usb: cdns3: add hibernation pm notifier to set roothub wakeup
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167         trace_rss_stat(mm, member, count);
168 }
169
170 #if defined(SPLIT_RSS_COUNTING)
171
172 void sync_mm_rss(struct mm_struct *mm)
173 {
174         int i;
175
176         for (i = 0; i < NR_MM_COUNTERS; i++) {
177                 if (current->rss_stat.count[i]) {
178                         add_mm_counter(mm, i, current->rss_stat.count[i]);
179                         current->rss_stat.count[i] = 0;
180                 }
181         }
182         current->rss_stat.events = 0;
183 }
184
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187         struct task_struct *task = current;
188
189         if (likely(task->mm == mm))
190                 task->rss_stat.count[member] += val;
191         else
192                 add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH  (64)
199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201         if (unlikely(task != current))
202                 return;
203         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204                 sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210
211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214
215 #endif /* SPLIT_RSS_COUNTING */
216
217 /*
218  * Note: this doesn't free the actual pages themselves. That
219  * has been handled earlier when unmapping all the memory regions.
220  */
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222                            unsigned long addr)
223 {
224         pgtable_t token = pmd_pgtable(*pmd);
225         pmd_clear(pmd);
226         pte_free_tlb(tlb, token, addr);
227         mm_dec_nr_ptes(tlb->mm);
228 }
229
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231                                 unsigned long addr, unsigned long end,
232                                 unsigned long floor, unsigned long ceiling)
233 {
234         pmd_t *pmd;
235         unsigned long next;
236         unsigned long start;
237
238         start = addr;
239         pmd = pmd_offset(pud, addr);
240         do {
241                 next = pmd_addr_end(addr, end);
242                 if (pmd_none_or_clear_bad(pmd))
243                         continue;
244                 free_pte_range(tlb, pmd, addr);
245         } while (pmd++, addr = next, addr != end);
246
247         start &= PUD_MASK;
248         if (start < floor)
249                 return;
250         if (ceiling) {
251                 ceiling &= PUD_MASK;
252                 if (!ceiling)
253                         return;
254         }
255         if (end - 1 > ceiling - 1)
256                 return;
257
258         pmd = pmd_offset(pud, start);
259         pud_clear(pud);
260         pmd_free_tlb(tlb, pmd, start);
261         mm_dec_nr_pmds(tlb->mm);
262 }
263
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265                                 unsigned long addr, unsigned long end,
266                                 unsigned long floor, unsigned long ceiling)
267 {
268         pud_t *pud;
269         unsigned long next;
270         unsigned long start;
271
272         start = addr;
273         pud = pud_offset(p4d, addr);
274         do {
275                 next = pud_addr_end(addr, end);
276                 if (pud_none_or_clear_bad(pud))
277                         continue;
278                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279         } while (pud++, addr = next, addr != end);
280
281         start &= P4D_MASK;
282         if (start < floor)
283                 return;
284         if (ceiling) {
285                 ceiling &= P4D_MASK;
286                 if (!ceiling)
287                         return;
288         }
289         if (end - 1 > ceiling - 1)
290                 return;
291
292         pud = pud_offset(p4d, start);
293         p4d_clear(p4d);
294         pud_free_tlb(tlb, pud, start);
295         mm_dec_nr_puds(tlb->mm);
296 }
297
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299                                 unsigned long addr, unsigned long end,
300                                 unsigned long floor, unsigned long ceiling)
301 {
302         p4d_t *p4d;
303         unsigned long next;
304         unsigned long start;
305
306         start = addr;
307         p4d = p4d_offset(pgd, addr);
308         do {
309                 next = p4d_addr_end(addr, end);
310                 if (p4d_none_or_clear_bad(p4d))
311                         continue;
312                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313         } while (p4d++, addr = next, addr != end);
314
315         start &= PGDIR_MASK;
316         if (start < floor)
317                 return;
318         if (ceiling) {
319                 ceiling &= PGDIR_MASK;
320                 if (!ceiling)
321                         return;
322         }
323         if (end - 1 > ceiling - 1)
324                 return;
325
326         p4d = p4d_offset(pgd, start);
327         pgd_clear(pgd);
328         p4d_free_tlb(tlb, p4d, start);
329 }
330
331 /*
332  * This function frees user-level page tables of a process.
333  */
334 void free_pgd_range(struct mmu_gather *tlb,
335                         unsigned long addr, unsigned long end,
336                         unsigned long floor, unsigned long ceiling)
337 {
338         pgd_t *pgd;
339         unsigned long next;
340
341         /*
342          * The next few lines have given us lots of grief...
343          *
344          * Why are we testing PMD* at this top level?  Because often
345          * there will be no work to do at all, and we'd prefer not to
346          * go all the way down to the bottom just to discover that.
347          *
348          * Why all these "- 1"s?  Because 0 represents both the bottom
349          * of the address space and the top of it (using -1 for the
350          * top wouldn't help much: the masks would do the wrong thing).
351          * The rule is that addr 0 and floor 0 refer to the bottom of
352          * the address space, but end 0 and ceiling 0 refer to the top
353          * Comparisons need to use "end - 1" and "ceiling - 1" (though
354          * that end 0 case should be mythical).
355          *
356          * Wherever addr is brought up or ceiling brought down, we must
357          * be careful to reject "the opposite 0" before it confuses the
358          * subsequent tests.  But what about where end is brought down
359          * by PMD_SIZE below? no, end can't go down to 0 there.
360          *
361          * Whereas we round start (addr) and ceiling down, by different
362          * masks at different levels, in order to test whether a table
363          * now has no other vmas using it, so can be freed, we don't
364          * bother to round floor or end up - the tests don't need that.
365          */
366
367         addr &= PMD_MASK;
368         if (addr < floor) {
369                 addr += PMD_SIZE;
370                 if (!addr)
371                         return;
372         }
373         if (ceiling) {
374                 ceiling &= PMD_MASK;
375                 if (!ceiling)
376                         return;
377         }
378         if (end - 1 > ceiling - 1)
379                 end -= PMD_SIZE;
380         if (addr > end - 1)
381                 return;
382         /*
383          * We add page table cache pages with PAGE_SIZE,
384          * (see pte_free_tlb()), flush the tlb if we need
385          */
386         tlb_change_page_size(tlb, PAGE_SIZE);
387         pgd = pgd_offset(tlb->mm, addr);
388         do {
389                 next = pgd_addr_end(addr, end);
390                 if (pgd_none_or_clear_bad(pgd))
391                         continue;
392                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393         } while (pgd++, addr = next, addr != end);
394 }
395
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397                    struct vm_area_struct *vma, unsigned long floor,
398                    unsigned long ceiling)
399 {
400         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401
402         do {
403                 unsigned long addr = vma->vm_start;
404                 struct vm_area_struct *next;
405
406                 /*
407                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408                  * be 0.  This will underflow and is okay.
409                  */
410                 next = mas_find(&mas, ceiling - 1);
411
412                 /*
413                  * Hide vma from rmap and truncate_pagecache before freeing
414                  * pgtables
415                  */
416                 unlink_anon_vmas(vma);
417                 unlink_file_vma(vma);
418
419                 if (is_vm_hugetlb_page(vma)) {
420                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421                                 floor, next ? next->vm_start : ceiling);
422                 } else {
423                         /*
424                          * Optimization: gather nearby vmas into one call down
425                          */
426                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427                                && !is_vm_hugetlb_page(next)) {
428                                 vma = next;
429                                 next = mas_find(&mas, ceiling - 1);
430                                 unlink_anon_vmas(vma);
431                                 unlink_file_vma(vma);
432                         }
433                         free_pgd_range(tlb, addr, vma->vm_end,
434                                 floor, next ? next->vm_start : ceiling);
435                 }
436                 vma = next;
437         } while (vma);
438 }
439
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442         spinlock_t *ptl = pmd_lock(mm, pmd);
443
444         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
445                 mm_inc_nr_ptes(mm);
446                 /*
447                  * Ensure all pte setup (eg. pte page lock and page clearing) are
448                  * visible before the pte is made visible to other CPUs by being
449                  * put into page tables.
450                  *
451                  * The other side of the story is the pointer chasing in the page
452                  * table walking code (when walking the page table without locking;
453                  * ie. most of the time). Fortunately, these data accesses consist
454                  * of a chain of data-dependent loads, meaning most CPUs (alpha
455                  * being the notable exception) will already guarantee loads are
456                  * seen in-order. See the alpha page table accessors for the
457                  * smp_rmb() barriers in page table walking code.
458                  */
459                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460                 pmd_populate(mm, pmd, *pte);
461                 *pte = NULL;
462         }
463         spin_unlock(ptl);
464 }
465
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468         pgtable_t new = pte_alloc_one(mm);
469         if (!new)
470                 return -ENOMEM;
471
472         pmd_install(mm, pmd, &new);
473         if (new)
474                 pte_free(mm, new);
475         return 0;
476 }
477
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480         pte_t *new = pte_alloc_one_kernel(&init_mm);
481         if (!new)
482                 return -ENOMEM;
483
484         spin_lock(&init_mm.page_table_lock);
485         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
486                 smp_wmb(); /* See comment in pmd_install() */
487                 pmd_populate_kernel(&init_mm, pmd, new);
488                 new = NULL;
489         }
490         spin_unlock(&init_mm.page_table_lock);
491         if (new)
492                 pte_free_kernel(&init_mm, new);
493         return 0;
494 }
495
496 static inline void init_rss_vec(int *rss)
497 {
498         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503         int i;
504
505         if (current->mm == mm)
506                 sync_mm_rss(mm);
507         for (i = 0; i < NR_MM_COUNTERS; i++)
508                 if (rss[i])
509                         add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520                           pte_t pte, struct page *page)
521 {
522         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523         p4d_t *p4d = p4d_offset(pgd, addr);
524         pud_t *pud = pud_offset(p4d, addr);
525         pmd_t *pmd = pmd_offset(pud, addr);
526         struct address_space *mapping;
527         pgoff_t index;
528         static unsigned long resume;
529         static unsigned long nr_shown;
530         static unsigned long nr_unshown;
531
532         /*
533          * Allow a burst of 60 reports, then keep quiet for that minute;
534          * or allow a steady drip of one report per second.
535          */
536         if (nr_shown == 60) {
537                 if (time_before(jiffies, resume)) {
538                         nr_unshown++;
539                         return;
540                 }
541                 if (nr_unshown) {
542                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543                                  nr_unshown);
544                         nr_unshown = 0;
545                 }
546                 nr_shown = 0;
547         }
548         if (nr_shown++ == 0)
549                 resume = jiffies + 60 * HZ;
550
551         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552         index = linear_page_index(vma, addr);
553
554         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555                  current->comm,
556                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
557         if (page)
558                 dump_page(page, "bad pte");
559         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562                  vma->vm_file,
563                  vma->vm_ops ? vma->vm_ops->fault : NULL,
564                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565                  mapping ? mapping->a_ops->read_folio : NULL);
566         dump_stack();
567         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613                             pte_t pte)
614 {
615         unsigned long pfn = pte_pfn(pte);
616
617         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618                 if (likely(!pte_special(pte)))
619                         goto check_pfn;
620                 if (vma->vm_ops && vma->vm_ops->find_special_page)
621                         return vma->vm_ops->find_special_page(vma, addr);
622                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623                         return NULL;
624                 if (is_zero_pfn(pfn))
625                         return NULL;
626                 if (pte_devmap(pte))
627                 /*
628                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629                  * and will have refcounts incremented on their struct pages
630                  * when they are inserted into PTEs, thus they are safe to
631                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632                  * do not have refcounts. Example of legacy ZONE_DEVICE is
633                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634                  */
635                         return NULL;
636
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642
643         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644                 if (vma->vm_flags & VM_MIXEDMAP) {
645                         if (!pfn_valid(pfn))
646                                 return NULL;
647                         goto out;
648                 } else {
649                         unsigned long off;
650                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
651                         if (pfn == vma->vm_pgoff + off)
652                                 return NULL;
653                         if (!is_cow_mapping(vma->vm_flags))
654                                 return NULL;
655                 }
656         }
657
658         if (is_zero_pfn(pfn))
659                 return NULL;
660
661 check_pfn:
662         if (unlikely(pfn > highest_memmap_pfn)) {
663                 print_bad_pte(vma, addr, pte, NULL);
664                 return NULL;
665         }
666
667         /*
668          * NOTE! We still have PageReserved() pages in the page tables.
669          * eg. VDSO mappings can cause them to exist.
670          */
671 out:
672         return pfn_to_page(pfn);
673 }
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677                                 pmd_t pmd)
678 {
679         unsigned long pfn = pmd_pfn(pmd);
680
681         /*
682          * There is no pmd_special() but there may be special pmds, e.g.
683          * in a direct-access (dax) mapping, so let's just replicate the
684          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685          */
686         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687                 if (vma->vm_flags & VM_MIXEDMAP) {
688                         if (!pfn_valid(pfn))
689                                 return NULL;
690                         goto out;
691                 } else {
692                         unsigned long off;
693                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
694                         if (pfn == vma->vm_pgoff + off)
695                                 return NULL;
696                         if (!is_cow_mapping(vma->vm_flags))
697                                 return NULL;
698                 }
699         }
700
701         if (pmd_devmap(pmd))
702                 return NULL;
703         if (is_huge_zero_pmd(pmd))
704                 return NULL;
705         if (unlikely(pfn > highest_memmap_pfn))
706                 return NULL;
707
708         /*
709          * NOTE! We still have PageReserved() pages in the page tables.
710          * eg. VDSO mappings can cause them to exist.
711          */
712 out:
713         return pfn_to_page(pfn);
714 }
715 #endif
716
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718                                   struct page *page, unsigned long address,
719                                   pte_t *ptep)
720 {
721         pte_t pte;
722         swp_entry_t entry;
723
724         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725         if (pte_swp_soft_dirty(*ptep))
726                 pte = pte_mksoft_dirty(pte);
727
728         entry = pte_to_swp_entry(*ptep);
729         if (pte_swp_uffd_wp(*ptep))
730                 pte = pte_mkuffd_wp(pte);
731         else if (is_writable_device_exclusive_entry(entry))
732                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
734         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
736         /*
737          * No need to take a page reference as one was already
738          * created when the swap entry was made.
739          */
740         if (PageAnon(page))
741                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
742         else
743                 /*
744                  * Currently device exclusive access only supports anonymous
745                  * memory so the entry shouldn't point to a filebacked page.
746                  */
747                 WARN_ON_ONCE(1);
748
749         set_pte_at(vma->vm_mm, address, ptep, pte);
750
751         /*
752          * No need to invalidate - it was non-present before. However
753          * secondary CPUs may have mappings that need invalidating.
754          */
755         update_mmu_cache(vma, address, ptep);
756 }
757
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764                         unsigned long addr)
765 {
766         swp_entry_t entry = pte_to_swp_entry(*src_pte);
767         struct page *page = pfn_swap_entry_to_page(entry);
768
769         if (trylock_page(page)) {
770                 restore_exclusive_pte(vma, page, addr, src_pte);
771                 unlock_page(page);
772                 return 0;
773         }
774
775         return -EBUSY;
776 }
777
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789         unsigned long vm_flags = dst_vma->vm_flags;
790         pte_t pte = *src_pte;
791         struct page *page;
792         swp_entry_t entry = pte_to_swp_entry(pte);
793
794         if (likely(!non_swap_entry(entry))) {
795                 if (swap_duplicate(entry) < 0)
796                         return -EIO;
797
798                 /* make sure dst_mm is on swapoff's mmlist. */
799                 if (unlikely(list_empty(&dst_mm->mmlist))) {
800                         spin_lock(&mmlist_lock);
801                         if (list_empty(&dst_mm->mmlist))
802                                 list_add(&dst_mm->mmlist,
803                                                 &src_mm->mmlist);
804                         spin_unlock(&mmlist_lock);
805                 }
806                 /* Mark the swap entry as shared. */
807                 if (pte_swp_exclusive(*src_pte)) {
808                         pte = pte_swp_clear_exclusive(*src_pte);
809                         set_pte_at(src_mm, addr, src_pte, pte);
810                 }
811                 rss[MM_SWAPENTS]++;
812         } else if (is_migration_entry(entry)) {
813                 page = pfn_swap_entry_to_page(entry);
814
815                 rss[mm_counter(page)]++;
816
817                 if (!is_readable_migration_entry(entry) &&
818                                 is_cow_mapping(vm_flags)) {
819                         /*
820                          * COW mappings require pages in both parent and child
821                          * to be set to read. A previously exclusive entry is
822                          * now shared.
823                          */
824                         entry = make_readable_migration_entry(
825                                                         swp_offset(entry));
826                         pte = swp_entry_to_pte(entry);
827                         if (pte_swp_soft_dirty(*src_pte))
828                                 pte = pte_swp_mksoft_dirty(pte);
829                         if (pte_swp_uffd_wp(*src_pte))
830                                 pte = pte_swp_mkuffd_wp(pte);
831                         set_pte_at(src_mm, addr, src_pte, pte);
832                 }
833         } else if (is_device_private_entry(entry)) {
834                 page = pfn_swap_entry_to_page(entry);
835
836                 /*
837                  * Update rss count even for unaddressable pages, as
838                  * they should treated just like normal pages in this
839                  * respect.
840                  *
841                  * We will likely want to have some new rss counters
842                  * for unaddressable pages, at some point. But for now
843                  * keep things as they are.
844                  */
845                 get_page(page);
846                 rss[mm_counter(page)]++;
847                 /* Cannot fail as these pages cannot get pinned. */
848                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849
850                 /*
851                  * We do not preserve soft-dirty information, because so
852                  * far, checkpoint/restore is the only feature that
853                  * requires that. And checkpoint/restore does not work
854                  * when a device driver is involved (you cannot easily
855                  * save and restore device driver state).
856                  */
857                 if (is_writable_device_private_entry(entry) &&
858                     is_cow_mapping(vm_flags)) {
859                         entry = make_readable_device_private_entry(
860                                                         swp_offset(entry));
861                         pte = swp_entry_to_pte(entry);
862                         if (pte_swp_uffd_wp(*src_pte))
863                                 pte = pte_swp_mkuffd_wp(pte);
864                         set_pte_at(src_mm, addr, src_pte, pte);
865                 }
866         } else if (is_device_exclusive_entry(entry)) {
867                 /*
868                  * Make device exclusive entries present by restoring the
869                  * original entry then copying as for a present pte. Device
870                  * exclusive entries currently only support private writable
871                  * (ie. COW) mappings.
872                  */
873                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875                         return -EBUSY;
876                 return -ENOENT;
877         } else if (is_pte_marker_entry(entry)) {
878                 if (userfaultfd_wp(dst_vma))
879                         set_pte_at(dst_mm, addr, dst_pte, pte);
880                 return 0;
881         }
882         if (!userfaultfd_wp(dst_vma))
883                 pte = pte_swp_clear_uffd_wp(pte);
884         set_pte_at(dst_mm, addr, dst_pte, pte);
885         return 0;
886 }
887
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903                   struct page **prealloc, struct page *page)
904 {
905         struct page *new_page;
906         pte_t pte;
907
908         new_page = *prealloc;
909         if (!new_page)
910                 return -EAGAIN;
911
912         /*
913          * We have a prealloc page, all good!  Take it
914          * over and copy the page & arm it.
915          */
916         *prealloc = NULL;
917         copy_user_highpage(new_page, page, addr, src_vma);
918         __SetPageUptodate(new_page);
919         page_add_new_anon_rmap(new_page, dst_vma, addr);
920         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
921         rss[mm_counter(new_page)]++;
922
923         /* All done, just insert the new page copy in the child */
924         pte = mk_pte(new_page, dst_vma->vm_page_prot);
925         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926         if (userfaultfd_pte_wp(dst_vma, *src_pte))
927                 /* Uffd-wp needs to be delivered to dest pte as well */
928                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
929         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930         return 0;
931 }
932
933 /*
934  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
935  * is required to copy this pte.
936  */
937 static inline int
938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
939                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
940                  struct page **prealloc)
941 {
942         struct mm_struct *src_mm = src_vma->vm_mm;
943         unsigned long vm_flags = src_vma->vm_flags;
944         pte_t pte = *src_pte;
945         struct page *page;
946
947         page = vm_normal_page(src_vma, addr, pte);
948         if (page && PageAnon(page)) {
949                 /*
950                  * If this page may have been pinned by the parent process,
951                  * copy the page immediately for the child so that we'll always
952                  * guarantee the pinned page won't be randomly replaced in the
953                  * future.
954                  */
955                 get_page(page);
956                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
957                         /* Page maybe pinned, we have to copy. */
958                         put_page(page);
959                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
960                                                  addr, rss, prealloc, page);
961                 }
962                 rss[mm_counter(page)]++;
963         } else if (page) {
964                 get_page(page);
965                 page_dup_file_rmap(page, false);
966                 rss[mm_counter(page)]++;
967         }
968
969         /*
970          * If it's a COW mapping, write protect it both
971          * in the parent and the child
972          */
973         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
974                 ptep_set_wrprotect(src_mm, addr, src_pte);
975                 pte = pte_wrprotect(pte);
976         }
977         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
978
979         /*
980          * If it's a shared mapping, mark it clean in
981          * the child
982          */
983         if (vm_flags & VM_SHARED)
984                 pte = pte_mkclean(pte);
985         pte = pte_mkold(pte);
986
987         if (!userfaultfd_wp(dst_vma))
988                 pte = pte_clear_uffd_wp(pte);
989
990         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
991         return 0;
992 }
993
994 static inline struct page *
995 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
996                    unsigned long addr)
997 {
998         struct page *new_page;
999
1000         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1001         if (!new_page)
1002                 return NULL;
1003
1004         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1005                 put_page(new_page);
1006                 return NULL;
1007         }
1008         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1009
1010         return new_page;
1011 }
1012
1013 static int
1014 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1015                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1016                unsigned long end)
1017 {
1018         struct mm_struct *dst_mm = dst_vma->vm_mm;
1019         struct mm_struct *src_mm = src_vma->vm_mm;
1020         pte_t *orig_src_pte, *orig_dst_pte;
1021         pte_t *src_pte, *dst_pte;
1022         spinlock_t *src_ptl, *dst_ptl;
1023         int progress, ret = 0;
1024         int rss[NR_MM_COUNTERS];
1025         swp_entry_t entry = (swp_entry_t){0};
1026         struct page *prealloc = NULL;
1027
1028 again:
1029         progress = 0;
1030         init_rss_vec(rss);
1031
1032         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1033         if (!dst_pte) {
1034                 ret = -ENOMEM;
1035                 goto out;
1036         }
1037         src_pte = pte_offset_map(src_pmd, addr);
1038         src_ptl = pte_lockptr(src_mm, src_pmd);
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040         orig_src_pte = src_pte;
1041         orig_dst_pte = dst_pte;
1042         arch_enter_lazy_mmu_mode();
1043
1044         do {
1045                 /*
1046                  * We are holding two locks at this point - either of them
1047                  * could generate latencies in another task on another CPU.
