Merge tag 'lsm-pr-20220801' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
[platform/kernel/linux-starfive.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include "swap.h"
90
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94
95 #ifndef CONFIG_NUMA
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 static vm_fault_t do_fault(struct vm_fault *vmf);
104
105 /*
106  * A number of key systems in x86 including ioremap() rely on the assumption
107  * that high_memory defines the upper bound on direct map memory, then end
108  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
109  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110  * and ZONE_HIGHMEM.
111  */
112 void *high_memory;
113 EXPORT_SYMBOL(high_memory);
114
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123                                         1;
124 #else
125                                         2;
126 #endif
127
128 #ifndef arch_faults_on_old_pte
129 static inline bool arch_faults_on_old_pte(void)
130 {
131         /*
132          * Those arches which don't have hw access flag feature need to
133          * implement their own helper. By default, "true" means pagefault
134          * will be hit on old pte.
135          */
136         return true;
137 }
138 #endif
139
140 #ifndef arch_wants_old_prefaulted_pte
141 static inline bool arch_wants_old_prefaulted_pte(void)
142 {
143         /*
144          * Transitioning a PTE from 'old' to 'young' can be expensive on
145          * some architectures, even if it's performed in hardware. By
146          * default, "false" means prefaulted entries will be 'young'.
147          */
148         return false;
149 }
150 #endif
151
152 static int __init disable_randmaps(char *s)
153 {
154         randomize_va_space = 0;
155         return 1;
156 }
157 __setup("norandmaps", disable_randmaps);
158
159 unsigned long zero_pfn __read_mostly;
160 EXPORT_SYMBOL(zero_pfn);
161
162 unsigned long highest_memmap_pfn __read_mostly;
163
164 /*
165  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166  */
167 static int __init init_zero_pfn(void)
168 {
169         zero_pfn = page_to_pfn(ZERO_PAGE(0));
170         return 0;
171 }
172 early_initcall(init_zero_pfn);
173
174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
175 {
176         trace_rss_stat(mm, member, count);
177 }
178
179 #if defined(SPLIT_RSS_COUNTING)
180
181 void sync_mm_rss(struct mm_struct *mm)
182 {
183         int i;
184
185         for (i = 0; i < NR_MM_COUNTERS; i++) {
186                 if (current->rss_stat.count[i]) {
187                         add_mm_counter(mm, i, current->rss_stat.count[i]);
188                         current->rss_stat.count[i] = 0;
189                 }
190         }
191         current->rss_stat.events = 0;
192 }
193
194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195 {
196         struct task_struct *task = current;
197
198         if (likely(task->mm == mm))
199                 task->rss_stat.count[member] += val;
200         else
201                 add_mm_counter(mm, member, val);
202 }
203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205
206 /* sync counter once per 64 page faults */
207 #define TASK_RSS_EVENTS_THRESH  (64)
208 static void check_sync_rss_stat(struct task_struct *task)
209 {
210         if (unlikely(task != current))
211                 return;
212         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
213                 sync_mm_rss(task->mm);
214 }
215 #else /* SPLIT_RSS_COUNTING */
216
217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219
220 static void check_sync_rss_stat(struct task_struct *task)
221 {
222 }
223
224 #endif /* SPLIT_RSS_COUNTING */
225
226 /*
227  * Note: this doesn't free the actual pages themselves. That
228  * has been handled earlier when unmapping all the memory regions.
229  */
230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231                            unsigned long addr)
232 {
233         pgtable_t token = pmd_pgtable(*pmd);
234         pmd_clear(pmd);
235         pte_free_tlb(tlb, token, addr);
236         mm_dec_nr_ptes(tlb->mm);
237 }
238
239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240                                 unsigned long addr, unsigned long end,
241                                 unsigned long floor, unsigned long ceiling)
242 {
243         pmd_t *pmd;
244         unsigned long next;
245         unsigned long start;
246
247         start = addr;
248         pmd = pmd_offset(pud, addr);
249         do {
250                 next = pmd_addr_end(addr, end);
251                 if (pmd_none_or_clear_bad(pmd))
252                         continue;
253                 free_pte_range(tlb, pmd, addr);
254         } while (pmd++, addr = next, addr != end);
255
256         start &= PUD_MASK;
257         if (start < floor)
258                 return;
259         if (ceiling) {
260                 ceiling &= PUD_MASK;
261                 if (!ceiling)
262                         return;
263         }
264         if (end - 1 > ceiling - 1)
265                 return;
266
267         pmd = pmd_offset(pud, start);
268         pud_clear(pud);
269         pmd_free_tlb(tlb, pmd, start);
270         mm_dec_nr_pmds(tlb->mm);
271 }
272
273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
274                                 unsigned long addr, unsigned long end,
275                                 unsigned long floor, unsigned long ceiling)
276 {
277         pud_t *pud;
278         unsigned long next;
279         unsigned long start;
280
281         start = addr;
282         pud = pud_offset(p4d, addr);
283         do {
284                 next = pud_addr_end(addr, end);
285                 if (pud_none_or_clear_bad(pud))
286                         continue;
287                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
288         } while (pud++, addr = next, addr != end);
289
290         start &= P4D_MASK;
291         if (start < floor)
292                 return;
293         if (ceiling) {
294                 ceiling &= P4D_MASK;
295                 if (!ceiling)
296                         return;
297         }
298         if (end - 1 > ceiling - 1)
299                 return;
300
301         pud = pud_offset(p4d, start);
302         p4d_clear(p4d);
303         pud_free_tlb(tlb, pud, start);
304         mm_dec_nr_puds(tlb->mm);
305 }
306
307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308                                 unsigned long addr, unsigned long end,
309                                 unsigned long floor, unsigned long ceiling)
310 {
311         p4d_t *p4d;
312         unsigned long next;
313         unsigned long start;
314
315         start = addr;
316         p4d = p4d_offset(pgd, addr);
317         do {
318                 next = p4d_addr_end(addr, end);
319                 if (p4d_none_or_clear_bad(p4d))
320                         continue;
321                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322         } while (p4d++, addr = next, addr != end);
323
324         start &= PGDIR_MASK;
325         if (start < floor)
326                 return;
327         if (ceiling) {
328                 ceiling &= PGDIR_MASK;
329                 if (!ceiling)
330                         return;
331         }
332         if (end - 1 > ceiling - 1)
333                 return;
334
335         p4d = p4d_offset(pgd, start);
336         pgd_clear(pgd);
337         p4d_free_tlb(tlb, p4d, start);
338 }
339
340 /*
341  * This function frees user-level page tables of a process.
342  */
343 void free_pgd_range(struct mmu_gather *tlb,
344                         unsigned long addr, unsigned long end,
345                         unsigned long floor, unsigned long ceiling)
346 {
347         pgd_t *pgd;
348         unsigned long next;
349
350         /*
351          * The next few lines have given us lots of grief...
352          *
353          * Why are we testing PMD* at this top level?  Because often
354          * there will be no work to do at all, and we'd prefer not to
355          * go all the way down to the bottom just to discover that.
356          *
357          * Why all these "- 1"s?  Because 0 represents both the bottom
358          * of the address space and the top of it (using -1 for the
359          * top wouldn't help much: the masks would do the wrong thing).
360          * The rule is that addr 0 and floor 0 refer to the bottom of
361          * the address space, but end 0 and ceiling 0 refer to the top
362          * Comparisons need to use "end - 1" and "ceiling - 1" (though
363          * that end 0 case should be mythical).
364          *
365          * Wherever addr is brought up or ceiling brought down, we must
366          * be careful to reject "the opposite 0" before it confuses the
367          * subsequent tests.  But what about where end is brought down
368          * by PMD_SIZE below? no, end can't go down to 0 there.
369          *
370          * Whereas we round start (addr) and ceiling down, by different
371          * masks at different levels, in order to test whether a table
372          * now has no other vmas using it, so can be freed, we don't
373          * bother to round floor or end up - the tests don't need that.
374          */
375
376         addr &= PMD_MASK;
377         if (addr < floor) {
378                 addr += PMD_SIZE;
379                 if (!addr)
380                         return;
381         }
382         if (ceiling) {
383                 ceiling &= PMD_MASK;
384                 if (!ceiling)
385                         return;
386         }
387         if (end - 1 > ceiling - 1)
388                 end -= PMD_SIZE;
389         if (addr > end - 1)
390                 return;
391         /*
392          * We add page table cache pages with PAGE_SIZE,
393          * (see pte_free_tlb()), flush the tlb if we need
394          */
395         tlb_change_page_size(tlb, PAGE_SIZE);
396         pgd = pgd_offset(tlb->mm, addr);
397         do {
398                 next = pgd_addr_end(addr, end);
399                 if (pgd_none_or_clear_bad(pgd))
400                         continue;
401                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
402         } while (pgd++, addr = next, addr != end);
403 }
404
405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
406                 unsigned long floor, unsigned long ceiling)
407 {
408         while (vma) {
409                 struct vm_area_struct *next = vma->vm_next;
410                 unsigned long addr = vma->vm_start;
411
412                 /*
413                  * Hide vma from rmap and truncate_pagecache before freeing
414                  * pgtables
415                  */
416                 unlink_anon_vmas(vma);
417                 unlink_file_vma(vma);
418
419                 if (is_vm_hugetlb_page(vma)) {
420                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421                                 floor, next ? next->vm_start : ceiling);
422                 } else {
423                         /*
424                          * Optimization: gather nearby vmas into one call down
425                          */
426                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427                                && !is_vm_hugetlb_page(next)) {
428                                 vma = next;
429                                 next = vma->vm_next;
430                                 unlink_anon_vmas(vma);
431                                 unlink_file_vma(vma);
432                         }
433                         free_pgd_range(tlb, addr, vma->vm_end,
434                                 floor, next ? next->vm_start : ceiling);
435                 }
436                 vma = next;
437         }
438 }
439
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442         spinlock_t *ptl = pmd_lock(mm, pmd);
443
444         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
445                 mm_inc_nr_ptes(mm);
446                 /*
447                  * Ensure all pte setup (eg. pte page lock and page clearing) are
448                  * visible before the pte is made visible to other CPUs by being
449                  * put into page tables.
450                  *
451                  * The other side of the story is the pointer chasing in the page
452                  * table walking code (when walking the page table without locking;
453                  * ie. most of the time). Fortunately, these data accesses consist
454                  * of a chain of data-dependent loads, meaning most CPUs (alpha
455                  * being the notable exception) will already guarantee loads are
456                  * seen in-order. See the alpha page table accessors for the
457                  * smp_rmb() barriers in page table walking code.
458                  */
459                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460                 pmd_populate(mm, pmd, *pte);
461                 *pte = NULL;
462         }
463         spin_unlock(ptl);
464 }
465
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468         pgtable_t new = pte_alloc_one(mm);
469         if (!new)
470                 return -ENOMEM;
471
472         pmd_install(mm, pmd, &new);
473         if (new)
474                 pte_free(mm, new);
475         return 0;
476 }
477
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480         pte_t *new = pte_alloc_one_kernel(&init_mm);
481         if (!new)
482                 return -ENOMEM;
483
484         spin_lock(&init_mm.page_table_lock);
485         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
486                 smp_wmb(); /* See comment in pmd_install() */
487                 pmd_populate_kernel(&init_mm, pmd, new);
488                 new = NULL;
489         }
490         spin_unlock(&init_mm.page_table_lock);
491         if (new)
492                 pte_free_kernel(&init_mm, new);
493         return 0;
494 }
495
496 static inline void init_rss_vec(int *rss)
497 {
498         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503         int i;
504
505         if (current->mm == mm)
506                 sync_mm_rss(mm);
507         for (i = 0; i < NR_MM_COUNTERS; i++)
508                 if (rss[i])
509                         add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520                           pte_t pte, struct page *page)
521 {
522         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523         p4d_t *p4d = p4d_offset(pgd, addr);
524         pud_t *pud = pud_offset(p4d, addr);
525         pmd_t *pmd = pmd_offset(pud, addr);
526         struct address_space *mapping;
527         pgoff_t index;
528         static unsigned long resume;
529         static unsigned long nr_shown;
530         static unsigned long nr_unshown;
531
532         /*
533          * Allow a burst of 60 reports, then keep quiet for that minute;
534          * or allow a steady drip of one report per second.
535          */
536         if (nr_shown == 60) {
537                 if (time_before(jiffies, resume)) {
538                         nr_unshown++;
539                         return;
540                 }
541                 if (nr_unshown) {
542                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543                                  nr_unshown);
544                         nr_unshown = 0;
545                 }
546                 nr_shown = 0;
547         }
548         if (nr_shown++ == 0)
549                 resume = jiffies + 60 * HZ;
550
551         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552         index = linear_page_index(vma, addr);
553
554         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555                  current->comm,
556                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
557         if (page)
558                 dump_page(page, "bad pte");
559         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562                  vma->vm_file,
563                  vma->vm_ops ? vma->vm_ops->fault : NULL,
564                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565                  mapping ? mapping->a_ops->read_folio : NULL);
566         dump_stack();
567         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613                             pte_t pte)
614 {
615         unsigned long pfn = pte_pfn(pte);
616
617         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618                 if (likely(!pte_special(pte)))
619                         goto check_pfn;
620                 if (vma->vm_ops && vma->vm_ops->find_special_page)
621                         return vma->vm_ops->find_special_page(vma, addr);
622                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623                         return NULL;
624                 if (is_zero_pfn(pfn))
625                         return NULL;
626                 if (pte_devmap(pte))
627                         return NULL;
628
629                 print_bad_pte(vma, addr, pte, NULL);
630                 return NULL;
631         }
632
633         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
634
635         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
636                 if (vma->vm_flags & VM_MIXEDMAP) {
637                         if (!pfn_valid(pfn))
638                                 return NULL;
639                         goto out;
640                 } else {
641                         unsigned long off;
642                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
643                         if (pfn == vma->vm_pgoff + off)
644                                 return NULL;
645                         if (!is_cow_mapping(vma->vm_flags))
646                                 return NULL;
647                 }
648         }
649
650         if (is_zero_pfn(pfn))
651                 return NULL;
652
653 check_pfn:
654         if (unlikely(pfn > highest_memmap_pfn)) {
655                 print_bad_pte(vma, addr, pte, NULL);
656                 return NULL;
657         }
658
659         /*
660          * NOTE! We still have PageReserved() pages in the page tables.
661          * eg. VDSO mappings can cause them to exist.
662          */
663 out:
664         return pfn_to_page(pfn);
665 }
666
667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669                                 pmd_t pmd)
670 {
671         unsigned long pfn = pmd_pfn(pmd);
672
673         /*
674          * There is no pmd_special() but there may be special pmds, e.g.
675          * in a direct-access (dax) mapping, so let's just replicate the
676          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
677          */
678         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679                 if (vma->vm_flags & VM_MIXEDMAP) {
680                         if (!pfn_valid(pfn))
681                                 return NULL;
682                         goto out;
683                 } else {
684                         unsigned long off;
685                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
686                         if (pfn == vma->vm_pgoff + off)
687                                 return NULL;
688                         if (!is_cow_mapping(vma->vm_flags))
689                                 return NULL;
690                 }
691         }
692
693         if (pmd_devmap(pmd))
694                 return NULL;
695         if (is_huge_zero_pmd(pmd))
696                 return NULL;
697         if (unlikely(pfn > highest_memmap_pfn))
698                 return NULL;
699
700         /*
701          * NOTE! We still have PageReserved() pages in the page tables.
702          * eg. VDSO mappings can cause them to exist.
703          */
704 out:
705         return pfn_to_page(pfn);
706 }
707 #endif
708
709 static void restore_exclusive_pte(struct vm_area_struct *vma,
710                                   struct page *page, unsigned long address,
711                                   pte_t *ptep)
712 {
713         pte_t pte;
714         swp_entry_t entry;
715
716         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
717         if (pte_swp_soft_dirty(*ptep))
718                 pte = pte_mksoft_dirty(pte);
719
720         entry = pte_to_swp_entry(*ptep);
721         if (pte_swp_uffd_wp(*ptep))
722                 pte = pte_mkuffd_wp(pte);
723         else if (is_writable_device_exclusive_entry(entry))
724                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
725
726         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
727
728         /*
729          * No need to take a page reference as one was already
730          * created when the swap entry was made.
731          */
732         if (PageAnon(page))
733                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
734         else
735                 /*
736                  * Currently device exclusive access only supports anonymous
737                  * memory so the entry shouldn't point to a filebacked page.
738                  */
739                 WARN_ON_ONCE(!PageAnon(page));
740
741         set_pte_at(vma->vm_mm, address, ptep, pte);
742
743         /*
744          * No need to invalidate - it was non-present before. However
745          * secondary CPUs may have mappings that need invalidating.
746          */
747         update_mmu_cache(vma, address, ptep);
748 }
749
750 /*
751  * Tries to restore an exclusive pte if the page lock can be acquired without
752  * sleeping.
753  */
754 static int
755 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756                         unsigned long addr)
757 {
758         swp_entry_t entry = pte_to_swp_entry(*src_pte);
759         struct page *page = pfn_swap_entry_to_page(entry);
760
761         if (trylock_page(page)) {
762                 restore_exclusive_pte(vma, page, addr, src_pte);
763                 unlock_page(page);
764                 return 0;
765         }
766
767         return -EBUSY;
768 }
769
770 /*
771  * copy one vm_area from one task to the other. Assumes the page tables
772  * already present in the new task to be cleared in the whole range
773  * covered by this vma.
774  */
775
776 static unsigned long
777 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
779                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
780 {
781         unsigned long vm_flags = dst_vma->vm_flags;
782         pte_t pte = *src_pte;
783         struct page *page;
784         swp_entry_t entry = pte_to_swp_entry(pte);
785
786         if (likely(!non_swap_entry(entry))) {
787                 if (swap_duplicate(entry) < 0)
788                         return -EIO;
789
790                 /* make sure dst_mm is on swapoff's mmlist. */
791                 if (unlikely(list_empty(&dst_mm->mmlist))) {
792                         spin_lock(&mmlist_lock);
793                         if (list_empty(&dst_mm->mmlist))
794                                 list_add(&dst_mm->mmlist,
795                                                 &src_mm->mmlist);
796                         spin_unlock(&mmlist_lock);
797                 }
798                 /* Mark the swap entry as shared. */
799                 if (pte_swp_exclusive(*src_pte)) {
800                         pte = pte_swp_clear_exclusive(*src_pte);
801                         set_pte_at(src_mm, addr, src_pte, pte);
802                 }
803                 rss[MM_SWAPENTS]++;
804         } else if (is_migration_entry(entry)) {
805                 page = pfn_swap_entry_to_page(entry);
806
807                 rss[mm_counter(page)]++;
808
809                 if (!is_readable_migration_entry(entry) &&
810                                 is_cow_mapping(vm_flags)) {
811                         /*
812                          * COW mappings require pages in both parent and child
813                          * to be set to read. A previously exclusive entry is
814                          * now shared.
815                          */
816                         entry = make_readable_migration_entry(
817                                                         swp_offset(entry));
818                         pte = swp_entry_to_pte(entry);
819                         if (pte_swp_soft_dirty(*src_pte))
820                                 pte = pte_swp_mksoft_dirty(pte);
821                         if (pte_swp_uffd_wp(*src_pte))
822                                 pte = pte_swp_mkuffd_wp(pte);
823                         set_pte_at(src_mm, addr, src_pte, pte);
824                 }
825         } else if (is_device_private_entry(entry)) {
826                 page = pfn_swap_entry_to_page(entry);
827
828                 /*
829                  * Update rss count even for unaddressable pages, as
830                  * they should treated just like normal pages in this
831                  * respect.
832                  *
833                  * We will likely want to have some new rss counters
834                  * for unaddressable pages, at some point. But for now
835                  * keep things as they are.
836                  */
837                 get_page(page);
838                 rss[mm_counter(page)]++;
839                 /* Cannot fail as these pages cannot get pinned. */
840                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
841
842                 /*
843                  * We do not preserve soft-dirty information, because so
844                  * far, checkpoint/restore is the only feature that
845                  * requires that. And checkpoint/restore does not work
846                  * when a device driver is involved (you cannot easily
847                  * save and restore device driver state).
848                  */
849                 if (is_writable_device_private_entry(entry) &&
850                     is_cow_mapping(vm_flags)) {
851                         entry = make_readable_device_private_entry(
852                                                         swp_offset(entry));
853                         pte = swp_entry_to_pte(entry);
854                         if (pte_swp_uffd_wp(*src_pte))
855                                 pte = pte_swp_mkuffd_wp(pte);
856                         set_pte_at(src_mm, addr, src_pte, pte);
857                 }
858         } else if (is_device_exclusive_entry(entry)) {
859                 /*
860                  * Make device exclusive entries present by restoring the
861                  * original entry then copying as for a present pte. Device
862                  * exclusive entries currently only support private writable
863                  * (ie. COW) mappings.
864                  */
865                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
866                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
867                         return -EBUSY;
868                 return -ENOENT;
869         } else if (is_pte_marker_entry(entry)) {
870                 /*
871                  * We're copying the pgtable should only because dst_vma has
872                  * uffd-wp enabled, do sanity check.
873                  */
874                 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
875                 set_pte_at(dst_mm, addr, dst_pte, pte);
876                 return 0;
877         }
878         if (!userfaultfd_wp(dst_vma))
879                 pte = pte_swp_clear_uffd_wp(pte);
880         set_pte_at(dst_mm, addr, dst_pte, pte);
881         return 0;
882 }
883
884 /*
885  * Copy a present and normal page.
