1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
67 #include "ras/ras_event.h"
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
71 int sysctl_memory_failure_recovery __read_mostly = 1;
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 static bool hw_memory_failure __read_mostly = false;
77 inline void num_poisoned_pages_inc(unsigned long pfn)
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
83 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85 atomic_long_sub(i, &num_poisoned_pages);
87 memblk_nr_poison_sub(pfn, i);
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
94 #define MF_ATTR_RO(_name) \
95 static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
103 static DEVICE_ATTR_RO(_name)
109 MF_ATTR_RO(recovered);
111 static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
120 const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
127 * 1: the page is dissolved (if needed) and taken off from buddy,
128 * 0: the page is dissolved (if needed) and not taken off from buddy,
129 * < 0: failed to dissolve.
131 static int __page_handle_poison(struct page *page)
135 zone_pcp_disable(page_zone(page));
136 ret = dissolve_free_huge_page(page);
138 ret = take_page_off_buddy(page);
139 zone_pcp_enable(page_zone(page));
144 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
146 if (hugepage_or_freepage) {
148 * Doing this check for free pages is also fine since dissolve_free_huge_page
149 * returns 0 for non-hugetlb pages as well.
151 if (__page_handle_poison(page) <= 0)
153 * We could fail to take off the target page from buddy
154 * for example due to racy page allocation, but that's
155 * acceptable because soft-offlined page is not broken
156 * and if someone really want to use it, they should
162 SetPageHWPoison(page);
166 num_poisoned_pages_inc(page_to_pfn(page));
171 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
173 u32 hwpoison_filter_enable = 0;
174 u32 hwpoison_filter_dev_major = ~0U;
175 u32 hwpoison_filter_dev_minor = ~0U;
176 u64 hwpoison_filter_flags_mask;
177 u64 hwpoison_filter_flags_value;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
179 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
180 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
181 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
182 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
184 static int hwpoison_filter_dev(struct page *p)
186 struct address_space *mapping;
189 if (hwpoison_filter_dev_major == ~0U &&
190 hwpoison_filter_dev_minor == ~0U)
193 mapping = page_mapping(p);
194 if (mapping == NULL || mapping->host == NULL)
197 dev = mapping->host->i_sb->s_dev;
198 if (hwpoison_filter_dev_major != ~0U &&
199 hwpoison_filter_dev_major != MAJOR(dev))
201 if (hwpoison_filter_dev_minor != ~0U &&
202 hwpoison_filter_dev_minor != MINOR(dev))
208 static int hwpoison_filter_flags(struct page *p)
210 if (!hwpoison_filter_flags_mask)
213 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
214 hwpoison_filter_flags_value)
221 * This allows stress tests to limit test scope to a collection of tasks
222 * by putting them under some memcg. This prevents killing unrelated/important
223 * processes such as /sbin/init. Note that the target task may share clean
224 * pages with init (eg. libc text), which is harmless. If the target task
225 * share _dirty_ pages with another task B, the test scheme must make sure B
226 * is also included in the memcg. At last, due to race conditions this filter
227 * can only guarantee that the page either belongs to the memcg tasks, or is
231 u64 hwpoison_filter_memcg;
232 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
233 static int hwpoison_filter_task(struct page *p)
235 if (!hwpoison_filter_memcg)
238 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
244 static int hwpoison_filter_task(struct page *p) { return 0; }
247 int hwpoison_filter(struct page *p)
249 if (!hwpoison_filter_enable)
252 if (hwpoison_filter_dev(p))
255 if (hwpoison_filter_flags(p))
258 if (hwpoison_filter_task(p))
264 int hwpoison_filter(struct page *p)
270 EXPORT_SYMBOL_GPL(hwpoison_filter);
273 * Kill all processes that have a poisoned page mapped and then isolate
277 * Find all processes having the page mapped and kill them.
278 * But we keep a page reference around so that the page is not
279 * actually freed yet.
280 * Then stash the page away
282 * There's no convenient way to get back to mapped processes
283 * from the VMAs. So do a brute-force search over all
286 * Remember that machine checks are not common (or rather
287 * if they are common you have other problems), so this shouldn't
288 * be a performance issue.
290 * Also there are some races possible while we get from the
291 * error detection to actually handle it.
296 struct task_struct *tsk;
302 * Send all the processes who have the page mapped a signal.
303 * ``action optional'' if they are not immediately affected by the error
304 * ``action required'' if error happened in current execution context
306 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
308 struct task_struct *t = tk->tsk;
309 short addr_lsb = tk->size_shift;
312 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
313 pfn, t->comm, t->pid);
315 if ((flags & MF_ACTION_REQUIRED) && (t == current))
316 ret = force_sig_mceerr(BUS_MCEERR_AR,
317 (void __user *)tk->addr, addr_lsb);
320 * Signal other processes sharing the page if they have
322 * Don't use force here, it's convenient if the signal
323 * can be temporarily blocked.
324 * This could cause a loop when the user sets SIGBUS
325 * to SIG_IGN, but hopefully no one will do that?
327 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
330 pr_info("Error sending signal to %s:%d: %d\n",
331 t->comm, t->pid, ret);
336 * Unknown page type encountered. Try to check whether it can turn PageLRU by
339 void shake_page(struct page *p)
346 if (PageLRU(p) || is_free_buddy_page(p))
351 * TODO: Could shrink slab caches here if a lightweight range-based
352 * shrinker will be available.
355 EXPORT_SYMBOL_GPL(shake_page);
357 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
358 unsigned long address)
360 unsigned long ret = 0;
367 VM_BUG_ON_VMA(address == -EFAULT, vma);
368 pgd = pgd_offset(vma->vm_mm, address);
369 if (!pgd_present(*pgd))
371 p4d = p4d_offset(pgd, address);
372 if (!p4d_present(*p4d))
374 pud = pud_offset(p4d, address);
375 if (!pud_present(*pud))
377 if (pud_devmap(*pud))
379 pmd = pmd_offset(pud, address);
380 if (!pmd_present(*pmd))
382 if (pmd_devmap(*pmd))
384 pte = pte_offset_map(pmd, address);
385 if (pte_present(*pte) && pte_devmap(*pte))
392 * Failure handling: if we can't find or can't kill a process there's
393 * not much we can do. We just print a message and ignore otherwise.
396 #define FSDAX_INVALID_PGOFF ULONG_MAX
399 * Schedule a process for later kill.
400 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
402 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
403 * filesystem with a memory failure handler has claimed the
404 * memory_failure event. In all other cases, page->index and
405 * page->mapping are sufficient for mapping the page back to its
406 * corresponding user virtual address.
