include/linux/compiler*.h: make compiler-*.h mutually exclusive
[platform/kernel/linux-rpi.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331         struct mm_struct __maybe_unused *mm = arg;
332         /*
333          * On most architectures this does nothing. Simply delivering the
334          * interrupt is enough to prevent races with software page table
335          * walking like that done in get_user_pages_fast.
336          *
337          * See the comment near struct mmu_table_batch.
338          */
339         tlb_flush_remove_tables_local(mm);
340 }
341
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344         /*
345          * This isn't an RCU grace period and hence the page-tables cannot be
346          * assumed to be actually RCU-freed.
347          *
348          * It is however sufficient for software page-table walkers that rely on
349          * IRQ disabling. See the comment near struct mmu_table_batch.
350          */
351         smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352         __tlb_remove_table(table);
353 }
354
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357         struct mmu_table_batch *batch;
358         int i;
359
360         batch = container_of(head, struct mmu_table_batch, rcu);
361
362         for (i = 0; i < batch->nr; i++)
363                 __tlb_remove_table(batch->tables[i]);
364
365         free_page((unsigned long)batch);
366 }
367
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370         struct mmu_table_batch **batch = &tlb->batch;
371
372         tlb_flush_remove_tables(tlb->mm);
373
374         if (*batch) {
375                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376                 *batch = NULL;
377         }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382         struct mmu_table_batch **batch = &tlb->batch;
383
384         /*
385          * When there's less then two users of this mm there cannot be a
386          * concurrent page-table walk.
387          */
388         if (atomic_read(&tlb->mm->mm_users) < 2) {
389                 __tlb_remove_table(table);
390                 return;
391         }
392
393         if (*batch == NULL) {
394                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395                 if (*batch == NULL) {
396                         tlb_remove_table_one(table, tlb);
397                         return;
398                 }
399                 (*batch)->nr = 0;
400         }
401         (*batch)->tables[(*batch)->nr++] = table;
402         if ((*batch)->nr == MAX_TABLE_BATCH)
403                 tlb_table_flush(tlb);
404 }
405
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407
408 /**
409  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410  * @tlb: the mmu_gather structure to initialize
411  * @mm: the mm_struct of the target address space
412  * @start: start of the region that will be removed from the page-table
413  * @end: end of the region that will be removed from the page-table
414  *
415  * Called to initialize an (on-stack) mmu_gather structure for page-table
416  * tear-down from @mm. The @start and @end are set to 0 and -1
417  * respectively when @mm is without users and we're going to destroy
418  * the full address space (exit/execve).
419  */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421                         unsigned long start, unsigned long end)
422 {
423         arch_tlb_gather_mmu(tlb, mm, start, end);
424         inc_tlb_flush_pending(tlb->mm);
425 }
426
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428                 unsigned long start, unsigned long end)
429 {
430         /*
431          * If there are parallel threads are doing PTE changes on same range
432          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433          * flush by batching, a thread has stable TLB entry can fail to flush
434          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435          * forcefully if we detect parallel PTE batching threads.
436          */
437         bool force = mm_tlb_flush_nested(tlb->mm);
438
439         arch_tlb_finish_mmu(tlb, start, end, force);
440         dec_tlb_flush_pending(tlb->mm);
441 }
442
443 /*
444  * Note: this doesn't free the actual pages themselves. That
445  * has been handled earlier when unmapping all the memory regions.
446  */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448                            unsigned long addr)
449 {
450         pgtable_t token = pmd_pgtable(*pmd);
451         pmd_clear(pmd);
452         pte_free_tlb(tlb, token, addr);
453         mm_dec_nr_ptes(tlb->mm);
454 }
455
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457                                 unsigned long addr, unsigned long end,
458                                 unsigned long floor, unsigned long ceiling)
459 {
460         pmd_t *pmd;
461         unsigned long next;
462         unsigned long start;
463
464         start = addr;
465         pmd = pmd_offset(pud, addr);
466         do {
467                 next = pmd_addr_end(addr, end);
468                 if (pmd_none_or_clear_bad(pmd))
469                         continue;
470                 free_pte_range(tlb, pmd, addr);
471         } while (pmd++, addr = next, addr != end);
472
473         start &= PUD_MASK;
474         if (start < floor)
475                 return;
476         if (ceiling) {
477                 ceiling &= PUD_MASK;
478                 if (!ceiling)
479                         return;
480         }
481         if (end - 1 > ceiling - 1)
482                 return;
483
484         pmd = pmd_offset(pud, start);
485         pud_clear(pud);
486         pmd_free_tlb(tlb, pmd, start);
487         mm_dec_nr_pmds(tlb->mm);
488 }
489
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491                                 unsigned long addr, unsigned long end,
492                                 unsigned long floor, unsigned long ceiling)
493 {
494         pud_t *pud;
495         unsigned long next;
496         unsigned long start;
497
498         start = addr;
499         pud = pud_offset(p4d, addr);
500         do {
501                 next = pud_addr_end(addr, end);
502                 if (pud_none_or_clear_bad(pud))
503                         continue;
504                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505         } while (pud++, addr = next, addr != end);
506
507         start &= P4D_MASK;
508         if (start < floor)
509                 return;
510         if (ceiling) {
511                 ceiling &= P4D_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 return;
517
518         pud = pud_offset(p4d, start);
519         p4d_clear(p4d);
520         pud_free_tlb(tlb, pud, start);
521         mm_dec_nr_puds(tlb->mm);
522 }
523
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525                                 unsigned long addr, unsigned long end,
526                                 unsigned long floor, unsigned long ceiling)
527 {
528         p4d_t *p4d;
529         unsigned long next;
530         unsigned long start;
531
532         start = addr;
533         p4d = p4d_offset(pgd, addr);
534         do {
535                 next = p4d_addr_end(addr, end);
536                 if (p4d_none_or_clear_bad(p4d))
537                         continue;
538                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539         } while (p4d++, addr = next, addr != end);
540
541         start &= PGDIR_MASK;
542         if (start < floor)
543                 return;
544         if (ceiling) {
545                 ceiling &= PGDIR_MASK;
546                 if (!ceiling)
547                         return;
548         }
549         if (end - 1 > ceiling - 1)
550                 return;
551
552         p4d = p4d_offset(pgd, start);
553         pgd_clear(pgd);
554         p4d_free_tlb(tlb, p4d, start);
555 }
556
557 /*
558  * This function frees user-level page tables of a process.
559  */
560 void free_pgd_range(struct mmu_gather *tlb,
561                         unsigned long addr, unsigned long end,
562                         unsigned long floor, unsigned long ceiling)
563 {
564         pgd_t *pgd;
565         unsigned long next;
566
567         /*
568          * The next few lines have given us lots of grief...
569          *
570          * Why are we testing PMD* at this top level?  Because often
571          * there will be no work to do at all, and we'd prefer not to
572          * go all the way down to the bottom just to discover that.
573          *
574          * Why all these "- 1"s?  Because 0 represents both the bottom
575          * of the address space and the top of it (using -1 for the
576          * top wouldn't help much: the masks would do the wrong thing).
577          * The rule is that addr 0 and floor 0 refer to the bottom of
578          * the address space, but end 0 and ceiling 0 refer to the top
579          * Comparisons need to use "end - 1" and "ceiling - 1" (though
580          * that end 0 case should be mythical).
581          *
582          * Wherever addr is brought up or ceiling brought down, we must
583          * be careful to reject "the opposite 0" before it confuses the
584          * subsequent tests.  But what about where end is brought down
585          * by PMD_SIZE below? no, end can't go down to 0 there.
586          *
587          * Whereas we round start (addr) and ceiling down, by different
588          * masks at different levels, in order to test whether a table
589          * now has no other vmas using it, so can be freed, we don't
590          * bother to round floor or end up - the tests don't need that.
591          */
592
593         addr &= PMD_MASK;
594         if (addr < floor) {
595                 addr += PMD_SIZE;
596                 if (!addr)
597                         return;
598         }
599         if (ceiling) {
600                 ceiling &= PMD_MASK;
601                 if (!ceiling)
602                         return;
603         }
604         if (end - 1 > ceiling - 1)
605                 end -= PMD_SIZE;
606         if (addr > end - 1)
607                 return;
608         /*
609          * We add page table cache pages with PAGE_SIZE,
610          * (see pte_free_tlb()), flush the tlb if we need
611          */
612         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613         pgd = pgd_offset(tlb->mm, addr);
614         do {
615                 next = pgd_addr_end(addr, end);
616                 if (pgd_none_or_clear_bad(pgd))
617                         continue;
618                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619         } while (pgd++, addr = next, addr != end);
620 }
621
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623                 unsigned long floor, unsigned long ceiling)
624 {
625         while (vma) {
626                 struct vm_area_struct *next = vma->vm_next;
627                 unsigned long addr = vma->vm_start;
628
629                 /*
630                  * Hide vma from rmap and truncate_pagecache before freeing
631                  * pgtables
632                  */
633                 unlink_anon_vmas(vma);
634                 unlink_file_vma(vma);
635
636                 if (is_vm_hugetlb_page(vma)) {
637                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638                                 floor, next ? next->vm_start : ceiling);
639                 } else {
640                         /*
641                          * Optimization: gather nearby vmas into one call down
642                          */
643                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644                                && !is_vm_hugetlb_page(next)) {
645                                 vma = next;
646                                 next = vma->vm_next;
647                                 unlink_anon_vmas(vma);
648                                 unlink_file_vma(vma);
649                         }
650                         free_pgd_range(tlb, addr, vma->vm_end,
651                                 floor, next ? next->vm_start : ceiling);
652                 }
653                 vma = next;
654         }
655 }
656
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659         spinlock_t *ptl;
660         pgtable_t new = pte_alloc_one(mm, address);
661         if (!new)
662                 return -ENOMEM;
663
664         /*
665          * Ensure all pte setup (eg. pte page lock and page clearing) are
666          * visible before the pte is made visible to other CPUs by being
667          * put into page tables.
668          *
669          * The other side of the story is the pointer chasing in the page
670          * table walking code (when walking the page table without locking;
671          * ie. most of the time). Fortunately, these data accesses consist
672          * of a chain of data-dependent loads, meaning most CPUs (alpha
673          * being the notable exception) will already guarantee loads are
674          * seen in-order. See the alpha page table accessors for the
675          * smp_read_barrier_depends() barriers in page table walking code.
676          */
677         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678
679         ptl = pmd_lock(mm, pmd);
680         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
681                 mm_inc_nr_ptes(mm);
682                 pmd_populate(mm, pmd, new);
683                 new = NULL;
684         }
685         spin_unlock(ptl);
686         if (new)
687                 pte_free(mm, new);
688         return 0;
689 }
690
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694         if (!new)
695                 return -ENOMEM;
696
697         smp_wmb(); /* See comment in __pte_alloc */
698
699         spin_lock(&init_mm.page_table_lock);
700         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
701                 pmd_populate_kernel(&init_mm, pmd, new);
702                 new = NULL;
703         }
704         spin_unlock(&init_mm.page_table_lock);
705         if (new)
706                 pte_free_kernel(&init_mm, new);
707         return 0;
708 }
709
710 static inline void init_rss_vec(int *rss)
711 {
712         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717         int i;
718
719         if (current->mm == mm)
720                 sync_mm_rss(mm);
721         for (i = 0; i < NR_MM_COUNTERS; i++)
722                 if (rss[i])
723                         add_mm_counter(mm, i, rss[i]);
724 }
725
726 /*
727  * This function is called to print an error when a bad pte
728  * is found. For example, we might have a PFN-mapped pte in
729  * a region that doesn't allow it.
730  *
731  * The calling function must still handle the error.
732  */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734                           pte_t pte, struct page *page)
735 {
736         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737         p4d_t *p4d = p4d_offset(pgd, addr);
738         pud_t *pud = pud_offset(p4d, addr);
739         pmd_t *pmd = pmd_offset(pud, addr);
740         struct address_space *mapping;
741         pgoff_t index;
742         static unsigned long resume;
743         static unsigned long nr_shown;
744         static unsigned long nr_unshown;
745
746         /*
747          * Allow a burst of 60 reports, then keep quiet for that minute;
748          * or allow a steady drip of one report per second.
749          */
750         if (nr_shown == 60) {
751                 if (time_before(jiffies, resume)) {
752                         nr_unshown++;
753                         return;
754                 }
755                 if (nr_unshown) {
756                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757                                  nr_unshown);
758                         nr_unshown = 0;
759                 }
760                 nr_shown = 0;
761         }
762         if (nr_shown++ == 0)
763                 resume = jiffies + 60 * HZ;
764
765         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766         index = linear_page_index(vma, addr);
767
768         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
769                  current->comm,
770                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
771         if (page)
772                 dump_page(page, "bad pte");
773         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776                  vma->vm_file,
777                  vma->vm_ops ? vma->vm_ops->fault : NULL,
778                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779                  mapping ? mapping->a_ops->readpage : NULL);
780         dump_stack();
781         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785  * vm_normal_page -- This function gets the "struct page" associated with a pte.
786  *
787  * "Special" mappings do not wish to be associated with a "struct page" (either
788  * it doesn't exist, or it exists but they don't want to touch it). In this
789  * case, NULL is returned here. "Normal" mappings do have a struct page.
790  *
791  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792  * pte bit, in which case this function is trivial. Secondly, an architecture
793  * may not have a spare pte bit, which requires a more complicated scheme,
794  * described below.
795  *
796  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797  * special mapping (even if there are underlying and valid "struct pages").
798  * COWed pages of a VM_PFNMAP are always normal.
799  *
800  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803  * mapping will always honor the rule
804  *
805  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806  *
807  * And for normal mappings this is false.
808  *
809  * This restricts such mappings to be a linear translation from virtual address
810  * to pfn. To get around this restriction, we allow arbitrary mappings so long
811  * as the vma is not a COW mapping; in that case, we know that all ptes are
812  * special (because none can have been COWed).
813  *
814  *
815  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816  *
817  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818  * page" backing, however the difference is that _all_ pages with a struct
819  * page (that is, those where pfn_valid is true) are refcounted and considered
820  * normal pages by the VM. The disadvantage is that pages are refcounted
821  * (which can be slower and simply not an option for some PFNMAP users). The
822  * advantage is that we don't have to follow the strict linearity rule of
823  * PFNMAP mappings in order to support COWable mappings.
824  *
825  */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827                              pte_t pte, bool with_public_device)
828 {
829         unsigned long pfn = pte_pfn(pte);
830
831         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832                 if (likely(!pte_special(pte)))
833                         goto check_pfn;
834                 if (vma->vm_ops && vma->vm_ops->find_special_page)
835                         return vma->vm_ops->find_special_page(vma, addr);
836                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837                         return NULL;
838                 if (is_zero_pfn(pfn))
839                         return NULL;
840
841                 /*
842                  * Device public pages are special pages (they are ZONE_DEVICE
843                  * pages but different from persistent memory). They behave
844                  * allmost like normal pages. The difference is that they are
845                  * not on the lru and thus should never be involve with any-
846                  * thing that involve lru manipulation (mlock, numa balancing,
847                  * ...).
848                  *
849                  * This is why we still want to return NULL for such page from
850                  * vm_normal_page() so that we do not have to special case all
851                  * call site of vm_normal_page().
852                  */
853                 if (likely(pfn <= highest_memmap_pfn)) {
854                         struct page *page = pfn_to_page(pfn);
855
856                         if (is_device_public_page(page)) {
857                                 if (with_public_device)
858                                         return page;
859                                 return NULL;
860                         }
861                 }
862
863                 if (pte_devmap(pte))
864                         return NULL;
865
866                 print_bad_pte(vma, addr, pte, NULL);
867                 return NULL;
868         }
869
870         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
871
872         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873                 if (vma->vm_flags & VM_MIXEDMAP) {
874                         if (!pfn_valid(pfn))
875                                 return NULL;
876                         goto out;
877                 } else {
878                         unsigned long off;
879                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
880                         if (pfn == vma->vm_pgoff + off)
881                                 return NULL;
882                         if (!is_cow_mapping(vma->vm_flags))
883                                 return NULL;
884                 }
885         }
886
887         if (is_zero_pfn(pfn))
888                 return NULL;
889
890 check_pfn:
891         if (unlikely(pfn > highest_memmap_pfn)) {
892                 print_bad_pte(vma, addr, pte, NULL);
893                 return NULL;
894         }
895
896         /*
897          * NOTE! We still have PageReserved() pages in the page tables.
898          * eg. VDSO mappings can cause them to exist.
899          */
900 out:
901         return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906                                 pmd_t pmd)
907 {
908         unsigned long pfn = pmd_pfn(pmd);
909
910         /*
911          * There is no pmd_special() but there may be special pmds, e.g.
