_FAULT_SIGSEGV;
5202         }
5203         return 0;
5204 }
5205
5206 /*
5207  * By the time we get here, we already hold the mm semaphore
5208  *
5209  * The mmap_lock may have been released depending on flags and our
5210  * return value.  See filemap_fault() and __folio_lock_or_retry().
5211  */
5212 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5213                            unsigned int flags, struct pt_regs *regs)
5214 {
5215         /* If the fault handler drops the mmap_lock, vma may be freed */
5216         struct mm_struct *mm = vma->vm_mm;
5217         vm_fault_t ret;
5218
5219         __set_current_state(TASK_RUNNING);
5220
5221         ret = sanitize_fault_flags(vma, &flags);
5222         if (ret)
5223                 goto out;
5224
5225         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5226                                             flags & FAULT_FLAG_INSTRUCTION,
5227                                             flags & FAULT_FLAG_REMOTE)) {
5228                 ret = VM_FAULT_SIGSEGV;
5229                 goto out;
5230         }
5231
5232         /*
5233          * Enable the memcg OOM handling for faults triggered in user
5234          * space.  Kernel faults are handled more gracefully.
5235          */
5236         if (flags & FAULT_FLAG_USER)
5237                 mem_cgroup_enter_user_fault();
5238
5239         lru_gen_enter_fault(vma);
5240
5241         if (unlikely(is_vm_hugetlb_page(vma)))
5242                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5243         else
5244                 ret = __handle_mm_fault(vma, address, flags);
5245
5246         lru_gen_exit_fault();
5247
5248         if (flags & FAULT_FLAG_USER) {
5249                 mem_cgroup_exit_user_fault();
5250                 /*
5251                  * The task may have entered a memcg OOM situation but
5252                  * if the allocation error was handled gracefully (no
5253                  * VM_FAULT_OOM), there is no need to kill anything.
5254                  * Just clean up the OOM state peacefully.
5255                  */
5256                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5257                         mem_cgroup_oom_synchronize(false);
5258         }
5259 out:
5260         mm_account_fault(mm, regs, address, flags, ret);
5261
5262         return ret;
5263 }
5264 EXPORT_SYMBOL_GPL(handle_mm_fault);
5265
5266 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5267 #include <linux/extable.h>
5268
5269 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5270 {
5271         /* Even if this succeeds, make it clear we *might* have slept */
5272         if (likely(mmap_read_trylock(mm))) {
5273                 might_sleep();
5274                 return true;
5275         }
5276
5277         if (regs && !user_mode(regs)) {
5278                 unsigned long ip = instruction_pointer(regs);
5279                 if (!search_exception_tables(ip))
5280                         return false;
5281         }
5282
5283         return !mmap_read_lock_killable(mm);
5284 }
5285
5286 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5287 {
5288         /*
5289          * We don't have this operation yet.
5290          *
5291          * It should be easy enough to do: it's basically a
5292          *    atomic_long_try_cmpxchg_acquire()
5293          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5294          * it also needs the proper lockdep magic etc.
5295          */
5296         return false;
5297 }
5298
5299 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5300 {
5301         mmap_read_unlock(mm);
5302         if (regs && !user_mode(regs)) {
5303                 unsigned long ip = instruction_pointer(regs);
5304                 if (!search_exception_tables(ip))
5305                         return false;
5306         }
5307         return !mmap_write_lock_killable(mm);
5308 }
5309
5310 /*
5311  * Helper for page fault handling.
5312  *
5313  * This is kind of equivalend to "mmap_read_lock()" followed
5314  * by "find_extend_vma()", except it's a lot more careful about
5315  * the locking (and will drop the lock on failure).
5316  *
5317  * For example, if we have a kernel bug that causes a page
5318  * fault, we don't want to just use mmap_read_lock() to get
5319  * the mm lock, because that would deadlock if the bug were
5320  * to happen while we're holding the mm lock for writing.