408 static void add_to_kill(struct task_struct *tsk, struct page *p,
409 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
410 struct list_head *to_kill)
414 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
416 pr_err("Out of memory while machine check handling\n");
420 tk->addr = page_address_in_vma(p, vma);
421 if (is_zone_device_page(p)) {
422 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
423 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
424 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
426 tk->size_shift = page_shift(compound_head(p));
429 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
430 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
431 * so "tk->size_shift == 0" effectively checks no mapping on
432 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
433 * to a process' address space, it's possible not all N VMAs
434 * contain mappings for the page, but at least one VMA does.
435 * Only deliver SIGBUS with payload derived from the VMA that
436 * has a mapping for the page.
438 if (tk->addr == -EFAULT) {
439 pr_info("Unable to find user space address %lx in %s\n",
440 page_to_pfn(p), tsk->comm);
441 } else if (tk->size_shift == 0) {
446 get_task_struct(tsk);
448 list_add_tail(&tk->nd, to_kill);
452 * Kill the processes that have been collected earlier.
454 * Only do anything when FORCEKILL is set, otherwise just free the
455 * list (this is used for clean pages which do not need killing)
456 * Also when FAIL is set do a force kill because something went
459 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
460 unsigned long pfn, int flags)
462 struct to_kill *tk, *next;
464 list_for_each_entry_safe(tk, next, to_kill, nd) {
467 * In case something went wrong with munmapping
468 * make sure the process doesn't catch the
469 * signal and then access the memory. Just kill it.
471 if (fail || tk->addr == -EFAULT) {
472 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
473 pfn, tk->tsk->comm, tk->tsk->pid);
474 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
475 tk->tsk, PIDTYPE_PID);
479 * In theory the process could have mapped
480 * something else on the address in-between. We could
481 * check for that, but we need to tell the
484 else if (kill_proc(tk, pfn, flags) < 0)
485 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
486 pfn, tk->tsk->comm, tk->tsk->pid);
489 put_task_struct(tk->tsk);
495 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
496 * on behalf of the thread group. Return task_struct of the (first found)
497 * dedicated thread if found, and return NULL otherwise.
499 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
500 * have to call rcu_read_lock/unlock() in this function.
502 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
504 struct task_struct *t;
506 for_each_thread(tsk, t) {
507 if (t->flags & PF_MCE_PROCESS) {
508 if (t->flags & PF_MCE_EARLY)
511 if (sysctl_memory_failure_early_kill)
519 * Determine whether a given process is "early kill" process which expects
520 * to be signaled when some page under the process is hwpoisoned.
521 * Return task_struct of the dedicated thread (main thread unless explicitly
522 * specified) if the process is "early kill" and otherwise returns NULL.
524 * Note that the above is true for Action Optional case. For Action Required
525 * case, it's only meaningful to the current thread which need to be signaled
526 * with SIGBUS, this error is Action Optional for other non current
527 * processes sharing the same error page,if the process is "early kill", the
528 * task_struct of the dedicated thread will also be returned.
530 static struct task_struct *task_early_kill(struct task_struct *tsk,
536 * Comparing ->mm here because current task might represent
537 * a subthread, while tsk always points to the main thread.
539 if (force_early && tsk->mm == current->mm)
542 return find_early_kill_thread(tsk);
546 * Collect processes when the error hit an anonymous page.
548 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
551 struct folio *folio = page_folio(page);
552 struct vm_area_struct *vma;
553 struct task_struct *tsk;
557 av = folio_lock_anon_vma_read(folio, NULL);
558 if (av == NULL) /* Not actually mapped anymore */
561 pgoff = page_to_pgoff(page);
562 read_lock(&tasklist_lock);
563 for_each_process (tsk) {
564 struct anon_vma_chain *vmac;
565 struct task_struct *t = task_early_kill(tsk, force_early);
569 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
572 if (vma->vm_mm != t->mm)
574 if (!page_mapped_in_vma(page, vma))
576 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
579 read_unlock(&tasklist_lock);
580 anon_vma_unlock_read(av);
584 * Collect processes when the error hit a file mapped page.
586 static void collect_procs_file(struct page *page, struct list_head *to_kill,
589 struct vm_area_struct *vma;
590 struct task_struct *tsk;
591 struct address_space *mapping = page->mapping;
594 i_mmap_lock_read(mapping);
595 read_lock(&tasklist_lock);
596 pgoff = page_to_pgoff(page);
597 for_each_process(tsk) {
598 struct task_struct *t = task_early_kill(tsk, force_early);
602 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
605 * Send early kill signal to tasks where a vma covers
606 * the page but the corrupted page is not necessarily
607 * mapped it in its pte.
608 * Assume applications who requested early kill want
609 * to be informed of all such data corruptions.
611 if (vma->vm_mm == t->mm)
612 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
616 read_unlock(&tasklist_lock);
617 i_mmap_unlock_read(mapping);
622 * Collect processes when the error hit a fsdax page.
624 static void collect_procs_fsdax(struct page *page,
625 struct address_space *mapping, pgoff_t pgoff,
626 struct list_head *to_kill)
628 struct vm_area_struct *vma;
629 struct task_struct *tsk;
631 i_mmap_lock_read(mapping);
632 read_lock(&tasklist_lock);
633 for_each_process(tsk) {
634 struct task_struct *t = task_early_kill(tsk, true);
638 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
639 if (vma->vm_mm == t->mm)
640 add_to_kill(t, page, pgoff, vma, to_kill);
643 read_unlock(&tasklist_lock);
644 i_mmap_unlock_read(mapping);
646 #endif /* CONFIG_FS_DAX */
649 * Collect the processes who have the corrupted page mapped to kill.
651 static void collect_procs(struct page *page, struct list_head *tokill,
658 collect_procs_anon(page, tokill, force_early);
660 collect_procs_file(page, tokill, force_early);
669 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
672 tk->size_shift = shift;
675 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
676 unsigned long poisoned_pfn, struct to_kill *tk)
678 unsigned long pfn = 0;
680 if (pte_present(pte)) {
683 swp_entry_t swp = pte_to_swp_entry(pte);
685 if (is_hwpoison_entry(swp))
686 pfn = swp_offset_pfn(swp);
689 if (!pfn || pfn != poisoned_pfn)
692 set_to_kill(tk, addr, shift);
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
698 struct hwp_walk *hwp)
702 unsigned long hwpoison_vaddr;
704 if (!pmd_present(pmd))
707 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
708 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
709 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
715 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
716 struct hwp_walk *hwp)
722 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
723 unsigned long end, struct mm_walk *walk)
725 struct hwp_walk *hwp = walk->private;
727 pte_t *ptep, *mapped_pte;
730 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
732 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
737 if (pmd_trans_unstable(pmdp))
740 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
742 for (; addr != end; ptep++, addr += PAGE_SIZE) {
743 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
748 pte_unmap_unlock(mapped_pte, ptl);
754 #ifdef CONFIG_HUGETLB_PAGE
755 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
756 unsigned long addr, unsigned long end,
757 struct mm_walk *walk)
759 struct hwp_walk *hwp = walk->private;
760 pte_t pte = huge_ptep_get(ptep);
761 struct hstate *h = hstate_vma(walk->vma);
763 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
767 #define hwpoison_hugetlb_range NULL
770 static const struct mm_walk_ops hwp_walk_ops = {
771 .pmd_entry = hwpoison_pte_range,
772 .hugetlb_entry = hwpoison_hugetlb_range,
776 * Sends SIGBUS to the current process with error info.