886  *
887  * NOTE! The usual case is that this isn't required;
888  * instead, the caller can just increase the page refcount
889  * and re-use the pte the traditional way.
890  *
891  * And if we need a pre-allocated page but don't yet have
892  * one, return a negative error to let the preallocation
893  * code know so that it can do so outside the page table
894  * lock.
895  */
896 static inline int
897 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
898                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
899                   struct page **prealloc, struct page *page)
900 {
901         struct page *new_page;
902         pte_t pte;
903
904         new_page = *prealloc;
905         if (!new_page)
906                 return -EAGAIN;
907
908         /*
909          * We have a prealloc page, all good!  Take it
910          * over and copy the page & arm it.
911          */
912         *prealloc = NULL;
913         copy_user_highpage(new_page, page, addr, src_vma);
914         __SetPageUptodate(new_page);
915         page_add_new_anon_rmap(new_page, dst_vma, addr);
916         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
917         rss[mm_counter(new_page)]++;
918
919         /* All done, just insert the new page copy in the child */
920         pte = mk_pte(new_page, dst_vma->vm_page_prot);
921         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
922         if (userfaultfd_pte_wp(dst_vma, *src_pte))
923                 /* Uffd-wp needs to be delivered to dest pte as well */
924                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
925         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
926         return 0;
927 }
928
929 /*
930  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
931  * is required to copy this pte.
932  */
933 static inline int
934 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
935                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
936                  struct page **prealloc)
937 {
938         struct mm_struct *src_mm = src_vma->vm_mm;
939         unsigned long vm_flags = src_vma->vm_flags;
940         pte_t pte = *src_pte;
941         struct page *page;
942
943         page = vm_normal_page(src_vma, addr, pte);
944         if (page && PageAnon(page)) {
945                 /*
946                  * If this page may have been pinned by the parent process,
947                  * copy the page immediately for the child so that we'll always
948                  * guarantee the pinned page won't be randomly replaced in the
949                  * future.
950                  */
951                 get_page(page);
952                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
953                         /* Page maybe pinned, we have to copy. */
954                         put_page(page);
955                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
956                                                  addr, rss, prealloc, page);
957                 }
958                 rss[mm_counter(page)]++;
959         } else if (page) {
960                 get_page(page);
961                 page_dup_file_rmap(page, false);
962                 rss[mm_counter(page)]++;
963         }
964
965         /*
966          * If it's a COW mapping, write protect it both
967          * in the parent and the child
968          */
969         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
970                 ptep_set_wrprotect(src_mm, addr, src_pte);
971                 pte = pte_wrprotect(pte);
972         }
973         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
974
975         /*
976          * If it's a shared mapping, mark it clean in
977          * the child
978          */
979         if (vm_flags & VM_SHARED)
980                 pte = pte_mkclean(pte);
981         pte = pte_mkold(pte);
982
983         if (!userfaultfd_wp(dst_vma))
984                 pte = pte_clear_uffd_wp(pte);
985
986         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
987         return 0;
988 }
989
990 static inline struct page *
991 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
992                    unsigned long addr)
993 {
994         struct page *new_page;
995
996         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
997         if (!new_page)
998                 return NULL;
999
1000         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1001                 put_page(new_page);
1002                 return NULL;
1003         }
1004         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1005
1006         return new_page;
1007 }
1008
1009 static int
1010 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1012                unsigned long end)
1013 {
1014         struct mm_struct *dst_mm = dst_vma->vm_mm;
1015         struct mm_struct *src_mm = src_vma->vm_mm;
1016         pte_t *orig_src_pte, *orig_dst_pte;
1017         pte_t *src_pte, *dst_pte;
1018         spinlock_t *src_ptl, *dst_ptl;
1019         int progress, ret = 0;
1020         int rss[NR_MM_COUNTERS];
1021         swp_entry_t entry = (swp_entry_t){0};
1022         struct page *prealloc = NULL;
1023
1024 again:
1025         progress = 0;
1026         init_rss_vec(rss);
1027
1028         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029         if (!dst_pte) {
1030                 ret = -ENOMEM;
1031                 goto out;
1032         }
1033         src_pte = pte_offset_map(src_pmd, addr);
1034         src_ptl = pte_lockptr(src_mm, src_pmd);
1035         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1036         orig_src_pte = src_pte;
1037         orig_dst_pte = dst_pte;
1038         arch_enter_lazy_mmu_mode();
1039
1040         do {
1041                 /*
1042                  * We are holding two locks at this point - either of them
1043                  * could generate latencies in another task on another CPU.
1044                  */
1045                 if (progress >= 32) {
1046                         progress = 0;
1047                         if (need_resched() ||
1048                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1049                                 break;
1050                 }
1051                 if (pte_none(*src_pte)) {
1052                         progress++;
1053                         continue;
1054                 }
1055                 if (unlikely(!pte_present(*src_pte))) {
1056                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1057                                                   dst_pte, src_pte,
1058                                                   dst_vma, src_vma,
1059                                                   addr, rss);
1060                         if (ret == -EIO) {
1061                                 entry = pte_to_swp_entry(*src_pte);
1062                                 break;
1063                         } else if (ret == -EBUSY) {
1064                                 break;
1065                         } else if (!ret) {
1066                                 progress += 8;
1067                                 continue;
1068                         }
1069
1070                         /*
1071                          * Device exclusive entry restored, continue by copying
1072                          * the now present pte.
1073                          */
1074                         WARN_ON_ONCE(ret != -ENOENT);
1075                 }
1076                 /* copy_present_pte() will clear `*prealloc' if consumed */
1077                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1078                                        addr, rss, &prealloc);
1079                 /*
1080                  * If we need a pre-allocated page for this pte, drop the
1081                  * locks, allocate, and try again.
1082                  */
1083                 if (unlikely(ret == -EAGAIN))
1084                         break;
1085                 if (unlikely(prealloc)) {
1086                         /*
1087                          * pre-alloc page cannot be reused by next time so as
1088                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1089                          * will allocate page according to address).  This
1090                          * could only happen if one pinned pte changed.
1091                          */
1092                         put_page(prealloc);
1093                         prealloc = NULL;
1094                 }
1095                 progress += 8;
1096         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1097
1098         arch_leave_lazy_mmu_mode();
1099         spin_unlock(src_ptl);
1100         pte_unmap(orig_src_pte);
1101         add_mm_rss_vec(dst_mm, rss);
1102         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1103         cond_resched();
1104
1105         if (ret == -EIO) {
1106                 VM_WARN_ON_ONCE(!entry.val);
1107                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1108                         ret = -ENOMEM;
1109                         goto out;
1110                 }
1111                 entry.val = 0;
1112         } else if (ret == -EBUSY) {
1113                 goto out;
1114         } else if (ret ==  -EAGAIN) {
1115                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1116                 if (!prealloc)
1117                         return -ENOMEM;
1118         } else if (ret) {
1119                 VM_WARN_ON_ONCE(1);
1120         }
1121
1122         /* We've captured and resolved the error. Reset, try again. */
1123         ret = 0;
1124
1125         if (addr != end)
1126                 goto again;
1127 out:
1128         if (unlikely(prealloc))
1129                 put_page(prealloc);
1130         return ret;
1131 }
1132
1133 static inline int
1134 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1135                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1136                unsigned long end)
1137 {
1138         struct mm_struct *dst_mm = dst_vma->vm_mm;
1139         struct mm_struct *src_mm = src_vma->vm_mm;
1140         pmd_t *src_pmd, *dst_pmd;
1141         unsigned long next;
1142
1143         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1144         if (!dst_pmd)
1145                 return -ENOMEM;
1146         src_pmd = pmd_offset(src_pud, addr);
1147         do {
1148                 next = pmd_addr_end(addr, end);
1149                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1150                         || pmd_devmap(*src_pmd)) {
1151                         int err;
1152                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1153                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1154                                             addr, dst_vma, src_vma);
1155                         if (err == -ENOMEM)
1156                                 return -ENOMEM;
1157                         if (!err)
1158                                 continue;
1159                         /* fall through */
1160                 }
1161                 if (pmd_none_or_clear_bad(src_pmd))
1162                         continue;
1163                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1164                                    addr, next))
1165                         return -ENOMEM;
1166         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1167         return 0;
1168 }
1169
1170 static inline int
1171 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1172                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1173                unsigned long end)
1174 {
1175         struct mm_struct *dst_mm = dst_vma->vm_mm;
1176         struct mm_struct *src_mm = src_vma->vm_mm;
1177         pud_t *src_pud, *dst_pud;
1178         unsigned long next;
1179
1180         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1181         if (!dst_pud)
1182                 return -ENOMEM;
1183         src_pud = pud_offset(src_p4d, addr);
1184         do {
1185                 next = pud_addr_end(addr, end);
1186                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1187                         int err;
1188
1189                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1190                         err = copy_huge_pud(dst_mm, src_mm,
1191                                             dst_pud, src_pud, addr, src_vma);
1192                         if (err == -ENOMEM)
1193                                 return -ENOMEM;
1194                         if (!err)
1195                                 continue;
1196                         /* fall through */
1197                 }
1198                 if (pud_none_or_clear_bad(src_pud))
1199                         continue;
1200                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1201                                    addr, next))
1202                         return -ENOMEM;
1203         } while (dst_pud++, src_pud++, addr = next, addr != end);
1204         return 0;
1205 }
1206
1207 static inline int
1208 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1209                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1210                unsigned long end)
1211 {
1212         struct mm_struct *dst_mm = dst_vma->vm_mm;
1213         p4d_t *src_p4d, *dst_p4d;
1214         unsigned long next;
1215
1216         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1217         if (!dst_p4d)
1218                 return -ENOMEM;
1219         src_p4d = p4d_offset(src_pgd, addr);
1220         do {
1221                 next = p4d_addr_end(addr, end);
1222                 if (p4d_none_or_clear_bad(src_p4d))
1223                         continue;
1224                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1225                                    addr, next))
1226                         return -ENOMEM;
1227         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1228         return 0;
1229 }
1230
1231 /*
1232  * Return true if the vma needs to copy the pgtable during this fork().  Return
1233  * false when we can speed up fork() by allowing lazy page faults later until
1234  * when the child accesses the memory range.
1235  */
1236 static bool
1237 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1238 {
1239         /*
1240          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1241          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1242          * contains uffd-wp protection information, that's something we can't
1243          * retrieve from page cache, and skip copying will lose those info.
1244          */
1245         if (userfaultfd_wp(dst_vma))
1246                 return true;
1247
1248         if (src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP))
1249                 return true;
1250
1251         if (src_vma->anon_vma)
1252                 return true;
1253
1254         /*
1255          * Don't copy ptes where a page fault will fill them correctly.  Fork
1256          * becomes much lighter when there are big shared or private readonly
1257          * mappings. The tradeoff is that copy_page_range is more efficient
1258          * than faulting.
1259          */
1260         return false;
1261 }
1262
1263 int
1264 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1265 {
1266         pgd_t *src_pgd, *dst_pgd;
1267         unsigned long next;
1268         unsigned long addr = src_vma->vm_start;
1269         unsigned long end = src_vma->vm_end;
1270         struct mm_struct *dst_mm = dst_vma->vm_mm;
1271         struct mm_struct *src_mm = src_vma->vm_mm;
1272         struct mmu_notifier_range range;
1273         bool is_cow;
1274         int ret;
1275
1276         if (!vma_needs_copy(dst_vma, src_vma))
1277                 return 0;
1278
1279         if (is_vm_hugetlb_page(src_vma))
1280                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1281
1282         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1283                 /*
1284                  * We do not free on error cases below as remove_vma
1285                  * gets called on error from higher level routine
1286                  */
1287                 ret = track_pfn_copy(src_vma);
1288                 if (ret)
1289                         return ret;
1290         }
1291
1292         /*
1293          * We need to invalidate the secondary MMU mappings only when
1294          * there could be a permission downgrade on the ptes of the
1295          * parent mm. And a permission downgrade will only happen if
1296          * is_cow_mapping() returns true.
1297          */
1298         is_cow = is_cow_mapping(src_vma->vm_flags);
1299
1300         if (is_cow) {
1301                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1302                                         0, src_vma, src_mm, addr, end);
1303                 mmu_notifier_invalidate_range_start(&range);
1304                 /*
1305                  * Disabling preemption is not needed for the write side, as
1306                  * the read side doesn't spin, but goes to the mmap_lock.
1307                  *
1308                  * Use the raw variant of the seqcount_t write API to avoid
1309                  * lockdep complaining about preemptibility.
1310                  */
1311                 mmap_assert_write_locked(src_mm);
1312                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1313         }
1314
1315         ret = 0;
1316         dst_pgd = pgd_offset(dst_mm, addr);
1317         src_pgd = pgd_offset(src_mm, addr);
1318         do {
1319                 next = pgd_addr_end(addr, end);
1320                 if (pgd_none_or_clear_bad(src_pgd))
1321                         continue;
1322                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1323                                             addr, next))) {
1324                         ret = -ENOMEM;
1325                         break;
1326                 }
1327         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1328
1329         if (is_cow) {
1330                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1331                 mmu_notifier_invalidate_range_end(&range);
1332         }
1333         return ret;
1334 }
1335
1336 /*
1337  * Parameter block passed down to zap_pte_range in exceptional cases.
1338  */
1339 struct zap_details {
1340         struct folio *single_folio;     /* Locked folio to be unmapped */
1341         bool even_cows;                 /* Zap COWed private pages too? */
1342         zap_flags_t zap_flags;          /* Extra flags for zapping */
1343 };
1344
1345 /* Whether we should zap all COWed (private) pages too */
1346 static inline bool should_zap_cows(struct zap_details *details)
1347 {
1348         /* By default, zap all pages */
1349         if (!details)
1350                 return true;
1351
1352         /* Or, we zap COWed pages only if the caller wants to */
1353         return details->even_cows;
1354 }
1355
1356 /* Decides whether we should zap this page with the page pointer specified */
1357 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1358 {
1359         /* If we can make a decision without *page.. */
1360         if (should_zap_cows(details))
1361                 return true;
1362
1363         /* E.g. the caller passes NULL for the case of a zero page */
1364         if (!page)
1365                 return true;
1366
1367         /* Otherwise we should only zap non-anon pages */
1368         return !PageAnon(page);
1369 }
1370
1371 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1372 {
1373         if (!details)
1374                 return false;
1375
1376         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1377 }
1378
1379 /*
1380  * This function makes sure that we'll replace the none pte with an uffd-wp
1381  * swap special pte marker when necessary. Must be with the pgtable lock held.
1382  */
1383 static inline void
1384 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1385                               unsigned long addr, pte_t *pte,
1386                               struct zap_details *details, pte_t pteval)
1387 {
1388         if (zap_drop_file_uffd_wp(details))
1389                 return;
1390
1391         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pmd_t *pmd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         struct mm_struct *mm = tlb->mm;
1400         int force_flush = 0;
1401         int rss[NR_MM_COUNTERS];
1402         spinlock_t *ptl;
1403         pte_t *start_pte;
1404         pte_t *pte;
1405         swp_entry_t entry;
1406
1407         tlb_change_page_size(tlb, PAGE_SIZE);
1408 again:
1409         init_rss_vec(rss);
1410         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1411         pte = start_pte;
1412         flush_tlb_batched_pending(mm);
1413         arch_enter_lazy_mmu_mode();
1414         do {
1415                 pte_t ptent = *pte;
1416                 struct page *page;
1417
1418                 if (pte_none(ptent))
1419                         continue;
1420
1421                 if (need_resched())
1422                         break;
1423
1424                 if (pte_present(ptent)) {
1425                         page = vm_normal_page(vma, addr, ptent);
1426                         if (unlikely(!should_zap_page(details, page)))
1427                                 continue;
1428                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1429                                                         tlb->fullmm);
1430                         tlb_remove_tlb_entry(tlb, pte, addr);
1431                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1432                                                       ptent);
1433                         if (unlikely(!page))
1434                                 continue;
1435
1436                         if (!PageAnon(page)) {
1437                                 if (pte_dirty(ptent)) {
1438                                         force_flush = 1;
1439                                         set_page_dirty(page);
1440                                 }
1441                                 if (pte_young(ptent) &&
1442                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1443                                         mark_page_accessed(page);
1444                         }
1445                         rss[mm_counter(page)]--;
1446                         page_remove_rmap(page, vma, false);
1447                         if (unlikely(page_mapcount(page) < 0))
1448                                 print_bad_pte(vma, addr, ptent, page);
1449                         if (unlikely(__tlb_remove_page(tlb, page))) {
1450                                 force_flush = 1;
1451                                 addr += PAGE_SIZE;
1452                                 break;
1453                         }
1454                         continue;
1455                 }
1456
1457                 entry = pte_to_swp_entry(ptent);
1458                 if (is_device_private_entry(entry) ||
1459                     is_device_exclusive_entry(entry)) {
1460                         page = pfn_swap_entry_to_page(entry);
1461                         if (unlikely(!should_zap_page(details, page)))
1462                                 continue;
1463                         /*
1464                          * Both device private/exclusive mappings should only
1465                          * work with anonymous page so far, so we don't need to
1466                          * consider uffd-wp bit when zap. For more information,
1467                          * see zap_install_uffd_wp_if_needed().
1468                          */
1469                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1470                         rss[mm_counter(page)]--;
1471                         if (is_device_private_entry(entry))
1472                                 page_remove_rmap(page, vma, false);
1473                         put_page(page);
1474                 } else if (!non_swap_entry(entry)) {
1475                         /* Genuine swap entry, hence a private anon page */
1476                         if (!should_zap_cows(details))
1477                                 continue;
1478                         rss[MM_SWAPENTS]--;
1479                         if (unlikely(!free_swap_and_cache(entry)))
1480                                 print_bad_pte(vma, addr, ptent, NULL);
1481                 } else if (is_migration_entry(entry)) {
1482                         page = pfn_swap_entry_to_page(entry);
1483                         if (!should_zap_page(details, page))
1484                                 continue;
1485                         rss[mm_counter(page)]--;
1486                 } else if (pte_marker_entry_uffd_wp(entry)) {
1487                         /* Only drop the uffd-wp marker if explicitly requested */
1488                         if (!zap_drop_file_uffd_wp(details))
1489                                 continue;
1490                 } else if (is_hwpoison_entry(entry) ||
1491                            is_swapin_error_entry(entry)) {
1492                         if (!should_zap_cows(details))
1493                                 continue;
1494                 } else {
1495                         /* We should have covered all the swap entry types */
1496                         WARN_ON_ONCE(1);
1497                 }
1498                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1499                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1500         } while (pte++, addr += PAGE_SIZE, addr != end);
1501
1502         add_mm_rss_vec(mm, rss);
1503         arch_leave_lazy_mmu_mode();
1504
1505         /* Do the actual TLB flush before dropping ptl */
1506         if (force_flush)
1507                 tlb_flush_mmu_tlbonly(tlb);
1508         pte_unmap_unlock(start_pte, ptl);
1509
1510         /*
1511          * If we forced a TLB flush (either due to running out of
1512          * batch buffers or because we needed to flush dirty TLB
1513          * entries before releasing the ptl), free the batched
1514          * memory too. Restart if we didn't do everything.
1515          */
1516         if (force_flush) {
1517                 force_flush = 0;
1518                 tlb_flush_mmu(tlb);
1519         }
1520
1521         if (addr != end) {
1522                 cond_resched();
1523                 goto again;
1524         }
1525
1526         return addr;
1527 }
1528
1529 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1530                                 struct vm_area_struct *vma, pud_t *pud,
1531                                 unsigned long addr, unsigned long end,
1532                                 struct zap_details *details)
1533 {
1534         pmd_t *pmd;
1535         unsigned long next;
1536
1537         pmd = pmd_offset(pud, addr);
1538         do {
1539                 next = pmd_addr_end(addr, end);
1540                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1541                         if (next - addr != HPAGE_PMD_SIZE)
1542                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1543                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1544                                 goto next;
1545                         /* fall through */
1546                 } else if (details && details->single_folio &&
1547                            folio_test_pmd_mappable(details->single_folio) &&
1548                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1549                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1550                         /*
1551                          * Take and drop THP pmd lock so that we cannot return
1552                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1553                          * but not yet decremented compound_mapcount().
1554                          */
1555                         spin_unlock(ptl);
1556                 }
1557
1558                 /*
1559                  * Here there can be other concurrent MADV_DONTNEED or
1560                  * trans huge page faults running, and if the pmd is
1561                  * none or trans huge it can change under us. This is
1562                  * because MADV_DONTNEED holds the mmap_lock in read
1563                  * mode.
