1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
67 #include "ras/ras_event.h"
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
71 int sysctl_memory_failure_recovery __read_mostly = 1;
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 static bool hw_memory_failure __read_mostly = false;
77 inline void num_poisoned_pages_inc(unsigned long pfn)
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
83 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85 atomic_long_sub(i, &num_poisoned_pages);
87 memblk_nr_poison_sub(pfn, i);
92 * 1: the page is dissolved (if needed) and taken off from buddy,
93 * 0: the page is dissolved (if needed) and not taken off from buddy,
94 * < 0: failed to dissolve.
96 static int __page_handle_poison(struct page *page)
100 zone_pcp_disable(page_zone(page));
101 ret = dissolve_free_huge_page(page);
103 ret = take_page_off_buddy(page);
104 zone_pcp_enable(page_zone(page));
109 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
111 if (hugepage_or_freepage) {
113 * Doing this check for free pages is also fine since dissolve_free_huge_page
114 * returns 0 for non-hugetlb pages as well.
116 if (__page_handle_poison(page) <= 0)
118 * We could fail to take off the target page from buddy
119 * for example due to racy page allocation, but that's
120 * acceptable because soft-offlined page is not broken
121 * and if someone really want to use it, they should
127 SetPageHWPoison(page);
131 num_poisoned_pages_inc(page_to_pfn(page));
136 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
138 u32 hwpoison_filter_enable = 0;
139 u32 hwpoison_filter_dev_major = ~0U;
140 u32 hwpoison_filter_dev_minor = ~0U;
141 u64 hwpoison_filter_flags_mask;
142 u64 hwpoison_filter_flags_value;
143 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
144 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
145 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
146 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
147 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
149 static int hwpoison_filter_dev(struct page *p)
151 struct address_space *mapping;
154 if (hwpoison_filter_dev_major == ~0U &&
155 hwpoison_filter_dev_minor == ~0U)
158 mapping = page_mapping(p);
159 if (mapping == NULL || mapping->host == NULL)
162 dev = mapping->host->i_sb->s_dev;
163 if (hwpoison_filter_dev_major != ~0U &&
164 hwpoison_filter_dev_major != MAJOR(dev))
166 if (hwpoison_filter_dev_minor != ~0U &&
167 hwpoison_filter_dev_minor != MINOR(dev))
173 static int hwpoison_filter_flags(struct page *p)
175 if (!hwpoison_filter_flags_mask)
178 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
179 hwpoison_filter_flags_value)
186 * This allows stress tests to limit test scope to a collection of tasks
187 * by putting them under some memcg. This prevents killing unrelated/important
188 * processes such as /sbin/init. Note that the target task may share clean
189 * pages with init (eg. libc text), which is harmless. If the target task
190 * share _dirty_ pages with another task B, the test scheme must make sure B
191 * is also included in the memcg. At last, due to race conditions this filter
192 * can only guarantee that the page either belongs to the memcg tasks, or is
196 u64 hwpoison_filter_memcg;
197 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
198 static int hwpoison_filter_task(struct page *p)
200 if (!hwpoison_filter_memcg)
203 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
209 static int hwpoison_filter_task(struct page *p) { return 0; }
212 int hwpoison_filter(struct page *p)
214 if (!hwpoison_filter_enable)
217 if (hwpoison_filter_dev(p))
220 if (hwpoison_filter_flags(p))
223 if (hwpoison_filter_task(p))
229 int hwpoison_filter(struct page *p)
235 EXPORT_SYMBOL_GPL(hwpoison_filter);
238 * Kill all processes that have a poisoned page mapped and then isolate
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
261 struct task_struct *tsk;
267 * Send all the processes who have the page mapped a signal.
268 * ``action optional'' if they are not immediately affected by the error
269 * ``action required'' if error happened in current execution context
271 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
273 struct task_struct *t = tk->tsk;
274 short addr_lsb = tk->size_shift;
277 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
278 pfn, t->comm, t->pid);
280 if ((flags & MF_ACTION_REQUIRED) && (t == current))
281 ret = force_sig_mceerr(BUS_MCEERR_AR,
282 (void __user *)tk->addr, addr_lsb);
285 * Signal other processes sharing the page if they have
287 * Don't use force here, it's convenient if the signal
288 * can be temporarily blocked.
289 * This could cause a loop when the user sets SIGBUS
290 * to SIG_IGN, but hopefully no one will do that?
292 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
295 pr_info("Error sending signal to %s:%d: %d\n",
296 t->comm, t->pid, ret);
301 * Unknown page type encountered. Try to check whether it can turn PageLRU by
304 void shake_page(struct page *p)
311 if (PageLRU(p) || is_free_buddy_page(p))
316 * TODO: Could shrink slab caches here if a lightweight range-based
317 * shrinker will be available.
320 EXPORT_SYMBOL_GPL(shake_page);
322 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
323 unsigned long address)
325 unsigned long ret = 0;
332 VM_BUG_ON_VMA(address == -EFAULT, vma);
333 pgd = pgd_offset(vma->vm_mm, address);
334 if (!pgd_present(*pgd))
336 p4d = p4d_offset(pgd, address);
337 if (!p4d_present(*p4d))
339 pud = pud_offset(p4d, address);
340 if (!pud_present(*pud))
342 if (pud_devmap(*pud))
344 pmd = pmd_offset(pud, address);
345 if (!pmd_present(*pmd))
347 if (pmd_devmap(*pmd))
349 pte = pte_offset_map(pmd, address);
350 if (pte_present(*pte) && pte_devmap(*pte))
357 * Failure handling: if we can't find or can't kill a process there's
358 * not much we can do. We just print a message and ignore otherwise.
361 #define FSDAX_INVALID_PGOFF ULONG_MAX
364 * Schedule a process for later kill.
365 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
367 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
368 * filesystem with a memory failure handler has claimed the
369 * memory_failure event. In all other cases, page->index and
370 * page->mapping are sufficient for mapping the page back to its
371 * corresponding user virtual address.
373 static void add_to_kill(struct task_struct *tsk, struct page *p,
374 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
375 struct list_head *to_kill)
379 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
381 pr_err("Out of memory while machine check handling\n");
385 tk->addr = page_address_in_vma(p, vma);
386 if (is_zone_device_page(p)) {
387 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
388 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
389 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
391 tk->size_shift = page_shift(compound_head(p));
394 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
395 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
396 * so "tk->size_shift == 0" effectively checks no mapping on
397 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
398 * to a process' address space, it's possible not all N VMAs
399 * contain mappings for the page, but at least one VMA does.