778 * This function is intended to handle "Action Required" MCEs on already
779 * hardware poisoned pages. They could happen, for example, when
780 * memory_failure() failed to unmap the error page at the first call, or
781 * when multiple local machine checks happened on different CPUs.
783 * MCE handler currently has no easy access to the error virtual address,
784 * so this function walks page table to find it. The returned virtual address
785 * is proper in most cases, but it could be wrong when the application
786 * process has multiple entries mapping the error page.
788 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
792 struct hwp_walk priv = {
800 mmap_read_lock(p->mm);
801 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
803 if (ret == 1 && priv.tk.addr)
804 kill_proc(&priv.tk, pfn, flags);
807 mmap_read_unlock(p->mm);
808 return ret > 0 ? -EHWPOISON : -EFAULT;
811 static const char *action_name[] = {
812 [MF_IGNORED] = "Ignored",
813 [MF_FAILED] = "Failed",
814 [MF_DELAYED] = "Delayed",
815 [MF_RECOVERED] = "Recovered",
818 static const char * const action_page_types[] = {
819 [MF_MSG_KERNEL] = "reserved kernel page",
820 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
821 [MF_MSG_SLAB] = "kernel slab page",
822 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
823 [MF_MSG_HUGE] = "huge page",
824 [MF_MSG_FREE_HUGE] = "free huge page",
825 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
826 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
827 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
828 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
829 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
830 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
831 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
832 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
833 [MF_MSG_CLEAN_LRU] = "clean LRU page",
834 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
835 [MF_MSG_BUDDY] = "free buddy page",
836 [MF_MSG_DAX] = "dax page",
837 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
838 [MF_MSG_UNKNOWN] = "unknown page",
842 * XXX: It is possible that a page is isolated from LRU cache,
843 * and then kept in swap cache or failed to remove from page cache.
844 * The page count will stop it from being freed by unpoison.
845 * Stress tests should be aware of this memory leak problem.
847 static int delete_from_lru_cache(struct page *p)
849 if (isolate_lru_page(p)) {
851 * Clear sensible page flags, so that the buddy system won't
852 * complain when the page is unpoison-and-freed.
855 ClearPageUnevictable(p);
858 * Poisoned page might never drop its ref count to 0 so we have
859 * to uncharge it manually from its memcg.
861 mem_cgroup_uncharge(page_folio(p));
864 * drop the page count elevated by isolate_lru_page()
872 static int truncate_error_page(struct page *p, unsigned long pfn,
873 struct address_space *mapping)
877 if (mapping->a_ops->error_remove_page) {
878 struct folio *folio = page_folio(p);
879 int err = mapping->a_ops->error_remove_page(mapping, p);
882 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
883 } else if (folio_has_private(folio) &&
884 !filemap_release_folio(folio, GFP_NOIO)) {
885 pr_info("%#lx: failed to release buffers\n", pfn);
891 * If the file system doesn't support it just invalidate
892 * This fails on dirty or anything with private pages
894 if (invalidate_inode_page(p))
897 pr_info("%#lx: Failed to invalidate\n", pfn);
906 enum mf_action_page_type type;
908 /* Callback ->action() has to unlock the relevant page inside it. */
909 int (*action)(struct page_state *ps, struct page *p);
913 * Return true if page is still referenced by others, otherwise return
916 * The extra_pins is true when one extra refcount is expected.
918 static bool has_extra_refcount(struct page_state *ps, struct page *p,
921 int count = page_count(p) - 1;
927 pr_err("%#lx: %s still referenced by %d users\n",
928 page_to_pfn(p), action_page_types[ps->type], count);
936 * Error hit kernel page.
937 * Do nothing, try to be lucky and not touch this instead. For a few cases we
938 * could be more sophisticated.
940 static int me_kernel(struct page_state *ps, struct page *p)
947 * Page in unknown state. Do nothing.
949 static int me_unknown(struct page_state *ps, struct page *p)
951 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
957 * Clean (or cleaned) page cache page.
959 static int me_pagecache_clean(struct page_state *ps, struct page *p)
962 struct address_space *mapping;
965 delete_from_lru_cache(p);
968 * For anonymous pages we're done the only reference left
969 * should be the one m_f() holds.
977 * Now truncate the page in the page cache. This is really
978 * more like a "temporary hole punch"
979 * Don't do this for block devices when someone else
980 * has a reference, because it could be file system metadata
981 * and that's not safe to truncate.
983 mapping = page_mapping(p);
986 * Page has been teared down in the meanwhile
993 * The shmem page is kept in page cache instead of truncating
994 * so is expected to have an extra refcount after error-handling.
996 extra_pins = shmem_mapping(mapping);
999 * Truncation is a bit tricky. Enable it per file system for now.
1001 * Open: to take i_rwsem or not for this? Right now we don't.
1003 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1004 if (has_extra_refcount(ps, p, extra_pins))
1014 * Dirty pagecache page
1015 * Issues: when the error hit a hole page the error is not properly
1018 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1020 struct address_space *mapping = page_mapping(p);
1023 /* TBD: print more information about the file. */
1026 * IO error will be reported by write(), fsync(), etc.
1027 * who check the mapping.
1028 * This way the application knows that something went
1029 * wrong with its dirty file data.
1031 * There's one open issue:
1033 * The EIO will be only reported on the next IO
1034 * operation and then cleared through the IO map.
1035 * Normally Linux has two mechanisms to pass IO error
1036 * first through the AS_EIO flag in the address space
1037 * and then through the PageError flag in the page.
1038 * Since we drop pages on memory failure handling the
1039 * only mechanism open to use is through AS_AIO.
1041 * This has the disadvantage that it gets cleared on
1042 * the first operation that returns an error, while
1043 * the PageError bit is more sticky and only cleared
1044 * when the page is reread or dropped. If an
1045 * application assumes it will always get error on
1046 * fsync, but does other operations on the fd before
1047 * and the page is dropped between then the error
1048 * will not be properly reported.
