1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
116 EXPORT_SYMBOL(high_memory);
119 * Randomize the address space (stacks, mmaps, brk, etc.).
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
143 static int __init disable_randmaps(char *s)
145 randomize_va_space = 0;
148 __setup("norandmaps", disable_randmaps);
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
153 unsigned long highest_memmap_pfn __read_mostly;
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
158 static int __init init_zero_pfn(void)
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
163 early_initcall(init_zero_pfn);
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
167 trace_rss_stat(mm, member, count);
170 #if defined(SPLIT_RSS_COUNTING)
172 void sync_mm_rss(struct mm_struct *mm)
176 for (i = 0; i < NR_MM_COUNTERS; i++) {
177 if (current->rss_stat.count[i]) {
178 add_mm_counter(mm, i, current->rss_stat.count[i]);
179 current->rss_stat.count[i] = 0;
182 current->rss_stat.events = 0;
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
187 struct task_struct *task = current;
189 if (likely(task->mm == mm))
190 task->rss_stat.count[member] += val;
192 add_mm_counter(mm, member, val);
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH (64)
199 static void check_sync_rss_stat(struct task_struct *task)
201 if (unlikely(task != current))
203 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204 sync_mm_rss(task->mm);
206 #else /* SPLIT_RSS_COUNTING */
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
211 static void check_sync_rss_stat(struct task_struct *task)
215 #endif /* SPLIT_RSS_COUNTING */
218 * Note: this doesn't free the actual pages themselves. That
219 * has been handled earlier when unmapping all the memory regions.
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
224 pgtable_t token = pmd_pgtable(*pmd);
226 pte_free_tlb(tlb, token, addr);
227 mm_dec_nr_ptes(tlb->mm);
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
239 pmd = pmd_offset(pud, addr);
241 next = pmd_addr_end(addr, end);
242 if (pmd_none_or_clear_bad(pmd))
244 free_pte_range(tlb, pmd, addr);
245 } while (pmd++, addr = next, addr != end);
255 if (end - 1 > ceiling - 1)
258 pmd = pmd_offset(pud, start);
260 pmd_free_tlb(tlb, pmd, start);
261 mm_dec_nr_pmds(tlb->mm);
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
273 pud = pud_offset(p4d, addr);
275 next = pud_addr_end(addr, end);
276 if (pud_none_or_clear_bad(pud))
278 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279 } while (pud++, addr = next, addr != end);
289 if (end - 1 > ceiling - 1)
292 pud = pud_offset(p4d, start);
294 pud_free_tlb(tlb, pud, start);
295 mm_dec_nr_puds(tlb->mm);
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299 unsigned long addr, unsigned long end,
300 unsigned long floor, unsigned long ceiling)
307 p4d = p4d_offset(pgd, addr);
309 next = p4d_addr_end(addr, end);
310 if (p4d_none_or_clear_bad(p4d))
312 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313 } while (p4d++, addr = next, addr != end);
319 ceiling &= PGDIR_MASK;
323 if (end - 1 > ceiling - 1)
326 p4d = p4d_offset(pgd, start);
328 p4d_free_tlb(tlb, p4d, start);
332 * This function frees user-level page tables of a process.
334 void free_pgd_range(struct mmu_gather *tlb,
335 unsigned long addr, unsigned long end,
336 unsigned long floor, unsigned long ceiling)
342 * The next few lines have given us lots of grief...
344 * Why are we testing PMD* at this top level? Because often
345 * there will be no work to do at all, and we'd prefer not to
346 * go all the way down to the bottom just to discover that.
348 * Why all these "- 1"s? Because 0 represents both the bottom
349 * of the address space and the top of it (using -1 for the
350 * top wouldn't help much: the masks would do the wrong thing).
351 * The rule is that addr 0 and floor 0 refer to the bottom of
352 * the address space, but end 0 and ceiling 0 refer to the top
353 * Comparisons need to use "end - 1" and "ceiling - 1" (though
354 * that end 0 case should be mythical).
356 * Wherever addr is brought up or ceiling brought down, we must
357 * be careful to reject "the opposite 0" before it confuses the
358 * subsequent tests. But what about where end is brought down
359 * by PMD_SIZE below? no, end can't go down to 0 there.
361 * Whereas we round start (addr) and ceiling down, by different
362 * masks at different levels, in order to test whether a table
363 * now has no other vmas using it, so can be freed, we don't
364 * bother to round floor or end up - the tests don't need that.
378 if (end - 1 > ceiling - 1)
383 * We add page table cache pages with PAGE_SIZE,
384 * (see pte_free_tlb()), flush the tlb if we need
386 tlb_change_page_size(tlb, PAGE_SIZE);
387 pgd = pgd_offset(tlb->mm, addr);
389 next = pgd_addr_end(addr, end);
390 if (pgd_none_or_clear_bad(pgd))
392 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393 } while (pgd++, addr = next, addr != end);
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397 struct vm_area_struct *vma, unsigned long floor,
398 unsigned long ceiling)
400 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
403 unsigned long addr = vma->vm_start;
404 struct vm_area_struct *next;
407 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408 * be 0. This will underflow and is okay.
410 next = mas_find(&mas, ceiling - 1);
413 * Hide vma from rmap and truncate_pagecache before freeing
416 unlink_anon_vmas(vma);
417 unlink_file_vma(vma);
419 if (is_vm_hugetlb_page(vma)) {
420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 floor, next ? next->vm_start : ceiling);
424 * Optimization: gather nearby vmas into one call down
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 && !is_vm_hugetlb_page(next)) {
429 next = mas_find(&mas, ceiling - 1);
430 unlink_anon_vmas(vma);
431 unlink_file_vma(vma);
433 free_pgd_range(tlb, addr, vma->vm_end,
434 floor, next ? next->vm_start : ceiling);
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
442 spinlock_t *ptl = pmd_lock(mm, pmd);
444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 pmd_populate(mm, pmd, *pte);
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
468 pgtable_t new = pte_alloc_one(mm);
472 pmd_install(mm, pmd, &new);
478 int __pte_alloc_kernel(pmd_t *pmd)
480 pte_t *new = pte_alloc_one_kernel(&init_mm);
484 spin_lock(&init_mm.page_table_lock);
485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
486 smp_wmb(); /* See comment in pmd_install() */
487 pmd_populate_kernel(&init_mm, pmd, new);
490 spin_unlock(&init_mm.page_table_lock);
492 pte_free_kernel(&init_mm, new);
496 static inline void init_rss_vec(int *rss)
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
505 if (current->mm == mm)
507 for (i = 0; i < NR_MM_COUNTERS; i++)
509 add_mm_counter(mm, i, rss[i]);
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
517 * The calling function must still handle the error.
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
549 resume = jiffies + 60 * HZ;
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
558 dump_page(page, "bad pte");
559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 mapping ? mapping->a_ops->read_folio : NULL);
567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
593 * And for normal mappings this is false.
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
615 unsigned long pfn = pte_pfn(pte);
617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 if (likely(!pte_special(pte)))
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
624 if (is_zero_pfn(pfn))
628 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 * and will have refcounts incremented on their struct pages
630 * when they are inserted into PTEs, thus they are safe to
631 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
637 print_bad_pte(vma, addr, pte, NULL);
641 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
643 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 if (vma->vm_flags & VM_MIXEDMAP) {
650 off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 if (pfn == vma->vm_pgoff + off)
653 if (!is_cow_mapping(vma->vm_flags))
658 if (is_zero_pfn(pfn))
662 if (unlikely(pfn > highest_memmap_pfn)) {
663 print_bad_pte(vma, addr, pte, NULL);
668 * NOTE! We still have PageReserved() pages in the page tables.
669 * eg. VDSO mappings can cause them to exist.
672 return pfn_to_page(pfn);
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
679 unsigned long pfn = pmd_pfn(pmd);
682 * There is no pmd_special() but there may be special pmds, e.g.
683 * in a direct-access (dax) mapping, so let's just replicate the
684 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
686 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 if (vma->vm_flags & VM_MIXEDMAP) {
693 off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 if (pfn == vma->vm_pgoff + off)
696 if (!is_cow_mapping(vma->vm_flags))
703 if (is_huge_zero_pmd(pmd))
705 if (unlikely(pfn > highest_memmap_pfn))
709 * NOTE! We still have PageReserved() pages in the page tables.
710 * eg. VDSO mappings can cause them to exist.
713 return pfn_to_page(pfn);
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 struct page *page, unsigned long address,
724 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 if (pte_swp_soft_dirty(*ptep))
726 pte = pte_mksoft_dirty(pte);
728 entry = pte_to_swp_entry(*ptep);
729 if (pte_swp_uffd_wp(*ptep))
730 pte = pte_mkuffd_wp(pte);
731 else if (is_writable_device_exclusive_entry(entry))
732 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
734 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
737 * No need to take a page reference as one was already
738 * created when the swap entry was made.
741 page_add_anon_rmap(page, vma, address, RMAP_NONE);
744 * Currently device exclusive access only supports anonymous
745 * memory so the entry shouldn't point to a filebacked page.
749 set_pte_at(vma->vm_mm, address, ptep, pte);
752 * No need to invalidate - it was non-present before. However
753 * secondary CPUs may have mappings that need invalidating.
755 update_mmu_cache(vma, address, ptep);
759 * Tries to restore an exclusive pte if the page lock can be acquired without
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
766 swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 struct page *page = pfn_swap_entry_to_page(entry);
769 if (trylock_page(page)) {
770 restore_exclusive_pte(vma, page, addr, src_pte);
779 * copy one vm_area from one task to the other. Assumes the page tables
780 * already present in the new task to be cleared in the whole range
781 * covered by this vma.
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
789 unsigned long vm_flags = dst_vma->vm_flags;
790 pte_t pte = *src_pte;
792 swp_entry_t entry = pte_to_swp_entry(pte);
794 if (likely(!non_swap_entry(entry))) {
795 if (swap_duplicate(entry) < 0)
798 /* make sure dst_mm is on swapoff's mmlist. */
799 if (unlikely(list_empty(&dst_mm->mmlist))) {
800 spin_lock(&mmlist_lock);
801 if (list_empty(&dst_mm->mmlist))
802 list_add(&dst_mm->mmlist,
804 spin_unlock(&mmlist_lock);
806 /* Mark the swap entry as shared. */
807 if (pte_swp_exclusive(*src_pte)) {
808 pte = pte_swp_clear_exclusive(*src_pte);
809 set_pte_at(src_mm, addr, src_pte, pte);
812 } else if (is_migration_entry(entry)) {
813 page = pfn_swap_entry_to_page(entry);
815 rss[mm_counter(page)]++;
817 if (!is_readable_migration_entry(entry) &&
818 is_cow_mapping(vm_flags)) {
820 * COW mappings require pages in both parent and child
821 * to be set to read. A previously exclusive entry is
824 entry = make_readable_migration_entry(
826 pte = swp_entry_to_pte(entry);
827 if (pte_swp_soft_dirty(*src_pte))
828 pte = pte_swp_mksoft_dirty(pte);
829 if (pte_swp_uffd_wp(*src_pte))
830 pte = pte_swp_mkuffd_wp(pte);
831 set_pte_at(src_mm, addr, src_pte, pte);
833 } else if (is_device_private_entry(entry)) {
834 page = pfn_swap_entry_to_page(entry);
837 * Update rss count even for unaddressable pages, as
838 * they should treated just like normal pages in this
841 * We will likely want to have some new rss counters
842 * for unaddressable pages, at some point. But for now
843 * keep things as they are.
846 rss[mm_counter(page)]++;
847 /* Cannot fail as these pages cannot get pinned. */
848 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
851 * We do not preserve soft-dirty information, because so
852 * far, checkpoint/restore is the only feature that
853 * requires that. And checkpoint/restore does not work
854 * when a device driver is involved (you cannot easily
855 * save and restore device driver state).
857 if (is_writable_device_private_entry(entry) &&
858 is_cow_mapping(vm_flags)) {
859 entry = make_readable_device_private_entry(
861 pte = swp_entry_to_pte(entry);
862 if (pte_swp_uffd_wp(*src_pte))
863 pte = pte_swp_mkuffd_wp(pte);
864 set_pte_at(src_mm, addr, src_pte, pte);
866 } else if (is_device_exclusive_entry(entry)) {
868 * Make device exclusive entries present by restoring the
869 * original entry then copying as for a present pte. Device
870 * exclusive entries currently only support private writable
871 * (ie. COW) mappings.
873 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
877 } else if (is_pte_marker_entry(entry)) {
878 if (userfaultfd_wp(dst_vma))
879 set_pte_at(dst_mm, addr, dst_pte, pte);
882 if (!userfaultfd_wp(dst_vma))
883 pte = pte_swp_clear_uffd_wp(pte);
884 set_pte_at(dst_mm, addr, dst_pte, pte);
889 * Copy a present and normal page.
891 * NOTE! The usual case is that this isn't required;
892 * instead, the caller can just increase the page refcount
893 * and re-use the pte the traditional way.
895 * And if we need a pre-allocated page but don't yet have
896 * one, return a negative error to let the preallocation
897 * code know so that it can do so outside the page table
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 struct page **prealloc, struct page *page)
905 struct page *new_page;
908 new_page = *prealloc;
913 * We have a prealloc page, all good! Take it
914 * over and copy the page & arm it.
917 copy_user_highpage(new_page, page, addr, src_vma);
918 __SetPageUptodate(new_page);
919 page_add_new_anon_rmap(new_page, dst_vma, addr);
920 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
921 rss[mm_counter(new_page)]++;
923 /* All done, just insert the new page copy in the child */
924 pte = mk_pte(new_page, dst_vma->vm_page_prot);
925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 if (userfaultfd_pte_wp(dst_vma, *src_pte))
927 /* Uffd-wp needs to be delivered to dest pte as well */
928 pte = pte_wrprotect(pte_mkuffd_wp(pte));
929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
935 * is required to copy this pte.
938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
939 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
940 struct page **prealloc)
942 struct mm_struct *src_mm = src_vma->vm_mm;
943 unsigned long vm_flags = src_vma->vm_flags;
944 pte_t pte = *src_pte;
947 page = vm_normal_page(src_vma, addr, pte);
948 if (page && PageAnon(page)) {
950 * If this page may have been pinned by the parent process,
951 * copy the page immediately for the child so that we'll always
952 * guarantee the pinned page won't be randomly replaced in the
956 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
957 /* Page maybe pinned, we have to copy. */
959 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
960 addr, rss, prealloc, page);
962 rss[mm_counter(page)]++;
965 page_dup_file_rmap(page, false);
966 rss[mm_counter(page)]++;
970 * If it's a COW mapping, write protect it both
971 * in the parent and the child
973 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
974 ptep_set_wrprotect(src_mm, addr, src_pte);
975 pte = pte_wrprotect(pte);
977 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
980 * If it's a shared mapping, mark it clean in
983 if (vm_flags & VM_SHARED)
984 pte = pte_mkclean(pte);
985 pte = pte_mkold(pte);
987 if (!userfaultfd_wp(dst_vma))
988 pte = pte_clear_uffd_wp(pte);
990 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
994 static inline struct page *
995 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
998 struct page *new_page;
1000 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1004 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1008 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1014 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1015 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1018 struct mm_struct *dst_mm = dst_vma->vm_mm;
1019 struct mm_struct *src_mm = src_vma->vm_mm;
1020 pte_t *orig_src_pte, *orig_dst_pte;
1021 pte_t *src_pte, *dst_pte;
1022 spinlock_t *src_ptl, *dst_ptl;
1023 int progress, ret = 0;
1024 int rss[NR_MM_COUNTERS];
1025 swp_entry_t entry = (swp_entry_t){0};
1026 struct page *prealloc = NULL;
1032 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 src_pte = pte_offset_map(src_pmd, addr);
1038 src_ptl = pte_lockptr(src_mm, src_pmd);
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1049 if (progress >= 32) {
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 if (pte_none(*src_pte)) {
1059 if (unlikely(!pte_present(*src_pte))) {
1060 ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 entry = pte_to_swp_entry(*src_pte);
1067 } else if (ret == -EBUSY) {
1075 * Device exclusive entry restored, continue by copying
1076 * the now present pte.