912          * in a direct-access (dax) mapping, so let's just replicate the
913          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
914          */
915         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916                 if (vma->vm_flags & VM_MIXEDMAP) {
917                         if (!pfn_valid(pfn))
918                                 return NULL;
919                         goto out;
920                 } else {
921                         unsigned long off;
922                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
923                         if (pfn == vma->vm_pgoff + off)
924                                 return NULL;
925                         if (!is_cow_mapping(vma->vm_flags))
926                                 return NULL;
927                 }
928         }
929
930         if (pmd_devmap(pmd))
931                 return NULL;
932         if (is_zero_pfn(pfn))
933                 return NULL;
934         if (unlikely(pfn > highest_memmap_pfn))
935                 return NULL;
936
937         /*
938          * NOTE! We still have PageReserved() pages in the page tables.
939          * eg. VDSO mappings can cause them to exist.
940          */
941 out:
942         return pfn_to_page(pfn);
943 }
944 #endif
945
946 /*
947  * copy one vm_area from one task to the other. Assumes the page tables
948  * already present in the new task to be cleared in the whole range
949  * covered by this vma.
950  */
951
952 static inline unsigned long
953 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
954                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
955                 unsigned long addr, int *rss)
956 {
957         unsigned long vm_flags = vma->vm_flags;
958         pte_t pte = *src_pte;
959         struct page *page;
960
961         /* pte contains position in swap or file, so copy. */
962         if (unlikely(!pte_present(pte))) {
963                 swp_entry_t entry = pte_to_swp_entry(pte);
964
965                 if (likely(!non_swap_entry(entry))) {
966                         if (swap_duplicate(entry) < 0)
967                                 return entry.val;
968
969                         /* make sure dst_mm is on swapoff's mmlist. */
970                         if (unlikely(list_empty(&dst_mm->mmlist))) {
971                                 spin_lock(&mmlist_lock);
972                                 if (list_empty(&dst_mm->mmlist))
973                                         list_add(&dst_mm->mmlist,
974                                                         &src_mm->mmlist);
975                                 spin_unlock(&mmlist_lock);
976                         }
977                         rss[MM_SWAPENTS]++;
978                 } else if (is_migration_entry(entry)) {
979                         page = migration_entry_to_page(entry);
980
981                         rss[mm_counter(page)]++;
982
983                         if (is_write_migration_entry(entry) &&
984                                         is_cow_mapping(vm_flags)) {
985                                 /*
986                                  * COW mappings require pages in both
987                                  * parent and child to be set to read.
988                                  */
989                                 make_migration_entry_read(&entry);
990                                 pte = swp_entry_to_pte(entry);
991                                 if (pte_swp_soft_dirty(*src_pte))
992                                         pte = pte_swp_mksoft_dirty(pte);
993                                 set_pte_at(src_mm, addr, src_pte, pte);
994                         }
995                 } else if (is_device_private_entry(entry)) {
996                         page = device_private_entry_to_page(entry);
997
998                         /*
999                          * Update rss count even for unaddressable pages, as
1000                          * they should treated just like normal pages in this
1001                          * respect.
1002                          *
1003                          * We will likely want to have some new rss counters
1004                          * for unaddressable pages, at some point. But for now
1005                          * keep things as they are.
1006                          */
1007                         get_page(page);
1008                         rss[mm_counter(page)]++;
1009                         page_dup_rmap(page, false);
1010
1011                         /*
1012                          * We do not preserve soft-dirty information, because so
1013                          * far, checkpoint/restore is the only feature that
1014                          * requires that. And checkpoint/restore does not work
1015                          * when a device driver is involved (you cannot easily
1016                          * save and restore device driver state).
1017                          */
1018                         if (is_write_device_private_entry(entry) &&
1019                             is_cow_mapping(vm_flags)) {
1020                                 make_device_private_entry_read(&entry);
1021                                 pte = swp_entry_to_pte(entry);
1022                                 set_pte_at(src_mm, addr, src_pte, pte);
1023                         }
1024                 }
1025                 goto out_set_pte;
1026         }
1027
1028         /*
1029          * If it's a COW mapping, write protect it both
1030          * in the parent and the child
1031          */
1032         if (is_cow_mapping(vm_flags)) {
1033                 ptep_set_wrprotect(src_mm, addr, src_pte);
1034                 pte = pte_wrprotect(pte);
1035         }
1036
1037         /*
1038          * If it's a shared mapping, mark it clean in
1039          * the child
1040          */
1041         if (vm_flags & VM_SHARED)
1042                 pte = pte_mkclean(pte);
1043         pte = pte_mkold(pte);
1044
1045         page = vm_normal_page(vma, addr, pte);
1046         if (page) {
1047                 get_page(page);
1048                 page_dup_rmap(page, false);
1049                 rss[mm_counter(page)]++;
1050         } else if (pte_devmap(pte)) {
1051                 page = pte_page(pte);
1052
1053                 /*
1054                  * Cache coherent device memory behave like regular page and
1055                  * not like persistent memory page. For more informations see
1056                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1057                  */
1058                 if (is_device_public_page(page)) {
1059                         get_page(page);
1060                         page_dup_rmap(page, false);
1061                         rss[mm_counter(page)]++;
1062                 }
1063         }
1064
1065 out_set_pte:
1066         set_pte_at(dst_mm, addr, dst_pte, pte);
1067         return 0;
1068 }
1069
1070 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1071                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1072                    unsigned long addr, unsigned long end)
1073 {
1074         pte_t *orig_src_pte, *orig_dst_pte;
1075         pte_t *src_pte, *dst_pte;
1076         spinlock_t *src_ptl, *dst_ptl;
1077         int progress = 0;
1078         int rss[NR_MM_COUNTERS];
1079         swp_entry_t entry = (swp_entry_t){0};
1080
1081 again:
1082         init_rss_vec(rss);
1083
1084         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1085         if (!dst_pte)
1086                 return -ENOMEM;
1087         src_pte = pte_offset_map(src_pmd, addr);
1088         src_ptl = pte_lockptr(src_mm, src_pmd);
1089         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1090         orig_src_pte = src_pte;
1091         orig_dst_pte = dst_pte;
1092         arch_enter_lazy_mmu_mode();
1093
1094         do {
1095                 /*
1096                  * We are holding two locks at this point - either of them
1097                  * could generate latencies in another task on another CPU.
1098                  */
1099                 if (progress >= 32) {
1100                         progress = 0;
1101                         if (need_resched() ||
1102                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1103                                 break;
1104                 }
1105                 if (pte_none(*src_pte)) {
1106                         progress++;
1107                         continue;
1108                 }
1109                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1110                                                         vma, addr, rss);
1111                 if (entry.val)
1112                         break;
1113                 progress += 8;
1114         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1115
1116         arch_leave_lazy_mmu_mode();
1117         spin_unlock(src_ptl);
1118         pte_unmap(orig_src_pte);
1119         add_mm_rss_vec(dst_mm, rss);
1120         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1121         cond_resched();
1122
1123         if (entry.val) {
1124                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1125                         return -ENOMEM;
1126                 progress = 0;
1127         }
1128         if (addr != end)
1129                 goto again;
1130         return 0;
1131 }
1132
1133 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1134                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1135                 unsigned long addr, unsigned long end)
1136 {
1137         pmd_t *src_pmd, *dst_pmd;
1138         unsigned long next;
1139
1140         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141         if (!dst_pmd)
1142                 return -ENOMEM;
1143         src_pmd = pmd_offset(src_pud, addr);
1144         do {
1145                 next = pmd_addr_end(addr, end);
1146                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147                         || pmd_devmap(*src_pmd)) {
1148                         int err;
1149                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1150                         err = copy_huge_pmd(dst_mm, src_mm,
1151                                             dst_pmd, src_pmd, addr, vma);
1152                         if (err == -ENOMEM)
1153                                 return -ENOMEM;
1154                         if (!err)
1155                                 continue;
1156                         /* fall through */
1157                 }
1158                 if (pmd_none_or_clear_bad(src_pmd))
1159                         continue;
1160                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1161                                                 vma, addr, next))
1162                         return -ENOMEM;
1163         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164         return 0;
1165 }
1166
1167 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1168                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1169                 unsigned long addr, unsigned long end)
1170 {
1171         pud_t *src_pud, *dst_pud;
1172         unsigned long next;
1173
1174         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175         if (!dst_pud)
1176                 return -ENOMEM;
1177         src_pud = pud_offset(src_p4d, addr);
1178         do {
1179                 next = pud_addr_end(addr, end);
1180                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181                         int err;
1182
1183                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1184                         err = copy_huge_pud(dst_mm, src_mm,
1185                                             dst_pud, src_pud, addr, vma);
1186                         if (err == -ENOMEM)
1187                                 return -ENOMEM;
1188                         if (!err)
1189                                 continue;
1190                         /* fall through */
1191                 }
1192                 if (pud_none_or_clear_bad(src_pud))
1193                         continue;
1194                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1195                                                 vma, addr, next))
1196                         return -ENOMEM;
1197         } while (dst_pud++, src_pud++, addr = next, addr != end);
1198         return 0;
1199 }
1200
1201 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1202                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1203                 unsigned long addr, unsigned long end)
1204 {
1205         p4d_t *src_p4d, *dst_p4d;
1206         unsigned long next;
1207
1208         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209         if (!dst_p4d)
1210                 return -ENOMEM;
1211         src_p4d = p4d_offset(src_pgd, addr);
1212         do {
1213                 next = p4d_addr_end(addr, end);
1214                 if (p4d_none_or_clear_bad(src_p4d))
1215                         continue;
1216                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1217                                                 vma, addr, next))
1218                         return -ENOMEM;
1219         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220         return 0;
1221 }
1222
1223 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1224                 struct vm_area_struct *vma)
1225 {
1226         pgd_t *src_pgd, *dst_pgd;
1227         unsigned long next;
1228         unsigned long addr = vma->vm_start;
1229         unsigned long end = vma->vm_end;
1230         unsigned long mmun_start;       /* For mmu_notifiers */
1231         unsigned long mmun_end;         /* For mmu_notifiers */
1232         bool is_cow;
1233         int ret;
1234
1235         /*
1236          * Don't copy ptes where a page fault will fill them correctly.
1237          * Fork becomes much lighter when there are big shared or private
1238          * readonly mappings. The tradeoff is that copy_page_range is more
1239          * efficient than faulting.
1240          */
1241         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1242                         !vma->anon_vma)
1243                 return 0;
1244
1245         if (is_vm_hugetlb_page(vma))
1246                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1247
1248         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1249                 /*
1250                  * We do not free on error cases below as remove_vma
1251                  * gets called on error from higher level routine
1252                  */
1253                 ret = track_pfn_copy(vma);
1254                 if (ret)
1255                         return ret;
1256         }
1257
1258         /*
1259          * We need to invalidate the secondary MMU mappings only when
1260          * there could be a permission downgrade on the ptes of the
1261          * parent mm. And a permission downgrade will only happen if
1262          * is_cow_mapping() returns true.
1263          */
1264         is_cow = is_cow_mapping(vma->vm_flags);
1265         mmun_start = addr;
1266         mmun_end   = end;
1267         if (is_cow)
1268                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1269                                                     mmun_end);
1270
1271         ret = 0;
1272         dst_pgd = pgd_offset(dst_mm, addr);
1273         src_pgd = pgd_offset(src_mm, addr);
1274         do {
1275                 next = pgd_addr_end(addr, end);
1276                 if (pgd_none_or_clear_bad(src_pgd))
1277                         continue;
1278                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1279                                             vma, addr, next))) {
1280                         ret = -ENOMEM;
1281                         break;
1282                 }
1283         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1284
1285         if (is_cow)
1286                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1287         return ret;
1288 }
1289
1290 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1291                                 struct vm_area_struct *vma, pmd_t *pmd,
1292                                 unsigned long addr, unsigned long end,
1293                                 struct zap_details *details)
1294 {
1295         struct mm_struct *mm = tlb->mm;
1296         int force_flush = 0;
1297         int rss[NR_MM_COUNTERS];
1298         spinlock_t *ptl;
1299         pte_t *start_pte;
1300         pte_t *pte;
1301         swp_entry_t entry;
1302
1303         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1304 again:
1305         init_rss_vec(rss);
1306         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1307         pte = start_pte;
1308         flush_tlb_batched_pending(mm);
1309         arch_enter_lazy_mmu_mode();
1310         do {
1311                 pte_t ptent = *pte;
1312                 if (pte_none(ptent))
1313                         continue;
1314
1315                 if (pte_present(ptent)) {
1316                         struct page *page;
1317
1318                         page = _vm_normal_page(vma, addr, ptent, true);
1319                         if (unlikely(details) && page) {
1320                                 /*
1321                                  * unmap_shared_mapping_pages() wants to
1322                                  * invalidate cache without truncating:
1323                                  * unmap shared but keep private pages.
1324                                  */
1325                                 if (details->check_mapping &&
1326                                     details->check_mapping != page_rmapping(page))
1327                                         continue;
1328                         }
1329                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1330                                                         tlb->fullmm);
1331                         tlb_remove_tlb_entry(tlb, pte, addr);
1332                         if (unlikely(!page))
1333                                 continue;
1334
1335                         if (!PageAnon(page)) {
1336                                 if (pte_dirty(ptent)) {
1337                                         force_flush = 1;
1338                                         set_page_dirty(page);
1339                                 }
1340                                 if (pte_young(ptent) &&
1341                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1342                                         mark_page_accessed(page);
1343                         }
1344                         rss[mm_counter(page)]--;
1345                         page_remove_rmap(page, false);
1346                         if (unlikely(page_mapcount(page) < 0))
1347                                 print_bad_pte(vma, addr, ptent, page);
1348                         if (unlikely(__tlb_remove_page(tlb, page))) {
1349                                 force_flush = 1;
1350                                 addr += PAGE_SIZE;
1351                                 break;
1352                         }
1353                         continue;
1354                 }
1355
1356                 entry = pte_to_swp_entry(ptent);
1357                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1358                         struct page *page = device_private_entry_to_page(entry);
1359
1360                         if (unlikely(details && details->check_mapping)) {
1361                                 /*
1362                                  * unmap_shared_mapping_pages() wants to
1363                                  * invalidate cache without truncating:
1364                                  * unmap shared but keep private pages.
1365                                  */
1366                                 if (details->check_mapping !=
1367                                     page_rmapping(page))
1368                                         continue;
1369                         }
1370
1371                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1372                         rss[mm_counter(page)]--;
1373                         page_remove_rmap(page, false);
1374                         put_page(page);
1375                         continue;
1376                 }
1377
1378                 /* If details->check_mapping, we leave swap entries. */
1379                 if (unlikely(details))
1380                         continue;
1381
1382                 entry = pte_to_swp_entry(ptent);
1383                 if (!non_swap_entry(entry))
1384                         rss[MM_SWAPENTS]--;
1385                 else if (is_migration_entry(entry)) {
1386                         struct page *page;
1387
1388                         page = migration_entry_to_page(entry);
1389                         rss[mm_counter(page)]--;
1390                 }
1391                 if (unlikely(!free_swap_and_cache(entry)))
1392                         print_bad_pte(vma, addr, ptent, NULL);
1393                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1394         } while (pte++, addr += PAGE_SIZE, addr != end);
1395
1396         add_mm_rss_vec(mm, rss);
1397         arch_leave_lazy_mmu_mode();
1398
1399         /* Do the actual TLB flush before dropping ptl */
1400         if (force_flush)
1401                 tlb_flush_mmu_tlbonly(tlb);
1402         pte_unmap_unlock(start_pte, ptl);
1403
1404         /*
1405          * If we forced a TLB flush (either due to running out of
1406          * batch buffers or because we needed to flush dirty TLB
1407          * entries before releasing the ptl), free the batched
1408          * memory too. Restart if we didn't do everything.
1409          */
1410         if (force_flush) {
1411                 force_flush = 0;
1412                 tlb_flush_mmu_free(tlb);
1413                 if (addr != end)
1414                         goto again;
1415         }
1416
1417         return addr;
1418 }
1419
1420 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1421                                 struct vm_area_struct *vma, pud_t *pud,
1422                                 unsigned long addr, unsigned long end,
1423                                 struct zap_details *details)
1424 {
1425         pmd_t *pmd;
1426         unsigned long next;
1427
1428         pmd = pmd_offset(pud, addr);
1429         do {
1430                 next = pmd_addr_end(addr, end);
1431                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1432                         if (next - addr != HPAGE_PMD_SIZE)
1433                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1434                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1435                                 goto next;
1436                         /* fall through */
1437                 }
1438                 /*
1439                  * Here there can be other concurrent MADV_DONTNEED or
1440                  * trans huge page faults running, and if the pmd is
1441                  * none or trans huge it can change under us. This is
1442                  * because MADV_DONTNEED holds the mmap_sem in read
1443                  * mode.