1050 * This can already happen even without hwpoisoned
1051 * pages: first on metadata IO errors (which only
1052 * report through AS_EIO) or when the page is dropped
1053 * at the wrong time.
1055 * So right now we assume that the application DTRT on
1056 * the first EIO, but we're not worse than other parts
1059 mapping_set_error(mapping, -EIO);
1062 return me_pagecache_clean(ps, p);
1066 * Clean and dirty swap cache.
1068 * Dirty swap cache page is tricky to handle. The page could live both in page
1069 * cache and swap cache(ie. page is freshly swapped in). So it could be
1070 * referenced concurrently by 2 types of PTEs:
1071 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1072 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1074 * - clear dirty bit to prevent IO
1076 * - but keep in the swap cache, so that when we return to it on
1077 * a later page fault, we know the application is accessing
1078 * corrupted data and shall be killed (we installed simple
1079 * interception code in do_swap_page to catch it).
1081 * Clean swap cache pages can be directly isolated. A later page fault will
1082 * bring in the known good data from disk.
1084 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1087 bool extra_pins = false;
1090 /* Trigger EIO in shmem: */
1091 ClearPageUptodate(p);
1093 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1096 if (ret == MF_DELAYED)
1099 if (has_extra_refcount(ps, p, extra_pins))
1105 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1107 struct folio *folio = page_folio(p);
1110 delete_from_swap_cache(folio);
1112 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1113 folio_unlock(folio);
1115 if (has_extra_refcount(ps, p, false))
1122 * Huge pages. Needs work.
1124 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1125 * To narrow down kill region to one page, we need to break up pmd.
1127 static int me_huge_page(struct page_state *ps, struct page *p)
1130 struct page *hpage = compound_head(p);
1131 struct address_space *mapping;
1132 bool extra_pins = false;
1134 if (!PageHuge(hpage))
1137 mapping = page_mapping(hpage);
1139 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1140 /* The page is kept in page cache. */
1146 * migration entry prevents later access on error hugepage,
1147 * so we can free and dissolve it into buddy to save healthy
1151 if (__page_handle_poison(p) >= 0) {
1159 if (has_extra_refcount(ps, p, extra_pins))
1166 * Various page states we can handle.
1168 * A page state is defined by its current page->flags bits.
1169 * The table matches them in order and calls the right handler.
1171 * This is quite tricky because we can access page at any time
1172 * in its live cycle, so all accesses have to be extremely careful.
1174 * This is not complete. More states could be added.
1175 * For any missing state don't attempt recovery.
1178 #define dirty (1UL << PG_dirty)
1179 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1180 #define unevict (1UL << PG_unevictable)
1181 #define mlock (1UL << PG_mlocked)
1182 #define lru (1UL << PG_lru)
1183 #define head (1UL << PG_head)
1184 #define slab (1UL << PG_slab)
1185 #define reserved (1UL << PG_reserved)
1187 static struct page_state error_states[] = {
1188 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1190 * free pages are specially detected outside this table:
1191 * PG_buddy pages only make a small fraction of all free pages.
1195 * Could in theory check if slab page is free or if we can drop
1196 * currently unused objects without touching them. But just
1197 * treat it as standard kernel for now.
1199 { slab, slab, MF_MSG_SLAB, me_kernel },
1201 { head, head, MF_MSG_HUGE, me_huge_page },
1203 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1204 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1206 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1207 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1209 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1210 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1212 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1213 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1216 * Catchall entry: must be at end.
1218 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1230 static void update_per_node_mf_stats(unsigned long pfn,
1231 enum mf_result result)
1233 int nid = MAX_NUMNODES;
1234 struct memory_failure_stats *mf_stats = NULL;
1236 nid = pfn_to_nid(pfn);
1237 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1238 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1242 mf_stats = &NODE_DATA(nid)->mf_stats;
1245 ++mf_stats->ignored;
1251 ++mf_stats->delayed;
1254 ++mf_stats->recovered;
1257 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1264 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1265 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1267 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1268 enum mf_result result)
1270 trace_memory_failure_event(pfn, type, result);
1272 num_poisoned_pages_inc(pfn);
1274 update_per_node_mf_stats(pfn, result);
1276 pr_err("%#lx: recovery action for %s: %s\n",
1277 pfn, action_page_types[type], action_name[result]);
1279 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1282 static int page_action(struct page_state *ps, struct page *p,
1287 /* page p should be unlocked after returning from ps->action(). */
1288 result = ps->action(ps, p);
1290 /* Could do more checks here if page looks ok */
1292 * Could adjust zone counters here to correct for the missing page.
1295 return action_result(pfn, ps->type, result);
1298 static inline bool PageHWPoisonTakenOff(struct page *page)
1300 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1303 void SetPageHWPoisonTakenOff(struct page *page)
1305 set_page_private(page, MAGIC_HWPOISON);
1308 void ClearPageHWPoisonTakenOff(struct page *page)
1310 if (PageHWPoison(page))
1311 set_page_private(page, 0);
1315 * Return true if a page type of a given page is supported by hwpoison
1316 * mechanism (while handling could fail), otherwise false. This function
1317 * does not return true for hugetlb or device memory pages, so it's assumed
1318 * to be called only in the context where we never have such pages.
1320 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1322 /* Soft offline could migrate non-LRU movable pages */
1323 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1326 return PageLRU(page) || is_free_buddy_page(page);
1329 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1331 struct folio *folio = page_folio(page);
1333 bool hugetlb = false;
1335 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1340 * This check prevents from calling folio_try_get() for any
1341 * unsupported type of folio in order to reduce the risk of unexpected
1342 * races caused by taking a folio refcount.
1344 if (!HWPoisonHandlable(&folio->page, flags))
1347 if (folio_try_get(folio)) {
1348 if (folio == page_folio(page))
1351 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1358 static int get_any_page(struct page *p, unsigned long flags)
1360 int ret = 0, pass = 0;
1361 bool count_increased = false;
1363 if (flags & MF_COUNT_INCREASED)
1364 count_increased = true;
1367 if (!count_increased) {
1368 ret = __get_hwpoison_page(p, flags);
1370 if (page_count(p)) {
1371 /* We raced with an allocation, retry. */
1375 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1376 /* We raced with put_page, retry. */
1382 } else if (ret == -EBUSY) {
1384 * We raced with (possibly temporary) unhandlable
1396 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1400 * A page we cannot handle. Check whether we can turn
1401 * it into something we can handle.