1078 WARN_ON_ONCE(ret != -ENOENT);
1080 /* copy_present_pte() will clear `*prealloc' if consumed */
1081 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1082 addr, rss, &prealloc);
1084 * If we need a pre-allocated page for this pte, drop the
1085 * locks, allocate, and try again.
1087 if (unlikely(ret == -EAGAIN))
1089 if (unlikely(prealloc)) {
1091 * pre-alloc page cannot be reused by next time so as
1092 * to strictly follow mempolicy (e.g., alloc_page_vma()
1093 * will allocate page according to address). This
1094 * could only happen if one pinned pte changed.
1100 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102 arch_leave_lazy_mmu_mode();
1103 spin_unlock(src_ptl);
1104 pte_unmap(orig_src_pte);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 } else if (ret == -EBUSY) {
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1126 /* We've captured and resolved the error. Reset, try again. */
1132 if (unlikely(prealloc))
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 src_pmd = pmd_offset(src_pud, addr);
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1165 if (pmd_none_or_clear_bad(src_pmd))
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 src_pud = pud_offset(src_p4d, addr);
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1202 if (pud_none_or_clear_bad(src_pud))
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 src_p4d = p4d_offset(src_pgd, addr);
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1249 if (userfaultfd_wp(dst_vma))
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 if (src_vma->anon_vma)
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1270 pgd_t *src_pgd, *dst_pgd;
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 struct mmu_notifier_range range;
1280 if (!vma_needs_copy(dst_vma, src_vma))
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1291 ret = track_pfn_copy(src_vma);
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1302 is_cow = is_cow_mapping(src_vma->vm_flags);
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 0, src_vma, src_mm, addr, end);
1307 mmu_notifier_invalidate_range_start(&range);
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1315 mmap_assert_write_locked(src_mm);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1334 raw_write_seqcount_end(&src_mm->write_protect_seq);
1335 mmu_notifier_invalidate_range_end(&range);
1340 /* Whether we should zap all COWed (private) pages too */
1341 static inline bool should_zap_cows(struct zap_details *details)
1343 /* By default, zap all pages */
1347 /* Or, we zap COWed pages only if the caller wants to */
1348 return details->even_cows;
1351 /* Decides whether we should zap this page with the page pointer specified */
1352 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 /* If we can make a decision without *page.. */
1355 if (should_zap_cows(details))
1358 /* E.g. the caller passes NULL for the case of a zero page */
1362 /* Otherwise we should only zap non-anon pages */
1363 return !PageAnon(page);
1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1371 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375 * This function makes sure that we'll replace the none pte with an uffd-wp
1376 * swap special pte marker when necessary. Must be with the pgtable lock held.
1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1380 unsigned long addr, pte_t *pte,
1381 struct zap_details *details, pte_t pteval)
1383 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1384 if (zap_drop_file_uffd_wp(details))
1387 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1391 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1392 struct vm_area_struct *vma, pmd_t *pmd,
1393 unsigned long addr, unsigned long end,
1394 struct zap_details *details)
1396 struct mm_struct *mm = tlb->mm;
1397 int force_flush = 0;
1398 int rss[NR_MM_COUNTERS];
1404 tlb_change_page_size(tlb, PAGE_SIZE);
1407 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 flush_tlb_batched_pending(mm);
1410 arch_enter_lazy_mmu_mode();
1415 if (pte_none(ptent))
1421 if (pte_present(ptent)) {
1422 page = vm_normal_page(vma, addr, ptent);
1423 if (unlikely(!should_zap_page(details, page)))
1425 ptent = ptep_get_and_clear_full(mm, addr, pte,
1427 tlb_remove_tlb_entry(tlb, pte, addr);
1428 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1430 if (unlikely(!page))
1433 if (!PageAnon(page)) {
1434 if (pte_dirty(ptent)) {
1436 set_page_dirty(page);
1438 if (pte_young(ptent) &&
1439 likely(!(vma->vm_flags & VM_SEQ_READ)))
1440 mark_page_accessed(page);
1442 rss[mm_counter(page)]--;
1443 page_remove_rmap(page, vma, false);
1444 if (unlikely(page_mapcount(page) < 0))
1445 print_bad_pte(vma, addr, ptent, page);
1446 if (unlikely(__tlb_remove_page(tlb, page))) {
1454 entry = pte_to_swp_entry(ptent);
1455 if (is_device_private_entry(entry) ||
1456 is_device_exclusive_entry(entry)) {
1457 page = pfn_swap_entry_to_page(entry);
1458 if (unlikely(!should_zap_page(details, page)))
1461 * Both device private/exclusive mappings should only
1462 * work with anonymous page so far, so we don't need to
1463 * consider uffd-wp bit when zap. For more information,
1464 * see zap_install_uffd_wp_if_needed().
1466 WARN_ON_ONCE(!vma_is_anonymous(vma));
1467 rss[mm_counter(page)]--;
1468 if (is_device_private_entry(entry))
1469 page_remove_rmap(page, vma, false);
1471 } else if (!non_swap_entry(entry)) {
1472 /* Genuine swap entry, hence a private anon page */
1473 if (!should_zap_cows(details))
1476 if (unlikely(!free_swap_and_cache(entry)))
1477 print_bad_pte(vma, addr, ptent, NULL);
1478 } else if (is_migration_entry(entry)) {
1479 page = pfn_swap_entry_to_page(entry);
1480 if (!should_zap_page(details, page))
1482 rss[mm_counter(page)]--;
1483 } else if (pte_marker_entry_uffd_wp(entry)) {
1484 /* Only drop the uffd-wp marker if explicitly requested */
1485 if (!zap_drop_file_uffd_wp(details))
1487 } else if (is_hwpoison_entry(entry) ||
1488 is_swapin_error_entry(entry)) {
1489 if (!should_zap_cows(details))
1492 /* We should have covered all the swap entry types */
1495 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1496 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1497 } while (pte++, addr += PAGE_SIZE, addr != end);
1499 add_mm_rss_vec(mm, rss);
1500 arch_leave_lazy_mmu_mode();
1502 /* Do the actual TLB flush before dropping ptl */
1504 tlb_flush_mmu_tlbonly(tlb);
1505 pte_unmap_unlock(start_pte, ptl);
1508 * If we forced a TLB flush (either due to running out of
1509 * batch buffers or because we needed to flush dirty TLB
1510 * entries before releasing the ptl), free the batched
1511 * memory too. Restart if we didn't do everything.
1526 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1527 struct vm_area_struct *vma, pud_t *pud,
1528 unsigned long addr, unsigned long end,
1529 struct zap_details *details)
1534 pmd = pmd_offset(pud, addr);
1536 next = pmd_addr_end(addr, end);
1537 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1538 if (next - addr != HPAGE_PMD_SIZE)
1539 __split_huge_pmd(vma, pmd, addr, false, NULL);
1540 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1543 } else if (details && details->single_folio &&
1544 folio_test_pmd_mappable(details->single_folio) &&
1545 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1546 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1548 * Take and drop THP pmd lock so that we cannot return
1549 * prematurely, while zap_huge_pmd() has cleared *pmd,
1550 * but not yet decremented compound_mapcount().
1556 * Here there can be other concurrent MADV_DONTNEED or
1557 * trans huge page faults running, and if the pmd is
1558 * none or trans huge it can change under us. This is
1559 * because MADV_DONTNEED holds the mmap_lock in read
1562 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1564 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1567 } while (pmd++, addr = next, addr != end);
1572 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1573 struct vm_area_struct *vma, p4d_t *p4d,
1574 unsigned long addr, unsigned long end,
1575 struct zap_details *details)
1580 pud = pud_offset(p4d, addr);
1582 next = pud_addr_end(addr, end);
1583 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1584 if (next - addr != HPAGE_PUD_SIZE) {
1585 mmap_assert_locked(tlb->mm);
1586 split_huge_pud(vma, pud, addr);
1587 } else if (zap_huge_pud(tlb, vma, pud, addr))
1591 if (pud_none_or_clear_bad(pud))
1593 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1596 } while (pud++, addr = next, addr != end);
1601 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1602 struct vm_area_struct *vma, pgd_t *pgd,
1603 unsigned long addr, unsigned long end,
1604 struct zap_details *details)
1609 p4d = p4d_offset(pgd, addr);
1611 next = p4d_addr_end(addr, end);
1612 if (p4d_none_or_clear_bad(p4d))
1614 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1615 } while (p4d++, addr = next, addr != end);
1620 void unmap_page_range(struct mmu_gather *tlb,
1621 struct vm_area_struct *vma,
1622 unsigned long addr, unsigned long end,
1623 struct zap_details *details)
1628 BUG_ON(addr >= end);
1629 tlb_start_vma(tlb, vma);
1630 pgd = pgd_offset(vma->vm_mm, addr);
1632 next = pgd_addr_end(addr, end);
1633 if (pgd_none_or_clear_bad(pgd))
1635 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1636 } while (pgd++, addr = next, addr != end);
1637 tlb_end_vma(tlb, vma);
1641 static void unmap_single_vma(struct mmu_gather *tlb,
1642 struct vm_area_struct *vma, unsigned long start_addr,
1643 unsigned long end_addr,
1644 struct zap_details *details)
1646 unsigned long start = max(vma->vm_start, start_addr);
1649 if (start >= vma->vm_end)
1651 end = min(vma->vm_end, end_addr);
1652 if (end <= vma->vm_start)
1656 uprobe_munmap(vma, start, end);
1658 if (unlikely(vma->vm_flags & VM_PFNMAP))
1659 untrack_pfn(vma, 0, 0);
1662 if (unlikely(is_vm_hugetlb_page(vma))) {
1664 * It is undesirable to test vma->vm_file as it
1665 * should be non-null for valid hugetlb area.
1666 * However, vm_file will be NULL in the error
1667 * cleanup path of mmap_region. When
1668 * hugetlbfs ->mmap method fails,
1669 * mmap_region() nullifies vma->vm_file
1670 * before calling this function to clean up.
1671 * Since no pte has actually been setup, it is
1672 * safe to do nothing in this case.
1675 zap_flags_t zap_flags = details ?
1676 details->zap_flags : 0;
1677 __unmap_hugepage_range_final(tlb, vma, start, end,
1681 unmap_page_range(tlb, vma, start, end, details);
1686 * unmap_vmas - unmap a range of memory covered by a list of vma's
1687 * @tlb: address of the caller's struct mmu_gather
1688 * @mt: the maple tree
1689 * @vma: the starting vma
1690 * @start_addr: virtual address at which to start unmapping
1691 * @end_addr: virtual address at which to end unmapping
1693 * Unmap all pages in the vma list.
1695 * Only addresses between `start' and `end' will be unmapped.
1697 * The VMA list must be sorted in ascending virtual address order.
1699 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1700 * range after unmap_vmas() returns. So the only responsibility here is to
1701 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1702 * drops the lock and schedules.
1704 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1705 struct vm_area_struct *vma, unsigned long start_addr,
1706 unsigned long end_addr)
1708 struct mmu_notifier_range range;
1709 struct zap_details details = {
1710 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1711 /* Careful - we need to zap private pages too! */
1714 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1716 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1717 start_addr, end_addr);
1718 mmu_notifier_invalidate_range_start(&range);
1720 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1721 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722 mmu_notifier_invalidate_range_end(&range);
1726 * zap_page_range - remove user pages in a given range
1727 * @vma: vm_area_struct holding the applicable pages
1728 * @start: starting address of pages to zap
1729 * @size: number of bytes to zap
1731 * Caller must protect the VMA list
1733 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1736 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1737 unsigned long end = start + size;
1738 struct mmu_notifier_range range;
1739 struct mmu_gather tlb;
1740 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1743 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1744 start, start + size);
1745 tlb_gather_mmu(&tlb, vma->vm_mm);
1746 update_hiwater_rss(vma->vm_mm);
1747 mmu_notifier_invalidate_range_start(&range);
1749 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1750 } while ((vma = mas_find(&mas, end - 1)) != NULL);
1751 mmu_notifier_invalidate_range_end(&range);
1752 tlb_finish_mmu(&tlb);
1756 * zap_page_range_single - remove user pages in a given range
1757 * @vma: vm_area_struct holding the applicable pages
1758 * @address: starting address of pages to zap
1759 * @size: number of bytes to zap
1760 * @details: details of shared cache invalidation
1762 * The range must fit into one VMA.
1764 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1765 unsigned long size, struct zap_details *details)
1767 const unsigned long end = address + size;
1768 struct mmu_notifier_range range;
1769 struct mmu_gather tlb;
1772 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1774 if (is_vm_hugetlb_page(vma))
1775 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1777 tlb_gather_mmu(&tlb, vma->vm_mm);
1778 update_hiwater_rss(vma->vm_mm);
1779 mmu_notifier_invalidate_range_start(&range);
1781 * unmap 'address-end' not 'range.start-range.end' as range
1782 * could have been expanded for hugetlb pmd sharing.
1784 unmap_single_vma(&tlb, vma, address, end, details);
1785 mmu_notifier_invalidate_range_end(&range);
1786 tlb_finish_mmu(&tlb);
1790 * zap_vma_ptes - remove ptes mapping the vma
1791 * @vma: vm_area_struct holding ptes to be zapped
1792 * @address: starting address of pages to zap
1793 * @size: number of bytes to zap
1795 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1797 * The entire address range must be fully contained within the vma.
1800 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1803 if (!range_in_vma(vma, address, address + size) ||
1804 !(vma->vm_flags & VM_PFNMAP))
1807 zap_page_range_single(vma, address, size, NULL);
1809 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1811 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1818 pgd = pgd_offset(mm, addr);
1819 p4d = p4d_alloc(mm, pgd, addr);
1822 pud = pud_alloc(mm, p4d, addr);
1825 pmd = pmd_alloc(mm, pud, addr);
1829 VM_BUG_ON(pmd_trans_huge(*pmd));
1833 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1836 pmd_t *pmd = walk_to_pmd(mm, addr);
1840 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1843 static int validate_page_before_insert(struct page *page)
1845 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1847 flush_dcache_page(page);
1851 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1852 unsigned long addr, struct page *page, pgprot_t prot)
1854 if (!pte_none(*pte))
1856 /* Ok, finally just insert the thing.. */
1858 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1859 page_add_file_rmap(page, vma, false);
1860 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1865 * This is the old fallback for page remapping.
1867 * For historical reasons, it only allows reserved pages. Only
1868 * old drivers should use this, and they needed to mark their
1869 * pages reserved for the old functions anyway.
1871 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1872 struct page *page, pgprot_t prot)
1878 retval = validate_page_before_insert(page);
1882 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1885 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886 pte_unmap_unlock(pte, ptl);
1892 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1893 unsigned long addr, struct page *page, pgprot_t prot)
1897 if (!page_count(page))
1899 err = validate_page_before_insert(page);
1902 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1905 /* insert_pages() amortizes the cost of spinlock operations
1906 * when inserting pages in a loop. Arch *must* define pte_index.