1048                  */
1049                 if (progress >= 32) {
1050                         progress = 0;
1051                         if (need_resched() ||
1052                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053                                 break;
1054                 }
1055                 if (pte_none(*src_pte)) {
1056                         progress++;
1057                         continue;
1058                 }
1059                 if (unlikely(!pte_present(*src_pte))) {
1060                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1061                                                   dst_pte, src_pte,
1062                                                   dst_vma, src_vma,
1063                                                   addr, rss);
1064                         if (ret == -EIO) {
1065                                 entry = pte_to_swp_entry(*src_pte);
1066                                 break;
1067                         } else if (ret == -EBUSY) {
1068                                 break;
1069                         } else if (!ret) {
1070                                 progress += 8;
1071                                 continue;
1072                         }
1073
1074                         /*
1075                          * Device exclusive entry restored, continue by copying
1076                          * the now present pte.
1077                          */
1078                         WARN_ON_ONCE(ret != -ENOENT);
1079                 }
1080                 /* copy_present_pte() will clear `*prealloc' if consumed */
1081                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1082                                        addr, rss, &prealloc);
1083                 /*
1084                  * If we need a pre-allocated page for this pte, drop the
1085                  * locks, allocate, and try again.
1086                  */
1087                 if (unlikely(ret == -EAGAIN))
1088                         break;
1089                 if (unlikely(prealloc)) {
1090                         /*
1091                          * pre-alloc page cannot be reused by next time so as
1092                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1093                          * will allocate page according to address).  This
1094                          * could only happen if one pinned pte changed.
1095                          */
1096                         put_page(prealloc);
1097                         prealloc = NULL;
1098                 }
1099                 progress += 8;
1100         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1101
1102         arch_leave_lazy_mmu_mode();
1103         spin_unlock(src_ptl);
1104         pte_unmap(orig_src_pte);
1105         add_mm_rss_vec(dst_mm, rss);
1106         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107         cond_resched();
1108
1109         if (ret == -EIO) {
1110                 VM_WARN_ON_ONCE(!entry.val);
1111                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112                         ret = -ENOMEM;
1113                         goto out;
1114                 }
1115                 entry.val = 0;
1116         } else if (ret == -EBUSY) {
1117                 goto out;
1118         } else if (ret ==  -EAGAIN) {
1119                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120                 if (!prealloc)
1121                         return -ENOMEM;
1122         } else if (ret) {
1123                 VM_WARN_ON_ONCE(1);
1124         }
1125
1126         /* We've captured and resolved the error. Reset, try again. */
1127         ret = 0;
1128
1129         if (addr != end)
1130                 goto again;
1131 out:
1132         if (unlikely(prealloc))
1133                 put_page(prealloc);
1134         return ret;
1135 }
1136
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pmd_t *src_pmd, *dst_pmd;
1145         unsigned long next;
1146
1147         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148         if (!dst_pmd)
1149                 return -ENOMEM;
1150         src_pmd = pmd_offset(src_pud, addr);
1151         do {
1152                 next = pmd_addr_end(addr, end);
1153                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154                         || pmd_devmap(*src_pmd)) {
1155                         int err;
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158                                             addr, dst_vma, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pmd_none_or_clear_bad(src_pmd))
1166                         continue;
1167                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         struct mm_struct *src_mm = src_vma->vm_mm;
1181         pud_t *src_pud, *dst_pud;
1182         unsigned long next;
1183
1184         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185         if (!dst_pud)
1186                 return -ENOMEM;
1187         src_pud = pud_offset(src_p4d, addr);
1188         do {
1189                 next = pud_addr_end(addr, end);
1190                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191                         int err;
1192
1193                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194                         err = copy_huge_pud(dst_mm, src_mm,
1195                                             dst_pud, src_pud, addr, src_vma);
1196                         if (err == -ENOMEM)
1197                                 return -ENOMEM;
1198                         if (!err)
1199                                 continue;
1200                         /* fall through */
1201                 }
1202                 if (pud_none_or_clear_bad(src_pud))
1203                         continue;
1204                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_pud++, src_pud++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214                unsigned long end)
1215 {
1216         struct mm_struct *dst_mm = dst_vma->vm_mm;
1217         p4d_t *src_p4d, *dst_p4d;
1218         unsigned long next;
1219
1220         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221         if (!dst_p4d)
1222                 return -ENOMEM;
1223         src_p4d = p4d_offset(src_pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(src_p4d))
1227                         continue;
1228                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229                                    addr, next))
1230                         return -ENOMEM;
1231         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232         return 0;
1233 }
1234
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243         /*
1244          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246          * contains uffd-wp protection information, that's something we can't
1247          * retrieve from page cache, and skip copying will lose those info.
1248          */
1249         if (userfaultfd_wp(dst_vma))
1250                 return true;
1251
1252         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253                 return true;
1254
1255         if (src_vma->anon_vma)
1256                 return true;
1257
1258         /*
1259          * Don't copy ptes where a page fault will fill them correctly.  Fork
1260          * becomes much lighter when there are big shared or private readonly
1261          * mappings. The tradeoff is that copy_page_range is more efficient
1262          * than faulting.
1263          */
1264         return false;
1265 }
1266
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270         pgd_t *src_pgd, *dst_pgd;
1271         unsigned long next;
1272         unsigned long addr = src_vma->vm_start;
1273         unsigned long end = src_vma->vm_end;
1274         struct mm_struct *dst_mm = dst_vma->vm_mm;
1275         struct mm_struct *src_mm = src_vma->vm_mm;
1276         struct mmu_notifier_range range;
1277         bool is_cow;
1278         int ret;
1279
1280         if (!vma_needs_copy(dst_vma, src_vma))
1281                 return 0;
1282
1283         if (is_vm_hugetlb_page(src_vma))
1284                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287                 /*
1288                  * We do not free on error cases below as remove_vma
1289                  * gets called on error from higher level routine
1290                  */
1291                 ret = track_pfn_copy(src_vma);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         /*
1297          * We need to invalidate the secondary MMU mappings only when
1298          * there could be a permission downgrade on the ptes of the
1299          * parent mm. And a permission downgrade will only happen if
1300          * is_cow_mapping() returns true.
1301          */
1302         is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304         if (is_cow) {
1305                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306                                         0, src_vma, src_mm, addr, end);
1307                 mmu_notifier_invalidate_range_start(&range);
1308                 /*
1309                  * Disabling preemption is not needed for the write side, as
1310                  * the read side doesn't spin, but goes to the mmap_lock.
1311                  *
1312                  * Use the raw variant of the seqcount_t write API to avoid
1313                  * lockdep complaining about preemptibility.
1314                  */
1315                 mmap_assert_write_locked(src_mm);
1316                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317         }
1318
1319         ret = 0;
1320         dst_pgd = pgd_offset(dst_mm, addr);
1321         src_pgd = pgd_offset(src_mm, addr);
1322         do {
1323                 next = pgd_addr_end(addr, end);
1324                 if (pgd_none_or_clear_bad(src_pgd))
1325                         continue;
1326                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327                                             addr, next))) {
1328                         ret = -ENOMEM;
1329                         break;
1330                 }
1331         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1332
1333         if (is_cow) {
1334                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1335                 mmu_notifier_invalidate_range_end(&range);
1336         }
1337         return ret;
1338 }
1339
1340 /* Whether we should zap all COWed (private) pages too */
1341 static inline bool should_zap_cows(struct zap_details *details)
1342 {
1343         /* By default, zap all pages */
1344         if (!details)
1345                 return true;
1346
1347         /* Or, we zap COWed pages only if the caller wants to */
1348         return details->even_cows;
1349 }
1350
1351 /* Decides whether we should zap this page with the page pointer specified */
1352 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1353 {
1354         /* If we can make a decision without *page.. */
1355         if (should_zap_cows(details))
1356                 return true;
1357
1358         /* E.g. the caller passes NULL for the case of a zero page */
1359         if (!page)
1360                 return true;
1361
1362         /* Otherwise we should only zap non-anon pages */
1363         return !PageAnon(page);
1364 }
1365
1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1367 {
1368         if (!details)
1369                 return false;
1370
1371         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1372 }
1373
1374 /*
1375  * This function makes sure that we'll replace the none pte with an uffd-wp
1376  * swap special pte marker when necessary. Must be with the pgtable lock held.
1377  */
1378 static inline void
1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1380                               unsigned long addr, pte_t *pte,
1381                               struct zap_details *details, pte_t pteval)
1382 {
1383 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1384         if (zap_drop_file_uffd_wp(details))
1385                 return;
1386
1387         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1388 #endif
1389 }
1390
1391 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1392                                 struct vm_area_struct *vma, pmd_t *pmd,
1393                                 unsigned long addr, unsigned long end,
1394                                 struct zap_details *details)
1395 {
1396         struct mm_struct *mm = tlb->mm;
1397         int force_flush = 0;
1398         int rss[NR_MM_COUNTERS];
1399         spinlock_t *ptl;
1400         pte_t *start_pte;
1401         pte_t *pte;
1402         swp_entry_t entry;
1403
1404         tlb_change_page_size(tlb, PAGE_SIZE);
1405 again:
1406         init_rss_vec(rss);
1407         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1408         pte = start_pte;
1409         flush_tlb_batched_pending(mm);
1410         arch_enter_lazy_mmu_mode();
1411         do {
1412                 pte_t ptent = *pte;
1413                 struct page *page;
1414
1415                 if (pte_none(ptent))
1416                         continue;
1417
1418                 if (need_resched())
1419                         break;
1420
1421                 if (pte_present(ptent)) {
1422                         page = vm_normal_page(vma, addr, ptent);
1423                         if (unlikely(!should_zap_page(details, page)))
1424                                 continue;
1425                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1426                                                         tlb->fullmm);
1427                         tlb_remove_tlb_entry(tlb, pte, addr);
1428                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1429                                                       ptent);
1430                         if (unlikely(!page))
1431                                 continue;
1432
1433                         if (!PageAnon(page)) {
1434                                 if (pte_dirty(ptent)) {
1435                                         force_flush = 1;
1436                                         set_page_dirty(page);
1437                                 }
1438                                 if (pte_young(ptent) &&
1439                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1440                                         mark_page_accessed(page);
1441                         }
1442                         rss[mm_counter(page)]--;
1443                         page_remove_rmap(page, vma, false);
1444                         if (unlikely(page_mapcount(page) < 0))
1445                                 print_bad_pte(vma, addr, ptent, page);
1446                         if (unlikely(__tlb_remove_page(tlb, page))) {
1447                                 force_flush = 1;
1448                                 addr += PAGE_SIZE;
1449                                 break;
1450                         }
1451                         continue;
1452                 }
1453
1454                 entry = pte_to_swp_entry(ptent);
1455                 if (is_device_private_entry(entry) ||
1456                     is_device_exclusive_entry(entry)) {
1457                         page = pfn_swap_entry_to_page(entry);
1458                         if (unlikely(!should_zap_page(details, page)))
1459                                 continue;
1460                         /*
1461                          * Both device private/exclusive mappings should only
1462                          * work with anonymous page so far, so we don't need to
1463                          * consider uffd-wp bit when zap. For more information,
1464                          * see zap_install_uffd_wp_if_needed().
1465                          */
1466                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1467                         rss[mm_counter(page)]--;
1468                         if (is_device_private_entry(entry))
1469                                 page_remove_rmap(page, vma, false);
1470                         put_page(page);
1471                 } else if (!non_swap_entry(entry)) {
1472                         /* Genuine swap entry, hence a private anon page */
1473                         if (!should_zap_cows(details))
1474                                 continue;
1475                         rss[MM_SWAPENTS]--;
1476                         if (unlikely(!free_swap_and_cache(entry)))
1477                                 print_bad_pte(vma, addr, ptent, NULL);
1478                 } else if (is_migration_entry(entry)) {
1479                         page = pfn_swap_entry_to_page(entry);
1480                         if (!should_zap_page(details, page))
1481                                 continue;
1482                         rss[mm_counter(page)]--;
1483                 } else if (pte_marker_entry_uffd_wp(entry)) {
1484                         /* Only drop the uffd-wp marker if explicitly requested */
1485                         if (!zap_drop_file_uffd_wp(details))
1486                                 continue;
1487                 } else if (is_hwpoison_entry(entry) ||
1488                            is_swapin_error_entry(entry)) {
1489                         if (!should_zap_cows(details))
1490                                 continue;
1491                 } else {
1492                         /* We should have covered all the swap entry types */
1493                         WARN_ON_ONCE(1);
1494                 }
1495                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1496                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1497         } while (pte++, addr += PAGE_SIZE, addr != end);
1498
1499         add_mm_rss_vec(mm, rss);
1500         arch_leave_lazy_mmu_mode();
1501
1502         /* Do the actual TLB flush before dropping ptl */
1503         if (force_flush)
1504                 tlb_flush_mmu_tlbonly(tlb);
1505         pte_unmap_unlock(start_pte, ptl);
1506
1507         /*
1508          * If we forced a TLB flush (either due to running out of
1509          * batch buffers or because we needed to flush dirty TLB
1510          * entries before releasing the ptl), free the batched
1511          * memory too. Restart if we didn't do everything.
1512          */
1513         if (force_flush) {
1514                 force_flush = 0;
1515                 tlb_flush_mmu(tlb);
1516         }
1517
1518         if (addr != end) {
1519                 cond_resched();
1520                 goto again;
1521         }
1522
1523         return addr;
1524 }
1525
1526 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1527                                 struct vm_area_struct *vma, pud_t *pud,
1528                                 unsigned long addr, unsigned long end,
1529                                 struct zap_details *details)
1530 {
1531         pmd_t *pmd;
1532         unsigned long next;
1533
1534         pmd = pmd_offset(pud, addr);
1535         do {
1536                 next = pmd_addr_end(addr, end);
1537                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1538                         if (next - addr != HPAGE_PMD_SIZE)
1539                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1540                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1541                                 goto next;
1542                         /* fall through */
1543                 } else if (details && details->single_folio &&
1544                            folio_test_pmd_mappable(details->single_folio) &&
1545                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1546                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1547                         /*
1548                          * Take and drop THP pmd lock so that we cannot return
1549                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1550                          * but not yet decremented compound_mapcount().
1551                          */
1552                         spin_unlock(ptl);
1553                 }
1554
1555                 /*
1556                  * Here there can be other concurrent MADV_DONTNEED or
1557                  * trans huge page faults running, and if the pmd is
1558                  * none or trans huge it can change under us. This is
1559                  * because MADV_DONTNEED holds the mmap_lock in read
1560                  * mode.
1561                  */
1562                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1563                         goto next;
1564                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1565 next:
1566                 cond_resched();
1567         } while (pmd++, addr = next, addr != end);
1568
1569         return addr;
1570 }
1571
1572 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1573                                 struct vm_area_struct *vma, p4d_t *p4d,
1574                                 unsigned long addr, unsigned long end,
1575                                 struct zap_details *details)
1576 {
1577         pud_t *pud;
1578         unsigned long next;
1579
1580         pud = pud_offset(p4d, addr);
1581         do {
1582                 next = pud_addr_end(addr, end);
1583                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1584                         if (next - addr != HPAGE_PUD_SIZE) {
1585                                 mmap_assert_locked(tlb->mm);
1586                                 split_huge_pud(vma, pud, addr);
1587                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1588                                 goto next;
1589                         /* fall through */
1590                 }
1591                 if (pud_none_or_clear_bad(pud))
1592                         continue;
1593                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1594 next:
1595                 cond_resched();
1596         } while (pud++, addr = next, addr != end);
1597
1598         return addr;
1599 }
1600
1601 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1602                                 struct vm_area_struct *vma, pgd_t *pgd,
1603                                 unsigned long addr, unsigned long end,
1604                                 struct zap_details *details)
1605 {
1606         p4d_t *p4d;
1607         unsigned long next;
1608
1609         p4d = p4d_offset(pgd, addr);
1610         do {
1611                 next = p4d_addr_end(addr, end);
1612                 if (p4d_none_or_clear_bad(p4d))
1613                         continue;
1614                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1615         } while (p4d++, addr = next, addr != end);
1616
1617         return addr;
1618 }
1619
1620 void unmap_page_range(struct mmu_gather *tlb,
1621                              struct vm_area_struct *vma,
1622                              unsigned long addr, unsigned long end,
1623                              struct zap_details *details)
1624 {
1625         pgd_t *pgd;
1626         unsigned long next;
1627
1628         BUG_ON(addr >= end);
1629         tlb_start_vma(tlb, vma);
1630         pgd = pgd_offset(vma->vm_mm, addr);
1631         do {
1632                 next = pgd_addr_end(addr, end);
1633                 if (pgd_none_or_clear_bad(pgd))
1634                         continue;
1635                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1636         } while (pgd++, addr = next, addr != end);
1637         tlb_end_vma(tlb, vma);
1638 }
1639
1640
1641 static void unmap_single_vma(struct mmu_gather *tlb,
1642                 struct vm_area_struct *vma, unsigned long start_addr,
1643                 unsigned long end_addr,
1644                 struct zap_details *details)
1645 {
1646         unsigned long start = max(vma->vm_start, start_addr);
1647         unsigned long end;
1648
1649         if (start >= vma->vm_end)
1650                 return;
1651         end = min(vma->vm_end, end_addr);
1652         if (end <= vma->vm_start)
1653                 return;
1654
1655         if (vma->vm_file)
1656                 uprobe_munmap(vma, start, end);
1657
1658         if (unlikely(vma->vm_flags & VM_PFNMAP))
1659                 untrack_pfn(vma, 0, 0);
1660
1661         if (start != end) {
1662                 if (unlikely(is_vm_hugetlb_page(vma))) {
1663                         /*
1664                          * It is undesirable to test vma->vm_file as it
1665                          * should be non-null for valid hugetlb area.
1666                          * However, vm_file will be NULL in the error
1667                          * cleanup path of mmap_region. When
1668                          * hugetlbfs ->mmap method fails,
1669                          * mmap_region() nullifies vma->vm_file
1670                          * before calling this function to clean up.
1671                          * Since no pte has actually been setup, it is
1672                          * safe to do nothing in this case.
1673                          */
1674                         if (vma->vm_file) {
1675                                 zap_flags_t zap_flags = details ?
1676                                     details->zap_flags : 0;
1677                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1678                                                              NULL, zap_flags);
1679                         }
1680                 } else
1681                         unmap_page_range(tlb, vma, start, end, details);
1682         }
1683 }
1684
1685 /**
1686  * unmap_vmas - unmap a range of memory covered by a list of vma's
1687  * @tlb: address of the caller's struct mmu_gather
1688  * @mt: the maple tree
1689  * @vma: the starting vma
1690  * @start_addr: virtual address at which to start unmapping
1691  * @end_addr: virtual address at which to end unmapping
1692  *
1693  * Unmap all pages in the vma list.
1694  *
1695  * Only addresses between `start' and `end' will be unmapped.
1696  *
1697  * The VMA list must be sorted in ascending virtual address order.
1698  *
1699  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1700  * range after unmap_vmas() returns.  So the only responsibility here is to
1701  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1702  * drops the lock and schedules.
1703  */
1704 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1705                 struct vm_area_struct *vma, unsigned long start_addr,
1706                 unsigned long end_addr)
1707 {
1708         struct mmu_notifier_range range;
1709         struct zap_details details = {
1710                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1711                 /* Careful - we need to zap private pages too! */
1712                 .even_cows = true,
1713         };
1714         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1715
1716         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1717                                 start_addr, end_addr);
1718         mmu_notifier_invalidate_range_start(&range);
1719         do {
1720                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1721         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722         mmu_notifier_invalidate_range_end(&range);
1723 }
1724
1725 /**
1726  * zap_page_range - remove user pages in a given range
1727  * @vma: vm_area_struct holding the applicable pages
1728  * @start: starting address of pages to zap
1729  * @size: number of bytes to zap
1730  *
1731  * Caller must protect the VMA list
1732  */
1733 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1734                 unsigned long size)
1735 {
1736         struct maple_tree *mt = &vma->vm_mm->mm_mt;
1737         unsigned long end = start + size;
1738         struct mmu_notifier_range range;
1739         struct mmu_gather tlb;
1740         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1741
1742         lru_add_drain();
1743         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1744                                 start, start + size);
1745         tlb_gather_mmu(&tlb, vma->vm_mm);
1746         update_hiwater_rss(vma->vm_mm);
1747         mmu_notifier_invalidate_range_start(&range);
1748         do {
1749                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1750         } while ((vma = mas_find(&mas, end - 1)) != NULL);
1751         mmu_notifier_invalidate_range_end(&range);
1752         tlb_finish_mmu(&tlb);
1753 }
1754
1755 /**
1756  * zap_page_range_single - remove user pages in a given range
1757  * @vma: vm_area_struct holding the applicable pages
1758  * @address: starting address of pages to zap
1759  * @size: number of bytes to zap
1760  * @details: details of shared cache invalidation
1761  *
1762  * The range must fit into one VMA.