1406 count_increased = false;
1414 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1419 static int __get_unpoison_page(struct page *page)
1421 struct folio *folio = page_folio(page);
1423 bool hugetlb = false;
1425 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1430 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1431 * but also isolated from buddy freelist, so need to identify the
1432 * state and have to cancel both operations to unpoison.
1434 if (PageHWPoisonTakenOff(page))
1437 return get_page_unless_zero(page) ? 1 : 0;
1441 * get_hwpoison_page() - Get refcount for memory error handling
1442 * @p: Raw error page (hit by memory error)
1443 * @flags: Flags controlling behavior of error handling
1445 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1446 * error on it, after checking that the error page is in a well-defined state
1447 * (defined as a page-type we can successfully handle the memory error on it,
1448 * such as LRU page and hugetlb page).
1450 * Memory error handling could be triggered at any time on any type of page,
1451 * so it's prone to race with typical memory management lifecycle (like
1452 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1453 * extra care for the error page's state (as done in __get_hwpoison_page()),
1454 * and has some retry logic in get_any_page().
1456 * When called from unpoison_memory(), the caller should already ensure that
1457 * the given page has PG_hwpoison. So it's never reused for other page
1458 * allocations, and __get_unpoison_page() never races with them.
1460 * Return: 0 on failure,
1461 * 1 on success for in-use pages in a well-defined state,
1462 * -EIO for pages on which we can not handle memory errors,
1463 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1464 * operations like allocation and free,
1465 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1467 static int get_hwpoison_page(struct page *p, unsigned long flags)
1471 zone_pcp_disable(page_zone(p));
1472 if (flags & MF_UNPOISON)
1473 ret = __get_unpoison_page(p);
1475 ret = get_any_page(p, flags);
1476 zone_pcp_enable(page_zone(p));
1482 * Do all that is necessary to remove user space mappings. Unmap
1483 * the pages and send SIGBUS to the processes if the data was dirty.
1485 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1486 int flags, struct page *hpage)
1488 struct folio *folio = page_folio(hpage);
1489 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1490 struct address_space *mapping;
1494 bool mlocked = PageMlocked(hpage);
1497 * Here we are interested only in user-mapped pages, so skip any
1498 * other types of pages.
1500 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1502 if (!(PageLRU(hpage) || PageHuge(p)))
1506 * This check implies we don't kill processes if their pages
1507 * are in the swap cache early. Those are always late kills.
1509 if (!page_mapped(hpage))
1513 pr_err("%#lx: can't handle KSM pages.\n", pfn);
1517 if (PageSwapCache(p)) {
1518 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1519 ttu &= ~TTU_HWPOISON;
1523 * Propagate the dirty bit from PTEs to struct page first, because we
1524 * need this to decide if we should kill or just drop the page.
1525 * XXX: the dirty test could be racy: set_page_dirty() may not always
1526 * be called inside page lock (it's recommended but not enforced).
1528 mapping = page_mapping(hpage);
1529 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1530 mapping_can_writeback(mapping)) {
1531 if (page_mkclean(hpage)) {
1532 SetPageDirty(hpage);
1534 ttu &= ~TTU_HWPOISON;
1535 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1541 * First collect all the processes that have the page
1542 * mapped in dirty form. This has to be done before try_to_unmap,
1543 * because ttu takes the rmap data structures down.
1545 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1547 if (PageHuge(hpage) && !PageAnon(hpage)) {
1549 * For hugetlb pages in shared mappings, try_to_unmap
1550 * could potentially call huge_pmd_unshare. Because of
1551 * this, take semaphore in write mode here and set
1552 * TTU_RMAP_LOCKED to indicate we have taken the lock
1553 * at this higher level.
1555 mapping = hugetlb_page_mapping_lock_write(hpage);
1557 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1558 i_mmap_unlock_write(mapping);
1560 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1562 try_to_unmap(folio, ttu);
1565 unmap_success = !page_mapped(hpage);
1567 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1568 pfn, page_mapcount(hpage));
1571 * try_to_unmap() might put mlocked page in lru cache, so call
1572 * shake_page() again to ensure that it's flushed.
1578 * Now that the dirty bit has been propagated to the
1579 * struct page and all unmaps done we can decide if
1580 * killing is needed or not. Only kill when the page
1581 * was dirty or the process is not restartable,
1582 * otherwise the tokill list is merely
1583 * freed. When there was a problem unmapping earlier
1584 * use a more force-full uncatchable kill to prevent
1585 * any accesses to the poisoned memory.
1587 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1589 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1591 return unmap_success;
1594 static int identify_page_state(unsigned long pfn, struct page *p,
1595 unsigned long page_flags)
1597 struct page_state *ps;
1600 * The first check uses the current page flags which may not have any
1601 * relevant information. The second check with the saved page flags is
1602 * carried out only if the first check can't determine the page status.
1604 for (ps = error_states;; ps++)
1605 if ((p->flags & ps->mask) == ps->res)
1608 page_flags |= (p->flags & (1UL << PG_dirty));
1611 for (ps = error_states;; ps++)
1612 if ((page_flags & ps->mask) == ps->res)
1614 return page_action(ps, p, pfn);
1617 static int try_to_split_thp_page(struct page *page)
1622 ret = split_huge_page(page);
1631 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1632 struct address_space *mapping, pgoff_t index, int flags)
1635 unsigned long size = 0;
1637 list_for_each_entry(tk, to_kill, nd)
1639 size = max(size, 1UL << tk->size_shift);
1643 * Unmap the largest mapping to avoid breaking up device-dax
1644 * mappings which are constant size. The actual size of the
1645 * mapping being torn down is communicated in siginfo, see
1648 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1650 unmap_mapping_range(mapping, start, size, 0);
1653 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1656 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1657 struct dev_pagemap *pgmap)
1659 struct page *page = pfn_to_page(pfn);
1665 * Pages instantiated by device-dax (not filesystem-dax)
1666 * may be compound pages.
1668 page = compound_head(page);
1671 * Prevent the inode from being freed while we are interrogating
1672 * the address_space, typically this would be handled by
1673 * lock_page(), but dax pages do not use the page lock. This
1674 * also prevents changes to the mapping of this pfn until
1675 * poison signaling is complete.
1677 cookie = dax_lock_page(page);
1681 if (hwpoison_filter(page)) {
1686 switch (pgmap->type) {
1687 case MEMORY_DEVICE_PRIVATE:
1688 case MEMORY_DEVICE_COHERENT:
1690 * TODO: Handle device pages which may need coordination
1691 * with device-side memory.
1700 * Use this flag as an indication that the dax page has been
1701 * remapped UC to prevent speculative consumption of poison.