1908 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1909 struct page **pages, unsigned long *num, pgprot_t prot)
1912 pte_t *start_pte, *pte;
1913 spinlock_t *pte_lock;
1914 struct mm_struct *const mm = vma->vm_mm;
1915 unsigned long curr_page_idx = 0;
1916 unsigned long remaining_pages_total = *num;
1917 unsigned long pages_to_write_in_pmd;
1921 pmd = walk_to_pmd(mm, addr);
1925 pages_to_write_in_pmd = min_t(unsigned long,
1926 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1928 /* Allocate the PTE if necessary; takes PMD lock once only. */
1930 if (pte_alloc(mm, pmd))
1933 while (pages_to_write_in_pmd) {
1935 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1937 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1938 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1939 int err = insert_page_in_batch_locked(vma, pte,
1940 addr, pages[curr_page_idx], prot);
1941 if (unlikely(err)) {
1942 pte_unmap_unlock(start_pte, pte_lock);
1944 remaining_pages_total -= pte_idx;
1950 pte_unmap_unlock(start_pte, pte_lock);
1951 pages_to_write_in_pmd -= batch_size;
1952 remaining_pages_total -= batch_size;
1954 if (remaining_pages_total)
1958 *num = remaining_pages_total;
1961 #endif /* ifdef pte_index */
1964 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1965 * @vma: user vma to map to
1966 * @addr: target start user address of these pages
1967 * @pages: source kernel pages
1968 * @num: in: number of pages to map. out: number of pages that were *not*
1969 * mapped. (0 means all pages were successfully mapped).
1971 * Preferred over vm_insert_page() when inserting multiple pages.
1973 * In case of error, we may have mapped a subset of the provided
1974 * pages. It is the caller's responsibility to account for this case.
1976 * The same restrictions apply as in vm_insert_page().
1978 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1979 struct page **pages, unsigned long *num)
1982 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1984 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1986 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1987 BUG_ON(mmap_read_trylock(vma->vm_mm));
1988 BUG_ON(vma->vm_flags & VM_PFNMAP);
1989 vma->vm_flags |= VM_MIXEDMAP;
1991 /* Defer page refcount checking till we're about to map that page. */
1992 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1994 unsigned long idx = 0, pgcount = *num;
1997 for (; idx < pgcount; ++idx) {
1998 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2002 *num = pgcount - idx;
2004 #endif /* ifdef pte_index */
2006 EXPORT_SYMBOL(vm_insert_pages);
2009 * vm_insert_page - insert single page into user vma
2010 * @vma: user vma to map to
2011 * @addr: target user address of this page
2012 * @page: source kernel page
2014 * This allows drivers to insert individual pages they've allocated
2017 * The page has to be a nice clean _individual_ kernel allocation.
2018 * If you allocate a compound page, you need to have marked it as
2019 * such (__GFP_COMP), or manually just split the page up yourself
2020 * (see split_page()).
2022 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2023 * took an arbitrary page protection parameter. This doesn't allow
2024 * that. Your vma protection will have to be set up correctly, which
2025 * means that if you want a shared writable mapping, you'd better
2026 * ask for a shared writable mapping!
2028 * The page does not need to be reserved.
2030 * Usually this function is called from f_op->mmap() handler
2031 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2032 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2033 * function from other places, for example from page-fault handler.
2035 * Return: %0 on success, negative error code otherwise.
2037 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2040 if (addr < vma->vm_start || addr >= vma->vm_end)
2042 if (!page_count(page))
2044 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2045 BUG_ON(mmap_read_trylock(vma->vm_mm));
2046 BUG_ON(vma->vm_flags & VM_PFNMAP);
2047 vma->vm_flags |= VM_MIXEDMAP;
2049 return insert_page(vma, addr, page, vma->vm_page_prot);
2051 EXPORT_SYMBOL(vm_insert_page);
2054 * __vm_map_pages - maps range of kernel pages into user vma
2055 * @vma: user vma to map to
2056 * @pages: pointer to array of source kernel pages
2057 * @num: number of pages in page array
2058 * @offset: user's requested vm_pgoff
2060 * This allows drivers to map range of kernel pages into a user vma.
2062 * Return: 0 on success and error code otherwise.
2064 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2065 unsigned long num, unsigned long offset)
2067 unsigned long count = vma_pages(vma);
2068 unsigned long uaddr = vma->vm_start;
2071 /* Fail if the user requested offset is beyond the end of the object */
2075 /* Fail if the user requested size exceeds available object size */
2076 if (count > num - offset)
2079 for (i = 0; i < count; i++) {
2080 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2090 * vm_map_pages - maps range of kernel pages starts with non zero offset
2091 * @vma: user vma to map to
2092 * @pages: pointer to array of source kernel pages
2093 * @num: number of pages in page array
2095 * Maps an object consisting of @num pages, catering for the user's
2096 * requested vm_pgoff
2098 * If we fail to insert any page into the vma, the function will return
2099 * immediately leaving any previously inserted pages present. Callers
2100 * from the mmap handler may immediately return the error as their caller
2101 * will destroy the vma, removing any successfully inserted pages. Other
2102 * callers should make their own arrangements for calling unmap_region().
2104 * Context: Process context. Called by mmap handlers.
2105 * Return: 0 on success and error code otherwise.
2107 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2110 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2112 EXPORT_SYMBOL(vm_map_pages);
2115 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2116 * @vma: user vma to map to
2117 * @pages: pointer to array of source kernel pages
2118 * @num: number of pages in page array
2120 * Similar to vm_map_pages(), except that it explicitly sets the offset
2121 * to 0. This function is intended for the drivers that did not consider
2124 * Context: Process context. Called by mmap handlers.
2125 * Return: 0 on success and error code otherwise.
2127 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2130 return __vm_map_pages(vma, pages, num, 0);
2132 EXPORT_SYMBOL(vm_map_pages_zero);
2134 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135 pfn_t pfn, pgprot_t prot, bool mkwrite)
2137 struct mm_struct *mm = vma->vm_mm;
2141 pte = get_locked_pte(mm, addr, &ptl);
2143 return VM_FAULT_OOM;
2144 if (!pte_none(*pte)) {
2147 * For read faults on private mappings the PFN passed
2148 * in may not match the PFN we have mapped if the
2149 * mapped PFN is a writeable COW page. In the mkwrite
2150 * case we are creating a writable PTE for a shared
2151 * mapping and we expect the PFNs to match. If they
2152 * don't match, we are likely racing with block
2153 * allocation and mapping invalidation so just skip the
2156 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2157 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2160 entry = pte_mkyoung(*pte);
2161 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2162 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2163 update_mmu_cache(vma, addr, pte);
2168 /* Ok, finally just insert the thing.. */
2169 if (pfn_t_devmap(pfn))
2170 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2172 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2175 entry = pte_mkyoung(entry);
2176 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2179 set_pte_at(mm, addr, pte, entry);
2180 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2183 pte_unmap_unlock(pte, ptl);
2184 return VM_FAULT_NOPAGE;
2188 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2189 * @vma: user vma to map to
2190 * @addr: target user address of this page
2191 * @pfn: source kernel pfn
2192 * @pgprot: pgprot flags for the inserted page
2194 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2195 * to override pgprot on a per-page basis.
2197 * This only makes sense for IO mappings, and it makes no sense for
2198 * COW mappings. In general, using multiple vmas is preferable;
2199 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2202 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2203 * a value of @pgprot different from that of @vma->vm_page_prot.
2205 * Context: Process context. May allocate using %GFP_KERNEL.
2206 * Return: vm_fault_t value.
2208 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2209 unsigned long pfn, pgprot_t pgprot)
2212 * Technically, architectures with pte_special can avoid all these
2213 * restrictions (same for remap_pfn_range). However we would like
2214 * consistency in testing and feature parity among all, so we should
2215 * try to keep these invariants in place for everybody.
2217 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219 (VM_PFNMAP|VM_MIXEDMAP));
2220 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2223 if (addr < vma->vm_start || addr >= vma->vm_end)
2224 return VM_FAULT_SIGBUS;
2226 if (!pfn_modify_allowed(pfn, pgprot))
2227 return VM_FAULT_SIGBUS;
2229 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2231 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2234 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2237 * vmf_insert_pfn - insert single pfn into user vma
2238 * @vma: user vma to map to
2239 * @addr: target user address of this page
2240 * @pfn: source kernel pfn
2242 * Similar to vm_insert_page, this allows drivers to insert individual pages
2243 * they've allocated into a user vma. Same comments apply.
2245 * This function should only be called from a vm_ops->fault handler, and
2246 * in that case the handler should return the result of this function.
2248 * vma cannot be a COW mapping.
2250 * As this is called only for pages that do not currently exist, we
2251 * do not need to flush old virtual caches or the TLB.
2253 * Context: Process context. May allocate using %GFP_KERNEL.
2254 * Return: vm_fault_t value.
2256 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2259 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2261 EXPORT_SYMBOL(vmf_insert_pfn);
2263 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2265 /* these checks mirror the abort conditions in vm_normal_page */
2266 if (vma->vm_flags & VM_MIXEDMAP)
2268 if (pfn_t_devmap(pfn))
2270 if (pfn_t_special(pfn))
2272 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2277 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2278 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2283 BUG_ON(!vm_mixed_ok(vma, pfn));
2285 if (addr < vma->vm_start || addr >= vma->vm_end)
2286 return VM_FAULT_SIGBUS;
2288 track_pfn_insert(vma, &pgprot, pfn);
2290 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2291 return VM_FAULT_SIGBUS;
2294 * If we don't have pte special, then we have to use the pfn_valid()
2295 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2296 * refcount the page if pfn_valid is true (hence insert_page rather
2297 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2298 * without pte special, it would there be refcounted as a normal page.
2300 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2301 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2305 * At this point we are committed to insert_page()
2306 * regardless of whether the caller specified flags that
2307 * result in pfn_t_has_page() == false.
2309 page = pfn_to_page(pfn_t_to_pfn(pfn));
2310 err = insert_page(vma, addr, page, pgprot);
2312 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2316 return VM_FAULT_OOM;
2317 if (err < 0 && err != -EBUSY)
2318 return VM_FAULT_SIGBUS;
2320 return VM_FAULT_NOPAGE;
2324 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2325 * @vma: user vma to map to
2326 * @addr: target user address of this page
2327 * @pfn: source kernel pfn
2328 * @pgprot: pgprot flags for the inserted page
2330 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2331 * to override pgprot on a per-page basis.
2333 * Typically this function should be used by drivers to set caching- and
2334 * encryption bits different than those of @vma->vm_page_prot, because
2335 * the caching- or encryption mode may not be known at mmap() time.
2336 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2337 * to set caching and encryption bits for those vmas (except for COW pages).
2338 * This is ensured by core vm only modifying these page table entries using
2339 * functions that don't touch caching- or encryption bits, using pte_modify()
2340 * if needed. (See for example mprotect()).
2341 * Also when new page-table entries are created, this is only done using the
2342 * fault() callback, and never using the value of vma->vm_page_prot,
2343 * except for page-table entries that point to anonymous pages as the result
2346 * Context: Process context. May allocate using %GFP_KERNEL.
2347 * Return: vm_fault_t value.
2349 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2350 pfn_t pfn, pgprot_t pgprot)
2352 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2354 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2356 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2359 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2361 EXPORT_SYMBOL(vmf_insert_mixed);
2364 * If the insertion of PTE failed because someone else already added a
2365 * different entry in the mean time, we treat that as success as we assume
2366 * the same entry was actually inserted.
2368 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2369 unsigned long addr, pfn_t pfn)
2371 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2373 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2376 * maps a range of physical memory into the requested pages. the old
2377 * mappings are removed. any references to nonexistent pages results
2378 * in null mappings (currently treated as "copy-on-access")
2380 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381 unsigned long addr, unsigned long end,
2382 unsigned long pfn, pgprot_t prot)
2384 pte_t *pte, *mapped_pte;
2388 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2391 arch_enter_lazy_mmu_mode();
2393 BUG_ON(!pte_none(*pte));
2394 if (!pfn_modify_allowed(pfn, prot)) {
2398 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2400 } while (pte++, addr += PAGE_SIZE, addr != end);
2401 arch_leave_lazy_mmu_mode();
2402 pte_unmap_unlock(mapped_pte, ptl);
2406 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2407 unsigned long addr, unsigned long end,
2408 unsigned long pfn, pgprot_t prot)
2414 pfn -= addr >> PAGE_SHIFT;
2415 pmd = pmd_alloc(mm, pud, addr);
2418 VM_BUG_ON(pmd_trans_huge(*pmd));
2420 next = pmd_addr_end(addr, end);
2421 err = remap_pte_range(mm, pmd, addr, next,
2422 pfn + (addr >> PAGE_SHIFT), prot);
2425 } while (pmd++, addr = next, addr != end);
2429 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2430 unsigned long addr, unsigned long end,
2431 unsigned long pfn, pgprot_t prot)
2437 pfn -= addr >> PAGE_SHIFT;
2438 pud = pud_alloc(mm, p4d, addr);
2442 next = pud_addr_end(addr, end);
2443 err = remap_pmd_range(mm, pud, addr, next,
2444 pfn + (addr >> PAGE_SHIFT), prot);
2447 } while (pud++, addr = next, addr != end);
2451 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2452 unsigned long addr, unsigned long end,
2453 unsigned long pfn, pgprot_t prot)
2459 pfn -= addr >> PAGE_SHIFT;
2460 p4d = p4d_alloc(mm, pgd, addr);
2464 next = p4d_addr_end(addr, end);
2465 err = remap_pud_range(mm, p4d, addr, next,
2466 pfn + (addr >> PAGE_SHIFT), prot);
2469 } while (p4d++, addr = next, addr != end);
2474 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2475 * must have pre-validated the caching bits of the pgprot_t.
2477 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2478 unsigned long pfn, unsigned long size, pgprot_t prot)
2482 unsigned long end = addr + PAGE_ALIGN(size);
2483 struct mm_struct *mm = vma->vm_mm;
2486 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2490 * Physically remapped pages are special. Tell the
2491 * rest of the world about it:
2492 * VM_IO tells people not to look at these pages
2493 * (accesses can have side effects).
2494 * VM_PFNMAP tells the core MM that the base pages are just
2495 * raw PFN mappings, and do not have a "struct page" associated
2498 * Disable vma merging and expanding with mremap().
2500 * Omit vma from core dump, even when VM_IO turned off.
2502 * There's a horrible special case to handle copy-on-write
2503 * behaviour that some programs depend on. We mark the "original"
2504 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2505 * See vm_normal_page() for details.
2507 if (is_cow_mapping(vma->vm_flags)) {
2508 if (addr != vma->vm_start || end != vma->vm_end)
2510 vma->vm_pgoff = pfn;
2513 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2515 BUG_ON(addr >= end);
2516 pfn -= addr >> PAGE_SHIFT;
2517 pgd = pgd_offset(mm, addr);
2518 flush_cache_range(vma, addr, end);
2520 next = pgd_addr_end(addr, end);
2521 err = remap_p4d_range(mm, pgd, addr, next,
2522 pfn + (addr >> PAGE_SHIFT), prot);
2525 } while (pgd++, addr = next, addr != end);
2531 * remap_pfn_range - remap kernel memory to userspace
2532 * @vma: user vma to map to
2533 * @addr: target page aligned user address to start at
2534 * @pfn: page frame number of kernel physical memory address
2535 * @size: size of mapping area
2536 * @prot: page protection flags for this mapping
2538 * Note: this is only safe if the mm semaphore is held when called.
2540 * Return: %0 on success, negative error code otherwise.
2542 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2543 unsigned long pfn, unsigned long size, pgprot_t prot)
2547 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2551 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2553 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2556 EXPORT_SYMBOL(remap_pfn_range);
2559 * vm_iomap_memory - remap memory to userspace
2560 * @vma: user vma to map to
2561 * @start: start of the physical memory to be mapped
2562 * @len: size of area
2564 * This is a simplified io_remap_pfn_range() for common driver use. The
2565 * driver just needs to give us the physical memory range to be mapped,
2566 * we'll figure out the rest from the vma information.
2568 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2569 * whatever write-combining details or similar.
2571 * Return: %0 on success, negative error code otherwise.