1763  */
1764 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1765                 unsigned long size, struct zap_details *details)
1766 {
1767         const unsigned long end = address + size;
1768         struct mmu_notifier_range range;
1769         struct mmu_gather tlb;
1770
1771         lru_add_drain();
1772         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1773                                 address, end);
1774         if (is_vm_hugetlb_page(vma))
1775                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1776                                                      &range.end);
1777         tlb_gather_mmu(&tlb, vma->vm_mm);
1778         update_hiwater_rss(vma->vm_mm);
1779         mmu_notifier_invalidate_range_start(&range);
1780         /*
1781          * unmap 'address-end' not 'range.start-range.end' as range
1782          * could have been expanded for hugetlb pmd sharing.
1783          */
1784         unmap_single_vma(&tlb, vma, address, end, details);
1785         mmu_notifier_invalidate_range_end(&range);
1786         tlb_finish_mmu(&tlb);
1787 }
1788
1789 /**
1790  * zap_vma_ptes - remove ptes mapping the vma
1791  * @vma: vm_area_struct holding ptes to be zapped
1792  * @address: starting address of pages to zap
1793  * @size: number of bytes to zap
1794  *
1795  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1796  *
1797  * The entire address range must be fully contained within the vma.
1798  *
1799  */
1800 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1801                 unsigned long size)
1802 {
1803         if (!range_in_vma(vma, address, address + size) ||
1804                         !(vma->vm_flags & VM_PFNMAP))
1805                 return;
1806
1807         zap_page_range_single(vma, address, size, NULL);
1808 }
1809 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1810
1811 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1812 {
1813         pgd_t *pgd;
1814         p4d_t *p4d;
1815         pud_t *pud;
1816         pmd_t *pmd;
1817
1818         pgd = pgd_offset(mm, addr);
1819         p4d = p4d_alloc(mm, pgd, addr);
1820         if (!p4d)
1821                 return NULL;
1822         pud = pud_alloc(mm, p4d, addr);
1823         if (!pud)
1824                 return NULL;
1825         pmd = pmd_alloc(mm, pud, addr);
1826         if (!pmd)
1827                 return NULL;
1828
1829         VM_BUG_ON(pmd_trans_huge(*pmd));
1830         return pmd;
1831 }
1832
1833 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1834                         spinlock_t **ptl)
1835 {
1836         pmd_t *pmd = walk_to_pmd(mm, addr);
1837
1838         if (!pmd)
1839                 return NULL;
1840         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1841 }
1842
1843 static int validate_page_before_insert(struct page *page)
1844 {
1845         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1846                 return -EINVAL;
1847         flush_dcache_page(page);
1848         return 0;
1849 }
1850
1851 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1852                         unsigned long addr, struct page *page, pgprot_t prot)
1853 {
1854         if (!pte_none(*pte))
1855                 return -EBUSY;
1856         /* Ok, finally just insert the thing.. */
1857         get_page(page);
1858         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1859         page_add_file_rmap(page, vma, false);
1860         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1861         return 0;
1862 }
1863
1864 /*
1865  * This is the old fallback for page remapping.
1866  *
1867  * For historical reasons, it only allows reserved pages. Only
1868  * old drivers should use this, and they needed to mark their
1869  * pages reserved for the old functions anyway.
1870  */
1871 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1872                         struct page *page, pgprot_t prot)
1873 {
1874         int retval;
1875         pte_t *pte;
1876         spinlock_t *ptl;
1877
1878         retval = validate_page_before_insert(page);
1879         if (retval)
1880                 goto out;
1881         retval = -ENOMEM;
1882         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1883         if (!pte)
1884                 goto out;
1885         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886         pte_unmap_unlock(pte, ptl);
1887 out:
1888         return retval;
1889 }
1890
1891 #ifdef pte_index
1892 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1893                         unsigned long addr, struct page *page, pgprot_t prot)
1894 {
1895         int err;
1896
1897         if (!page_count(page))
1898                 return -EINVAL;
1899         err = validate_page_before_insert(page);
1900         if (err)
1901                 return err;
1902         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1903 }
1904
1905 /* insert_pages() amortizes the cost of spinlock operations
1906  * when inserting pages in a loop. Arch *must* define pte_index.
1907  */
1908 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1909                         struct page **pages, unsigned long *num, pgprot_t prot)
1910 {
1911         pmd_t *pmd = NULL;
1912         pte_t *start_pte, *pte;
1913         spinlock_t *pte_lock;
1914         struct mm_struct *const mm = vma->vm_mm;
1915         unsigned long curr_page_idx = 0;
1916         unsigned long remaining_pages_total = *num;
1917         unsigned long pages_to_write_in_pmd;
1918         int ret;
1919 more:
1920         ret = -EFAULT;
1921         pmd = walk_to_pmd(mm, addr);
1922         if (!pmd)
1923                 goto out;
1924
1925         pages_to_write_in_pmd = min_t(unsigned long,
1926                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1927
1928         /* Allocate the PTE if necessary; takes PMD lock once only. */
1929         ret = -ENOMEM;
1930         if (pte_alloc(mm, pmd))
1931                 goto out;
1932
1933         while (pages_to_write_in_pmd) {
1934                 int pte_idx = 0;
1935                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1936
1937                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1938                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1939                         int err = insert_page_in_batch_locked(vma, pte,
1940                                 addr, pages[curr_page_idx], prot);
1941                         if (unlikely(err)) {
1942                                 pte_unmap_unlock(start_pte, pte_lock);
1943                                 ret = err;
1944                                 remaining_pages_total -= pte_idx;
1945                                 goto out;
1946                         }
1947                         addr += PAGE_SIZE;
1948                         ++curr_page_idx;
1949                 }
1950                 pte_unmap_unlock(start_pte, pte_lock);
1951                 pages_to_write_in_pmd -= batch_size;
1952                 remaining_pages_total -= batch_size;
1953         }
1954         if (remaining_pages_total)
1955                 goto more;
1956         ret = 0;
1957 out:
1958         *num = remaining_pages_total;
1959         return ret;
1960 }
1961 #endif  /* ifdef pte_index */
1962
1963 /**
1964  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1965  * @vma: user vma to map to
1966  * @addr: target start user address of these pages
1967  * @pages: source kernel pages
1968  * @num: in: number of pages to map. out: number of pages that were *not*
1969  * mapped. (0 means all pages were successfully mapped).
1970  *
1971  * Preferred over vm_insert_page() when inserting multiple pages.
1972  *
1973  * In case of error, we may have mapped a subset of the provided
1974  * pages. It is the caller's responsibility to account for this case.
1975  *
1976  * The same restrictions apply as in vm_insert_page().
1977  */
1978 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1979                         struct page **pages, unsigned long *num)
1980 {
1981 #ifdef pte_index
1982         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1983
1984         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1985                 return -EFAULT;
1986         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1987                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1988                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1989                 vma->vm_flags |= VM_MIXEDMAP;
1990         }
1991         /* Defer page refcount checking till we're about to map that page. */
1992         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1993 #else
1994         unsigned long idx = 0, pgcount = *num;
1995         int err = -EINVAL;
1996
1997         for (; idx < pgcount; ++idx) {
1998                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1999                 if (err)
2000                         break;
2001         }
2002         *num = pgcount - idx;
2003         return err;
2004 #endif  /* ifdef pte_index */
2005 }
2006 EXPORT_SYMBOL(vm_insert_pages);
2007
2008 /**
2009  * vm_insert_page - insert single page into user vma
2010  * @vma: user vma to map to
2011  * @addr: target user address of this page
2012  * @page: source kernel page
2013  *
2014  * This allows drivers to insert individual pages they've allocated
2015  * into a user vma.
2016  *
2017  * The page has to be a nice clean _individual_ kernel allocation.
2018  * If you allocate a compound page, you need to have marked it as
2019  * such (__GFP_COMP), or manually just split the page up yourself
2020  * (see split_page()).
2021  *
2022  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2023  * took an arbitrary page protection parameter. This doesn't allow
2024  * that. Your vma protection will have to be set up correctly, which
2025  * means that if you want a shared writable mapping, you'd better
2026  * ask for a shared writable mapping!
2027  *
2028  * The page does not need to be reserved.
2029  *
2030  * Usually this function is called from f_op->mmap() handler
2031  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2032  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2033  * function from other places, for example from page-fault handler.
2034  *
2035  * Return: %0 on success, negative error code otherwise.
2036  */
2037 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2038                         struct page *page)
2039 {
2040         if (addr < vma->vm_start || addr >= vma->vm_end)
2041                 return -EFAULT;
2042         if (!page_count(page))
2043                 return -EINVAL;
2044         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2045                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2046                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2047                 vma->vm_flags |= VM_MIXEDMAP;
2048         }
2049         return insert_page(vma, addr, page, vma->vm_page_prot);
2050 }
2051 EXPORT_SYMBOL(vm_insert_page);
2052
2053 /*
2054  * __vm_map_pages - maps range of kernel pages into user vma
2055  * @vma: user vma to map to
2056  * @pages: pointer to array of source kernel pages
2057  * @num: number of pages in page array
2058  * @offset: user's requested vm_pgoff
2059  *
2060  * This allows drivers to map range of kernel pages into a user vma.
2061  *
2062  * Return: 0 on success and error code otherwise.
2063  */
2064 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2065                                 unsigned long num, unsigned long offset)
2066 {
2067         unsigned long count = vma_pages(vma);
2068         unsigned long uaddr = vma->vm_start;
2069         int ret, i;
2070
2071         /* Fail if the user requested offset is beyond the end of the object */
2072         if (offset >= num)
2073                 return -ENXIO;
2074
2075         /* Fail if the user requested size exceeds available object size */
2076         if (count > num - offset)
2077                 return -ENXIO;
2078
2079         for (i = 0; i < count; i++) {
2080                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2081                 if (ret < 0)
2082                         return ret;
2083                 uaddr += PAGE_SIZE;
2084         }
2085
2086         return 0;
2087 }
2088
2089 /**
2090  * vm_map_pages - maps range of kernel pages starts with non zero offset
2091  * @vma: user vma to map to
2092  * @pages: pointer to array of source kernel pages
2093  * @num: number of pages in page array
2094  *
2095  * Maps an object consisting of @num pages, catering for the user's
2096  * requested vm_pgoff
2097  *
2098  * If we fail to insert any page into the vma, the function will return
2099  * immediately leaving any previously inserted pages present.  Callers
2100  * from the mmap handler may immediately return the error as their caller
2101  * will destroy the vma, removing any successfully inserted pages. Other
2102  * callers should make their own arrangements for calling unmap_region().
2103  *
2104  * Context: Process context. Called by mmap handlers.
2105  * Return: 0 on success and error code otherwise.
2106  */
2107 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2108                                 unsigned long num)
2109 {
2110         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2111 }
2112 EXPORT_SYMBOL(vm_map_pages);
2113
2114 /**
2115  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2116  * @vma: user vma to map to
2117  * @pages: pointer to array of source kernel pages
2118  * @num: number of pages in page array
2119  *
2120  * Similar to vm_map_pages(), except that it explicitly sets the offset
2121  * to 0. This function is intended for the drivers that did not consider
2122  * vm_pgoff.
2123  *
2124  * Context: Process context. Called by mmap handlers.
2125  * Return: 0 on success and error code otherwise.
2126  */
2127 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2128                                 unsigned long num)
2129 {
2130         return __vm_map_pages(vma, pages, num, 0);
2131 }
2132 EXPORT_SYMBOL(vm_map_pages_zero);
2133
2134 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2136 {
2137         struct mm_struct *mm = vma->vm_mm;
2138         pte_t *pte, entry;
2139         spinlock_t *ptl;
2140
2141         pte = get_locked_pte(mm, addr, &ptl);
2142         if (!pte)
2143                 return VM_FAULT_OOM;
2144         if (!pte_none(*pte)) {
2145                 if (mkwrite) {
2146                         /*
2147                          * For read faults on private mappings the PFN passed
2148                          * in may not match the PFN we have mapped if the
2149                          * mapped PFN is a writeable COW page.  In the mkwrite
2150                          * case we are creating a writable PTE for a shared
2151                          * mapping and we expect the PFNs to match. If they
2152                          * don't match, we are likely racing with block
2153                          * allocation and mapping invalidation so just skip the
2154                          * update.
2155                          */
2156                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2157                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2158                                 goto out_unlock;
2159                         }
2160                         entry = pte_mkyoung(*pte);
2161                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2162                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2163                                 update_mmu_cache(vma, addr, pte);
2164                 }
2165                 goto out_unlock;
2166         }
2167
2168         /* Ok, finally just insert the thing.. */
2169         if (pfn_t_devmap(pfn))
2170                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2171         else
2172                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2173
2174         if (mkwrite) {
2175                 entry = pte_mkyoung(entry);
2176                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2177         }
2178
2179         set_pte_at(mm, addr, pte, entry);
2180         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2181
2182 out_unlock:
2183         pte_unmap_unlock(pte, ptl);
2184         return VM_FAULT_NOPAGE;
2185 }
2186
2187 /**
2188  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2189  * @vma: user vma to map to
2190  * @addr: target user address of this page
2191  * @pfn: source kernel pfn
2192  * @pgprot: pgprot flags for the inserted page
2193  *
2194  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2195  * to override pgprot on a per-page basis.
2196  *
2197  * This only makes sense for IO mappings, and it makes no sense for
2198  * COW mappings.  In general, using multiple vmas is preferable;
2199  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2200  * impractical.
2201  *
2202  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2203  * a value of @pgprot different from that of @vma->vm_page_prot.
2204  *
2205  * Context: Process context.  May allocate using %GFP_KERNEL.
2206  * Return: vm_fault_t value.
2207  */
2208 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2209                         unsigned long pfn, pgprot_t pgprot)
2210 {
2211         /*
2212          * Technically, architectures with pte_special can avoid all these
2213          * restrictions (same for remap_pfn_range).  However we would like
2214          * consistency in testing and feature parity among all, so we should
2215          * try to keep these invariants in place for everybody.
2216          */
2217         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219                                                 (VM_PFNMAP|VM_MIXEDMAP));
2220         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2222
2223         if (addr < vma->vm_start || addr >= vma->vm_end)
2224                 return VM_FAULT_SIGBUS;
2225
2226         if (!pfn_modify_allowed(pfn, pgprot))
2227                 return VM_FAULT_SIGBUS;
2228
2229         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2230
2231         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2232                         false);
2233 }
2234 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2235
2236 /**
2237  * vmf_insert_pfn - insert single pfn into user vma
2238  * @vma: user vma to map to
2239  * @addr: target user address of this page
2240  * @pfn: source kernel pfn
2241  *
2242  * Similar to vm_insert_page, this allows drivers to insert individual pages
2243  * they've allocated into a user vma. Same comments apply.
2244  *
2245  * This function should only be called from a vm_ops->fault handler, and
2246  * in that case the handler should return the result of this function.
2247  *
2248  * vma cannot be a COW mapping.
2249  *
2250  * As this is called only for pages that do not currently exist, we
2251  * do not need to flush old virtual caches or the TLB.
2252  *
2253  * Context: Process context.  May allocate using %GFP_KERNEL.
2254  * Return: vm_fault_t value.
2255  */
2256 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2257                         unsigned long pfn)
2258 {
2259         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2260 }
2261 EXPORT_SYMBOL(vmf_insert_pfn);
2262
2263 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2264 {
2265         /* these checks mirror the abort conditions in vm_normal_page */
2266         if (vma->vm_flags & VM_MIXEDMAP)
2267                 return true;
2268         if (pfn_t_devmap(pfn))
2269                 return true;
2270         if (pfn_t_special(pfn))
2271                 return true;
2272         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2273                 return true;
2274         return false;
2275 }
2276
2277 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2278                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2279                 bool mkwrite)
2280 {
2281         int err;
2282
2283         BUG_ON(!vm_mixed_ok(vma, pfn));
2284
2285         if (addr < vma->vm_start || addr >= vma->vm_end)
2286                 return VM_FAULT_SIGBUS;
2287
2288         track_pfn_insert(vma, &pgprot, pfn);
2289
2290         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2291                 return VM_FAULT_SIGBUS;
2292
2293         /*
2294          * If we don't have pte special, then we have to use the pfn_valid()
2295          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2296          * refcount the page if pfn_valid is true (hence insert_page rather
2297          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2298          * without pte special, it would there be refcounted as a normal page.
2299          */
2300         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2301             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2302                 struct page *page;
2303
2304                 /*
2305                  * At this point we are committed to insert_page()
2306                  * regardless of whether the caller specified flags that
2307                  * result in pfn_t_has_page() == false.
2308                  */
2309                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2310                 err = insert_page(vma, addr, page, pgprot);
2311         } else {
2312                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2313         }
2314
2315         if (err == -ENOMEM)
2316                 return VM_FAULT_OOM;
2317         if (err < 0 && err != -EBUSY)
2318                 return VM_FAULT_SIGBUS;
2319
2320         return VM_FAULT_NOPAGE;
2321 }
2322
2323 /**
2324  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2325  * @vma: user vma to map to
2326  * @addr: target user address of this page
2327  * @pfn: source kernel pfn
2328  * @pgprot: pgprot flags for the inserted page
2329  *
2330  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2331  * to override pgprot on a per-page basis.
2332  *
2333  * Typically this function should be used by drivers to set caching- and
2334  * encryption bits different than those of @vma->vm_page_prot, because
2335  * the caching- or encryption mode may not be known at mmap() time.
2336  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2337  * to set caching and encryption bits for those vmas (except for COW pages).
2338  * This is ensured by core vm only modifying these page table entries using
2339  * functions that don't touch caching- or encryption bits, using pte_modify()
2340  * if needed. (See for example mprotect()).
2341  * Also when new page-table entries are created, this is only done using the
2342  * fault() callback, and never using the value of vma->vm_page_prot,
2343  * except for page-table entries that point to anonymous pages as the result
2344  * of COW.
2345  *
2346  * Context: Process context.  May allocate using %GFP_KERNEL.
2347  * Return: vm_fault_t value.
2348  */
2349 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2350                                  pfn_t pfn, pgprot_t pgprot)
2351 {
2352         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2353 }
2354 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2355
2356 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2357                 pfn_t pfn)
2358 {
2359         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2360 }
2361 EXPORT_SYMBOL(vmf_insert_mixed);
2362
2363 /*
2364  *  If the insertion of PTE failed because someone else already added a
2365  *  different entry in the mean time, we treat that as success as we assume
2366  *  the same entry was actually inserted.
2367  */
2368 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2369                 unsigned long addr, pfn_t pfn)
2370 {
2371         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2372 }
2373 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2374
2375 /*
2376  * maps a range of physical memory into the requested pages. the old
2377  * mappings are removed. any references to nonexistent pages results
2378  * in null mappings (currently treated as "copy-on-access")
2379  */
2380 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381                         unsigned long addr, unsigned long end,
2382                         unsigned long pfn, pgprot_t prot)
2383 {
2384         pte_t *pte, *mapped_pte;
2385         spinlock_t *ptl;
2386         int err = 0;
2387
2388         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2389         if (!pte)
2390                 return -ENOMEM;
2391         arch_enter_lazy_mmu_mode();
2392         do {
2393                 BUG_ON(!pte_none(*pte));
2394                 if (!pfn_modify_allowed(pfn, prot)) {
2395                         err = -EACCES;
2396                         break;
2397                 }
2398                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2399                 pfn++;
2400         } while (pte++, addr += PAGE_SIZE, addr != end);
2401         arch_leave_lazy_mmu_mode();
2402         pte_unmap_unlock(mapped_pte, ptl);
2403         return err;
2404 }
2405
2406 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2407                         unsigned long addr, unsigned long end,
2408                         unsigned long pfn, pgprot_t prot)
2409 {
2410         pmd_t *pmd;
2411         unsigned long next;
2412         int err;
2413
2414         pfn -= addr >> PAGE_SHIFT;
2415         pmd = pmd_alloc(mm, pud, addr);
2416         if (!pmd)
2417                 return -ENOMEM;
2418         VM_BUG_ON(pmd_trans_huge(*pmd));
2419         do {
2420                 next = pmd_addr_end(addr, end);
2421                 err = remap_pte_range(mm, pmd, addr, next,
2422                                 pfn + (addr >> PAGE_SHIFT), prot);
2423                 if (err)
2424                         return err;
2425         } while (pmd++, addr = next, addr != end);
2426         return 0;
2427 }
2428
2429 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2430                         unsigned long addr, unsigned long end,
2431                         unsigned long pfn, pgprot_t prot)
2432 {
2433         pud_t *pud;
2434         unsigned long next;
2435         int err;
2436
2437         pfn -= addr >> PAGE_SHIFT;
2438         pud = pud_alloc(mm, p4d, addr);
2439         if (!pud)
2440                 return -ENOMEM;
2441         do {
2442                 next = pud_addr_end(addr, end);
2443                 err = remap_pmd_range(mm, pud, addr, next,
2444                                 pfn + (addr >> PAGE_SHIFT), prot);
2445                 if (err)
2446                         return err;
2447         } while (pud++, addr = next, addr != end);
2448         return 0;
2449 }
2450
2451 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2452                         unsigned long addr, unsigned long end,
2453                         unsigned long pfn, pgprot_t prot)
2454 {
2455         p4d_t *p4d;
2456         unsigned long next;
2457         int err;
2458
2459         pfn -= addr >> PAGE_SHIFT;
2460         p4d = p4d_alloc(mm, pgd, addr);
2461         if (!p4d)
2462                 return -ENOMEM;
2463         do {
2464                 next = p4d_addr_end(addr, end);
2465                 err = remap_pud_range(mm, p4d, addr, next,
2466                                 pfn + (addr >> PAGE_SHIFT), prot);
2467                 if (err)
2468                         return err;
2469         } while (p4d++, addr = next, addr != end);
2470         return 0;
2471 }
2472
2473 /*
2474  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2475  * must have pre-validated the caching bits of the pgprot_t.