1703 SetPageHWPoison(page);
1706 * Unlike System-RAM there is no possibility to swap in a
1707 * different physical page at a given virtual address, so all
1708 * userspace consumption of ZONE_DEVICE memory necessitates
1709 * SIGBUS (i.e. MF_MUST_KILL)
1711 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1712 collect_procs(page, &to_kill, true);
1714 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1716 dax_unlock_page(page, cookie);
1720 #ifdef CONFIG_FS_DAX
1722 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1723 * @mapping: address_space of the file in use
1724 * @index: start pgoff of the range within the file
1725 * @count: length of the range, in unit of PAGE_SIZE
1726 * @mf_flags: memory failure flags
1728 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1729 unsigned long count, int mf_flags)
1734 size_t end = index + count;
1736 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1738 for (; index < end; index++) {
1740 cookie = dax_lock_mapping_entry(mapping, index, &page);
1746 SetPageHWPoison(page);
1748 collect_procs_fsdax(page, mapping, index, &to_kill);
1749 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1752 dax_unlock_mapping_entry(mapping, index, cookie);
1756 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1757 #endif /* CONFIG_FS_DAX */
1759 #ifdef CONFIG_HUGETLB_PAGE
1761 * Struct raw_hwp_page represents information about "raw error page",
1762 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1764 struct raw_hwp_page {
1765 struct llist_node node;
1769 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1771 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1774 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1776 struct llist_head *head;
1777 struct llist_node *t, *tnode;
1778 unsigned long count = 0;
1780 head = raw_hwp_list_head(folio);
1781 llist_for_each_safe(tnode, t, head->first) {
1782 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1785 SetPageHWPoison(p->page);
1787 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1791 llist_del_all(head);
1795 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1797 struct llist_head *head;
1798 struct raw_hwp_page *raw_hwp;
1799 struct llist_node *t, *tnode;
1800 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1803 * Once the hwpoison hugepage has lost reliable raw error info,
1804 * there is little meaning to keep additional error info precisely,
1805 * so skip to add additional raw error info.
1807 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1809 head = raw_hwp_list_head(folio);
1810 llist_for_each_safe(tnode, t, head->first) {
1811 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1813 if (p->page == page)
1817 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1819 raw_hwp->page = page;
1820 llist_add(&raw_hwp->node, head);
1821 /* the first error event will be counted in action_result(). */
1823 num_poisoned_pages_inc(page_to_pfn(page));
1826 * Failed to save raw error info. We no longer trace all
1827 * hwpoisoned subpages, and we need refuse to free/dissolve
1828 * this hwpoisoned hugepage.
1830 folio_set_hugetlb_raw_hwp_unreliable(folio);
1832 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1833 * used any more, so free it.
1835 __folio_free_raw_hwp(folio, false);
1840 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1843 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1844 * pages for tail pages are required but they don't exist.
1846 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1850 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1853 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1856 return __folio_free_raw_hwp(folio, move_flag);
1859 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1861 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1863 folio_clear_hwpoison(folio);
1864 folio_free_raw_hwp(folio, true);
1868 * Called from hugetlb code with hugetlb_lock held.
1872 * 1 - in-use hugepage
1873 * 2 - not a hugepage
1874 * -EBUSY - the hugepage is busy (try to retry)
1875 * -EHWPOISON - the hugepage is already hwpoisoned
1877 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1878 bool *migratable_cleared)
1880 struct page *page = pfn_to_page(pfn);
1881 struct folio *folio = page_folio(page);
1882 int ret = 2; /* fallback to normal page handling */
1883 bool count_increased = false;
1885 if (!folio_test_hugetlb(folio))
1888 if (flags & MF_COUNT_INCREASED) {
1890 count_increased = true;
1891 } else if (folio_test_hugetlb_freed(folio)) {
1893 } else if (folio_test_hugetlb_migratable(folio)) {
1894 ret = folio_try_get(folio);
1896 count_increased = true;
1899 if (!(flags & MF_NO_RETRY))
1903 if (folio_set_hugetlb_hwpoison(folio, page)) {
1909 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1910 * from being migrated by memory hotremove.
1912 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1913 folio_clear_hugetlb_migratable(folio);
1914 *migratable_cleared = true;
1919 if (count_increased)
1925 * Taking refcount of hugetlb pages needs extra care about race conditions
1926 * with basic operations like hugepage allocation/free/demotion.
1927 * So some of prechecks for hwpoison (pinning, and testing/setting
1928 * PageHWPoison) should be done in single hugetlb_lock range.
1930 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1933 struct page *p = pfn_to_page(pfn);
1934 struct folio *folio;
1935 unsigned long page_flags;
1936 bool migratable_cleared = false;
1940 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1941 if (res == 2) { /* fallback to normal page handling */
1944 } else if (res == -EHWPOISON) {
1945 pr_err("%#lx: already hardware poisoned\n", pfn);
1946 if (flags & MF_ACTION_REQUIRED) {
1947 folio = page_folio(p);
1948 res = kill_accessing_process(current, folio_pfn(folio), flags);
1951 } else if (res == -EBUSY) {
1952 if (!(flags & MF_NO_RETRY)) {
1953 flags |= MF_NO_RETRY;
1956 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1959 folio = page_folio(p);
1962 if (hwpoison_filter(p)) {
1963 folio_clear_hugetlb_hwpoison(folio);
1964 if (migratable_cleared)
1965 folio_set_hugetlb_migratable(folio);
1966 folio_unlock(folio);
1973 * Handling free hugepage. The possible race with hugepage allocation
1974 * or demotion can be prevented by PageHWPoison flag.
1977 folio_unlock(folio);
1978 if (__page_handle_poison(p) >= 0) {
1984 return action_result(pfn, MF_MSG_FREE_HUGE, res);
1987 page_flags = folio->flags;
1989 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
1990 folio_unlock(folio);
1991 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1994 return identify_page_state(pfn, p, page_flags);
1998 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2003 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2007 #endif /* CONFIG_HUGETLB_PAGE */
2009 /* Drop the extra refcount in case we come from madvise() */
2010 static void put_ref_page(unsigned long pfn, int flags)
2014 if (!(flags & MF_COUNT_INCREASED))
2017 page = pfn_to_page(pfn);
2022 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2023 struct dev_pagemap *pgmap)
2027 put_ref_page(pfn, flags);
2029 /* device metadata space is not recoverable */
2030 if (!pgmap_pfn_valid(pgmap, pfn))
2034 * Call driver's implementation to handle the memory failure, otherwise
2035 * fall back to generic handler.
2037 if (pgmap_has_memory_failure(pgmap)) {
2038 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2040 * Fall back to generic handler too if operation is not
2041 * supported inside the driver/device/filesystem.