2573 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2575 unsigned long vm_len, pfn, pages;
2577 /* Check that the physical memory area passed in looks valid */
2578 if (start + len < start)
2581 * You *really* shouldn't map things that aren't page-aligned,
2582 * but we've historically allowed it because IO memory might
2583 * just have smaller alignment.
2585 len += start & ~PAGE_MASK;
2586 pfn = start >> PAGE_SHIFT;
2587 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2588 if (pfn + pages < pfn)
2591 /* We start the mapping 'vm_pgoff' pages into the area */
2592 if (vma->vm_pgoff > pages)
2594 pfn += vma->vm_pgoff;
2595 pages -= vma->vm_pgoff;
2597 /* Can we fit all of the mapping? */
2598 vm_len = vma->vm_end - vma->vm_start;
2599 if (vm_len >> PAGE_SHIFT > pages)
2602 /* Ok, let it rip */
2603 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2605 EXPORT_SYMBOL(vm_iomap_memory);
2607 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2608 unsigned long addr, unsigned long end,
2609 pte_fn_t fn, void *data, bool create,
2610 pgtbl_mod_mask *mask)
2612 pte_t *pte, *mapped_pte;
2617 mapped_pte = pte = (mm == &init_mm) ?
2618 pte_alloc_kernel_track(pmd, addr, mask) :
2619 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2623 mapped_pte = pte = (mm == &init_mm) ?
2624 pte_offset_kernel(pmd, addr) :
2625 pte_offset_map_lock(mm, pmd, addr, &ptl);
2628 BUG_ON(pmd_huge(*pmd));
2630 arch_enter_lazy_mmu_mode();
2634 if (create || !pte_none(*pte)) {
2635 err = fn(pte++, addr, data);
2639 } while (addr += PAGE_SIZE, addr != end);
2641 *mask |= PGTBL_PTE_MODIFIED;
2643 arch_leave_lazy_mmu_mode();
2646 pte_unmap_unlock(mapped_pte, ptl);
2650 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2651 unsigned long addr, unsigned long end,
2652 pte_fn_t fn, void *data, bool create,
2653 pgtbl_mod_mask *mask)
2659 BUG_ON(pud_huge(*pud));
2662 pmd = pmd_alloc_track(mm, pud, addr, mask);
2666 pmd = pmd_offset(pud, addr);
2669 next = pmd_addr_end(addr, end);
2670 if (pmd_none(*pmd) && !create)
2672 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2674 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2679 err = apply_to_pte_range(mm, pmd, addr, next,
2680 fn, data, create, mask);
2683 } while (pmd++, addr = next, addr != end);
2688 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2689 unsigned long addr, unsigned long end,
2690 pte_fn_t fn, void *data, bool create,
2691 pgtbl_mod_mask *mask)
2698 pud = pud_alloc_track(mm, p4d, addr, mask);
2702 pud = pud_offset(p4d, addr);
2705 next = pud_addr_end(addr, end);
2706 if (pud_none(*pud) && !create)
2708 if (WARN_ON_ONCE(pud_leaf(*pud)))
2710 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2715 err = apply_to_pmd_range(mm, pud, addr, next,
2716 fn, data, create, mask);
2719 } while (pud++, addr = next, addr != end);
2724 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2725 unsigned long addr, unsigned long end,
2726 pte_fn_t fn, void *data, bool create,
2727 pgtbl_mod_mask *mask)
2734 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2738 p4d = p4d_offset(pgd, addr);
2741 next = p4d_addr_end(addr, end);
2742 if (p4d_none(*p4d) && !create)
2744 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2746 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2751 err = apply_to_pud_range(mm, p4d, addr, next,
2752 fn, data, create, mask);
2755 } while (p4d++, addr = next, addr != end);
2760 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2761 unsigned long size, pte_fn_t fn,
2762 void *data, bool create)
2765 unsigned long start = addr, next;
2766 unsigned long end = addr + size;
2767 pgtbl_mod_mask mask = 0;
2770 if (WARN_ON(addr >= end))
2773 pgd = pgd_offset(mm, addr);
2775 next = pgd_addr_end(addr, end);
2776 if (pgd_none(*pgd) && !create)
2778 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2780 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2785 err = apply_to_p4d_range(mm, pgd, addr, next,
2786 fn, data, create, &mask);
2789 } while (pgd++, addr = next, addr != end);
2791 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2792 arch_sync_kernel_mappings(start, start + size);
2798 * Scan a region of virtual memory, filling in page tables as necessary
2799 * and calling a provided function on each leaf page table.
2801 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2802 unsigned long size, pte_fn_t fn, void *data)
2804 return __apply_to_page_range(mm, addr, size, fn, data, true);
2806 EXPORT_SYMBOL_GPL(apply_to_page_range);
2809 * Scan a region of virtual memory, calling a provided function on
2810 * each leaf page table where it exists.
2812 * Unlike apply_to_page_range, this does _not_ fill in page tables
2813 * where they are absent.
2815 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2816 unsigned long size, pte_fn_t fn, void *data)
2818 return __apply_to_page_range(mm, addr, size, fn, data, false);
2820 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2823 * handle_pte_fault chooses page fault handler according to an entry which was
2824 * read non-atomically. Before making any commitment, on those architectures
2825 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2826 * parts, do_swap_page must check under lock before unmapping the pte and
2827 * proceeding (but do_wp_page is only called after already making such a check;
2828 * and do_anonymous_page can safely check later on).
2830 static inline int pte_unmap_same(struct vm_fault *vmf)
2833 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2834 if (sizeof(pte_t) > sizeof(unsigned long)) {
2835 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2837 same = pte_same(*vmf->pte, vmf->orig_pte);
2841 pte_unmap(vmf->pte);
2848 * 0: copied succeeded
2849 * -EHWPOISON: copy failed due to hwpoison in source page
2850 * -EAGAIN: copied failed (some other reason)
2852 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2853 struct vm_fault *vmf)
2858 bool locked = false;
2859 struct vm_area_struct *vma = vmf->vma;
2860 struct mm_struct *mm = vma->vm_mm;
2861 unsigned long addr = vmf->address;
2864 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2865 memory_failure_queue(page_to_pfn(src), 0);
2872 * If the source page was a PFN mapping, we don't have
2873 * a "struct page" for it. We do a best-effort copy by
2874 * just copying from the original user address. If that
2875 * fails, we just zero-fill it. Live with it.
2877 kaddr = kmap_atomic(dst);
2878 uaddr = (void __user *)(addr & PAGE_MASK);
2881 * On architectures with software "accessed" bits, we would
2882 * take a double page fault, so mark it accessed here.
2884 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2887 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2889 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2891 * Other thread has already handled the fault
2892 * and update local tlb only
2894 update_mmu_tlb(vma, addr, vmf->pte);
2899 entry = pte_mkyoung(vmf->orig_pte);
2900 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2901 update_mmu_cache(vma, addr, vmf->pte);
2905 * This really shouldn't fail, because the page is there
2906 * in the page tables. But it might just be unreadable,
2907 * in which case we just give up and fill the result with
2910 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2914 /* Re-validate under PTL if the page is still mapped */
2915 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2917 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2918 /* The PTE changed under us, update local tlb */
2919 update_mmu_tlb(vma, addr, vmf->pte);
2925 * The same page can be mapped back since last copy attempt.
2926 * Try to copy again under PTL.
2928 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2930 * Give a warn in case there can be some obscure
2943 pte_unmap_unlock(vmf->pte, vmf->ptl);
2944 kunmap_atomic(kaddr);
2945 flush_dcache_page(dst);
2950 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2952 struct file *vm_file = vma->vm_file;
2955 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2958 * Special mappings (e.g. VDSO) do not have any file so fake
2959 * a default GFP_KERNEL for them.
2965 * Notify the address space that the page is about to become writable so that
2966 * it can prohibit this or wait for the page to get into an appropriate state.
2968 * We do this without the lock held, so that it can sleep if it needs to.
2970 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2973 struct page *page = vmf->page;
2974 unsigned int old_flags = vmf->flags;
2976 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2978 if (vmf->vma->vm_file &&
2979 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2980 return VM_FAULT_SIGBUS;
2982 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2983 /* Restore original flags so that caller is not surprised */
2984 vmf->flags = old_flags;
2985 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2987 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2989 if (!page->mapping) {
2991 return 0; /* retry */
2993 ret |= VM_FAULT_LOCKED;
2995 VM_BUG_ON_PAGE(!PageLocked(page), page);
3000 * Handle dirtying of a page in shared file mapping on a write fault.
3002 * The function expects the page to be locked and unlocks it.
3004 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3006 struct vm_area_struct *vma = vmf->vma;
3007 struct address_space *mapping;
3008 struct page *page = vmf->page;
3010 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3012 dirtied = set_page_dirty(page);
3013 VM_BUG_ON_PAGE(PageAnon(page), page);
3015 * Take a local copy of the address_space - page.mapping may be zeroed
3016 * by truncate after unlock_page(). The address_space itself remains
3017 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3018 * release semantics to prevent the compiler from undoing this copying.
3020 mapping = page_rmapping(page);
3024 file_update_time(vma->vm_file);
3027 * Throttle page dirtying rate down to writeback speed.
3029 * mapping may be NULL here because some device drivers do not
3030 * set page.mapping but still dirty their pages
3032 * Drop the mmap_lock before waiting on IO, if we can. The file
3033 * is pinning the mapping, as per above.
3035 if ((dirtied || page_mkwrite) && mapping) {
3038 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3039 balance_dirty_pages_ratelimited(mapping);
3042 return VM_FAULT_COMPLETED;
3050 * Handle write page faults for pages that can be reused in the current vma
3052 * This can happen either due to the mapping being with the VM_SHARED flag,
3053 * or due to us being the last reference standing to the page. In either
3054 * case, all we need to do here is to mark the page as writable and update
3055 * any related book-keeping.
3057 static inline void wp_page_reuse(struct vm_fault *vmf)
3058 __releases(vmf->ptl)
3060 struct vm_area_struct *vma = vmf->vma;
3061 struct page *page = vmf->page;
3064 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3065 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3068 * Clear the pages cpupid information as the existing
3069 * information potentially belongs to a now completely
3070 * unrelated process.
3073 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3075 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3076 entry = pte_mkyoung(vmf->orig_pte);
3077 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3078 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3079 update_mmu_cache(vma, vmf->address, vmf->pte);
3080 pte_unmap_unlock(vmf->pte, vmf->ptl);
3081 count_vm_event(PGREUSE);
3085 * Handle the case of a page which we actually need to copy to a new page,
3086 * either due to COW or unsharing.
3088 * Called with mmap_lock locked and the old page referenced, but
3089 * without the ptl held.
3091 * High level logic flow:
3093 * - Allocate a page, copy the content of the old page to the new one.
3094 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3095 * - Take the PTL. If the pte changed, bail out and release the allocated page
3096 * - If the pte is still the way we remember it, update the page table and all
3097 * relevant references. This includes dropping the reference the page-table
3098 * held to the old page, as well as updating the rmap.
3099 * - In any case, unlock the PTL and drop the reference we took to the old page.
3101 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3103 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3104 struct vm_area_struct *vma = vmf->vma;
3105 struct mm_struct *mm = vma->vm_mm;
3106 struct page *old_page = vmf->page;
3107 struct page *new_page = NULL;
3109 int page_copied = 0;
3110 struct mmu_notifier_range range;
3113 delayacct_wpcopy_start();
3115 if (unlikely(anon_vma_prepare(vma)))
3118 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3119 new_page = alloc_zeroed_user_highpage_movable(vma,
3124 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3129 ret = __wp_page_copy_user(new_page, old_page, vmf);
3132 * COW failed, if the fault was solved by other,
3133 * it's fine. If not, userspace would re-fault on
3134 * the same address and we will handle the fault
3135 * from the second attempt.
3136 * The -EHWPOISON case will not be retried.
3142 delayacct_wpcopy_end();
3143 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3145 kmsan_copy_page_meta(new_page, old_page);
3148 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3150 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3152 __SetPageUptodate(new_page);
3154 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3155 vmf->address & PAGE_MASK,
3156 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3157 mmu_notifier_invalidate_range_start(&range);
3160 * Re-check the pte - we dropped the lock
3162 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3163 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3165 if (!PageAnon(old_page)) {
3166 dec_mm_counter_fast(mm,
3167 mm_counter_file(old_page));
3168 inc_mm_counter_fast(mm, MM_ANONPAGES);
3171 inc_mm_counter_fast(mm, MM_ANONPAGES);
3173 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3174 entry = mk_pte(new_page, vma->vm_page_prot);
3175 entry = pte_sw_mkyoung(entry);
3176 if (unlikely(unshare)) {
3177 if (pte_soft_dirty(vmf->orig_pte))
3178 entry = pte_mksoft_dirty(entry);
3179 if (pte_uffd_wp(vmf->orig_pte))
3180 entry = pte_mkuffd_wp(entry);
3182 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3186 * Clear the pte entry and flush it first, before updating the
3187 * pte with the new entry, to keep TLBs on different CPUs in
3188 * sync. This code used to set the new PTE then flush TLBs, but
3189 * that left a window where the new PTE could be loaded into
3190 * some TLBs while the old PTE remains in others.
3192 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3193 page_add_new_anon_rmap(new_page, vma, vmf->address);
3194 lru_cache_add_inactive_or_unevictable(new_page, vma);
3196 * We call the notify macro here because, when using secondary
3197 * mmu page tables (such as kvm shadow page tables), we want the
3198 * new page to be mapped directly into the secondary page table.
3200 BUG_ON(unshare && pte_write(entry));
3201 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3202 update_mmu_cache(vma, vmf->address, vmf->pte);
3205 * Only after switching the pte to the new page may
3206 * we remove the mapcount here. Otherwise another
3207 * process may come and find the rmap count decremented
3208 * before the pte is switched to the new page, and
3209 * "reuse" the old page writing into it while our pte
3210 * here still points into it and can be read by other
3213 * The critical issue is to order this
3214 * page_remove_rmap with the ptp_clear_flush above.
3215 * Those stores are ordered by (if nothing else,)
3216 * the barrier present in the atomic_add_negative
3217 * in page_remove_rmap.
3219 * Then the TLB flush in ptep_clear_flush ensures that
3220 * no process can access the old page before the
3221 * decremented mapcount is visible. And the old page
3222 * cannot be reused until after the decremented
3223 * mapcount is visible. So transitively, TLBs to
3224 * old page will be flushed before it can be reused.
3226 page_remove_rmap(old_page, vma, false);
3229 /* Free the old page.. */
3230 new_page = old_page;
3233 update_mmu_tlb(vma, vmf->address, vmf->pte);
3239 pte_unmap_unlock(vmf->pte, vmf->ptl);
3241 * No need to double call mmu_notifier->invalidate_range() callback as
3242 * the above ptep_clear_flush_notify() did already call it.
3244 mmu_notifier_invalidate_range_only_end(&range);
3247 free_swap_cache(old_page);
3251 delayacct_wpcopy_end();
3252 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3259 delayacct_wpcopy_end();
3260 return VM_FAULT_OOM;
3264 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3265 * writeable once the page is prepared
3267 * @vmf: structure describing the fault
3269 * This function handles all that is needed to finish a write page fault in a
3270 * shared mapping due to PTE being read-only once the mapped page is prepared.
3271 * It handles locking of PTE and modifying it.
3273 * The function expects the page to be locked or other protection against
3274 * concurrent faults / writeback (such as DAX radix tree locks).
3276 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3277 * we acquired PTE lock.
3279 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3281 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3282 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3285 * We might have raced with another page fault while we released the
3286 * pte_offset_map_lock.