400 * Only deliver SIGBUS with payload derived from the VMA that
401 * has a mapping for the page.
403 if (tk->addr == -EFAULT) {
404 pr_info("Unable to find user space address %lx in %s\n",
405 page_to_pfn(p), tsk->comm);
406 } else if (tk->size_shift == 0) {
411 get_task_struct(tsk);
413 list_add_tail(&tk->nd, to_kill);
417 * Kill the processes that have been collected earlier.
419 * Only do anything when FORCEKILL is set, otherwise just free the
420 * list (this is used for clean pages which do not need killing)
421 * Also when FAIL is set do a force kill because something went
424 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
425 unsigned long pfn, int flags)
427 struct to_kill *tk, *next;
429 list_for_each_entry_safe(tk, next, to_kill, nd) {
432 * In case something went wrong with munmapping
433 * make sure the process doesn't catch the
434 * signal and then access the memory. Just kill it.
436 if (fail || tk->addr == -EFAULT) {
437 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
438 pfn, tk->tsk->comm, tk->tsk->pid);
439 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
440 tk->tsk, PIDTYPE_PID);
444 * In theory the process could have mapped
445 * something else on the address in-between. We could
446 * check for that, but we need to tell the
449 else if (kill_proc(tk, pfn, flags) < 0)
450 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
451 pfn, tk->tsk->comm, tk->tsk->pid);
454 put_task_struct(tk->tsk);
460 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
461 * on behalf of the thread group. Return task_struct of the (first found)
462 * dedicated thread if found, and return NULL otherwise.
464 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
465 * have to call rcu_read_lock/unlock() in this function.
467 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
469 struct task_struct *t;
471 for_each_thread(tsk, t) {
472 if (t->flags & PF_MCE_PROCESS) {
473 if (t->flags & PF_MCE_EARLY)
476 if (sysctl_memory_failure_early_kill)
484 * Determine whether a given process is "early kill" process which expects
485 * to be signaled when some page under the process is hwpoisoned.
486 * Return task_struct of the dedicated thread (main thread unless explicitly
487 * specified) if the process is "early kill" and otherwise returns NULL.
489 * Note that the above is true for Action Optional case. For Action Required
490 * case, it's only meaningful to the current thread which need to be signaled
491 * with SIGBUS, this error is Action Optional for other non current
492 * processes sharing the same error page,if the process is "early kill", the
493 * task_struct of the dedicated thread will also be returned.
495 static struct task_struct *task_early_kill(struct task_struct *tsk,
501 * Comparing ->mm here because current task might represent
502 * a subthread, while tsk always points to the main thread.
504 if (force_early && tsk->mm == current->mm)
507 return find_early_kill_thread(tsk);
511 * Collect processes when the error hit an anonymous page.
513 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
516 struct folio *folio = page_folio(page);
517 struct vm_area_struct *vma;
518 struct task_struct *tsk;
522 av = folio_lock_anon_vma_read(folio, NULL);
523 if (av == NULL) /* Not actually mapped anymore */
526 pgoff = page_to_pgoff(page);
527 read_lock(&tasklist_lock);
528 for_each_process (tsk) {
529 struct anon_vma_chain *vmac;
530 struct task_struct *t = task_early_kill(tsk, force_early);
534 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
537 if (vma->vm_mm != t->mm)
539 if (!page_mapped_in_vma(page, vma))
541 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
544 read_unlock(&tasklist_lock);
545 anon_vma_unlock_read(av);
549 * Collect processes when the error hit a file mapped page.
551 static void collect_procs_file(struct page *page, struct list_head *to_kill,
554 struct vm_area_struct *vma;
555 struct task_struct *tsk;
556 struct address_space *mapping = page->mapping;
559 i_mmap_lock_read(mapping);
560 read_lock(&tasklist_lock);
561 pgoff = page_to_pgoff(page);
562 for_each_process(tsk) {
563 struct task_struct *t = task_early_kill(tsk, force_early);
567 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
570 * Send early kill signal to tasks where a vma covers
571 * the page but the corrupted page is not necessarily
572 * mapped it in its pte.
573 * Assume applications who requested early kill want
574 * to be informed of all such data corruptions.
576 if (vma->vm_mm == t->mm)
577 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
581 read_unlock(&tasklist_lock);
582 i_mmap_unlock_read(mapping);
587 * Collect processes when the error hit a fsdax page.
589 static void collect_procs_fsdax(struct page *page,
590 struct address_space *mapping, pgoff_t pgoff,
591 struct list_head *to_kill)
593 struct vm_area_struct *vma;
594 struct task_struct *tsk;
596 i_mmap_lock_read(mapping);
597 read_lock(&tasklist_lock);
598 for_each_process(tsk) {
599 struct task_struct *t = task_early_kill(tsk, true);
603 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
604 if (vma->vm_mm == t->mm)
605 add_to_kill(t, page, pgoff, vma, to_kill);
608 read_unlock(&tasklist_lock);
609 i_mmap_unlock_read(mapping);
611 #endif /* CONFIG_FS_DAX */
614 * Collect the processes who have the corrupted page mapped to kill.
616 static void collect_procs(struct page *page, struct list_head *tokill,
623 collect_procs_anon(page, tokill, force_early);
625 collect_procs_file(page, tokill, force_early);
634 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
637 tk->size_shift = shift;
640 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
641 unsigned long poisoned_pfn, struct to_kill *tk)
643 unsigned long pfn = 0;
645 if (pte_present(pte)) {
648 swp_entry_t swp = pte_to_swp_entry(pte);
650 if (is_hwpoison_entry(swp))
651 pfn = swp_offset_pfn(swp);
654 if (!pfn || pfn != poisoned_pfn)
657 set_to_kill(tk, addr, shift);
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
663 struct hwp_walk *hwp)
667 unsigned long hwpoison_vaddr;
669 if (!pmd_present(pmd))
672 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
673 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
674 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
680 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
681 struct hwp_walk *hwp)
687 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
688 unsigned long end, struct mm_walk *walk)
690 struct hwp_walk *hwp = walk->private;
692 pte_t *ptep, *mapped_pte;
695 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
697 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
702 if (pmd_trans_unstable(pmdp))
705 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
707 for (; addr != end; ptep++, addr += PAGE_SIZE) {
708 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
713 pte_unmap_unlock(mapped_pte, ptl);
719 #ifdef CONFIG_HUGETLB_PAGE
720 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
721 unsigned long addr, unsigned long end,
722 struct mm_walk *walk)
724 struct hwp_walk *hwp = walk->private;
725 pte_t pte = huge_ptep_get(ptep);
726 struct hstate *h = hstate_vma(walk->vma);
728 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
732 #define hwpoison_hugetlb_range NULL
735 static const struct mm_walk_ops hwp_walk_ops = {
736 .pmd_entry = hwpoison_pte_range,
737 .hugetlb_entry = hwpoison_hugetlb_range,
741 * Sends SIGBUS to the current process with error info.