2043 if (rc != -EOPNOTSUPP)
2047 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2049 /* drop pgmap ref acquired in caller */
2050 put_dev_pagemap(pgmap);
2051 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2055 static DEFINE_MUTEX(mf_mutex);
2058 * memory_failure - Handle memory failure of a page.
2059 * @pfn: Page Number of the corrupted page
2060 * @flags: fine tune action taken
2062 * This function is called by the low level machine check code
2063 * of an architecture when it detects hardware memory corruption
2064 * of a page. It tries its best to recover, which includes
2065 * dropping pages, killing processes etc.
2067 * The function is primarily of use for corruptions that
2068 * happen outside the current execution context (e.g. when
2069 * detected by a background scrubber)
2071 * Must run in process context (e.g. a work queue) with interrupts
2072 * enabled and no spinlocks hold.
2074 * Return: 0 for successfully handled the memory error,
2075 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2076 * < 0(except -EOPNOTSUPP) on failure.
2078 int memory_failure(unsigned long pfn, int flags)
2082 struct dev_pagemap *pgmap;
2084 unsigned long page_flags;
2088 if (!sysctl_memory_failure_recovery)
2089 panic("Memory failure on page %lx", pfn);
2091 mutex_lock(&mf_mutex);
2093 if (!(flags & MF_SW_SIMULATED))
2094 hw_memory_failure = true;
2096 p = pfn_to_online_page(pfn);
2098 res = arch_memory_failure(pfn, flags);
2102 if (pfn_valid(pfn)) {
2103 pgmap = get_dev_pagemap(pfn, NULL);
2105 res = memory_failure_dev_pagemap(pfn, flags,
2110 pr_err("%#lx: memory outside kernel control\n", pfn);
2116 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2120 if (TestSetPageHWPoison(p)) {
2121 pr_err("%#lx: already hardware poisoned\n", pfn);
2123 if (flags & MF_ACTION_REQUIRED)
2124 res = kill_accessing_process(current, pfn, flags);
2125 if (flags & MF_COUNT_INCREASED)
2130 hpage = compound_head(p);
2133 * We need/can do nothing about count=0 pages.
2134 * 1) it's a free page, and therefore in safe hand:
2135 * check_new_page() will be the gate keeper.
2136 * 2) it's part of a non-compound high order page.
2137 * Implies some kernel user: cannot stop them from
2138 * R/W the page; let's pray that the page has been
2139 * used and will be freed some time later.
2140 * In fact it's dangerous to directly bump up page count from 0,
2141 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2143 if (!(flags & MF_COUNT_INCREASED)) {
2144 res = get_hwpoison_page(p, flags);
2146 if (is_free_buddy_page(p)) {
2147 if (take_page_off_buddy(p)) {
2151 /* We lost the race, try again */
2153 ClearPageHWPoison(p);
2159 res = action_result(pfn, MF_MSG_BUDDY, res);
2161 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2164 } else if (res < 0) {
2165 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2170 if (PageTransHuge(hpage)) {
2172 * The flag must be set after the refcount is bumped
2173 * otherwise it may race with THP split.
2174 * And the flag can't be set in get_hwpoison_page() since
2175 * it is called by soft offline too and it is just called
2176 * for !MF_COUNT_INCREASE. So here seems to be the best
2179 * Don't need care about the above error handling paths for
2180 * get_hwpoison_page() since they handle either free page
2181 * or unhandlable page. The refcount is bumped iff the
2182 * page is a valid handlable page.
2184 SetPageHasHWPoisoned(hpage);
2185 if (try_to_split_thp_page(p) < 0) {
2186 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2189 VM_BUG_ON_PAGE(!page_count(p), p);
2193 * We ignore non-LRU pages for good reasons.
2194 * - PG_locked is only well defined for LRU pages and a few others
2195 * - to avoid races with __SetPageLocked()
2196 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2197 * The check (unnecessarily) ignores LRU pages being isolated and
2198 * walked by the page reclaim code, however that's not a big loss.
2205 * We're only intended to deal with the non-Compound page here.
2206 * However, the page could have changed compound pages due to
2207 * race window. If this happens, we could try again to hopefully
2208 * handle the page next round.
2210 if (PageCompound(p)) {
2212 ClearPageHWPoison(p);
2215 flags &= ~MF_COUNT_INCREASED;
2219 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2224 * We use page flags to determine what action should be taken, but
2225 * the flags can be modified by the error containment action. One
2226 * example is an mlocked page, where PG_mlocked is cleared by
2227 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2228 * correctly, we save a copy of the page flags at this time.
2230 page_flags = p->flags;
2232 if (hwpoison_filter(p)) {
2233 ClearPageHWPoison(p);
2241 * __munlock_folio() may clear a writeback page's LRU flag without
2242 * page_lock. We need wait writeback completion for this page or it
2243 * may trigger vfs BUG while evict inode.
2245 if (!PageLRU(p) && !PageWriteback(p))
2246 goto identify_page_state;
2249 * It's very difficult to mess with pages currently under IO
2250 * and in many cases impossible, so we just avoid it here.
2252 wait_on_page_writeback(p);
2255 * Now take care of user space mappings.
2256 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2258 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2259 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2264 * Torn down by someone else?
2266 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2267 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2271 identify_page_state:
2272 res = identify_page_state(pfn, p, page_flags);
2273 mutex_unlock(&mf_mutex);
2278 mutex_unlock(&mf_mutex);
2281 EXPORT_SYMBOL_GPL(memory_failure);
2283 #define MEMORY_FAILURE_FIFO_ORDER 4
2284 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2286 struct memory_failure_entry {
2291 struct memory_failure_cpu {
2292 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2293 MEMORY_FAILURE_FIFO_SIZE);
2295 struct work_struct work;
2298 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2301 * memory_failure_queue - Schedule handling memory failure of a page.
2302 * @pfn: Page Number of the corrupted page
2303 * @flags: Flags for memory failure handling
2305 * This function is called by the low level hardware error handler
2306 * when it detects hardware memory corruption of a page. It schedules
2307 * the recovering of error page, including dropping pages, killing
2310 * The function is primarily of use for corruptions that
2311 * happen outside the current execution context (e.g. when
2312 * detected by a background scrubber)
2314 * Can run in IRQ context.
2316 void memory_failure_queue(unsigned long pfn, int flags)
2318 struct memory_failure_cpu *mf_cpu;
2319 unsigned long proc_flags;
2320 struct memory_failure_entry entry = {
2325 mf_cpu = &get_cpu_var(memory_failure_cpu);
2326 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2327 if (kfifo_put(&mf_cpu->fifo, entry))
2328 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2330 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2332 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2333 put_cpu_var(memory_failure_cpu);
2335 EXPORT_SYMBOL_GPL(memory_failure_queue);
2337 static void memory_failure_work_func(struct work_struct *work)
2339 struct memory_failure_cpu *mf_cpu;
2340 struct memory_failure_entry entry = { 0, };
2341 unsigned long proc_flags;
2344 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2346 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2347 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2348 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2351 if (entry.flags & MF_SOFT_OFFLINE)
2352 soft_offline_page(entry.pfn, entry.flags);
2354 memory_failure(entry.pfn, entry.flags);
2359 * Process memory_failure work queued on the specified CPU.