1564                  */
1565                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1566                         goto next;
1567                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1568 next:
1569                 cond_resched();
1570         } while (pmd++, addr = next, addr != end);
1571
1572         return addr;
1573 }
1574
1575 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1576                                 struct vm_area_struct *vma, p4d_t *p4d,
1577                                 unsigned long addr, unsigned long end,
1578                                 struct zap_details *details)
1579 {
1580         pud_t *pud;
1581         unsigned long next;
1582
1583         pud = pud_offset(p4d, addr);
1584         do {
1585                 next = pud_addr_end(addr, end);
1586                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1587                         if (next - addr != HPAGE_PUD_SIZE) {
1588                                 mmap_assert_locked(tlb->mm);
1589                                 split_huge_pud(vma, pud, addr);
1590                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1591                                 goto next;
1592                         /* fall through */
1593                 }
1594                 if (pud_none_or_clear_bad(pud))
1595                         continue;
1596                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1597 next:
1598                 cond_resched();
1599         } while (pud++, addr = next, addr != end);
1600
1601         return addr;
1602 }
1603
1604 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1605                                 struct vm_area_struct *vma, pgd_t *pgd,
1606                                 unsigned long addr, unsigned long end,
1607                                 struct zap_details *details)
1608 {
1609         p4d_t *p4d;
1610         unsigned long next;
1611
1612         p4d = p4d_offset(pgd, addr);
1613         do {
1614                 next = p4d_addr_end(addr, end);
1615                 if (p4d_none_or_clear_bad(p4d))
1616                         continue;
1617                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1618         } while (p4d++, addr = next, addr != end);
1619
1620         return addr;
1621 }
1622
1623 void unmap_page_range(struct mmu_gather *tlb,
1624                              struct vm_area_struct *vma,
1625                              unsigned long addr, unsigned long end,
1626                              struct zap_details *details)
1627 {
1628         pgd_t *pgd;
1629         unsigned long next;
1630
1631         BUG_ON(addr >= end);
1632         tlb_start_vma(tlb, vma);
1633         pgd = pgd_offset(vma->vm_mm, addr);
1634         do {
1635                 next = pgd_addr_end(addr, end);
1636                 if (pgd_none_or_clear_bad(pgd))
1637                         continue;
1638                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1639         } while (pgd++, addr = next, addr != end);
1640         tlb_end_vma(tlb, vma);
1641 }
1642
1643
1644 static void unmap_single_vma(struct mmu_gather *tlb,
1645                 struct vm_area_struct *vma, unsigned long start_addr,
1646                 unsigned long end_addr,
1647                 struct zap_details *details)
1648 {
1649         unsigned long start = max(vma->vm_start, start_addr);
1650         unsigned long end;
1651
1652         if (start >= vma->vm_end)
1653                 return;
1654         end = min(vma->vm_end, end_addr);
1655         if (end <= vma->vm_start)
1656                 return;
1657
1658         if (vma->vm_file)
1659                 uprobe_munmap(vma, start, end);
1660
1661         if (unlikely(vma->vm_flags & VM_PFNMAP))
1662                 untrack_pfn(vma, 0, 0);
1663
1664         if (start != end) {
1665                 if (unlikely(is_vm_hugetlb_page(vma))) {
1666                         /*
1667                          * It is undesirable to test vma->vm_file as it
1668                          * should be non-null for valid hugetlb area.
1669                          * However, vm_file will be NULL in the error
1670                          * cleanup path of mmap_region. When
1671                          * hugetlbfs ->mmap method fails,
1672                          * mmap_region() nullifies vma->vm_file
1673                          * before calling this function to clean up.
1674                          * Since no pte has actually been setup, it is
1675                          * safe to do nothing in this case.
1676                          */
1677                         if (vma->vm_file) {
1678                                 zap_flags_t zap_flags = details ?
1679                                     details->zap_flags : 0;
1680                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1681                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1682                                                              NULL, zap_flags);
1683                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1684                         }
1685                 } else
1686                         unmap_page_range(tlb, vma, start, end, details);
1687         }
1688 }
1689
1690 /**
1691  * unmap_vmas - unmap a range of memory covered by a list of vma's
1692  * @tlb: address of the caller's struct mmu_gather
1693  * @vma: the starting vma
1694  * @start_addr: virtual address at which to start unmapping
1695  * @end_addr: virtual address at which to end unmapping
1696  *
1697  * Unmap all pages in the vma list.
1698  *
1699  * Only addresses between `start' and `end' will be unmapped.
1700  *
1701  * The VMA list must be sorted in ascending virtual address order.
1702  *
1703  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1704  * range after unmap_vmas() returns.  So the only responsibility here is to
1705  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1706  * drops the lock and schedules.
1707  */
1708 void unmap_vmas(struct mmu_gather *tlb,
1709                 struct vm_area_struct *vma, unsigned long start_addr,
1710                 unsigned long end_addr)
1711 {
1712         struct mmu_notifier_range range;
1713         struct zap_details details = {
1714                 .zap_flags = ZAP_FLAG_DROP_MARKER,
1715                 /* Careful - we need to zap private pages too! */
1716                 .even_cows = true,
1717         };
1718
1719         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1720                                 start_addr, end_addr);
1721         mmu_notifier_invalidate_range_start(&range);
1722         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1723                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1724         mmu_notifier_invalidate_range_end(&range);
1725 }
1726
1727 /**
1728  * zap_page_range - remove user pages in a given range
1729  * @vma: vm_area_struct holding the applicable pages
1730  * @start: starting address of pages to zap
1731  * @size: number of bytes to zap
1732  *
1733  * Caller must protect the VMA list
1734  */
1735 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1736                 unsigned long size)
1737 {
1738         struct mmu_notifier_range range;
1739         struct mmu_gather tlb;
1740
1741         lru_add_drain();
1742         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1743                                 start, start + size);
1744         tlb_gather_mmu(&tlb, vma->vm_mm);
1745         update_hiwater_rss(vma->vm_mm);
1746         mmu_notifier_invalidate_range_start(&range);
1747         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1748                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1749         mmu_notifier_invalidate_range_end(&range);
1750         tlb_finish_mmu(&tlb);
1751 }
1752
1753 /**
1754  * zap_page_range_single - remove user pages in a given range
1755  * @vma: vm_area_struct holding the applicable pages
1756  * @address: starting address of pages to zap
1757  * @size: number of bytes to zap
1758  * @details: details of shared cache invalidation
1759  *
1760  * The range must fit into one VMA.
1761  */
1762 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1763                 unsigned long size, struct zap_details *details)
1764 {
1765         struct mmu_notifier_range range;
1766         struct mmu_gather tlb;
1767
1768         lru_add_drain();
1769         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1770                                 address, address + size);
1771         tlb_gather_mmu(&tlb, vma->vm_mm);
1772         update_hiwater_rss(vma->vm_mm);
1773         mmu_notifier_invalidate_range_start(&range);
1774         unmap_single_vma(&tlb, vma, address, range.end, details);
1775         mmu_notifier_invalidate_range_end(&range);
1776         tlb_finish_mmu(&tlb);
1777 }
1778
1779 /**
1780  * zap_vma_ptes - remove ptes mapping the vma
1781  * @vma: vm_area_struct holding ptes to be zapped
1782  * @address: starting address of pages to zap
1783  * @size: number of bytes to zap
1784  *
1785  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1786  *
1787  * The entire address range must be fully contained within the vma.
1788  *
1789  */
1790 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1791                 unsigned long size)
1792 {
1793         if (!range_in_vma(vma, address, address + size) ||
1794                         !(vma->vm_flags & VM_PFNMAP))
1795                 return;
1796
1797         zap_page_range_single(vma, address, size, NULL);
1798 }
1799 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1800
1801 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1802 {
1803         pgd_t *pgd;
1804         p4d_t *p4d;
1805         pud_t *pud;
1806         pmd_t *pmd;
1807
1808         pgd = pgd_offset(mm, addr);
1809         p4d = p4d_alloc(mm, pgd, addr);
1810         if (!p4d)
1811                 return NULL;
1812         pud = pud_alloc(mm, p4d, addr);
1813         if (!pud)
1814                 return NULL;
1815         pmd = pmd_alloc(mm, pud, addr);
1816         if (!pmd)
1817                 return NULL;
1818
1819         VM_BUG_ON(pmd_trans_huge(*pmd));
1820         return pmd;
1821 }
1822
1823 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1824                         spinlock_t **ptl)
1825 {
1826         pmd_t *pmd = walk_to_pmd(mm, addr);
1827
1828         if (!pmd)
1829                 return NULL;
1830         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1831 }
1832
1833 static int validate_page_before_insert(struct page *page)
1834 {
1835         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1836                 return -EINVAL;
1837         flush_dcache_page(page);
1838         return 0;
1839 }
1840
1841 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1842                         unsigned long addr, struct page *page, pgprot_t prot)
1843 {
1844         if (!pte_none(*pte))
1845                 return -EBUSY;
1846         /* Ok, finally just insert the thing.. */
1847         get_page(page);
1848         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1849         page_add_file_rmap(page, vma, false);
1850         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1851         return 0;
1852 }
1853
1854 /*
1855  * This is the old fallback for page remapping.
1856  *
1857  * For historical reasons, it only allows reserved pages. Only
1858  * old drivers should use this, and they needed to mark their
1859  * pages reserved for the old functions anyway.
1860  */
1861 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1862                         struct page *page, pgprot_t prot)
1863 {
1864         int retval;
1865         pte_t *pte;
1866         spinlock_t *ptl;
1867
1868         retval = validate_page_before_insert(page);
1869         if (retval)
1870                 goto out;
1871         retval = -ENOMEM;
1872         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1873         if (!pte)
1874                 goto out;
1875         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1876         pte_unmap_unlock(pte, ptl);
1877 out:
1878         return retval;
1879 }
1880
1881 #ifdef pte_index
1882 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1883                         unsigned long addr, struct page *page, pgprot_t prot)
1884 {
1885         int err;
1886
1887         if (!page_count(page))
1888                 return -EINVAL;
1889         err = validate_page_before_insert(page);
1890         if (err)
1891                 return err;
1892         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1893 }
1894
1895 /* insert_pages() amortizes the cost of spinlock operations
1896  * when inserting pages in a loop. Arch *must* define pte_index.
1897  */
1898 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1899                         struct page **pages, unsigned long *num, pgprot_t prot)
1900 {
1901         pmd_t *pmd = NULL;
1902         pte_t *start_pte, *pte;
1903         spinlock_t *pte_lock;
1904         struct mm_struct *const mm = vma->vm_mm;
1905         unsigned long curr_page_idx = 0;
1906         unsigned long remaining_pages_total = *num;
1907         unsigned long pages_to_write_in_pmd;
1908         int ret;
1909 more:
1910         ret = -EFAULT;
1911         pmd = walk_to_pmd(mm, addr);
1912         if (!pmd)
1913                 goto out;
1914
1915         pages_to_write_in_pmd = min_t(unsigned long,
1916                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1917
1918         /* Allocate the PTE if necessary; takes PMD lock once only. */
1919         ret = -ENOMEM;
1920         if (pte_alloc(mm, pmd))
1921                 goto out;
1922
1923         while (pages_to_write_in_pmd) {
1924                 int pte_idx = 0;
1925                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1926
1927                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1928                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1929                         int err = insert_page_in_batch_locked(vma, pte,
1930                                 addr, pages[curr_page_idx], prot);
1931                         if (unlikely(err)) {
1932                                 pte_unmap_unlock(start_pte, pte_lock);
1933                                 ret = err;
1934                                 remaining_pages_total -= pte_idx;
1935                                 goto out;
1936                         }
1937                         addr += PAGE_SIZE;
1938                         ++curr_page_idx;
1939                 }
1940                 pte_unmap_unlock(start_pte, pte_lock);
1941                 pages_to_write_in_pmd -= batch_size;
1942                 remaining_pages_total -= batch_size;
1943         }
1944         if (remaining_pages_total)
1945                 goto more;
1946         ret = 0;
1947 out:
1948         *num = remaining_pages_total;
1949         return ret;
1950 }
1951 #endif  /* ifdef pte_index */
1952
1953 /**
1954  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1955  * @vma: user vma to map to
1956  * @addr: target start user address of these pages
1957  * @pages: source kernel pages
1958  * @num: in: number of pages to map. out: number of pages that were *not*
1959  * mapped. (0 means all pages were successfully mapped).
1960  *
1961  * Preferred over vm_insert_page() when inserting multiple pages.
1962  *
1963  * In case of error, we may have mapped a subset of the provided
1964  * pages. It is the caller's responsibility to account for this case.
1965  *
1966  * The same restrictions apply as in vm_insert_page().
1967  */
1968 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1969                         struct page **pages, unsigned long *num)
1970 {
1971 #ifdef pte_index
1972         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1973
1974         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1975                 return -EFAULT;
1976         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1977                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1978                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1979                 vma->vm_flags |= VM_MIXEDMAP;
1980         }
1981         /* Defer page refcount checking till we're about to map that page. */
1982         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1983 #else
1984         unsigned long idx = 0, pgcount = *num;
1985         int err = -EINVAL;
1986
1987         for (; idx < pgcount; ++idx) {
1988                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1989                 if (err)
1990                         break;
1991         }
1992         *num = pgcount - idx;
1993         return err;
1994 #endif  /* ifdef pte_index */
1995 }
1996 EXPORT_SYMBOL(vm_insert_pages);
1997
1998 /**
1999  * vm_insert_page - insert single page into user vma
2000  * @vma: user vma to map to
2001  * @addr: target user address of this page
2002  * @page: source kernel page
2003  *
2004  * This allows drivers to insert individual pages they've allocated
2005  * into a user vma.
2006  *
2007  * The page has to be a nice clean _individual_ kernel allocation.
2008  * If you allocate a compound page, you need to have marked it as
2009  * such (__GFP_COMP), or manually just split the page up yourself
2010  * (see split_page()).
2011  *
2012  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2013  * took an arbitrary page protection parameter. This doesn't allow
2014  * that. Your vma protection will have to be set up correctly, which
2015  * means that if you want a shared writable mapping, you'd better
2016  * ask for a shared writable mapping!
2017  *
2018  * The page does not need to be reserved.
2019  *
2020  * Usually this function is called from f_op->mmap() handler
2021  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2022  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2023  * function from other places, for example from page-fault handler.
2024  *
2025  * Return: %0 on success, negative error code otherwise.
2026  */
2027 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2028                         struct page *page)
2029 {
2030         if (addr < vma->vm_start || addr >= vma->vm_end)
2031                 return -EFAULT;
2032         if (!page_count(page))
2033                 return -EINVAL;
2034         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2035                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2036                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2037                 vma->vm_flags |= VM_MIXEDMAP;
2038         }
2039         return insert_page(vma, addr, page, vma->vm_page_prot);
2040 }
2041 EXPORT_SYMBOL(vm_insert_page);
2042
2043 /*
2044  * __vm_map_pages - maps range of kernel pages into user vma
2045  * @vma: user vma to map to
2046  * @pages: pointer to array of source kernel pages
2047  * @num: number of pages in page array
2048  * @offset: user's requested vm_pgoff
2049  *
2050  * This allows drivers to map range of kernel pages into a user vma.
2051  *
2052  * Return: 0 on success and error code otherwise.
2053  */
2054 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2055                                 unsigned long num, unsigned long offset)
2056 {
2057         unsigned long count = vma_pages(vma);
2058         unsigned long uaddr = vma->vm_start;
2059         int ret, i;
2060
2061         /* Fail if the user requested offset is beyond the end of the object */
2062         if (offset >= num)
2063                 return -ENXIO;
2064
2065         /* Fail if the user requested size exceeds available object size */
2066         if (count > num - offset)
2067                 return -ENXIO;
2068
2069         for (i = 0; i < count; i++) {
2070                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2071                 if (ret < 0)
2072                         return ret;
2073                 uaddr += PAGE_SIZE;
2074         }
2075
2076         return 0;
2077 }
2078
2079 /**
2080  * vm_map_pages - maps range of kernel pages starts with non zero offset
2081  * @vma: user vma to map to
2082  * @pages: pointer to array of source kernel pages
2083  * @num: number of pages in page array
2084  *
2085  * Maps an object consisting of @num pages, catering for the user's
2086  * requested vm_pgoff
2087  *
2088  * If we fail to insert any page into the vma, the function will return
2089  * immediately leaving any previously inserted pages present.  Callers
2090  * from the mmap handler may immediately return the error as their caller
2091  * will destroy the vma, removing any successfully inserted pages. Other
2092  * callers should make their own arrangements for calling unmap_region().
2093  *
2094  * Context: Process context. Called by mmap handlers.
2095  * Return: 0 on success and error code otherwise.
2096  */
2097 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2098                                 unsigned long num)
2099 {
2100         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2101 }
2102 EXPORT_SYMBOL(vm_map_pages);
2103
2104 /**
2105  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2106  * @vma: user vma to map to
2107  * @pages: pointer to array of source kernel pages
2108  * @num: number of pages in page array
2109  *
2110  * Similar to vm_map_pages(), except that it explicitly sets the offset
2111  * to 0. This function is intended for the drivers that did not consider
2112  * vm_pgoff.
2113  *
2114  * Context: Process context. Called by mmap handlers.
2115  * Return: 0 on success and error code otherwise.
2116  */
2117 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2118                                 unsigned long num)
2119 {
2120         return __vm_map_pages(vma, pages, num, 0);
2121 }
2122 EXPORT_SYMBOL(vm_map_pages_zero);
2123
2124 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2125                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2126 {
2127         struct mm_struct *mm = vma->vm_mm;
2128         pte_t *pte, entry;
2129         spinlock_t *ptl;
2130
2131         pte = get_locked_pte(mm, addr, &ptl);
2132         if (!pte)
2133                 return VM_FAULT_OOM;
2134         if (!pte_none(*pte)) {
2135                 if (mkwrite) {
2136                         /*
2137                          * For read faults on private mappings the PFN passed
2138                          * in may not match the PFN we have mapped if the
2139                          * mapped PFN is a writeable COW page.  In the mkwrite
2140                          * case we are creating a writable PTE for a shared
2141                          * mapping and we expect the PFNs to match. If they
2142                          * don't match, we are likely racing with block
2143                          * allocation and mapping invalidation so just skip the
2144                          * update.
2145                          */
2146                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2147                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2148                                 goto out_unlock;
2149                         }
2150                         entry = pte_mkyoung(*pte);
2151                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2153                                 update_mmu_cache(vma, addr, pte);
2154                 }
2155                 goto out_unlock;
2156         }
2157
2158         /* Ok, finally just insert the thing.. */
2159         if (pfn_t_devmap(pfn))
2160                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2161         else
2162                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2163
2164         if (mkwrite) {
2165                 entry = pte_mkyoung(entry);
2166                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167         }
2168
2169         set_pte_at(mm, addr, pte, entry);
2170         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2171
2172 out_unlock:
2173         pte_unmap_unlock(pte, ptl);
2174         return VM_FAULT_NOPAGE;
2175 }
2176
2177 /**
2178  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2179  * @vma: user vma to map to
2180  * @addr: target user address of this page
2181  * @pfn: source kernel pfn
2182  * @pgprot: pgprot flags for the inserted page
2183  *
2184  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2185  * to override pgprot on a per-page basis.
2186  *
2187  * This only makes sense for IO mappings, and it makes no sense for
2188  * COW mappings.  In general, using multiple vmas is preferable;
2189  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2190  * impractical.
2191  *
2192  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2193  * a value of @pgprot different from that of @vma->vm_page_prot.
2194  *
2195  * Context: Process context.  May allocate using %GFP_KERNEL.
2196  * Return: vm_fault_t value.
2197  */
2198 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2199                         unsigned long pfn, pgprot_t pgprot)
2200 {
2201         /*
2202          * Technically, architectures with pte_special can avoid all these
2203          * restrictions (same for remap_pfn_range).  However we would like
2204          * consistency in testing and feature parity among all, so we should
2205          * try to keep these invariants in place for everybody.
2206          */
2207         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2208         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2209                                                 (VM_PFNMAP|VM_MIXEDMAP));
2210         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2211         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2212
2213         if (addr < vma->vm_start || addr >= vma->vm_end)
2214                 return VM_FAULT_SIGBUS;
2215
2216         if (!pfn_modify_allowed(pfn, pgprot))
2217                 return VM_FAULT_SIGBUS;
2218
2219         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2220
2221         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2222                         false);
2223 }
2224 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2225
2226 /**
2227  * vmf_insert_pfn - insert single pfn into user vma
2228  * @vma: user vma to map to
2229  * @addr: target user address of this page
2230  * @pfn: source kernel pfn
2231  *
2232  * Similar to vm_insert_page, this allows drivers to insert individual pages
2233  * they've allocated into a user vma. Same comments apply.
2234  *
2235  * This function should only be called from a vm_ops->fault handler, and
2236  * in that case the handler should return the result of this function.
2237  *
2238  * vma cannot be a COW mapping.
2239  *
2240  * As this is called only for pages that do not currently exist, we
2241  * do not need to flush old virtual caches or the TLB.
2242  *
2243  * Context: Process context.  May allocate using %GFP_KERNEL.
2244  * Return: vm_fault_t value.
2245  */
2246 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2247                         unsigned long pfn)
2248 {
2249         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2250 }
2251 EXPORT_SYMBOL(vmf_insert_pfn);
2252
2253 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2254 {
2255         /* these checks mirror the abort conditions in vm_normal_page */
2256         if (vma->vm_flags & VM_MIXEDMAP)
2257                 return true;
2258         if (pfn_t_devmap(pfn))
2259                 return true;
2260         if (pfn_t_special(pfn))
2261                 return true;
2262         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2263                 return true;
2264         return false;
2265 }
2266
2267 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2268                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2269                 bool mkwrite)
2270 {
2271         int err;
2272
2273         BUG_ON(!vm_mixed_ok(vma, pfn));
2274
2275         if (addr < vma->vm_start || addr >= vma->vm_end)
2276                 return VM_FAULT_SIGBUS;
2277
2278         track_pfn_insert(vma, &pgprot, pfn);
2279
2280         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2281                 return VM_FAULT_SIGBUS;
2282
2283         /*
2284          * If we don't have pte special, then we have to use the pfn_valid()
2285          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2286          * refcount the page if pfn_valid is true (hence insert_page rather
2287          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2288          * without pte special, it would there be refcounted as a normal page.