2476  */
2477 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2478                 unsigned long pfn, unsigned long size, pgprot_t prot)
2479 {
2480         pgd_t *pgd;
2481         unsigned long next;
2482         unsigned long end = addr + PAGE_ALIGN(size);
2483         struct mm_struct *mm = vma->vm_mm;
2484         int err;
2485
2486         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2487                 return -EINVAL;
2488
2489         /*
2490          * Physically remapped pages are special. Tell the
2491          * rest of the world about it:
2492          *   VM_IO tells people not to look at these pages
2493          *      (accesses can have side effects).
2494          *   VM_PFNMAP tells the core MM that the base pages are just
2495          *      raw PFN mappings, and do not have a "struct page" associated
2496          *      with them.
2497          *   VM_DONTEXPAND
2498          *      Disable vma merging and expanding with mremap().
2499          *   VM_DONTDUMP
2500          *      Omit vma from core dump, even when VM_IO turned off.
2501          *
2502          * There's a horrible special case to handle copy-on-write
2503          * behaviour that some programs depend on. We mark the "original"
2504          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2505          * See vm_normal_page() for details.
2506          */
2507         if (is_cow_mapping(vma->vm_flags)) {
2508                 if (addr != vma->vm_start || end != vma->vm_end)
2509                         return -EINVAL;
2510                 vma->vm_pgoff = pfn;
2511         }
2512
2513         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2514
2515         BUG_ON(addr >= end);
2516         pfn -= addr >> PAGE_SHIFT;
2517         pgd = pgd_offset(mm, addr);
2518         flush_cache_range(vma, addr, end);
2519         do {
2520                 next = pgd_addr_end(addr, end);
2521                 err = remap_p4d_range(mm, pgd, addr, next,
2522                                 pfn + (addr >> PAGE_SHIFT), prot);
2523                 if (err)
2524                         return err;
2525         } while (pgd++, addr = next, addr != end);
2526
2527         return 0;
2528 }
2529
2530 /**
2531  * remap_pfn_range - remap kernel memory to userspace
2532  * @vma: user vma to map to
2533  * @addr: target page aligned user address to start at
2534  * @pfn: page frame number of kernel physical memory address
2535  * @size: size of mapping area
2536  * @prot: page protection flags for this mapping
2537  *
2538  * Note: this is only safe if the mm semaphore is held when called.
2539  *
2540  * Return: %0 on success, negative error code otherwise.
2541  */
2542 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2543                     unsigned long pfn, unsigned long size, pgprot_t prot)
2544 {
2545         int err;
2546
2547         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2548         if (err)
2549                 return -EINVAL;
2550
2551         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2552         if (err)
2553                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2554         return err;
2555 }
2556 EXPORT_SYMBOL(remap_pfn_range);
2557
2558 /**
2559  * vm_iomap_memory - remap memory to userspace
2560  * @vma: user vma to map to
2561  * @start: start of the physical memory to be mapped
2562  * @len: size of area
2563  *
2564  * This is a simplified io_remap_pfn_range() for common driver use. The
2565  * driver just needs to give us the physical memory range to be mapped,
2566  * we'll figure out the rest from the vma information.
2567  *
2568  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2569  * whatever write-combining details or similar.
2570  *
2571  * Return: %0 on success, negative error code otherwise.
2572  */
2573 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2574 {
2575         unsigned long vm_len, pfn, pages;
2576
2577         /* Check that the physical memory area passed in looks valid */
2578         if (start + len < start)
2579                 return -EINVAL;
2580         /*
2581          * You *really* shouldn't map things that aren't page-aligned,
2582          * but we've historically allowed it because IO memory might
2583          * just have smaller alignment.
2584          */
2585         len += start & ~PAGE_MASK;
2586         pfn = start >> PAGE_SHIFT;
2587         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2588         if (pfn + pages < pfn)
2589                 return -EINVAL;
2590
2591         /* We start the mapping 'vm_pgoff' pages into the area */
2592         if (vma->vm_pgoff > pages)
2593                 return -EINVAL;
2594         pfn += vma->vm_pgoff;
2595         pages -= vma->vm_pgoff;
2596
2597         /* Can we fit all of the mapping? */
2598         vm_len = vma->vm_end - vma->vm_start;
2599         if (vm_len >> PAGE_SHIFT > pages)
2600                 return -EINVAL;
2601
2602         /* Ok, let it rip */
2603         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2604 }
2605 EXPORT_SYMBOL(vm_iomap_memory);
2606
2607 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2608                                      unsigned long addr, unsigned long end,
2609                                      pte_fn_t fn, void *data, bool create,
2610                                      pgtbl_mod_mask *mask)
2611 {
2612         pte_t *pte, *mapped_pte;
2613         int err = 0;
2614         spinlock_t *ptl;
2615
2616         if (create) {
2617                 mapped_pte = pte = (mm == &init_mm) ?
2618                         pte_alloc_kernel_track(pmd, addr, mask) :
2619                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2620                 if (!pte)
2621                         return -ENOMEM;
2622         } else {
2623                 mapped_pte = pte = (mm == &init_mm) ?
2624                         pte_offset_kernel(pmd, addr) :
2625                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2626         }
2627
2628         BUG_ON(pmd_huge(*pmd));
2629
2630         arch_enter_lazy_mmu_mode();
2631
2632         if (fn) {
2633                 do {
2634                         if (create || !pte_none(*pte)) {
2635                                 err = fn(pte++, addr, data);
2636                                 if (err)
2637                                         break;
2638                         }
2639                 } while (addr += PAGE_SIZE, addr != end);
2640         }
2641         *mask |= PGTBL_PTE_MODIFIED;
2642
2643         arch_leave_lazy_mmu_mode();
2644
2645         if (mm != &init_mm)
2646                 pte_unmap_unlock(mapped_pte, ptl);
2647         return err;
2648 }
2649
2650 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2651                                      unsigned long addr, unsigned long end,
2652                                      pte_fn_t fn, void *data, bool create,
2653                                      pgtbl_mod_mask *mask)
2654 {
2655         pmd_t *pmd;
2656         unsigned long next;
2657         int err = 0;
2658
2659         BUG_ON(pud_huge(*pud));
2660
2661         if (create) {
2662                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2663                 if (!pmd)
2664                         return -ENOMEM;
2665         } else {
2666                 pmd = pmd_offset(pud, addr);
2667         }
2668         do {
2669                 next = pmd_addr_end(addr, end);
2670                 if (pmd_none(*pmd) && !create)
2671                         continue;
2672                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2673                         return -EINVAL;
2674                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2675                         if (!create)
2676                                 continue;
2677                         pmd_clear_bad(pmd);
2678                 }
2679                 err = apply_to_pte_range(mm, pmd, addr, next,
2680                                          fn, data, create, mask);
2681                 if (err)
2682                         break;
2683         } while (pmd++, addr = next, addr != end);
2684
2685         return err;
2686 }
2687
2688 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2689                                      unsigned long addr, unsigned long end,
2690                                      pte_fn_t fn, void *data, bool create,
2691                                      pgtbl_mod_mask *mask)
2692 {
2693         pud_t *pud;
2694         unsigned long next;
2695         int err = 0;
2696
2697         if (create) {
2698                 pud = pud_alloc_track(mm, p4d, addr, mask);
2699                 if (!pud)
2700                         return -ENOMEM;
2701         } else {
2702                 pud = pud_offset(p4d, addr);
2703         }
2704         do {
2705                 next = pud_addr_end(addr, end);
2706                 if (pud_none(*pud) && !create)
2707                         continue;
2708                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2709                         return -EINVAL;
2710                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2711                         if (!create)
2712                                 continue;
2713                         pud_clear_bad(pud);
2714                 }
2715                 err = apply_to_pmd_range(mm, pud, addr, next,
2716                                          fn, data, create, mask);
2717                 if (err)
2718                         break;
2719         } while (pud++, addr = next, addr != end);
2720
2721         return err;
2722 }
2723
2724 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2725                                      unsigned long addr, unsigned long end,
2726                                      pte_fn_t fn, void *data, bool create,
2727                                      pgtbl_mod_mask *mask)
2728 {
2729         p4d_t *p4d;
2730         unsigned long next;
2731         int err = 0;
2732
2733         if (create) {
2734                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2735                 if (!p4d)
2736                         return -ENOMEM;
2737         } else {
2738                 p4d = p4d_offset(pgd, addr);
2739         }
2740         do {
2741                 next = p4d_addr_end(addr, end);
2742                 if (p4d_none(*p4d) && !create)
2743                         continue;
2744                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2745                         return -EINVAL;
2746                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2747                         if (!create)
2748                                 continue;
2749                         p4d_clear_bad(p4d);
2750                 }
2751                 err = apply_to_pud_range(mm, p4d, addr, next,
2752                                          fn, data, create, mask);
2753                 if (err)
2754                         break;
2755         } while (p4d++, addr = next, addr != end);
2756
2757         return err;
2758 }
2759
2760 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2761                                  unsigned long size, pte_fn_t fn,
2762                                  void *data, bool create)
2763 {
2764         pgd_t *pgd;
2765         unsigned long start = addr, next;
2766         unsigned long end = addr + size;
2767         pgtbl_mod_mask mask = 0;
2768         int err = 0;
2769
2770         if (WARN_ON(addr >= end))
2771                 return -EINVAL;
2772
2773         pgd = pgd_offset(mm, addr);
2774         do {
2775                 next = pgd_addr_end(addr, end);
2776                 if (pgd_none(*pgd) && !create)
2777                         continue;
2778                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2779                         return -EINVAL;
2780                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2781                         if (!create)
2782                                 continue;
2783                         pgd_clear_bad(pgd);
2784                 }
2785                 err = apply_to_p4d_range(mm, pgd, addr, next,
2786                                          fn, data, create, &mask);
2787                 if (err)
2788                         break;
2789         } while (pgd++, addr = next, addr != end);
2790
2791         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2792                 arch_sync_kernel_mappings(start, start + size);
2793
2794         return err;
2795 }
2796
2797 /*
2798  * Scan a region of virtual memory, filling in page tables as necessary
2799  * and calling a provided function on each leaf page table.
2800  */
2801 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2802                         unsigned long size, pte_fn_t fn, void *data)
2803 {
2804         return __apply_to_page_range(mm, addr, size, fn, data, true);
2805 }
2806 EXPORT_SYMBOL_GPL(apply_to_page_range);
2807
2808 /*
2809  * Scan a region of virtual memory, calling a provided function on
2810  * each leaf page table where it exists.
2811  *
2812  * Unlike apply_to_page_range, this does _not_ fill in page tables
2813  * where they are absent.
2814  */
2815 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2816                                  unsigned long size, pte_fn_t fn, void *data)
2817 {
2818         return __apply_to_page_range(mm, addr, size, fn, data, false);
2819 }
2820 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2821
2822 /*
2823  * handle_pte_fault chooses page fault handler according to an entry which was
2824  * read non-atomically.  Before making any commitment, on those architectures
2825  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2826  * parts, do_swap_page must check under lock before unmapping the pte and
2827  * proceeding (but do_wp_page is only called after already making such a check;
2828  * and do_anonymous_page can safely check later on).
2829  */
2830 static inline int pte_unmap_same(struct vm_fault *vmf)
2831 {
2832         int same = 1;
2833 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2834         if (sizeof(pte_t) > sizeof(unsigned long)) {
2835                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2836                 spin_lock(ptl);
2837                 same = pte_same(*vmf->pte, vmf->orig_pte);
2838                 spin_unlock(ptl);
2839         }
2840 #endif
2841         pte_unmap(vmf->pte);
2842         vmf->pte = NULL;
2843         return same;
2844 }
2845
2846 /*
2847  * Return:
2848  *      0:              copied succeeded
2849  *      -EHWPOISON:     copy failed due to hwpoison in source page
2850  *      -EAGAIN:        copied failed (some other reason)
2851  */
2852 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2853                                       struct vm_fault *vmf)
2854 {
2855         int ret;
2856         void *kaddr;
2857         void __user *uaddr;
2858         bool locked = false;
2859         struct vm_area_struct *vma = vmf->vma;
2860         struct mm_struct *mm = vma->vm_mm;
2861         unsigned long addr = vmf->address;
2862
2863         if (likely(src)) {
2864                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2865                         memory_failure_queue(page_to_pfn(src), 0);
2866                         return -EHWPOISON;
2867                 }
2868                 return 0;
2869         }
2870
2871         /*
2872          * If the source page was a PFN mapping, we don't have
2873          * a "struct page" for it. We do a best-effort copy by
2874          * just copying from the original user address. If that
2875          * fails, we just zero-fill it. Live with it.
2876          */
2877         kaddr = kmap_atomic(dst);
2878         uaddr = (void __user *)(addr & PAGE_MASK);
2879
2880         /*
2881          * On architectures with software "accessed" bits, we would
2882          * take a double page fault, so mark it accessed here.
2883          */
2884         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2885                 pte_t entry;
2886
2887                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2888                 locked = true;
2889                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2890                         /*
2891                          * Other thread has already handled the fault
2892                          * and update local tlb only
2893                          */
2894                         update_mmu_tlb(vma, addr, vmf->pte);
2895                         ret = -EAGAIN;
2896                         goto pte_unlock;
2897                 }
2898
2899                 entry = pte_mkyoung(vmf->orig_pte);
2900                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2901                         update_mmu_cache(vma, addr, vmf->pte);
2902         }
2903
2904         /*
2905          * This really shouldn't fail, because the page is there
2906          * in the page tables. But it might just be unreadable,
2907          * in which case we just give up and fill the result with
2908          * zeroes.
2909          */
2910         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2911                 if (locked)
2912                         goto warn;
2913
2914                 /* Re-validate under PTL if the page is still mapped */
2915                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2916                 locked = true;
2917                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2918                         /* The PTE changed under us, update local tlb */
2919                         update_mmu_tlb(vma, addr, vmf->pte);
2920                         ret = -EAGAIN;
2921                         goto pte_unlock;
2922                 }
2923
2924                 /*
2925                  * The same page can be mapped back since last copy attempt.
2926                  * Try to copy again under PTL.
2927                  */
2928                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2929                         /*
2930                          * Give a warn in case there can be some obscure
2931                          * use-case
2932                          */
2933 warn:
2934                         WARN_ON_ONCE(1);
2935                         clear_page(kaddr);
2936                 }
2937         }
2938
2939         ret = 0;
2940
2941 pte_unlock:
2942         if (locked)
2943                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2944         kunmap_atomic(kaddr);
2945         flush_dcache_page(dst);
2946
2947         return ret;
2948 }
2949
2950 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2951 {
2952         struct file *vm_file = vma->vm_file;
2953
2954         if (vm_file)
2955                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2956
2957         /*
2958          * Special mappings (e.g. VDSO) do not have any file so fake
2959          * a default GFP_KERNEL for them.
2960          */
2961         return GFP_KERNEL;
2962 }
2963
2964 /*
2965  * Notify the address space that the page is about to become writable so that
2966  * it can prohibit this or wait for the page to get into an appropriate state.
2967  *
2968  * We do this without the lock held, so that it can sleep if it needs to.
2969  */
2970 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2971 {
2972         vm_fault_t ret;
2973         struct page *page = vmf->page;
2974         unsigned int old_flags = vmf->flags;
2975
2976         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2977
2978         if (vmf->vma->vm_file &&
2979             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2980                 return VM_FAULT_SIGBUS;
2981
2982         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2983         /* Restore original flags so that caller is not surprised */
2984         vmf->flags = old_flags;
2985         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2986                 return ret;
2987         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2988                 lock_page(page);
2989                 if (!page->mapping) {
2990                         unlock_page(page);
2991                         return 0; /* retry */
2992                 }
2993                 ret |= VM_FAULT_LOCKED;
2994         } else
2995                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2996         return ret;
2997 }
2998
2999 /*
3000  * Handle dirtying of a page in shared file mapping on a write fault.
3001  *
3002  * The function expects the page to be locked and unlocks it.
3003  */
3004 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3005 {
3006         struct vm_area_struct *vma = vmf->vma;
3007         struct address_space *mapping;
3008         struct page *page = vmf->page;
3009         bool dirtied;
3010         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3011
3012         dirtied = set_page_dirty(page);
3013         VM_BUG_ON_PAGE(PageAnon(page), page);
3014         /*
3015          * Take a local copy of the address_space - page.mapping may be zeroed
3016          * by truncate after unlock_page().   The address_space itself remains
3017          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3018          * release semantics to prevent the compiler from undoing this copying.
3019          */
3020         mapping = page_rmapping(page);
3021         unlock_page(page);
3022
3023         if (!page_mkwrite)
3024                 file_update_time(vma->vm_file);
3025
3026         /*
3027          * Throttle page dirtying rate down to writeback speed.
3028          *
3029          * mapping may be NULL here because some device drivers do not
3030          * set page.mapping but still dirty their pages
3031          *
3032          * Drop the mmap_lock before waiting on IO, if we can. The file
3033          * is pinning the mapping, as per above.
3034          */
3035         if ((dirtied || page_mkwrite) && mapping) {
3036                 struct file *fpin;
3037
3038                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3039                 balance_dirty_pages_ratelimited(mapping);
3040                 if (fpin) {
3041                         fput(fpin);
3042                         return VM_FAULT_COMPLETED;
3043                 }
3044         }
3045
3046         return 0;
3047 }
3048
3049 /*
3050  * Handle write page faults for pages that can be reused in the current vma
3051  *
3052  * This can happen either due to the mapping being with the VM_SHARED flag,
3053  * or due to us being the last reference standing to the page. In either
3054  * case, all we need to do here is to mark the page as writable and update
3055  * any related book-keeping.
3056  */
3057 static inline void wp_page_reuse(struct vm_fault *vmf)
3058         __releases(vmf->ptl)
3059 {
3060         struct vm_area_struct *vma = vmf->vma;
3061         struct page *page = vmf->page;
3062         pte_t entry;
3063
3064         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3065         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3066
3067         /*
3068          * Clear the pages cpupid information as the existing
3069          * information potentially belongs to a now completely
3070          * unrelated process.
3071          */
3072         if (page)
3073                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3074
3075         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3076         entry = pte_mkyoung(vmf->orig_pte);
3077         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3078         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3079                 update_mmu_cache(vma, vmf->address, vmf->pte);
3080         pte_unmap_unlock(vmf->pte, vmf->ptl);
3081         count_vm_event(PGREUSE);
3082 }
3083
3084 /*
3085  * Handle the case of a page which we actually need to copy to a new page,
3086  * either due to COW or unsharing.
3087  *
3088  * Called with mmap_lock locked and the old page referenced, but
3089  * without the ptl held.
3090  *
3091  * High level logic flow:
3092  *
3093  * - Allocate a page, copy the content of the old page to the new one.
3094  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3095  * - Take the PTL. If the pte changed, bail out and release the allocated page
3096  * - If the pte is still the way we remember it, update the page table and all
3097  *   relevant references. This includes dropping the reference the page-table
3098  *   held to the old page, as well as updating the rmap.
3099  * - In any case, unlock the PTL and drop the reference we took to the old page.
3100  */
3101 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3102 {
3103         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3104         struct vm_area_struct *vma = vmf->vma;
3105         struct mm_struct *mm = vma->vm_mm;
3106         struct page *old_page = vmf->page;
3107         struct page *new_page = NULL;
3108         pte_t entry;
3109         int page_copied = 0;
3110         struct mmu_notifier_range range;
3111         int ret;
3112
3113         delayacct_wpcopy_start();
3114
3115         if (unlikely(anon_vma_prepare(vma)))
3116                 goto oom;
3117
3118         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3119                 new_page = alloc_zeroed_user_highpage_movable(vma,
3120                                                               vmf->address);
3121                 if (!new_page)
3122                         goto oom;
3123         } else {
3124                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3125                                 vmf->address);
3126                 if (!new_page)
3127                         goto oom;
3128
3129                 ret = __wp_page_copy_user(new_page, old_page, vmf);
3130                 if (ret) {
3131                         /*
3132                          * COW failed, if the fault was solved by other,
3133                          * it's fine. If not, userspace would re-fault on
3134                          * the same address and we will handle the fault
3135                          * from the second attempt.
3136                          * The -EHWPOISON case will not be retried.
3137                          */
3138                         put_page(new_page);
3139                         if (old_page)
3140                                 put_page(old_page);
3141
3142                         delayacct_wpcopy_end();
3143                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3144                 }
3145                 kmsan_copy_page_meta(new_page, old_page);
3146         }
3147
3148         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3149                 goto oom_free_new;
3150         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3151
3152         __SetPageUptodate(new_page);
3153
3154         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3155                                 vmf->address & PAGE_MASK,
3156                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3157         mmu_notifier_invalidate_range_start(&range);
3158
3159         /*
3160          * Re-check the pte - we dropped the lock
3161          */
3162         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3163         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3164                 if (old_page) {
3165                         if (!PageAnon(old_page)) {
3166                                 dec_mm_counter_fast(mm,
3167                                                 mm_counter_file(old_page));
3168                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3169                         }
3170                 } else {
3171                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3172                 }
3173                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3174                 entry = mk_pte(new_page, vma->vm_page_prot);
3175                 entry = pte_sw_mkyoung(entry);
3176                 if (unlikely(unshare)) {
3177                         if (pte_soft_dirty(vmf->orig_pte))
3178                                 entry = pte_mksoft_dirty(entry);
3179                         if (pte_uffd_wp(vmf->orig_pte))
3180                                 entry = pte_mkuffd_wp(entry);
3181                 } else {
3182                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3183                 }
3184
3185                 /*
3186                  * Clear the pte entry and flush it first, before updating the
3187                  * pte with the new entry, to keep TLBs on different CPUs in
3188                  * sync. This code used to set the new PTE then flush TLBs, but
3189                  * that left a window where the new PTE could be loaded into
3190                  * some TLBs while the old PTE remains in others.