5321  *
5322  * So this checks the exception tables on kernel faults in
5323  * order to only do this all for instructions that are actually
5324  * expected to fault.
5325  *
5326  * We can also actually take the mm lock for writing if we
5327  * need to extend the vma, which helps the VM layer a lot.
5328  */
5329 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5330                         unsigned long addr, struct pt_regs *regs)
5331 {
5332         struct vm_area_struct *vma;
5333
5334         if (!get_mmap_lock_carefully(mm, regs))
5335                 return NULL;
5336
5337         vma = find_vma(mm, addr);
5338         if (likely(vma && (vma->vm_start <= addr)))
5339                 return vma;
5340
5341         /*
5342          * Well, dang. We might still be successful, but only
5343          * if we can extend a vma to do so.
5344          */
5345         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5346                 mmap_read_unlock(mm);
5347                 return NULL;
5348         }
5349
5350         /*
5351          * We can try to upgrade the mmap lock atomically,
5352          * in which case we can continue to use the vma
5353          * we already looked up.
5354          *
5355          * Otherwise we'll have to drop the mmap lock and
5356          * re-take it, and also look up the vma again,
5357          * re-checking it.
5358          */
5359         if (!mmap_upgrade_trylock(mm)) {
5360                 if (!upgrade_mmap_lock_carefully(mm, regs))
5361                         return NULL;
5362
5363                 vma = find_vma(mm, addr);
5364                 if (!vma)
5365                         goto fail;
5366                 if (vma->vm_start <= addr)
5367                         goto success;
5368                 if (!(vma->vm_flags & VM_GROWSDOWN))
5369                         goto fail;
5370         }
5371
5372         if (expand_stack_locked(vma, addr))
5373                 goto fail;
5374
5375 success:
5376         mmap_write_downgrade(mm);
5377         return vma;
5378
5379 fail:
5380         mmap_write_unlock(mm);
5381         return NULL;
5382 }
5383 #endif
5384
5385 #ifdef CONFIG_PER_VMA_LOCK
5386 /*
5387  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5388  * stable and not isolated. If the VMA is not found or is being modified the
5389  * function returns NULL.
5390  */
5391 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5392                                           unsigned long address)
5393 {
5394         MA_STATE(mas, &mm->mm_mt, address, address);
5395         struct vm_area_struct *vma;
5396
5397         rcu_read_lock();
5398 retry:
5399         vma = mas_walk(&mas);
5400         if (!vma)
5401                 goto inval;
5402
5403         /* Only anonymous and tcp vmas are supported for now */
5404         if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5405                 goto inval;
5406
5407         if (!vma_start_read(vma))
5408                 goto inval;
5409
5410         /*
5411          * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5412          * This check must happen after vma_start_read(); otherwise, a
5413          * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5414          * from its anon_vma.
5415          */
5416         if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5417                 goto inval_end_read;
5418
5419         /*
5420          * Due to the possibility of userfault handler dropping mmap_lock, avoid
5421          * it for now and fall back to page fault handling under mmap_lock.
5422          */
5423         if (userfaultfd_armed(vma))
5424                 goto inval_end_read;
5425
5426         /* Check since vm_start/vm_end might change before we lock the VMA */
5427         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5428                 goto inval_end_read;
5429
5430         /* Check if the VMA got isolated after we found it */
5431         if (vma->detached) {
5432                 vma_end_read(vma);
5433                 count_vm_vma_lock_event(VMA_LOCK_MISS);
5434                 /* The area was replaced with another one */
5435                 goto retry;
5436         }
5437
5438         rcu_read_unlock();
5439         return vma;
5440
5441 inval_end_read:
5442         vma_end_read(vma);
5443 inval:
5444         rcu_read_unlock();
5445         count_vm_vma_lock_event(VMA_LOCK_ABORT);
5446         return NULL;
5447 }
5448 #endif /* CONFIG_PER_VMA_LOCK */
5449
5450 #ifndef __PAGETABLE_P4D_FOLDED
5451 /*
5452  * Allocate p4d page table.