2289          */
2290         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2291             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2292                 struct page *page;
2293
2294                 /*
2295                  * At this point we are committed to insert_page()
2296                  * regardless of whether the caller specified flags that
2297                  * result in pfn_t_has_page() == false.
2298                  */
2299                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2300                 err = insert_page(vma, addr, page, pgprot);
2301         } else {
2302                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2303         }
2304
2305         if (err == -ENOMEM)
2306                 return VM_FAULT_OOM;
2307         if (err < 0 && err != -EBUSY)
2308                 return VM_FAULT_SIGBUS;
2309
2310         return VM_FAULT_NOPAGE;
2311 }
2312
2313 /**
2314  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2315  * @vma: user vma to map to
2316  * @addr: target user address of this page
2317  * @pfn: source kernel pfn
2318  * @pgprot: pgprot flags for the inserted page
2319  *
2320  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2321  * to override pgprot on a per-page basis.
2322  *
2323  * Typically this function should be used by drivers to set caching- and
2324  * encryption bits different than those of @vma->vm_page_prot, because
2325  * the caching- or encryption mode may not be known at mmap() time.
2326  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2327  * to set caching and encryption bits for those vmas (except for COW pages).
2328  * This is ensured by core vm only modifying these page table entries using
2329  * functions that don't touch caching- or encryption bits, using pte_modify()
2330  * if needed. (See for example mprotect()).
2331  * Also when new page-table entries are created, this is only done using the
2332  * fault() callback, and never using the value of vma->vm_page_prot,
2333  * except for page-table entries that point to anonymous pages as the result
2334  * of COW.
2335  *
2336  * Context: Process context.  May allocate using %GFP_KERNEL.
2337  * Return: vm_fault_t value.
2338  */
2339 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2340                                  pfn_t pfn, pgprot_t pgprot)
2341 {
2342         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2343 }
2344 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2345
2346 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2347                 pfn_t pfn)
2348 {
2349         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2350 }
2351 EXPORT_SYMBOL(vmf_insert_mixed);
2352
2353 /*
2354  *  If the insertion of PTE failed because someone else already added a
2355  *  different entry in the mean time, we treat that as success as we assume
2356  *  the same entry was actually inserted.
2357  */
2358 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2359                 unsigned long addr, pfn_t pfn)
2360 {
2361         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2362 }
2363 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2364
2365 /*
2366  * maps a range of physical memory into the requested pages. the old
2367  * mappings are removed. any references to nonexistent pages results
2368  * in null mappings (currently treated as "copy-on-access")
2369  */
2370 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371                         unsigned long addr, unsigned long end,
2372                         unsigned long pfn, pgprot_t prot)
2373 {
2374         pte_t *pte, *mapped_pte;
2375         spinlock_t *ptl;
2376         int err = 0;
2377
2378         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2379         if (!pte)
2380                 return -ENOMEM;
2381         arch_enter_lazy_mmu_mode();
2382         do {
2383                 BUG_ON(!pte_none(*pte));
2384                 if (!pfn_modify_allowed(pfn, prot)) {
2385                         err = -EACCES;
2386                         break;
2387                 }
2388                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2389                 pfn++;
2390         } while (pte++, addr += PAGE_SIZE, addr != end);
2391         arch_leave_lazy_mmu_mode();
2392         pte_unmap_unlock(mapped_pte, ptl);
2393         return err;
2394 }
2395
2396 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2397                         unsigned long addr, unsigned long end,
2398                         unsigned long pfn, pgprot_t prot)
2399 {
2400         pmd_t *pmd;
2401         unsigned long next;
2402         int err;
2403
2404         pfn -= addr >> PAGE_SHIFT;
2405         pmd = pmd_alloc(mm, pud, addr);
2406         if (!pmd)
2407                 return -ENOMEM;
2408         VM_BUG_ON(pmd_trans_huge(*pmd));
2409         do {
2410                 next = pmd_addr_end(addr, end);
2411                 err = remap_pte_range(mm, pmd, addr, next,
2412                                 pfn + (addr >> PAGE_SHIFT), prot);
2413                 if (err)
2414                         return err;
2415         } while (pmd++, addr = next, addr != end);
2416         return 0;
2417 }
2418
2419 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2420                         unsigned long addr, unsigned long end,
2421                         unsigned long pfn, pgprot_t prot)
2422 {
2423         pud_t *pud;
2424         unsigned long next;
2425         int err;
2426
2427         pfn -= addr >> PAGE_SHIFT;
2428         pud = pud_alloc(mm, p4d, addr);
2429         if (!pud)
2430                 return -ENOMEM;
2431         do {
2432                 next = pud_addr_end(addr, end);
2433                 err = remap_pmd_range(mm, pud, addr, next,
2434                                 pfn + (addr >> PAGE_SHIFT), prot);
2435                 if (err)
2436                         return err;
2437         } while (pud++, addr = next, addr != end);
2438         return 0;
2439 }
2440
2441 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2442                         unsigned long addr, unsigned long end,
2443                         unsigned long pfn, pgprot_t prot)
2444 {
2445         p4d_t *p4d;
2446         unsigned long next;
2447         int err;
2448
2449         pfn -= addr >> PAGE_SHIFT;
2450         p4d = p4d_alloc(mm, pgd, addr);
2451         if (!p4d)
2452                 return -ENOMEM;
2453         do {
2454                 next = p4d_addr_end(addr, end);
2455                 err = remap_pud_range(mm, p4d, addr, next,
2456                                 pfn + (addr >> PAGE_SHIFT), prot);
2457                 if (err)
2458                         return err;
2459         } while (p4d++, addr = next, addr != end);
2460         return 0;
2461 }
2462
2463 /*
2464  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2465  * must have pre-validated the caching bits of the pgprot_t.
2466  */
2467 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2468                 unsigned long pfn, unsigned long size, pgprot_t prot)
2469 {
2470         pgd_t *pgd;
2471         unsigned long next;
2472         unsigned long end = addr + PAGE_ALIGN(size);
2473         struct mm_struct *mm = vma->vm_mm;
2474         int err;
2475
2476         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2477                 return -EINVAL;
2478
2479         /*
2480          * Physically remapped pages are special. Tell the
2481          * rest of the world about it:
2482          *   VM_IO tells people not to look at these pages
2483          *      (accesses can have side effects).
2484          *   VM_PFNMAP tells the core MM that the base pages are just
2485          *      raw PFN mappings, and do not have a "struct page" associated
2486          *      with them.
2487          *   VM_DONTEXPAND
2488          *      Disable vma merging and expanding with mremap().
2489          *   VM_DONTDUMP
2490          *      Omit vma from core dump, even when VM_IO turned off.
2491          *
2492          * There's a horrible special case to handle copy-on-write
2493          * behaviour that some programs depend on. We mark the "original"
2494          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2495          * See vm_normal_page() for details.
2496          */
2497         if (is_cow_mapping(vma->vm_flags)) {
2498                 if (addr != vma->vm_start || end != vma->vm_end)
2499                         return -EINVAL;
2500                 vma->vm_pgoff = pfn;
2501         }
2502
2503         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2504
2505         BUG_ON(addr >= end);
2506         pfn -= addr >> PAGE_SHIFT;
2507         pgd = pgd_offset(mm, addr);
2508         flush_cache_range(vma, addr, end);
2509         do {
2510                 next = pgd_addr_end(addr, end);
2511                 err = remap_p4d_range(mm, pgd, addr, next,
2512                                 pfn + (addr >> PAGE_SHIFT), prot);
2513                 if (err)
2514                         return err;
2515         } while (pgd++, addr = next, addr != end);
2516
2517         return 0;
2518 }
2519
2520 /**
2521  * remap_pfn_range - remap kernel memory to userspace
2522  * @vma: user vma to map to
2523  * @addr: target page aligned user address to start at
2524  * @pfn: page frame number of kernel physical memory address
2525  * @size: size of mapping area
2526  * @prot: page protection flags for this mapping
2527  *
2528  * Note: this is only safe if the mm semaphore is held when called.
2529  *
2530  * Return: %0 on success, negative error code otherwise.
2531  */
2532 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2533                     unsigned long pfn, unsigned long size, pgprot_t prot)
2534 {
2535         int err;
2536
2537         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2538         if (err)
2539                 return -EINVAL;
2540
2541         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2542         if (err)
2543                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2544         return err;
2545 }
2546 EXPORT_SYMBOL(remap_pfn_range);
2547
2548 /**
2549  * vm_iomap_memory - remap memory to userspace
2550  * @vma: user vma to map to
2551  * @start: start of the physical memory to be mapped
2552  * @len: size of area
2553  *
2554  * This is a simplified io_remap_pfn_range() for common driver use. The
2555  * driver just needs to give us the physical memory range to be mapped,
2556  * we'll figure out the rest from the vma information.
2557  *
2558  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2559  * whatever write-combining details or similar.
2560  *
2561  * Return: %0 on success, negative error code otherwise.
2562  */
2563 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2564 {
2565         unsigned long vm_len, pfn, pages;
2566
2567         /* Check that the physical memory area passed in looks valid */
2568         if (start + len < start)
2569                 return -EINVAL;
2570         /*
2571          * You *really* shouldn't map things that aren't page-aligned,
2572          * but we've historically allowed it because IO memory might
2573          * just have smaller alignment.
2574          */
2575         len += start & ~PAGE_MASK;
2576         pfn = start >> PAGE_SHIFT;
2577         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2578         if (pfn + pages < pfn)
2579                 return -EINVAL;
2580
2581         /* We start the mapping 'vm_pgoff' pages into the area */
2582         if (vma->vm_pgoff > pages)
2583                 return -EINVAL;
2584         pfn += vma->vm_pgoff;
2585         pages -= vma->vm_pgoff;
2586
2587         /* Can we fit all of the mapping? */
2588         vm_len = vma->vm_end - vma->vm_start;
2589         if (vm_len >> PAGE_SHIFT > pages)
2590                 return -EINVAL;
2591
2592         /* Ok, let it rip */
2593         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2594 }
2595 EXPORT_SYMBOL(vm_iomap_memory);
2596
2597 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2598                                      unsigned long addr, unsigned long end,
2599                                      pte_fn_t fn, void *data, bool create,
2600                                      pgtbl_mod_mask *mask)
2601 {
2602         pte_t *pte, *mapped_pte;
2603         int err = 0;
2604         spinlock_t *ptl;
2605
2606         if (create) {
2607                 mapped_pte = pte = (mm == &init_mm) ?
2608                         pte_alloc_kernel_track(pmd, addr, mask) :
2609                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2610                 if (!pte)
2611                         return -ENOMEM;
2612         } else {
2613                 mapped_pte = pte = (mm == &init_mm) ?
2614                         pte_offset_kernel(pmd, addr) :
2615                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2616         }
2617
2618         BUG_ON(pmd_huge(*pmd));
2619
2620         arch_enter_lazy_mmu_mode();
2621
2622         if (fn) {
2623                 do {
2624                         if (create || !pte_none(*pte)) {
2625                                 err = fn(pte++, addr, data);
2626                                 if (err)
2627                                         break;
2628                         }
2629                 } while (addr += PAGE_SIZE, addr != end);
2630         }
2631         *mask |= PGTBL_PTE_MODIFIED;
2632
2633         arch_leave_lazy_mmu_mode();
2634
2635         if (mm != &init_mm)
2636                 pte_unmap_unlock(mapped_pte, ptl);
2637         return err;
2638 }
2639
2640 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2641                                      unsigned long addr, unsigned long end,
2642                                      pte_fn_t fn, void *data, bool create,
2643                                      pgtbl_mod_mask *mask)
2644 {
2645         pmd_t *pmd;
2646         unsigned long next;
2647         int err = 0;
2648
2649         BUG_ON(pud_huge(*pud));
2650
2651         if (create) {
2652                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2653                 if (!pmd)
2654                         return -ENOMEM;
2655         } else {
2656                 pmd = pmd_offset(pud, addr);
2657         }
2658         do {
2659                 next = pmd_addr_end(addr, end);
2660                 if (pmd_none(*pmd) && !create)
2661                         continue;
2662                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2663                         return -EINVAL;
2664                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2665                         if (!create)
2666                                 continue;
2667                         pmd_clear_bad(pmd);
2668                 }
2669                 err = apply_to_pte_range(mm, pmd, addr, next,
2670                                          fn, data, create, mask);
2671                 if (err)
2672                         break;
2673         } while (pmd++, addr = next, addr != end);
2674
2675         return err;
2676 }
2677
2678 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2679                                      unsigned long addr, unsigned long end,
2680                                      pte_fn_t fn, void *data, bool create,
2681                                      pgtbl_mod_mask *mask)
2682 {
2683         pud_t *pud;
2684         unsigned long next;
2685         int err = 0;
2686
2687         if (create) {
2688                 pud = pud_alloc_track(mm, p4d, addr, mask);
2689                 if (!pud)
2690                         return -ENOMEM;
2691         } else {
2692                 pud = pud_offset(p4d, addr);
2693         }
2694         do {
2695                 next = pud_addr_end(addr, end);
2696                 if (pud_none(*pud) && !create)
2697                         continue;
2698                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2699                         return -EINVAL;
2700                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2701                         if (!create)
2702                                 continue;
2703                         pud_clear_bad(pud);
2704                 }
2705                 err = apply_to_pmd_range(mm, pud, addr, next,
2706                                          fn, data, create, mask);
2707                 if (err)
2708                         break;
2709         } while (pud++, addr = next, addr != end);
2710
2711         return err;
2712 }
2713
2714 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2715                                      unsigned long addr, unsigned long end,
2716                                      pte_fn_t fn, void *data, bool create,
2717                                      pgtbl_mod_mask *mask)
2718 {
2719         p4d_t *p4d;
2720         unsigned long next;
2721         int err = 0;
2722
2723         if (create) {
2724                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2725                 if (!p4d)
2726                         return -ENOMEM;
2727         } else {
2728                 p4d = p4d_offset(pgd, addr);
2729         }
2730         do {
2731                 next = p4d_addr_end(addr, end);
2732                 if (p4d_none(*p4d) && !create)
2733                         continue;
2734                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2735                         return -EINVAL;
2736                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2737                         if (!create)
2738                                 continue;
2739                         p4d_clear_bad(p4d);
2740                 }
2741                 err = apply_to_pud_range(mm, p4d, addr, next,
2742                                          fn, data, create, mask);
2743                 if (err)
2744                         break;
2745         } while (p4d++, addr = next, addr != end);
2746
2747         return err;
2748 }
2749
2750 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751                                  unsigned long size, pte_fn_t fn,
2752                                  void *data, bool create)
2753 {
2754         pgd_t *pgd;
2755         unsigned long start = addr, next;
2756         unsigned long end = addr + size;
2757         pgtbl_mod_mask mask = 0;
2758         int err = 0;
2759
2760         if (WARN_ON(addr >= end))
2761                 return -EINVAL;
2762
2763         pgd = pgd_offset(mm, addr);
2764         do {
2765                 next = pgd_addr_end(addr, end);
2766                 if (pgd_none(*pgd) && !create)
2767                         continue;
2768                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2769                         return -EINVAL;
2770                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2771                         if (!create)
2772                                 continue;
2773                         pgd_clear_bad(pgd);
2774                 }
2775                 err = apply_to_p4d_range(mm, pgd, addr, next,
2776                                          fn, data, create, &mask);
2777                 if (err)
2778                         break;
2779         } while (pgd++, addr = next, addr != end);
2780
2781         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2782                 arch_sync_kernel_mappings(start, start + size);
2783
2784         return err;
2785 }
2786
2787 /*
2788  * Scan a region of virtual memory, filling in page tables as necessary
2789  * and calling a provided function on each leaf page table.
2790  */
2791 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2792                         unsigned long size, pte_fn_t fn, void *data)
2793 {
2794         return __apply_to_page_range(mm, addr, size, fn, data, true);
2795 }
2796 EXPORT_SYMBOL_GPL(apply_to_page_range);
2797
2798 /*
2799  * Scan a region of virtual memory, calling a provided function on
2800  * each leaf page table where it exists.
2801  *
2802  * Unlike apply_to_page_range, this does _not_ fill in page tables
2803  * where they are absent.
2804  */
2805 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2806                                  unsigned long size, pte_fn_t fn, void *data)
2807 {
2808         return __apply_to_page_range(mm, addr, size, fn, data, false);
2809 }
2810 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2811
2812 /*
2813  * handle_pte_fault chooses page fault handler according to an entry which was
2814  * read non-atomically.  Before making any commitment, on those architectures
2815  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2816  * parts, do_swap_page must check under lock before unmapping the pte and
2817  * proceeding (but do_wp_page is only called after already making such a check;
2818  * and do_anonymous_page can safely check later on).
2819  */
2820 static inline int pte_unmap_same(struct vm_fault *vmf)
2821 {
2822         int same = 1;
2823 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2824         if (sizeof(pte_t) > sizeof(unsigned long)) {
2825                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2826                 spin_lock(ptl);
2827                 same = pte_same(*vmf->pte, vmf->orig_pte);
2828                 spin_unlock(ptl);
2829         }
2830 #endif
2831         pte_unmap(vmf->pte);
2832         vmf->pte = NULL;
2833         return same;
2834 }
2835
2836 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2837                                        struct vm_fault *vmf)
2838 {
2839         bool ret;
2840         void *kaddr;
2841         void __user *uaddr;
2842         bool locked = false;
2843         struct vm_area_struct *vma = vmf->vma;
2844         struct mm_struct *mm = vma->vm_mm;
2845         unsigned long addr = vmf->address;
2846
2847         if (likely(src)) {
2848                 copy_user_highpage(dst, src, addr, vma);
2849                 return true;
2850         }
2851
2852         /*
2853          * If the source page was a PFN mapping, we don't have
2854          * a "struct page" for it. We do a best-effort copy by
2855          * just copying from the original user address. If that
2856          * fails, we just zero-fill it. Live with it.
2857          */
2858         kaddr = kmap_atomic(dst);
2859         uaddr = (void __user *)(addr & PAGE_MASK);
2860
2861         /*
2862          * On architectures with software "accessed" bits, we would
2863          * take a double page fault, so mark it accessed here.
2864          */
2865         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2866                 pte_t entry;
2867
2868                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2869                 locked = true;
2870                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871                         /*
2872                          * Other thread has already handled the fault
2873                          * and update local tlb only
2874                          */
2875                         update_mmu_tlb(vma, addr, vmf->pte);
2876                         ret = false;
2877                         goto pte_unlock;
2878                 }
2879
2880                 entry = pte_mkyoung(vmf->orig_pte);
2881                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2882                         update_mmu_cache(vma, addr, vmf->pte);
2883         }
2884
2885         /*
2886          * This really shouldn't fail, because the page is there
2887          * in the page tables. But it might just be unreadable,
2888          * in which case we just give up and fill the result with
2889          * zeroes.
2890          */
2891         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2892                 if (locked)
2893                         goto warn;
2894
2895                 /* Re-validate under PTL if the page is still mapped */
2896                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2897                 locked = true;
2898                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2899                         /* The PTE changed under us, update local tlb */
2900                         update_mmu_tlb(vma, addr, vmf->pte);
2901                         ret = false;
2902                         goto pte_unlock;
2903                 }
2904
2905                 /*
2906                  * The same page can be mapped back since last copy attempt.
2907                  * Try to copy again under PTL.
2908                  */
2909                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2910                         /*
2911                          * Give a warn in case there can be some obscure
2912                          * use-case
2913                          */
2914 warn:
2915                         WARN_ON_ONCE(1);
2916                         clear_page(kaddr);
2917                 }
2918         }
2919
2920         ret = true;
2921
2922 pte_unlock:
2923         if (locked)
2924                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2925         kunmap_atomic(kaddr);
2926         flush_dcache_page(dst);
2927
2928         return ret;
2929 }
2930
2931 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2932 {
2933         struct file *vm_file = vma->vm_file;
2934
2935         if (vm_file)
2936                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2937
2938         /*
2939          * Special mappings (e.g. VDSO) do not have any file so fake
2940          * a default GFP_KERNEL for them.
2941          */
2942         return GFP_KERNEL;
2943 }
2944
2945 /*
2946  * Notify the address space that the page is about to become writable so that
2947  * it can prohibit this or wait for the page to get into an appropriate state.
2948  *
2949  * We do this without the lock held, so that it can sleep if it needs to.
2950  */
2951 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2952 {
2953         vm_fault_t ret;
2954         struct page *page = vmf->page;
2955         unsigned int old_flags = vmf->flags;
2956
2957         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2958
2959         if (vmf->vma->vm_file &&
2960             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2961                 return VM_FAULT_SIGBUS;
2962
2963         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2964         /* Restore original flags so that caller is not surprised */
2965         vmf->flags = old_flags;
2966         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2967                 return ret;
2968         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2969                 lock_page(page);
2970                 if (!page->mapping) {
2971                         unlock_page(page);
2972                         return 0; /* retry */
2973                 }
2974                 ret |= VM_FAULT_LOCKED;
2975         } else
2976                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2977         return ret;
2978 }
2979
2980 /*
2981  * Handle dirtying of a page in shared file mapping on a write fault.
2982  *
2983  * The function expects the page to be locked and unlocks it.
2984  */
2985 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2986 {
2987         struct vm_area_struct *vma = vmf->vma;
2988         struct address_space *mapping;
2989         struct page *page = vmf->page;
2990         bool dirtied;
2991         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2992
2993         dirtied = set_page_dirty(page);
2994         VM_BUG_ON_PAGE(PageAnon(page), page);
2995         /*
2996          * Take a local copy of the address_space - page.mapping may be zeroed
2997          * by truncate after unlock_page().   The address_space itself remains
2998          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2999          * release semantics to prevent the compiler from undoing this copying.