743 * This function is intended to handle "Action Required" MCEs on already
744 * hardware poisoned pages. They could happen, for example, when
745 * memory_failure() failed to unmap the error page at the first call, or
746 * when multiple local machine checks happened on different CPUs.
748 * MCE handler currently has no easy access to the error virtual address,
749 * so this function walks page table to find it. The returned virtual address
750 * is proper in most cases, but it could be wrong when the application
751 * process has multiple entries mapping the error page.
753 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
757 struct hwp_walk priv = {
765 mmap_read_lock(p->mm);
766 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
768 if (ret == 1 && priv.tk.addr)
769 kill_proc(&priv.tk, pfn, flags);
772 mmap_read_unlock(p->mm);
773 return ret > 0 ? -EHWPOISON : -EFAULT;
776 static const char *action_name[] = {
777 [MF_IGNORED] = "Ignored",
778 [MF_FAILED] = "Failed",
779 [MF_DELAYED] = "Delayed",
780 [MF_RECOVERED] = "Recovered",
783 static const char * const action_page_types[] = {
784 [MF_MSG_KERNEL] = "reserved kernel page",
785 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
786 [MF_MSG_SLAB] = "kernel slab page",
787 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
788 [MF_MSG_HUGE] = "huge page",
789 [MF_MSG_FREE_HUGE] = "free huge page",
790 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
791 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
792 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
793 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
794 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
795 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
796 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
797 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
798 [MF_MSG_CLEAN_LRU] = "clean LRU page",
799 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
800 [MF_MSG_BUDDY] = "free buddy page",
801 [MF_MSG_DAX] = "dax page",
802 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
803 [MF_MSG_UNKNOWN] = "unknown page",
807 * XXX: It is possible that a page is isolated from LRU cache,
808 * and then kept in swap cache or failed to remove from page cache.
809 * The page count will stop it from being freed by unpoison.
810 * Stress tests should be aware of this memory leak problem.
812 static int delete_from_lru_cache(struct page *p)
814 if (!isolate_lru_page(p)) {
816 * Clear sensible page flags, so that the buddy system won't
817 * complain when the page is unpoison-and-freed.
820 ClearPageUnevictable(p);
823 * Poisoned page might never drop its ref count to 0 so we have
824 * to uncharge it manually from its memcg.
826 mem_cgroup_uncharge(page_folio(p));
829 * drop the page count elevated by isolate_lru_page()
837 static int truncate_error_page(struct page *p, unsigned long pfn,
838 struct address_space *mapping)
842 if (mapping->a_ops->error_remove_page) {
843 struct folio *folio = page_folio(p);
844 int err = mapping->a_ops->error_remove_page(mapping, p);
847 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
848 } else if (folio_has_private(folio) &&
849 !filemap_release_folio(folio, GFP_NOIO)) {
850 pr_info("%#lx: failed to release buffers\n", pfn);
856 * If the file system doesn't support it just invalidate
857 * This fails on dirty or anything with private pages
859 if (invalidate_inode_page(p))
862 pr_info("%#lx: Failed to invalidate\n", pfn);
871 enum mf_action_page_type type;
873 /* Callback ->action() has to unlock the relevant page inside it. */
874 int (*action)(struct page_state *ps, struct page *p);
878 * Return true if page is still referenced by others, otherwise return
881 * The extra_pins is true when one extra refcount is expected.
883 static bool has_extra_refcount(struct page_state *ps, struct page *p,
886 int count = page_count(p) - 1;
892 pr_err("%#lx: %s still referenced by %d users\n",
893 page_to_pfn(p), action_page_types[ps->type], count);
901 * Error hit kernel page.
902 * Do nothing, try to be lucky and not touch this instead. For a few cases we
903 * could be more sophisticated.
905 static int me_kernel(struct page_state *ps, struct page *p)
912 * Page in unknown state. Do nothing.
914 static int me_unknown(struct page_state *ps, struct page *p)
916 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
922 * Clean (or cleaned) page cache page.
924 static int me_pagecache_clean(struct page_state *ps, struct page *p)
927 struct address_space *mapping;
930 delete_from_lru_cache(p);
933 * For anonymous pages we're done the only reference left
934 * should be the one m_f() holds.
942 * Now truncate the page in the page cache. This is really
943 * more like a "temporary hole punch"
944 * Don't do this for block devices when someone else
945 * has a reference, because it could be file system metadata
946 * and that's not safe to truncate.
948 mapping = page_mapping(p);
951 * Page has been teared down in the meanwhile
958 * The shmem page is kept in page cache instead of truncating
959 * so is expected to have an extra refcount after error-handling.
961 extra_pins = shmem_mapping(mapping);
964 * Truncation is a bit tricky. Enable it per file system for now.
966 * Open: to take i_rwsem or not for this? Right now we don't.
968 ret = truncate_error_page(p, page_to_pfn(p), mapping);
969 if (has_extra_refcount(ps, p, extra_pins))
979 * Dirty pagecache page
980 * Issues: when the error hit a hole page the error is not properly
983 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
985 struct address_space *mapping = page_mapping(p);
988 /* TBD: print more information about the file. */
991 * IO error will be reported by write(), fsync(), etc.
992 * who check the mapping.
993 * This way the application knows that something went
994 * wrong with its dirty file data.
996 * There's one open issue:
998 * The EIO will be only reported on the next IO
999 * operation and then cleared through the IO map.
1000 * Normally Linux has two mechanisms to pass IO error
1001 * first through the AS_EIO flag in the address space
1002 * and then through the PageError flag in the page.
1003 * Since we drop pages on memory failure handling the
1004 * only mechanism open to use is through AS_AIO.
1006 * This has the disadvantage that it gets cleared on
1007 * the first operation that returns an error, while
1008 * the PageError bit is more sticky and only cleared
1009 * when the page is reread or dropped. If an
1010 * application assumes it will always get error on
1011 * fsync, but does other operations on the fd before
1012 * and the page is dropped between then the error
1013 * will not be properly reported.
1015 * This can already happen even without hwpoisoned
1016 * pages: first on metadata IO errors (which only
1017 * report through AS_EIO) or when the page is dropped
1018 * at the wrong time.