1444                  */
1445                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446                         goto next;
1447                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1448 next:
1449                 cond_resched();
1450         } while (pmd++, addr = next, addr != end);
1451
1452         return addr;
1453 }
1454
1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1456                                 struct vm_area_struct *vma, p4d_t *p4d,
1457                                 unsigned long addr, unsigned long end,
1458                                 struct zap_details *details)
1459 {
1460         pud_t *pud;
1461         unsigned long next;
1462
1463         pud = pud_offset(p4d, addr);
1464         do {
1465                 next = pud_addr_end(addr, end);
1466                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467                         if (next - addr != HPAGE_PUD_SIZE) {
1468                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469                                 split_huge_pud(vma, pud, addr);
1470                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1471                                 goto next;
1472                         /* fall through */
1473                 }
1474                 if (pud_none_or_clear_bad(pud))
1475                         continue;
1476                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1477 next:
1478                 cond_resched();
1479         } while (pud++, addr = next, addr != end);
1480
1481         return addr;
1482 }
1483
1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485                                 struct vm_area_struct *vma, pgd_t *pgd,
1486                                 unsigned long addr, unsigned long end,
1487                                 struct zap_details *details)
1488 {
1489         p4d_t *p4d;
1490         unsigned long next;
1491
1492         p4d = p4d_offset(pgd, addr);
1493         do {
1494                 next = p4d_addr_end(addr, end);
1495                 if (p4d_none_or_clear_bad(p4d))
1496                         continue;
1497                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498         } while (p4d++, addr = next, addr != end);
1499
1500         return addr;
1501 }
1502
1503 void unmap_page_range(struct mmu_gather *tlb,
1504                              struct vm_area_struct *vma,
1505                              unsigned long addr, unsigned long end,
1506                              struct zap_details *details)
1507 {
1508         pgd_t *pgd;
1509         unsigned long next;
1510
1511         BUG_ON(addr >= end);
1512         tlb_start_vma(tlb, vma);
1513         pgd = pgd_offset(vma->vm_mm, addr);
1514         do {
1515                 next = pgd_addr_end(addr, end);
1516                 if (pgd_none_or_clear_bad(pgd))
1517                         continue;
1518                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1519         } while (pgd++, addr = next, addr != end);
1520         tlb_end_vma(tlb, vma);
1521 }
1522
1523
1524 static void unmap_single_vma(struct mmu_gather *tlb,
1525                 struct vm_area_struct *vma, unsigned long start_addr,
1526                 unsigned long end_addr,
1527                 struct zap_details *details)
1528 {
1529         unsigned long start = max(vma->vm_start, start_addr);
1530         unsigned long end;
1531
1532         if (start >= vma->vm_end)
1533                 return;
1534         end = min(vma->vm_end, end_addr);
1535         if (end <= vma->vm_start)
1536                 return;
1537
1538         if (vma->vm_file)
1539                 uprobe_munmap(vma, start, end);
1540
1541         if (unlikely(vma->vm_flags & VM_PFNMAP))
1542                 untrack_pfn(vma, 0, 0);
1543
1544         if (start != end) {
1545                 if (unlikely(is_vm_hugetlb_page(vma))) {
1546                         /*
1547                          * It is undesirable to test vma->vm_file as it
1548                          * should be non-null for valid hugetlb area.
1549                          * However, vm_file will be NULL in the error
1550                          * cleanup path of mmap_region. When
1551                          * hugetlbfs ->mmap method fails,
1552                          * mmap_region() nullifies vma->vm_file
1553                          * before calling this function to clean up.
1554                          * Since no pte has actually been setup, it is
1555                          * safe to do nothing in this case.
1556                          */
1557                         if (vma->vm_file) {
1558                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1559                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1560                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1561                         }
1562                 } else
1563                         unmap_page_range(tlb, vma, start, end, details);
1564         }
1565 }
1566
1567 /**
1568  * unmap_vmas - unmap a range of memory covered by a list of vma's
1569  * @tlb: address of the caller's struct mmu_gather
1570  * @vma: the starting vma
1571  * @start_addr: virtual address at which to start unmapping
1572  * @end_addr: virtual address at which to end unmapping
1573  *
1574  * Unmap all pages in the vma list.
1575  *
1576  * Only addresses between `start' and `end' will be unmapped.
1577  *
1578  * The VMA list must be sorted in ascending virtual address order.
1579  *
1580  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581  * range after unmap_vmas() returns.  So the only responsibility here is to
1582  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583  * drops the lock and schedules.
1584  */
1585 void unmap_vmas(struct mmu_gather *tlb,
1586                 struct vm_area_struct *vma, unsigned long start_addr,
1587                 unsigned long end_addr)
1588 {
1589         struct mm_struct *mm = vma->vm_mm;
1590
1591         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1592         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1593                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1594         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 }
1596
1597 /**
1598  * zap_page_range - remove user pages in a given range
1599  * @vma: vm_area_struct holding the applicable pages
1600  * @start: starting address of pages to zap
1601  * @size: number of bytes to zap
1602  *
1603  * Caller must protect the VMA list
1604  */
1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1606                 unsigned long size)
1607 {
1608         struct mm_struct *mm = vma->vm_mm;
1609         struct mmu_gather tlb;
1610         unsigned long end = start + size;
1611
1612         lru_add_drain();
1613         tlb_gather_mmu(&tlb, mm, start, end);
1614         update_hiwater_rss(mm);
1615         mmu_notifier_invalidate_range_start(mm, start, end);
1616         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1617                 unmap_single_vma(&tlb, vma, start, end, NULL);
1618         mmu_notifier_invalidate_range_end(mm, start, end);
1619         tlb_finish_mmu(&tlb, start, end);
1620 }
1621
1622 /**
1623  * zap_page_range_single - remove user pages in a given range
1624  * @vma: vm_area_struct holding the applicable pages
1625  * @address: starting address of pages to zap
1626  * @size: number of bytes to zap
1627  * @details: details of shared cache invalidation
1628  *
1629  * The range must fit into one VMA.
1630  */
1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632                 unsigned long size, struct zap_details *details)
1633 {
1634         struct mm_struct *mm = vma->vm_mm;
1635         struct mmu_gather tlb;
1636         unsigned long end = address + size;
1637
1638         lru_add_drain();
1639         tlb_gather_mmu(&tlb, mm, address, end);
1640         update_hiwater_rss(mm);
1641         mmu_notifier_invalidate_range_start(mm, address, end);
1642         unmap_single_vma(&tlb, vma, address, end, details);
1643         mmu_notifier_invalidate_range_end(mm, address, end);
1644         tlb_finish_mmu(&tlb, address, end);
1645 }
1646
1647 /**
1648  * zap_vma_ptes - remove ptes mapping the vma
1649  * @vma: vm_area_struct holding ptes to be zapped
1650  * @address: starting address of pages to zap
1651  * @size: number of bytes to zap
1652  *
1653  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1654  *
1655  * The entire address range must be fully contained within the vma.
1656  *
1657  */
1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1659                 unsigned long size)
1660 {
1661         if (address < vma->vm_start || address + size > vma->vm_end ||
1662                         !(vma->vm_flags & VM_PFNMAP))
1663                 return;
1664
1665         zap_page_range_single(vma, address, size, NULL);
1666 }
1667 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1668
1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1670                         spinlock_t **ptl)
1671 {
1672         pgd_t *pgd;
1673         p4d_t *p4d;
1674         pud_t *pud;
1675         pmd_t *pmd;
1676
1677         pgd = pgd_offset(mm, addr);
1678         p4d = p4d_alloc(mm, pgd, addr);
1679         if (!p4d)
1680                 return NULL;
1681         pud = pud_alloc(mm, p4d, addr);
1682         if (!pud)
1683                 return NULL;
1684         pmd = pmd_alloc(mm, pud, addr);
1685         if (!pmd)
1686                 return NULL;
1687
1688         VM_BUG_ON(pmd_trans_huge(*pmd));
1689         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1690 }
1691
1692 /*
1693  * This is the old fallback for page remapping.
1694  *
1695  * For historical reasons, it only allows reserved pages. Only
1696  * old drivers should use this, and they needed to mark their
1697  * pages reserved for the old functions anyway.
1698  */
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700                         struct page *page, pgprot_t prot)
1701 {
1702         struct mm_struct *mm = vma->vm_mm;
1703         int retval;
1704         pte_t *pte;
1705         spinlock_t *ptl;
1706
1707         retval = -EINVAL;
1708         if (PageAnon(page))
1709                 goto out;
1710         retval = -ENOMEM;
1711         flush_dcache_page(page);
1712         pte = get_locked_pte(mm, addr, &ptl);
1713         if (!pte)
1714                 goto out;
1715         retval = -EBUSY;
1716         if (!pte_none(*pte))
1717                 goto out_unlock;
1718
1719         /* Ok, finally just insert the thing.. */
1720         get_page(page);
1721         inc_mm_counter_fast(mm, mm_counter_file(page));
1722         page_add_file_rmap(page, false);
1723         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1724
1725         retval = 0;
1726         pte_unmap_unlock(pte, ptl);
1727         return retval;
1728 out_unlock:
1729         pte_unmap_unlock(pte, ptl);
1730 out:
1731         return retval;
1732 }
1733
1734 /**
1735  * vm_insert_page - insert single page into user vma
1736  * @vma: user vma to map to
1737  * @addr: target user address of this page
1738  * @page: source kernel page
1739  *
1740  * This allows drivers to insert individual pages they've allocated
1741  * into a user vma.
1742  *
1743  * The page has to be a nice clean _individual_ kernel allocation.
1744  * If you allocate a compound page, you need to have marked it as
1745  * such (__GFP_COMP), or manually just split the page up yourself
1746  * (see split_page()).
1747  *
1748  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749  * took an arbitrary page protection parameter. This doesn't allow
1750  * that. Your vma protection will have to be set up correctly, which
1751  * means that if you want a shared writable mapping, you'd better
1752  * ask for a shared writable mapping!
1753  *
1754  * The page does not need to be reserved.
1755  *
1756  * Usually this function is called from f_op->mmap() handler
1757  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1758  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1759  * function from other places, for example from page-fault handler.
1760  */
1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1762                         struct page *page)
1763 {
1764         if (addr < vma->vm_start || addr >= vma->vm_end)
1765                 return -EFAULT;
1766         if (!page_count(page))
1767                 return -EINVAL;
1768         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1769                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1770                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1771                 vma->vm_flags |= VM_MIXEDMAP;
1772         }
1773         return insert_page(vma, addr, page, vma->vm_page_prot);
1774 }
1775 EXPORT_SYMBOL(vm_insert_page);
1776
1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1778                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1779 {
1780         struct mm_struct *mm = vma->vm_mm;
1781         int retval;
1782         pte_t *pte, entry;
1783         spinlock_t *ptl;
1784
1785         retval = -ENOMEM;
1786         pte = get_locked_pte(mm, addr, &ptl);
1787         if (!pte)
1788                 goto out;
1789         retval = -EBUSY;
1790         if (!pte_none(*pte)) {
1791                 if (mkwrite) {
1792                         /*
1793                          * For read faults on private mappings the PFN passed
1794                          * in may not match the PFN we have mapped if the
1795                          * mapped PFN is a writeable COW page.  In the mkwrite
1796                          * case we are creating a writable PTE for a shared
1797                          * mapping and we expect the PFNs to match.
1798                          */
1799                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1800                                 goto out_unlock;
1801                         entry = *pte;
1802                         goto out_mkwrite;
1803                 } else
1804                         goto out_unlock;
1805         }
1806
1807         /* Ok, finally just insert the thing.. */
1808         if (pfn_t_devmap(pfn))
1809                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810         else
1811                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1812
1813 out_mkwrite:
1814         if (mkwrite) {
1815                 entry = pte_mkyoung(entry);
1816                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1817         }
1818
1819         set_pte_at(mm, addr, pte, entry);
1820         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1821
1822         retval = 0;
1823 out_unlock:
1824         pte_unmap_unlock(pte, ptl);
1825 out:
1826         return retval;
1827 }
1828
1829 /**
1830  * vm_insert_pfn - insert single pfn into user vma
1831  * @vma: user vma to map to
1832  * @addr: target user address of this page
1833  * @pfn: source kernel pfn
1834  *
1835  * Similar to vm_insert_page, this allows drivers to insert individual pages
1836  * they've allocated into a user vma. Same comments apply.
1837  *
1838  * This function should only be called from a vm_ops->fault handler, and
1839  * in that case the handler should return NULL.
1840  *
1841  * vma cannot be a COW mapping.
1842  *
1843  * As this is called only for pages that do not currently exist, we
1844  * do not need to flush old virtual caches or the TLB.
1845  */
1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1847                         unsigned long pfn)
1848 {
1849         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_pfn);
1852
1853 /**
1854  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1855  * @vma: user vma to map to
1856  * @addr: target user address of this page
1857  * @pfn: source kernel pfn
1858  * @pgprot: pgprot flags for the inserted page
1859  *
1860  * This is exactly like vm_insert_pfn, except that it allows drivers to
1861  * to override pgprot on a per-page basis.
1862  *
1863  * This only makes sense for IO mappings, and it makes no sense for
1864  * cow mappings.  In general, using multiple vmas is preferable;
1865  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1866  * impractical.
1867  */
1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1869                         unsigned long pfn, pgprot_t pgprot)
1870 {
1871         int ret;
1872         /*
1873          * Technically, architectures with pte_special can avoid all these
1874          * restrictions (same for remap_pfn_range).  However we would like
1875          * consistency in testing and feature parity among all, so we should
1876          * try to keep these invariants in place for everybody.
1877          */
1878         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1879         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1880                                                 (VM_PFNMAP|VM_MIXEDMAP));
1881         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1882         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1883
1884         if (addr < vma->vm_start || addr >= vma->vm_end)
1885                 return -EFAULT;
1886
1887         if (!pfn_modify_allowed(pfn, pgprot))
1888                 return -EACCES;
1889
1890         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1891
1892         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1893                         false);
1894
1895         return ret;
1896 }
1897 EXPORT_SYMBOL(vm_insert_pfn_prot);
1898
1899 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1900 {
1901         /* these checks mirror the abort conditions in vm_normal_page */
1902         if (vma->vm_flags & VM_MIXEDMAP)
1903                 return true;
1904         if (pfn_t_devmap(pfn))
1905                 return true;
1906         if (pfn_t_special(pfn))
1907                 return true;
1908         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1909                 return true;
1910         return false;
1911 }
1912
1913 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1914                         pfn_t pfn, bool mkwrite)
1915 {
1916         pgprot_t pgprot = vma->vm_page_prot;
1917
1918         BUG_ON(!vm_mixed_ok(vma, pfn));
1919
1920         if (addr < vma->vm_start || addr >= vma->vm_end)
1921                 return -EFAULT;
1922
1923         track_pfn_insert(vma, &pgprot, pfn);
1924
1925         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1926                 return -EACCES;
1927
1928         /*
1929          * If we don't have pte special, then we have to use the pfn_valid()
1930          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1931          * refcount the page if pfn_valid is true (hence insert_page rather
1932          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1933          * without pte special, it would there be refcounted as a normal page.
1934          */
1935         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1936             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937                 struct page *page;
1938
1939                 /*
1940                  * At this point we are committed to insert_page()
1941                  * regardless of whether the caller specified flags that
1942                  * result in pfn_t_has_page() == false.
1943                  */
1944                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1945                 return insert_page(vma, addr, page, pgprot);
1946         }
1947         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951                         pfn_t pfn)
1952 {
1953         return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957
1958 /*
1959  *  If the insertion of PTE failed because someone else already added a
1960  *  different entry in the mean time, we treat that as success as we assume
1961  *  the same entry was actually inserted.