3000          */
3001         mapping = page_rmapping(page);
3002         unlock_page(page);
3003
3004         if (!page_mkwrite)
3005                 file_update_time(vma->vm_file);
3006
3007         /*
3008          * Throttle page dirtying rate down to writeback speed.
3009          *
3010          * mapping may be NULL here because some device drivers do not
3011          * set page.mapping but still dirty their pages
3012          *
3013          * Drop the mmap_lock before waiting on IO, if we can. The file
3014          * is pinning the mapping, as per above.
3015          */
3016         if ((dirtied || page_mkwrite) && mapping) {
3017                 struct file *fpin;
3018
3019                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3020                 balance_dirty_pages_ratelimited(mapping);
3021                 if (fpin) {
3022                         fput(fpin);
3023                         return VM_FAULT_RETRY;
3024                 }
3025         }
3026
3027         return 0;
3028 }
3029
3030 /*
3031  * Handle write page faults for pages that can be reused in the current vma
3032  *
3033  * This can happen either due to the mapping being with the VM_SHARED flag,
3034  * or due to us being the last reference standing to the page. In either
3035  * case, all we need to do here is to mark the page as writable and update
3036  * any related book-keeping.
3037  */
3038 static inline void wp_page_reuse(struct vm_fault *vmf)
3039         __releases(vmf->ptl)
3040 {
3041         struct vm_area_struct *vma = vmf->vma;
3042         struct page *page = vmf->page;
3043         pte_t entry;
3044
3045         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3046         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3047
3048         /*
3049          * Clear the pages cpupid information as the existing
3050          * information potentially belongs to a now completely
3051          * unrelated process.
3052          */
3053         if (page)
3054                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3055
3056         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057         entry = pte_mkyoung(vmf->orig_pte);
3058         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3059         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3060                 update_mmu_cache(vma, vmf->address, vmf->pte);
3061         pte_unmap_unlock(vmf->pte, vmf->ptl);
3062         count_vm_event(PGREUSE);
3063 }
3064
3065 /*
3066  * Handle the case of a page which we actually need to copy to a new page,
3067  * either due to COW or unsharing.
3068  *
3069  * Called with mmap_lock locked and the old page referenced, but
3070  * without the ptl held.
3071  *
3072  * High level logic flow:
3073  *
3074  * - Allocate a page, copy the content of the old page to the new one.
3075  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3076  * - Take the PTL. If the pte changed, bail out and release the allocated page
3077  * - If the pte is still the way we remember it, update the page table and all
3078  *   relevant references. This includes dropping the reference the page-table
3079  *   held to the old page, as well as updating the rmap.
3080  * - In any case, unlock the PTL and drop the reference we took to the old page.
3081  */
3082 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3083 {
3084         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3085         struct vm_area_struct *vma = vmf->vma;
3086         struct mm_struct *mm = vma->vm_mm;
3087         struct page *old_page = vmf->page;
3088         struct page *new_page = NULL;
3089         pte_t entry;
3090         int page_copied = 0;
3091         struct mmu_notifier_range range;
3092
3093         delayacct_wpcopy_start();
3094
3095         if (unlikely(anon_vma_prepare(vma)))
3096                 goto oom;
3097
3098         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3099                 new_page = alloc_zeroed_user_highpage_movable(vma,
3100                                                               vmf->address);
3101                 if (!new_page)
3102                         goto oom;
3103         } else {
3104                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3105                                 vmf->address);
3106                 if (!new_page)
3107                         goto oom;
3108
3109                 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3110                         /*
3111                          * COW failed, if the fault was solved by other,
3112                          * it's fine. If not, userspace would re-fault on
3113                          * the same address and we will handle the fault
3114                          * from the second attempt.
3115                          */
3116                         put_page(new_page);
3117                         if (old_page)
3118                                 put_page(old_page);
3119
3120                         delayacct_wpcopy_end();
3121                         return 0;
3122                 }
3123         }
3124
3125         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3126                 goto oom_free_new;
3127         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3128
3129         __SetPageUptodate(new_page);
3130
3131         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3132                                 vmf->address & PAGE_MASK,
3133                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3134         mmu_notifier_invalidate_range_start(&range);
3135
3136         /*
3137          * Re-check the pte - we dropped the lock
3138          */
3139         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3140         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3141                 if (old_page) {
3142                         if (!PageAnon(old_page)) {
3143                                 dec_mm_counter_fast(mm,
3144                                                 mm_counter_file(old_page));
3145                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3146                         }
3147                 } else {
3148                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3149                 }
3150                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3151                 entry = mk_pte(new_page, vma->vm_page_prot);
3152                 entry = pte_sw_mkyoung(entry);
3153                 if (unlikely(unshare)) {
3154                         if (pte_soft_dirty(vmf->orig_pte))
3155                                 entry = pte_mksoft_dirty(entry);
3156                         if (pte_uffd_wp(vmf->orig_pte))
3157                                 entry = pte_mkuffd_wp(entry);
3158                 } else {
3159                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3160                 }
3161
3162                 /*
3163                  * Clear the pte entry and flush it first, before updating the
3164                  * pte with the new entry, to keep TLBs on different CPUs in
3165                  * sync. This code used to set the new PTE then flush TLBs, but
3166                  * that left a window where the new PTE could be loaded into
3167                  * some TLBs while the old PTE remains in others.
3168                  */
3169                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3170                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3171                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3172                 /*
3173                  * We call the notify macro here because, when using secondary
3174                  * mmu page tables (such as kvm shadow page tables), we want the
3175                  * new page to be mapped directly into the secondary page table.
3176                  */
3177                 BUG_ON(unshare && pte_write(entry));
3178                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3179                 update_mmu_cache(vma, vmf->address, vmf->pte);
3180                 if (old_page) {
3181                         /*
3182                          * Only after switching the pte to the new page may
3183                          * we remove the mapcount here. Otherwise another
3184                          * process may come and find the rmap count decremented
3185                          * before the pte is switched to the new page, and
3186                          * "reuse" the old page writing into it while our pte
3187                          * here still points into it and can be read by other
3188                          * threads.
3189                          *
3190                          * The critical issue is to order this
3191                          * page_remove_rmap with the ptp_clear_flush above.
3192                          * Those stores are ordered by (if nothing else,)
3193                          * the barrier present in the atomic_add_negative
3194                          * in page_remove_rmap.
3195                          *
3196                          * Then the TLB flush in ptep_clear_flush ensures that
3197                          * no process can access the old page before the
3198                          * decremented mapcount is visible. And the old page
3199                          * cannot be reused until after the decremented
3200                          * mapcount is visible. So transitively, TLBs to
3201                          * old page will be flushed before it can be reused.
3202                          */
3203                         page_remove_rmap(old_page, vma, false);
3204                 }
3205
3206                 /* Free the old page.. */
3207                 new_page = old_page;
3208                 page_copied = 1;
3209         } else {
3210                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3211         }
3212
3213         if (new_page)
3214                 put_page(new_page);
3215
3216         pte_unmap_unlock(vmf->pte, vmf->ptl);
3217         /*
3218          * No need to double call mmu_notifier->invalidate_range() callback as
3219          * the above ptep_clear_flush_notify() did already call it.
3220          */
3221         mmu_notifier_invalidate_range_only_end(&range);
3222         if (old_page) {
3223                 if (page_copied)
3224                         free_swap_cache(old_page);
3225                 put_page(old_page);
3226         }
3227
3228         delayacct_wpcopy_end();
3229         return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3230 oom_free_new:
3231         put_page(new_page);
3232 oom:
3233         if (old_page)
3234                 put_page(old_page);
3235
3236         delayacct_wpcopy_end();
3237         return VM_FAULT_OOM;
3238 }
3239
3240 /**
3241  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3242  *                        writeable once the page is prepared
3243  *
3244  * @vmf: structure describing the fault
3245  *
3246  * This function handles all that is needed to finish a write page fault in a
3247  * shared mapping due to PTE being read-only once the mapped page is prepared.
3248  * It handles locking of PTE and modifying it.
3249  *
3250  * The function expects the page to be locked or other protection against
3251  * concurrent faults / writeback (such as DAX radix tree locks).
3252  *
3253  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3254  * we acquired PTE lock.
3255  */
3256 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3257 {
3258         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3259         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3260                                        &vmf->ptl);
3261         /*
3262          * We might have raced with another page fault while we released the
3263          * pte_offset_map_lock.
3264          */
3265         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3266                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3267                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3268                 return VM_FAULT_NOPAGE;
3269         }
3270         wp_page_reuse(vmf);
3271         return 0;
3272 }
3273
3274 /*
3275  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3276  * mapping
3277  */
3278 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3279 {
3280         struct vm_area_struct *vma = vmf->vma;
3281
3282         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3283                 vm_fault_t ret;
3284
3285                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3286                 vmf->flags |= FAULT_FLAG_MKWRITE;
3287                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3288                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3289                         return ret;
3290                 return finish_mkwrite_fault(vmf);
3291         }
3292         wp_page_reuse(vmf);
3293         return VM_FAULT_WRITE;
3294 }
3295
3296 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3297         __releases(vmf->ptl)
3298 {
3299         struct vm_area_struct *vma = vmf->vma;
3300         vm_fault_t ret = VM_FAULT_WRITE;
3301
3302         get_page(vmf->page);
3303
3304         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3305                 vm_fault_t tmp;
3306
3307                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3308                 tmp = do_page_mkwrite(vmf);
3309                 if (unlikely(!tmp || (tmp &
3310                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3311                         put_page(vmf->page);
3312                         return tmp;
3313                 }
3314                 tmp = finish_mkwrite_fault(vmf);
3315                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3316                         unlock_page(vmf->page);
3317                         put_page(vmf->page);
3318                         return tmp;
3319                 }
3320         } else {
3321                 wp_page_reuse(vmf);
3322                 lock_page(vmf->page);
3323         }
3324         ret |= fault_dirty_shared_page(vmf);
3325         put_page(vmf->page);
3326
3327         return ret;
3328 }
3329
3330 /*
3331  * This routine handles present pages, when
3332  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3333  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3334  *   (FAULT_FLAG_UNSHARE)
3335  *
3336  * It is done by copying the page to a new address and decrementing the
3337  * shared-page counter for the old page.
3338  *
3339  * Note that this routine assumes that the protection checks have been
3340  * done by the caller (the low-level page fault routine in most cases).
3341  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3342  * done any necessary COW.
3343  *
3344  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3345  * though the page will change only once the write actually happens. This
3346  * avoids a few races, and potentially makes it more efficient.
3347  *
3348  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3349  * but allow concurrent faults), with pte both mapped and locked.
3350  * We return with mmap_lock still held, but pte unmapped and unlocked.
3351  */
3352 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3353         __releases(vmf->ptl)
3354 {
3355         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3356         struct vm_area_struct *vma = vmf->vma;
3357
3358         VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3359         VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3360
3361         if (likely(!unshare)) {
3362                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3363                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3364                         return handle_userfault(vmf, VM_UFFD_WP);
3365                 }
3366
3367                 /*
3368                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369                  * is flushed in this case before copying.
3370                  */
3371                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3372                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373                         flush_tlb_page(vmf->vma, vmf->address);
3374         }
3375
3376         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377         if (!vmf->page) {
3378                 if (unlikely(unshare)) {
3379                         /* No anonymous page -> nothing to do. */
3380                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3381                         return 0;
3382                 }
3383
3384                 /*
3385                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3386                  * VM_PFNMAP VMA.
3387                  *
3388                  * We should not cow pages in a shared writeable mapping.
3389                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3390                  */
3391                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3392                                      (VM_WRITE|VM_SHARED))
3393                         return wp_pfn_shared(vmf);
3394
3395                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3396                 return wp_page_copy(vmf);
3397         }
3398
3399         /*
3400          * Take out anonymous pages first, anonymous shared vmas are
3401          * not dirty accountable.
3402          */
3403         if (PageAnon(vmf->page)) {
3404                 struct page *page = vmf->page;
3405
3406                 /*
3407                  * If the page is exclusive to this process we must reuse the
3408                  * page without further checks.
3409                  */
3410                 if (PageAnonExclusive(page))
3411                         goto reuse;
3412
3413                 /*
3414                  * We have to verify under page lock: these early checks are
3415                  * just an optimization to avoid locking the page and freeing
3416                  * the swapcache if there is little hope that we can reuse.
3417                  *
3418                  * PageKsm() doesn't necessarily raise the page refcount.
3419                  */
3420                 if (PageKsm(page) || page_count(page) > 3)
3421                         goto copy;
3422                 if (!PageLRU(page))
3423                         /*
3424                          * Note: We cannot easily detect+handle references from
3425                          * remote LRU pagevecs or references to PageLRU() pages.
3426                          */
3427                         lru_add_drain();
3428                 if (page_count(page) > 1 + PageSwapCache(page))
3429                         goto copy;
3430                 if (!trylock_page(page))
3431                         goto copy;
3432                 if (PageSwapCache(page))
3433                         try_to_free_swap(page);
3434                 if (PageKsm(page) || page_count(page) != 1) {
3435                         unlock_page(page);
3436                         goto copy;
3437                 }
3438                 /*
3439                  * Ok, we've got the only page reference from our mapping
3440                  * and the page is locked, it's dark out, and we're wearing
3441                  * sunglasses. Hit it.
3442                  */
3443                 page_move_anon_rmap(page, vma);
3444                 unlock_page(page);
3445 reuse:
3446                 if (unlikely(unshare)) {
3447                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3448                         return 0;
3449                 }
3450                 wp_page_reuse(vmf);
3451                 return VM_FAULT_WRITE;
3452         } else if (unshare) {
3453                 /* No anonymous page -> nothing to do. */
3454                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3455                 return 0;
3456         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3457                                         (VM_WRITE|VM_SHARED))) {
3458                 return wp_page_shared(vmf);
3459         }
3460 copy:
3461         /*
3462          * Ok, we need to copy. Oh, well..
3463          */
3464         get_page(vmf->page);
3465
3466         pte_unmap_unlock(vmf->pte, vmf->ptl);
3467 #ifdef CONFIG_KSM
3468         if (PageKsm(vmf->page))
3469                 count_vm_event(COW_KSM);
3470 #endif
3471         return wp_page_copy(vmf);
3472 }
3473
3474 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3475                 unsigned long start_addr, unsigned long end_addr,
3476                 struct zap_details *details)
3477 {
3478         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3479 }
3480
3481 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3482                                             pgoff_t first_index,
3483                                             pgoff_t last_index,
3484                                             struct zap_details *details)
3485 {
3486         struct vm_area_struct *vma;
3487         pgoff_t vba, vea, zba, zea;
3488
3489         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3490                 vba = vma->vm_pgoff;
3491                 vea = vba + vma_pages(vma) - 1;
3492                 zba = max(first_index, vba);
3493                 zea = min(last_index, vea);
3494
3495                 unmap_mapping_range_vma(vma,
3496                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3497                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3498                                 details);
3499         }
3500 }
3501
3502 /**
3503  * unmap_mapping_folio() - Unmap single folio from processes.
3504  * @folio: The locked folio to be unmapped.
3505  *
3506  * Unmap this folio from any userspace process which still has it mmaped.
3507  * Typically, for efficiency, the range of nearby pages has already been
3508  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3509  * truncation or invalidation holds the lock on a folio, it may find that
3510  * the page has been remapped again: and then uses unmap_mapping_folio()
3511  * to unmap it finally.
3512  */
3513 void unmap_mapping_folio(struct folio *folio)
3514 {
3515         struct address_space *mapping = folio->mapping;
3516         struct zap_details details = { };
3517         pgoff_t first_index;
3518         pgoff_t last_index;
3519
3520         VM_BUG_ON(!folio_test_locked(folio));
3521
3522         first_index = folio->index;
3523         last_index = folio->index + folio_nr_pages(folio) - 1;
3524
3525         details.even_cows = false;
3526         details.single_folio = folio;
3527         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3528
3529         i_mmap_lock_read(mapping);
3530         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3531                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3532                                          last_index, &details);
3533         i_mmap_unlock_read(mapping);
3534 }
3535
3536 /**
3537  * unmap_mapping_pages() - Unmap pages from processes.
3538  * @mapping: The address space containing pages to be unmapped.
3539  * @start: Index of first page to be unmapped.
3540  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3541  * @even_cows: Whether to unmap even private COWed pages.
3542  *
3543  * Unmap the pages in this address space from any userspace process which
3544  * has them mmaped.  Generally, you want to remove COWed pages as well when
3545  * a file is being truncated, but not when invalidating pages from the page
3546  * cache.
3547  */
3548 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3549                 pgoff_t nr, bool even_cows)
3550 {
3551         struct zap_details details = { };
3552         pgoff_t first_index = start;
3553         pgoff_t last_index = start + nr - 1;
3554
3555         details.even_cows = even_cows;
3556         if (last_index < first_index)
3557                 last_index = ULONG_MAX;
3558
3559         i_mmap_lock_read(mapping);
3560         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3561                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3562                                          last_index, &details);
3563         i_mmap_unlock_read(mapping);
3564 }
3565 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3566
3567 /**
3568  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3569  * address_space corresponding to the specified byte range in the underlying
3570  * file.
3571  *
3572  * @mapping: the address space containing mmaps to be unmapped.
3573  * @holebegin: byte in first page to unmap, relative to the start of
3574  * the underlying file.  This will be rounded down to a PAGE_SIZE
3575  * boundary.  Note that this is different from truncate_pagecache(), which
3576  * must keep the partial page.  In contrast, we must get rid of
3577  * partial pages.
3578  * @holelen: size of prospective hole in bytes.  This will be rounded
3579  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3580  * end of the file.
3581  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3582  * but 0 when invalidating pagecache, don't throw away private data.
3583  */
3584 void unmap_mapping_range(struct address_space *mapping,
3585                 loff_t const holebegin, loff_t const holelen, int even_cows)
3586 {
3587         pgoff_t hba = holebegin >> PAGE_SHIFT;
3588         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3589
3590         /* Check for overflow. */
3591         if (sizeof(holelen) > sizeof(hlen)) {
3592                 long long holeend =
3593                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3594                 if (holeend & ~(long long)ULONG_MAX)
3595                         hlen = ULONG_MAX - hba + 1;
3596         }
3597
3598         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3599 }
3600 EXPORT_SYMBOL(unmap_mapping_range);
3601
3602 /*
3603  * Restore a potential device exclusive pte to a working pte entry
3604  */
3605 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3606 {
3607         struct page *page = vmf->page;
3608         struct vm_area_struct *vma = vmf->vma;
3609         struct mmu_notifier_range range;
3610
3611         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3612                 return VM_FAULT_RETRY;
3613         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3614                                 vma->vm_mm, vmf->address & PAGE_MASK,
3615                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3616         mmu_notifier_invalidate_range_start(&range);
3617
3618         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3619                                 &vmf->ptl);
3620         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3621                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3622
3623         pte_unmap_unlock(vmf->pte, vmf->ptl);
3624         unlock_page(page);
3625
3626         mmu_notifier_invalidate_range_end(&range);
3627         return 0;
3628 }
3629
3630 static inline bool should_try_to_free_swap(struct page *page,
3631                                            struct vm_area_struct *vma,
3632                                            unsigned int fault_flags)
3633 {
3634         if (!PageSwapCache(page))
3635                 return false;
3636         if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3637             PageMlocked(page))
3638                 return true;
3639         /*
3640          * If we want to map a page that's in the swapcache writable, we
3641          * have to detect via the refcount if we're really the exclusive
3642          * user. Try freeing the swapcache to get rid of the swapcache
3643          * reference only in case it's likely that we'll be the exlusive user.
3644          */
3645         return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3646                 page_count(page) == 2;
3647 }
3648
3649 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3650 {
3651         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3652                                        vmf->address, &vmf->ptl);
3653         /*
3654          * Be careful so that we will only recover a special uffd-wp pte into a
3655          * none pte.  Otherwise it means the pte could have changed, so retry.
3656          */
3657         if (is_pte_marker(*vmf->pte))
3658                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3659         pte_unmap_unlock(vmf->pte, vmf->ptl);
3660         return 0;
3661 }
3662
3663 /*
3664  * This is actually a page-missing access, but with uffd-wp special pte
3665  * installed.  It means this pte was wr-protected before being unmapped.
3666  */
3667 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3668 {
3669         /*
3670          * Just in case there're leftover special ptes even after the region
3671          * got unregistered - we can simply clear them.  We can also do that
3672          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3673          * ranges, but it should be more efficient to be done lazily here.
3674          */
3675         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3676                 return pte_marker_clear(vmf);
3677
3678         /* do_fault() can handle pte markers too like none pte */
3679         return do_fault(vmf);
3680 }
3681
3682 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3683 {
3684         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3685         unsigned long marker = pte_marker_get(entry);
3686
3687         /*
3688          * PTE markers should always be with file-backed memories, and the
3689          * marker should never be empty.  If anything weird happened, the best
3690          * thing to do is to kill the process along with its mm.
3691          */
3692         if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3693                 return VM_FAULT_SIGBUS;
3694
3695         if (pte_marker_entry_uffd_wp(entry))
3696                 return pte_marker_handle_uffd_wp(vmf);
3697
3698         /* This is an unknown pte marker */
3699         return VM_FAULT_SIGBUS;
3700 }
3701
3702 /*
3703  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3704  * but allow concurrent faults), and pte mapped but not yet locked.