1020 * So right now we assume that the application DTRT on
1021 * the first EIO, but we're not worse than other parts
1024 mapping_set_error(mapping, -EIO);
1027 return me_pagecache_clean(ps, p);
1031 * Clean and dirty swap cache.
1033 * Dirty swap cache page is tricky to handle. The page could live both in page
1034 * cache and swap cache(ie. page is freshly swapped in). So it could be
1035 * referenced concurrently by 2 types of PTEs:
1036 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1037 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1039 * - clear dirty bit to prevent IO
1041 * - but keep in the swap cache, so that when we return to it on
1042 * a later page fault, we know the application is accessing
1043 * corrupted data and shall be killed (we installed simple
1044 * interception code in do_swap_page to catch it).
1046 * Clean swap cache pages can be directly isolated. A later page fault will
1047 * bring in the known good data from disk.
1049 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1052 bool extra_pins = false;
1055 /* Trigger EIO in shmem: */
1056 ClearPageUptodate(p);
1058 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1061 if (ret == MF_DELAYED)
1064 if (has_extra_refcount(ps, p, extra_pins))
1070 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1072 struct folio *folio = page_folio(p);
1075 delete_from_swap_cache(folio);
1077 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1078 folio_unlock(folio);
1080 if (has_extra_refcount(ps, p, false))
1087 * Huge pages. Needs work.
1089 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1090 * To narrow down kill region to one page, we need to break up pmd.
1092 static int me_huge_page(struct page_state *ps, struct page *p)
1095 struct page *hpage = compound_head(p);
1096 struct address_space *mapping;
1097 bool extra_pins = false;
1099 if (!PageHuge(hpage))
1102 mapping = page_mapping(hpage);
1104 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1105 /* The page is kept in page cache. */
1111 * migration entry prevents later access on error hugepage,
1112 * so we can free and dissolve it into buddy to save healthy
1116 if (__page_handle_poison(p) >= 0) {
1124 if (has_extra_refcount(ps, p, extra_pins))
1131 * Various page states we can handle.
1133 * A page state is defined by its current page->flags bits.
1134 * The table matches them in order and calls the right handler.
1136 * This is quite tricky because we can access page at any time
1137 * in its live cycle, so all accesses have to be extremely careful.
1139 * This is not complete. More states could be added.
1140 * For any missing state don't attempt recovery.
1143 #define dirty (1UL << PG_dirty)
1144 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1145 #define unevict (1UL << PG_unevictable)
1146 #define mlock (1UL << PG_mlocked)
1147 #define lru (1UL << PG_lru)
1148 #define head (1UL << PG_head)
1149 #define slab (1UL << PG_slab)
1150 #define reserved (1UL << PG_reserved)
1152 static struct page_state error_states[] = {
1153 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1155 * free pages are specially detected outside this table:
1156 * PG_buddy pages only make a small fraction of all free pages.
1160 * Could in theory check if slab page is free or if we can drop
1161 * currently unused objects without touching them. But just
1162 * treat it as standard kernel for now.
1164 { slab, slab, MF_MSG_SLAB, me_kernel },
1166 { head, head, MF_MSG_HUGE, me_huge_page },
1168 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1169 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1171 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1172 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1174 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1175 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1177 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1178 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1181 * Catchall entry: must be at end.
1183 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1196 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1197 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1199 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1200 enum mf_result result)
1202 trace_memory_failure_event(pfn, type, result);
1204 num_poisoned_pages_inc(pfn);
1205 pr_err("%#lx: recovery action for %s: %s\n",
1206 pfn, action_page_types[type], action_name[result]);
1208 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1211 static int page_action(struct page_state *ps, struct page *p,
1216 /* page p should be unlocked after returning from ps->action(). */
1217 result = ps->action(ps, p);
1219 /* Could do more checks here if page looks ok */
1221 * Could adjust zone counters here to correct for the missing page.
1224 return action_result(pfn, ps->type, result);
1227 static inline bool PageHWPoisonTakenOff(struct page *page)
1229 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1232 void SetPageHWPoisonTakenOff(struct page *page)
1234 set_page_private(page, MAGIC_HWPOISON);
1237 void ClearPageHWPoisonTakenOff(struct page *page)
1239 if (PageHWPoison(page))
1240 set_page_private(page, 0);
1244 * Return true if a page type of a given page is supported by hwpoison
1245 * mechanism (while handling could fail), otherwise false. This function
1246 * does not return true for hugetlb or device memory pages, so it's assumed
1247 * to be called only in the context where we never have such pages.
1249 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1251 /* Soft offline could migrate non-LRU movable pages */
1252 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1255 return PageLRU(page) || is_free_buddy_page(page);
1258 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1260 struct page *head = compound_head(page);
1262 bool hugetlb = false;
1264 ret = get_hwpoison_huge_page(head, &hugetlb, false);
1269 * This check prevents from calling get_page_unless_zero() for any
1270 * unsupported type of page in order to reduce the risk of unexpected
1271 * races caused by taking a page refcount.
1273 if (!HWPoisonHandlable(head, flags))
1276 if (get_page_unless_zero(head)) {
1277 if (head == compound_head(page))
1280 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1287 static int get_any_page(struct page *p, unsigned long flags)
1289 int ret = 0, pass = 0;
1290 bool count_increased = false;
1292 if (flags & MF_COUNT_INCREASED)
1293 count_increased = true;
1296 if (!count_increased) {
1297 ret = __get_hwpoison_page(p, flags);
1299 if (page_count(p)) {
1300 /* We raced with an allocation, retry. */
1304 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1305 /* We raced with put_page, retry. */
1311 } else if (ret == -EBUSY) {
1313 * We raced with (possibly temporary) unhandlable
1325 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1329 * A page we cannot handle. Check whether we can turn
1330 * it into something we can handle.
1335 count_increased = false;
1343 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1348 static int __get_unpoison_page(struct page *page)
1350 struct page *head = compound_head(page);
1352 bool hugetlb = false;
1354 ret = get_hwpoison_huge_page(head, &hugetlb, true);
1359 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1360 * but also isolated from buddy freelist, so need to identify the
1361 * state and have to cancel both operations to unpoison.
1363 if (PageHWPoisonTakenOff(page))
1366 return get_page_unless_zero(page) ? 1 : 0;
1370 * get_hwpoison_page() - Get refcount for memory error handling
1371 * @p: Raw error page (hit by memory error)
1372 * @flags: Flags controlling behavior of error handling
1374 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1375 * error on it, after checking that the error page is in a well-defined state
1376 * (defined as a page-type we can successfully handle the memory error on it,
1377 * such as LRU page and hugetlb page).