3288 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3289 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3290 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 return VM_FAULT_NOPAGE;
3298 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3301 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3303 struct vm_area_struct *vma = vmf->vma;
3305 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3308 pte_unmap_unlock(vmf->pte, vmf->ptl);
3309 vmf->flags |= FAULT_FLAG_MKWRITE;
3310 ret = vma->vm_ops->pfn_mkwrite(vmf);
3311 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3313 return finish_mkwrite_fault(vmf);
3316 return VM_FAULT_WRITE;
3319 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3320 __releases(vmf->ptl)
3322 struct vm_area_struct *vma = vmf->vma;
3323 vm_fault_t ret = VM_FAULT_WRITE;
3325 get_page(vmf->page);
3327 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3330 pte_unmap_unlock(vmf->pte, vmf->ptl);
3331 tmp = do_page_mkwrite(vmf);
3332 if (unlikely(!tmp || (tmp &
3333 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3334 put_page(vmf->page);
3337 tmp = finish_mkwrite_fault(vmf);
3338 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3339 unlock_page(vmf->page);
3340 put_page(vmf->page);
3345 lock_page(vmf->page);
3347 ret |= fault_dirty_shared_page(vmf);
3348 put_page(vmf->page);
3354 * This routine handles present pages, when
3355 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3356 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3357 * (FAULT_FLAG_UNSHARE)
3359 * It is done by copying the page to a new address and decrementing the
3360 * shared-page counter for the old page.
3362 * Note that this routine assumes that the protection checks have been
3363 * done by the caller (the low-level page fault routine in most cases).
3364 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3365 * done any necessary COW.
3367 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3368 * though the page will change only once the write actually happens. This
3369 * avoids a few races, and potentially makes it more efficient.
3371 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3372 * but allow concurrent faults), with pte both mapped and locked.
3373 * We return with mmap_lock still held, but pte unmapped and unlocked.
3375 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3376 __releases(vmf->ptl)
3378 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3379 struct vm_area_struct *vma = vmf->vma;
3380 struct folio *folio;
3382 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3383 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3385 if (likely(!unshare)) {
3386 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3387 pte_unmap_unlock(vmf->pte, vmf->ptl);
3388 return handle_userfault(vmf, VM_UFFD_WP);
3392 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3393 * is flushed in this case before copying.
3395 if (unlikely(userfaultfd_wp(vmf->vma) &&
3396 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3397 flush_tlb_page(vmf->vma, vmf->address);
3400 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3402 if (unlikely(unshare)) {
3403 /* No anonymous page -> nothing to do. */
3404 pte_unmap_unlock(vmf->pte, vmf->ptl);
3409 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3412 * We should not cow pages in a shared writeable mapping.
3413 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3415 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3416 (VM_WRITE|VM_SHARED))
3417 return wp_pfn_shared(vmf);
3419 pte_unmap_unlock(vmf->pte, vmf->ptl);
3420 return wp_page_copy(vmf);
3424 * Take out anonymous pages first, anonymous shared vmas are
3425 * not dirty accountable.
3427 folio = page_folio(vmf->page);
3428 if (folio_test_anon(folio)) {
3430 * If the page is exclusive to this process we must reuse the
3431 * page without further checks.
3433 if (PageAnonExclusive(vmf->page))
3437 * We have to verify under folio lock: these early checks are
3438 * just an optimization to avoid locking the folio and freeing
3439 * the swapcache if there is little hope that we can reuse.
3441 * KSM doesn't necessarily raise the folio refcount.
3443 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3445 if (!folio_test_lru(folio))
3447 * Note: We cannot easily detect+handle references from
3448 * remote LRU pagevecs or references to LRU folios.
3451 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3453 if (!folio_trylock(folio))
3455 if (folio_test_swapcache(folio))
3456 folio_free_swap(folio);
3457 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3458 folio_unlock(folio);
3462 * Ok, we've got the only folio reference from our mapping
3463 * and the folio is locked, it's dark out, and we're wearing
3464 * sunglasses. Hit it.
3466 page_move_anon_rmap(vmf->page, vma);
3467 folio_unlock(folio);
3469 if (unlikely(unshare)) {
3470 pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 return VM_FAULT_WRITE;
3475 } else if (unshare) {
3476 /* No anonymous page -> nothing to do. */
3477 pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3480 (VM_WRITE|VM_SHARED))) {
3481 return wp_page_shared(vmf);
3485 * Ok, we need to copy. Oh, well..
3487 get_page(vmf->page);
3489 pte_unmap_unlock(vmf->pte, vmf->ptl);
3491 if (PageKsm(vmf->page))
3492 count_vm_event(COW_KSM);
3494 return wp_page_copy(vmf);
3497 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3498 unsigned long start_addr, unsigned long end_addr,
3499 struct zap_details *details)
3501 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3504 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3505 pgoff_t first_index,
3507 struct zap_details *details)
3509 struct vm_area_struct *vma;
3510 pgoff_t vba, vea, zba, zea;
3512 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3513 vba = vma->vm_pgoff;
3514 vea = vba + vma_pages(vma) - 1;
3515 zba = max(first_index, vba);
3516 zea = min(last_index, vea);
3518 unmap_mapping_range_vma(vma,
3519 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3520 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3526 * unmap_mapping_folio() - Unmap single folio from processes.
3527 * @folio: The locked folio to be unmapped.
3529 * Unmap this folio from any userspace process which still has it mmaped.
3530 * Typically, for efficiency, the range of nearby pages has already been
3531 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3532 * truncation or invalidation holds the lock on a folio, it may find that
3533 * the page has been remapped again: and then uses unmap_mapping_folio()
3534 * to unmap it finally.
3536 void unmap_mapping_folio(struct folio *folio)
3538 struct address_space *mapping = folio->mapping;
3539 struct zap_details details = { };
3540 pgoff_t first_index;
3543 VM_BUG_ON(!folio_test_locked(folio));
3545 first_index = folio->index;
3546 last_index = folio->index + folio_nr_pages(folio) - 1;
3548 details.even_cows = false;
3549 details.single_folio = folio;
3550 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3552 i_mmap_lock_read(mapping);
3553 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3554 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3555 last_index, &details);
3556 i_mmap_unlock_read(mapping);
3560 * unmap_mapping_pages() - Unmap pages from processes.
3561 * @mapping: The address space containing pages to be unmapped.
3562 * @start: Index of first page to be unmapped.
3563 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3564 * @even_cows: Whether to unmap even private COWed pages.
3566 * Unmap the pages in this address space from any userspace process which
3567 * has them mmaped. Generally, you want to remove COWed pages as well when
3568 * a file is being truncated, but not when invalidating pages from the page
3571 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3572 pgoff_t nr, bool even_cows)
3574 struct zap_details details = { };
3575 pgoff_t first_index = start;
3576 pgoff_t last_index = start + nr - 1;
3578 details.even_cows = even_cows;
3579 if (last_index < first_index)
3580 last_index = ULONG_MAX;
3582 i_mmap_lock_read(mapping);
3583 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3584 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3585 last_index, &details);
3586 i_mmap_unlock_read(mapping);
3588 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3591 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3592 * address_space corresponding to the specified byte range in the underlying
3595 * @mapping: the address space containing mmaps to be unmapped.
3596 * @holebegin: byte in first page to unmap, relative to the start of
3597 * the underlying file. This will be rounded down to a PAGE_SIZE
3598 * boundary. Note that this is different from truncate_pagecache(), which
3599 * must keep the partial page. In contrast, we must get rid of
3601 * @holelen: size of prospective hole in bytes. This will be rounded
3602 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3604 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3605 * but 0 when invalidating pagecache, don't throw away private data.
3607 void unmap_mapping_range(struct address_space *mapping,
3608 loff_t const holebegin, loff_t const holelen, int even_cows)
3610 pgoff_t hba = holebegin >> PAGE_SHIFT;
3611 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3613 /* Check for overflow. */
3614 if (sizeof(holelen) > sizeof(hlen)) {
3616 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3617 if (holeend & ~(long long)ULONG_MAX)
3618 hlen = ULONG_MAX - hba + 1;
3621 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3623 EXPORT_SYMBOL(unmap_mapping_range);
3626 * Restore a potential device exclusive pte to a working pte entry
3628 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3630 struct folio *folio = page_folio(vmf->page);
3631 struct vm_area_struct *vma = vmf->vma;
3632 struct mmu_notifier_range range;
3635 * We need a reference to lock the folio because we don't hold
3636 * the PTL so a racing thread can remove the device-exclusive
3637 * entry and unmap it. If the folio is free the entry must
3638 * have been removed already. If it happens to have already
3639 * been re-allocated after being freed all we do is lock and
3642 if (!folio_try_get(folio))
3645 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3647 return VM_FAULT_RETRY;
3649 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3650 vma->vm_mm, vmf->address & PAGE_MASK,
3651 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3652 mmu_notifier_invalidate_range_start(&range);
3654 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3656 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3657 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3659 pte_unmap_unlock(vmf->pte, vmf->ptl);
3660 folio_unlock(folio);
3663 mmu_notifier_invalidate_range_end(&range);
3667 static inline bool should_try_to_free_swap(struct folio *folio,
3668 struct vm_area_struct *vma,
3669 unsigned int fault_flags)
3671 if (!folio_test_swapcache(folio))
3673 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3674 folio_test_mlocked(folio))
3677 * If we want to map a page that's in the swapcache writable, we
3678 * have to detect via the refcount if we're really the exclusive
3679 * user. Try freeing the swapcache to get rid of the swapcache
3680 * reference only in case it's likely that we'll be the exlusive user.
3682 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3683 folio_ref_count(folio) == 2;
3686 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3688 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3689 vmf->address, &vmf->ptl);
3691 * Be careful so that we will only recover a special uffd-wp pte into a
3692 * none pte. Otherwise it means the pte could have changed, so retry.
3694 if (is_pte_marker(*vmf->pte))
3695 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3696 pte_unmap_unlock(vmf->pte, vmf->ptl);
3701 * This is actually a page-missing access, but with uffd-wp special pte
3702 * installed. It means this pte was wr-protected before being unmapped.
3704 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3707 * Just in case there're leftover special ptes even after the region
3708 * got unregistered - we can simply clear them. We can also do that
3709 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3710 * ranges, but it should be more efficient to be done lazily here.
3712 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3713 return pte_marker_clear(vmf);
3715 /* do_fault() can handle pte markers too like none pte */
3716 return do_fault(vmf);
3719 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3721 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3722 unsigned long marker = pte_marker_get(entry);
3725 * PTE markers should always be with file-backed memories, and the
3726 * marker should never be empty. If anything weird happened, the best
3727 * thing to do is to kill the process along with its mm.
3729 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3730 return VM_FAULT_SIGBUS;
3732 if (pte_marker_entry_uffd_wp(entry))
3733 return pte_marker_handle_uffd_wp(vmf);
3735 /* This is an unknown pte marker */
3736 return VM_FAULT_SIGBUS;
3740 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3741 * but allow concurrent faults), and pte mapped but not yet locked.
3742 * We return with pte unmapped and unlocked.
3744 * We return with the mmap_lock locked or unlocked in the same cases
3745 * as does filemap_fault().
3747 vm_fault_t do_swap_page(struct vm_fault *vmf)
3749 struct vm_area_struct *vma = vmf->vma;
3750 struct folio *swapcache, *folio = NULL;
3752 struct swap_info_struct *si = NULL;
3753 rmap_t rmap_flags = RMAP_NONE;
3754 bool exclusive = false;
3759 void *shadow = NULL;
3761 if (!pte_unmap_same(vmf))
3764 entry = pte_to_swp_entry(vmf->orig_pte);
3765 if (unlikely(non_swap_entry(entry))) {
3766 if (is_migration_entry(entry)) {
3767 migration_entry_wait(vma->vm_mm, vmf->pmd,
3769 } else if (is_device_exclusive_entry(entry)) {
3770 vmf->page = pfn_swap_entry_to_page(entry);
3771 ret = remove_device_exclusive_entry(vmf);
3772 } else if (is_device_private_entry(entry)) {
3773 vmf->page = pfn_swap_entry_to_page(entry);
3774 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3775 vmf->address, &vmf->ptl);
3776 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3777 spin_unlock(vmf->ptl);
3782 * Get a page reference while we know the page can't be
3785 get_page(vmf->page);
3786 pte_unmap_unlock(vmf->pte, vmf->ptl);
3787 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3788 put_page(vmf->page);
3789 } else if (is_hwpoison_entry(entry)) {
3790 ret = VM_FAULT_HWPOISON;
3791 } else if (is_swapin_error_entry(entry)) {
3792 ret = VM_FAULT_SIGBUS;
3793 } else if (is_pte_marker_entry(entry)) {
3794 ret = handle_pte_marker(vmf);
3796 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3797 ret = VM_FAULT_SIGBUS;
3802 /* Prevent swapoff from happening to us. */
3803 si = get_swap_device(entry);
3807 folio = swap_cache_get_folio(entry, vma, vmf->address);
3809 page = folio_file_page(folio, swp_offset(entry));
3813 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3814 __swap_count(entry) == 1) {
3815 /* skip swapcache */
3816 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3817 vma, vmf->address, false);
3818 page = &folio->page;
3820 __folio_set_locked(folio);
3821 __folio_set_swapbacked(folio);
3823 if (mem_cgroup_swapin_charge_folio(folio,
3824 vma->vm_mm, GFP_KERNEL,
3829 mem_cgroup_swapin_uncharge_swap(entry);
3831 shadow = get_shadow_from_swap_cache(entry);
3833 workingset_refault(folio, shadow);
3835 folio_add_lru(folio);
3837 /* To provide entry to swap_readpage() */
3838 folio_set_swap_entry(folio, entry);
3839 swap_readpage(page, true, NULL);
3840 folio->private = NULL;
3843 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3846 folio = page_folio(page);
3852 * Back out if somebody else faulted in this pte
3853 * while we released the pte lock.
3855 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3856 vmf->address, &vmf->ptl);
3857 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3862 /* Had to read the page from swap area: Major fault */
3863 ret = VM_FAULT_MAJOR;
3864 count_vm_event(PGMAJFAULT);
3865 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3866 } else if (PageHWPoison(page)) {
3868 * hwpoisoned dirty swapcache pages are kept for killing
3869 * owner processes (which may be unknown at hwpoison time)
3871 ret = VM_FAULT_HWPOISON;
3875 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3878 ret |= VM_FAULT_RETRY;
3884 * Make sure folio_free_swap() or swapoff did not release the
3885 * swapcache from under us. The page pin, and pte_same test
3886 * below, are not enough to exclude that. Even if it is still
3887 * swapcache, we need to check that the page's swap has not
3890 if (unlikely(!folio_test_swapcache(folio) ||
3891 page_private(page) != entry.val))
3895 * KSM sometimes has to copy on read faults, for example, if
3896 * page->index of !PageKSM() pages would be nonlinear inside the
3897 * anon VMA -- PageKSM() is lost on actual swapout.
3899 page = ksm_might_need_to_copy(page, vma, vmf->address);
3900 if (unlikely(!page)) {
3904 folio = page_folio(page);
3907 * If we want to map a page that's in the swapcache writable, we
3908 * have to detect via the refcount if we're really the exclusive
3909 * owner. Try removing the extra reference from the local LRU
3910 * pagevecs if required.
3912 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3913 !folio_test_ksm(folio) && !folio_test_lru(folio))
3917 cgroup_throttle_swaprate(page, GFP_KERNEL);
3920 * Back out if somebody else already faulted in this pte.
3922 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3924 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3927 if (unlikely(!folio_test_uptodate(folio))) {
3928 ret = VM_FAULT_SIGBUS;
3933 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3934 * must never point at an anonymous page in the swapcache that is
3935 * PG_anon_exclusive. Sanity check that this holds and especially, that
3936 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3937 * check after taking the PT lock and making sure that nobody
3938 * concurrently faulted in this page and set PG_anon_exclusive.
3940 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3941 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3944 * Check under PT lock (to protect against concurrent fork() sharing
3945 * the swap entry concurrently) for certainly exclusive pages.