3705  * We return with pte unmapped and unlocked.
3706  *
3707  * We return with the mmap_lock locked or unlocked in the same cases
3708  * as does filemap_fault().
3709  */
3710 vm_fault_t do_swap_page(struct vm_fault *vmf)
3711 {
3712         struct vm_area_struct *vma = vmf->vma;
3713         struct page *page = NULL, *swapcache;
3714         struct swap_info_struct *si = NULL;
3715         rmap_t rmap_flags = RMAP_NONE;
3716         bool exclusive = false;
3717         swp_entry_t entry;
3718         pte_t pte;
3719         int locked;
3720         vm_fault_t ret = 0;
3721         void *shadow = NULL;
3722
3723         if (!pte_unmap_same(vmf))
3724                 goto out;
3725
3726         entry = pte_to_swp_entry(vmf->orig_pte);
3727         if (unlikely(non_swap_entry(entry))) {
3728                 if (is_migration_entry(entry)) {
3729                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3730                                              vmf->address);
3731                 } else if (is_device_exclusive_entry(entry)) {
3732                         vmf->page = pfn_swap_entry_to_page(entry);
3733                         ret = remove_device_exclusive_entry(vmf);
3734                 } else if (is_device_private_entry(entry)) {
3735                         vmf->page = pfn_swap_entry_to_page(entry);
3736                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3737                 } else if (is_hwpoison_entry(entry)) {
3738                         ret = VM_FAULT_HWPOISON;
3739                 } else if (is_swapin_error_entry(entry)) {
3740                         ret = VM_FAULT_SIGBUS;
3741                 } else if (is_pte_marker_entry(entry)) {
3742                         ret = handle_pte_marker(vmf);
3743                 } else {
3744                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3745                         ret = VM_FAULT_SIGBUS;
3746                 }
3747                 goto out;
3748         }
3749
3750         /* Prevent swapoff from happening to us. */
3751         si = get_swap_device(entry);
3752         if (unlikely(!si))
3753                 goto out;
3754
3755         page = lookup_swap_cache(entry, vma, vmf->address);
3756         swapcache = page;
3757
3758         if (!page) {
3759                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3760                     __swap_count(entry) == 1) {
3761                         /* skip swapcache */
3762                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3763                                                         vmf->address);
3764                         if (page) {
3765                                 __SetPageLocked(page);
3766                                 __SetPageSwapBacked(page);
3767
3768                                 if (mem_cgroup_swapin_charge_page(page,
3769                                         vma->vm_mm, GFP_KERNEL, entry)) {
3770                                         ret = VM_FAULT_OOM;
3771                                         goto out_page;
3772                                 }
3773                                 mem_cgroup_swapin_uncharge_swap(entry);
3774
3775                                 shadow = get_shadow_from_swap_cache(entry);
3776                                 if (shadow)
3777                                         workingset_refault(page_folio(page),
3778                                                                 shadow);
3779
3780                                 lru_cache_add(page);
3781
3782                                 /* To provide entry to swap_readpage() */
3783                                 set_page_private(page, entry.val);
3784                                 swap_readpage(page, true, NULL);
3785                                 set_page_private(page, 0);
3786                         }
3787                 } else {
3788                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3789                                                 vmf);
3790                         swapcache = page;
3791                 }
3792
3793                 if (!page) {
3794                         /*
3795                          * Back out if somebody else faulted in this pte
3796                          * while we released the pte lock.
3797                          */
3798                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3799                                         vmf->address, &vmf->ptl);
3800                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3801                                 ret = VM_FAULT_OOM;
3802                         goto unlock;
3803                 }
3804
3805                 /* Had to read the page from swap area: Major fault */
3806                 ret = VM_FAULT_MAJOR;
3807                 count_vm_event(PGMAJFAULT);
3808                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3809         } else if (PageHWPoison(page)) {
3810                 /*
3811                  * hwpoisoned dirty swapcache pages are kept for killing
3812                  * owner processes (which may be unknown at hwpoison time)
3813                  */
3814                 ret = VM_FAULT_HWPOISON;
3815                 goto out_release;
3816         }
3817
3818         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3819
3820         if (!locked) {
3821                 ret |= VM_FAULT_RETRY;
3822                 goto out_release;
3823         }
3824
3825         if (swapcache) {
3826                 /*
3827                  * Make sure try_to_free_swap or swapoff did not release the
3828                  * swapcache from under us.  The page pin, and pte_same test
3829                  * below, are not enough to exclude that.  Even if it is still
3830                  * swapcache, we need to check that the page's swap has not
3831                  * changed.
3832                  */
3833                 if (unlikely(!PageSwapCache(page) ||
3834                              page_private(page) != entry.val))
3835                         goto out_page;
3836
3837                 /*
3838                  * KSM sometimes has to copy on read faults, for example, if
3839                  * page->index of !PageKSM() pages would be nonlinear inside the
3840                  * anon VMA -- PageKSM() is lost on actual swapout.
3841                  */
3842                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3843                 if (unlikely(!page)) {
3844                         ret = VM_FAULT_OOM;
3845                         page = swapcache;
3846                         goto out_page;
3847                 }
3848
3849                 /*
3850                  * If we want to map a page that's in the swapcache writable, we
3851                  * have to detect via the refcount if we're really the exclusive
3852                  * owner. Try removing the extra reference from the local LRU
3853                  * pagevecs if required.
3854                  */
3855                 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3856                     !PageKsm(page) && !PageLRU(page))
3857                         lru_add_drain();
3858         }
3859
3860         cgroup_throttle_swaprate(page, GFP_KERNEL);
3861
3862         /*
3863          * Back out if somebody else already faulted in this pte.
3864          */
3865         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3866                         &vmf->ptl);
3867         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3868                 goto out_nomap;
3869
3870         if (unlikely(!PageUptodate(page))) {
3871                 ret = VM_FAULT_SIGBUS;
3872                 goto out_nomap;
3873         }
3874
3875         /*
3876          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3877          * must never point at an anonymous page in the swapcache that is
3878          * PG_anon_exclusive. Sanity check that this holds and especially, that
3879          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3880          * check after taking the PT lock and making sure that nobody
3881          * concurrently faulted in this page and set PG_anon_exclusive.
3882          */
3883         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3884         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3885
3886         /*
3887          * Check under PT lock (to protect against concurrent fork() sharing
3888          * the swap entry concurrently) for certainly exclusive pages.
3889          */
3890         if (!PageKsm(page)) {
3891                 /*
3892                  * Note that pte_swp_exclusive() == false for architectures
3893                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3894                  */
3895                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3896                 if (page != swapcache) {
3897                         /*
3898                          * We have a fresh page that is not exposed to the
3899                          * swapcache -> certainly exclusive.
3900                          */
3901                         exclusive = true;
3902                 } else if (exclusive && PageWriteback(page) &&
3903                           data_race(si->flags & SWP_STABLE_WRITES)) {
3904                         /*
3905                          * This is tricky: not all swap backends support
3906                          * concurrent page modifications while under writeback.
3907                          *
3908                          * So if we stumble over such a page in the swapcache
3909                          * we must not set the page exclusive, otherwise we can
3910                          * map it writable without further checks and modify it
3911                          * while still under writeback.
3912                          *
3913                          * For these problematic swap backends, simply drop the
3914                          * exclusive marker: this is perfectly fine as we start
3915                          * writeback only if we fully unmapped the page and
3916                          * there are no unexpected references on the page after
3917                          * unmapping succeeded. After fully unmapped, no
3918                          * further GUP references (FOLL_GET and FOLL_PIN) can
3919                          * appear, so dropping the exclusive marker and mapping
3920                          * it only R/O is fine.
3921                          */
3922                         exclusive = false;
3923                 }
3924         }
3925
3926         /*
3927          * Remove the swap entry and conditionally try to free up the swapcache.
3928          * We're already holding a reference on the page but haven't mapped it
3929          * yet.
3930          */
3931         swap_free(entry);
3932         if (should_try_to_free_swap(page, vma, vmf->flags))
3933                 try_to_free_swap(page);
3934
3935         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3936         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3937         pte = mk_pte(page, vma->vm_page_prot);
3938
3939         /*
3940          * Same logic as in do_wp_page(); however, optimize for pages that are
3941          * certainly not shared either because we just allocated them without
3942          * exposing them to the swapcache or because the swap entry indicates
3943          * exclusivity.
3944          */
3945         if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3946                 if (vmf->flags & FAULT_FLAG_WRITE) {
3947                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3948                         vmf->flags &= ~FAULT_FLAG_WRITE;
3949                         ret |= VM_FAULT_WRITE;
3950                 }
3951                 rmap_flags |= RMAP_EXCLUSIVE;
3952         }
3953         flush_icache_page(vma, page);
3954         if (pte_swp_soft_dirty(vmf->orig_pte))
3955                 pte = pte_mksoft_dirty(pte);
3956         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3957                 pte = pte_mkuffd_wp(pte);
3958                 pte = pte_wrprotect(pte);
3959         }
3960         vmf->orig_pte = pte;
3961
3962         /* ksm created a completely new copy */
3963         if (unlikely(page != swapcache && swapcache)) {
3964                 page_add_new_anon_rmap(page, vma, vmf->address);
3965                 lru_cache_add_inactive_or_unevictable(page, vma);
3966         } else {
3967                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3968         }
3969
3970         VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3971         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3972         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3973
3974         unlock_page(page);
3975         if (page != swapcache && swapcache) {
3976                 /*
3977                  * Hold the lock to avoid the swap entry to be reused
3978                  * until we take the PT lock for the pte_same() check
3979                  * (to avoid false positives from pte_same). For
3980                  * further safety release the lock after the swap_free
3981                  * so that the swap count won't change under a
3982                  * parallel locked swapcache.
3983                  */
3984                 unlock_page(swapcache);
3985                 put_page(swapcache);
3986         }
3987
3988         if (vmf->flags & FAULT_FLAG_WRITE) {
3989                 ret |= do_wp_page(vmf);
3990                 if (ret & VM_FAULT_ERROR)
3991                         ret &= VM_FAULT_ERROR;
3992                 goto out;
3993         }
3994
3995         /* No need to invalidate - it was non-present before */
3996         update_mmu_cache(vma, vmf->address, vmf->pte);
3997 unlock:
3998         pte_unmap_unlock(vmf->pte, vmf->ptl);
3999 out:
4000         if (si)
4001                 put_swap_device(si);
4002         return ret;
4003 out_nomap:
4004         pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 out_page:
4006         unlock_page(page);
4007 out_release:
4008         put_page(page);
4009         if (page != swapcache && swapcache) {
4010                 unlock_page(swapcache);
4011                 put_page(swapcache);
4012         }
4013         if (si)
4014                 put_swap_device(si);
4015         return ret;
4016 }
4017
4018 /*
4019  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4020  * but allow concurrent faults), and pte mapped but not yet locked.
4021  * We return with mmap_lock still held, but pte unmapped and unlocked.
4022  */
4023 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4024 {
4025         struct vm_area_struct *vma = vmf->vma;
4026         struct page *page;
4027         vm_fault_t ret = 0;
4028         pte_t entry;
4029
4030         /* File mapping without ->vm_ops ? */
4031         if (vma->vm_flags & VM_SHARED)
4032                 return VM_FAULT_SIGBUS;
4033
4034         /*
4035          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4036          * pte_offset_map() on pmds where a huge pmd might be created
4037          * from a different thread.
4038          *
4039          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4040          * parallel threads are excluded by other means.
4041          *
4042          * Here we only have mmap_read_lock(mm).
4043          */
4044         if (pte_alloc(vma->vm_mm, vmf->pmd))
4045                 return VM_FAULT_OOM;
4046
4047         /* See comment in handle_pte_fault() */
4048         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4049                 return 0;
4050
4051         /* Use the zero-page for reads */
4052         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4053                         !mm_forbids_zeropage(vma->vm_mm)) {
4054                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4055                                                 vma->vm_page_prot));
4056                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4057                                 vmf->address, &vmf->ptl);
4058                 if (!pte_none(*vmf->pte)) {
4059                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4060                         goto unlock;
4061                 }
4062                 ret = check_stable_address_space(vma->vm_mm);
4063                 if (ret)
4064                         goto unlock;
4065                 /* Deliver the page fault to userland, check inside PT lock */
4066                 if (userfaultfd_missing(vma)) {
4067                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4068                         return handle_userfault(vmf, VM_UFFD_MISSING);
4069                 }
4070                 goto setpte;
4071         }
4072
4073         /* Allocate our own private page. */
4074         if (unlikely(anon_vma_prepare(vma)))
4075                 goto oom;
4076         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4077         if (!page)
4078                 goto oom;
4079
4080         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4081                 goto oom_free_page;
4082         cgroup_throttle_swaprate(page, GFP_KERNEL);
4083
4084         /*
4085          * The memory barrier inside __SetPageUptodate makes sure that
4086          * preceding stores to the page contents become visible before
4087          * the set_pte_at() write.
4088          */
4089         __SetPageUptodate(page);
4090
4091         entry = mk_pte(page, vma->vm_page_prot);
4092         entry = pte_sw_mkyoung(entry);
4093         if (vma->vm_flags & VM_WRITE)
4094                 entry = pte_mkwrite(pte_mkdirty(entry));
4095
4096         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4097                         &vmf->ptl);
4098         if (!pte_none(*vmf->pte)) {
4099                 update_mmu_cache(vma, vmf->address, vmf->pte);
4100                 goto release;
4101         }
4102
4103         ret = check_stable_address_space(vma->vm_mm);
4104         if (ret)
4105                 goto release;
4106
4107         /* Deliver the page fault to userland, check inside PT lock */
4108         if (userfaultfd_missing(vma)) {
4109                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4110                 put_page(page);
4111                 return handle_userfault(vmf, VM_UFFD_MISSING);
4112         }
4113
4114         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4115         page_add_new_anon_rmap(page, vma, vmf->address);
4116         lru_cache_add_inactive_or_unevictable(page, vma);
4117 setpte:
4118         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4119
4120         /* No need to invalidate - it was non-present before */
4121         update_mmu_cache(vma, vmf->address, vmf->pte);
4122 unlock:
4123         pte_unmap_unlock(vmf->pte, vmf->ptl);
4124         return ret;
4125 release:
4126         put_page(page);
4127         goto unlock;
4128 oom_free_page:
4129         put_page(page);
4130 oom:
4131         return VM_FAULT_OOM;
4132 }
4133
4134 /*
4135  * The mmap_lock must have been held on entry, and may have been
4136  * released depending on flags and vma->vm_ops->fault() return value.
4137  * See filemap_fault() and __lock_page_retry().
4138  */
4139 static vm_fault_t __do_fault(struct vm_fault *vmf)
4140 {
4141         struct vm_area_struct *vma = vmf->vma;
4142         vm_fault_t ret;
4143
4144         /*
4145          * Preallocate pte before we take page_lock because this might lead to
4146          * deadlocks for memcg reclaim which waits for pages under writeback:
4147          *                              lock_page(A)
4148          *                              SetPageWriteback(A)
4149          *                              unlock_page(A)
4150          * lock_page(B)
4151          *                              lock_page(B)
4152          * pte_alloc_one
4153          *   shrink_page_list
4154          *     wait_on_page_writeback(A)
4155          *                              SetPageWriteback(B)
4156          *                              unlock_page(B)
4157          *                              # flush A, B to clear the writeback
4158          */
4159         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4160                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4161                 if (!vmf->prealloc_pte)
4162                         return VM_FAULT_OOM;
4163         }
4164
4165         ret = vma->vm_ops->fault(vmf);
4166         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4167                             VM_FAULT_DONE_COW)))
4168                 return ret;
4169
4170         if (unlikely(PageHWPoison(vmf->page))) {
4171                 struct page *page = vmf->page;
4172                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4173                 if (ret & VM_FAULT_LOCKED) {
4174                         if (page_mapped(page))
4175                                 unmap_mapping_pages(page_mapping(page),
4176                                                     page->index, 1, false);
4177                         /* Retry if a clean page was removed from the cache. */
4178                         if (invalidate_inode_page(page))
4179                                 poisonret = VM_FAULT_NOPAGE;
4180                         unlock_page(page);
4181                 }
4182                 put_page(page);
4183                 vmf->page = NULL;
4184                 return poisonret;
4185         }
4186
4187         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4188                 lock_page(vmf->page);
4189         else
4190                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4191
4192         return ret;
4193 }
4194
4195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4196 static void deposit_prealloc_pte(struct vm_fault *vmf)
4197 {
4198         struct vm_area_struct *vma = vmf->vma;
4199
4200         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4201         /*
4202          * We are going to consume the prealloc table,
4203          * count that as nr_ptes.
4204          */
4205         mm_inc_nr_ptes(vma->vm_mm);
4206         vmf->prealloc_pte = NULL;
4207 }
4208
4209 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4210 {
4211         struct vm_area_struct *vma = vmf->vma;
4212         bool write = vmf->flags & FAULT_FLAG_WRITE;
4213         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4214         pmd_t entry;
4215         int i;
4216         vm_fault_t ret = VM_FAULT_FALLBACK;
4217
4218         if (!transhuge_vma_suitable(vma, haddr))
4219                 return ret;
4220
4221         page = compound_head(page);
4222         if (compound_order(page) != HPAGE_PMD_ORDER)
4223                 return ret;
4224
4225         /*
4226          * Just backoff if any subpage of a THP is corrupted otherwise
4227          * the corrupted page may mapped by PMD silently to escape the
4228          * check.  This kind of THP just can be PTE mapped.  Access to
4229          * the corrupted subpage should trigger SIGBUS as expected.
4230          */
4231         if (unlikely(PageHasHWPoisoned(page)))
4232                 return ret;
4233
4234         /*
4235          * Archs like ppc64 need additional space to store information
4236          * related to pte entry. Use the preallocated table for that.
4237          */
4238         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4239                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4240                 if (!vmf->prealloc_pte)
4241                         return VM_FAULT_OOM;
4242         }
4243
4244         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4245         if (unlikely(!pmd_none(*vmf->pmd)))
4246                 goto out;
4247
4248         for (i = 0; i < HPAGE_PMD_NR; i++)
4249                 flush_icache_page(vma, page + i);
4250
4251         entry = mk_huge_pmd(page, vma->vm_page_prot);
4252         if (write)
4253                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4254
4255         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4256         page_add_file_rmap(page, vma, true);
4257
4258         /*
4259          * deposit and withdraw with pmd lock held
4260          */
4261         if (arch_needs_pgtable_deposit())
4262                 deposit_prealloc_pte(vmf);
4263
4264         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4265
4266         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4267
4268         /* fault is handled */
4269         ret = 0;
4270         count_vm_event(THP_FILE_MAPPED);
4271 out:
4272         spin_unlock(vmf->ptl);
4273         return ret;
4274 }
4275 #else
4276 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4277 {
4278         return VM_FAULT_FALLBACK;
4279 }
4280 #endif
4281
4282 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4283 {
4284         struct vm_area_struct *vma = vmf->vma;
4285         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4286         bool write = vmf->flags & FAULT_FLAG_WRITE;
4287         bool prefault = vmf->address != addr;
4288         pte_t entry;
4289
4290         flush_icache_page(vma, page);
4291         entry = mk_pte(page, vma->vm_page_prot);
4292
4293         if (prefault && arch_wants_old_prefaulted_pte())
4294                 entry = pte_mkold(entry);
4295         else
4296                 entry = pte_sw_mkyoung(entry);
4297
4298         if (write)
4299                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4300         if (unlikely(uffd_wp))
4301                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4302         /* copy-on-write page */
4303         if (write && !(vma->vm_flags & VM_SHARED)) {
4304                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4305                 page_add_new_anon_rmap(page, vma, addr);
4306                 lru_cache_add_inactive_or_unevictable(page, vma);
4307         } else {
4308                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4309                 page_add_file_rmap(page, vma, false);
4310         }
4311         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4312 }
4313
4314 static bool vmf_pte_changed(struct vm_fault *vmf)
4315 {
4316         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4317                 return !pte_same(*vmf->pte, vmf->orig_pte);
4318
4319         return !pte_none(*vmf->pte);
4320 }
4321
4322 /**
4323  * finish_fault - finish page fault once we have prepared the page to fault
4324  *
4325  * @vmf: structure describing the fault
4326  *
4327  * This function handles all that is needed to finish a page fault once the
4328  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4329  * given page, adds reverse page mapping, handles memcg charges and LRU
4330  * addition.
4331  *
4332  * The function expects the page to be locked and on success it consumes a
4333  * reference of a page being mapped (for the PTE which maps it).
4334  *
4335  * Return: %0 on success, %VM_FAULT_ code in case of error.
4336  */
4337 vm_fault_t finish_fault(struct vm_fault *vmf)
4338 {
4339         struct vm_area_struct *vma = vmf->vma;
4340         struct page *page;
4341         vm_fault_t ret;
4342
4343         /* Did we COW the page? */
4344         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4345                 page = vmf->cow_page;
4346         else
4347                 page = vmf->page;
4348
4349         /*
4350          * check even for read faults because we might have lost our CoWed
4351          * page
4352          */
4353         if (!(vma->vm_flags & VM_SHARED)) {
4354                 ret = check_stable_address_space(vma->vm_mm);
4355                 if (ret)
4356                         return ret;
4357         }
4358
4359         if (pmd_none(*vmf->pmd)) {
4360                 if (PageTransCompound(page)) {
4361                         ret = do_set_pmd(vmf, page);
4362                         if (ret != VM_FAULT_FALLBACK)
4363                                 return ret;
4364                 }
4365
4366                 if (vmf->prealloc_pte)
4367                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4368                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4369                         return VM_FAULT_OOM;
4370         }
4371
4372         /*
4373          * See comment in handle_pte_fault() for how this scenario happens, we
4374          * need to return NOPAGE so that we drop this page.