1379 * Memory error handling could be triggered at any time on any type of page,
1380 * so it's prone to race with typical memory management lifecycle (like
1381 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1382 * extra care for the error page's state (as done in __get_hwpoison_page()),
1383 * and has some retry logic in get_any_page().
1385 * When called from unpoison_memory(), the caller should already ensure that
1386 * the given page has PG_hwpoison. So it's never reused for other page
1387 * allocations, and __get_unpoison_page() never races with them.
1389 * Return: 0 on failure,
1390 * 1 on success for in-use pages in a well-defined state,
1391 * -EIO for pages on which we can not handle memory errors,
1392 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1393 * operations like allocation and free,
1394 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1396 static int get_hwpoison_page(struct page *p, unsigned long flags)
1400 zone_pcp_disable(page_zone(p));
1401 if (flags & MF_UNPOISON)
1402 ret = __get_unpoison_page(p);
1404 ret = get_any_page(p, flags);
1405 zone_pcp_enable(page_zone(p));
1411 * Do all that is necessary to remove user space mappings. Unmap
1412 * the pages and send SIGBUS to the processes if the data was dirty.
1414 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1415 int flags, struct page *hpage)
1417 struct folio *folio = page_folio(hpage);
1418 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1419 struct address_space *mapping;
1423 bool mlocked = PageMlocked(hpage);
1426 * Here we are interested only in user-mapped pages, so skip any
1427 * other types of pages.
1429 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1431 if (!(PageLRU(hpage) || PageHuge(p)))
1435 * This check implies we don't kill processes if their pages
1436 * are in the swap cache early. Those are always late kills.
1438 if (!page_mapped(hpage))
1442 pr_err("%#lx: can't handle KSM pages.\n", pfn);
1446 if (PageSwapCache(p)) {
1447 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1448 ttu |= TTU_IGNORE_HWPOISON;
1452 * Propagate the dirty bit from PTEs to struct page first, because we
1453 * need this to decide if we should kill or just drop the page.
1454 * XXX: the dirty test could be racy: set_page_dirty() may not always
1455 * be called inside page lock (it's recommended but not enforced).
1457 mapping = page_mapping(hpage);
1458 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1459 mapping_can_writeback(mapping)) {
1460 if (page_mkclean(hpage)) {
1461 SetPageDirty(hpage);
1463 ttu |= TTU_IGNORE_HWPOISON;
1464 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1470 * First collect all the processes that have the page
1471 * mapped in dirty form. This has to be done before try_to_unmap,
1472 * because ttu takes the rmap data structures down.
1474 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1476 if (PageHuge(hpage) && !PageAnon(hpage)) {
1478 * For hugetlb pages in shared mappings, try_to_unmap
1479 * could potentially call huge_pmd_unshare. Because of
1480 * this, take semaphore in write mode here and set
1481 * TTU_RMAP_LOCKED to indicate we have taken the lock
1482 * at this higher level.
1484 mapping = hugetlb_page_mapping_lock_write(hpage);
1486 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1487 i_mmap_unlock_write(mapping);
1489 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1491 try_to_unmap(folio, ttu);
1494 unmap_success = !page_mapped(hpage);
1496 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1497 pfn, page_mapcount(hpage));
1500 * try_to_unmap() might put mlocked page in lru cache, so call
1501 * shake_page() again to ensure that it's flushed.
1507 * Now that the dirty bit has been propagated to the
1508 * struct page and all unmaps done we can decide if
1509 * killing is needed or not. Only kill when the page
1510 * was dirty or the process is not restartable,
1511 * otherwise the tokill list is merely
1512 * freed. When there was a problem unmapping earlier
1513 * use a more force-full uncatchable kill to prevent
1514 * any accesses to the poisoned memory.
1516 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1518 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1520 return unmap_success;
1523 static int identify_page_state(unsigned long pfn, struct page *p,
1524 unsigned long page_flags)
1526 struct page_state *ps;
1529 * The first check uses the current page flags which may not have any
1530 * relevant information. The second check with the saved page flags is
1531 * carried out only if the first check can't determine the page status.
1533 for (ps = error_states;; ps++)
1534 if ((p->flags & ps->mask) == ps->res)
1537 page_flags |= (p->flags & (1UL << PG_dirty));
1540 for (ps = error_states;; ps++)
1541 if ((page_flags & ps->mask) == ps->res)
1543 return page_action(ps, p, pfn);
1546 static int try_to_split_thp_page(struct page *page)
1551 ret = split_huge_page(page);
1560 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1561 struct address_space *mapping, pgoff_t index, int flags)
1564 unsigned long size = 0;
1566 list_for_each_entry(tk, to_kill, nd)
1568 size = max(size, 1UL << tk->size_shift);
1572 * Unmap the largest mapping to avoid breaking up device-dax
1573 * mappings which are constant size. The actual size of the
1574 * mapping being torn down is communicated in siginfo, see
1577 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1579 unmap_mapping_range(mapping, start, size, 0);
1582 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1585 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1586 struct dev_pagemap *pgmap)
1588 struct page *page = pfn_to_page(pfn);
1594 * Pages instantiated by device-dax (not filesystem-dax)
1595 * may be compound pages.
1597 page = compound_head(page);
1600 * Prevent the inode from being freed while we are interrogating
1601 * the address_space, typically this would be handled by
1602 * lock_page(), but dax pages do not use the page lock. This
1603 * also prevents changes to the mapping of this pfn until
1604 * poison signaling is complete.
1606 cookie = dax_lock_page(page);
1610 if (hwpoison_filter(page)) {
1615 switch (pgmap->type) {
1616 case MEMORY_DEVICE_PRIVATE:
1617 case MEMORY_DEVICE_COHERENT:
1619 * TODO: Handle device pages which may need coordination
1620 * with device-side memory.
1629 * Use this flag as an indication that the dax page has been
1630 * remapped UC to prevent speculative consumption of poison.
