1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
36 #include <linux/kernel.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
64 #include "ras/ras_event.h"
66 int sysctl_memory_failure_early_kill __read_mostly = 0;
68 int sysctl_memory_failure_recovery __read_mostly = 1;
70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 static bool hw_memory_failure __read_mostly = false;
74 static bool __page_handle_poison(struct page *page)
78 zone_pcp_disable(page_zone(page));
79 ret = dissolve_free_huge_page(page);
81 ret = take_page_off_buddy(page);
82 zone_pcp_enable(page_zone(page));
87 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
89 if (hugepage_or_freepage) {
91 * Doing this check for free pages is also fine since dissolve_free_huge_page
92 * returns 0 for non-hugetlb pages as well.
94 if (!__page_handle_poison(page))
96 * We could fail to take off the target page from buddy
97 * for example due to racy page allocation, but that's
98 * acceptable because soft-offlined page is not broken
99 * and if someone really want to use it, they should
105 SetPageHWPoison(page);
109 num_poisoned_pages_inc();
114 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
116 u32 hwpoison_filter_enable = 0;
117 u32 hwpoison_filter_dev_major = ~0U;
118 u32 hwpoison_filter_dev_minor = ~0U;
119 u64 hwpoison_filter_flags_mask;
120 u64 hwpoison_filter_flags_value;
121 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
123 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
124 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
125 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
127 static int hwpoison_filter_dev(struct page *p)
129 struct address_space *mapping;
132 if (hwpoison_filter_dev_major == ~0U &&
133 hwpoison_filter_dev_minor == ~0U)
136 mapping = page_mapping(p);
137 if (mapping == NULL || mapping->host == NULL)
140 dev = mapping->host->i_sb->s_dev;
141 if (hwpoison_filter_dev_major != ~0U &&
142 hwpoison_filter_dev_major != MAJOR(dev))
144 if (hwpoison_filter_dev_minor != ~0U &&
145 hwpoison_filter_dev_minor != MINOR(dev))
151 static int hwpoison_filter_flags(struct page *p)
153 if (!hwpoison_filter_flags_mask)
156 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
157 hwpoison_filter_flags_value)
164 * This allows stress tests to limit test scope to a collection of tasks
165 * by putting them under some memcg. This prevents killing unrelated/important
166 * processes such as /sbin/init. Note that the target task may share clean
167 * pages with init (eg. libc text), which is harmless. If the target task
168 * share _dirty_ pages with another task B, the test scheme must make sure B
169 * is also included in the memcg. At last, due to race conditions this filter
170 * can only guarantee that the page either belongs to the memcg tasks, or is
174 u64 hwpoison_filter_memcg;
175 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
176 static int hwpoison_filter_task(struct page *p)
178 if (!hwpoison_filter_memcg)
181 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
187 static int hwpoison_filter_task(struct page *p) { return 0; }
190 int hwpoison_filter(struct page *p)
192 if (!hwpoison_filter_enable)
195 if (hwpoison_filter_dev(p))
198 if (hwpoison_filter_flags(p))
201 if (hwpoison_filter_task(p))
207 int hwpoison_filter(struct page *p)
213 EXPORT_SYMBOL_GPL(hwpoison_filter);
216 * Kill all processes that have a poisoned page mapped and then isolate
220 * Find all processes having the page mapped and kill them.
221 * But we keep a page reference around so that the page is not
222 * actually freed yet.
223 * Then stash the page away
225 * There's no convenient way to get back to mapped processes
226 * from the VMAs. So do a brute-force search over all
229 * Remember that machine checks are not common (or rather
230 * if they are common you have other problems), so this shouldn't
231 * be a performance issue.
233 * Also there are some races possible while we get from the
234 * error detection to actually handle it.
239 struct task_struct *tsk;
245 * Send all the processes who have the page mapped a signal.
246 * ``action optional'' if they are not immediately affected by the error
247 * ``action required'' if error happened in current execution context
249 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251 struct task_struct *t = tk->tsk;
252 short addr_lsb = tk->size_shift;
255 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
256 pfn, t->comm, t->pid);
258 if ((flags & MF_ACTION_REQUIRED) && (t == current))
259 ret = force_sig_mceerr(BUS_MCEERR_AR,
260 (void __user *)tk->addr, addr_lsb);
263 * Signal other processes sharing the page if they have
265 * Don't use force here, it's convenient if the signal
266 * can be temporarily blocked.