2360 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2362 void memory_failure_queue_kick(int cpu)
2364 struct memory_failure_cpu *mf_cpu;
2366 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2367 cancel_work_sync(&mf_cpu->work);
2368 memory_failure_work_func(&mf_cpu->work);
2371 static int __init memory_failure_init(void)
2373 struct memory_failure_cpu *mf_cpu;
2376 for_each_possible_cpu(cpu) {
2377 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2378 spin_lock_init(&mf_cpu->lock);
2379 INIT_KFIFO(mf_cpu->fifo);
2380 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2385 core_initcall(memory_failure_init);
2388 #define pr_fmt(fmt) "" fmt
2389 #define unpoison_pr_info(fmt, pfn, rs) \
2391 if (__ratelimit(rs)) \
2392 pr_info(fmt, pfn); \
2396 * unpoison_memory - Unpoison a previously poisoned page
2397 * @pfn: Page number of the to be unpoisoned page
2399 * Software-unpoison a page that has been poisoned by
2400 * memory_failure() earlier.
2402 * This is only done on the software-level, so it only works
2403 * for linux injected failures, not real hardware failures
2405 * Returns 0 for success, otherwise -errno.
2407 int unpoison_memory(unsigned long pfn)
2409 struct folio *folio;
2412 unsigned long count = 1;
2414 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2415 DEFAULT_RATELIMIT_BURST);
2417 if (!pfn_valid(pfn))
2420 p = pfn_to_page(pfn);
2421 folio = page_folio(p);
2423 mutex_lock(&mf_mutex);
2425 if (hw_memory_failure) {
2426 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2432 if (!folio_test_hwpoison(folio)) {
2433 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2438 if (folio_ref_count(folio) > 1) {
2439 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2444 if (folio_mapped(folio)) {
2445 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2450 if (folio_mapping(folio)) {
2451 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2456 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2459 ret = get_hwpoison_page(p, MF_UNPOISON);
2463 count = folio_free_raw_hwp(folio, false);
2469 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2470 } else if (ret < 0) {
2471 if (ret == -EHWPOISON) {
2472 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2474 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2479 count = folio_free_raw_hwp(folio, false);
2488 if (TestClearPageHWPoison(p)) {
2495 mutex_unlock(&mf_mutex);
2498 num_poisoned_pages_sub(pfn, 1);
2499 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2500 page_to_pfn(p), &unpoison_rs);
2504 EXPORT_SYMBOL(unpoison_memory);
2506 static bool isolate_page(struct page *page, struct list_head *pagelist)
2508 bool isolated = false;
2510 if (PageHuge(page)) {
2511 isolated = isolate_hugetlb(page_folio(page), pagelist);
2513 bool lru = !__PageMovable(page);
2516 isolated = isolate_lru_page(page);
2518 isolated = isolate_movable_page(page,
2519 ISOLATE_UNEVICTABLE);
2522 list_add(&page->lru, pagelist);
2524 inc_node_page_state(page, NR_ISOLATED_ANON +
2525 page_is_file_lru(page));
2530 * If we succeed to isolate the page, we grabbed another refcount on
2531 * the page, so we can safely drop the one we got from get_any_pages().
2532 * If we failed to isolate the page, it means that we cannot go further
2533 * and we will return an error, so drop the reference we got from
2534 * get_any_pages() as well.
2541 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2542 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2543 * If the page is mapped, it migrates the contents over.
2545 static int soft_offline_in_use_page(struct page *page)
2548 unsigned long pfn = page_to_pfn(page);
2549 struct page *hpage = compound_head(page);
2550 char const *msg_page[] = {"page", "hugepage"};
2551 bool huge = PageHuge(page);
2552 LIST_HEAD(pagelist);
2553 struct migration_target_control mtc = {
2554 .nid = NUMA_NO_NODE,
2555 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2558 if (!huge && PageTransHuge(hpage)) {
2559 if (try_to_split_thp_page(page)) {
2560 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2567 if (!PageHuge(page))
2568 wait_on_page_writeback(page);
2569 if (PageHWPoison(page)) {
2572 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2576 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2578 * Try to invalidate first. This should work for
2579 * non dirty unmapped page cache pages.
2581 ret = invalidate_inode_page(page);
2585 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2586 page_handle_poison(page, false, true);
2590 if (isolate_page(hpage, &pagelist)) {
2591 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2592 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2594 bool release = !huge;
2596 if (!page_handle_poison(page, huge, release))
2599 if (!list_empty(&pagelist))
2600 putback_movable_pages(&pagelist);
2602 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2603 pfn, msg_page[huge], ret, &page->flags);
2608 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2609 pfn, msg_page[huge], page_count(page), &page->flags);
2616 * soft_offline_page - Soft offline a page.
2617 * @pfn: pfn to soft-offline
2618 * @flags: flags. Same as memory_failure().
2620 * Returns 0 on success
2621 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2622 * < 0 otherwise negated errno.
2624 * Soft offline a page, by migration or invalidation,
2625 * without killing anything. This is for the case when
2626 * a page is not corrupted yet (so it's still valid to access),
2627 * but has had a number of corrected errors and is better taken
2630 * The actual policy on when to do that is maintained by
2633 * This should never impact any application or cause data loss,
2634 * however it might take some time.
2636 * This is not a 100% solution for all memory, but tries to be
2637 * ``good enough'' for the majority of memory.
2639 int soft_offline_page(unsigned long pfn, int flags)
2642 bool try_again = true;
2645 if (!pfn_valid(pfn)) {
2646 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2650 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2651 page = pfn_to_online_page(pfn);
2653 put_ref_page(pfn, flags);
2657 mutex_lock(&mf_mutex);
2659 if (PageHWPoison(page)) {
2660 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2661 put_ref_page(pfn, flags);
2662 mutex_unlock(&mf_mutex);
2668 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2671 if (hwpoison_filter(page)) {
2675 mutex_unlock(&mf_mutex);
2680 ret = soft_offline_in_use_page(page);
2681 } else if (ret == 0) {
2682 if (!page_handle_poison(page, true, false) && try_again) {
2684 flags &= ~MF_COUNT_INCREASED;
2689 mutex_unlock(&mf_mutex);