3191                  */
3192                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3193                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3194                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3195                 /*
3196                  * We call the notify macro here because, when using secondary
3197                  * mmu page tables (such as kvm shadow page tables), we want the
3198                  * new page to be mapped directly into the secondary page table.
3199                  */
3200                 BUG_ON(unshare && pte_write(entry));
3201                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3202                 update_mmu_cache(vma, vmf->address, vmf->pte);
3203                 if (old_page) {
3204                         /*
3205                          * Only after switching the pte to the new page may
3206                          * we remove the mapcount here. Otherwise another
3207                          * process may come and find the rmap count decremented
3208                          * before the pte is switched to the new page, and
3209                          * "reuse" the old page writing into it while our pte
3210                          * here still points into it and can be read by other
3211                          * threads.
3212                          *
3213                          * The critical issue is to order this
3214                          * page_remove_rmap with the ptp_clear_flush above.
3215                          * Those stores are ordered by (if nothing else,)
3216                          * the barrier present in the atomic_add_negative
3217                          * in page_remove_rmap.
3218                          *
3219                          * Then the TLB flush in ptep_clear_flush ensures that
3220                          * no process can access the old page before the
3221                          * decremented mapcount is visible. And the old page
3222                          * cannot be reused until after the decremented
3223                          * mapcount is visible. So transitively, TLBs to
3224                          * old page will be flushed before it can be reused.
3225                          */
3226                         page_remove_rmap(old_page, vma, false);
3227                 }
3228
3229                 /* Free the old page.. */
3230                 new_page = old_page;
3231                 page_copied = 1;
3232         } else {
3233                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3234         }
3235
3236         if (new_page)
3237                 put_page(new_page);
3238
3239         pte_unmap_unlock(vmf->pte, vmf->ptl);
3240         /*
3241          * No need to double call mmu_notifier->invalidate_range() callback as
3242          * the above ptep_clear_flush_notify() did already call it.
3243          */
3244         mmu_notifier_invalidate_range_only_end(&range);
3245         if (old_page) {
3246                 if (page_copied)
3247                         free_swap_cache(old_page);
3248                 put_page(old_page);
3249         }
3250
3251         delayacct_wpcopy_end();
3252         return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3253 oom_free_new:
3254         put_page(new_page);
3255 oom:
3256         if (old_page)
3257                 put_page(old_page);
3258
3259         delayacct_wpcopy_end();
3260         return VM_FAULT_OOM;
3261 }
3262
3263 /**
3264  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3265  *                        writeable once the page is prepared
3266  *
3267  * @vmf: structure describing the fault
3268  *
3269  * This function handles all that is needed to finish a write page fault in a
3270  * shared mapping due to PTE being read-only once the mapped page is prepared.
3271  * It handles locking of PTE and modifying it.
3272  *
3273  * The function expects the page to be locked or other protection against
3274  * concurrent faults / writeback (such as DAX radix tree locks).
3275  *
3276  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3277  * we acquired PTE lock.
3278  */
3279 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3280 {
3281         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3282         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3283                                        &vmf->ptl);
3284         /*
3285          * We might have raced with another page fault while we released the
3286          * pte_offset_map_lock.
3287          */
3288         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3289                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3290                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291                 return VM_FAULT_NOPAGE;
3292         }
3293         wp_page_reuse(vmf);
3294         return 0;
3295 }
3296
3297 /*
3298  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3299  * mapping
3300  */
3301 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3302 {
3303         struct vm_area_struct *vma = vmf->vma;
3304
3305         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3306                 vm_fault_t ret;
3307
3308                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3309                 vmf->flags |= FAULT_FLAG_MKWRITE;
3310                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3311                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3312                         return ret;
3313                 return finish_mkwrite_fault(vmf);
3314         }
3315         wp_page_reuse(vmf);
3316         return VM_FAULT_WRITE;
3317 }
3318
3319 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3320         __releases(vmf->ptl)
3321 {
3322         struct vm_area_struct *vma = vmf->vma;
3323         vm_fault_t ret = VM_FAULT_WRITE;
3324
3325         get_page(vmf->page);
3326
3327         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3328                 vm_fault_t tmp;
3329
3330                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3331                 tmp = do_page_mkwrite(vmf);
3332                 if (unlikely(!tmp || (tmp &
3333                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3334                         put_page(vmf->page);
3335                         return tmp;
3336                 }
3337                 tmp = finish_mkwrite_fault(vmf);
3338                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3339                         unlock_page(vmf->page);
3340                         put_page(vmf->page);
3341                         return tmp;
3342                 }
3343         } else {
3344                 wp_page_reuse(vmf);
3345                 lock_page(vmf->page);
3346         }
3347         ret |= fault_dirty_shared_page(vmf);
3348         put_page(vmf->page);
3349
3350         return ret;
3351 }
3352
3353 /*
3354  * This routine handles present pages, when
3355  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3356  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3357  *   (FAULT_FLAG_UNSHARE)
3358  *
3359  * It is done by copying the page to a new address and decrementing the
3360  * shared-page counter for the old page.
3361  *
3362  * Note that this routine assumes that the protection checks have been
3363  * done by the caller (the low-level page fault routine in most cases).
3364  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3365  * done any necessary COW.
3366  *
3367  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3368  * though the page will change only once the write actually happens. This
3369  * avoids a few races, and potentially makes it more efficient.
3370  *
3371  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3372  * but allow concurrent faults), with pte both mapped and locked.
3373  * We return with mmap_lock still held, but pte unmapped and unlocked.
3374  */
3375 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3376         __releases(vmf->ptl)
3377 {
3378         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3379         struct vm_area_struct *vma = vmf->vma;
3380         struct folio *folio;
3381
3382         VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3383         VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3384
3385         if (likely(!unshare)) {
3386                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3387                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3388                         return handle_userfault(vmf, VM_UFFD_WP);
3389                 }
3390
3391                 /*
3392                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3393                  * is flushed in this case before copying.
3394                  */
3395                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3396                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3397                         flush_tlb_page(vmf->vma, vmf->address);
3398         }
3399
3400         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3401         if (!vmf->page) {
3402                 if (unlikely(unshare)) {
3403                         /* No anonymous page -> nothing to do. */
3404                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3405                         return 0;
3406                 }
3407
3408                 /*
3409                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3410                  * VM_PFNMAP VMA.
3411                  *
3412                  * We should not cow pages in a shared writeable mapping.
3413                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3414                  */
3415                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3416                                      (VM_WRITE|VM_SHARED))
3417                         return wp_pfn_shared(vmf);
3418
3419                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3420                 return wp_page_copy(vmf);
3421         }
3422
3423         /*
3424          * Take out anonymous pages first, anonymous shared vmas are
3425          * not dirty accountable.
3426          */
3427         folio = page_folio(vmf->page);
3428         if (folio_test_anon(folio)) {
3429                 /*
3430                  * If the page is exclusive to this process we must reuse the
3431                  * page without further checks.
3432                  */
3433                 if (PageAnonExclusive(vmf->page))
3434                         goto reuse;
3435
3436                 /*
3437                  * We have to verify under folio lock: these early checks are
3438                  * just an optimization to avoid locking the folio and freeing
3439                  * the swapcache if there is little hope that we can reuse.
3440                  *
3441                  * KSM doesn't necessarily raise the folio refcount.
3442                  */
3443                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3444                         goto copy;
3445                 if (!folio_test_lru(folio))
3446                         /*
3447                          * Note: We cannot easily detect+handle references from
3448                          * remote LRU pagevecs or references to LRU folios.
3449                          */
3450                         lru_add_drain();
3451                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3452                         goto copy;
3453                 if (!folio_trylock(folio))
3454                         goto copy;
3455                 if (folio_test_swapcache(folio))
3456                         folio_free_swap(folio);
3457                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3458                         folio_unlock(folio);
3459                         goto copy;
3460                 }
3461                 /*
3462                  * Ok, we've got the only folio reference from our mapping
3463                  * and the folio is locked, it's dark out, and we're wearing
3464                  * sunglasses. Hit it.
3465                  */
3466                 page_move_anon_rmap(vmf->page, vma);
3467                 folio_unlock(folio);
3468 reuse:
3469                 if (unlikely(unshare)) {
3470                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3471                         return 0;
3472                 }
3473                 wp_page_reuse(vmf);
3474                 return VM_FAULT_WRITE;
3475         } else if (unshare) {
3476                 /* No anonymous page -> nothing to do. */
3477                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3478                 return 0;
3479         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3480                                         (VM_WRITE|VM_SHARED))) {
3481                 return wp_page_shared(vmf);
3482         }
3483 copy:
3484         /*
3485          * Ok, we need to copy. Oh, well..
3486          */
3487         get_page(vmf->page);
3488
3489         pte_unmap_unlock(vmf->pte, vmf->ptl);
3490 #ifdef CONFIG_KSM
3491         if (PageKsm(vmf->page))
3492                 count_vm_event(COW_KSM);
3493 #endif
3494         return wp_page_copy(vmf);
3495 }
3496
3497 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3498                 unsigned long start_addr, unsigned long end_addr,
3499                 struct zap_details *details)
3500 {
3501         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3502 }
3503
3504 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3505                                             pgoff_t first_index,
3506                                             pgoff_t last_index,
3507                                             struct zap_details *details)
3508 {
3509         struct vm_area_struct *vma;
3510         pgoff_t vba, vea, zba, zea;
3511
3512         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3513                 vba = vma->vm_pgoff;
3514                 vea = vba + vma_pages(vma) - 1;
3515                 zba = max(first_index, vba);
3516                 zea = min(last_index, vea);
3517
3518                 unmap_mapping_range_vma(vma,
3519                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3520                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3521                                 details);
3522         }
3523 }
3524
3525 /**
3526  * unmap_mapping_folio() - Unmap single folio from processes.
3527  * @folio: The locked folio to be unmapped.
3528  *
3529  * Unmap this folio from any userspace process which still has it mmaped.
3530  * Typically, for efficiency, the range of nearby pages has already been
3531  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3532  * truncation or invalidation holds the lock on a folio, it may find that
3533  * the page has been remapped again: and then uses unmap_mapping_folio()
3534  * to unmap it finally.
3535  */
3536 void unmap_mapping_folio(struct folio *folio)
3537 {
3538         struct address_space *mapping = folio->mapping;
3539         struct zap_details details = { };
3540         pgoff_t first_index;
3541         pgoff_t last_index;
3542
3543         VM_BUG_ON(!folio_test_locked(folio));
3544
3545         first_index = folio->index;
3546         last_index = folio->index + folio_nr_pages(folio) - 1;
3547
3548         details.even_cows = false;
3549         details.single_folio = folio;
3550         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3551
3552         i_mmap_lock_read(mapping);
3553         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3554                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3555                                          last_index, &details);
3556         i_mmap_unlock_read(mapping);
3557 }
3558
3559 /**
3560  * unmap_mapping_pages() - Unmap pages from processes.
3561  * @mapping: The address space containing pages to be unmapped.
3562  * @start: Index of first page to be unmapped.
3563  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3564  * @even_cows: Whether to unmap even private COWed pages.
3565  *
3566  * Unmap the pages in this address space from any userspace process which
3567  * has them mmaped.  Generally, you want to remove COWed pages as well when
3568  * a file is being truncated, but not when invalidating pages from the page
3569  * cache.
3570  */
3571 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3572                 pgoff_t nr, bool even_cows)
3573 {
3574         struct zap_details details = { };
3575         pgoff_t first_index = start;
3576         pgoff_t last_index = start + nr - 1;
3577
3578         details.even_cows = even_cows;
3579         if (last_index < first_index)
3580                 last_index = ULONG_MAX;
3581
3582         i_mmap_lock_read(mapping);
3583         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3584                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3585                                          last_index, &details);
3586         i_mmap_unlock_read(mapping);
3587 }
3588 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3589
3590 /**
3591  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3592  * address_space corresponding to the specified byte range in the underlying
3593  * file.
3594  *
3595  * @mapping: the address space containing mmaps to be unmapped.
3596  * @holebegin: byte in first page to unmap, relative to the start of
3597  * the underlying file.  This will be rounded down to a PAGE_SIZE
3598  * boundary.  Note that this is different from truncate_pagecache(), which
3599  * must keep the partial page.  In contrast, we must get rid of
3600  * partial pages.
3601  * @holelen: size of prospective hole in bytes.  This will be rounded
3602  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3603  * end of the file.
3604  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3605  * but 0 when invalidating pagecache, don't throw away private data.
3606  */
3607 void unmap_mapping_range(struct address_space *mapping,
3608                 loff_t const holebegin, loff_t const holelen, int even_cows)
3609 {
3610         pgoff_t hba = holebegin >> PAGE_SHIFT;
3611         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3612
3613         /* Check for overflow. */
3614         if (sizeof(holelen) > sizeof(hlen)) {
3615                 long long holeend =
3616                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3617                 if (holeend & ~(long long)ULONG_MAX)
3618                         hlen = ULONG_MAX - hba + 1;
3619         }
3620
3621         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3622 }
3623 EXPORT_SYMBOL(unmap_mapping_range);
3624
3625 /*
3626  * Restore a potential device exclusive pte to a working pte entry
3627  */
3628 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3629 {
3630         struct folio *folio = page_folio(vmf->page);
3631         struct vm_area_struct *vma = vmf->vma;
3632         struct mmu_notifier_range range;
3633
3634         /*
3635          * We need a reference to lock the folio because we don't hold
3636          * the PTL so a racing thread can remove the device-exclusive
3637          * entry and unmap it. If the folio is free the entry must
3638          * have been removed already. If it happens to have already
3639          * been re-allocated after being freed all we do is lock and
3640          * unlock it.
3641          */
3642         if (!folio_try_get(folio))
3643                 return 0;
3644
3645         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3646                 folio_put(folio);
3647                 return VM_FAULT_RETRY;
3648         }
3649         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3650                                 vma->vm_mm, vmf->address & PAGE_MASK,
3651                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3652         mmu_notifier_invalidate_range_start(&range);
3653
3654         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3655                                 &vmf->ptl);
3656         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3657                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3658
3659         pte_unmap_unlock(vmf->pte, vmf->ptl);
3660         folio_unlock(folio);
3661         folio_put(folio);
3662
3663         mmu_notifier_invalidate_range_end(&range);
3664         return 0;
3665 }
3666
3667 static inline bool should_try_to_free_swap(struct folio *folio,
3668                                            struct vm_area_struct *vma,
3669                                            unsigned int fault_flags)
3670 {
3671         if (!folio_test_swapcache(folio))
3672                 return false;
3673         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3674             folio_test_mlocked(folio))
3675                 return true;
3676         /*
3677          * If we want to map a page that's in the swapcache writable, we
3678          * have to detect via the refcount if we're really the exclusive
3679          * user. Try freeing the swapcache to get rid of the swapcache
3680          * reference only in case it's likely that we'll be the exlusive user.
3681          */
3682         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3683                 folio_ref_count(folio) == 2;
3684 }
3685
3686 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3687 {
3688         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3689                                        vmf->address, &vmf->ptl);
3690         /*
3691          * Be careful so that we will only recover a special uffd-wp pte into a
3692          * none pte.  Otherwise it means the pte could have changed, so retry.
3693          */
3694         if (is_pte_marker(*vmf->pte))
3695                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3696         pte_unmap_unlock(vmf->pte, vmf->ptl);
3697         return 0;
3698 }
3699
3700 /*
3701  * This is actually a page-missing access, but with uffd-wp special pte
3702  * installed.  It means this pte was wr-protected before being unmapped.
3703  */
3704 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3705 {
3706         /*
3707          * Just in case there're leftover special ptes even after the region
3708          * got unregistered - we can simply clear them.  We can also do that
3709          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3710          * ranges, but it should be more efficient to be done lazily here.
3711          */
3712         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3713                 return pte_marker_clear(vmf);
3714
3715         /* do_fault() can handle pte markers too like none pte */
3716         return do_fault(vmf);
3717 }
3718
3719 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3720 {
3721         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3722         unsigned long marker = pte_marker_get(entry);
3723
3724         /*
3725          * PTE markers should always be with file-backed memories, and the
3726          * marker should never be empty.  If anything weird happened, the best
3727          * thing to do is to kill the process along with its mm.
3728          */
3729         if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3730                 return VM_FAULT_SIGBUS;
3731
3732         if (pte_marker_entry_uffd_wp(entry))
3733                 return pte_marker_handle_uffd_wp(vmf);
3734
3735         /* This is an unknown pte marker */
3736         return VM_FAULT_SIGBUS;
3737 }
3738
3739 /*
3740  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3741  * but allow concurrent faults), and pte mapped but not yet locked.
3742  * We return with pte unmapped and unlocked.
3743  *
3744  * We return with the mmap_lock locked or unlocked in the same cases
3745  * as does filemap_fault().
3746  */
3747 vm_fault_t do_swap_page(struct vm_fault *vmf)
3748 {
3749         struct vm_area_struct *vma = vmf->vma;
3750         struct folio *swapcache, *folio = NULL;
3751         struct page *page;
3752         struct swap_info_struct *si = NULL;
3753         rmap_t rmap_flags = RMAP_NONE;
3754         bool exclusive = false;
3755         swp_entry_t entry;
3756         pte_t pte;
3757         int locked;
3758         vm_fault_t ret = 0;
3759         void *shadow = NULL;
3760
3761         if (!pte_unmap_same(vmf))
3762                 goto out;
3763
3764         entry = pte_to_swp_entry(vmf->orig_pte);
3765         if (unlikely(non_swap_entry(entry))) {
3766                 if (is_migration_entry(entry)) {
3767                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3768                                              vmf->address);
3769                 } else if (is_device_exclusive_entry(entry)) {
3770                         vmf->page = pfn_swap_entry_to_page(entry);
3771                         ret = remove_device_exclusive_entry(vmf);
3772                 } else if (is_device_private_entry(entry)) {
3773                         vmf->page = pfn_swap_entry_to_page(entry);
3774                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3775                                         vmf->address, &vmf->ptl);
3776                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3777                                 spin_unlock(vmf->ptl);
3778                                 goto out;
3779                         }
3780
3781                         /*
3782                          * Get a page reference while we know the page can't be
3783                          * freed.
3784                          */
3785                         get_page(vmf->page);
3786                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3787                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3788                         put_page(vmf->page);
3789                 } else if (is_hwpoison_entry(entry)) {
3790                         ret = VM_FAULT_HWPOISON;
3791                 } else if (is_swapin_error_entry(entry)) {
3792                         ret = VM_FAULT_SIGBUS;
3793                 } else if (is_pte_marker_entry(entry)) {
3794                         ret = handle_pte_marker(vmf);
3795                 } else {
3796                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3797                         ret = VM_FAULT_SIGBUS;
3798                 }
3799                 goto out;
3800         }
3801
3802         /* Prevent swapoff from happening to us. */
3803         si = get_swap_device(entry);
3804         if (unlikely(!si))
3805                 goto out;
3806
3807         folio = swap_cache_get_folio(entry, vma, vmf->address);
3808         if (folio)
3809                 page = folio_file_page(folio, swp_offset(entry));
3810         swapcache = folio;
3811
3812         if (!folio) {
3813                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3814                     __swap_count(entry) == 1) {
3815                         /* skip swapcache */
3816                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3817                                                 vma, vmf->address, false);
3818                         page = &folio->page;
3819                         if (folio) {
3820                                 __folio_set_locked(folio);
3821                                 __folio_set_swapbacked(folio);
3822
3823                                 if (mem_cgroup_swapin_charge_folio(folio,
3824                                                         vma->vm_mm, GFP_KERNEL,
3825                                                         entry)) {
3826                                         ret = VM_FAULT_OOM;
3827                                         goto out_page;
3828                                 }
3829                                 mem_cgroup_swapin_uncharge_swap(entry);
3830
3831                                 shadow = get_shadow_from_swap_cache(entry);
3832                                 if (shadow)
3833                                         workingset_refault(folio, shadow);
3834
3835                                 folio_add_lru(folio);
3836
3837                                 /* To provide entry to swap_readpage() */
3838                                 folio_set_swap_entry(folio, entry);
3839                                 swap_readpage(page, true, NULL);
3840                                 folio->private = NULL;
3841                         }
3842                 } else {
3843                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3844                                                 vmf);
3845                         if (page)
3846                                 folio = page_folio(page);
3847                         swapcache = folio;
3848                 }
3849
3850                 if (!folio) {
3851                         /*
3852                          * Back out if somebody else faulted in this pte
3853                          * while we released the pte lock.
3854                          */
3855                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3856                                         vmf->address, &vmf->ptl);
3857                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3858                                 ret = VM_FAULT_OOM;
3859                         goto unlock;
3860                 }
3861
3862                 /* Had to read the page from swap area: Major fault */
3863                 ret = VM_FAULT_MAJOR;
3864                 count_vm_event(PGMAJFAULT);
3865                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3866         } else if (PageHWPoison(page)) {
3867                 /*
3868                  * hwpoisoned dirty swapcache pages are kept for killing
3869                  * owner processes (which may be unknown at hwpoison time)
3870                  */
3871                 ret = VM_FAULT_HWPOISON;
3872                 goto out_release;
3873         }
3874
3875         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3876
3877         if (!locked) {
3878                 ret |= VM_FAULT_RETRY;
3879                 goto out_release;
3880         }
3881
3882         if (swapcache) {
3883                 /*
3884                  * Make sure folio_free_swap() or swapoff did not release the
3885                  * swapcache from under us.  The page pin, and pte_same test
3886                  * below, are not enough to exclude that.  Even if it is still
3887                  * swapcache, we need to check that the page's swap has not
3888                  * changed.