1962  */
1963
1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1965                 unsigned long addr, pfn_t pfn)
1966 {
1967         int err;
1968
1969         err =  __vm_insert_mixed(vma, addr, pfn, true);
1970         if (err == -ENOMEM)
1971                 return VM_FAULT_OOM;
1972         if (err < 0 && err != -EBUSY)
1973                 return VM_FAULT_SIGBUS;
1974         return VM_FAULT_NOPAGE;
1975 }
1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1977
1978 /*
1979  * maps a range of physical memory into the requested pages. the old
1980  * mappings are removed. any references to nonexistent pages results
1981  * in null mappings (currently treated as "copy-on-access")
1982  */
1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984                         unsigned long addr, unsigned long end,
1985                         unsigned long pfn, pgprot_t prot)
1986 {
1987         pte_t *pte;
1988         spinlock_t *ptl;
1989         int err = 0;
1990
1991         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1992         if (!pte)
1993                 return -ENOMEM;
1994         arch_enter_lazy_mmu_mode();
1995         do {
1996                 BUG_ON(!pte_none(*pte));
1997                 if (!pfn_modify_allowed(pfn, prot)) {
1998                         err = -EACCES;
1999                         break;
2000                 }
2001                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2002                 pfn++;
2003         } while (pte++, addr += PAGE_SIZE, addr != end);
2004         arch_leave_lazy_mmu_mode();
2005         pte_unmap_unlock(pte - 1, ptl);
2006         return err;
2007 }
2008
2009 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2010                         unsigned long addr, unsigned long end,
2011                         unsigned long pfn, pgprot_t prot)
2012 {
2013         pmd_t *pmd;
2014         unsigned long next;
2015         int err;
2016
2017         pfn -= addr >> PAGE_SHIFT;
2018         pmd = pmd_alloc(mm, pud, addr);
2019         if (!pmd)
2020                 return -ENOMEM;
2021         VM_BUG_ON(pmd_trans_huge(*pmd));
2022         do {
2023                 next = pmd_addr_end(addr, end);
2024                 err = remap_pte_range(mm, pmd, addr, next,
2025                                 pfn + (addr >> PAGE_SHIFT), prot);
2026                 if (err)
2027                         return err;
2028         } while (pmd++, addr = next, addr != end);
2029         return 0;
2030 }
2031
2032 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2033                         unsigned long addr, unsigned long end,
2034                         unsigned long pfn, pgprot_t prot)
2035 {
2036         pud_t *pud;
2037         unsigned long next;
2038         int err;
2039
2040         pfn -= addr >> PAGE_SHIFT;
2041         pud = pud_alloc(mm, p4d, addr);
2042         if (!pud)
2043                 return -ENOMEM;
2044         do {
2045                 next = pud_addr_end(addr, end);
2046                 err = remap_pmd_range(mm, pud, addr, next,
2047                                 pfn + (addr >> PAGE_SHIFT), prot);
2048                 if (err)
2049                         return err;
2050         } while (pud++, addr = next, addr != end);
2051         return 0;
2052 }
2053
2054 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2055                         unsigned long addr, unsigned long end,
2056                         unsigned long pfn, pgprot_t prot)
2057 {
2058         p4d_t *p4d;
2059         unsigned long next;
2060         int err;
2061
2062         pfn -= addr >> PAGE_SHIFT;
2063         p4d = p4d_alloc(mm, pgd, addr);
2064         if (!p4d)
2065                 return -ENOMEM;
2066         do {
2067                 next = p4d_addr_end(addr, end);
2068                 err = remap_pud_range(mm, p4d, addr, next,
2069                                 pfn + (addr >> PAGE_SHIFT), prot);
2070                 if (err)
2071                         return err;
2072         } while (p4d++, addr = next, addr != end);
2073         return 0;
2074 }
2075
2076 /**
2077  * remap_pfn_range - remap kernel memory to userspace
2078  * @vma: user vma to map to
2079  * @addr: target user address to start at
2080  * @pfn: physical address of kernel memory
2081  * @size: size of map area
2082  * @prot: page protection flags for this mapping
2083  *
2084  *  Note: this is only safe if the mm semaphore is held when called.
2085  */
2086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2087                     unsigned long pfn, unsigned long size, pgprot_t prot)
2088 {
2089         pgd_t *pgd;
2090         unsigned long next;
2091         unsigned long end = addr + PAGE_ALIGN(size);
2092         struct mm_struct *mm = vma->vm_mm;
2093         unsigned long remap_pfn = pfn;
2094         int err;
2095
2096         /*
2097          * Physically remapped pages are special. Tell the
2098          * rest of the world about it:
2099          *   VM_IO tells people not to look at these pages
2100          *      (accesses can have side effects).
2101          *   VM_PFNMAP tells the core MM that the base pages are just
2102          *      raw PFN mappings, and do not have a "struct page" associated
2103          *      with them.
2104          *   VM_DONTEXPAND
2105          *      Disable vma merging and expanding with mremap().
2106          *   VM_DONTDUMP
2107          *      Omit vma from core dump, even when VM_IO turned off.
2108          *
2109          * There's a horrible special case to handle copy-on-write
2110          * behaviour that some programs depend on. We mark the "original"
2111          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2112          * See vm_normal_page() for details.
2113          */
2114         if (is_cow_mapping(vma->vm_flags)) {
2115                 if (addr != vma->vm_start || end != vma->vm_end)
2116                         return -EINVAL;
2117                 vma->vm_pgoff = pfn;
2118         }
2119
2120         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2121         if (err)
2122                 return -EINVAL;
2123
2124         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2125
2126         BUG_ON(addr >= end);
2127         pfn -= addr >> PAGE_SHIFT;
2128         pgd = pgd_offset(mm, addr);
2129         flush_cache_range(vma, addr, end);
2130         do {
2131                 next = pgd_addr_end(addr, end);
2132                 err = remap_p4d_range(mm, pgd, addr, next,
2133                                 pfn + (addr >> PAGE_SHIFT), prot);
2134                 if (err)
2135                         break;
2136         } while (pgd++, addr = next, addr != end);
2137
2138         if (err)
2139                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2140
2141         return err;
2142 }
2143 EXPORT_SYMBOL(remap_pfn_range);
2144
2145 /**
2146  * vm_iomap_memory - remap memory to userspace
2147  * @vma: user vma to map to
2148  * @start: start of area
2149  * @len: size of area
2150  *
2151  * This is a simplified io_remap_pfn_range() for common driver use. The
2152  * driver just needs to give us the physical memory range to be mapped,
2153  * we'll figure out the rest from the vma information.
2154  *
2155  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2156  * whatever write-combining details or similar.
2157  */
2158 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2159 {
2160         unsigned long vm_len, pfn, pages;
2161
2162         /* Check that the physical memory area passed in looks valid */
2163         if (start + len < start)
2164                 return -EINVAL;
2165         /*
2166          * You *really* shouldn't map things that aren't page-aligned,
2167          * but we've historically allowed it because IO memory might
2168          * just have smaller alignment.
2169          */
2170         len += start & ~PAGE_MASK;
2171         pfn = start >> PAGE_SHIFT;
2172         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2173         if (pfn + pages < pfn)
2174                 return -EINVAL;
2175
2176         /* We start the mapping 'vm_pgoff' pages into the area */
2177         if (vma->vm_pgoff > pages)
2178                 return -EINVAL;
2179         pfn += vma->vm_pgoff;
2180         pages -= vma->vm_pgoff;
2181
2182         /* Can we fit all of the mapping? */
2183         vm_len = vma->vm_end - vma->vm_start;
2184         if (vm_len >> PAGE_SHIFT > pages)
2185                 return -EINVAL;
2186
2187         /* Ok, let it rip */
2188         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2189 }
2190 EXPORT_SYMBOL(vm_iomap_memory);
2191
2192 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2193                                      unsigned long addr, unsigned long end,
2194                                      pte_fn_t fn, void *data)
2195 {
2196         pte_t *pte;
2197         int err;
2198         pgtable_t token;
2199         spinlock_t *uninitialized_var(ptl);
2200
2201         pte = (mm == &init_mm) ?
2202                 pte_alloc_kernel(pmd, addr) :
2203                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2204         if (!pte)
2205                 return -ENOMEM;
2206
2207         BUG_ON(pmd_huge(*pmd));
2208
2209         arch_enter_lazy_mmu_mode();
2210
2211         token = pmd_pgtable(*pmd);
2212
2213         do {
2214                 err = fn(pte++, token, addr, data);
2215                 if (err)
2216                         break;
2217         } while (addr += PAGE_SIZE, addr != end);
2218
2219         arch_leave_lazy_mmu_mode();
2220
2221         if (mm != &init_mm)
2222                 pte_unmap_unlock(pte-1, ptl);
2223         return err;
2224 }
2225
2226 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2227                                      unsigned long addr, unsigned long end,
2228                                      pte_fn_t fn, void *data)
2229 {
2230         pmd_t *pmd;
2231         unsigned long next;
2232         int err;
2233
2234         BUG_ON(pud_huge(*pud));
2235
2236         pmd = pmd_alloc(mm, pud, addr);
2237         if (!pmd)
2238                 return -ENOMEM;
2239         do {
2240                 next = pmd_addr_end(addr, end);
2241                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2242                 if (err)
2243                         break;
2244         } while (pmd++, addr = next, addr != end);
2245         return err;
2246 }
2247
2248 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2249                                      unsigned long addr, unsigned long end,
2250                                      pte_fn_t fn, void *data)
2251 {
2252         pud_t *pud;
2253         unsigned long next;
2254         int err;
2255
2256         pud = pud_alloc(mm, p4d, addr);
2257         if (!pud)
2258                 return -ENOMEM;
2259         do {
2260                 next = pud_addr_end(addr, end);
2261                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2262                 if (err)
2263                         break;
2264         } while (pud++, addr = next, addr != end);
2265         return err;
2266 }
2267
2268 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2269                                      unsigned long addr, unsigned long end,
2270                                      pte_fn_t fn, void *data)
2271 {
2272         p4d_t *p4d;
2273         unsigned long next;
2274         int err;
2275
2276         p4d = p4d_alloc(mm, pgd, addr);
2277         if (!p4d)
2278                 return -ENOMEM;
2279         do {
2280                 next = p4d_addr_end(addr, end);
2281                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2282                 if (err)
2283                         break;
2284         } while (p4d++, addr = next, addr != end);
2285         return err;
2286 }
2287
2288 /*
2289  * Scan a region of virtual memory, filling in page tables as necessary
2290  * and calling a provided function on each leaf page table.
2291  */
2292 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2293                         unsigned long size, pte_fn_t fn, void *data)
2294 {
2295         pgd_t *pgd;
2296         unsigned long next;
2297         unsigned long end = addr + size;
2298         int err;
2299
2300         if (WARN_ON(addr >= end))
2301                 return -EINVAL;
2302
2303         pgd = pgd_offset(mm, addr);
2304         do {
2305                 next = pgd_addr_end(addr, end);
2306                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2307                 if (err)
2308                         break;
2309         } while (pgd++, addr = next, addr != end);
2310
2311         return err;
2312 }
2313 EXPORT_SYMBOL_GPL(apply_to_page_range);
2314
2315 /*
2316  * handle_pte_fault chooses page fault handler according to an entry which was
2317  * read non-atomically.  Before making any commitment, on those architectures
2318  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2319  * parts, do_swap_page must check under lock before unmapping the pte and
2320  * proceeding (but do_wp_page is only called after already making such a check;
2321  * and do_anonymous_page can safely check later on).
2322  */
2323 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2324                                 pte_t *page_table, pte_t orig_pte)
2325 {
2326         int same = 1;
2327 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2328         if (sizeof(pte_t) > sizeof(unsigned long)) {
2329                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2330                 spin_lock(ptl);
2331                 same = pte_same(*page_table, orig_pte);
2332                 spin_unlock(ptl);
2333         }
2334 #endif
2335         pte_unmap(page_table);
2336         return same;
2337 }
2338
2339 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2340 {
2341         debug_dma_assert_idle(src);
2342
2343         /*
2344          * If the source page was a PFN mapping, we don't have
2345          * a "struct page" for it. We do a best-effort copy by
2346          * just copying from the original user address. If that
2347          * fails, we just zero-fill it. Live with it.
2348          */
2349         if (unlikely(!src)) {
2350                 void *kaddr = kmap_atomic(dst);
2351                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2352
2353                 /*
2354                  * This really shouldn't fail, because the page is there
2355                  * in the page tables. But it might just be unreadable,
2356                  * in which case we just give up and fill the result with
2357                  * zeroes.
2358                  */
2359                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2360                         clear_page(kaddr);
2361                 kunmap_atomic(kaddr);
2362                 flush_dcache_page(dst);
2363         } else
2364                 copy_user_highpage(dst, src, va, vma);
2365 }
2366
2367 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2368 {
2369         struct file *vm_file = vma->vm_file;
2370
2371         if (vm_file)
2372                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2373
2374         /*
2375          * Special mappings (e.g. VDSO) do not have any file so fake
2376          * a default GFP_KERNEL for them.
2377          */
2378         return GFP_KERNEL;
2379 }
2380
2381 /*
2382  * Notify the address space that the page is about to become writable so that
2383  * it can prohibit this or wait for the page to get into an appropriate state.
2384  *
2385  * We do this without the lock held, so that it can sleep if it needs to.
2386  */
2387 static int do_page_mkwrite(struct vm_fault *vmf)
2388 {
2389         int ret;
2390         struct page *page = vmf->page;
2391         unsigned int old_flags = vmf->flags;
2392
2393         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2394
2395         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2396         /* Restore original flags so that caller is not surprised */
2397         vmf->flags = old_flags;
2398         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399                 return ret;
2400         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401                 lock_page(page);
2402                 if (!page->mapping) {
2403                         unlock_page(page);
2404                         return 0; /* retry */
2405                 }
2406                 ret |= VM_FAULT_LOCKED;
2407         } else
2408                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2409         return ret;
2410 }
2411
2412 /*
2413  * Handle dirtying of a page in shared file mapping on a write fault.
2414  *
2415  * The function expects the page to be locked and unlocks it.
2416  */
2417 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2418                                     struct page *page)
2419 {
2420         struct address_space *mapping;
2421         bool dirtied;
2422         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2423
2424         dirtied = set_page_dirty(page);
2425         VM_BUG_ON_PAGE(PageAnon(page), page);
2426         /*
2427          * Take a local copy of the address_space - page.mapping may be zeroed
2428          * by truncate after unlock_page().   The address_space itself remains
2429          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2430          * release semantics to prevent the compiler from undoing this copying.
2431          */
2432         mapping = page_rmapping(page);
2433         unlock_page(page);
2434
2435         if ((dirtied || page_mkwrite) && mapping) {
2436                 /*
2437                  * Some device drivers do not set page.mapping
2438                  * but still dirty their pages
2439                  */
2440                 balance_dirty_pages_ratelimited(mapping);
2441         }
2442
2443         if (!page_mkwrite)
2444                 file_update_time(vma->vm_file);
2445 }
2446
2447 /*
2448  * Handle write page faults for pages that can be reused in the current vma
2449  *
2450  * This can happen either due to the mapping being with the VM_SHARED flag,
2451  * or due to us being the last reference standing to the page. In either
2452  * case, all we need to do here is to mark the page as writable and update
2453  * any related book-keeping.
2454  */
2455 static inline void wp_page_reuse(struct vm_fault *vmf)
2456         __releases(vmf->ptl)
2457 {
2458         struct vm_area_struct *vma = vmf->vma;
2459         struct page *page = vmf->page;
2460         pte_t entry;
2461         /*
2462          * Clear the pages cpupid information as the existing
2463          * information potentially belongs to a now completely
2464          * unrelated process.
2465          */
2466         if (page)
2467                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2468
2469         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2470         entry = pte_mkyoung(vmf->orig_pte);
2471         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2472         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2473                 update_mmu_cache(vma, vmf->address, vmf->pte);
2474         pte_unmap_unlock(vmf->pte, vmf->ptl);
2475 }
2476
2477 /*
2478  * Handle the case of a page which we actually need to copy to a new page.
2479  *
2480  * Called with mmap_sem locked and the old page referenced, but
2481  * without the ptl held.
2482  *
2483  * High level logic flow:
2484  *
2485  * - Allocate a page, copy the content of the old page to the new one.
2486  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2487  * - Take the PTL. If the pte changed, bail out and release the allocated page
2488  * - If the pte is still the way we remember it, update the page table and all
2489  *   relevant references. This includes dropping the reference the page-table
2490  *   held to the old page, as well as updating the rmap.
2491  * - In any case, unlock the PTL and drop the reference we took to the old page.
2492  */
2493 static int wp_page_copy(struct vm_fault *vmf)
2494 {
2495         struct vm_area_struct *vma = vmf->vma;
2496         struct mm_struct *mm = vma->vm_mm;
2497         struct page *old_page = vmf->page;
2498         struct page *new_page = NULL;
2499         pte_t entry;
2500         int page_copied = 0;
2501         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2502         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2503         struct mem_cgroup *memcg;
2504
2505         if (unlikely(anon_vma_prepare(vma)))
2506                 goto oom;
2507
2508         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2509                 new_page = alloc_zeroed_user_highpage_movable(vma,
2510                                                               vmf->address);
2511                 if (!new_page)
2512                         goto oom;
2513         } else {
2514                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2515                                 vmf->address);
2516                 if (!new_page)
2517                         goto oom;
2518                 cow_user_page(new_page, old_page, vmf->address, vma);
2519         }
2520
2521         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2522                 goto oom_free_new;
2523
2524         __SetPageUptodate(new_page);
2525
2526         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2527
2528         /*
2529          * Re-check the pte - we dropped the lock
2530          */
2531         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2532         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2533                 if (old_page) {
2534                         if (!PageAnon(old_page)) {
2535                                 dec_mm_counter_fast(mm,
2536                                                 mm_counter_file(old_page));
2537                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2538                         }
2539                 } else {
2540                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2541                 }
2542                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2543                 entry = mk_pte(new_page, vma->vm_page_prot);
2544                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2545                 /*
2546                  * Clear the pte entry and flush it first, before updating the
2547                  * pte with the new entry. This will avoid a race condition
2548                  * seen in the presence of one thread doing SMC and another
2549                  * thread doing COW.
2550                  */
2551                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2552                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2553                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2554                 lru_cache_add_active_or_unevictable(new_page, vma);
2555                 /*
2556                  * We call the notify macro here because, when using secondary
2557                  * mmu page tables (such as kvm shadow page tables), we want the
2558                  * new page to be mapped directly into the secondary page table.