5453  * We've already handled the fast-path in-line.
5454  */
5455 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5456 {
5457         p4d_t *new = p4d_alloc_one(mm, address);
5458         if (!new)
5459                 return -ENOMEM;
5460
5461         spin_lock(&mm->page_table_lock);
5462         if (pgd_present(*pgd)) {        /* Another has populated it */
5463                 p4d_free(mm, new);
5464         } else {
5465                 smp_wmb(); /* See comment in pmd_install() */
5466                 pgd_populate(mm, pgd, new);
5467         }
5468         spin_unlock(&mm->page_table_lock);
5469         return 0;
5470 }
5471 #endif /* __PAGETABLE_P4D_FOLDED */
5472
5473 #ifndef __PAGETABLE_PUD_FOLDED
5474 /*
5475  * Allocate page upper directory.
5476  * We've already handled the fast-path in-line.
5477  */
5478 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5479 {
5480         pud_t *new = pud_alloc_one(mm, address);
5481         if (!new)
5482                 return -ENOMEM;
5483
5484         spin_lock(&mm->page_table_lock);
5485         if (!p4d_present(*p4d)) {
5486                 mm_inc_nr_puds(mm);
5487                 smp_wmb(); /* See comment in pmd_install() */
5488                 p4d_populate(mm, p4d, new);
5489         } else  /* Another has populated it */
5490                 pud_free(mm, new);
5491         spin_unlock(&mm->page_table_lock);
5492         return 0;
5493 }
5494 #endif /* __PAGETABLE_PUD_FOLDED */
5495
5496 #ifndef __PAGETABLE_PMD_FOLDED
5497 /*
5498  * Allocate page middle directory.
5499  * We've already handled the fast-path in-line.
5500  */
5501 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5502 {
5503         spinlock_t *ptl;
5504         pmd_t *new = pmd_alloc_one(mm, address);
5505         if (!new)
5506                 return -ENOMEM;
5507
5508         ptl = pud_lock(mm, pud);
5509         if (!pud_present(*pud)) {
5510                 mm_inc_nr_pmds(mm);
5511                 smp_wmb(); /* See comment in pmd_install() */
5512                 pud_populate(mm, pud, new);
5513         } else {        /* Another has populated it */
5514                 pmd_free(mm, new);
5515         }
5516         spin_unlock(ptl);
5517         return 0;
5518 }
5519 #endif /* __PAGETABLE_PMD_FOLDED */
5520
5521 /**
5522  * follow_pte - look up PTE at a user virtual address
5523  * @mm: the mm_struct of the target address space
5524  * @address: user virtual address
5525  * @ptepp: location to store found PTE
5526  * @ptlp: location to store the lock for the PTE
5527  *
5528  * On a successful return, the pointer to the PTE is stored in @ptepp;
5529  * the corresponding lock is taken and its location is stored in @ptlp.
5530  * The contents of the PTE are only stable until @ptlp is released;
5531  * any further use, if any, must be protected against invalidation
5532  * with MMU notifiers.
5533  *
5534  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5535  * should be taken for read.
5536  *
5537  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5538  * it is not a good general-purpose API.
5539  *
5540  * Return: zero on success, -ve otherwise.