3889                  */
3890                 if (unlikely(!folio_test_swapcache(folio) ||
3891                              page_private(page) != entry.val))
3892                         goto out_page;
3893
3894                 /*
3895                  * KSM sometimes has to copy on read faults, for example, if
3896                  * page->index of !PageKSM() pages would be nonlinear inside the
3897                  * anon VMA -- PageKSM() is lost on actual swapout.
3898                  */
3899                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3900                 if (unlikely(!page)) {
3901                         ret = VM_FAULT_OOM;
3902                         goto out_page;
3903                 }
3904                 folio = page_folio(page);
3905
3906                 /*
3907                  * If we want to map a page that's in the swapcache writable, we
3908                  * have to detect via the refcount if we're really the exclusive
3909                  * owner. Try removing the extra reference from the local LRU
3910                  * pagevecs if required.
3911                  */
3912                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3913                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3914                         lru_add_drain();
3915         }
3916
3917         cgroup_throttle_swaprate(page, GFP_KERNEL);
3918
3919         /*
3920          * Back out if somebody else already faulted in this pte.
3921          */
3922         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3923                         &vmf->ptl);
3924         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3925                 goto out_nomap;
3926
3927         if (unlikely(!folio_test_uptodate(folio))) {
3928                 ret = VM_FAULT_SIGBUS;
3929                 goto out_nomap;
3930         }
3931
3932         /*
3933          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3934          * must never point at an anonymous page in the swapcache that is
3935          * PG_anon_exclusive. Sanity check that this holds and especially, that
3936          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3937          * check after taking the PT lock and making sure that nobody
3938          * concurrently faulted in this page and set PG_anon_exclusive.
3939          */
3940         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3941         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3942
3943         /*
3944          * Check under PT lock (to protect against concurrent fork() sharing
3945          * the swap entry concurrently) for certainly exclusive pages.
3946          */
3947         if (!folio_test_ksm(folio)) {
3948                 /*
3949                  * Note that pte_swp_exclusive() == false for architectures
3950                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3951                  */
3952                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3953                 if (folio != swapcache) {
3954                         /*
3955                          * We have a fresh page that is not exposed to the
3956                          * swapcache -> certainly exclusive.
3957                          */
3958                         exclusive = true;
3959                 } else if (exclusive && folio_test_writeback(folio) &&
3960                           data_race(si->flags & SWP_STABLE_WRITES)) {
3961                         /*
3962                          * This is tricky: not all swap backends support
3963                          * concurrent page modifications while under writeback.
3964                          *
3965                          * So if we stumble over such a page in the swapcache
3966                          * we must not set the page exclusive, otherwise we can
3967                          * map it writable without further checks and modify it
3968                          * while still under writeback.
3969                          *
3970                          * For these problematic swap backends, simply drop the
3971                          * exclusive marker: this is perfectly fine as we start
3972                          * writeback only if we fully unmapped the page and
3973                          * there are no unexpected references on the page after
3974                          * unmapping succeeded. After fully unmapped, no
3975                          * further GUP references (FOLL_GET and FOLL_PIN) can
3976                          * appear, so dropping the exclusive marker and mapping
3977                          * it only R/O is fine.
3978                          */
3979                         exclusive = false;
3980                 }
3981         }
3982
3983         /*
3984          * Some architectures may have to restore extra metadata to the page
3985          * when reading from swap. This metadata may be indexed by swap entry
3986          * so this must be called before swap_free().
3987          */
3988         arch_swap_restore(entry, folio);
3989
3990         /*
3991          * Remove the swap entry and conditionally try to free up the swapcache.
3992          * We're already holding a reference on the page but haven't mapped it
3993          * yet.
3994          */
3995         swap_free(entry);
3996         if (should_try_to_free_swap(folio, vma, vmf->flags))
3997                 folio_free_swap(folio);
3998
3999         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4000         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
4001         pte = mk_pte(page, vma->vm_page_prot);
4002
4003         /*
4004          * Same logic as in do_wp_page(); however, optimize for pages that are
4005          * certainly not shared either because we just allocated them without
4006          * exposing them to the swapcache or because the swap entry indicates
4007          * exclusivity.
4008          */
4009         if (!folio_test_ksm(folio) &&
4010             (exclusive || folio_ref_count(folio) == 1)) {
4011                 if (vmf->flags & FAULT_FLAG_WRITE) {
4012                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4013                         vmf->flags &= ~FAULT_FLAG_WRITE;
4014                         ret |= VM_FAULT_WRITE;
4015                 }
4016                 rmap_flags |= RMAP_EXCLUSIVE;
4017         }
4018         flush_icache_page(vma, page);
4019         if (pte_swp_soft_dirty(vmf->orig_pte))
4020                 pte = pte_mksoft_dirty(pte);
4021         if (pte_swp_uffd_wp(vmf->orig_pte)) {
4022                 pte = pte_mkuffd_wp(pte);
4023                 pte = pte_wrprotect(pte);
4024         }
4025         vmf->orig_pte = pte;
4026
4027         /* ksm created a completely new copy */
4028         if (unlikely(folio != swapcache && swapcache)) {
4029                 page_add_new_anon_rmap(page, vma, vmf->address);
4030                 folio_add_lru_vma(folio, vma);
4031         } else {
4032                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4033         }
4034
4035         VM_BUG_ON(!folio_test_anon(folio) ||
4036                         (pte_write(pte) && !PageAnonExclusive(page)));
4037         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4038         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4039
4040         folio_unlock(folio);
4041         if (folio != swapcache && swapcache) {
4042                 /*
4043                  * Hold the lock to avoid the swap entry to be reused
4044                  * until we take the PT lock for the pte_same() check
4045                  * (to avoid false positives from pte_same). For
4046                  * further safety release the lock after the swap_free
4047                  * so that the swap count won't change under a
4048                  * parallel locked swapcache.
4049                  */
4050                 folio_unlock(swapcache);
4051                 folio_put(swapcache);
4052         }
4053
4054         if (vmf->flags & FAULT_FLAG_WRITE) {
4055                 ret |= do_wp_page(vmf);
4056                 if (ret & VM_FAULT_ERROR)
4057                         ret &= VM_FAULT_ERROR;
4058                 goto out;
4059         }
4060
4061         /* No need to invalidate - it was non-present before */
4062         update_mmu_cache(vma, vmf->address, vmf->pte);
4063 unlock:
4064         pte_unmap_unlock(vmf->pte, vmf->ptl);
4065 out:
4066         if (si)
4067                 put_swap_device(si);
4068         return ret;
4069 out_nomap:
4070         pte_unmap_unlock(vmf->pte, vmf->ptl);
4071 out_page:
4072         folio_unlock(folio);
4073 out_release:
4074         folio_put(folio);
4075         if (folio != swapcache && swapcache) {
4076                 folio_unlock(swapcache);
4077                 folio_put(swapcache);
4078         }
4079         if (si)
4080                 put_swap_device(si);
4081         return ret;
4082 }
4083
4084 /*
4085  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4086  * but allow concurrent faults), and pte mapped but not yet locked.
4087  * We return with mmap_lock still held, but pte unmapped and unlocked.
4088  */
4089 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4090 {
4091         struct vm_area_struct *vma = vmf->vma;
4092         struct page *page;
4093         vm_fault_t ret = 0;
4094         pte_t entry;
4095
4096         /* File mapping without ->vm_ops ? */
4097         if (vma->vm_flags & VM_SHARED)
4098                 return VM_FAULT_SIGBUS;
4099
4100         /*
4101          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4102          * pte_offset_map() on pmds where a huge pmd might be created
4103          * from a different thread.
4104          *
4105          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4106          * parallel threads are excluded by other means.
4107          *
4108          * Here we only have mmap_read_lock(mm).
4109          */
4110         if (pte_alloc(vma->vm_mm, vmf->pmd))
4111                 return VM_FAULT_OOM;
4112
4113         /* See comment in handle_pte_fault() */
4114         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4115                 return 0;
4116
4117         /* Use the zero-page for reads */
4118         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4119                         !mm_forbids_zeropage(vma->vm_mm)) {
4120                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4121                                                 vma->vm_page_prot));
4122                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4123                                 vmf->address, &vmf->ptl);
4124                 if (!pte_none(*vmf->pte)) {
4125                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4126                         goto unlock;
4127                 }
4128                 ret = check_stable_address_space(vma->vm_mm);
4129                 if (ret)
4130                         goto unlock;
4131                 /* Deliver the page fault to userland, check inside PT lock */
4132                 if (userfaultfd_missing(vma)) {
4133                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4134                         return handle_userfault(vmf, VM_UFFD_MISSING);
4135                 }
4136                 goto setpte;
4137         }
4138
4139         /* Allocate our own private page. */
4140         if (unlikely(anon_vma_prepare(vma)))
4141                 goto oom;
4142         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4143         if (!page)
4144                 goto oom;
4145
4146         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4147                 goto oom_free_page;
4148         cgroup_throttle_swaprate(page, GFP_KERNEL);
4149
4150         /*
4151          * The memory barrier inside __SetPageUptodate makes sure that
4152          * preceding stores to the page contents become visible before
4153          * the set_pte_at() write.
4154          */
4155         __SetPageUptodate(page);
4156
4157         entry = mk_pte(page, vma->vm_page_prot);
4158         entry = pte_sw_mkyoung(entry);
4159         if (vma->vm_flags & VM_WRITE)
4160                 entry = pte_mkwrite(pte_mkdirty(entry));
4161
4162         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4163                         &vmf->ptl);
4164         if (!pte_none(*vmf->pte)) {
4165                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4166                 goto release;
4167         }
4168
4169         ret = check_stable_address_space(vma->vm_mm);
4170         if (ret)
4171                 goto release;
4172
4173         /* Deliver the page fault to userland, check inside PT lock */
4174         if (userfaultfd_missing(vma)) {
4175                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4176                 put_page(page);
4177                 return handle_userfault(vmf, VM_UFFD_MISSING);
4178         }
4179
4180         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4181         page_add_new_anon_rmap(page, vma, vmf->address);
4182         lru_cache_add_inactive_or_unevictable(page, vma);
4183 setpte:
4184         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4185
4186         /* No need to invalidate - it was non-present before */
4187         update_mmu_cache(vma, vmf->address, vmf->pte);
4188 unlock:
4189         pte_unmap_unlock(vmf->pte, vmf->ptl);
4190         return ret;
4191 release:
4192         put_page(page);
4193         goto unlock;
4194 oom_free_page:
4195         put_page(page);
4196 oom:
4197         return VM_FAULT_OOM;
4198 }
4199
4200 /*
4201  * The mmap_lock must have been held on entry, and may have been
4202  * released depending on flags and vma->vm_ops->fault() return value.
4203  * See filemap_fault() and __lock_page_retry().
4204  */
4205 static vm_fault_t __do_fault(struct vm_fault *vmf)
4206 {
4207         struct vm_area_struct *vma = vmf->vma;
4208         vm_fault_t ret;
4209
4210         /*
4211          * Preallocate pte before we take page_lock because this might lead to
4212          * deadlocks for memcg reclaim which waits for pages under writeback:
4213          *                              lock_page(A)
4214          *                              SetPageWriteback(A)
4215          *                              unlock_page(A)
4216          * lock_page(B)
4217          *                              lock_page(B)
4218          * pte_alloc_one
4219          *   shrink_page_list
4220          *     wait_on_page_writeback(A)
4221          *                              SetPageWriteback(B)
4222          *                              unlock_page(B)
4223          *                              # flush A, B to clear the writeback
4224          */
4225         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4226                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4227                 if (!vmf->prealloc_pte)
4228                         return VM_FAULT_OOM;
4229         }
4230
4231         ret = vma->vm_ops->fault(vmf);
4232         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4233                             VM_FAULT_DONE_COW)))
4234                 return ret;
4235
4236         if (unlikely(PageHWPoison(vmf->page))) {
4237                 struct page *page = vmf->page;
4238                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4239                 if (ret & VM_FAULT_LOCKED) {
4240                         if (page_mapped(page))
4241                                 unmap_mapping_pages(page_mapping(page),
4242                                                     page->index, 1, false);
4243                         /* Retry if a clean page was removed from the cache. */
4244                         if (invalidate_inode_page(page))
4245                                 poisonret = VM_FAULT_NOPAGE;
4246                         unlock_page(page);
4247                 }
4248                 put_page(page);
4249                 vmf->page = NULL;
4250                 return poisonret;
4251         }
4252
4253         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4254                 lock_page(vmf->page);
4255         else
4256                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4257
4258         return ret;
4259 }
4260
4261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 static void deposit_prealloc_pte(struct vm_fault *vmf)
4263 {
4264         struct vm_area_struct *vma = vmf->vma;
4265
4266         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4267         /*
4268          * We are going to consume the prealloc table,
4269          * count that as nr_ptes.
4270          */
4271         mm_inc_nr_ptes(vma->vm_mm);
4272         vmf->prealloc_pte = NULL;
4273 }
4274
4275 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4276 {
4277         struct vm_area_struct *vma = vmf->vma;
4278         bool write = vmf->flags & FAULT_FLAG_WRITE;
4279         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4280         pmd_t entry;
4281         int i;
4282         vm_fault_t ret = VM_FAULT_FALLBACK;
4283
4284         if (!transhuge_vma_suitable(vma, haddr))
4285                 return ret;
4286
4287         page = compound_head(page);
4288         if (compound_order(page) != HPAGE_PMD_ORDER)
4289                 return ret;
4290
4291         /*
4292          * Just backoff if any subpage of a THP is corrupted otherwise
4293          * the corrupted page may mapped by PMD silently to escape the
4294          * check.  This kind of THP just can be PTE mapped.  Access to
4295          * the corrupted subpage should trigger SIGBUS as expected.
4296          */
4297         if (unlikely(PageHasHWPoisoned(page)))
4298                 return ret;
4299
4300         /*
4301          * Archs like ppc64 need additional space to store information
4302          * related to pte entry. Use the preallocated table for that.
4303          */
4304         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4305                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4306                 if (!vmf->prealloc_pte)
4307                         return VM_FAULT_OOM;
4308         }
4309
4310         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4311         if (unlikely(!pmd_none(*vmf->pmd)))
4312                 goto out;
4313
4314         for (i = 0; i < HPAGE_PMD_NR; i++)
4315                 flush_icache_page(vma, page + i);
4316
4317         entry = mk_huge_pmd(page, vma->vm_page_prot);
4318         if (write)
4319                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4320
4321         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4322         page_add_file_rmap(page, vma, true);
4323
4324         /*
4325          * deposit and withdraw with pmd lock held
4326          */
4327         if (arch_needs_pgtable_deposit())
4328                 deposit_prealloc_pte(vmf);
4329
4330         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4331
4332         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4333
4334         /* fault is handled */
4335         ret = 0;
4336         count_vm_event(THP_FILE_MAPPED);
4337 out:
4338         spin_unlock(vmf->ptl);
4339         return ret;
4340 }
4341 #else
4342 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4343 {
4344         return VM_FAULT_FALLBACK;
4345 }
4346 #endif
4347
4348 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4349 {
4350         struct vm_area_struct *vma = vmf->vma;
4351         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4352         bool write = vmf->flags & FAULT_FLAG_WRITE;
4353         bool prefault = vmf->address != addr;
4354         pte_t entry;
4355
4356         flush_icache_page(vma, page);
4357         entry = mk_pte(page, vma->vm_page_prot);
4358
4359         if (prefault && arch_wants_old_prefaulted_pte())
4360                 entry = pte_mkold(entry);
4361         else
4362                 entry = pte_sw_mkyoung(entry);
4363
4364         if (write)
4365                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4366         if (unlikely(uffd_wp))
4367                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4368         /* copy-on-write page */
4369         if (write && !(vma->vm_flags & VM_SHARED)) {
4370                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4371                 page_add_new_anon_rmap(page, vma, addr);
4372                 lru_cache_add_inactive_or_unevictable(page, vma);
4373         } else {
4374                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4375                 page_add_file_rmap(page, vma, false);
4376         }
4377         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4378 }
4379
4380 static bool vmf_pte_changed(struct vm_fault *vmf)
4381 {
4382         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4383                 return !pte_same(*vmf->pte, vmf->orig_pte);
4384
4385         return !pte_none(*vmf->pte);
4386 }
4387
4388 /**
4389  * finish_fault - finish page fault once we have prepared the page to fault
4390  *
4391  * @vmf: structure describing the fault
4392  *
4393  * This function handles all that is needed to finish a page fault once the
4394  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4395  * given page, adds reverse page mapping, handles memcg charges and LRU
4396  * addition.
4397  *
4398  * The function expects the page to be locked and on success it consumes a
4399  * reference of a page being mapped (for the PTE which maps it).
4400  *
4401  * Return: %0 on success, %VM_FAULT_ code in case of error.
4402  */
4403 vm_fault_t finish_fault(struct vm_fault *vmf)
4404 {
4405         struct vm_area_struct *vma = vmf->vma;
4406         struct page *page;
4407         vm_fault_t ret;
4408
4409         /* Did we COW the page? */
4410         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4411                 page = vmf->cow_page;
4412         else
4413                 page = vmf->page;
4414
4415         /*
4416          * check even for read faults because we might have lost our CoWed
4417          * page
4418          */
4419         if (!(vma->vm_flags & VM_SHARED)) {
4420                 ret = check_stable_address_space(vma->vm_mm);
4421                 if (ret)
4422                         return ret;
4423         }
4424
4425         if (pmd_none(*vmf->pmd)) {
4426                 if (PageTransCompound(page)) {
4427                         ret = do_set_pmd(vmf, page);
4428                         if (ret != VM_FAULT_FALLBACK)
4429                                 return ret;
4430                 }
4431
4432                 if (vmf->prealloc_pte)
4433                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4434                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4435                         return VM_FAULT_OOM;
4436         }
4437
4438         /*
4439          * See comment in handle_pte_fault() for how this scenario happens, we
4440          * need to return NOPAGE so that we drop this page.
4441          */
4442         if (pmd_devmap_trans_unstable(vmf->pmd))
4443                 return VM_FAULT_NOPAGE;
4444
4445         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4446                                       vmf->address, &vmf->ptl);
4447
4448         /* Re-check under ptl */
4449         if (likely(!vmf_pte_changed(vmf))) {
4450                 do_set_pte(vmf, page, vmf->address);
4451
4452                 /* no need to invalidate: a not-present page won't be cached */
4453                 update_mmu_cache(vma, vmf->address, vmf->pte);
4454
4455                 ret = 0;
4456         } else {
4457                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4458                 ret = VM_FAULT_NOPAGE;
4459         }
4460
4461         pte_unmap_unlock(vmf->pte, vmf->ptl);
4462         return ret;
4463 }
4464
4465 static unsigned long fault_around_bytes __read_mostly =
4466         rounddown_pow_of_two(65536);
4467
4468 #ifdef CONFIG_DEBUG_FS
4469 static int fault_around_bytes_get(void *data, u64 *val)
4470 {
4471         *val = fault_around_bytes;
4472         return 0;
4473 }
4474
4475 /*
4476  * fault_around_bytes must be rounded down to the nearest page order as it's
4477  * what do_fault_around() expects to see.
4478  */
4479 static int fault_around_bytes_set(void *data, u64 val)
4480 {
4481         if (val / PAGE_SIZE > PTRS_PER_PTE)
4482                 return -EINVAL;
4483         if (val > PAGE_SIZE)
4484                 fault_around_bytes = rounddown_pow_of_two(val);
4485         else
4486                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4487         return 0;
4488 }
4489 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4490                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4491
4492 static int __init fault_around_debugfs(void)
4493 {
4494         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4495                                    &fault_around_bytes_fops);
4496         return 0;
4497 }
4498 late_initcall(fault_around_debugfs);
4499 #endif
4500
4501 /*
4502  * do_fault_around() tries to map few pages around the fault address. The hope
4503  * is that the pages will be needed soon and this will lower the number of
4504  * faults to handle.
4505  *
4506  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4507  * not ready to be mapped: not up-to-date, locked, etc.
4508  *
4509  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4510  * only once.
4511  *
4512  * fault_around_bytes defines how many bytes we'll try to map.
4513  * do_fault_around() expects it to be set to a power of two less than or equal
4514  * to PTRS_PER_PTE.
4515  *
4516  * The virtual address of the area that we map is naturally aligned to
4517  * fault_around_bytes rounded down to the machine page size
4518  * (and therefore to page order).  This way it's easier to guarantee
4519  * that we don't cross page table boundaries.
4520  */
4521 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4522 {
4523         unsigned long address = vmf->address, nr_pages, mask;
4524         pgoff_t start_pgoff = vmf->pgoff;
4525         pgoff_t end_pgoff;
4526         int off;
4527
4528         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4529         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4530
4531         address = max(address & mask, vmf->vma->vm_start);
4532         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4533         start_pgoff -= off;
4534
4535         /*
4536          *  end_pgoff is either the end of the page table, the end of
4537          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4538          */
4539         end_pgoff = start_pgoff -
4540                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4541                 PTRS_PER_PTE - 1;
4542         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4543                         start_pgoff + nr_pages - 1);
4544
4545         if (pmd_none(*vmf->pmd)) {
4546                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4547                 if (!vmf->prealloc_pte)
4548                         return VM_FAULT_OOM;
4549         }
4550
4551         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4552 }
4553
4554 /* Return true if we should do read fault-around, false otherwise */
4555 static inline bool should_fault_around(struct vm_fault *vmf)
4556 {
4557         /* No ->map_pages?  No way to fault around... */
4558         if (!vmf->vma->vm_ops->map_pages)
4559                 return false;
4560
4561         if (uffd_disable_fault_around(vmf->vma))
4562                 return false;
4563
4564         return fault_around_bytes >> PAGE_SHIFT > 1;
4565 }
4566
4567 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4568 {
4569         vm_fault_t ret = 0;
4570
4571         /*
4572          * Let's call ->map_pages() first and use ->fault() as fallback
4573          * if page by the offset is not ready to be mapped (cold cache or
4574          * something).