2559                  */
2560                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2561                 update_mmu_cache(vma, vmf->address, vmf->pte);
2562                 if (old_page) {
2563                         /*
2564                          * Only after switching the pte to the new page may
2565                          * we remove the mapcount here. Otherwise another
2566                          * process may come and find the rmap count decremented
2567                          * before the pte is switched to the new page, and
2568                          * "reuse" the old page writing into it while our pte
2569                          * here still points into it and can be read by other
2570                          * threads.
2571                          *
2572                          * The critical issue is to order this
2573                          * page_remove_rmap with the ptp_clear_flush above.
2574                          * Those stores are ordered by (if nothing else,)
2575                          * the barrier present in the atomic_add_negative
2576                          * in page_remove_rmap.
2577                          *
2578                          * Then the TLB flush in ptep_clear_flush ensures that
2579                          * no process can access the old page before the
2580                          * decremented mapcount is visible. And the old page
2581                          * cannot be reused until after the decremented
2582                          * mapcount is visible. So transitively, TLBs to
2583                          * old page will be flushed before it can be reused.
2584                          */
2585                         page_remove_rmap(old_page, false);
2586                 }
2587
2588                 /* Free the old page.. */
2589                 new_page = old_page;
2590                 page_copied = 1;
2591         } else {
2592                 mem_cgroup_cancel_charge(new_page, memcg, false);
2593         }
2594
2595         if (new_page)
2596                 put_page(new_page);
2597
2598         pte_unmap_unlock(vmf->pte, vmf->ptl);
2599         /*
2600          * No need to double call mmu_notifier->invalidate_range() callback as
2601          * the above ptep_clear_flush_notify() did already call it.
2602          */
2603         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2604         if (old_page) {
2605                 /*
2606                  * Don't let another task, with possibly unlocked vma,
2607                  * keep the mlocked page.
2608                  */
2609                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2610                         lock_page(old_page);    /* LRU manipulation */
2611                         if (PageMlocked(old_page))
2612                                 munlock_vma_page(old_page);
2613                         unlock_page(old_page);
2614                 }
2615                 put_page(old_page);
2616         }
2617         return page_copied ? VM_FAULT_WRITE : 0;
2618 oom_free_new:
2619         put_page(new_page);
2620 oom:
2621         if (old_page)
2622                 put_page(old_page);
2623         return VM_FAULT_OOM;
2624 }
2625
2626 /**
2627  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2628  *                        writeable once the page is prepared
2629  *
2630  * @vmf: structure describing the fault
2631  *
2632  * This function handles all that is needed to finish a write page fault in a
2633  * shared mapping due to PTE being read-only once the mapped page is prepared.
2634  * It handles locking of PTE and modifying it. The function returns
2635  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2636  * lock.
2637  *
2638  * The function expects the page to be locked or other protection against
2639  * concurrent faults / writeback (such as DAX radix tree locks).
2640  */
2641 int finish_mkwrite_fault(struct vm_fault *vmf)
2642 {
2643         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2644         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2645                                        &vmf->ptl);
2646         /*
2647          * We might have raced with another page fault while we released the
2648          * pte_offset_map_lock.
2649          */
2650         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2651                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2652                 return VM_FAULT_NOPAGE;
2653         }
2654         wp_page_reuse(vmf);
2655         return 0;
2656 }
2657
2658 /*
2659  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2660  * mapping
2661  */
2662 static int wp_pfn_shared(struct vm_fault *vmf)
2663 {
2664         struct vm_area_struct *vma = vmf->vma;
2665
2666         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2667                 int ret;
2668
2669                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2670                 vmf->flags |= FAULT_FLAG_MKWRITE;
2671                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2672                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2673                         return ret;
2674                 return finish_mkwrite_fault(vmf);
2675         }
2676         wp_page_reuse(vmf);
2677         return VM_FAULT_WRITE;
2678 }
2679
2680 static int wp_page_shared(struct vm_fault *vmf)
2681         __releases(vmf->ptl)
2682 {
2683         struct vm_area_struct *vma = vmf->vma;
2684
2685         get_page(vmf->page);
2686
2687         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2688                 int tmp;
2689
2690                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2691                 tmp = do_page_mkwrite(vmf);
2692                 if (unlikely(!tmp || (tmp &
2693                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2694                         put_page(vmf->page);
2695                         return tmp;
2696                 }
2697                 tmp = finish_mkwrite_fault(vmf);
2698                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2699                         unlock_page(vmf->page);
2700                         put_page(vmf->page);
2701                         return tmp;
2702                 }
2703         } else {
2704                 wp_page_reuse(vmf);
2705                 lock_page(vmf->page);
2706         }
2707         fault_dirty_shared_page(vma, vmf->page);
2708         put_page(vmf->page);
2709
2710         return VM_FAULT_WRITE;
2711 }
2712
2713 /*
2714  * This routine handles present pages, when users try to write
2715  * to a shared page. It is done by copying the page to a new address
2716  * and decrementing the shared-page counter for the old page.
2717  *
2718  * Note that this routine assumes that the protection checks have been
2719  * done by the caller (the low-level page fault routine in most cases).
2720  * Thus we can safely just mark it writable once we've done any necessary
2721  * COW.
2722  *
2723  * We also mark the page dirty at this point even though the page will
2724  * change only once the write actually happens. This avoids a few races,
2725  * and potentially makes it more efficient.
2726  *
2727  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2728  * but allow concurrent faults), with pte both mapped and locked.
2729  * We return with mmap_sem still held, but pte unmapped and unlocked.
2730  */
2731 static int do_wp_page(struct vm_fault *vmf)
2732         __releases(vmf->ptl)
2733 {
2734         struct vm_area_struct *vma = vmf->vma;
2735
2736         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2737         if (!vmf->page) {
2738                 /*
2739                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2740                  * VM_PFNMAP VMA.
2741                  *
2742                  * We should not cow pages in a shared writeable mapping.
2743                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2744                  */
2745                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2746                                      (VM_WRITE|VM_SHARED))
2747                         return wp_pfn_shared(vmf);
2748
2749                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2750                 return wp_page_copy(vmf);
2751         }
2752
2753         /*
2754          * Take out anonymous pages first, anonymous shared vmas are
2755          * not dirty accountable.
2756          */
2757         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2758                 int total_map_swapcount;
2759                 if (!trylock_page(vmf->page)) {
2760                         get_page(vmf->page);
2761                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2762                         lock_page(vmf->page);
2763                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2764                                         vmf->address, &vmf->ptl);
2765                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2766                                 unlock_page(vmf->page);
2767                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2768                                 put_page(vmf->page);
2769                                 return 0;
2770                         }
2771                         put_page(vmf->page);
2772                 }
2773                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2774                         if (total_map_swapcount == 1) {
2775                                 /*
2776                                  * The page is all ours. Move it to
2777                                  * our anon_vma so the rmap code will
2778                                  * not search our parent or siblings.
2779                                  * Protected against the rmap code by
2780                                  * the page lock.
2781                                  */
2782                                 page_move_anon_rmap(vmf->page, vma);
2783                         }
2784                         unlock_page(vmf->page);
2785                         wp_page_reuse(vmf);
2786                         return VM_FAULT_WRITE;
2787                 }
2788                 unlock_page(vmf->page);
2789         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2790                                         (VM_WRITE|VM_SHARED))) {
2791                 return wp_page_shared(vmf);
2792         }
2793
2794         /*
2795          * Ok, we need to copy. Oh, well..
2796          */
2797         get_page(vmf->page);
2798
2799         pte_unmap_unlock(vmf->pte, vmf->ptl);
2800         return wp_page_copy(vmf);
2801 }
2802
2803 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2804                 unsigned long start_addr, unsigned long end_addr,
2805                 struct zap_details *details)
2806 {
2807         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2808 }
2809
2810 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2811                                             struct zap_details *details)
2812 {
2813         struct vm_area_struct *vma;
2814         pgoff_t vba, vea, zba, zea;
2815
2816         vma_interval_tree_foreach(vma, root,
2817                         details->first_index, details->last_index) {
2818
2819                 vba = vma->vm_pgoff;
2820                 vea = vba + vma_pages(vma) - 1;
2821                 zba = details->first_index;
2822                 if (zba < vba)
2823                         zba = vba;
2824                 zea = details->last_index;
2825                 if (zea > vea)
2826                         zea = vea;
2827
2828                 unmap_mapping_range_vma(vma,
2829                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2830                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2831                                 details);
2832         }
2833 }
2834
2835 /**
2836  * unmap_mapping_pages() - Unmap pages from processes.
2837  * @mapping: The address space containing pages to be unmapped.
2838  * @start: Index of first page to be unmapped.
2839  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2840  * @even_cows: Whether to unmap even private COWed pages.
2841  *
2842  * Unmap the pages in this address space from any userspace process which
2843  * has them mmaped.  Generally, you want to remove COWed pages as well when
2844  * a file is being truncated, but not when invalidating pages from the page
2845  * cache.
2846  */
2847 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2848                 pgoff_t nr, bool even_cows)
2849 {
2850         struct zap_details details = { };
2851
2852         details.check_mapping = even_cows ? NULL : mapping;
2853         details.first_index = start;
2854         details.last_index = start + nr - 1;
2855         if (details.last_index < details.first_index)
2856                 details.last_index = ULONG_MAX;
2857
2858         i_mmap_lock_write(mapping);
2859         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2860                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2861         i_mmap_unlock_write(mapping);
2862 }
2863
2864 /**
2865  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2866  * address_space corresponding to the specified byte range in the underlying
2867  * file.
2868  *
2869  * @mapping: the address space containing mmaps to be unmapped.
2870  * @holebegin: byte in first page to unmap, relative to the start of
2871  * the underlying file.  This will be rounded down to a PAGE_SIZE
2872  * boundary.  Note that this is different from truncate_pagecache(), which
2873  * must keep the partial page.  In contrast, we must get rid of
2874  * partial pages.
2875  * @holelen: size of prospective hole in bytes.  This will be rounded
2876  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2877  * end of the file.
2878  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2879  * but 0 when invalidating pagecache, don't throw away private data.
2880  */
2881 void unmap_mapping_range(struct address_space *mapping,
2882                 loff_t const holebegin, loff_t const holelen, int even_cows)
2883 {
2884         pgoff_t hba = holebegin >> PAGE_SHIFT;
2885         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886
2887         /* Check for overflow. */
2888         if (sizeof(holelen) > sizeof(hlen)) {
2889                 long long holeend =
2890                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2891                 if (holeend & ~(long long)ULONG_MAX)
2892                         hlen = ULONG_MAX - hba + 1;
2893         }
2894
2895         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2896 }
2897 EXPORT_SYMBOL(unmap_mapping_range);
2898
2899 /*
2900  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2901  * but allow concurrent faults), and pte mapped but not yet locked.
2902  * We return with pte unmapped and unlocked.
2903  *
2904  * We return with the mmap_sem locked or unlocked in the same cases
2905  * as does filemap_fault().
2906  */
2907 int do_swap_page(struct vm_fault *vmf)
2908 {
2909         struct vm_area_struct *vma = vmf->vma;
2910         struct page *page = NULL, *swapcache;
2911         struct mem_cgroup *memcg;
2912         swp_entry_t entry;
2913         pte_t pte;
2914         int locked;
2915         int exclusive = 0;
2916         int ret = 0;
2917
2918         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2919                 goto out;
2920
2921         entry = pte_to_swp_entry(vmf->orig_pte);
2922         if (unlikely(non_swap_entry(entry))) {
2923                 if (is_migration_entry(entry)) {
2924                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2925                                              vmf->address);
2926                 } else if (is_device_private_entry(entry)) {
2927                         /*
2928                          * For un-addressable device memory we call the pgmap
2929                          * fault handler callback. The callback must migrate
2930                          * the page back to some CPU accessible page.
2931                          */
2932                         ret = device_private_entry_fault(vma, vmf->address, entry,
2933                                                  vmf->flags, vmf->pmd);
2934                 } else if (is_hwpoison_entry(entry)) {
2935                         ret = VM_FAULT_HWPOISON;
2936                 } else {
2937                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2938                         ret = VM_FAULT_SIGBUS;
2939                 }
2940                 goto out;
2941         }
2942
2943
2944         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2945         page = lookup_swap_cache(entry, vma, vmf->address);
2946         swapcache = page;
2947
2948         if (!page) {
2949                 struct swap_info_struct *si = swp_swap_info(entry);
2950
2951                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2952                                 __swap_count(si, entry) == 1) {
2953                         /* skip swapcache */
2954                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2955                                                         vmf->address);
2956                         if (page) {
2957                                 __SetPageLocked(page);
2958                                 __SetPageSwapBacked(page);
2959                                 set_page_private(page, entry.val);
2960                                 lru_cache_add_anon(page);
2961                                 swap_readpage(page, true);
2962                         }
2963                 } else {
2964                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2965                                                 vmf);
2966                         swapcache = page;
2967                 }
2968
2969                 if (!page) {
2970                         /*
2971                          * Back out if somebody else faulted in this pte
2972                          * while we released the pte lock.
2973                          */
2974                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2975                                         vmf->address, &vmf->ptl);
2976                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2977                                 ret = VM_FAULT_OOM;
2978                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979                         goto unlock;
2980                 }
2981
2982                 /* Had to read the page from swap area: Major fault */
2983                 ret = VM_FAULT_MAJOR;
2984                 count_vm_event(PGMAJFAULT);
2985                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2986         } else if (PageHWPoison(page)) {
2987                 /*
2988                  * hwpoisoned dirty swapcache pages are kept for killing
2989                  * owner processes (which may be unknown at hwpoison time)
2990                  */
2991                 ret = VM_FAULT_HWPOISON;
2992                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2993                 goto out_release;
2994         }
2995
2996         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2997
2998         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2999         if (!locked) {
3000                 ret |= VM_FAULT_RETRY;
3001                 goto out_release;
3002         }
3003
3004         /*
3005          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3006          * release the swapcache from under us.  The page pin, and pte_same
3007          * test below, are not enough to exclude that.  Even if it is still
3008          * swapcache, we need to check that the page's swap has not changed.
3009          */
3010         if (unlikely((!PageSwapCache(page) ||
3011                         page_private(page) != entry.val)) && swapcache)
3012                 goto out_page;
3013
3014         page = ksm_might_need_to_copy(page, vma, vmf->address);
3015         if (unlikely(!page)) {
3016                 ret = VM_FAULT_OOM;
3017                 page = swapcache;
3018                 goto out_page;
3019         }
3020
3021         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3022                                         &memcg, false)) {
3023                 ret = VM_FAULT_OOM;
3024                 goto out_page;
3025         }
3026
3027         /*
3028          * Back out if somebody else already faulted in this pte.
3029          */
3030         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3031                         &vmf->ptl);
3032         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3033                 goto out_nomap;
3034
3035         if (unlikely(!PageUptodate(page))) {
3036                 ret = VM_FAULT_SIGBUS;
3037                 goto out_nomap;
3038         }
3039
3040         /*
3041          * The page isn't present yet, go ahead with the fault.
3042          *
3043          * Be careful about the sequence of operations here.
3044          * To get its accounting right, reuse_swap_page() must be called
3045          * while the page is counted on swap but not yet in mapcount i.e.
3046          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3047          * must be called after the swap_free(), or it will never succeed.
3048          */
3049
3050         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3051         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3052         pte = mk_pte(page, vma->vm_page_prot);
3053         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3054                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3055                 vmf->flags &= ~FAULT_FLAG_WRITE;
3056                 ret |= VM_FAULT_WRITE;
3057                 exclusive = RMAP_EXCLUSIVE;
3058         }
3059         flush_icache_page(vma, page);
3060         if (pte_swp_soft_dirty(vmf->orig_pte))
3061                 pte = pte_mksoft_dirty(pte);
3062         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3063         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3064         vmf->orig_pte = pte;
3065
3066         /* ksm created a completely new copy */
3067         if (unlikely(page != swapcache && swapcache)) {
3068                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3069                 mem_cgroup_commit_charge(page, memcg, false, false);
3070                 lru_cache_add_active_or_unevictable(page, vma);
3071         } else {
3072                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3073                 mem_cgroup_commit_charge(page, memcg, true, false);
3074                 activate_page(page);
3075         }
3076
3077         swap_free(entry);
3078         if (mem_cgroup_swap_full(page) ||
3079             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3080                 try_to_free_swap(page);
3081         unlock_page(page);
3082         if (page != swapcache && swapcache) {
3083                 /*
3084                  * Hold the lock to avoid the swap entry to be reused
3085                  * until we take the PT lock for the pte_same() check
3086                  * (to avoid false positives from pte_same). For
3087                  * further safety release the lock after the swap_free
3088                  * so that the swap count won't change under a
3089                  * parallel locked swapcache.