5541  */
5542 int follow_pte(struct mm_struct *mm, unsigned long address,
5543                pte_t **ptepp, spinlock_t **ptlp)
5544 {
5545         pgd_t *pgd;
5546         p4d_t *p4d;
5547         pud_t *pud;
5548         pmd_t *pmd;
5549         pte_t *ptep;
5550
5551         pgd = pgd_offset(mm, address);
5552         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5553                 goto out;
5554
5555         p4d = p4d_offset(pgd, address);
5556         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5557                 goto out;
5558
5559         pud = pud_offset(p4d, address);
5560         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5561                 goto out;
5562
5563         pmd = pmd_offset(pud, address);
5564         VM_BUG_ON(pmd_trans_huge(*pmd));
5565
5566         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5567         if (!ptep)
5568                 goto out;
5569         if (!pte_present(ptep_get(ptep)))
5570                 goto unlock;
5571         *ptepp = ptep;
5572         return 0;
5573 unlock:
5574         pte_unmap_unlock(ptep, *ptlp);
5575 out:
5576         return -EINVAL;
5577 }
5578 EXPORT_SYMBOL_GPL(follow_pte);
5579
5580 /**
5581  * follow_pfn - look up PFN at a user virtual address
5582  * @vma: memory mapping
5583  * @address: user virtual address
5584  * @pfn: location to store found PFN
5585  *
5586  * Only IO mappings and raw PFN mappings are allowed.
5587  *
5588  * This function does not allow the caller to read the permissions
5589  * of the PTE.  Do not use it.
5590  *
5591  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5592  */
5593 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5594         unsigned long *pfn)
5595 {
5596         int ret = -EINVAL;
5597         spinlock_t *ptl;
5598         pte_t *ptep;
5599
5600         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5601                 return ret;
5602
5603         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5604         if (ret)
5605                 return ret;
5606         *pfn = pte_pfn(ptep_get(ptep));
5607         pte_unmap_unlock(ptep, ptl);
5608         return 0;
5609 }
5610 EXPORT_SYMBOL(follow_pfn);
5611
5612 #ifdef CONFIG_HAVE_IOREMAP_PROT
5613 int follow_phys(struct vm_area_struct *vma,
5614                 unsigned long address, unsigned int flags,
5615                 unsigned long *prot, resource_size_t *phys)
5616 {
5617         int ret = -EINVAL;
5618         pte_t *ptep, pte;
5619         spinlock_t *ptl;
5620
5621         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5622                 goto out;
5623
5624         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5625                 goto out;
5626         pte = ptep_get(ptep);
5627
5628         if ((flags & FOLL_WRITE) && !pte_write(pte))
5629                 goto unlock;
5630
5631         *prot = pgprot_val(pte_pgprot(pte));
5632         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5633
5634         ret = 0;
5635 unlock:
5636         pte_unmap_unlock(ptep, ptl);
5637 out:
5638         return ret;
5639 }
5640
5641 /**
5642  * generic_access_phys - generic implementation for iomem mmap access
5643  * @vma: the vma to access
5644  * @addr: userspace address, not relative offset within @vma
5645  * @buf: buffer to read/write
5646  * @len: length of transfer
5647  * @write: set to FOLL_WRITE when writing, otherwise reading
5648  *
5649  * This is a generic implementation for &vm_operations_struct.access for an
5650  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5651  * not page based.
5652  */
5653 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5654                         void *buf, int len, int write)
5655 {
5656         resource_size_t phys_addr;
5657         unsigned long prot = 0;
5658         void __iomem *maddr;
5659         pte_t *ptep, pte;
5660         spinlock_t *ptl;
5661         int offset = offset_in_page(addr);
5662         int ret = -EINVAL;
5663
5664         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5665                 return -EINVAL;
5666
5667 retry:
5668         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5669                 return -EINVAL;
5670         pte = ptep_get(ptep);
5671         pte_unmap_unlock(ptep, ptl);
5672
5673         prot = pgprot_val(pte_pgprot(pte));
5674         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5675
5676         if ((write & FOLL_WRITE) && !pte_write(pte))
5677                 return -EINVAL;
5678
5679         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5680         if (!maddr)
5681                 return -ENOMEM;
5682
5683         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5684                 goto out_unmap;
5685
5686         if (!pte_same(pte, ptep_get(ptep))) {
5687                 pte_unmap_unlock(ptep, ptl);
5688                 iounmap(maddr);
5689
5690                 goto retry;
5691         }
5692
5693         if (write)
5694                 memcpy_toio(maddr + offset, buf, len);
5695         else
5696                 memcpy_fromio(buf, maddr + offset, len);
5697         ret = len;
5698         pte_unmap_unlock(ptep, ptl);
5699 out_unmap:
5700         iounmap(maddr);
5701
5702         return ret;
5703 }
5704 EXPORT_SYMBOL_GPL(generic_access_phys);
5705 #endif
5706
5707 /*
5708  * Access another process' address space as given in mm.