1632 SetPageHWPoison(page);
1635 * Unlike System-RAM there is no possibility to swap in a
1636 * different physical page at a given virtual address, so all
1637 * userspace consumption of ZONE_DEVICE memory necessitates
1638 * SIGBUS (i.e. MF_MUST_KILL)
1640 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1641 collect_procs(page, &to_kill, true);
1643 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1645 dax_unlock_page(page, cookie);
1649 #ifdef CONFIG_FS_DAX
1651 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1652 * @mapping: address_space of the file in use
1653 * @index: start pgoff of the range within the file
1654 * @count: length of the range, in unit of PAGE_SIZE
1655 * @mf_flags: memory failure flags
1657 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1658 unsigned long count, int mf_flags)
1663 size_t end = index + count;
1665 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1667 for (; index < end; index++) {
1669 cookie = dax_lock_mapping_entry(mapping, index, &page);
1675 SetPageHWPoison(page);
1677 collect_procs_fsdax(page, mapping, index, &to_kill);
1678 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1681 dax_unlock_mapping_entry(mapping, index, cookie);
1685 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1686 #endif /* CONFIG_FS_DAX */
1688 #ifdef CONFIG_HUGETLB_PAGE
1690 * Struct raw_hwp_page represents information about "raw error page",
1691 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1693 struct raw_hwp_page {
1694 struct llist_node node;
1698 static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1700 return (struct llist_head *)&page_folio(hpage)->_hugetlb_hwpoison;
1703 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1705 struct llist_head *head;
1706 struct llist_node *t, *tnode;
1707 unsigned long count = 0;
1709 head = raw_hwp_list_head(hpage);
1710 llist_for_each_safe(tnode, t, head->first) {
1711 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1714 SetPageHWPoison(p->page);
1716 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1720 llist_del_all(head);
1724 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1726 struct llist_head *head;
1727 struct raw_hwp_page *raw_hwp;
1728 struct llist_node *t, *tnode;
1729 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1732 * Once the hwpoison hugepage has lost reliable raw error info,
1733 * there is little meaning to keep additional error info precisely,
1734 * so skip to add additional raw error info.
1736 if (HPageRawHwpUnreliable(hpage))
1738 head = raw_hwp_list_head(hpage);
1739 llist_for_each_safe(tnode, t, head->first) {
1740 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1742 if (p->page == page)
1746 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1748 raw_hwp->page = page;
1749 llist_add(&raw_hwp->node, head);
1750 /* the first error event will be counted in action_result(). */
1752 num_poisoned_pages_inc(page_to_pfn(page));
1755 * Failed to save raw error info. We no longer trace all
1756 * hwpoisoned subpages, and we need refuse to free/dissolve
1757 * this hwpoisoned hugepage.
1759 SetHPageRawHwpUnreliable(hpage);
1761 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1762 * used any more, so free it.
1764 __free_raw_hwp_pages(hpage, false);
1769 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1772 * HPageVmemmapOptimized hugepages can't be freed because struct
1773 * pages for tail pages are required but they don't exist.
1775 if (move_flag && HPageVmemmapOptimized(hpage))
1779 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1782 if (HPageRawHwpUnreliable(hpage))
1785 return __free_raw_hwp_pages(hpage, move_flag);
1788 void hugetlb_clear_page_hwpoison(struct page *hpage)
1790 if (HPageRawHwpUnreliable(hpage))
1792 ClearPageHWPoison(hpage);
1793 free_raw_hwp_pages(hpage, true);
1797 * Called from hugetlb code with hugetlb_lock held.
1801 * 1 - in-use hugepage
1802 * 2 - not a hugepage
1803 * -EBUSY - the hugepage is busy (try to retry)
1804 * -EHWPOISON - the hugepage is already hwpoisoned
1806 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1807 bool *migratable_cleared)
1809 struct page *page = pfn_to_page(pfn);
1810 struct page *head = compound_head(page);
1811 int ret = 2; /* fallback to normal page handling */
1812 bool count_increased = false;
1814 if (!PageHeadHuge(head))
1817 if (flags & MF_COUNT_INCREASED) {
1819 count_increased = true;
1820 } else if (HPageFreed(head)) {
1822 } else if (HPageMigratable(head)) {
1823 ret = get_page_unless_zero(head);
1825 count_increased = true;
1828 if (!(flags & MF_NO_RETRY))
1832 if (hugetlb_set_page_hwpoison(head, page)) {
1838 * Clearing HPageMigratable for hwpoisoned hugepages to prevent them
1839 * from being migrated by memory hotremove.
1841 if (count_increased && HPageMigratable(head)) {
1842 ClearHPageMigratable(head);
1843 *migratable_cleared = true;
1848 if (count_increased)
1854 * Taking refcount of hugetlb pages needs extra care about race conditions
1855 * with basic operations like hugepage allocation/free/demotion.
1856 * So some of prechecks for hwpoison (pinning, and testing/setting
1857 * PageHWPoison) should be done in single hugetlb_lock range.
1859 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1862 struct page *p = pfn_to_page(pfn);
1864 unsigned long page_flags;
1865 bool migratable_cleared = false;
1869 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1870 if (res == 2) { /* fallback to normal page handling */
1873 } else if (res == -EHWPOISON) {
1874 pr_err("%#lx: already hardware poisoned\n", pfn);
1875 if (flags & MF_ACTION_REQUIRED) {
1876 head = compound_head(p);
1877 res = kill_accessing_process(current, page_to_pfn(head), flags);
1880 } else if (res == -EBUSY) {
1881 if (!(flags & MF_NO_RETRY)) {
1882 flags |= MF_NO_RETRY;
1885 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1888 head = compound_head(p);
1891 if (hwpoison_filter(p)) {
1892 hugetlb_clear_page_hwpoison(head);
1893 if (migratable_cleared)
1894 SetHPageMigratable(head);
1902 * Handling free hugepage. The possible race with hugepage allocation
1903 * or demotion can be prevented by PageHWPoison flag.
1907 if (__page_handle_poison(p) >= 0) {
1913 return action_result(pfn, MF_MSG_FREE_HUGE, res);
1916 page_flags = head->flags;
1918 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1920 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1923 return identify_page_state(pfn, p, page_flags);
1927 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1932 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1936 #endif /* CONFIG_HUGETLB_PAGE */
1938 /* Drop the extra refcount in case we come from madvise() */
1939 static void put_ref_page(unsigned long pfn, int flags)
1943 if (!(flags & MF_COUNT_INCREASED))
1946 page = pfn_to_page(pfn);
1951 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1952 struct dev_pagemap *pgmap)
1956 put_ref_page(pfn, flags);
1958 /* device metadata space is not recoverable */
1959 if (!pgmap_pfn_valid(pgmap, pfn))
1963 * Call driver's implementation to handle the memory failure, otherwise
1964 * fall back to generic handler.
1966 if (pgmap_has_memory_failure(pgmap)) {
1967 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1969 * Fall back to generic handler too if operation is not
1970 * supported inside the driver/device/filesystem.
1972 if (rc != -EOPNOTSUPP)
1976 rc = mf_generic_kill_procs(pfn, flags, pgmap);
1978 /* drop pgmap ref acquired in caller */
1979 put_dev_pagemap(pgmap);
1980 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1984 static DEFINE_MUTEX(mf_mutex);
1987 * memory_failure - Handle memory failure of a page.