3947 if (!folio_test_ksm(folio)) {
3949 * Note that pte_swp_exclusive() == false for architectures
3950 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3952 exclusive = pte_swp_exclusive(vmf->orig_pte);
3953 if (folio != swapcache) {
3955 * We have a fresh page that is not exposed to the
3956 * swapcache -> certainly exclusive.
3959 } else if (exclusive && folio_test_writeback(folio) &&
3960 data_race(si->flags & SWP_STABLE_WRITES)) {
3962 * This is tricky: not all swap backends support
3963 * concurrent page modifications while under writeback.
3965 * So if we stumble over such a page in the swapcache
3966 * we must not set the page exclusive, otherwise we can
3967 * map it writable without further checks and modify it
3968 * while still under writeback.
3970 * For these problematic swap backends, simply drop the
3971 * exclusive marker: this is perfectly fine as we start
3972 * writeback only if we fully unmapped the page and
3973 * there are no unexpected references on the page after
3974 * unmapping succeeded. After fully unmapped, no
3975 * further GUP references (FOLL_GET and FOLL_PIN) can
3976 * appear, so dropping the exclusive marker and mapping
3977 * it only R/O is fine.
3984 * Some architectures may have to restore extra metadata to the page
3985 * when reading from swap. This metadata may be indexed by swap entry
3986 * so this must be called before swap_free().
3988 arch_swap_restore(entry, folio);
3991 * Remove the swap entry and conditionally try to free up the swapcache.
3992 * We're already holding a reference on the page but haven't mapped it
3996 if (should_try_to_free_swap(folio, vma, vmf->flags))
3997 folio_free_swap(folio);
3999 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4000 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
4001 pte = mk_pte(page, vma->vm_page_prot);
4004 * Same logic as in do_wp_page(); however, optimize for pages that are
4005 * certainly not shared either because we just allocated them without
4006 * exposing them to the swapcache or because the swap entry indicates
4009 if (!folio_test_ksm(folio) &&
4010 (exclusive || folio_ref_count(folio) == 1)) {
4011 if (vmf->flags & FAULT_FLAG_WRITE) {
4012 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4013 vmf->flags &= ~FAULT_FLAG_WRITE;
4014 ret |= VM_FAULT_WRITE;
4016 rmap_flags |= RMAP_EXCLUSIVE;
4018 flush_icache_page(vma, page);
4019 if (pte_swp_soft_dirty(vmf->orig_pte))
4020 pte = pte_mksoft_dirty(pte);
4021 if (pte_swp_uffd_wp(vmf->orig_pte)) {
4022 pte = pte_mkuffd_wp(pte);
4023 pte = pte_wrprotect(pte);
4025 vmf->orig_pte = pte;
4027 /* ksm created a completely new copy */
4028 if (unlikely(folio != swapcache && swapcache)) {
4029 page_add_new_anon_rmap(page, vma, vmf->address);
4030 folio_add_lru_vma(folio, vma);
4032 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4035 VM_BUG_ON(!folio_test_anon(folio) ||
4036 (pte_write(pte) && !PageAnonExclusive(page)));
4037 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4038 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4040 folio_unlock(folio);
4041 if (folio != swapcache && swapcache) {
4043 * Hold the lock to avoid the swap entry to be reused
4044 * until we take the PT lock for the pte_same() check
4045 * (to avoid false positives from pte_same). For
4046 * further safety release the lock after the swap_free
4047 * so that the swap count won't change under a
4048 * parallel locked swapcache.
4050 folio_unlock(swapcache);
4051 folio_put(swapcache);
4054 if (vmf->flags & FAULT_FLAG_WRITE) {
4055 ret |= do_wp_page(vmf);
4056 if (ret & VM_FAULT_ERROR)
4057 ret &= VM_FAULT_ERROR;
4061 /* No need to invalidate - it was non-present before */
4062 update_mmu_cache(vma, vmf->address, vmf->pte);
4064 pte_unmap_unlock(vmf->pte, vmf->ptl);
4067 put_swap_device(si);
4070 pte_unmap_unlock(vmf->pte, vmf->ptl);
4072 folio_unlock(folio);
4075 if (folio != swapcache && swapcache) {
4076 folio_unlock(swapcache);
4077 folio_put(swapcache);
4080 put_swap_device(si);
4085 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4086 * but allow concurrent faults), and pte mapped but not yet locked.
4087 * We return with mmap_lock still held, but pte unmapped and unlocked.
4089 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4091 struct vm_area_struct *vma = vmf->vma;
4096 /* File mapping without ->vm_ops ? */
4097 if (vma->vm_flags & VM_SHARED)
4098 return VM_FAULT_SIGBUS;
4101 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4102 * pte_offset_map() on pmds where a huge pmd might be created
4103 * from a different thread.
4105 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4106 * parallel threads are excluded by other means.
4108 * Here we only have mmap_read_lock(mm).
4110 if (pte_alloc(vma->vm_mm, vmf->pmd))
4111 return VM_FAULT_OOM;
4113 /* See comment in handle_pte_fault() */
4114 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4117 /* Use the zero-page for reads */
4118 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4119 !mm_forbids_zeropage(vma->vm_mm)) {
4120 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4121 vma->vm_page_prot));
4122 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4123 vmf->address, &vmf->ptl);
4124 if (!pte_none(*vmf->pte)) {
4125 update_mmu_tlb(vma, vmf->address, vmf->pte);
4128 ret = check_stable_address_space(vma->vm_mm);
4131 /* Deliver the page fault to userland, check inside PT lock */
4132 if (userfaultfd_missing(vma)) {
4133 pte_unmap_unlock(vmf->pte, vmf->ptl);
4134 return handle_userfault(vmf, VM_UFFD_MISSING);
4139 /* Allocate our own private page. */
4140 if (unlikely(anon_vma_prepare(vma)))
4142 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4146 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4148 cgroup_throttle_swaprate(page, GFP_KERNEL);
4151 * The memory barrier inside __SetPageUptodate makes sure that
4152 * preceding stores to the page contents become visible before
4153 * the set_pte_at() write.
4155 __SetPageUptodate(page);
4157 entry = mk_pte(page, vma->vm_page_prot);
4158 entry = pte_sw_mkyoung(entry);
4159 if (vma->vm_flags & VM_WRITE)
4160 entry = pte_mkwrite(pte_mkdirty(entry));
4162 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4164 if (!pte_none(*vmf->pte)) {
4165 update_mmu_tlb(vma, vmf->address, vmf->pte);
4169 ret = check_stable_address_space(vma->vm_mm);
4173 /* Deliver the page fault to userland, check inside PT lock */
4174 if (userfaultfd_missing(vma)) {
4175 pte_unmap_unlock(vmf->pte, vmf->ptl);
4177 return handle_userfault(vmf, VM_UFFD_MISSING);
4180 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4181 page_add_new_anon_rmap(page, vma, vmf->address);
4182 lru_cache_add_inactive_or_unevictable(page, vma);
4184 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4186 /* No need to invalidate - it was non-present before */
4187 update_mmu_cache(vma, vmf->address, vmf->pte);
4189 pte_unmap_unlock(vmf->pte, vmf->ptl);
4197 return VM_FAULT_OOM;
4201 * The mmap_lock must have been held on entry, and may have been
4202 * released depending on flags and vma->vm_ops->fault() return value.
4203 * See filemap_fault() and __lock_page_retry().
4205 static vm_fault_t __do_fault(struct vm_fault *vmf)
4207 struct vm_area_struct *vma = vmf->vma;
4211 * Preallocate pte before we take page_lock because this might lead to
4212 * deadlocks for memcg reclaim which waits for pages under writeback:
4214 * SetPageWriteback(A)
4220 * wait_on_page_writeback(A)
4221 * SetPageWriteback(B)
4223 * # flush A, B to clear the writeback
4225 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4226 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4227 if (!vmf->prealloc_pte)
4228 return VM_FAULT_OOM;
4231 ret = vma->vm_ops->fault(vmf);
4232 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4233 VM_FAULT_DONE_COW)))
4236 if (unlikely(PageHWPoison(vmf->page))) {
4237 struct page *page = vmf->page;
4238 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4239 if (ret & VM_FAULT_LOCKED) {
4240 if (page_mapped(page))
4241 unmap_mapping_pages(page_mapping(page),
4242 page->index, 1, false);
4243 /* Retry if a clean page was removed from the cache. */
4244 if (invalidate_inode_page(page))
4245 poisonret = VM_FAULT_NOPAGE;
4253 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4254 lock_page(vmf->page);
4256 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 static void deposit_prealloc_pte(struct vm_fault *vmf)
4264 struct vm_area_struct *vma = vmf->vma;
4266 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4268 * We are going to consume the prealloc table,
4269 * count that as nr_ptes.
4271 mm_inc_nr_ptes(vma->vm_mm);
4272 vmf->prealloc_pte = NULL;
4275 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4277 struct vm_area_struct *vma = vmf->vma;
4278 bool write = vmf->flags & FAULT_FLAG_WRITE;
4279 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4282 vm_fault_t ret = VM_FAULT_FALLBACK;
4284 if (!transhuge_vma_suitable(vma, haddr))
4287 page = compound_head(page);
4288 if (compound_order(page) != HPAGE_PMD_ORDER)
4292 * Just backoff if any subpage of a THP is corrupted otherwise
4293 * the corrupted page may mapped by PMD silently to escape the
4294 * check. This kind of THP just can be PTE mapped. Access to
4295 * the corrupted subpage should trigger SIGBUS as expected.
4297 if (unlikely(PageHasHWPoisoned(page)))
4301 * Archs like ppc64 need additional space to store information
4302 * related to pte entry. Use the preallocated table for that.
4304 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4305 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4306 if (!vmf->prealloc_pte)
4307 return VM_FAULT_OOM;
4310 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4311 if (unlikely(!pmd_none(*vmf->pmd)))
4314 for (i = 0; i < HPAGE_PMD_NR; i++)
4315 flush_icache_page(vma, page + i);
4317 entry = mk_huge_pmd(page, vma->vm_page_prot);
4319 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4321 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4322 page_add_file_rmap(page, vma, true);
4325 * deposit and withdraw with pmd lock held
4327 if (arch_needs_pgtable_deposit())
4328 deposit_prealloc_pte(vmf);
4330 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4332 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4334 /* fault is handled */
4336 count_vm_event(THP_FILE_MAPPED);
4338 spin_unlock(vmf->ptl);
4342 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4344 return VM_FAULT_FALLBACK;
4348 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4350 struct vm_area_struct *vma = vmf->vma;
4351 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4352 bool write = vmf->flags & FAULT_FLAG_WRITE;
4353 bool prefault = vmf->address != addr;
4356 flush_icache_page(vma, page);
4357 entry = mk_pte(page, vma->vm_page_prot);
4359 if (prefault && arch_wants_old_prefaulted_pte())
4360 entry = pte_mkold(entry);
4362 entry = pte_sw_mkyoung(entry);
4365 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4366 if (unlikely(uffd_wp))
4367 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4368 /* copy-on-write page */
4369 if (write && !(vma->vm_flags & VM_SHARED)) {
4370 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4371 page_add_new_anon_rmap(page, vma, addr);
4372 lru_cache_add_inactive_or_unevictable(page, vma);
4374 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4375 page_add_file_rmap(page, vma, false);
4377 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4380 static bool vmf_pte_changed(struct vm_fault *vmf)
4382 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4383 return !pte_same(*vmf->pte, vmf->orig_pte);
4385 return !pte_none(*vmf->pte);
4389 * finish_fault - finish page fault once we have prepared the page to fault
4391 * @vmf: structure describing the fault
4393 * This function handles all that is needed to finish a page fault once the
4394 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4395 * given page, adds reverse page mapping, handles memcg charges and LRU
4398 * The function expects the page to be locked and on success it consumes a
4399 * reference of a page being mapped (for the PTE which maps it).
4401 * Return: %0 on success, %VM_FAULT_ code in case of error.
4403 vm_fault_t finish_fault(struct vm_fault *vmf)
4405 struct vm_area_struct *vma = vmf->vma;
4409 /* Did we COW the page? */
4410 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4411 page = vmf->cow_page;
4416 * check even for read faults because we might have lost our CoWed
4419 if (!(vma->vm_flags & VM_SHARED)) {
4420 ret = check_stable_address_space(vma->vm_mm);
4425 if (pmd_none(*vmf->pmd)) {
4426 if (PageTransCompound(page)) {
4427 ret = do_set_pmd(vmf, page);
4428 if (ret != VM_FAULT_FALLBACK)
4432 if (vmf->prealloc_pte)
4433 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4434 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4435 return VM_FAULT_OOM;
4439 * See comment in handle_pte_fault() for how this scenario happens, we
4440 * need to return NOPAGE so that we drop this page.
4442 if (pmd_devmap_trans_unstable(vmf->pmd))
4443 return VM_FAULT_NOPAGE;
4445 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4446 vmf->address, &vmf->ptl);
4448 /* Re-check under ptl */
4449 if (likely(!vmf_pte_changed(vmf))) {
4450 do_set_pte(vmf, page, vmf->address);
4452 /* no need to invalidate: a not-present page won't be cached */
4453 update_mmu_cache(vma, vmf->address, vmf->pte);
4457 update_mmu_tlb(vma, vmf->address, vmf->pte);
4458 ret = VM_FAULT_NOPAGE;
4461 pte_unmap_unlock(vmf->pte, vmf->ptl);
4465 static unsigned long fault_around_bytes __read_mostly =
4466 rounddown_pow_of_two(65536);
4468 #ifdef CONFIG_DEBUG_FS
4469 static int fault_around_bytes_get(void *data, u64 *val)
4471 *val = fault_around_bytes;
4476 * fault_around_bytes must be rounded down to the nearest page order as it's
4477 * what do_fault_around() expects to see.
4479 static int fault_around_bytes_set(void *data, u64 val)
4481 if (val / PAGE_SIZE > PTRS_PER_PTE)
4483 if (val > PAGE_SIZE)
4484 fault_around_bytes = rounddown_pow_of_two(val);
4486 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4489 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4490 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4492 static int __init fault_around_debugfs(void)
4494 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4495 &fault_around_bytes_fops);
4498 late_initcall(fault_around_debugfs);
4502 * do_fault_around() tries to map few pages around the fault address. The hope
4503 * is that the pages will be needed soon and this will lower the number of
4506 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4507 * not ready to be mapped: not up-to-date, locked, etc.
4509 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4512 * fault_around_bytes defines how many bytes we'll try to map.
4513 * do_fault_around() expects it to be set to a power of two less than or equal
4516 * The virtual address of the area that we map is naturally aligned to
4517 * fault_around_bytes rounded down to the machine page size
4518 * (and therefore to page order). This way it's easier to guarantee
4519 * that we don't cross page table boundaries.
4521 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4523 unsigned long address = vmf->address, nr_pages, mask;
4524 pgoff_t start_pgoff = vmf->pgoff;
4528 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4529 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4531 address = max(address & mask, vmf->vma->vm_start);
4532 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4536 * end_pgoff is either the end of the page table, the end of
4537 * the vma or nr_pages from start_pgoff, depending what is nearest.