3090                  */
3091                 unlock_page(swapcache);
3092                 put_page(swapcache);
3093         }
3094
3095         if (vmf->flags & FAULT_FLAG_WRITE) {
3096                 ret |= do_wp_page(vmf);
3097                 if (ret & VM_FAULT_ERROR)
3098                         ret &= VM_FAULT_ERROR;
3099                 goto out;
3100         }
3101
3102         /* No need to invalidate - it was non-present before */
3103         update_mmu_cache(vma, vmf->address, vmf->pte);
3104 unlock:
3105         pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 out:
3107         return ret;
3108 out_nomap:
3109         mem_cgroup_cancel_charge(page, memcg, false);
3110         pte_unmap_unlock(vmf->pte, vmf->ptl);
3111 out_page:
3112         unlock_page(page);
3113 out_release:
3114         put_page(page);
3115         if (page != swapcache && swapcache) {
3116                 unlock_page(swapcache);
3117                 put_page(swapcache);
3118         }
3119         return ret;
3120 }
3121
3122 /*
3123  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3124  * but allow concurrent faults), and pte mapped but not yet locked.
3125  * We return with mmap_sem still held, but pte unmapped and unlocked.
3126  */
3127 static int do_anonymous_page(struct vm_fault *vmf)
3128 {
3129         struct vm_area_struct *vma = vmf->vma;
3130         struct mem_cgroup *memcg;
3131         struct page *page;
3132         int ret = 0;
3133         pte_t entry;
3134
3135         /* File mapping without ->vm_ops ? */
3136         if (vma->vm_flags & VM_SHARED)
3137                 return VM_FAULT_SIGBUS;
3138
3139         /*
3140          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3141          * pte_offset_map() on pmds where a huge pmd might be created
3142          * from a different thread.
3143          *
3144          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3145          * parallel threads are excluded by other means.
3146          *
3147          * Here we only have down_read(mmap_sem).
3148          */
3149         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3150                 return VM_FAULT_OOM;
3151
3152         /* See the comment in pte_alloc_one_map() */
3153         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3154                 return 0;
3155
3156         /* Use the zero-page for reads */
3157         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3158                         !mm_forbids_zeropage(vma->vm_mm)) {
3159                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3160                                                 vma->vm_page_prot));
3161                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3162                                 vmf->address, &vmf->ptl);
3163                 if (!pte_none(*vmf->pte))
3164                         goto unlock;
3165                 ret = check_stable_address_space(vma->vm_mm);
3166                 if (ret)
3167                         goto unlock;
3168                 /* Deliver the page fault to userland, check inside PT lock */
3169                 if (userfaultfd_missing(vma)) {
3170                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3171                         return handle_userfault(vmf, VM_UFFD_MISSING);
3172                 }
3173                 goto setpte;
3174         }
3175
3176         /* Allocate our own private page. */
3177         if (unlikely(anon_vma_prepare(vma)))
3178                 goto oom;
3179         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3180         if (!page)
3181                 goto oom;
3182
3183         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3184                                         false))
3185                 goto oom_free_page;
3186
3187         /*
3188          * The memory barrier inside __SetPageUptodate makes sure that
3189          * preceeding stores to the page contents become visible before
3190          * the set_pte_at() write.
3191          */
3192         __SetPageUptodate(page);
3193
3194         entry = mk_pte(page, vma->vm_page_prot);
3195         if (vma->vm_flags & VM_WRITE)
3196                 entry = pte_mkwrite(pte_mkdirty(entry));
3197
3198         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3199                         &vmf->ptl);
3200         if (!pte_none(*vmf->pte))
3201                 goto release;
3202
3203         ret = check_stable_address_space(vma->vm_mm);
3204         if (ret)
3205                 goto release;
3206
3207         /* Deliver the page fault to userland, check inside PT lock */
3208         if (userfaultfd_missing(vma)) {
3209                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3210                 mem_cgroup_cancel_charge(page, memcg, false);
3211                 put_page(page);
3212                 return handle_userfault(vmf, VM_UFFD_MISSING);
3213         }
3214
3215         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3216         page_add_new_anon_rmap(page, vma, vmf->address, false);
3217         mem_cgroup_commit_charge(page, memcg, false, false);
3218         lru_cache_add_active_or_unevictable(page, vma);
3219 setpte:
3220         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3221
3222         /* No need to invalidate - it was non-present before */
3223         update_mmu_cache(vma, vmf->address, vmf->pte);
3224 unlock:
3225         pte_unmap_unlock(vmf->pte, vmf->ptl);
3226         return ret;
3227 release:
3228         mem_cgroup_cancel_charge(page, memcg, false);
3229         put_page(page);
3230         goto unlock;
3231 oom_free_page:
3232         put_page(page);
3233 oom:
3234         return VM_FAULT_OOM;
3235 }
3236
3237 /*
3238  * The mmap_sem must have been held on entry, and may have been
3239  * released depending on flags and vma->vm_ops->fault() return value.
3240  * See filemap_fault() and __lock_page_retry().
3241  */
3242 static int __do_fault(struct vm_fault *vmf)
3243 {
3244         struct vm_area_struct *vma = vmf->vma;
3245         int ret;
3246
3247         ret = vma->vm_ops->fault(vmf);
3248         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3249                             VM_FAULT_DONE_COW)))
3250                 return ret;
3251
3252         if (unlikely(PageHWPoison(vmf->page))) {
3253                 if (ret & VM_FAULT_LOCKED)
3254                         unlock_page(vmf->page);
3255                 put_page(vmf->page);
3256                 vmf->page = NULL;
3257                 return VM_FAULT_HWPOISON;
3258         }
3259
3260         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3261                 lock_page(vmf->page);
3262         else
3263                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3264
3265         return ret;
3266 }
3267
3268 /*
3269  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3270  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3271  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3272  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3273  */
3274 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3275 {
3276         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3277 }
3278
3279 static int pte_alloc_one_map(struct vm_fault *vmf)
3280 {
3281         struct vm_area_struct *vma = vmf->vma;
3282
3283         if (!pmd_none(*vmf->pmd))
3284                 goto map_pte;
3285         if (vmf->prealloc_pte) {
3286                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3287                 if (unlikely(!pmd_none(*vmf->pmd))) {
3288                         spin_unlock(vmf->ptl);
3289                         goto map_pte;
3290                 }
3291
3292                 mm_inc_nr_ptes(vma->vm_mm);
3293                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3294                 spin_unlock(vmf->ptl);
3295                 vmf->prealloc_pte = NULL;
3296         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3297                 return VM_FAULT_OOM;
3298         }
3299 map_pte:
3300         /*
3301          * If a huge pmd materialized under us just retry later.  Use
3302          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3303          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3304          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3305          * running immediately after a huge pmd fault in a different thread of
3306          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3307          * All we have to ensure is that it is a regular pmd that we can walk
3308          * with pte_offset_map() and we can do that through an atomic read in
3309          * C, which is what pmd_trans_unstable() provides.
3310          */
3311         if (pmd_devmap_trans_unstable(vmf->pmd))
3312                 return VM_FAULT_NOPAGE;
3313
3314         /*
3315          * At this point we know that our vmf->pmd points to a page of ptes
3316          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3317          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3318          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3319          * be valid and we will re-check to make sure the vmf->pte isn't
3320          * pte_none() under vmf->ptl protection when we return to
3321          * alloc_set_pte().
3322          */
3323         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3324                         &vmf->ptl);
3325         return 0;
3326 }
3327
3328 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3329
3330 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3331 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3332                 unsigned long haddr)
3333 {
3334         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3335                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3336                 return false;
3337         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3338                 return false;
3339         return true;
3340 }
3341
3342 static void deposit_prealloc_pte(struct vm_fault *vmf)
3343 {
3344         struct vm_area_struct *vma = vmf->vma;
3345
3346         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3347         /*
3348          * We are going to consume the prealloc table,
3349          * count that as nr_ptes.
3350          */
3351         mm_inc_nr_ptes(vma->vm_mm);
3352         vmf->prealloc_pte = NULL;
3353 }
3354
3355 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3356 {
3357         struct vm_area_struct *vma = vmf->vma;
3358         bool write = vmf->flags & FAULT_FLAG_WRITE;
3359         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3360         pmd_t entry;
3361         int i, ret;
3362
3363         if (!transhuge_vma_suitable(vma, haddr))
3364                 return VM_FAULT_FALLBACK;
3365
3366         ret = VM_FAULT_FALLBACK;
3367         page = compound_head(page);
3368
3369         /*
3370          * Archs like ppc64 need additonal space to store information
3371          * related to pte entry. Use the preallocated table for that.
3372          */
3373         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3374                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3375                 if (!vmf->prealloc_pte)
3376                         return VM_FAULT_OOM;
3377                 smp_wmb(); /* See comment in __pte_alloc() */
3378         }
3379
3380         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3381         if (unlikely(!pmd_none(*vmf->pmd)))
3382                 goto out;
3383
3384         for (i = 0; i < HPAGE_PMD_NR; i++)
3385                 flush_icache_page(vma, page + i);
3386
3387         entry = mk_huge_pmd(page, vma->vm_page_prot);
3388         if (write)
3389                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3390
3391         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3392         page_add_file_rmap(page, true);
3393         /*
3394          * deposit and withdraw with pmd lock held
3395          */
3396         if (arch_needs_pgtable_deposit())
3397                 deposit_prealloc_pte(vmf);
3398
3399         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3400
3401         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3402
3403         /* fault is handled */
3404         ret = 0;
3405         count_vm_event(THP_FILE_MAPPED);
3406 out:
3407         spin_unlock(vmf->ptl);
3408         return ret;
3409 }
3410 #else
3411 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413         BUILD_BUG();
3414         return 0;
3415 }
3416 #endif
3417
3418 /**
3419  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3420  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3421  *
3422  * @vmf: fault environment
3423  * @memcg: memcg to charge page (only for private mappings)
3424  * @page: page to map
3425  *
3426  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3427  * return.
3428  *
3429  * Target users are page handler itself and implementations of
3430  * vm_ops->map_pages.
3431  */
3432 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3433                 struct page *page)
3434 {
3435         struct vm_area_struct *vma = vmf->vma;
3436         bool write = vmf->flags & FAULT_FLAG_WRITE;
3437         pte_t entry;
3438         int ret;
3439
3440         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3441                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3442                 /* THP on COW? */
3443                 VM_BUG_ON_PAGE(memcg, page);
3444
3445                 ret = do_set_pmd(vmf, page);
3446                 if (ret != VM_FAULT_FALLBACK)
3447                         return ret;
3448         }
3449
3450         if (!vmf->pte) {
3451                 ret = pte_alloc_one_map(vmf);
3452                 if (ret)
3453                         return ret;
3454         }
3455
3456         /* Re-check under ptl */
3457         if (unlikely(!pte_none(*vmf->pte)))
3458                 return VM_FAULT_NOPAGE;
3459
3460         flush_icache_page(vma, page);
3461         entry = mk_pte(page, vma->vm_page_prot);
3462         if (write)
3463                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3464         /* copy-on-write page */
3465         if (write && !(vma->vm_flags & VM_SHARED)) {
3466                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3467                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3468                 mem_cgroup_commit_charge(page, memcg, false, false);
3469                 lru_cache_add_active_or_unevictable(page, vma);
3470         } else {
3471                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3472                 page_add_file_rmap(page, false);
3473         }
3474         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3475
3476         /* no need to invalidate: a not-present page won't be cached */
3477         update_mmu_cache(vma, vmf->address, vmf->pte);
3478
3479         return 0;
3480 }
3481
3482
3483 /**
3484  * finish_fault - finish page fault once we have prepared the page to fault
3485  *
3486  * @vmf: structure describing the fault
3487  *
3488  * This function handles all that is needed to finish a page fault once the
3489  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3490  * given page, adds reverse page mapping, handles memcg charges and LRU
3491  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3492  * error.
3493  *
3494  * The function expects the page to be locked and on success it consumes a
3495  * reference of a page being mapped (for the PTE which maps it).
3496  */
3497 int finish_fault(struct vm_fault *vmf)
3498 {
3499         struct page *page;
3500         int ret = 0;
3501
3502         /* Did we COW the page? */
3503         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3504             !(vmf->vma->vm_flags & VM_SHARED))
3505                 page = vmf->cow_page;
3506         else
3507                 page = vmf->page;
3508
3509         /*
3510          * check even for read faults because we might have lost our CoWed
3511          * page
3512          */
3513         if (!(vmf->vma->vm_flags & VM_SHARED))
3514                 ret = check_stable_address_space(vmf->vma->vm_mm);
3515         if (!ret)
3516                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3517         if (vmf->pte)
3518                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3519         return ret;
3520 }
3521
3522 static unsigned long fault_around_bytes __read_mostly =
3523         rounddown_pow_of_two(65536);
3524
3525 #ifdef CONFIG_DEBUG_FS
3526 static int fault_around_bytes_get(void *data, u64 *val)
3527 {
3528         *val = fault_around_bytes;
3529         return 0;
3530 }
3531
3532 /*
3533  * fault_around_bytes must be rounded down to the nearest page order as it's
3534  * what do_fault_around() expects to see.
3535  */
3536 static int fault_around_bytes_set(void *data, u64 val)
3537 {
3538         if (val / PAGE_SIZE > PTRS_PER_PTE)
3539                 return -EINVAL;
3540         if (val > PAGE_SIZE)
3541                 fault_around_bytes = rounddown_pow_of_two(val);
3542         else
3543                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3544         return 0;
3545 }
3546 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3547                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3548
3549 static int __init fault_around_debugfs(void)
3550 {
3551         void *ret;
3552
3553         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3554                         &fault_around_bytes_fops);
3555         if (!ret)
3556                 pr_warn("Failed to create fault_around_bytes in debugfs");
3557         return 0;
3558 }
3559 late_initcall(fault_around_debugfs);
3560 #endif
3561
3562 /*
3563  * do_fault_around() tries to map few pages around the fault address. The hope
3564  * is that the pages will be needed soon and this will lower the number of
3565  * faults to handle.
3566  *
3567  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3568  * not ready to be mapped: not up-to-date, locked, etc.
3569  *
3570  * This function is called with the page table lock taken. In the split ptlock
3571  * case the page table lock only protects only those entries which belong to
3572  * the page table corresponding to the fault address.
3573  *
3574  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3575  * only once.
3576  *
3577  * fault_around_bytes defines how many bytes we'll try to map.
3578  * do_fault_around() expects it to be set to a power of two less than or equal
3579  * to PTRS_PER_PTE.
3580  *
3581  * The virtual address of the area that we map is naturally aligned to
3582  * fault_around_bytes rounded down to the machine page size
3583  * (and therefore to page order).  This way it's easier to guarantee
3584  * that we don't cross page table boundaries.
3585  */
3586 static int do_fault_around(struct vm_fault *vmf)
3587 {
3588         unsigned long address = vmf->address, nr_pages, mask;
3589         pgoff_t start_pgoff = vmf->pgoff;
3590         pgoff_t end_pgoff;
3591         int off, ret = 0;
3592
3593         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3594         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3595
3596         vmf->address = max(address & mask, vmf->vma->vm_start);
3597         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3598         start_pgoff -= off;
3599
3600         /*
3601          *  end_pgoff is either the end of the page table, the end of
3602          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3603          */
3604         end_pgoff = start_pgoff -
3605                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3606                 PTRS_PER_PTE - 1;
3607         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3608                         start_pgoff + nr_pages - 1);
3609
3610         if (pmd_none(*vmf->pmd)) {
3611                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3612                                                   vmf->address);
3613                 if (!vmf->prealloc_pte)
3614                         goto out;
3615                 smp_wmb(); /* See comment in __pte_alloc() */
3616         }
3617
3618         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3619
3620         /* Huge page is mapped? Page fault is solved */
3621         if (pmd_trans_huge(*vmf->pmd)) {
3622                 ret = VM_FAULT_NOPAGE;
3623                 goto out;
3624         }
3625
3626         /* ->map_pages() haven't done anything useful. Cold page cache? */
3627         if (!vmf->pte)
3628                 goto out;
3629
3630         /* check if the page fault is solved */
3631         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3632         if (!pte_none(*vmf->pte))
3633                 ret = VM_FAULT_NOPAGE;
3634         pte_unmap_unlock(vmf->pte, vmf->ptl);
3635 out:
3636         vmf->address = address;
3637         vmf->pte = NULL;
3638         return ret;
3639 }
3640
3641 static int do_read_fault(struct vm_fault *vmf)
3642 {
3643         struct vm_area_struct *vma = vmf->vma;
3644         int ret = 0;
3645
3646         /*
3647          * Let's call ->map_pages() first and use ->fault() as fallback
3648          * if page by the offset is not ready to be mapped (cold cache or
3649          * something).