5709  */
5710 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5711                        int len, unsigned int gup_flags)
5712 {
5713         void *old_buf = buf;
5714         int write = gup_flags & FOLL_WRITE;
5715
5716         if (mmap_read_lock_killable(mm))
5717                 return 0;
5718
5719         /* Avoid triggering the temporary warning in __get_user_pages */
5720         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5721                 return 0;
5722
5723         /* ignore errors, just check how much was successfully transferred */
5724         while (len) {
5725                 int bytes, offset;
5726                 void *maddr;
5727                 struct vm_area_struct *vma = NULL;
5728                 struct page *page = get_user_page_vma_remote(mm, addr,
5729                                                              gup_flags, &vma);
5730
5731                 if (IS_ERR_OR_NULL(page)) {
5732                         /* We might need to expand the stack to access it */
5733                         vma = vma_lookup(mm, addr);
5734                         if (!vma) {
5735                                 vma = expand_stack(mm, addr);
5736
5737                                 /* mmap_lock was dropped on failure */
5738                                 if (!vma)
5739                                         return buf - old_buf;
5740
5741                                 /* Try again if stack expansion worked */
5742                                 continue;
5743                         }
5744
5745
5746                         /*
5747                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5748                          * we can access using slightly different code.
5749                          */
5750                         bytes = 0;
5751 #ifdef CONFIG_HAVE_IOREMAP_PROT
5752                         if (vma->vm_ops && vma->vm_ops->access)
5753                                 bytes = vma->vm_ops->access(vma, addr, buf,
5754                                                             len, write);
5755 #endif
5756                         if (bytes <= 0)
5757                                 break;
5758                 } else {
5759                         bytes = len;
5760                         offset = addr & (PAGE_SIZE-1);
5761                         if (bytes > PAGE_SIZE-offset)
5762                                 bytes = PAGE_SIZE-offset;
5763
5764                         maddr = kmap(page);
5765                         if (write) {
5766                                 copy_to_user_page(vma, page, addr,
5767                                                   maddr + offset, buf, bytes);
5768                                 set_page_dirty_lock(page);
5769                         } else {
5770                                 copy_from_user_page(vma, page, addr,
5771                                                     buf, maddr + offset, bytes);
5772                         }
5773                         kunmap(page);
5774                         put_page(page);
5775                 }
5776                 len -= bytes;
5777                 buf += bytes;
5778                 addr += bytes;
5779         }
5780         mmap_read_unlock(mm);
5781
5782         return buf - old_buf;
5783 }
5784
5785 /**
5786  * access_remote_vm - access another process' address space
5787  * @mm:         the mm_struct of the target address space
5788  * @addr:       start address to access
5789  * @buf:        source or destination buffer
5790  * @len:        number of bytes to transfer
5791  * @gup_flags:  flags modifying lookup behaviour
5792  *
5793  * The caller must hold a reference on @mm.
5794  *
5795  * Return: number of bytes copied from source to destination.
5796  */
5797 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5798                 void *buf, int len, unsigned int gup_flags)
5799 {
5800         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5801 }
5802
5803 /*
5804  * Access another process' address space.
5805  * Source/target buffer must be kernel space,
5806  * Do not walk the page table directly, use get_user_pages
5807  */
5808 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5809                 void *buf, int len, unsigned int gup_flags)
5810 {
5811         struct mm_struct *mm;
5812         int ret;
5813
5814         mm = get_task_mm(tsk);
5815         if (!mm)
5816                 return 0;
5817
5818         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5819
5820         mmput(mm);
5821
5822         return ret;
5823 }
5824 EXPORT_SYMBOL_GPL(access_process_vm);
5825
5826 /*
5827  * Print the name of a VMA.