1988 * @pfn: Page Number of the corrupted page
1989 * @flags: fine tune action taken
1991 * This function is called by the low level machine check code
1992 * of an architecture when it detects hardware memory corruption
1993 * of a page. It tries its best to recover, which includes
1994 * dropping pages, killing processes etc.
1996 * The function is primarily of use for corruptions that
1997 * happen outside the current execution context (e.g. when
1998 * detected by a background scrubber)
2000 * Must run in process context (e.g. a work queue) with interrupts
2001 * enabled and no spinlocks hold.
2003 * Return: 0 for successfully handled the memory error,
2004 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2005 * < 0(except -EOPNOTSUPP) on failure.
2007 int memory_failure(unsigned long pfn, int flags)
2011 struct dev_pagemap *pgmap;
2013 unsigned long page_flags;
2017 if (!sysctl_memory_failure_recovery)
2018 panic("Memory failure on page %lx", pfn);
2020 mutex_lock(&mf_mutex);
2022 if (!(flags & MF_SW_SIMULATED))
2023 hw_memory_failure = true;
2025 p = pfn_to_online_page(pfn);
2027 res = arch_memory_failure(pfn, flags);
2031 if (pfn_valid(pfn)) {
2032 pgmap = get_dev_pagemap(pfn, NULL);
2034 res = memory_failure_dev_pagemap(pfn, flags,
2039 pr_err("%#lx: memory outside kernel control\n", pfn);
2045 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2049 if (TestSetPageHWPoison(p)) {
2050 pr_err("%#lx: already hardware poisoned\n", pfn);
2052 if (flags & MF_ACTION_REQUIRED)
2053 res = kill_accessing_process(current, pfn, flags);
2054 if (flags & MF_COUNT_INCREASED)
2059 hpage = compound_head(p);
2062 * We need/can do nothing about count=0 pages.
2063 * 1) it's a free page, and therefore in safe hand:
2064 * check_new_page() will be the gate keeper.
2065 * 2) it's part of a non-compound high order page.
2066 * Implies some kernel user: cannot stop them from
2067 * R/W the page; let's pray that the page has been
2068 * used and will be freed some time later.
2069 * In fact it's dangerous to directly bump up page count from 0,
2070 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2072 if (!(flags & MF_COUNT_INCREASED)) {
2073 res = get_hwpoison_page(p, flags);
2075 if (is_free_buddy_page(p)) {
2076 if (take_page_off_buddy(p)) {
2080 /* We lost the race, try again */
2082 ClearPageHWPoison(p);
2088 res = action_result(pfn, MF_MSG_BUDDY, res);
2090 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2093 } else if (res < 0) {
2094 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2099 if (PageTransHuge(hpage)) {
2101 * The flag must be set after the refcount is bumped
2102 * otherwise it may race with THP split.
2103 * And the flag can't be set in get_hwpoison_page() since
2104 * it is called by soft offline too and it is just called
2105 * for !MF_COUNT_INCREASE. So here seems to be the best
2108 * Don't need care about the above error handling paths for
2109 * get_hwpoison_page() since they handle either free page
2110 * or unhandlable page. The refcount is bumped iff the
2111 * page is a valid handlable page.
2113 SetPageHasHWPoisoned(hpage);
2114 if (try_to_split_thp_page(p) < 0) {
2115 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2118 VM_BUG_ON_PAGE(!page_count(p), p);
2122 * We ignore non-LRU pages for good reasons.
2123 * - PG_locked is only well defined for LRU pages and a few others
2124 * - to avoid races with __SetPageLocked()
2125 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2126 * The check (unnecessarily) ignores LRU pages being isolated and
2127 * walked by the page reclaim code, however that's not a big loss.
2134 * We're only intended to deal with the non-Compound page here.
2135 * However, the page could have changed compound pages due to
2136 * race window. If this happens, we could try again to hopefully
2137 * handle the page next round.
2139 if (PageCompound(p)) {
2141 ClearPageHWPoison(p);
2144 flags &= ~MF_COUNT_INCREASED;
2148 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2153 * We use page flags to determine what action should be taken, but
2154 * the flags can be modified by the error containment action. One
2155 * example is an mlocked page, where PG_mlocked is cleared by
2156 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2157 * correctly, we save a copy of the page flags at this time.
2159 page_flags = p->flags;
2161 if (hwpoison_filter(p)) {
2162 ClearPageHWPoison(p);
2170 * __munlock_pagevec may clear a writeback page's LRU flag without
2171 * page_lock. We need wait writeback completion for this page or it
2172 * may trigger vfs BUG while evict inode.
2174 if (!PageLRU(p) && !PageWriteback(p))
2175 goto identify_page_state;
2178 * It's very difficult to mess with pages currently under IO
2179 * and in many cases impossible, so we just avoid it here.
2181 wait_on_page_writeback(p);
2184 * Now take care of user space mappings.
2185 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2187 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2188 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2193 * Torn down by someone else?
2195 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2196 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2200 identify_page_state:
2201 res = identify_page_state(pfn, p, page_flags);
2202 mutex_unlock(&mf_mutex);
2207 mutex_unlock(&mf_mutex);
2210 EXPORT_SYMBOL_GPL(memory_failure);
2212 #define MEMORY_FAILURE_FIFO_ORDER 4
2213 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2215 struct memory_failure_entry {
2220 struct memory_failure_cpu {
2221 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2222 MEMORY_FAILURE_FIFO_SIZE);
2224 struct work_struct work;
2227 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2230 * memory_failure_queue - Schedule handling memory failure of a page.
2231 * @pfn: Page Number of the corrupted page
2232 * @flags: Flags for memory failure handling
2234 * This function is called by the low level hardware error handler
2235 * when it detects hardware memory corruption of a page. It schedules
2236 * the recovering of error page, including dropping pages, killing
2239 * The function is primarily of use for corruptions that
2240 * happen outside the current execution context (e.g. when
2241 * detected by a background scrubber)
2243 * Can run in IRQ context.
2245 void memory_failure_queue(unsigned long pfn, int flags)
2247 struct memory_failure_cpu *mf_cpu;
2248 unsigned long proc_flags;
2249 struct memory_failure_entry entry = {
2254 mf_cpu = &get_cpu_var(memory_failure_cpu);
2255 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2256 if (kfifo_put(&mf_cpu->fifo, entry))
2257 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2259 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2261 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2262 put_cpu_var(memory_failure_cpu);
2264 EXPORT_SYMBOL_GPL(memory_failure_queue);
2266 static void memory_failure_work_func(struct work_struct *work)
2268 struct memory_failure_cpu *mf_cpu;
2269 struct memory_failure_entry entry = { 0, };
2270 unsigned long proc_flags;
2273 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2275 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2276 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2277 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2280 if (entry.flags & MF_SOFT_OFFLINE)
2281 soft_offline_page(entry.pfn, entry.flags);
2283 memory_failure(entry.pfn, entry.flags);
2288 * Process memory_failure work queued on the specified CPU.