3650          */
3651         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3652                 ret = do_fault_around(vmf);
3653                 if (ret)
3654                         return ret;
3655         }
3656
3657         ret = __do_fault(vmf);
3658         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659                 return ret;
3660
3661         ret |= finish_fault(vmf);
3662         unlock_page(vmf->page);
3663         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3664                 put_page(vmf->page);
3665         return ret;
3666 }
3667
3668 static int do_cow_fault(struct vm_fault *vmf)
3669 {
3670         struct vm_area_struct *vma = vmf->vma;
3671         int ret;
3672
3673         if (unlikely(anon_vma_prepare(vma)))
3674                 return VM_FAULT_OOM;
3675
3676         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3677         if (!vmf->cow_page)
3678                 return VM_FAULT_OOM;
3679
3680         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3681                                 &vmf->memcg, false)) {
3682                 put_page(vmf->cow_page);
3683                 return VM_FAULT_OOM;
3684         }
3685
3686         ret = __do_fault(vmf);
3687         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3688                 goto uncharge_out;
3689         if (ret & VM_FAULT_DONE_COW)
3690                 return ret;
3691
3692         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3693         __SetPageUptodate(vmf->cow_page);
3694
3695         ret |= finish_fault(vmf);
3696         unlock_page(vmf->page);
3697         put_page(vmf->page);
3698         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699                 goto uncharge_out;
3700         return ret;
3701 uncharge_out:
3702         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3703         put_page(vmf->cow_page);
3704         return ret;
3705 }
3706
3707 static int do_shared_fault(struct vm_fault *vmf)
3708 {
3709         struct vm_area_struct *vma = vmf->vma;
3710         int ret, tmp;
3711
3712         ret = __do_fault(vmf);
3713         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714                 return ret;
3715
3716         /*
3717          * Check if the backing address space wants to know that the page is
3718          * about to become writable
3719          */
3720         if (vma->vm_ops->page_mkwrite) {
3721                 unlock_page(vmf->page);
3722                 tmp = do_page_mkwrite(vmf);
3723                 if (unlikely(!tmp ||
3724                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3725                         put_page(vmf->page);
3726                         return tmp;
3727                 }
3728         }
3729
3730         ret |= finish_fault(vmf);
3731         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3732                                         VM_FAULT_RETRY))) {
3733                 unlock_page(vmf->page);
3734                 put_page(vmf->page);
3735                 return ret;
3736         }
3737
3738         fault_dirty_shared_page(vma, vmf->page);
3739         return ret;
3740 }
3741
3742 /*
3743  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3744  * but allow concurrent faults).
3745  * The mmap_sem may have been released depending on flags and our
3746  * return value.  See filemap_fault() and __lock_page_or_retry().
3747  */
3748 static int do_fault(struct vm_fault *vmf)
3749 {
3750         struct vm_area_struct *vma = vmf->vma;
3751         int ret;
3752
3753         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3754         if (!vma->vm_ops->fault)
3755                 ret = VM_FAULT_SIGBUS;
3756         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3757                 ret = do_read_fault(vmf);
3758         else if (!(vma->vm_flags & VM_SHARED))
3759                 ret = do_cow_fault(vmf);
3760         else
3761                 ret = do_shared_fault(vmf);
3762
3763         /* preallocated pagetable is unused: free it */
3764         if (vmf->prealloc_pte) {
3765                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3766                 vmf->prealloc_pte = NULL;
3767         }
3768         return ret;
3769 }
3770
3771 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3772                                 unsigned long addr, int page_nid,
3773                                 int *flags)
3774 {
3775         get_page(page);
3776
3777         count_vm_numa_event(NUMA_HINT_FAULTS);
3778         if (page_nid == numa_node_id()) {
3779                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3780                 *flags |= TNF_FAULT_LOCAL;
3781         }
3782
3783         return mpol_misplaced(page, vma, addr);
3784 }
3785
3786 static int do_numa_page(struct vm_fault *vmf)
3787 {
3788         struct vm_area_struct *vma = vmf->vma;
3789         struct page *page = NULL;
3790         int page_nid = -1;
3791         int last_cpupid;
3792         int target_nid;
3793         bool migrated = false;
3794         pte_t pte;
3795         bool was_writable = pte_savedwrite(vmf->orig_pte);
3796         int flags = 0;
3797
3798         /*
3799          * The "pte" at this point cannot be used safely without
3800          * validation through pte_unmap_same(). It's of NUMA type but
3801          * the pfn may be screwed if the read is non atomic.
3802          */
3803         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3804         spin_lock(vmf->ptl);
3805         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3806                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3807                 goto out;
3808         }
3809
3810         /*
3811          * Make it present again, Depending on how arch implementes non
3812          * accessible ptes, some can allow access by kernel mode.
3813          */
3814         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3815         pte = pte_modify(pte, vma->vm_page_prot);
3816         pte = pte_mkyoung(pte);
3817         if (was_writable)
3818                 pte = pte_mkwrite(pte);
3819         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3820         update_mmu_cache(vma, vmf->address, vmf->pte);
3821
3822         page = vm_normal_page(vma, vmf->address, pte);
3823         if (!page) {
3824                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3825                 return 0;
3826         }
3827
3828         /* TODO: handle PTE-mapped THP */
3829         if (PageCompound(page)) {
3830                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3831                 return 0;
3832         }
3833
3834         /*
3835          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3836          * much anyway since they can be in shared cache state. This misses
3837          * the case where a mapping is writable but the process never writes
3838          * to it but pte_write gets cleared during protection updates and
3839          * pte_dirty has unpredictable behaviour between PTE scan updates,
3840          * background writeback, dirty balancing and application behaviour.
3841          */
3842         if (!pte_write(pte))
3843                 flags |= TNF_NO_GROUP;
3844
3845         /*
3846          * Flag if the page is shared between multiple address spaces. This
3847          * is later used when determining whether to group tasks together
3848          */
3849         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3850                 flags |= TNF_SHARED;
3851
3852         last_cpupid = page_cpupid_last(page);
3853         page_nid = page_to_nid(page);
3854         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3855                         &flags);
3856         pte_unmap_unlock(vmf->pte, vmf->ptl);
3857         if (target_nid == -1) {
3858                 put_page(page);
3859                 goto out;
3860         }
3861
3862         /* Migrate to the requested node */
3863         migrated = migrate_misplaced_page(page, vma, target_nid);
3864         if (migrated) {
3865                 page_nid = target_nid;
3866                 flags |= TNF_MIGRATED;
3867         } else
3868                 flags |= TNF_MIGRATE_FAIL;
3869
3870 out:
3871         if (page_nid != -1)
3872                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3873         return 0;
3874 }
3875
3876 static inline int create_huge_pmd(struct vm_fault *vmf)
3877 {
3878         if (vma_is_anonymous(vmf->vma))
3879                 return do_huge_pmd_anonymous_page(vmf);
3880         if (vmf->vma->vm_ops->huge_fault)
3881                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3882         return VM_FAULT_FALLBACK;
3883 }
3884
3885 /* `inline' is required to avoid gcc 4.1.2 build error */
3886 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3887 {
3888         if (vma_is_anonymous(vmf->vma))
3889                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3890         if (vmf->vma->vm_ops->huge_fault)
3891                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3892
3893         /* COW handled on pte level: split pmd */
3894         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3895         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3896
3897         return VM_FAULT_FALLBACK;
3898 }
3899
3900 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3901 {
3902         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3903 }
3904
3905 static int create_huge_pud(struct vm_fault *vmf)
3906 {
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908         /* No support for anonymous transparent PUD pages yet */
3909         if (vma_is_anonymous(vmf->vma))
3910                 return VM_FAULT_FALLBACK;
3911         if (vmf->vma->vm_ops->huge_fault)
3912                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914         return VM_FAULT_FALLBACK;
3915 }
3916
3917 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920         /* No support for anonymous transparent PUD pages yet */
3921         if (vma_is_anonymous(vmf->vma))
3922                 return VM_FAULT_FALLBACK;
3923         if (vmf->vma->vm_ops->huge_fault)
3924                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926         return VM_FAULT_FALLBACK;
3927 }
3928
3929 /*
3930  * These routines also need to handle stuff like marking pages dirty
3931  * and/or accessed for architectures that don't do it in hardware (most
3932  * RISC architectures).  The early dirtying is also good on the i386.
3933  *
3934  * There is also a hook called "update_mmu_cache()" that architectures
3935  * with external mmu caches can use to update those (ie the Sparc or
3936  * PowerPC hashed page tables that act as extended TLBs).
3937  *
3938  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3939  * concurrent faults).
3940  *
3941  * The mmap_sem may have been released depending on flags and our return value.
3942  * See filemap_fault() and __lock_page_or_retry().
3943  */
3944 static int handle_pte_fault(struct vm_fault *vmf)
3945 {
3946         pte_t entry;
3947
3948         if (unlikely(pmd_none(*vmf->pmd))) {
3949                 /*
3950                  * Leave __pte_alloc() until later: because vm_ops->fault may
3951                  * want to allocate huge page, and if we expose page table
3952                  * for an instant, it will be difficult to retract from
3953                  * concurrent faults and from rmap lookups.
3954                  */
3955                 vmf->pte = NULL;
3956         } else {
3957                 /* See comment in pte_alloc_one_map() */
3958                 if (pmd_devmap_trans_unstable(vmf->pmd))
3959                         return 0;
3960                 /*
3961                  * A regular pmd is established and it can't morph into a huge
3962                  * pmd from under us anymore at this point because we hold the
3963                  * mmap_sem read mode and khugepaged takes it in write mode.
3964                  * So now it's safe to run pte_offset_map().
3965                  */
3966                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3967                 vmf->orig_pte = *vmf->pte;
3968
3969                 /*
3970                  * some architectures can have larger ptes than wordsize,
3971                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3972                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3973                  * accesses.  The code below just needs a consistent view
3974                  * for the ifs and we later double check anyway with the
3975                  * ptl lock held. So here a barrier will do.
3976                  */
3977                 barrier();
3978                 if (pte_none(vmf->orig_pte)) {
3979                         pte_unmap(vmf->pte);
3980                         vmf->pte = NULL;
3981                 }
3982         }
3983
3984         if (!vmf->pte) {
3985                 if (vma_is_anonymous(vmf->vma))
3986                         return do_anonymous_page(vmf);
3987                 else
3988                         return do_fault(vmf);
3989         }
3990
3991         if (!pte_present(vmf->orig_pte))
3992                 return do_swap_page(vmf);
3993
3994         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3995                 return do_numa_page(vmf);
3996
3997         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3998         spin_lock(vmf->ptl);
3999         entry = vmf->orig_pte;
4000         if (unlikely(!pte_same(*vmf->pte, entry)))
4001                 goto unlock;
4002         if (vmf->flags & FAULT_FLAG_WRITE) {
4003                 if (!pte_write(entry))
4004                         return do_wp_page(vmf);
4005                 entry = pte_mkdirty(entry);
4006         }
4007         entry = pte_mkyoung(entry);
4008         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4009                                 vmf->flags & FAULT_FLAG_WRITE)) {
4010                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4011         } else {
4012                 /*
4013                  * This is needed only for protection faults but the arch code
4014                  * is not yet telling us if this is a protection fault or not.
4015                  * This still avoids useless tlb flushes for .text page faults
4016                  * with threads.
4017                  */
4018                 if (vmf->flags & FAULT_FLAG_WRITE)
4019                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4020         }
4021 unlock:
4022         pte_unmap_unlock(vmf->pte, vmf->ptl);
4023         return 0;
4024 }
4025
4026 /*
4027  * By the time we get here, we already hold the mm semaphore
4028  *
4029  * The mmap_sem may have been released depending on flags and our
4030  * return value.  See filemap_fault() and __lock_page_or_retry().
4031  */
4032 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4033                 unsigned int flags)
4034 {
4035         struct vm_fault vmf = {
4036                 .vma = vma,
4037                 .address = address & PAGE_MASK,
4038                 .flags = flags,
4039                 .pgoff = linear_page_index(vma, address),
4040                 .gfp_mask = __get_fault_gfp_mask(vma),
4041         };
4042         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4043         struct mm_struct *mm = vma->vm_mm;
4044         pgd_t *pgd;
4045         p4d_t *p4d;
4046         int ret;
4047
4048         pgd = pgd_offset(mm, address);
4049         p4d = p4d_alloc(mm, pgd, address);
4050         if (!p4d)
4051                 return VM_FAULT_OOM;
4052
4053         vmf.pud = pud_alloc(mm, p4d, address);
4054         if (!vmf.pud)
4055                 return VM_FAULT_OOM;
4056         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4057                 ret = create_huge_pud(&vmf);
4058                 if (!(ret & VM_FAULT_FALLBACK))
4059                         return ret;
4060         } else {
4061                 pud_t orig_pud = *vmf.pud;
4062
4063                 barrier();
4064                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4065
4066                         /* NUMA case for anonymous PUDs would go here */
4067
4068                         if (dirty && !pud_write(orig_pud)) {
4069                                 ret = wp_huge_pud(&vmf, orig_pud);
4070                                 if (!(ret & VM_FAULT_FALLBACK))
4071                                         return ret;
4072                         } else {
4073                                 huge_pud_set_accessed(&vmf, orig_pud);
4074                                 return 0;
4075                         }
4076                 }
4077         }
4078
4079         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4080         if (!vmf.pmd)
4081                 return VM_FAULT_OOM;
4082         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4083                 ret = create_huge_pmd(&vmf);
4084                 if (!(ret & VM_FAULT_FALLBACK))
4085                         return ret;
4086         } else {
4087                 pmd_t orig_pmd = *vmf.pmd;
4088
4089                 barrier();
4090                 if (unlikely(is_swap_pmd(orig_pmd))) {
4091                         VM_BUG_ON(thp_migration_supported() &&
4092                                           !is_pmd_migration_entry(orig_pmd));
4093                         if (is_pmd_migration_entry(orig_pmd))
4094                                 pmd_migration_entry_wait(mm, vmf.pmd);
4095                         return 0;
4096                 }
4097                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4098                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4099                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4100
4101                         if (dirty && !pmd_write(orig_pmd)) {
4102                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4103                                 if (!(ret & VM_FAULT_FALLBACK))
4104                                         return ret;
4105                         } else {
4106                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4107                                 return 0;
4108                         }
4109                 }
4110         }
4111
4112         return handle_pte_fault(&vmf);
4113 }
4114
4115 /*
4116  * By the time we get here, we already hold the mm semaphore
4117  *
4118  * The mmap_sem may have been released depending on flags and our
4119  * return value.  See filemap_fault() and __lock_page_or_retry().
4120  */
4121 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4122                 unsigned int flags)
4123 {
4124         int ret;
4125
4126         __set_current_state(TASK_RUNNING);
4127
4128         count_vm_event(PGFAULT);
4129         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4130
4131         /* do counter updates before entering really critical section. */
4132         check_sync_rss_stat(current);
4133
4134         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4135                                             flags & FAULT_FLAG_INSTRUCTION,
4136                                             flags & FAULT_FLAG_REMOTE))
4137                 return VM_FAULT_SIGSEGV;
4138
4139         /*
4140          * Enable the memcg OOM handling for faults triggered in user
4141          * space.  Kernel faults are handled more gracefully.
4142          */
4143         if (flags & FAULT_FLAG_USER)
4144                 mem_cgroup_enter_user_fault();
4145
4146         if (unlikely(is_vm_hugetlb_page(vma)))
4147                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4148         else
4149                 ret = __handle_mm_fault(vma, address, flags);
4150
4151         if (flags & FAULT_FLAG_USER) {
4152                 mem_cgroup_exit_user_fault();
4153                 /*
4154                  * The task may have entered a memcg OOM situation but
4155                  * if the allocation error was handled gracefully (no
4156                  * VM_FAULT_OOM), there is no need to kill anything.
4157                  * Just clean up the OOM state peacefully.
4158                  */
4159                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4160                         mem_cgroup_oom_synchronize(false);
4161         }
4162
4163         return ret;
4164 }
4165 EXPORT_SYMBOL_GPL(handle_mm_fault);
4166
4167 #ifndef __PAGETABLE_P4D_FOLDED
4168 /*
4169  * Allocate p4d page table.
4170  * We've already handled the fast-path in-line.
4171  */
4172 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4173 {
4174         p4d_t *new = p4d_alloc_one(mm, address);
4175         if (!new)
4176                 return -ENOMEM;
4177
4178         smp_wmb(); /* See comment in __pte_alloc */
4179
4180         spin_lock(&mm->page_table_lock);
4181         if (pgd_present(*pgd))          /* Another has populated it */
4182                 p4d_free(mm, new);
4183         else
4184                 pgd_populate(mm, pgd, new);
4185         spin_unlock(&mm->page_table_lock);
4186         return 0;
4187 }
4188 #endif /* __PAGETABLE_P4D_FOLDED */
4189
4190 #ifndef __PAGETABLE_PUD_FOLDED
4191 /*
4192  * Allocate page upper directory.
4193  * We've already handled the fast-path in-line.