4575          */
4576         if (should_fault_around(vmf)) {
4577                 ret = do_fault_around(vmf);
4578                 if (ret)
4579                         return ret;
4580         }
4581
4582         ret = __do_fault(vmf);
4583         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4584                 return ret;
4585
4586         ret |= finish_fault(vmf);
4587         unlock_page(vmf->page);
4588         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4589                 put_page(vmf->page);
4590         return ret;
4591 }
4592
4593 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4594 {
4595         struct vm_area_struct *vma = vmf->vma;
4596         vm_fault_t ret;
4597
4598         if (unlikely(anon_vma_prepare(vma)))
4599                 return VM_FAULT_OOM;
4600
4601         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4602         if (!vmf->cow_page)
4603                 return VM_FAULT_OOM;
4604
4605         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4606                                 GFP_KERNEL)) {
4607                 put_page(vmf->cow_page);
4608                 return VM_FAULT_OOM;
4609         }
4610         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4611
4612         ret = __do_fault(vmf);
4613         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4614                 goto uncharge_out;
4615         if (ret & VM_FAULT_DONE_COW)
4616                 return ret;
4617
4618         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4619         __SetPageUptodate(vmf->cow_page);
4620
4621         ret |= finish_fault(vmf);
4622         unlock_page(vmf->page);
4623         put_page(vmf->page);
4624         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4625                 goto uncharge_out;
4626         return ret;
4627 uncharge_out:
4628         put_page(vmf->cow_page);
4629         return ret;
4630 }
4631
4632 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4633 {
4634         struct vm_area_struct *vma = vmf->vma;
4635         vm_fault_t ret, tmp;
4636
4637         ret = __do_fault(vmf);
4638         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4639                 return ret;
4640
4641         /*
4642          * Check if the backing address space wants to know that the page is
4643          * about to become writable
4644          */
4645         if (vma->vm_ops->page_mkwrite) {
4646                 unlock_page(vmf->page);
4647                 tmp = do_page_mkwrite(vmf);
4648                 if (unlikely(!tmp ||
4649                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4650                         put_page(vmf->page);
4651                         return tmp;
4652                 }
4653         }
4654
4655         ret |= finish_fault(vmf);
4656         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4657                                         VM_FAULT_RETRY))) {
4658                 unlock_page(vmf->page);
4659                 put_page(vmf->page);
4660                 return ret;
4661         }
4662
4663         ret |= fault_dirty_shared_page(vmf);
4664         return ret;
4665 }
4666
4667 /*
4668  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4669  * but allow concurrent faults).
4670  * The mmap_lock may have been released depending on flags and our
4671  * return value.  See filemap_fault() and __folio_lock_or_retry().
4672  * If mmap_lock is released, vma may become invalid (for example
4673  * by other thread calling munmap()).
4674  */
4675 static vm_fault_t do_fault(struct vm_fault *vmf)
4676 {
4677         struct vm_area_struct *vma = vmf->vma;
4678         struct mm_struct *vm_mm = vma->vm_mm;
4679         vm_fault_t ret;
4680
4681         /*
4682          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4683          */
4684         if (!vma->vm_ops->fault) {
4685                 /*
4686                  * If we find a migration pmd entry or a none pmd entry, which
4687                  * should never happen, return SIGBUS
4688                  */
4689                 if (unlikely(!pmd_present(*vmf->pmd)))
4690                         ret = VM_FAULT_SIGBUS;
4691                 else {
4692                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4693                                                        vmf->pmd,
4694                                                        vmf->address,
4695                                                        &vmf->ptl);
4696                         /*
4697                          * Make sure this is not a temporary clearing of pte
4698                          * by holding ptl and checking again. A R/M/W update
4699                          * of pte involves: take ptl, clearing the pte so that
4700                          * we don't have concurrent modification by hardware
4701                          * followed by an update.
4702                          */
4703                         if (unlikely(pte_none(*vmf->pte)))
4704                                 ret = VM_FAULT_SIGBUS;
4705                         else
4706                                 ret = VM_FAULT_NOPAGE;
4707
4708                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4709                 }
4710         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4711                 ret = do_read_fault(vmf);
4712         else if (!(vma->vm_flags & VM_SHARED))
4713                 ret = do_cow_fault(vmf);
4714         else
4715                 ret = do_shared_fault(vmf);
4716
4717         /* preallocated pagetable is unused: free it */
4718         if (vmf->prealloc_pte) {
4719                 pte_free(vm_mm, vmf->prealloc_pte);
4720                 vmf->prealloc_pte = NULL;
4721         }
4722         return ret;
4723 }
4724
4725 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4726                       unsigned long addr, int page_nid, int *flags)
4727 {
4728         get_page(page);
4729
4730         count_vm_numa_event(NUMA_HINT_FAULTS);
4731         if (page_nid == numa_node_id()) {
4732                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4733                 *flags |= TNF_FAULT_LOCAL;
4734         }
4735
4736         return mpol_misplaced(page, vma, addr);
4737 }
4738
4739 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4740 {
4741         struct vm_area_struct *vma = vmf->vma;
4742         struct page *page = NULL;
4743         int page_nid = NUMA_NO_NODE;
4744         int last_cpupid;
4745         int target_nid;
4746         pte_t pte, old_pte;
4747         bool was_writable = pte_savedwrite(vmf->orig_pte);
4748         int flags = 0;
4749
4750         /*
4751          * The "pte" at this point cannot be used safely without
4752          * validation through pte_unmap_same(). It's of NUMA type but
4753          * the pfn may be screwed if the read is non atomic.
4754          */
4755         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4756         spin_lock(vmf->ptl);
4757         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4758                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4759                 goto out;
4760         }
4761
4762         /* Get the normal PTE  */
4763         old_pte = ptep_get(vmf->pte);
4764         pte = pte_modify(old_pte, vma->vm_page_prot);
4765
4766         page = vm_normal_page(vma, vmf->address, pte);
4767         if (!page || is_zone_device_page(page))
4768                 goto out_map;
4769
4770         /* TODO: handle PTE-mapped THP */
4771         if (PageCompound(page))
4772                 goto out_map;
4773
4774         /*
4775          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4776          * much anyway since they can be in shared cache state. This misses
4777          * the case where a mapping is writable but the process never writes
4778          * to it but pte_write gets cleared during protection updates and
4779          * pte_dirty has unpredictable behaviour between PTE scan updates,
4780          * background writeback, dirty balancing and application behaviour.
4781          */
4782         if (!was_writable)
4783                 flags |= TNF_NO_GROUP;
4784
4785         /*
4786          * Flag if the page is shared between multiple address spaces. This
4787          * is later used when determining whether to group tasks together
4788          */
4789         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4790                 flags |= TNF_SHARED;
4791
4792         page_nid = page_to_nid(page);
4793         /*
4794          * For memory tiering mode, cpupid of slow memory page is used
4795          * to record page access time.  So use default value.
4796          */
4797         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4798             !node_is_toptier(page_nid))
4799                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4800         else
4801                 last_cpupid = page_cpupid_last(page);
4802         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4803                         &flags);
4804         if (target_nid == NUMA_NO_NODE) {
4805                 put_page(page);
4806                 goto out_map;
4807         }
4808         pte_unmap_unlock(vmf->pte, vmf->ptl);
4809
4810         /* Migrate to the requested node */
4811         if (migrate_misplaced_page(page, vma, target_nid)) {
4812                 page_nid = target_nid;
4813                 flags |= TNF_MIGRATED;
4814         } else {
4815                 flags |= TNF_MIGRATE_FAIL;
4816                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4817                 spin_lock(vmf->ptl);
4818                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4819                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4820                         goto out;
4821                 }
4822                 goto out_map;
4823         }
4824
4825 out:
4826         if (page_nid != NUMA_NO_NODE)
4827                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4828         return 0;
4829 out_map:
4830         /*
4831          * Make it present again, depending on how arch implements
4832          * non-accessible ptes, some can allow access by kernel mode.
4833          */
4834         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4835         pte = pte_modify(old_pte, vma->vm_page_prot);
4836         pte = pte_mkyoung(pte);
4837         if (was_writable)
4838                 pte = pte_mkwrite(pte);
4839         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4840         update_mmu_cache(vma, vmf->address, vmf->pte);
4841         pte_unmap_unlock(vmf->pte, vmf->ptl);
4842         goto out;
4843 }
4844
4845 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4846 {
4847         if (vma_is_anonymous(vmf->vma))
4848                 return do_huge_pmd_anonymous_page(vmf);
4849         if (vmf->vma->vm_ops->huge_fault)
4850                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4851         return VM_FAULT_FALLBACK;
4852 }
4853
4854 /* `inline' is required to avoid gcc 4.1.2 build error */
4855 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4856 {
4857         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4858
4859         if (vma_is_anonymous(vmf->vma)) {
4860                 if (likely(!unshare) &&
4861                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4862                         return handle_userfault(vmf, VM_UFFD_WP);
4863                 return do_huge_pmd_wp_page(vmf);
4864         }
4865         if (vmf->vma->vm_ops->huge_fault) {
4866                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4867
4868                 if (!(ret & VM_FAULT_FALLBACK))
4869                         return ret;
4870         }
4871
4872         /* COW or write-notify handled on pte level: split pmd. */
4873         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4874
4875         return VM_FAULT_FALLBACK;
4876 }
4877
4878 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4879 {
4880 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4881         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4882         /* No support for anonymous transparent PUD pages yet */
4883         if (vma_is_anonymous(vmf->vma))
4884                 return VM_FAULT_FALLBACK;
4885         if (vmf->vma->vm_ops->huge_fault)
4886                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4887 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4888         return VM_FAULT_FALLBACK;
4889 }
4890
4891 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4892 {
4893 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4894         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4895         /* No support for anonymous transparent PUD pages yet */
4896         if (vma_is_anonymous(vmf->vma))
4897                 goto split;
4898         if (vmf->vma->vm_ops->huge_fault) {
4899                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4900
4901                 if (!(ret & VM_FAULT_FALLBACK))
4902                         return ret;
4903         }
4904 split:
4905         /* COW or write-notify not handled on PUD level: split pud.*/
4906         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4908         return VM_FAULT_FALLBACK;
4909 }
4910
4911 /*
4912  * These routines also need to handle stuff like marking pages dirty
4913  * and/or accessed for architectures that don't do it in hardware (most
4914  * RISC architectures).  The early dirtying is also good on the i386.
4915  *
4916  * There is also a hook called "update_mmu_cache()" that architectures
4917  * with external mmu caches can use to update those (ie the Sparc or
4918  * PowerPC hashed page tables that act as extended TLBs).
4919  *
4920  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4921  * concurrent faults).
4922  *
4923  * The mmap_lock may have been released depending on flags and our return value.
4924  * See filemap_fault() and __folio_lock_or_retry().
4925  */
4926 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4927 {
4928         pte_t entry;
4929
4930         if (unlikely(pmd_none(*vmf->pmd))) {
4931                 /*
4932                  * Leave __pte_alloc() until later: because vm_ops->fault may
4933                  * want to allocate huge page, and if we expose page table
4934                  * for an instant, it will be difficult to retract from
4935                  * concurrent faults and from rmap lookups.
4936                  */
4937                 vmf->pte = NULL;
4938                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4939         } else {
4940                 /*
4941                  * If a huge pmd materialized under us just retry later.  Use
4942                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4943                  * of pmd_trans_huge() to ensure the pmd didn't become
4944                  * pmd_trans_huge under us and then back to pmd_none, as a
4945                  * result of MADV_DONTNEED running immediately after a huge pmd
4946                  * fault in a different thread of this mm, in turn leading to a
4947                  * misleading pmd_trans_huge() retval. All we have to ensure is
4948                  * that it is a regular pmd that we can walk with
4949                  * pte_offset_map() and we can do that through an atomic read
4950                  * in C, which is what pmd_trans_unstable() provides.
4951                  */
4952                 if (pmd_devmap_trans_unstable(vmf->pmd))
4953                         return 0;
4954                 /*
4955                  * A regular pmd is established and it can't morph into a huge
4956                  * pmd from under us anymore at this point because we hold the
4957                  * mmap_lock read mode and khugepaged takes it in write mode.
4958                  * So now it's safe to run pte_offset_map().
4959                  */
4960                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4961                 vmf->orig_pte = *vmf->pte;
4962                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4963
4964                 /*
4965                  * some architectures can have larger ptes than wordsize,
4966                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4967                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4968                  * accesses.  The code below just needs a consistent view
4969                  * for the ifs and we later double check anyway with the
4970                  * ptl lock held. So here a barrier will do.
4971                  */
4972                 barrier();
4973                 if (pte_none(vmf->orig_pte)) {
4974                         pte_unmap(vmf->pte);
4975                         vmf->pte = NULL;
4976                 }
4977         }
4978
4979         if (!vmf->pte) {
4980                 if (vma_is_anonymous(vmf->vma))
4981                         return do_anonymous_page(vmf);
4982                 else
4983                         return do_fault(vmf);
4984         }
4985
4986         if (!pte_present(vmf->orig_pte))
4987                 return do_swap_page(vmf);
4988
4989         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4990                 return do_numa_page(vmf);
4991
4992         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4993         spin_lock(vmf->ptl);
4994         entry = vmf->orig_pte;
4995         if (unlikely(!pte_same(*vmf->pte, entry))) {
4996                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4997                 goto unlock;
4998         }
4999         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5000                 if (!pte_write(entry))
5001                         return do_wp_page(vmf);
5002                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5003                         entry = pte_mkdirty(entry);
5004         }
5005         entry = pte_mkyoung(entry);
5006         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5007                                 vmf->flags & FAULT_FLAG_WRITE)) {
5008                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
5009         } else {
5010                 /* Skip spurious TLB flush for retried page fault */
5011                 if (vmf->flags & FAULT_FLAG_TRIED)
5012                         goto unlock;
5013                 /*
5014                  * This is needed only for protection faults but the arch code
5015                  * is not yet telling us if this is a protection fault or not.
5016                  * This still avoids useless tlb flushes for .text page faults
5017                  * with threads.
5018                  */
5019                 if (vmf->flags & FAULT_FLAG_WRITE)
5020                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
5021         }
5022 unlock:
5023         pte_unmap_unlock(vmf->pte, vmf->ptl);
5024         return 0;
5025 }
5026
5027 /*
5028  * By the time we get here, we already hold the mm semaphore
5029  *
5030  * The mmap_lock may have been released depending on flags and our
5031  * return value.  See filemap_fault() and __folio_lock_or_retry().
5032  */
5033 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5034                 unsigned long address, unsigned int flags)
5035 {
5036         struct vm_fault vmf = {
5037                 .vma = vma,
5038                 .address = address & PAGE_MASK,
5039                 .real_address = address,
5040                 .flags = flags,
5041                 .pgoff = linear_page_index(vma, address),
5042                 .gfp_mask = __get_fault_gfp_mask(vma),
5043         };
5044         struct mm_struct *mm = vma->vm_mm;
5045         unsigned long vm_flags = vma->vm_flags;
5046         pgd_t *pgd;
5047         p4d_t *p4d;
5048         vm_fault_t ret;
5049
5050         pgd = pgd_offset(mm, address);
5051         p4d = p4d_alloc(mm, pgd, address);
5052         if (!p4d)
5053                 return VM_FAULT_OOM;
5054
5055         vmf.pud = pud_alloc(mm, p4d, address);
5056         if (!vmf.pud)
5057                 return VM_FAULT_OOM;
5058 retry_pud:
5059         if (pud_none(*vmf.pud) &&
5060             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5061                 ret = create_huge_pud(&vmf);
5062                 if (!(ret & VM_FAULT_FALLBACK))
5063                         return ret;
5064         } else {
5065                 pud_t orig_pud = *vmf.pud;
5066
5067                 barrier();
5068                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5069
5070                         /*
5071                          * TODO once we support anonymous PUDs: NUMA case and
5072                          * FAULT_FLAG_UNSHARE handling.
5073                          */
5074                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5075                                 ret = wp_huge_pud(&vmf, orig_pud);
5076                                 if (!(ret & VM_FAULT_FALLBACK))
5077                                         return ret;
5078                         } else {
5079                                 huge_pud_set_accessed(&vmf, orig_pud);
5080                                 return 0;
5081                         }
5082                 }
5083         }
5084
5085         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5086         if (!vmf.pmd)
5087                 return VM_FAULT_OOM;
5088
5089         /* Huge pud page fault raced with pmd_alloc? */
5090         if (pud_trans_unstable(vmf.pud))
5091                 goto retry_pud;
5092
5093         if (pmd_none(*vmf.pmd) &&
5094             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5095                 ret = create_huge_pmd(&vmf);
5096                 if (!(ret & VM_FAULT_FALLBACK))
5097                         return ret;
5098         } else {
5099                 vmf.orig_pmd = *vmf.pmd;
5100
5101                 barrier();
5102                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5103                         VM_BUG_ON(thp_migration_supported() &&
5104                                           !is_pmd_migration_entry(vmf.orig_pmd));
5105                         if (is_pmd_migration_entry(vmf.orig_pmd))
5106                                 pmd_migration_entry_wait(mm, vmf.pmd);
5107                         return 0;
5108                 }
5109                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5110                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5111                                 return do_huge_pmd_numa_page(&vmf);
5112
5113                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5114                             !pmd_write(vmf.orig_pmd)) {
5115                                 ret = wp_huge_pmd(&vmf);
5116                                 if (!(ret & VM_FAULT_FALLBACK))
5117                                         return ret;
5118                         } else {
5119                                 huge_pmd_set_accessed(&vmf);
5120                                 return 0;
5121                         }
5122                 }
5123         }
5124
5125         return handle_pte_fault(&vmf);
5126 }
5127
5128 /**
5129  * mm_account_fault - Do page fault accounting
5130  *
5131  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5132  *        of perf event counters, but we'll still do the per-task accounting to
5133  *        the task who triggered this page fault.
5134  * @address: the faulted address.
5135  * @flags: the fault flags.
5136  * @ret: the fault retcode.
5137  *
5138  * This will take care of most of the page fault accounting.  Meanwhile, it
5139  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5140  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5141  * still be in per-arch page fault handlers at the entry of page fault.
5142  */
5143 static inline void mm_account_fault(struct pt_regs *regs,
5144                                     unsigned long address, unsigned int flags,
5145                                     vm_fault_t ret)
5146 {
5147         bool major;
5148
5149         /*
5150          * We don't do accounting for some specific faults:
5151          *
5152          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5153          *   includes arch_vma_access_permitted() failing before reaching here.
5154          *   So this is not a "this many hardware page faults" counter.  We
5155          *   should use the hw profiling for that.
5156          *
5157          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5158          *   once they're completed.
5159          */
5160         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5161                 return;
5162
5163         /*
5164          * We define the fault as a major fault when the final successful fault
5165          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5166          * handle it immediately previously).
5167          */
5168         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5169
5170         if (major)
5171                 current->maj_flt++;
5172         else
5173                 current->min_flt++;
5174
5175         /*
5176          * If the fault is done for GUP, regs will be NULL.  We only do the
5177          * accounting for the per thread fault counters who triggered the
5178          * fault, and we skip the perf event updates.
5179          */
5180         if (!regs)
5181                 return;
5182
5183         if (major)
5184                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5185         else
5186                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5187 }
5188
5189 #ifdef CONFIG_LRU_GEN
5190 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5191 {
5192         /* the LRU algorithm doesn't apply to sequential or random reads */
5193         current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5194 }
5195
5196 static void lru_gen_exit_fault(void)
5197 {
5198         current->in_lru_fault = false;
5199 }
5200 #else
5201 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5202 {
5203 }
5204
5205 static void lru_gen_exit_fault(void)
5206 {
5207 }
5208 #endif /* CONFIG_LRU_GEN */
5209
5210 /*
5211  * By the time we get here, we already hold the mm semaphore
5212  *
5213  * The mmap_lock may have been released depending on flags and our
5214  * return value.  See filemap_fault() and __folio_lock_or_retry().
5215  */
5216 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5217                            unsigned int flags, struct pt_regs *regs)
5218 {
5219         vm_fault_t ret;
5220
5221         __set_current_state(TASK_RUNNING);
5222
5223         count_vm_event(PGFAULT);
5224         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5225
5226         /* do counter updates before entering really critical section. */
5227         check_sync_rss_stat(current);
5228
5229         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5230                                             flags & FAULT_FLAG_INSTRUCTION,
5231                                             flags & FAULT_FLAG_REMOTE))
5232                 return VM_FAULT_SIGSEGV;
5233
5234         /*
5235          * Enable the memcg OOM handling for faults triggered in user
5236          * space.  Kernel faults are handled more gracefully.
5237          */
5238         if (flags & FAULT_FLAG_USER)
5239                 mem_cgroup_enter_user_fault();
5240
5241         lru_gen_enter_fault(vma);
5242
5243         if (unlikely(is_vm_hugetlb_page(vma)))
5244                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5245         else
5246                 ret = __handle_mm_fault(vma, address, flags);
5247
5248         lru_gen_exit_fault();
5249
5250         if (flags & FAULT_FLAG_USER) {
5251                 mem_cgroup_exit_user_fault();
5252                 /*
5253                  * The task may have entered a memcg OOM situation but
5254                  * if the allocation error was handled gracefully (no
5255                  * VM_FAULT_OOM), there is no need to kill anything.
5256                  * Just clean up the OOM state peacefully.