4375          */
4376         if (pmd_devmap_trans_unstable(vmf->pmd))
4377                 return VM_FAULT_NOPAGE;
4378
4379         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4380                                       vmf->address, &vmf->ptl);
4381         ret = 0;
4382         /* Re-check under ptl */
4383         if (likely(!vmf_pte_changed(vmf)))
4384                 do_set_pte(vmf, page, vmf->address);
4385         else
4386                 ret = VM_FAULT_NOPAGE;
4387
4388         update_mmu_tlb(vma, vmf->address, vmf->pte);
4389         pte_unmap_unlock(vmf->pte, vmf->ptl);
4390         return ret;
4391 }
4392
4393 static unsigned long fault_around_bytes __read_mostly =
4394         rounddown_pow_of_two(65536);
4395
4396 #ifdef CONFIG_DEBUG_FS
4397 static int fault_around_bytes_get(void *data, u64 *val)
4398 {
4399         *val = fault_around_bytes;
4400         return 0;
4401 }
4402
4403 /*
4404  * fault_around_bytes must be rounded down to the nearest page order as it's
4405  * what do_fault_around() expects to see.
4406  */
4407 static int fault_around_bytes_set(void *data, u64 val)
4408 {
4409         if (val / PAGE_SIZE > PTRS_PER_PTE)
4410                 return -EINVAL;
4411         if (val > PAGE_SIZE)
4412                 fault_around_bytes = rounddown_pow_of_two(val);
4413         else
4414                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4415         return 0;
4416 }
4417 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4418                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4419
4420 static int __init fault_around_debugfs(void)
4421 {
4422         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4423                                    &fault_around_bytes_fops);
4424         return 0;
4425 }
4426 late_initcall(fault_around_debugfs);
4427 #endif
4428
4429 /*
4430  * do_fault_around() tries to map few pages around the fault address. The hope
4431  * is that the pages will be needed soon and this will lower the number of
4432  * faults to handle.
4433  *
4434  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4435  * not ready to be mapped: not up-to-date, locked, etc.
4436  *
4437  * This function is called with the page table lock taken. In the split ptlock
4438  * case the page table lock only protects only those entries which belong to
4439  * the page table corresponding to the fault address.
4440  *
4441  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442  * only once.
4443  *
4444  * fault_around_bytes defines how many bytes we'll try to map.
4445  * do_fault_around() expects it to be set to a power of two less than or equal
4446  * to PTRS_PER_PTE.
4447  *
4448  * The virtual address of the area that we map is naturally aligned to
4449  * fault_around_bytes rounded down to the machine page size
4450  * (and therefore to page order).  This way it's easier to guarantee
4451  * that we don't cross page table boundaries.
4452  */
4453 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4454 {
4455         unsigned long address = vmf->address, nr_pages, mask;
4456         pgoff_t start_pgoff = vmf->pgoff;
4457         pgoff_t end_pgoff;
4458         int off;
4459
4460         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4461         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462
4463         address = max(address & mask, vmf->vma->vm_start);
4464         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4465         start_pgoff -= off;
4466
4467         /*
4468          *  end_pgoff is either the end of the page table, the end of
4469          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4470          */
4471         end_pgoff = start_pgoff -
4472                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4473                 PTRS_PER_PTE - 1;
4474         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4475                         start_pgoff + nr_pages - 1);
4476
4477         if (pmd_none(*vmf->pmd)) {
4478                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4479                 if (!vmf->prealloc_pte)
4480                         return VM_FAULT_OOM;
4481         }
4482
4483         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4484 }
4485
4486 /* Return true if we should do read fault-around, false otherwise */
4487 static inline bool should_fault_around(struct vm_fault *vmf)
4488 {
4489         /* No ->map_pages?  No way to fault around... */
4490         if (!vmf->vma->vm_ops->map_pages)
4491                 return false;
4492
4493         if (uffd_disable_fault_around(vmf->vma))
4494                 return false;
4495
4496         return fault_around_bytes >> PAGE_SHIFT > 1;
4497 }
4498
4499 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4500 {
4501         vm_fault_t ret = 0;
4502
4503         /*
4504          * Let's call ->map_pages() first and use ->fault() as fallback
4505          * if page by the offset is not ready to be mapped (cold cache or
4506          * something).
4507          */
4508         if (should_fault_around(vmf)) {
4509                 ret = do_fault_around(vmf);
4510                 if (ret)
4511                         return ret;
4512         }
4513
4514         ret = __do_fault(vmf);
4515         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516                 return ret;
4517
4518         ret |= finish_fault(vmf);
4519         unlock_page(vmf->page);
4520         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521                 put_page(vmf->page);
4522         return ret;
4523 }
4524
4525 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4526 {
4527         struct vm_area_struct *vma = vmf->vma;
4528         vm_fault_t ret;
4529
4530         if (unlikely(anon_vma_prepare(vma)))
4531                 return VM_FAULT_OOM;
4532
4533         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534         if (!vmf->cow_page)
4535                 return VM_FAULT_OOM;
4536
4537         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538                                 GFP_KERNEL)) {
4539                 put_page(vmf->cow_page);
4540                 return VM_FAULT_OOM;
4541         }
4542         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4543
4544         ret = __do_fault(vmf);
4545         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546                 goto uncharge_out;
4547         if (ret & VM_FAULT_DONE_COW)
4548                 return ret;
4549
4550         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4551         __SetPageUptodate(vmf->cow_page);
4552
4553         ret |= finish_fault(vmf);
4554         unlock_page(vmf->page);
4555         put_page(vmf->page);
4556         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557                 goto uncharge_out;
4558         return ret;
4559 uncharge_out:
4560         put_page(vmf->cow_page);
4561         return ret;
4562 }
4563
4564 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4565 {
4566         struct vm_area_struct *vma = vmf->vma;
4567         vm_fault_t ret, tmp;
4568
4569         ret = __do_fault(vmf);
4570         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571                 return ret;
4572
4573         /*
4574          * Check if the backing address space wants to know that the page is
4575          * about to become writable
4576          */
4577         if (vma->vm_ops->page_mkwrite) {
4578                 unlock_page(vmf->page);
4579                 tmp = do_page_mkwrite(vmf);
4580                 if (unlikely(!tmp ||
4581                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4582                         put_page(vmf->page);
4583                         return tmp;
4584                 }
4585         }
4586
4587         ret |= finish_fault(vmf);
4588         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589                                         VM_FAULT_RETRY))) {
4590                 unlock_page(vmf->page);
4591                 put_page(vmf->page);
4592                 return ret;
4593         }
4594
4595         ret |= fault_dirty_shared_page(vmf);
4596         return ret;
4597 }
4598
4599 /*
4600  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4601  * but allow concurrent faults).
4602  * The mmap_lock may have been released depending on flags and our
4603  * return value.  See filemap_fault() and __folio_lock_or_retry().
4604  * If mmap_lock is released, vma may become invalid (for example
4605  * by other thread calling munmap()).
4606  */
4607 static vm_fault_t do_fault(struct vm_fault *vmf)
4608 {
4609         struct vm_area_struct *vma = vmf->vma;
4610         struct mm_struct *vm_mm = vma->vm_mm;
4611         vm_fault_t ret;
4612
4613         /*
4614          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615          */
4616         if (!vma->vm_ops->fault) {
4617                 /*
4618                  * If we find a migration pmd entry or a none pmd entry, which
4619                  * should never happen, return SIGBUS
4620                  */
4621                 if (unlikely(!pmd_present(*vmf->pmd)))
4622                         ret = VM_FAULT_SIGBUS;
4623                 else {
4624                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625                                                        vmf->pmd,
4626                                                        vmf->address,
4627                                                        &vmf->ptl);
4628                         /*
4629                          * Make sure this is not a temporary clearing of pte
4630                          * by holding ptl and checking again. A R/M/W update
4631                          * of pte involves: take ptl, clearing the pte so that
4632                          * we don't have concurrent modification by hardware
4633                          * followed by an update.
4634                          */
4635                         if (unlikely(pte_none(*vmf->pte)))
4636                                 ret = VM_FAULT_SIGBUS;
4637                         else
4638                                 ret = VM_FAULT_NOPAGE;
4639
4640                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4641                 }
4642         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4643                 ret = do_read_fault(vmf);
4644         else if (!(vma->vm_flags & VM_SHARED))
4645                 ret = do_cow_fault(vmf);
4646         else
4647                 ret = do_shared_fault(vmf);
4648
4649         /* preallocated pagetable is unused: free it */
4650         if (vmf->prealloc_pte) {
4651                 pte_free(vm_mm, vmf->prealloc_pte);
4652                 vmf->prealloc_pte = NULL;
4653         }
4654         return ret;
4655 }
4656
4657 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658                       unsigned long addr, int page_nid, int *flags)
4659 {
4660         get_page(page);
4661
4662         count_vm_numa_event(NUMA_HINT_FAULTS);
4663         if (page_nid == numa_node_id()) {
4664                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4665                 *flags |= TNF_FAULT_LOCAL;
4666         }
4667
4668         return mpol_misplaced(page, vma, addr);
4669 }
4670
4671 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4672 {
4673         struct vm_area_struct *vma = vmf->vma;
4674         struct page *page = NULL;
4675         int page_nid = NUMA_NO_NODE;
4676         int last_cpupid;
4677         int target_nid;
4678         pte_t pte, old_pte;
4679         bool was_writable = pte_savedwrite(vmf->orig_pte);
4680         int flags = 0;
4681
4682         /*
4683          * The "pte" at this point cannot be used safely without
4684          * validation through pte_unmap_same(). It's of NUMA type but
4685          * the pfn may be screwed if the read is non atomic.
4686          */
4687         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688         spin_lock(vmf->ptl);
4689         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4690                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4691                 goto out;
4692         }
4693
4694         /* Get the normal PTE  */
4695         old_pte = ptep_get(vmf->pte);
4696         pte = pte_modify(old_pte, vma->vm_page_prot);
4697
4698         page = vm_normal_page(vma, vmf->address, pte);
4699         if (!page)
4700                 goto out_map;
4701
4702         /* TODO: handle PTE-mapped THP */
4703         if (PageCompound(page))
4704                 goto out_map;
4705
4706         /*
4707          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4708          * much anyway since they can be in shared cache state. This misses
4709          * the case where a mapping is writable but the process never writes
4710          * to it but pte_write gets cleared during protection updates and
4711          * pte_dirty has unpredictable behaviour between PTE scan updates,
4712          * background writeback, dirty balancing and application behaviour.
4713          */
4714         if (!was_writable)
4715                 flags |= TNF_NO_GROUP;
4716
4717         /*
4718          * Flag if the page is shared between multiple address spaces. This
4719          * is later used when determining whether to group tasks together
4720          */
4721         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4722                 flags |= TNF_SHARED;
4723
4724         last_cpupid = page_cpupid_last(page);
4725         page_nid = page_to_nid(page);
4726         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4727                         &flags);
4728         if (target_nid == NUMA_NO_NODE) {
4729                 put_page(page);
4730                 goto out_map;
4731         }
4732         pte_unmap_unlock(vmf->pte, vmf->ptl);
4733
4734         /* Migrate to the requested node */
4735         if (migrate_misplaced_page(page, vma, target_nid)) {
4736                 page_nid = target_nid;
4737                 flags |= TNF_MIGRATED;
4738         } else {
4739                 flags |= TNF_MIGRATE_FAIL;
4740                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4741                 spin_lock(vmf->ptl);
4742                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4743                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4744                         goto out;
4745                 }
4746                 goto out_map;
4747         }
4748
4749 out:
4750         if (page_nid != NUMA_NO_NODE)
4751                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4752         return 0;
4753 out_map:
4754         /*
4755          * Make it present again, depending on how arch implements
4756          * non-accessible ptes, some can allow access by kernel mode.
4757          */
4758         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4759         pte = pte_modify(old_pte, vma->vm_page_prot);
4760         pte = pte_mkyoung(pte);
4761         if (was_writable)
4762                 pte = pte_mkwrite(pte);
4763         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4764         update_mmu_cache(vma, vmf->address, vmf->pte);
4765         pte_unmap_unlock(vmf->pte, vmf->ptl);
4766         goto out;
4767 }
4768
4769 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4770 {
4771         if (vma_is_anonymous(vmf->vma))
4772                 return do_huge_pmd_anonymous_page(vmf);
4773         if (vmf->vma->vm_ops->huge_fault)
4774                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4775         return VM_FAULT_FALLBACK;
4776 }
4777
4778 /* `inline' is required to avoid gcc 4.1.2 build error */
4779 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4780 {
4781         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4782
4783         if (vma_is_anonymous(vmf->vma)) {
4784                 if (likely(!unshare) &&
4785                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4786                         return handle_userfault(vmf, VM_UFFD_WP);
4787                 return do_huge_pmd_wp_page(vmf);
4788         }
4789         if (vmf->vma->vm_ops->huge_fault) {
4790                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4791
4792                 if (!(ret & VM_FAULT_FALLBACK))
4793                         return ret;
4794         }
4795
4796         /* COW or write-notify handled on pte level: split pmd. */
4797         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4798
4799         return VM_FAULT_FALLBACK;
4800 }
4801
4802 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4803 {
4804 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4805         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4806         /* No support for anonymous transparent PUD pages yet */
4807         if (vma_is_anonymous(vmf->vma))
4808                 return VM_FAULT_FALLBACK;
4809         if (vmf->vma->vm_ops->huge_fault)
4810                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4811 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4812         return VM_FAULT_FALLBACK;
4813 }
4814
4815 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4816 {
4817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4818         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4819         /* No support for anonymous transparent PUD pages yet */
4820         if (vma_is_anonymous(vmf->vma))
4821                 goto split;
4822         if (vmf->vma->vm_ops->huge_fault) {
4823                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4824
4825                 if (!(ret & VM_FAULT_FALLBACK))
4826                         return ret;
4827         }
4828 split:
4829         /* COW or write-notify not handled on PUD level: split pud.*/
4830         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4831 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4832         return VM_FAULT_FALLBACK;
4833 }
4834
4835 /*
4836  * These routines also need to handle stuff like marking pages dirty
4837  * and/or accessed for architectures that don't do it in hardware (most
4838  * RISC architectures).  The early dirtying is also good on the i386.
4839  *
4840  * There is also a hook called "update_mmu_cache()" that architectures
4841  * with external mmu caches can use to update those (ie the Sparc or
4842  * PowerPC hashed page tables that act as extended TLBs).
4843  *
4844  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4845  * concurrent faults).
4846  *
4847  * The mmap_lock may have been released depending on flags and our return value.
4848  * See filemap_fault() and __folio_lock_or_retry().
4849  */
4850 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4851 {
4852         pte_t entry;
4853
4854         if (unlikely(pmd_none(*vmf->pmd))) {
4855                 /*
4856                  * Leave __pte_alloc() until later: because vm_ops->fault may
4857                  * want to allocate huge page, and if we expose page table
4858                  * for an instant, it will be difficult to retract from
4859                  * concurrent faults and from rmap lookups.
4860                  */
4861                 vmf->pte = NULL;
4862                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4863         } else {
4864                 /*
4865                  * If a huge pmd materialized under us just retry later.  Use
4866                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4867                  * of pmd_trans_huge() to ensure the pmd didn't become
4868                  * pmd_trans_huge under us and then back to pmd_none, as a
4869                  * result of MADV_DONTNEED running immediately after a huge pmd
4870                  * fault in a different thread of this mm, in turn leading to a
4871                  * misleading pmd_trans_huge() retval. All we have to ensure is
4872                  * that it is a regular pmd that we can walk with
4873                  * pte_offset_map() and we can do that through an atomic read
4874                  * in C, which is what pmd_trans_unstable() provides.
4875                  */
4876                 if (pmd_devmap_trans_unstable(vmf->pmd))
4877                         return 0;
4878                 /*
4879                  * A regular pmd is established and it can't morph into a huge
4880                  * pmd from under us anymore at this point because we hold the
4881                  * mmap_lock read mode and khugepaged takes it in write mode.
4882                  * So now it's safe to run pte_offset_map().
4883                  */
4884                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4885                 vmf->orig_pte = *vmf->pte;
4886                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4887
4888                 /*
4889                  * some architectures can have larger ptes than wordsize,
4890                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4891                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4892                  * accesses.  The code below just needs a consistent view
4893                  * for the ifs and we later double check anyway with the
4894                  * ptl lock held. So here a barrier will do.
4895                  */
4896                 barrier();
4897                 if (pte_none(vmf->orig_pte)) {
4898                         pte_unmap(vmf->pte);
4899                         vmf->pte = NULL;
4900                 }
4901         }
4902
4903         if (!vmf->pte) {
4904                 if (vma_is_anonymous(vmf->vma))
4905                         return do_anonymous_page(vmf);
4906                 else
4907                         return do_fault(vmf);
4908         }
4909
4910         if (!pte_present(vmf->orig_pte))
4911                 return do_swap_page(vmf);
4912
4913         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4914                 return do_numa_page(vmf);
4915
4916         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4917         spin_lock(vmf->ptl);
4918         entry = vmf->orig_pte;
4919         if (unlikely(!pte_same(*vmf->pte, entry))) {
4920                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4921                 goto unlock;
4922         }
4923         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4924                 if (!pte_write(entry))
4925                         return do_wp_page(vmf);
4926                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4927                         entry = pte_mkdirty(entry);
4928         }
4929         entry = pte_mkyoung(entry);
4930         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4931                                 vmf->flags & FAULT_FLAG_WRITE)) {
4932                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4933         } else {
4934                 /* Skip spurious TLB flush for retried page fault */
4935                 if (vmf->flags & FAULT_FLAG_TRIED)
4936                         goto unlock;
4937                 /*
4938                  * This is needed only for protection faults but the arch code
4939                  * is not yet telling us if this is a protection fault or not.
4940                  * This still avoids useless tlb flushes for .text page faults
4941                  * with threads.
4942                  */
4943                 if (vmf->flags & FAULT_FLAG_WRITE)
4944                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4945         }
4946 unlock:
4947         pte_unmap_unlock(vmf->pte, vmf->ptl);
4948         return 0;
4949 }
4950
4951 /*
4952  * By the time we get here, we already hold the mm semaphore
4953  *
4954  * The mmap_lock may have been released depending on flags and our
4955  * return value.  See filemap_fault() and __folio_lock_or_retry().
4956  */
4957 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4958                 unsigned long address, unsigned int flags)
4959 {
4960         struct vm_fault vmf = {
4961                 .vma = vma,
4962                 .address = address & PAGE_MASK,
4963                 .real_address = address,
4964                 .flags = flags,
4965                 .pgoff = linear_page_index(vma, address),
4966                 .gfp_mask = __get_fault_gfp_mask(vma),
4967         };
4968         struct mm_struct *mm = vma->vm_mm;
4969         pgd_t *pgd;
4970         p4d_t *p4d;
4971         vm_fault_t ret;
4972
4973         pgd = pgd_offset(mm, address);
4974         p4d = p4d_alloc(mm, pgd, address);
4975         if (!p4d)
4976                 return VM_FAULT_OOM;
4977
4978         vmf.pud = pud_alloc(mm, p4d, address);
4979         if (!vmf.pud)
4980                 return VM_FAULT_OOM;
4981 retry_pud:
4982         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4983                 ret = create_huge_pud(&vmf);
4984                 if (!(ret & VM_FAULT_FALLBACK))
4985                         return ret;
4986         } else {
4987                 pud_t orig_pud = *vmf.pud;
4988
4989                 barrier();
4990                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4991
4992                         /*
4993                          * TODO once we support anonymous PUDs: NUMA case and
4994                          * FAULT_FLAG_UNSHARE handling.
4995                          */
4996                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
4997                                 ret = wp_huge_pud(&vmf, orig_pud);
4998                                 if (!(ret & VM_FAULT_FALLBACK))
4999                                         return ret;
5000                         } else {
5001                                 huge_pud_set_accessed(&vmf, orig_pud);
5002                                 return 0;
5003                         }
5004                 }
5005         }
5006
5007         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5008         if (!vmf.pmd)
5009                 return VM_FAULT_OOM;
5010
5011         /* Huge pud page fault raced with pmd_alloc? */
5012         if (pud_trans_unstable(vmf.pud))
5013                 goto retry_pud;
5014
5015         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
5016                 ret = create_huge_pmd(&vmf);
5017                 if (!(ret & VM_FAULT_FALLBACK))
5018                         return ret;
5019         } else {
5020                 vmf.orig_pmd = *vmf.pmd;
5021
5022                 barrier();
5023                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5024                         VM_BUG_ON(thp_migration_supported() &&
5025                                           !is_pmd_migration_entry(vmf.orig_pmd));
5026                         if (is_pmd_migration_entry(vmf.orig_pmd))
5027                                 pmd_migration_entry_wait(mm, vmf.pmd);
5028                         return 0;
5029                 }
5030                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5031                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5032                                 return do_huge_pmd_numa_page(&vmf);
5033
5034                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5035                             !pmd_write(vmf.orig_pmd)) {
5036                                 ret = wp_huge_pmd(&vmf);
5037                                 if (!(ret & VM_FAULT_FALLBACK))
5038                                         return ret;
5039                         } else {
5040                                 huge_pmd_set_accessed(&vmf);
5041                                 return 0;
5042                         }
5043                 }
5044         }
5045
5046         return handle_pte_fault(&vmf);
5047 }
5048
5049 /**
5050  * mm_account_fault - Do page fault accounting
5051  *
5052  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5053  *        of perf event counters, but we'll still do the per-task accounting to
5054  *        the task who triggered this page fault.