4194  */
4195 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4196 {
4197         pud_t *new = pud_alloc_one(mm, address);
4198         if (!new)
4199                 return -ENOMEM;
4200
4201         smp_wmb(); /* See comment in __pte_alloc */
4202
4203         spin_lock(&mm->page_table_lock);
4204 #ifndef __ARCH_HAS_5LEVEL_HACK
4205         if (!p4d_present(*p4d)) {
4206                 mm_inc_nr_puds(mm);
4207                 p4d_populate(mm, p4d, new);
4208         } else  /* Another has populated it */
4209                 pud_free(mm, new);
4210 #else
4211         if (!pgd_present(*p4d)) {
4212                 mm_inc_nr_puds(mm);
4213                 pgd_populate(mm, p4d, new);
4214         } else  /* Another has populated it */
4215                 pud_free(mm, new);
4216 #endif /* __ARCH_HAS_5LEVEL_HACK */
4217         spin_unlock(&mm->page_table_lock);
4218         return 0;
4219 }
4220 #endif /* __PAGETABLE_PUD_FOLDED */
4221
4222 #ifndef __PAGETABLE_PMD_FOLDED
4223 /*
4224  * Allocate page middle directory.
4225  * We've already handled the fast-path in-line.
4226  */
4227 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4228 {
4229         spinlock_t *ptl;
4230         pmd_t *new = pmd_alloc_one(mm, address);
4231         if (!new)
4232                 return -ENOMEM;
4233
4234         smp_wmb(); /* See comment in __pte_alloc */
4235
4236         ptl = pud_lock(mm, pud);
4237 #ifndef __ARCH_HAS_4LEVEL_HACK
4238         if (!pud_present(*pud)) {
4239                 mm_inc_nr_pmds(mm);
4240                 pud_populate(mm, pud, new);
4241         } else  /* Another has populated it */
4242                 pmd_free(mm, new);
4243 #else
4244         if (!pgd_present(*pud)) {
4245                 mm_inc_nr_pmds(mm);
4246                 pgd_populate(mm, pud, new);
4247         } else /* Another has populated it */
4248                 pmd_free(mm, new);
4249 #endif /* __ARCH_HAS_4LEVEL_HACK */
4250         spin_unlock(ptl);
4251         return 0;
4252 }
4253 #endif /* __PAGETABLE_PMD_FOLDED */
4254
4255 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4256                             unsigned long *start, unsigned long *end,
4257                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4258 {
4259         pgd_t *pgd;
4260         p4d_t *p4d;
4261         pud_t *pud;
4262         pmd_t *pmd;
4263         pte_t *ptep;
4264
4265         pgd = pgd_offset(mm, address);
4266         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4267                 goto out;
4268
4269         p4d = p4d_offset(pgd, address);
4270         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4271                 goto out;
4272
4273         pud = pud_offset(p4d, address);
4274         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4275                 goto out;
4276
4277         pmd = pmd_offset(pud, address);
4278         VM_BUG_ON(pmd_trans_huge(*pmd));
4279
4280         if (pmd_huge(*pmd)) {
4281                 if (!pmdpp)
4282                         goto out;
4283
4284                 if (start && end) {
4285                         *start = address & PMD_MASK;
4286                         *end = *start + PMD_SIZE;
4287                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4288                 }
4289                 *ptlp = pmd_lock(mm, pmd);
4290                 if (pmd_huge(*pmd)) {
4291                         *pmdpp = pmd;
4292                         return 0;
4293                 }
4294                 spin_unlock(*ptlp);
4295                 if (start && end)
4296                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4297         }
4298
4299         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4300                 goto out;
4301
4302         if (start && end) {
4303                 *start = address & PAGE_MASK;
4304                 *end = *start + PAGE_SIZE;
4305                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4306         }
4307         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4308         if (!pte_present(*ptep))
4309                 goto unlock;
4310         *ptepp = ptep;
4311         return 0;
4312 unlock:
4313         pte_unmap_unlock(ptep, *ptlp);
4314         if (start && end)
4315                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4316 out:
4317         return -EINVAL;
4318 }
4319
4320 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4321                              pte_t **ptepp, spinlock_t **ptlp)
4322 {
4323         int res;
4324
4325         /* (void) is needed to make gcc happy */
4326         (void) __cond_lock(*ptlp,
4327                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4328                                                     ptepp, NULL, ptlp)));
4329         return res;
4330 }
4331
4332 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4333                              unsigned long *start, unsigned long *end,
4334                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4335 {
4336         int res;
4337
4338         /* (void) is needed to make gcc happy */
4339         (void) __cond_lock(*ptlp,
4340                            !(res = __follow_pte_pmd(mm, address, start, end,
4341                                                     ptepp, pmdpp, ptlp)));
4342         return res;
4343 }
4344 EXPORT_SYMBOL(follow_pte_pmd);
4345
4346 /**
4347  * follow_pfn - look up PFN at a user virtual address
4348  * @vma: memory mapping
4349  * @address: user virtual address
4350  * @pfn: location to store found PFN
4351  *
4352  * Only IO mappings and raw PFN mappings are allowed.
4353  *
4354  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4355  */
4356 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4357         unsigned long *pfn)
4358 {
4359         int ret = -EINVAL;
4360         spinlock_t *ptl;
4361         pte_t *ptep;
4362
4363         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4364                 return ret;
4365
4366         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4367         if (ret)
4368                 return ret;
4369         *pfn = pte_pfn(*ptep);
4370         pte_unmap_unlock(ptep, ptl);
4371         return 0;
4372 }
4373 EXPORT_SYMBOL(follow_pfn);
4374
4375 #ifdef CONFIG_HAVE_IOREMAP_PROT
4376 int follow_phys(struct vm_area_struct *vma,
4377                 unsigned long address, unsigned int flags,
4378                 unsigned long *prot, resource_size_t *phys)
4379 {
4380         int ret = -EINVAL;
4381         pte_t *ptep, pte;
4382         spinlock_t *ptl;
4383
4384         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4385                 goto out;
4386
4387         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4388                 goto out;
4389         pte = *ptep;
4390
4391         if ((flags & FOLL_WRITE) && !pte_write(pte))
4392                 goto unlock;
4393
4394         *prot = pgprot_val(pte_pgprot(pte));
4395         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4396
4397         ret = 0;
4398 unlock:
4399         pte_unmap_unlock(ptep, ptl);
4400 out:
4401         return ret;
4402 }
4403
4404 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4405                         void *buf, int len, int write)
4406 {
4407         resource_size_t phys_addr;
4408         unsigned long prot = 0;
4409         void __iomem *maddr;
4410         int offset = addr & (PAGE_SIZE-1);
4411
4412         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4413                 return -EINVAL;
4414
4415         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4416         if (!maddr)
4417                 return -ENOMEM;
4418
4419         if (write)
4420                 memcpy_toio(maddr + offset, buf, len);
4421         else
4422                 memcpy_fromio(buf, maddr + offset, len);
4423         iounmap(maddr);
4424
4425         return len;
4426 }
4427 EXPORT_SYMBOL_GPL(generic_access_phys);
4428 #endif
4429
4430 /*
4431  * Access another process' address space as given in mm.  If non-NULL, use the
4432  * given task for page fault accounting.
4433  */
4434 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4435                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4436 {
4437         struct vm_area_struct *vma;
4438         void *old_buf = buf;
4439         int write = gup_flags & FOLL_WRITE;
4440
4441         down_read(&mm->mmap_sem);
4442         /* ignore errors, just check how much was successfully transferred */
4443         while (len) {
4444                 int bytes, ret, offset;
4445                 void *maddr;
4446                 struct page *page = NULL;
4447
4448                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4449                                 gup_flags, &page, &vma, NULL);
4450                 if (ret <= 0) {
4451 #ifndef CONFIG_HAVE_IOREMAP_PROT
4452                         break;
4453 #else
4454                         /*
4455                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4456                          * we can access using slightly different code.
4457                          */
4458                         vma = find_vma(mm, addr);
4459                         if (!vma || vma->vm_start > addr)
4460                                 break;
4461                         if (vma->vm_ops && vma->vm_ops->access)
4462                                 ret = vma->vm_ops->access(vma, addr, buf,
4463                                                           len, write);
4464                         if (ret <= 0)
4465                                 break;
4466                         bytes = ret;
4467 #endif
4468                 } else {
4469                         bytes = len;
4470                         offset = addr & (PAGE_SIZE-1);
4471                         if (bytes > PAGE_SIZE-offset)
4472                                 bytes = PAGE_SIZE-offset;
4473
4474                         maddr = kmap(page);
4475                         if (write) {
4476                                 copy_to_user_page(vma, page, addr,
4477                                                   maddr + offset, buf, bytes);
4478                                 set_page_dirty_lock(page);
4479                         } else {
4480                                 copy_from_user_page(vma, page, addr,
4481                                                     buf, maddr + offset, bytes);
4482                         }
4483                         kunmap(page);
4484                         put_page(page);
4485                 }
4486                 len -= bytes;
4487                 buf += bytes;
4488                 addr += bytes;
4489         }
4490         up_read(&mm->mmap_sem);
4491
4492         return buf - old_buf;
4493 }
4494
4495 /**
4496  * access_remote_vm - access another process' address space
4497  * @mm:         the mm_struct of the target address space
4498  * @addr:       start address to access
4499  * @buf:        source or destination buffer
4500  * @len:        number of bytes to transfer
4501  * @gup_flags:  flags modifying lookup behaviour
4502  *
4503  * The caller must hold a reference on @mm.
4504  */
4505 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4506                 void *buf, int len, unsigned int gup_flags)
4507 {
4508         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4509 }
4510
4511 /*
4512  * Access another process' address space.
4513  * Source/target buffer must be kernel space,
4514  * Do not walk the page table directly, use get_user_pages
4515  */
4516 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4517                 void *buf, int len, unsigned int gup_flags)
4518 {
4519         struct mm_struct *mm;
4520         int ret;
4521
4522         mm = get_task_mm(tsk);
4523         if (!mm)
4524                 return 0;
4525
4526         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4527
4528         mmput(mm);
4529
4530         return ret;
4531 }
4532 EXPORT_SYMBOL_GPL(access_process_vm);
4533
4534 /*
4535  * Print the name of a VMA.
4536  */
4537 void print_vma_addr(char *prefix, unsigned long ip)
4538 {
4539         struct mm_struct *mm = current->mm;
4540         struct vm_area_struct *vma;
4541
4542         /*
4543          * we might be running from an atomic context so we cannot sleep
4544          */
4545         if (!down_read_trylock(&mm->mmap_sem))
4546                 return;
4547
4548         vma = find_vma(mm, ip);
4549         if (vma && vma->vm_file) {
4550                 struct file *f = vma->vm_file;
4551                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4552                 if (buf) {
4553                         char *p;
4554
4555                         p = file_path(f, buf, PAGE_SIZE);
4556                         if (IS_ERR(p))
4557                                 p = "?";
4558                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4559                                         vma->vm_start,
4560                                         vma->vm_end - vma->vm_start);
4561                         free_page((unsigned long)buf);
4562                 }
4563         }
4564         up_read(&mm->mmap_sem);
4565 }
4566
4567 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568 void __might_fault(const char *file, int line)
4569 {
4570         /*
4571          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4572          * holding the mmap_sem, this is safe because kernel memory doesn't
4573          * get paged out, therefore we'll never actually fault, and the
4574          * below annotations will generate false positives.
4575          */
4576         if (uaccess_kernel())
4577                 return;
4578         if (pagefault_disabled())
4579                 return;
4580         __might_sleep(file, line, 0);
4581 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4582         if (current->mm)
4583                 might_lock_read(&current->mm->mmap_sem);
4584 #endif
4585 }
4586 EXPORT_SYMBOL(__might_fault);
4587 #endif
4588
4589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4590 /*
4591  * Process all subpages of the specified huge page with the specified
4592  * operation.  The target subpage will be processed last to keep its
4593  * cache lines hot.
4594  */
4595 static inline void process_huge_page(
4596         unsigned long addr_hint, unsigned int pages_per_huge_page,
4597         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4598         void *arg)
4599 {
4600         int i, n, base, l;
4601         unsigned long addr = addr_hint &
4602                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4603
4604         /* Process target subpage last to keep its cache lines hot */
4605         might_sleep();
4606         n = (addr_hint - addr) / PAGE_SIZE;
4607         if (2 * n <= pages_per_huge_page) {
4608                 /* If target subpage in first half of huge page */
4609                 base = 0;
4610                 l = n;
4611                 /* Process subpages at the end of huge page */
4612                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4613                         cond_resched();
4614                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4615                 }
4616         } else {
4617                 /* If target subpage in second half of huge page */
4618                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4619                 l = pages_per_huge_page - n;
4620                 /* Process subpages at the begin of huge page */
4621                 for (i = 0; i < base; i++) {
4622                         cond_resched();
4623                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4624                 }
4625         }
4626         /*
4627          * Process remaining subpages in left-right-left-right pattern
4628          * towards the target subpage
4629          */
4630         for (i = 0; i < l; i++) {
4631                 int left_idx = base + i;
4632                 int right_idx = base + 2 * l - 1 - i;
4633
4634                 cond_resched();
4635                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4636                 cond_resched();
4637                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4638         }
4639 }
4640
4641 static void clear_gigantic_page(struct page *page,
4642                                 unsigned long addr,
4643                                 unsigned int pages_per_huge_page)
4644 {
4645         int i;
4646         struct page *p = page;
4647
4648         might_sleep();
4649         for (i = 0; i < pages_per_huge_page;
4650              i++, p = mem_map_next(p, page, i)) {
4651                 cond_resched();
4652                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4653         }
4654 }
4655
4656 static void clear_subpage(unsigned long addr, int idx, void *arg)
4657 {
4658         struct page *page = arg;
4659
4660         clear_user_highpage(page + idx, addr);
4661 }
4662
4663 void clear_huge_page(struct page *page,
4664                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4665 {
4666         unsigned long addr = addr_hint &
4667                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4668
4669         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4670                 clear_gigantic_page(page, addr, pages_per_huge_page);
4671                 return;
4672         }
4673
4674         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4675 }
4676
4677 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4678                                     unsigned long addr,
4679                                     struct vm_area_struct *vma,
4680                                     unsigned int pages_per_huge_page)
4681 {
4682         int i;
4683         struct page *dst_base = dst;
4684         struct page *src_base = src;
4685
4686         for (i = 0; i < pages_per_huge_page; ) {
4687                 cond_resched();
4688                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4689
4690                 i++;
4691                 dst = mem_map_next(dst, dst_base, i);
4692                 src = mem_map_next(src, src_base, i);
4693         }
4694 }
4695
4696 struct copy_subpage_arg {
4697         struct page *dst;
4698         struct page *src;
4699         struct vm_area_struct *vma;
4700 };
4701
4702 static void copy_subpage(unsigned long addr, int idx, void *arg)
4703 {
4704         struct copy_subpage_arg *copy_arg = arg;
4705
4706         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4707                            addr, copy_arg->vma);
4708 }
4709
4710 void copy_user_huge_page(struct page *dst, struct page *src,
4711                          unsigned long addr_hint, struct vm_area_struct *vma,
4712                          unsigned int pages_per_huge_page)
4713 {
4714         unsigned long addr = addr_hint &
4715                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4716         struct copy_subpage_arg arg = {
4717                 .dst = dst,
4718                 .src = src,
4719                 .vma = vma,
4720         };
4721
4722         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4723                 copy_user_gigantic_page(dst, src, addr, vma,
4724                                         pages_per_huge_page);
4725                 return;
4726         }
4727
4728         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4729 }
4730
4731 long copy_huge_page_from_user(struct page *dst_page,
4732                                 const void __user *usr_src,
4733                                 unsigned int pages_per_huge_page,
4734                                 bool allow_pagefault)
4735 {
4736         void *src = (void *)usr_src;
4737         void *page_kaddr;
4738         unsigned long i, rc = 0;
4739         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4740
4741         for (i = 0; i < pages_per_huge_page; i++) {
4742                 if (allow_pagefault)
4743                         page_kaddr = kmap(dst_page + i);
4744                 else
4745                         page_kaddr = kmap_atomic(dst_page + i);
4746                 rc = copy_from_user(page_kaddr,
4747                                 (const void __user *)(src + i * PAGE_SIZE),
4748                                 PAGE_SIZE);
4749                 if (allow_pagefault)
4750                         kunmap(dst_page + i);
4751                 else
4752                         kunmap_atomic(page_kaddr);
4753
4754                 ret_val -= (PAGE_SIZE - rc);
4755                 if (rc)
4756                         break;
4757
4758                 cond_resched();
4759         }
4760         return ret_val;
4761 }
4762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4763
4764 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4765
4766 static struct kmem_cache *page_ptl_cachep;
4767
4768 void __init ptlock_cache_init(void)
4769 {
4770         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4771                         SLAB_PANIC, NULL);
4772 }
4773
4774 bool ptlock_alloc(struct page *page)
4775 {
4776         spinlock_t *ptl;
4777
4778         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4779         if (!ptl)
4780                 return false;
4781         page->ptl = ptl;
4782         return true;
4783 }
4784
4785 void ptlock_free(struct page *page)
4786 {
4787         kmem_cache_free(page_ptl_cachep, page->ptl);
4788 }
4789 #endif