5828  */
5829 void print_vma_addr(char *prefix, unsigned long ip)
5830 {
5831         struct mm_struct *mm = current->mm;
5832         struct vm_area_struct *vma;
5833
5834         /*
5835          * we might be running from an atomic context so we cannot sleep
5836          */
5837         if (!mmap_read_trylock(mm))
5838                 return;
5839
5840         vma = find_vma(mm, ip);
5841         if (vma && vma->vm_file) {
5842                 struct file *f = vma->vm_file;
5843                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5844                 if (buf) {
5845                         char *p;
5846
5847                         p = file_path(f, buf, PAGE_SIZE);
5848                         if (IS_ERR(p))
5849                                 p = "?";
5850                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5851                                         vma->vm_start,
5852                                         vma->vm_end - vma->vm_start);
5853                         free_page((unsigned long)buf);
5854                 }
5855         }
5856         mmap_read_unlock(mm);
5857 }
5858
5859 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5860 void __might_fault(const char *file, int line)
5861 {
5862         if (pagefault_disabled())
5863                 return;
5864         __might_sleep(file, line);
5865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5866         if (current->mm)
5867                 might_lock_read(&current->mm->mmap_lock);
5868 #endif
5869 }
5870 EXPORT_SYMBOL(__might_fault);
5871 #endif
5872
5873 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5874 /*
5875  * Process all subpages of the specified huge page with the specified
5876  * operation.  The target subpage will be processed last to keep its
5877  * cache lines hot.
5878  */
5879 static inline int process_huge_page(
5880         unsigned long addr_hint, unsigned int pages_per_huge_page,
5881         int (*process_subpage)(unsigned long addr, int idx, void *arg),
5882         void *arg)
5883 {
5884         int i, n, base, l, ret;
5885         unsigned long addr = addr_hint &
5886                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5887
5888         /* Process target subpage last to keep its cache lines hot */
5889         might_sleep();
5890         n = (addr_hint - addr) / PAGE_SIZE;
5891         if (2 * n <= pages_per_huge_page) {
5892                 /* If target subpage in first half of huge page */
5893                 base = 0;
5894                 l = n;
5895                 /* Process subpages at the end of huge page */
5896                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5897                         cond_resched();
5898                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5899                         if (ret)
5900                                 return ret;
5901                 }
5902         } else {
5903                 /* If target subpage in second half of huge page */
5904                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5905                 l = pages_per_huge_page - n;
5906                 /* Process subpages at the begin of huge page */
5907                 for (i = 0; i < base; i++) {
5908                         cond_resched();
5909                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5910                         if (ret)
5911                                 return ret;
5912                 }
5913         }
5914         /*
5915          * Process remaining subpages in left-right-left-right pattern
5916          * towards the target subpage
5917          */
5918         for (i = 0; i < l; i++) {
5919                 int left_idx = base + i;
5920                 int right_idx = base + 2 * l - 1 - i;
5921
5922                 cond_resched();
5923                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5924                 if (ret)
5925                         return ret;
5926                 cond_resched();
5927                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5928                 if (ret)
5929                         return ret;
5930         }
5931         return 0;
5932 }
5933
5934 static void clear_gigantic_page(struct page *page,
5935                                 unsigned long addr,
5936                                 unsigned int pages_per_huge_page)
5937 {
5938         int i;
5939         struct page *p;
5940
5941         might_sleep();
5942         for (i = 0; i < pages_per_huge_page; i++) {
5943                 p = nth_page(page, i);
5944                 cond_resched();
5945                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5946         }
5947 }
5948
5949 static int clear_subpage(unsigned long addr, int idx, void *arg)
5950 {
5951         struct page *page = arg;