5257                  */
5258                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5259                         mem_cgroup_oom_synchronize(false);
5260         }
5261
5262         mm_account_fault(regs, address, flags, ret);
5263
5264         return ret;
5265 }
5266 EXPORT_SYMBOL_GPL(handle_mm_fault);
5267
5268 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5269 #include <linux/extable.h>
5270
5271 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5272 {
5273         /* Even if this succeeds, make it clear we *might* have slept */
5274         if (likely(mmap_read_trylock(mm))) {
5275                 might_sleep();
5276                 return true;
5277         }
5278
5279         if (regs && !user_mode(regs)) {
5280                 unsigned long ip = instruction_pointer(regs);
5281                 if (!search_exception_tables(ip))
5282                         return false;
5283         }
5284
5285         return !mmap_read_lock_killable(mm);
5286 }
5287
5288 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5289 {
5290         /*
5291          * We don't have this operation yet.
5292          *
5293          * It should be easy enough to do: it's basically a
5294          *    atomic_long_try_cmpxchg_acquire()
5295          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5296          * it also needs the proper lockdep magic etc.
5297          */
5298         return false;
5299 }
5300
5301 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5302 {
5303         mmap_read_unlock(mm);
5304         if (regs && !user_mode(regs)) {
5305                 unsigned long ip = instruction_pointer(regs);
5306                 if (!search_exception_tables(ip))
5307                         return false;
5308         }
5309         return !mmap_write_lock_killable(mm);
5310 }
5311
5312 /*
5313  * Helper for page fault handling.
5314  *
5315  * This is kind of equivalend to "mmap_read_lock()" followed
5316  * by "find_extend_vma()", except it's a lot more careful about
5317  * the locking (and will drop the lock on failure).
5318  *
5319  * For example, if we have a kernel bug that causes a page
5320  * fault, we don't want to just use mmap_read_lock() to get
5321  * the mm lock, because that would deadlock if the bug were
5322  * to happen while we're holding the mm lock for writing.
5323  *
5324  * So this checks the exception tables on kernel faults in
5325  * order to only do this all for instructions that are actually
5326  * expected to fault.
5327  *
5328  * We can also actually take the mm lock for writing if we
5329  * need to extend the vma, which helps the VM layer a lot.
5330  */
5331 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5332                         unsigned long addr, struct pt_regs *regs)
5333 {
5334         struct vm_area_struct *vma;
5335
5336         if (!get_mmap_lock_carefully(mm, regs))
5337                 return NULL;
5338
5339         vma = find_vma(mm, addr);
5340         if (likely(vma && (vma->vm_start <= addr)))
5341                 return vma;
5342
5343         /*
5344          * Well, dang. We might still be successful, but only
5345          * if we can extend a vma to do so.
5346          */
5347         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5348                 mmap_read_unlock(mm);
5349                 return NULL;
5350         }
5351
5352         /*
5353          * We can try to upgrade the mmap lock atomically,
5354          * in which case we can continue to use the vma
5355          * we already looked up.
5356          *
5357          * Otherwise we'll have to drop the mmap lock and
5358          * re-take it, and also look up the vma again,
5359          * re-checking it.
5360          */
5361         if (!mmap_upgrade_trylock(mm)) {
5362                 if (!upgrade_mmap_lock_carefully(mm, regs))
5363                         return NULL;
5364
5365                 vma = find_vma(mm, addr);
5366                 if (!vma)
5367                         goto fail;
5368                 if (vma->vm_start <= addr)
5369                         goto success;
5370                 if (!(vma->vm_flags & VM_GROWSDOWN))
5371                         goto fail;
5372         }
5373
5374         if (expand_stack_locked(vma, addr))
5375                 goto fail;
5376
5377 success:
5378         mmap_write_downgrade(mm);
5379         return vma;
5380
5381 fail:
5382         mmap_write_unlock(mm);
5383         return NULL;
5384 }
5385 #endif
5386
5387 #ifndef __PAGETABLE_P4D_FOLDED
5388 /*
5389  * Allocate p4d page table.
5390  * We've already handled the fast-path in-line.
5391  */
5392 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5393 {
5394         p4d_t *new = p4d_alloc_one(mm, address);
5395         if (!new)
5396                 return -ENOMEM;
5397
5398         spin_lock(&mm->page_table_lock);
5399         if (pgd_present(*pgd)) {        /* Another has populated it */
5400                 p4d_free(mm, new);
5401         } else {
5402                 smp_wmb(); /* See comment in pmd_install() */
5403                 pgd_populate(mm, pgd, new);
5404         }
5405         spin_unlock(&mm->page_table_lock);
5406         return 0;
5407 }
5408 #endif /* __PAGETABLE_P4D_FOLDED */
5409
5410 #ifndef __PAGETABLE_PUD_FOLDED
5411 /*
5412  * Allocate page upper directory.
5413  * We've already handled the fast-path in-line.
5414  */
5415 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5416 {
5417         pud_t *new = pud_alloc_one(mm, address);
5418         if (!new)
5419                 return -ENOMEM;
5420
5421         spin_lock(&mm->page_table_lock);
5422         if (!p4d_present(*p4d)) {
5423                 mm_inc_nr_puds(mm);
5424                 smp_wmb(); /* See comment in pmd_install() */
5425                 p4d_populate(mm, p4d, new);
5426         } else  /* Another has populated it */
5427                 pud_free(mm, new);
5428         spin_unlock(&mm->page_table_lock);
5429         return 0;
5430 }
5431 #endif /* __PAGETABLE_PUD_FOLDED */
5432
5433 #ifndef __PAGETABLE_PMD_FOLDED
5434 /*
5435  * Allocate page middle directory.
5436  * We've already handled the fast-path in-line.
5437  */
5438 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5439 {
5440         spinlock_t *ptl;
5441         pmd_t *new = pmd_alloc_one(mm, address);
5442         if (!new)
5443                 return -ENOMEM;
5444
5445         ptl = pud_lock(mm, pud);
5446         if (!pud_present(*pud)) {
5447                 mm_inc_nr_pmds(mm);
5448                 smp_wmb(); /* See comment in pmd_install() */
5449                 pud_populate(mm, pud, new);
5450         } else {        /* Another has populated it */
5451                 pmd_free(mm, new);
5452         }
5453         spin_unlock(ptl);
5454         return 0;
5455 }
5456 #endif /* __PAGETABLE_PMD_FOLDED */
5457
5458 /**
5459  * follow_pte - look up PTE at a user virtual address
5460  * @mm: the mm_struct of the target address space
5461  * @address: user virtual address
5462  * @ptepp: location to store found PTE
5463  * @ptlp: location to store the lock for the PTE
5464  *
5465  * On a successful return, the pointer to the PTE is stored in @ptepp;
5466  * the corresponding lock is taken and its location is stored in @ptlp.
5467  * The contents of the PTE are only stable until @ptlp is released;
5468  * any further use, if any, must be protected against invalidation
5469  * with MMU notifiers.
5470  *
5471  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5472  * should be taken for read.
5473  *
5474  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5475  * it is not a good general-purpose API.
5476  *
5477  * Return: zero on success, -ve otherwise.
5478  */
5479 int follow_pte(struct mm_struct *mm, unsigned long address,
5480                pte_t **ptepp, spinlock_t **ptlp)
5481 {
5482         pgd_t *pgd;
5483         p4d_t *p4d;
5484         pud_t *pud;
5485         pmd_t *pmd;
5486         pte_t *ptep;
5487
5488         pgd = pgd_offset(mm, address);
5489         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5490                 goto out;
5491
5492         p4d = p4d_offset(pgd, address);
5493         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5494                 goto out;
5495
5496         pud = pud_offset(p4d, address);
5497         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5498                 goto out;
5499
5500         pmd = pmd_offset(pud, address);
5501         VM_BUG_ON(pmd_trans_huge(*pmd));
5502
5503         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5504                 goto out;
5505
5506         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5507         if (!pte_present(*ptep))
5508                 goto unlock;
5509         *ptepp = ptep;
5510         return 0;
5511 unlock:
5512         pte_unmap_unlock(ptep, *ptlp);
5513 out:
5514         return -EINVAL;
5515 }
5516 EXPORT_SYMBOL_GPL(follow_pte);
5517
5518 /**
5519  * follow_pfn - look up PFN at a user virtual address
5520  * @vma: memory mapping
5521  * @address: user virtual address
5522  * @pfn: location to store found PFN
5523  *
5524  * Only IO mappings and raw PFN mappings are allowed.
5525  *
5526  * This function does not allow the caller to read the permissions
5527  * of the PTE.  Do not use it.
5528  *
5529  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5530  */
5531 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5532         unsigned long *pfn)
5533 {
5534         int ret = -EINVAL;
5535         spinlock_t *ptl;
5536         pte_t *ptep;
5537
5538         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5539                 return ret;
5540
5541         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5542         if (ret)
5543                 return ret;
5544         *pfn = pte_pfn(*ptep);
5545         pte_unmap_unlock(ptep, ptl);
5546         return 0;
5547 }
5548 EXPORT_SYMBOL(follow_pfn);
5549
5550 #ifdef CONFIG_HAVE_IOREMAP_PROT
5551 int follow_phys(struct vm_area_struct *vma,
5552                 unsigned long address, unsigned int flags,
5553                 unsigned long *prot, resource_size_t *phys)
5554 {
5555         int ret = -EINVAL;
5556         pte_t *ptep, pte;
5557         spinlock_t *ptl;
5558
5559         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5560                 goto out;
5561
5562         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5563                 goto out;
5564         pte = *ptep;
5565
5566         if ((flags & FOLL_WRITE) && !pte_write(pte))
5567                 goto unlock;
5568
5569         *prot = pgprot_val(pte_pgprot(pte));
5570         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5571
5572         ret = 0;
5573 unlock:
5574         pte_unmap_unlock(ptep, ptl);
5575 out:
5576         return ret;
5577 }
5578
5579 /**
5580  * generic_access_phys - generic implementation for iomem mmap access
5581  * @vma: the vma to access
5582  * @addr: userspace address, not relative offset within @vma
5583  * @buf: buffer to read/write
5584  * @len: length of transfer
5585  * @write: set to FOLL_WRITE when writing, otherwise reading
5586  *
5587  * This is a generic implementation for &vm_operations_struct.access for an
5588  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5589  * not page based.
5590  */
5591 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5592                         void *buf, int len, int write)
5593 {
5594         resource_size_t phys_addr;
5595         unsigned long prot = 0;
5596         void __iomem *maddr;
5597         pte_t *ptep, pte;
5598         spinlock_t *ptl;
5599         int offset = offset_in_page(addr);
5600         int ret = -EINVAL;
5601
5602         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5603                 return -EINVAL;
5604
5605 retry:
5606         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5607                 return -EINVAL;
5608         pte = *ptep;
5609         pte_unmap_unlock(ptep, ptl);
5610
5611         prot = pgprot_val(pte_pgprot(pte));
5612         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5613
5614         if ((write & FOLL_WRITE) && !pte_write(pte))
5615                 return -EINVAL;
5616
5617         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5618         if (!maddr)
5619                 return -ENOMEM;
5620
5621         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5622                 goto out_unmap;
5623
5624         if (!pte_same(pte, *ptep)) {
5625                 pte_unmap_unlock(ptep, ptl);
5626                 iounmap(maddr);
5627
5628                 goto retry;
5629         }
5630
5631         if (write)
5632                 memcpy_toio(maddr + offset, buf, len);
5633         else
5634                 memcpy_fromio(buf, maddr + offset, len);
5635         ret = len;
5636         pte_unmap_unlock(ptep, ptl);
5637 out_unmap:
5638         iounmap(maddr);
5639
5640         return ret;
5641 }
5642 EXPORT_SYMBOL_GPL(generic_access_phys);
5643 #endif
5644
5645 /*
5646  * Access another process' address space as given in mm.
5647  */
5648 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5649                        int len, unsigned int gup_flags)
5650 {
5651         struct vm_area_struct *vma;
5652         void *old_buf = buf;
5653         int write = gup_flags & FOLL_WRITE;
5654
5655         if (mmap_read_lock_killable(mm))
5656                 return 0;
5657
5658         /* We might need to expand the stack to access it */
5659         vma = vma_lookup(mm, addr);
5660         if (!vma) {
5661                 vma = expand_stack(mm, addr);
5662                 if (!vma)
5663                         return 0;
5664         }
5665
5666         /* ignore errors, just check how much was successfully transferred */
5667         while (len) {
5668                 int bytes, ret, offset;
5669                 void *maddr;
5670                 struct page *page = NULL;
5671
5672                 ret = get_user_pages_remote(mm, addr, 1,
5673                                 gup_flags, &page, &vma, NULL);
5674                 if (ret <= 0) {
5675 #ifndef CONFIG_HAVE_IOREMAP_PROT
5676                         break;
5677 #else
5678                         /*
5679                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5680                          * we can access using slightly different code.
5681                          */
5682                         vma = vma_lookup(mm, addr);
5683                         if (!vma)
5684                                 break;
5685                         if (vma->vm_ops && vma->vm_ops->access)
5686                                 ret = vma->vm_ops->access(vma, addr, buf,
5687                                                           len, write);
5688                         if (ret <= 0)
5689                                 break;
5690                         bytes = ret;
5691 #endif
5692                 } else {
5693                         bytes = len;
5694                         offset = addr & (PAGE_SIZE-1);
5695                         if (bytes > PAGE_SIZE-offset)
5696                                 bytes = PAGE_SIZE-offset;
5697
5698                         maddr = kmap(page);
5699                         if (write) {
5700                                 copy_to_user_page(vma, page, addr,
5701                                                   maddr + offset, buf, bytes);
5702                                 set_page_dirty_lock(page);
5703                         } else {
5704                                 copy_from_user_page(vma, page, addr,
5705                                                     buf, maddr + offset, bytes);
5706                         }
5707                         kunmap(page);
5708                         put_page(page);
5709                 }
5710                 len -= bytes;
5711                 buf += bytes;
5712                 addr += bytes;
5713         }
5714         mmap_read_unlock(mm);
5715
5716         return buf - old_buf;
5717 }
5718
5719 /**
5720  * access_remote_vm - access another process' address space
5721  * @mm:         the mm_struct of the target address space
5722  * @addr:       start address to access
5723  * @buf:        source or destination buffer
5724  * @len:        number of bytes to transfer
5725  * @gup_flags:  flags modifying lookup behaviour
5726  *
5727  * The caller must hold a reference on @mm.
5728  *
5729  * Return: number of bytes copied from source to destination.
5730  */
5731 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5732                 void *buf, int len, unsigned int gup_flags)
5733 {
5734         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5735 }
5736
5737 /*
5738  * Access another process' address space.
5739  * Source/target buffer must be kernel space,
5740  * Do not walk the page table directly, use get_user_pages
5741  */
5742 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5743                 void *buf, int len, unsigned int gup_flags)
5744 {
5745         struct mm_struct *mm;
5746         int ret;
5747
5748         mm = get_task_mm(tsk);
5749         if (!mm)
5750                 return 0;
5751
5752         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5753
5754         mmput(mm);
5755
5756         return ret;
5757 }
5758 EXPORT_SYMBOL_GPL(access_process_vm);
5759
5760 /*
5761  * Print the name of a VMA.
5762  */
5763 void print_vma_addr(char *prefix, unsigned long ip)
5764 {
5765         struct mm_struct *mm = current->mm;
5766         struct vm_area_struct *vma;
5767
5768         /*
5769          * we might be running from an atomic context so we cannot sleep
5770          */
5771         if (!mmap_read_trylock(mm))
5772                 return;
5773
5774         vma = find_vma(mm, ip);
5775         if (vma && vma->vm_file) {
5776                 struct file *f = vma->vm_file;
5777                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5778                 if (buf) {
5779                         char *p;
5780
5781                         p = file_path(f, buf, PAGE_SIZE);
5782                         if (IS_ERR(p))
5783                                 p = "?";
5784                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5785                                         vma->vm_start,
5786                                         vma->vm_end - vma->vm_start);
5787                         free_page((unsigned long)buf);
5788                 }
5789         }
5790         mmap_read_unlock(mm);
5791 }
5792
5793 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5794 void __might_fault(const char *file, int line)
5795 {
5796         if (pagefault_disabled())
5797                 return;
5798         __might_sleep(file, line);
5799 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5800         if (current->mm)
5801                 might_lock_read(&current->mm->mmap_lock);
5802 #endif
5803 }
5804 EXPORT_SYMBOL(__might_fault);
5805 #endif
5806
5807 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5808 /*
5809  * Process all subpages of the specified huge page with the specified
5810  * operation.  The target subpage will be processed last to keep its
5811  * cache lines hot.
5812  */
5813 static inline void process_huge_page(
5814         unsigned long addr_hint, unsigned int pages_per_huge_page,
5815         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5816         void *arg)
5817 {
5818         int i, n, base, l;
5819         unsigned long addr = addr_hint &
5820                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5821
5822         /* Process target subpage last to keep its cache lines hot */
5823         might_sleep();
5824         n = (addr_hint - addr) / PAGE_SIZE;
5825         if (2 * n <= pages_per_huge_page) {
5826                 /* If target subpage in first half of huge page */
5827                 base = 0;
5828                 l = n;
5829                 /* Process subpages at the end of huge page */
5830                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5831                         cond_resched();
5832                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5833                 }
5834         } else {
5835                 /* If target subpage in second half of huge page */
5836                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5837                 l = pages_per_huge_page - n;
5838                 /* Process subpages at the begin of huge page */
5839                 for (i = 0; i < base; i++) {
5840                         cond_resched();
5841                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5842                 }
5843         }
5844         /*
5845          * Process remaining subpages in left-right-left-right pattern
5846          * towards the target subpage
5847          */
5848         for (i = 0; i < l; i++) {
5849                 int left_idx = base + i;
5850                 int right_idx = base + 2 * l - 1 - i;
5851
5852                 cond_resched();
5853                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5854                 cond_resched();
5855                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5856         }
5857 }
5858
5859 static void clear_gigantic_page(struct page *page,
5860                                 unsigned long addr,
5861                                 unsigned int pages_per_huge_page)
5862 {
5863         int i;
5864         struct page *p;
5865
5866         might_sleep();
5867         for (i = 0; i < pages_per_huge_page; i++) {
5868                 p = nth_page(page, i);
5869                 cond_resched();
5870                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5871         }
5872 }
5873
5874 static void clear_subpage(unsigned long addr, int idx, void *arg)
5875 {
5876         struct page *page = arg;
5877
5878         clear_user_highpage(page + idx, addr);
5879 }
5880
5881 void clear_huge_page(struct page *page,
5882                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5883 {
5884         unsigned long addr = addr_hint &
5885                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5886
5887         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5888                 clear_gigantic_page(page, addr, pages_per_huge_page);
5889                 return;
5890         }
5891
5892         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5893 }
5894
5895 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5896                                     unsigned long addr,
5897                                     struct vm_area_struct *vma,
5898                                     unsigned int pages_per_huge_page)
5899 {
5900         int i;
5901         struct page *dst_base = dst;
5902         struct page *src_base = src;
5903
5904         for (i = 0; i < pages_per_huge_page; i++) {
5905                 dst = nth_page(dst_base, i);
5906                 src = nth_page(src_base, i);
5907
5908                 cond_resched();
5909                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5910         }
5911 }
5912
5913 struct copy_subpage_arg {
5914         struct page *dst;
5915         struct page *src;
5916         struct vm_area_struct *vma;
5917 };
5918
5919 static void copy_subpage(unsigned long addr, int idx, void *arg)
5920 {
5921         struct copy_subpage_arg *copy_arg = arg;
5922
5923         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5924                            addr, copy_arg->vma);
5925 }
5926
5927 void copy_user_huge_page(struct page *dst, struct page *src,
5928                          unsigned long addr_hint, struct vm_area_struct *vma,
5929                          unsigned int pages_per_huge_page)
5930 {
5931         unsigned long addr = addr_hint &
5932                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5933         struct copy_subpage_arg arg = {
5934                 .dst = dst,
5935                 .src = src,
5936                 .vma = vma,
5937         };
5938
5939         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5940                 copy_user_gigantic_page(dst, src, addr, vma,
5941                                         pages_per_huge_page);
5942                 return;
5943         }
5944
5945         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5946 }
5947
5948 long copy_huge_page_from_user(struct page *dst_page,
5949                                 const void __user *usr_src,
5950                                 unsigned int pages_per_huge_page,
5951                                 bool allow_pagefault)
5952 {
5953         void *page_kaddr;
5954         unsigned long i, rc = 0;
5955         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5956         struct page *subpage;
5957
5958         for (i = 0; i < pages_per_huge_page; i++) {
5959                 subpage = nth_page(dst_page, i);
5960                 if (allow_pagefault)
5961                         page_kaddr = kmap(subpage);
5962                 else
5963                         page_kaddr = kmap_atomic(subpage);
5964                 rc = copy_from_user(page_kaddr,
5965                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5966                 if (allow_pagefault)
5967                         kunmap(subpage);
5968                 else
5969                         kunmap_atomic(page_kaddr);
5970
5971                 ret_val -= (PAGE_SIZE - rc);
5972                 if (rc)
5973                         break;
5974
5975                 flush_dcache_page(subpage);
5976
5977                 cond_resched();
5978         }
5979         return ret_val;
5980 }
5981 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5982
5983 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5984
5985 static struct kmem_cache *page_ptl_cachep;
5986
5987 void __init ptlock_cache_init(void)
5988 {
5989         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5990                         SLAB_PANIC, NULL);
5991 }
5992
5993 bool ptlock_alloc(struct page *page)
5994 {
5995         spinlock_t *ptl;
5996
5997         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5998         if (!ptl)
5999                 return false;
6000         page->ptl = ptl;
6001         return true;
6002 }
6003
6004 void ptlock_free(struct page *page)
6005 {
6006         kmem_cache_free(page_ptl_cachep, page->ptl);
6007 }
6008 #endif