5055  * @address: the faulted address.
5056  * @flags: the fault flags.
5057  * @ret: the fault retcode.
5058  *
5059  * This will take care of most of the page fault accounting.  Meanwhile, it
5060  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5061  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5062  * still be in per-arch page fault handlers at the entry of page fault.
5063  */
5064 static inline void mm_account_fault(struct pt_regs *regs,
5065                                     unsigned long address, unsigned int flags,
5066                                     vm_fault_t ret)
5067 {
5068         bool major;
5069
5070         /*
5071          * We don't do accounting for some specific faults:
5072          *
5073          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5074          *   includes arch_vma_access_permitted() failing before reaching here.
5075          *   So this is not a "this many hardware page faults" counter.  We
5076          *   should use the hw profiling for that.
5077          *
5078          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5079          *   once they're completed.
5080          */
5081         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5082                 return;
5083
5084         /*
5085          * We define the fault as a major fault when the final successful fault
5086          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5087          * handle it immediately previously).
5088          */
5089         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5090
5091         if (major)
5092                 current->maj_flt++;
5093         else
5094                 current->min_flt++;
5095
5096         /*
5097          * If the fault is done for GUP, regs will be NULL.  We only do the
5098          * accounting for the per thread fault counters who triggered the
5099          * fault, and we skip the perf event updates.
5100          */
5101         if (!regs)
5102                 return;
5103
5104         if (major)
5105                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5106         else
5107                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5108 }
5109
5110 /*
5111  * By the time we get here, we already hold the mm semaphore
5112  *
5113  * The mmap_lock may have been released depending on flags and our
5114  * return value.  See filemap_fault() and __folio_lock_or_retry().
5115  */
5116 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5117                            unsigned int flags, struct pt_regs *regs)
5118 {
5119         vm_fault_t ret;
5120
5121         __set_current_state(TASK_RUNNING);
5122
5123         count_vm_event(PGFAULT);
5124         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5125
5126         /* do counter updates before entering really critical section. */
5127         check_sync_rss_stat(current);
5128
5129         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5130                                             flags & FAULT_FLAG_INSTRUCTION,
5131                                             flags & FAULT_FLAG_REMOTE))
5132                 return VM_FAULT_SIGSEGV;
5133
5134         /*
5135          * Enable the memcg OOM handling for faults triggered in user
5136          * space.  Kernel faults are handled more gracefully.
5137          */
5138         if (flags & FAULT_FLAG_USER)
5139                 mem_cgroup_enter_user_fault();
5140
5141         if (unlikely(is_vm_hugetlb_page(vma)))
5142                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5143         else
5144                 ret = __handle_mm_fault(vma, address, flags);
5145
5146         if (flags & FAULT_FLAG_USER) {
5147                 mem_cgroup_exit_user_fault();
5148                 /*
5149                  * The task may have entered a memcg OOM situation but
5150                  * if the allocation error was handled gracefully (no
5151                  * VM_FAULT_OOM), there is no need to kill anything.
5152                  * Just clean up the OOM state peacefully.
5153                  */
5154                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5155                         mem_cgroup_oom_synchronize(false);
5156         }
5157
5158         mm_account_fault(regs, address, flags, ret);
5159
5160         return ret;
5161 }
5162 EXPORT_SYMBOL_GPL(handle_mm_fault);
5163
5164 #ifndef __PAGETABLE_P4D_FOLDED
5165 /*
5166  * Allocate p4d page table.
5167  * We've already handled the fast-path in-line.
5168  */
5169 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5170 {
5171         p4d_t *new = p4d_alloc_one(mm, address);
5172         if (!new)
5173                 return -ENOMEM;
5174
5175         spin_lock(&mm->page_table_lock);
5176         if (pgd_present(*pgd)) {        /* Another has populated it */
5177                 p4d_free(mm, new);
5178         } else {
5179                 smp_wmb(); /* See comment in pmd_install() */
5180                 pgd_populate(mm, pgd, new);
5181         }
5182         spin_unlock(&mm->page_table_lock);
5183         return 0;
5184 }
5185 #endif /* __PAGETABLE_P4D_FOLDED */
5186
5187 #ifndef __PAGETABLE_PUD_FOLDED
5188 /*
5189  * Allocate page upper directory.
5190  * We've already handled the fast-path in-line.
5191  */
5192 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5193 {
5194         pud_t *new = pud_alloc_one(mm, address);
5195         if (!new)
5196                 return -ENOMEM;
5197
5198         spin_lock(&mm->page_table_lock);
5199         if (!p4d_present(*p4d)) {
5200                 mm_inc_nr_puds(mm);
5201                 smp_wmb(); /* See comment in pmd_install() */
5202                 p4d_populate(mm, p4d, new);
5203         } else  /* Another has populated it */
5204                 pud_free(mm, new);
5205         spin_unlock(&mm->page_table_lock);
5206         return 0;
5207 }
5208 #endif /* __PAGETABLE_PUD_FOLDED */
5209
5210 #ifndef __PAGETABLE_PMD_FOLDED
5211 /*
5212  * Allocate page middle directory.
5213  * We've already handled the fast-path in-line.
5214  */
5215 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5216 {
5217         spinlock_t *ptl;
5218         pmd_t *new = pmd_alloc_one(mm, address);
5219         if (!new)
5220                 return -ENOMEM;
5221
5222         ptl = pud_lock(mm, pud);
5223         if (!pud_present(*pud)) {
5224                 mm_inc_nr_pmds(mm);
5225                 smp_wmb(); /* See comment in pmd_install() */
5226                 pud_populate(mm, pud, new);
5227         } else {        /* Another has populated it */
5228                 pmd_free(mm, new);
5229         }
5230         spin_unlock(ptl);
5231         return 0;
5232 }
5233 #endif /* __PAGETABLE_PMD_FOLDED */
5234
5235 /**
5236  * follow_pte - look up PTE at a user virtual address
5237  * @mm: the mm_struct of the target address space
5238  * @address: user virtual address
5239  * @ptepp: location to store found PTE
5240  * @ptlp: location to store the lock for the PTE
5241  *
5242  * On a successful return, the pointer to the PTE is stored in @ptepp;
5243  * the corresponding lock is taken and its location is stored in @ptlp.
5244  * The contents of the PTE are only stable until @ptlp is released;
5245  * any further use, if any, must be protected against invalidation
5246  * with MMU notifiers.
5247  *
5248  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5249  * should be taken for read.
5250  *
5251  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5252  * it is not a good general-purpose API.
5253  *
5254  * Return: zero on success, -ve otherwise.
5255  */
5256 int follow_pte(struct mm_struct *mm, unsigned long address,
5257                pte_t **ptepp, spinlock_t **ptlp)
5258 {
5259         pgd_t *pgd;
5260         p4d_t *p4d;
5261         pud_t *pud;
5262         pmd_t *pmd;
5263         pte_t *ptep;
5264
5265         pgd = pgd_offset(mm, address);
5266         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5267                 goto out;
5268
5269         p4d = p4d_offset(pgd, address);
5270         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5271                 goto out;
5272
5273         pud = pud_offset(p4d, address);
5274         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5275                 goto out;
5276
5277         pmd = pmd_offset(pud, address);
5278         VM_BUG_ON(pmd_trans_huge(*pmd));
5279
5280         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5281                 goto out;
5282
5283         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5284         if (!pte_present(*ptep))
5285                 goto unlock;
5286         *ptepp = ptep;
5287         return 0;
5288 unlock:
5289         pte_unmap_unlock(ptep, *ptlp);
5290 out:
5291         return -EINVAL;
5292 }
5293 EXPORT_SYMBOL_GPL(follow_pte);
5294
5295 /**
5296  * follow_pfn - look up PFN at a user virtual address
5297  * @vma: memory mapping
5298  * @address: user virtual address
5299  * @pfn: location to store found PFN
5300  *
5301  * Only IO mappings and raw PFN mappings are allowed.
5302  *
5303  * This function does not allow the caller to read the permissions
5304  * of the PTE.  Do not use it.
5305  *
5306  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5307  */
5308 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5309         unsigned long *pfn)
5310 {
5311         int ret = -EINVAL;
5312         spinlock_t *ptl;
5313         pte_t *ptep;
5314
5315         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5316                 return ret;
5317
5318         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5319         if (ret)
5320                 return ret;
5321         *pfn = pte_pfn(*ptep);
5322         pte_unmap_unlock(ptep, ptl);
5323         return 0;
5324 }
5325 EXPORT_SYMBOL(follow_pfn);
5326
5327 #ifdef CONFIG_HAVE_IOREMAP_PROT
5328 int follow_phys(struct vm_area_struct *vma,
5329                 unsigned long address, unsigned int flags,
5330                 unsigned long *prot, resource_size_t *phys)
5331 {
5332         int ret = -EINVAL;
5333         pte_t *ptep, pte;
5334         spinlock_t *ptl;
5335
5336         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5337                 goto out;
5338
5339         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5340                 goto out;
5341         pte = *ptep;
5342
5343         if ((flags & FOLL_WRITE) && !pte_write(pte))
5344                 goto unlock;
5345
5346         *prot = pgprot_val(pte_pgprot(pte));
5347         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5348
5349         ret = 0;
5350 unlock:
5351         pte_unmap_unlock(ptep, ptl);
5352 out:
5353         return ret;
5354 }
5355
5356 /**
5357  * generic_access_phys - generic implementation for iomem mmap access
5358  * @vma: the vma to access
5359  * @addr: userspace address, not relative offset within @vma
5360  * @buf: buffer to read/write
5361  * @len: length of transfer
5362  * @write: set to FOLL_WRITE when writing, otherwise reading
5363  *
5364  * This is a generic implementation for &vm_operations_struct.access for an
5365  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5366  * not page based.
5367  */
5368 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5369                         void *buf, int len, int write)
5370 {
5371         resource_size_t phys_addr;
5372         unsigned long prot = 0;
5373         void __iomem *maddr;
5374         pte_t *ptep, pte;
5375         spinlock_t *ptl;
5376         int offset = offset_in_page(addr);
5377         int ret = -EINVAL;
5378
5379         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5380                 return -EINVAL;
5381
5382 retry:
5383         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5384                 return -EINVAL;
5385         pte = *ptep;
5386         pte_unmap_unlock(ptep, ptl);
5387
5388         prot = pgprot_val(pte_pgprot(pte));
5389         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5390
5391         if ((write & FOLL_WRITE) && !pte_write(pte))
5392                 return -EINVAL;
5393
5394         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5395         if (!maddr)
5396                 return -ENOMEM;
5397
5398         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5399                 goto out_unmap;
5400
5401         if (!pte_same(pte, *ptep)) {
5402                 pte_unmap_unlock(ptep, ptl);
5403                 iounmap(maddr);
5404
5405                 goto retry;
5406         }
5407
5408         if (write)
5409                 memcpy_toio(maddr + offset, buf, len);
5410         else
5411                 memcpy_fromio(buf, maddr + offset, len);
5412         ret = len;
5413         pte_unmap_unlock(ptep, ptl);
5414 out_unmap:
5415         iounmap(maddr);
5416
5417         return ret;
5418 }
5419 EXPORT_SYMBOL_GPL(generic_access_phys);
5420 #endif
5421
5422 /*
5423  * Access another process' address space as given in mm.
5424  */
5425 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5426                        int len, unsigned int gup_flags)
5427 {
5428         struct vm_area_struct *vma;
5429         void *old_buf = buf;
5430         int write = gup_flags & FOLL_WRITE;
5431
5432         if (mmap_read_lock_killable(mm))
5433                 return 0;
5434
5435         /* ignore errors, just check how much was successfully transferred */
5436         while (len) {
5437                 int bytes, ret, offset;
5438                 void *maddr;
5439                 struct page *page = NULL;
5440
5441                 ret = get_user_pages_remote(mm, addr, 1,
5442                                 gup_flags, &page, &vma, NULL);
5443                 if (ret <= 0) {
5444 #ifndef CONFIG_HAVE_IOREMAP_PROT
5445                         break;
5446 #else
5447                         /*
5448                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5449                          * we can access using slightly different code.
5450                          */
5451                         vma = vma_lookup(mm, addr);
5452                         if (!vma)
5453                                 break;
5454                         if (vma->vm_ops && vma->vm_ops->access)
5455                                 ret = vma->vm_ops->access(vma, addr, buf,
5456                                                           len, write);
5457                         if (ret <= 0)
5458                                 break;
5459                         bytes = ret;
5460 #endif
5461                 } else {
5462                         bytes = len;
5463                         offset = addr & (PAGE_SIZE-1);
5464                         if (bytes > PAGE_SIZE-offset)
5465                                 bytes = PAGE_SIZE-offset;
5466
5467                         maddr = kmap(page);
5468                         if (write) {
5469                                 copy_to_user_page(vma, page, addr,
5470                                                   maddr + offset, buf, bytes);
5471                                 set_page_dirty_lock(page);
5472                         } else {
5473                                 copy_from_user_page(vma, page, addr,
5474                                                     buf, maddr + offset, bytes);
5475                         }
5476                         kunmap(page);
5477                         put_page(page);
5478                 }
5479                 len -= bytes;
5480                 buf += bytes;
5481                 addr += bytes;
5482         }
5483         mmap_read_unlock(mm);
5484
5485         return buf - old_buf;
5486 }
5487
5488 /**
5489  * access_remote_vm - access another process' address space
5490  * @mm:         the mm_struct of the target address space
5491  * @addr:       start address to access
5492  * @buf:        source or destination buffer
5493  * @len:        number of bytes to transfer
5494  * @gup_flags:  flags modifying lookup behaviour
5495  *
5496  * The caller must hold a reference on @mm.
5497  *
5498  * Return: number of bytes copied from source to destination.
5499  */
5500 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5501                 void *buf, int len, unsigned int gup_flags)
5502 {
5503         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5504 }
5505
5506 /*
5507  * Access another process' address space.
5508  * Source/target buffer must be kernel space,
5509  * Do not walk the page table directly, use get_user_pages
5510  */
5511 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5512                 void *buf, int len, unsigned int gup_flags)
5513 {
5514         struct mm_struct *mm;
5515         int ret;
5516
5517         mm = get_task_mm(tsk);
5518         if (!mm)
5519                 return 0;
5520
5521         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5522
5523         mmput(mm);
5524
5525         return ret;
5526 }
5527 EXPORT_SYMBOL_GPL(access_process_vm);
5528
5529 /*
5530  * Print the name of a VMA.
5531  */
5532 void print_vma_addr(char *prefix, unsigned long ip)
5533 {
5534         struct mm_struct *mm = current->mm;
5535         struct vm_area_struct *vma;
5536
5537         /*
5538          * we might be running from an atomic context so we cannot sleep
5539          */
5540         if (!mmap_read_trylock(mm))
5541                 return;
5542
5543         vma = find_vma(mm, ip);
5544         if (vma && vma->vm_file) {
5545                 struct file *f = vma->vm_file;
5546                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5547                 if (buf) {
5548                         char *p;
5549
5550                         p = file_path(f, buf, PAGE_SIZE);
5551                         if (IS_ERR(p))
5552                                 p = "?";
5553                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5554                                         vma->vm_start,
5555                                         vma->vm_end - vma->vm_start);
5556                         free_page((unsigned long)buf);
5557                 }
5558         }
5559         mmap_read_unlock(mm);
5560 }
5561
5562 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5563 void __might_fault(const char *file, int line)
5564 {
5565         if (pagefault_disabled())
5566                 return;
5567         __might_sleep(file, line);
5568 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5569         if (current->mm)
5570                 might_lock_read(&current->mm->mmap_lock);
5571 #endif
5572 }
5573 EXPORT_SYMBOL(__might_fault);
5574 #endif
5575
5576 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5577 /*
5578  * Process all subpages of the specified huge page with the specified
5579  * operation.  The target subpage will be processed last to keep its
5580  * cache lines hot.
5581  */
5582 static inline void process_huge_page(
5583         unsigned long addr_hint, unsigned int pages_per_huge_page,
5584         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5585         void *arg)
5586 {
5587         int i, n, base, l;
5588         unsigned long addr = addr_hint &
5589                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5590
5591         /* Process target subpage last to keep its cache lines hot */
5592         might_sleep();
5593         n = (addr_hint - addr) / PAGE_SIZE;
5594         if (2 * n <= pages_per_huge_page) {
5595                 /* If target subpage in first half of huge page */
5596                 base = 0;
5597                 l = n;
5598                 /* Process subpages at the end of huge page */
5599                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5600                         cond_resched();
5601                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5602                 }
5603         } else {
5604                 /* If target subpage in second half of huge page */
5605                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5606                 l = pages_per_huge_page - n;
5607                 /* Process subpages at the begin of huge page */
5608                 for (i = 0; i < base; i++) {
5609                         cond_resched();
5610                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5611                 }
5612         }
5613         /*
5614          * Process remaining subpages in left-right-left-right pattern
5615          * towards the target subpage
5616          */
5617         for (i = 0; i < l; i++) {
5618                 int left_idx = base + i;
5619                 int right_idx = base + 2 * l - 1 - i;
5620
5621                 cond_resched();
5622                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5623                 cond_resched();
5624                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5625         }
5626 }
5627
5628 static void clear_gigantic_page(struct page *page,
5629                                 unsigned long addr,
5630                                 unsigned int pages_per_huge_page)
5631 {
5632         int i;
5633         struct page *p = page;
5634
5635         might_sleep();
5636         for (i = 0; i < pages_per_huge_page;
5637              i++, p = mem_map_next(p, page, i)) {
5638                 cond_resched();
5639                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5640         }
5641 }
5642
5643 static void clear_subpage(unsigned long addr, int idx, void *arg)
5644 {
5645         struct page *page = arg;
5646
5647         clear_user_highpage(page + idx, addr);
5648 }
5649
5650 void clear_huge_page(struct page *page,
5651                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5652 {
5653         unsigned long addr = addr_hint &
5654                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5655
5656         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5657                 clear_gigantic_page(page, addr, pages_per_huge_page);
5658                 return;
5659         }
5660
5661         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5662 }
5663
5664 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5665                                     unsigned long addr,
5666                                     struct vm_area_struct *vma,
5667                                     unsigned int pages_per_huge_page)
5668 {
5669         int i;
5670         struct page *dst_base = dst;
5671         struct page *src_base = src;
5672
5673         for (i = 0; i < pages_per_huge_page; ) {
5674                 cond_resched();
5675                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5676
5677                 i++;
5678                 dst = mem_map_next(dst, dst_base, i);
5679                 src = mem_map_next(src, src_base, i);
5680         }
5681 }
5682
5683 struct copy_subpage_arg {
5684         struct page *dst;
5685         struct page *src;
5686         struct vm_area_struct *vma;
5687 };
5688
5689 static void copy_subpage(unsigned long addr, int idx, void *arg)
5690 {
5691         struct copy_subpage_arg *copy_arg = arg;
5692
5693         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5694                            addr, copy_arg->vma);
5695 }
5696
5697 void copy_user_huge_page(struct page *dst, struct page *src,
5698                          unsigned long addr_hint, struct vm_area_struct *vma,
5699                          unsigned int pages_per_huge_page)
5700 {
5701         unsigned long addr = addr_hint &
5702                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5703         struct copy_subpage_arg arg = {
5704                 .dst = dst,
5705                 .src = src,
5706                 .vma = vma,
5707         };
5708
5709         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5710                 copy_user_gigantic_page(dst, src, addr, vma,
5711                                         pages_per_huge_page);
5712                 return;
5713         }
5714
5715         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5716 }
5717
5718 long copy_huge_page_from_user(struct page *dst_page,
5719                                 const void __user *usr_src,
5720                                 unsigned int pages_per_huge_page,
5721                                 bool allow_pagefault)
5722 {
5723         void *page_kaddr;
5724         unsigned long i, rc = 0;
5725         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5726         struct page *subpage = dst_page;
5727
5728         for (i = 0; i < pages_per_huge_page;
5729              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5730                 if (allow_pagefault)
5731                         page_kaddr = kmap(subpage);
5732                 else
5733                         page_kaddr = kmap_atomic(subpage);
5734                 rc = copy_from_user(page_kaddr,
5735                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5736                 if (allow_pagefault)
5737                         kunmap(subpage);
5738                 else
5739                         kunmap_atomic(page_kaddr);
5740
5741                 ret_val -= (PAGE_SIZE - rc);
5742                 if (rc)
5743                         break;
5744
5745                 flush_dcache_page(subpage);
5746
5747                 cond_resched();
5748         }
5749         return ret_val;
5750 }
5751 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5752
5753 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5754
5755 static struct kmem_cache *page_ptl_cachep;
5756
5757 void __init ptlock_cache_init(void)
5758 {
5759         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5760                         SLAB_PANIC, NULL);
5761 }
5762
5763 bool ptlock_alloc(struct page *page)
5764 {
5765         spinlock_t *ptl;
5766
5767         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5768         if (!ptl)
5769                 return false;
5770         page->ptl = ptl;
5771         return true;
5772 }
5773
5774 void ptlock_free(struct page *page)
5775 {
5776         kmem_cache_free(page_ptl_cachep, page->ptl);
5777 }
5778 #endif