2289 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2291 void memory_failure_queue_kick(int cpu)
2293 struct memory_failure_cpu *mf_cpu;
2295 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2296 cancel_work_sync(&mf_cpu->work);
2297 memory_failure_work_func(&mf_cpu->work);
2300 static int __init memory_failure_init(void)
2302 struct memory_failure_cpu *mf_cpu;
2305 for_each_possible_cpu(cpu) {
2306 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2307 spin_lock_init(&mf_cpu->lock);
2308 INIT_KFIFO(mf_cpu->fifo);
2309 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2314 core_initcall(memory_failure_init);
2317 #define pr_fmt(fmt) "" fmt
2318 #define unpoison_pr_info(fmt, pfn, rs) \
2320 if (__ratelimit(rs)) \
2321 pr_info(fmt, pfn); \
2325 * unpoison_memory - Unpoison a previously poisoned page
2326 * @pfn: Page number of the to be unpoisoned page
2328 * Software-unpoison a page that has been poisoned by
2329 * memory_failure() earlier.
2331 * This is only done on the software-level, so it only works
2332 * for linux injected failures, not real hardware failures
2334 * Returns 0 for success, otherwise -errno.
2336 int unpoison_memory(unsigned long pfn)
2341 unsigned long count = 1;
2343 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2344 DEFAULT_RATELIMIT_BURST);
2346 if (!pfn_valid(pfn))
2349 p = pfn_to_page(pfn);
2350 page = compound_head(p);
2352 mutex_lock(&mf_mutex);
2354 if (hw_memory_failure) {
2355 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2361 if (!PageHWPoison(p)) {
2362 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2367 if (page_count(page) > 1) {
2368 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2373 if (page_mapped(page)) {
2374 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2379 if (page_mapping(page)) {
2380 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2385 if (PageSlab(page) || PageTable(page) || PageReserved(page))
2388 ret = get_hwpoison_page(p, MF_UNPOISON);
2392 count = free_raw_hwp_pages(page, false);
2398 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2399 } else if (ret < 0) {
2400 if (ret == -EHWPOISON) {
2401 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2403 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2408 count = free_raw_hwp_pages(page, false);
2417 if (TestClearPageHWPoison(p)) {
2424 mutex_unlock(&mf_mutex);
2427 num_poisoned_pages_sub(pfn, 1);
2428 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2429 page_to_pfn(p), &unpoison_rs);
2433 EXPORT_SYMBOL(unpoison_memory);
2435 static bool isolate_page(struct page *page, struct list_head *pagelist)
2437 bool isolated = false;
2439 if (PageHuge(page)) {
2440 isolated = !isolate_hugetlb(page, pagelist);
2442 bool lru = !__PageMovable(page);
2445 isolated = !isolate_lru_page(page);
2447 isolated = !isolate_movable_page(page,
2448 ISOLATE_UNEVICTABLE);
2451 list_add(&page->lru, pagelist);
2453 inc_node_page_state(page, NR_ISOLATED_ANON +
2454 page_is_file_lru(page));
2459 * If we succeed to isolate the page, we grabbed another refcount on
2460 * the page, so we can safely drop the one we got from get_any_pages().
2461 * If we failed to isolate the page, it means that we cannot go further
2462 * and we will return an error, so drop the reference we got from
2463 * get_any_pages() as well.
2470 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2471 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2472 * If the page is mapped, it migrates the contents over.
2474 static int soft_offline_in_use_page(struct page *page)
2477 unsigned long pfn = page_to_pfn(page);
2478 struct page *hpage = compound_head(page);
2479 char const *msg_page[] = {"page", "hugepage"};
2480 bool huge = PageHuge(page);
2481 LIST_HEAD(pagelist);
2482 struct migration_target_control mtc = {
2483 .nid = NUMA_NO_NODE,
2484 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2487 if (!huge && PageTransHuge(hpage)) {
2488 if (try_to_split_thp_page(page)) {
2489 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2496 if (!PageHuge(page))
2497 wait_on_page_writeback(page);
2498 if (PageHWPoison(page)) {
2501 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2505 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2507 * Try to invalidate first. This should work for
2508 * non dirty unmapped page cache pages.
2510 ret = invalidate_inode_page(page);
2514 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2515 page_handle_poison(page, false, true);
2519 if (isolate_page(hpage, &pagelist)) {
2520 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2521 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2523 bool release = !huge;
2525 if (!page_handle_poison(page, huge, release))
2528 if (!list_empty(&pagelist))
2529 putback_movable_pages(&pagelist);
2531 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2532 pfn, msg_page[huge], ret, &page->flags);
2537 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2538 pfn, msg_page[huge], page_count(page), &page->flags);
2545 * soft_offline_page - Soft offline a page.
2546 * @pfn: pfn to soft-offline
2547 * @flags: flags. Same as memory_failure().
2549 * Returns 0 on success
2550 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2551 * < 0 otherwise negated errno.
2553 * Soft offline a page, by migration or invalidation,
2554 * without killing anything. This is for the case when
2555 * a page is not corrupted yet (so it's still valid to access),
2556 * but has had a number of corrected errors and is better taken
2559 * The actual policy on when to do that is maintained by
2562 * This should never impact any application or cause data loss,
2563 * however it might take some time.
2565 * This is not a 100% solution for all memory, but tries to be
2566 * ``good enough'' for the majority of memory.
2568 int soft_offline_page(unsigned long pfn, int flags)
2571 bool try_again = true;
2574 if (!pfn_valid(pfn)) {
2575 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2579 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2580 page = pfn_to_online_page(pfn);
2582 put_ref_page(pfn, flags);
2586 mutex_lock(&mf_mutex);
2588 if (PageHWPoison(page)) {
2589 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2590 put_ref_page(pfn, flags);
2591 mutex_unlock(&mf_mutex);
2597 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2600 if (hwpoison_filter(page)) {
2604 mutex_unlock(&mf_mutex);
2609 ret = soft_offline_in_use_page(page);
2610 } else if (ret == 0) {
2611 if (!page_handle_poison(page, true, false) && try_again) {
2613 flags &= ~MF_COUNT_INCREASED;
2618 mutex_unlock(&mf_mutex);