5952
5953         clear_user_highpage(page + idx, addr);
5954         return 0;
5955 }
5956
5957 void clear_huge_page(struct page *page,
5958                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5959 {
5960         unsigned long addr = addr_hint &
5961                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5962
5963         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5964                 clear_gigantic_page(page, addr, pages_per_huge_page);
5965                 return;
5966         }
5967
5968         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5969 }
5970
5971 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5972                                      unsigned long addr,
5973                                      struct vm_area_struct *vma,
5974                                      unsigned int pages_per_huge_page)
5975 {
5976         int i;
5977         struct page *dst_page;
5978         struct page *src_page;
5979
5980         for (i = 0; i < pages_per_huge_page; i++) {
5981                 dst_page = folio_page(dst, i);
5982                 src_page = folio_page(src, i);
5983
5984                 cond_resched();
5985                 if (copy_mc_user_highpage(dst_page, src_page,
5986                                           addr + i*PAGE_SIZE, vma)) {
5987                         memory_failure_queue(page_to_pfn(src_page), 0);
5988                         return -EHWPOISON;
5989                 }
5990         }
5991         return 0;
5992 }
5993
5994 struct copy_subpage_arg {
5995         struct page *dst;
5996         struct page *src;
5997         struct vm_area_struct *vma;
5998 };
5999
6000 static int copy_subpage(unsigned long addr, int idx, void *arg)
6001 {
6002         struct copy_subpage_arg *copy_arg = arg;
6003
6004         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6005                                   addr, copy_arg->vma)) {
6006                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6007                 return -EHWPOISON;
6008         }
6009         return 0;
6010 }
6011
6012 int copy_user_large_folio(struct folio *dst, struct folio *src,
6013                           unsigned long addr_hint, struct vm_area_struct *vma)
6014 {
6015         unsigned int pages_per_huge_page = folio_nr_pages(dst);
6016         unsigned long addr = addr_hint &
6017                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6018         struct copy_subpage_arg arg = {
6019                 .dst = &dst->page,
6020                 .src = &src->page,
6021                 .vma = vma,
6022         };
6023
6024         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6025                 return copy_user_gigantic_page(dst, src, addr, vma,
6026                                                pages_per_huge_page);
6027
6028         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6029 }
6030
6031 long copy_folio_from_user(struct folio *dst_folio,
6032                            const void __user *usr_src,
6033                            bool allow_pagefault)
6034 {
6035         void *kaddr;
6036         unsigned long i, rc = 0;
6037         unsigned int nr_pages = folio_nr_pages(dst_folio);
6038         unsigned long ret_val = nr_pages * PAGE_SIZE;
6039         struct page *subpage;
6040
6041         for (i = 0; i < nr_pages; i++) {
6042                 subpage = folio_page(dst_folio, i);
6043                 kaddr = kmap_local_page(subpage);
6044                 if (!allow_pagefault)
6045                         pagefault_disable();
6046                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6047                 if (!allow_pagefault)
6048                         pagefault_enable();
6049                 kunmap_local(kaddr);
6050
6051                 ret_val -= (PAGE_SIZE - rc);
6052                 if (rc)
6053                         break;
6054
6055                 flush_dcache_page(subpage);
6056
6057                 cond_resched();
6058         }
6059         return ret_val;
6060 }
6061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6062
6063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6064
6065 static struct kmem_cache *page_ptl_cachep;
6066
6067 void __init ptlock_cache_init(void)
6068 {
6069         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6070                         SLAB_PANIC, NULL);
6071 }
6072
6073 bool ptlock_alloc(struct page *page)
6074 {
6075         spinlock_t *ptl;
6076
6077         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6078         if (!ptl)
6079                 return false;
6080         page->ptl = ptl;
6081         return true;
6082 }
6083
6084 void ptlock_free(struct page *page)
6085 {
6086         kmem_cache_free(page_ptl_cachep, page->ptl);
6087 }
6088 #endif