4539 end_pgoff = start_pgoff -
4540 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4542 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4543 start_pgoff + nr_pages - 1);
4545 if (pmd_none(*vmf->pmd)) {
4546 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4547 if (!vmf->prealloc_pte)
4548 return VM_FAULT_OOM;
4551 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4554 /* Return true if we should do read fault-around, false otherwise */
4555 static inline bool should_fault_around(struct vm_fault *vmf)
4557 /* No ->map_pages? No way to fault around... */
4558 if (!vmf->vma->vm_ops->map_pages)
4561 if (uffd_disable_fault_around(vmf->vma))
4564 return fault_around_bytes >> PAGE_SHIFT > 1;
4567 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4572 * Let's call ->map_pages() first and use ->fault() as fallback
4573 * if page by the offset is not ready to be mapped (cold cache or
4576 if (should_fault_around(vmf)) {
4577 ret = do_fault_around(vmf);
4582 ret = __do_fault(vmf);
4583 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4586 ret |= finish_fault(vmf);
4587 unlock_page(vmf->page);
4588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4589 put_page(vmf->page);
4593 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4595 struct vm_area_struct *vma = vmf->vma;
4598 if (unlikely(anon_vma_prepare(vma)))
4599 return VM_FAULT_OOM;
4601 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4603 return VM_FAULT_OOM;
4605 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4607 put_page(vmf->cow_page);
4608 return VM_FAULT_OOM;
4610 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4612 ret = __do_fault(vmf);
4613 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4615 if (ret & VM_FAULT_DONE_COW)
4618 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4619 __SetPageUptodate(vmf->cow_page);
4621 ret |= finish_fault(vmf);
4622 unlock_page(vmf->page);
4623 put_page(vmf->page);
4624 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4628 put_page(vmf->cow_page);
4632 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4634 struct vm_area_struct *vma = vmf->vma;
4635 vm_fault_t ret, tmp;
4637 ret = __do_fault(vmf);
4638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4642 * Check if the backing address space wants to know that the page is
4643 * about to become writable
4645 if (vma->vm_ops->page_mkwrite) {
4646 unlock_page(vmf->page);
4647 tmp = do_page_mkwrite(vmf);
4648 if (unlikely(!tmp ||
4649 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4650 put_page(vmf->page);
4655 ret |= finish_fault(vmf);
4656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4658 unlock_page(vmf->page);
4659 put_page(vmf->page);
4663 ret |= fault_dirty_shared_page(vmf);
4668 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4669 * but allow concurrent faults).
4670 * The mmap_lock may have been released depending on flags and our
4671 * return value. See filemap_fault() and __folio_lock_or_retry().
4672 * If mmap_lock is released, vma may become invalid (for example
4673 * by other thread calling munmap()).
4675 static vm_fault_t do_fault(struct vm_fault *vmf)
4677 struct vm_area_struct *vma = vmf->vma;
4678 struct mm_struct *vm_mm = vma->vm_mm;
4682 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4684 if (!vma->vm_ops->fault) {
4686 * If we find a migration pmd entry or a none pmd entry, which
4687 * should never happen, return SIGBUS
4689 if (unlikely(!pmd_present(*vmf->pmd)))
4690 ret = VM_FAULT_SIGBUS;
4692 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4697 * Make sure this is not a temporary clearing of pte
4698 * by holding ptl and checking again. A R/M/W update
4699 * of pte involves: take ptl, clearing the pte so that
4700 * we don't have concurrent modification by hardware
4701 * followed by an update.
4703 if (unlikely(pte_none(*vmf->pte)))
4704 ret = VM_FAULT_SIGBUS;
4706 ret = VM_FAULT_NOPAGE;
4708 pte_unmap_unlock(vmf->pte, vmf->ptl);
4710 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4711 ret = do_read_fault(vmf);
4712 else if (!(vma->vm_flags & VM_SHARED))
4713 ret = do_cow_fault(vmf);
4715 ret = do_shared_fault(vmf);
4717 /* preallocated pagetable is unused: free it */
4718 if (vmf->prealloc_pte) {
4719 pte_free(vm_mm, vmf->prealloc_pte);
4720 vmf->prealloc_pte = NULL;
4725 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4726 unsigned long addr, int page_nid, int *flags)
4730 count_vm_numa_event(NUMA_HINT_FAULTS);
4731 if (page_nid == numa_node_id()) {
4732 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4733 *flags |= TNF_FAULT_LOCAL;
4736 return mpol_misplaced(page, vma, addr);
4739 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4741 struct vm_area_struct *vma = vmf->vma;
4742 struct page *page = NULL;
4743 int page_nid = NUMA_NO_NODE;
4747 bool was_writable = pte_savedwrite(vmf->orig_pte);
4751 * The "pte" at this point cannot be used safely without
4752 * validation through pte_unmap_same(). It's of NUMA type but
4753 * the pfn may be screwed if the read is non atomic.
4755 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4756 spin_lock(vmf->ptl);
4757 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4758 pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 /* Get the normal PTE */
4763 old_pte = ptep_get(vmf->pte);
4764 pte = pte_modify(old_pte, vma->vm_page_prot);
4766 page = vm_normal_page(vma, vmf->address, pte);
4767 if (!page || is_zone_device_page(page))
4770 /* TODO: handle PTE-mapped THP */
4771 if (PageCompound(page))
4775 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4776 * much anyway since they can be in shared cache state. This misses
4777 * the case where a mapping is writable but the process never writes
4778 * to it but pte_write gets cleared during protection updates and
4779 * pte_dirty has unpredictable behaviour between PTE scan updates,
4780 * background writeback, dirty balancing and application behaviour.
4783 flags |= TNF_NO_GROUP;
4786 * Flag if the page is shared between multiple address spaces. This
4787 * is later used when determining whether to group tasks together
4789 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4790 flags |= TNF_SHARED;
4792 page_nid = page_to_nid(page);
4794 * For memory tiering mode, cpupid of slow memory page is used
4795 * to record page access time. So use default value.
4797 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4798 !node_is_toptier(page_nid))
4799 last_cpupid = (-1 & LAST_CPUPID_MASK);
4801 last_cpupid = page_cpupid_last(page);
4802 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4804 if (target_nid == NUMA_NO_NODE) {
4808 pte_unmap_unlock(vmf->pte, vmf->ptl);
4810 /* Migrate to the requested node */
4811 if (migrate_misplaced_page(page, vma, target_nid)) {
4812 page_nid = target_nid;
4813 flags |= TNF_MIGRATED;
4815 flags |= TNF_MIGRATE_FAIL;
4816 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4817 spin_lock(vmf->ptl);
4818 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4819 pte_unmap_unlock(vmf->pte, vmf->ptl);
4826 if (page_nid != NUMA_NO_NODE)
4827 task_numa_fault(last_cpupid, page_nid, 1, flags);
4831 * Make it present again, depending on how arch implements
4832 * non-accessible ptes, some can allow access by kernel mode.
4834 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4835 pte = pte_modify(old_pte, vma->vm_page_prot);
4836 pte = pte_mkyoung(pte);
4838 pte = pte_mkwrite(pte);
4839 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4840 update_mmu_cache(vma, vmf->address, vmf->pte);
4841 pte_unmap_unlock(vmf->pte, vmf->ptl);
4845 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4847 if (vma_is_anonymous(vmf->vma))
4848 return do_huge_pmd_anonymous_page(vmf);
4849 if (vmf->vma->vm_ops->huge_fault)
4850 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4851 return VM_FAULT_FALLBACK;
4854 /* `inline' is required to avoid gcc 4.1.2 build error */
4855 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4857 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4859 if (vma_is_anonymous(vmf->vma)) {
4860 if (likely(!unshare) &&
4861 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4862 return handle_userfault(vmf, VM_UFFD_WP);
4863 return do_huge_pmd_wp_page(vmf);
4865 if (vmf->vma->vm_ops->huge_fault) {
4866 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4868 if (!(ret & VM_FAULT_FALLBACK))
4872 /* COW or write-notify handled on pte level: split pmd. */
4873 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4875 return VM_FAULT_FALLBACK;
4878 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4880 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4881 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4882 /* No support for anonymous transparent PUD pages yet */
4883 if (vma_is_anonymous(vmf->vma))
4884 return VM_FAULT_FALLBACK;
4885 if (vmf->vma->vm_ops->huge_fault)
4886 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4887 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4888 return VM_FAULT_FALLBACK;
4891 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4893 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4894 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4895 /* No support for anonymous transparent PUD pages yet */
4896 if (vma_is_anonymous(vmf->vma))
4898 if (vmf->vma->vm_ops->huge_fault) {
4899 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4901 if (!(ret & VM_FAULT_FALLBACK))
4905 /* COW or write-notify not handled on PUD level: split pud.*/
4906 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4908 return VM_FAULT_FALLBACK;
4912 * These routines also need to handle stuff like marking pages dirty
4913 * and/or accessed for architectures that don't do it in hardware (most
4914 * RISC architectures). The early dirtying is also good on the i386.
4916 * There is also a hook called "update_mmu_cache()" that architectures
4917 * with external mmu caches can use to update those (ie the Sparc or
4918 * PowerPC hashed page tables that act as extended TLBs).
4920 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4921 * concurrent faults).
4923 * The mmap_lock may have been released depending on flags and our return value.
4924 * See filemap_fault() and __folio_lock_or_retry().
4926 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4930 if (unlikely(pmd_none(*vmf->pmd))) {
4932 * Leave __pte_alloc() until later: because vm_ops->fault may
4933 * want to allocate huge page, and if we expose page table
4934 * for an instant, it will be difficult to retract from
4935 * concurrent faults and from rmap lookups.
4938 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4941 * If a huge pmd materialized under us just retry later. Use
4942 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4943 * of pmd_trans_huge() to ensure the pmd didn't become
4944 * pmd_trans_huge under us and then back to pmd_none, as a
4945 * result of MADV_DONTNEED running immediately after a huge pmd
4946 * fault in a different thread of this mm, in turn leading to a
4947 * misleading pmd_trans_huge() retval. All we have to ensure is
4948 * that it is a regular pmd that we can walk with
4949 * pte_offset_map() and we can do that through an atomic read
4950 * in C, which is what pmd_trans_unstable() provides.
4952 if (pmd_devmap_trans_unstable(vmf->pmd))
4955 * A regular pmd is established and it can't morph into a huge
4956 * pmd from under us anymore at this point because we hold the
4957 * mmap_lock read mode and khugepaged takes it in write mode.
4958 * So now it's safe to run pte_offset_map().
4960 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4961 vmf->orig_pte = *vmf->pte;
4962 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4965 * some architectures can have larger ptes than wordsize,
4966 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4967 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4968 * accesses. The code below just needs a consistent view
4969 * for the ifs and we later double check anyway with the
4970 * ptl lock held. So here a barrier will do.
4973 if (pte_none(vmf->orig_pte)) {
4974 pte_unmap(vmf->pte);
4980 if (vma_is_anonymous(vmf->vma))
4981 return do_anonymous_page(vmf);
4983 return do_fault(vmf);
4986 if (!pte_present(vmf->orig_pte))
4987 return do_swap_page(vmf);
4989 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4990 return do_numa_page(vmf);
4992 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4993 spin_lock(vmf->ptl);
4994 entry = vmf->orig_pte;
4995 if (unlikely(!pte_same(*vmf->pte, entry))) {
4996 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4999 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5000 if (!pte_write(entry))
5001 return do_wp_page(vmf);
5002 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5003 entry = pte_mkdirty(entry);
5005 entry = pte_mkyoung(entry);
5006 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5007 vmf->flags & FAULT_FLAG_WRITE)) {
5008 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
5010 /* Skip spurious TLB flush for retried page fault */
5011 if (vmf->flags & FAULT_FLAG_TRIED)
5014 * This is needed only for protection faults but the arch code
5015 * is not yet telling us if this is a protection fault or not.
5016 * This still avoids useless tlb flushes for .text page faults
5019 if (vmf->flags & FAULT_FLAG_WRITE)
5020 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
5023 pte_unmap_unlock(vmf->pte, vmf->ptl);
5028 * By the time we get here, we already hold the mm semaphore
5030 * The mmap_lock may have been released depending on flags and our
5031 * return value. See filemap_fault() and __folio_lock_or_retry().
5033 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5034 unsigned long address, unsigned int flags)
5036 struct vm_fault vmf = {
5038 .address = address & PAGE_MASK,
5039 .real_address = address,
5041 .pgoff = linear_page_index(vma, address),
5042 .gfp_mask = __get_fault_gfp_mask(vma),
5044 struct mm_struct *mm = vma->vm_mm;
5045 unsigned long vm_flags = vma->vm_flags;
5050 pgd = pgd_offset(mm, address);
5051 p4d = p4d_alloc(mm, pgd, address);
5053 return VM_FAULT_OOM;
5055 vmf.pud = pud_alloc(mm, p4d, address);
5057 return VM_FAULT_OOM;
5059 if (pud_none(*vmf.pud) &&
5060 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5061 ret = create_huge_pud(&vmf);
5062 if (!(ret & VM_FAULT_FALLBACK))
5065 pud_t orig_pud = *vmf.pud;
5068 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5071 * TODO once we support anonymous PUDs: NUMA case and
5072 * FAULT_FLAG_UNSHARE handling.
5074 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5075 ret = wp_huge_pud(&vmf, orig_pud);
5076 if (!(ret & VM_FAULT_FALLBACK))
5079 huge_pud_set_accessed(&vmf, orig_pud);
5085 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5087 return VM_FAULT_OOM;
5089 /* Huge pud page fault raced with pmd_alloc? */
5090 if (pud_trans_unstable(vmf.pud))
5093 if (pmd_none(*vmf.pmd) &&
5094 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5095 ret = create_huge_pmd(&vmf);
5096 if (!(ret & VM_FAULT_FALLBACK))
5099 vmf.orig_pmd = *vmf.pmd;
5102 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5103 VM_BUG_ON(thp_migration_supported() &&
5104 !is_pmd_migration_entry(vmf.orig_pmd));
5105 if (is_pmd_migration_entry(vmf.orig_pmd))
5106 pmd_migration_entry_wait(mm, vmf.pmd);
5109 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5110 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5111 return do_huge_pmd_numa_page(&vmf);
5113 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5114 !pmd_write(vmf.orig_pmd)) {
5115 ret = wp_huge_pmd(&vmf);
5116 if (!(ret & VM_FAULT_FALLBACK))
5119 huge_pmd_set_accessed(&vmf);
5125 return handle_pte_fault(&vmf);
5129 * mm_account_fault - Do page fault accounting
5131 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5132 * of perf event counters, but we'll still do the per-task accounting to
5133 * the task who triggered this page fault.
5134 * @address: the faulted address.
5135 * @flags: the fault flags.
5136 * @ret: the fault retcode.
5138 * This will take care of most of the page fault accounting. Meanwhile, it
5139 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5140 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5141 * still be in per-arch page fault handlers at the entry of page fault.
5143 static inline void mm_account_fault(struct pt_regs *regs,
5144 unsigned long address, unsigned int flags,
5150 * We don't do accounting for some specific faults:
5152 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5153 * includes arch_vma_access_permitted() failing before reaching here.
5154 * So this is not a "this many hardware page faults" counter. We
5155 * should use the hw profiling for that.
5157 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5158 * once they're completed.
5160 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5164 * We define the fault as a major fault when the final successful fault
5165 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5166 * handle it immediately previously).
5168 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5176 * If the fault is done for GUP, regs will be NULL. We only do the
5177 * accounting for the per thread fault counters who triggered the
5178 * fault, and we skip the perf event updates.
5184 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5186 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5189 #ifdef CONFIG_LRU_GEN
5190 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5192 /* the LRU algorithm doesn't apply to sequential or random reads */
5193 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5196 static void lru_gen_exit_fault(void)
5198 current->in_lru_fault = false;
5201 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5205 static void lru_gen_exit_fault(void)
5208 #endif /* CONFIG_LRU_GEN */
5211 * By the time we get here, we already hold the mm semaphore
5213 * The mmap_lock may have been released depending on flags and our
5214 * return value. See filemap_fault() and __folio_lock_or_retry().
5216 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5217 unsigned int flags, struct pt_regs *regs)
5221 __set_current_state(TASK_RUNNING);
5223 count_vm_event(PGFAULT);
5224 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5226 /* do counter updates before entering really critical section. */
5227 check_sync_rss_stat(current);
5229 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5230 flags & FAULT_FLAG_INSTRUCTION,
5231 flags & FAULT_FLAG_REMOTE))
5232 return VM_FAULT_SIGSEGV;
5235 * Enable the memcg OOM handling for faults triggered in user
5236 * space. Kernel faults are handled more gracefully.
5238 if (flags & FAULT_FLAG_USER)
5239 mem_cgroup_enter_user_fault();
5241 lru_gen_enter_fault(vma);
5243 if (unlikely(is_vm_hugetlb_page(vma)))
5244 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5246 ret = __handle_mm_fault(vma, address, flags);
5248 lru_gen_exit_fault();
5250 if (flags & FAULT_FLAG_USER) {
5251 mem_cgroup_exit_user_fault();
5253 * The task may have entered a memcg OOM situation but
5254 * if the allocation error was handled gracefully (no
5255 * VM_FAULT_OOM), there is no need to kill anything.
5256 * Just clean up the OOM state peacefully.
5258 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5259 mem_cgroup_oom_synchronize(false);
5262 mm_account_fault(regs, address, flags, ret);
5266 EXPORT_SYMBOL_GPL(handle_mm_fault);
5268 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5269 #include <linux/extable.h>
5271 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5273 /* Even if this succeeds, make it clear we *might* have slept */
5274 if (likely(mmap_read_trylock(mm))) {
5279 if (regs && !user_mode(regs)) {
5280 unsigned long ip = instruction_pointer(regs);
5281 if (!search_exception_tables(ip))
5285 return !mmap_read_lock_killable(mm);
5288 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5291 * We don't have this operation yet.
5293 * It should be easy enough to do: it's basically a
5294 * atomic_long_try_cmpxchg_acquire()
5295 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5296 * it also needs the proper lockdep magic etc.
5301 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5303 mmap_read_unlock(mm);
5304 if (regs && !user_mode(regs)) {
5305 unsigned long ip = instruction_pointer(regs);
5306 if (!search_exception_tables(ip))
5309 return !mmap_write_lock_killable(mm);
5313 * Helper for page fault handling.
5315 * This is kind of equivalend to "mmap_read_lock()" followed
5316 * by "find_extend_vma()", except it's a lot more careful about
5317 * the locking (and will drop the lock on failure).
5319 * For example, if we have a kernel bug that causes a page
5320 * fault, we don't want to just use mmap_read_lock() to get
5321 * the mm lock, because that would deadlock if the bug were
5322 * to happen while we're holding the mm lock for writing.
5324 * So this checks the exception tables on kernel faults in
5325 * order to only do this all for instructions that are actually
5326 * expected to fault.
5328 * We can also actually take the mm lock for writing if we
5329 * need to extend the vma, which helps the VM layer a lot.
5331 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5332 unsigned long addr, struct pt_regs *regs)
5334 struct vm_area_struct *vma;
5336 if (!get_mmap_lock_carefully(mm, regs))
5339 vma = find_vma(mm, addr);
5340 if (likely(vma && (vma->vm_start <= addr)))
5344 * Well, dang. We might still be successful, but only
5345 * if we can extend a vma to do so.
5347 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5348 mmap_read_unlock(mm);
5353 * We can try to upgrade the mmap lock atomically,
5354 * in which case we can continue to use the vma
5355 * we already looked up.
5357 * Otherwise we'll have to drop the mmap lock and
5358 * re-take it, and also look up the vma again,
5361 if (!mmap_upgrade_trylock(mm)) {
5362 if (!upgrade_mmap_lock_carefully(mm, regs))
5365 vma = find_vma(mm, addr);
5368 if (vma->vm_start <= addr)
5370 if (!(vma->vm_flags & VM_GROWSDOWN))
5374 if (expand_stack_locked(vma, addr))
5378 mmap_write_downgrade(mm);
5382 mmap_write_unlock(mm);
5387 #ifndef __PAGETABLE_P4D_FOLDED
5389 * Allocate p4d page table.
5390 * We've already handled the fast-path in-line.
5392 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5394 p4d_t *new = p4d_alloc_one(mm, address);
5398 spin_lock(&mm->page_table_lock);
5399 if (pgd_present(*pgd)) { /* Another has populated it */
5402 smp_wmb(); /* See comment in pmd_install() */
5403 pgd_populate(mm, pgd, new);
5405 spin_unlock(&mm->page_table_lock);
5408 #endif /* __PAGETABLE_P4D_FOLDED */
5410 #ifndef __PAGETABLE_PUD_FOLDED
5412 * Allocate page upper directory.
5413 * We've already handled the fast-path in-line.
5415 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5417 pud_t *new = pud_alloc_one(mm, address);
5421 spin_lock(&mm->page_table_lock);
5422 if (!p4d_present(*p4d)) {
5424 smp_wmb(); /* See comment in pmd_install() */
5425 p4d_populate(mm, p4d, new);
5426 } else /* Another has populated it */
5428 spin_unlock(&mm->page_table_lock);
5431 #endif /* __PAGETABLE_PUD_FOLDED */
5433 #ifndef __PAGETABLE_PMD_FOLDED
5435 * Allocate page middle directory.
5436 * We've already handled the fast-path in-line.
5438 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5441 pmd_t *new = pmd_alloc_one(mm, address);
5445 ptl = pud_lock(mm, pud);
5446 if (!pud_present(*pud)) {
5448 smp_wmb(); /* See comment in pmd_install() */
5449 pud_populate(mm, pud, new);
5450 } else { /* Another has populated it */
5456 #endif /* __PAGETABLE_PMD_FOLDED */
5459 * follow_pte - look up PTE at a user virtual address
5460 * @mm: the mm_struct of the target address space
5461 * @address: user virtual address
5462 * @ptepp: location to store found PTE
5463 * @ptlp: location to store the lock for the PTE
5465 * On a successful return, the pointer to the PTE is stored in @ptepp;
5466 * the corresponding lock is taken and its location is stored in @ptlp.
5467 * The contents of the PTE are only stable until @ptlp is released;
5468 * any further use, if any, must be protected against invalidation
5469 * with MMU notifiers.
5471 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5472 * should be taken for read.
5474 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5475 * it is not a good general-purpose API.
5477 * Return: zero on success, -ve otherwise.
5479 int follow_pte(struct mm_struct *mm, unsigned long address,
5480 pte_t **ptepp, spinlock_t **ptlp)
5488 pgd = pgd_offset(mm, address);
5489 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5492 p4d = p4d_offset(pgd, address);
5493 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5496 pud = pud_offset(p4d, address);
5497 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5500 pmd = pmd_offset(pud, address);
5501 VM_BUG_ON(pmd_trans_huge(*pmd));
5503 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5506 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5507 if (!pte_present(*ptep))
5512 pte_unmap_unlock(ptep, *ptlp);
5516 EXPORT_SYMBOL_GPL(follow_pte);
5519 * follow_pfn - look up PFN at a user virtual address
5520 * @vma: memory mapping
5521 * @address: user virtual address
5522 * @pfn: location to store found PFN
5524 * Only IO mappings and raw PFN mappings are allowed.
5526 * This function does not allow the caller to read the permissions
5527 * of the PTE. Do not use it.
5529 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5531 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5538 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5541 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5544 *pfn = pte_pfn(*ptep);
5545 pte_unmap_unlock(ptep, ptl);
5548 EXPORT_SYMBOL(follow_pfn);
5550 #ifdef CONFIG_HAVE_IOREMAP_PROT
5551 int follow_phys(struct vm_area_struct *vma,
5552 unsigned long address, unsigned int flags,
5553 unsigned long *prot, resource_size_t *phys)
5559 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5562 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5566 if ((flags & FOLL_WRITE) && !pte_write(pte))
5569 *prot = pgprot_val(pte_pgprot(pte));
5570 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5574 pte_unmap_unlock(ptep, ptl);
5580 * generic_access_phys - generic implementation for iomem mmap access
5581 * @vma: the vma to access
5582 * @addr: userspace address, not relative offset within @vma
5583 * @buf: buffer to read/write
5584 * @len: length of transfer
5585 * @write: set to FOLL_WRITE when writing, otherwise reading
5587 * This is a generic implementation for &vm_operations_struct.access for an
5588 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5591 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5592 void *buf, int len, int write)
5594 resource_size_t phys_addr;
5595 unsigned long prot = 0;
5596 void __iomem *maddr;
5599 int offset = offset_in_page(addr);
5602 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5606 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5609 pte_unmap_unlock(ptep, ptl);
5611 prot = pgprot_val(pte_pgprot(pte));
5612 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5614 if ((write & FOLL_WRITE) && !pte_write(pte))
5617 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5621 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5624 if (!pte_same(pte, *ptep)) {
5625 pte_unmap_unlock(ptep, ptl);
5632 memcpy_toio(maddr + offset, buf, len);
5634 memcpy_fromio(buf, maddr + offset, len);
5636 pte_unmap_unlock(ptep, ptl);
5642 EXPORT_SYMBOL_GPL(generic_access_phys);
5646 * Access another process' address space as given in mm.
5648 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5649 int len, unsigned int gup_flags)
5651 struct vm_area_struct *vma;
5652 void *old_buf = buf;
5653 int write = gup_flags & FOLL_WRITE;
5655 if (mmap_read_lock_killable(mm))
5658 /* We might need to expand the stack to access it */
5659 vma = vma_lookup(mm, addr);
5661 vma = expand_stack(mm, addr);
5666 /* ignore errors, just check how much was successfully transferred */
5668 int bytes, ret, offset;
5670 struct page *page = NULL;
5672 ret = get_user_pages_remote(mm, addr, 1,
5673 gup_flags, &page, &vma, NULL);
5675 #ifndef CONFIG_HAVE_IOREMAP_PROT
5679 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5680 * we can access using slightly different code.
5682 vma = vma_lookup(mm, addr);
5685 if (vma->vm_ops && vma->vm_ops->access)
5686 ret = vma->vm_ops->access(vma, addr, buf,
5694 offset = addr & (PAGE_SIZE-1);
5695 if (bytes > PAGE_SIZE-offset)
5696 bytes = PAGE_SIZE-offset;
5700 copy_to_user_page(vma, page, addr,
5701 maddr + offset, buf, bytes);
5702 set_page_dirty_lock(page);
5704 copy_from_user_page(vma, page, addr,
5705 buf, maddr + offset, bytes);
5714 mmap_read_unlock(mm);
5716 return buf - old_buf;
5720 * access_remote_vm - access another process' address space
5721 * @mm: the mm_struct of the target address space
5722 * @addr: start address to access
5723 * @buf: source or destination buffer
5724 * @len: number of bytes to transfer
5725 * @gup_flags: flags modifying lookup behaviour
5727 * The caller must hold a reference on @mm.
5729 * Return: number of bytes copied from source to destination.
5731 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5732 void *buf, int len, unsigned int gup_flags)
5734 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5738 * Access another process' address space.
5739 * Source/target buffer must be kernel space,
5740 * Do not walk the page table directly, use get_user_pages
5742 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5743 void *buf, int len, unsigned int gup_flags)
5745 struct mm_struct *mm;
5748 mm = get_task_mm(tsk);
5752 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5758 EXPORT_SYMBOL_GPL(access_process_vm);
5761 * Print the name of a VMA.
5763 void print_vma_addr(char *prefix, unsigned long ip)
5765 struct mm_struct *mm = current->mm;
5766 struct vm_area_struct *vma;
5769 * we might be running from an atomic context so we cannot sleep
5771 if (!mmap_read_trylock(mm))
5774 vma = find_vma(mm, ip);
5775 if (vma && vma->vm_file) {
5776 struct file *f = vma->vm_file;
5777 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5781 p = file_path(f, buf, PAGE_SIZE);
5784 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5786 vma->vm_end - vma->vm_start);
5787 free_page((unsigned long)buf);
5790 mmap_read_unlock(mm);
5793 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5794 void __might_fault(const char *file, int line)
5796 if (pagefault_disabled())
5798 __might_sleep(file, line);
5799 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5801 might_lock_read(¤t->mm->mmap_lock);
5804 EXPORT_SYMBOL(__might_fault);
5807 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5809 * Process all subpages of the specified huge page with the specified
5810 * operation. The target subpage will be processed last to keep its
5813 static inline void process_huge_page(
5814 unsigned long addr_hint, unsigned int pages_per_huge_page,
5815 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5819 unsigned long addr = addr_hint &
5820 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5822 /* Process target subpage last to keep its cache lines hot */
5824 n = (addr_hint - addr) / PAGE_SIZE;
5825 if (2 * n <= pages_per_huge_page) {
5826 /* If target subpage in first half of huge page */
5829 /* Process subpages at the end of huge page */
5830 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5832 process_subpage(addr + i * PAGE_SIZE, i, arg);
5835 /* If target subpage in second half of huge page */
5836 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5837 l = pages_per_huge_page - n;
5838 /* Process subpages at the begin of huge page */
5839 for (i = 0; i < base; i++) {
5841 process_subpage(addr + i * PAGE_SIZE, i, arg);
5845 * Process remaining subpages in left-right-left-right pattern
5846 * towards the target subpage
5848 for (i = 0; i < l; i++) {
5849 int left_idx = base + i;
5850 int right_idx = base + 2 * l - 1 - i;
5853 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5855 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5859 static void clear_gigantic_page(struct page *page,
5861 unsigned int pages_per_huge_page)
5867 for (i = 0; i < pages_per_huge_page; i++) {
5868 p = nth_page(page, i);
5870 clear_user_highpage(p, addr + i * PAGE_SIZE);
5874 static void clear_subpage(unsigned long addr, int idx, void *arg)
5876 struct page *page = arg;
5878 clear_user_highpage(page + idx, addr);
5881 void clear_huge_page(struct page *page,
5882 unsigned long addr_hint, unsigned int pages_per_huge_page)
5884 unsigned long addr = addr_hint &
5885 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5887 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5888 clear_gigantic_page(page, addr, pages_per_huge_page);
5892 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5895 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5897 struct vm_area_struct *vma,
5898 unsigned int pages_per_huge_page)
5901 struct page *dst_base = dst;
5902 struct page *src_base = src;
5904 for (i = 0; i < pages_per_huge_page; i++) {
5905 dst = nth_page(dst_base, i);
5906 src = nth_page(src_base, i);
5909 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5913 struct copy_subpage_arg {
5916 struct vm_area_struct *vma;
5919 static void copy_subpage(unsigned long addr, int idx, void *arg)
5921 struct copy_subpage_arg *copy_arg = arg;
5923 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5924 addr, copy_arg->vma);
5927 void copy_user_huge_page(struct page *dst, struct page *src,
5928 unsigned long addr_hint, struct vm_area_struct *vma,
5929 unsigned int pages_per_huge_page)
5931 unsigned long addr = addr_hint &
5932 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5933 struct copy_subpage_arg arg = {
5939 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5940 copy_user_gigantic_page(dst, src, addr, vma,
5941 pages_per_huge_page);
5945 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5948 long copy_huge_page_from_user(struct page *dst_page,
5949 const void __user *usr_src,
5950 unsigned int pages_per_huge_page,
5951 bool allow_pagefault)
5954 unsigned long i, rc = 0;
5955 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5956 struct page *subpage;
5958 for (i = 0; i < pages_per_huge_page; i++) {
5959 subpage = nth_page(dst_page, i);
5960 if (allow_pagefault)
5961 page_kaddr = kmap(subpage);
5963 page_kaddr = kmap_atomic(subpage);
5964 rc = copy_from_user(page_kaddr,
5965 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5966 if (allow_pagefault)
5969 kunmap_atomic(page_kaddr);
5971 ret_val -= (PAGE_SIZE - rc);
5975 flush_dcache_page(subpage);
5981 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5983 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5985 static struct kmem_cache *page_ptl_cachep;
5987 void __init ptlock_cache_init(void)
5989 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5993 bool ptlock_alloc(struct page *page)
5997 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6004 void ptlock_free(struct page *page)
6006 kmem_cache_free(page_ptl_cachep, page->ptl);