267 * This could cause a loop when the user sets SIGBUS
268 * to SIG_IGN, but hopefully no one will do that?
270 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
271 addr_lsb, t); /* synchronous? */
273 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
274 t->comm, t->pid, ret);
279 * Unknown page type encountered. Try to check whether it can turn PageLRU by
282 void shake_page(struct page *p)
289 if (PageLRU(p) || is_free_buddy_page(p))
294 * TODO: Could shrink slab caches here if a lightweight range-based
295 * shrinker will be available.
298 EXPORT_SYMBOL_GPL(shake_page);
300 static unsigned long dev_pagemap_mapping_shift(struct page *page,
301 struct vm_area_struct *vma)
303 unsigned long address = vma_address(page, vma);
304 unsigned long ret = 0;
311 VM_BUG_ON_VMA(address == -EFAULT, vma);
312 pgd = pgd_offset(vma->vm_mm, address);
313 if (!pgd_present(*pgd))
315 p4d = p4d_offset(pgd, address);
316 if (!p4d_present(*p4d))
318 pud = pud_offset(p4d, address);
319 if (!pud_present(*pud))
321 if (pud_devmap(*pud))
323 pmd = pmd_offset(pud, address);
324 if (!pmd_present(*pmd))
326 if (pmd_devmap(*pmd))
328 pte = pte_offset_map(pmd, address);
329 if (pte_present(*pte) && pte_devmap(*pte))
336 * Failure handling: if we can't find or can't kill a process there's
337 * not much we can do. We just print a message and ignore otherwise.
341 * Schedule a process for later kill.
342 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
344 static void add_to_kill(struct task_struct *tsk, struct page *p,
345 struct vm_area_struct *vma,
346 struct list_head *to_kill)
350 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
352 pr_err("Memory failure: Out of memory while machine check handling\n");
356 tk->addr = page_address_in_vma(p, vma);
357 if (is_zone_device_page(p))
358 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
360 tk->size_shift = page_shift(compound_head(p));
363 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
364 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
365 * so "tk->size_shift == 0" effectively checks no mapping on
366 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
367 * to a process' address space, it's possible not all N VMAs
368 * contain mappings for the page, but at least one VMA does.
369 * Only deliver SIGBUS with payload derived from the VMA that
370 * has a mapping for the page.
372 if (tk->addr == -EFAULT) {
373 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
374 page_to_pfn(p), tsk->comm);
375 } else if (tk->size_shift == 0) {
380 get_task_struct(tsk);
382 list_add_tail(&tk->nd, to_kill);
386 * Kill the processes that have been collected earlier.
388 * Only do anything when FORCEKILL is set, otherwise just free the
389 * list (this is used for clean pages which do not need killing)
390 * Also when FAIL is set do a force kill because something went
393 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
394 unsigned long pfn, int flags)
396 struct to_kill *tk, *next;
398 list_for_each_entry_safe (tk, next, to_kill, nd) {
401 * In case something went wrong with munmapping
402 * make sure the process doesn't catch the
403 * signal and then access the memory. Just kill it.
405 if (fail || tk->addr == -EFAULT) {
406 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
407 pfn, tk->tsk->comm, tk->tsk->pid);
408 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
409 tk->tsk, PIDTYPE_PID);
413 * In theory the process could have mapped
414 * something else on the address in-between. We could
415 * check for that, but we need to tell the
418 else if (kill_proc(tk, pfn, flags) < 0)
419 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
420 pfn, tk->tsk->comm, tk->tsk->pid);
422 put_task_struct(tk->tsk);
428 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
429 * on behalf of the thread group. Return task_struct of the (first found)
430 * dedicated thread if found, and return NULL otherwise.
432 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
433 * have to call rcu_read_lock/unlock() in this function.
435 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
437 struct task_struct *t;
439 for_each_thread(tsk, t) {
440 if (t->flags & PF_MCE_PROCESS) {
441 if (t->flags & PF_MCE_EARLY)
444 if (sysctl_memory_failure_early_kill)
452 * Determine whether a given process is "early kill" process which expects
453 * to be signaled when some page under the process is hwpoisoned.
454 * Return task_struct of the dedicated thread (main thread unless explicitly
455 * specified) if the process is "early kill" and otherwise returns NULL.
457 * Note that the above is true for Action Optional case. For Action Required
458 * case, it's only meaningful to the current thread which need to be signaled
459 * with SIGBUS, this error is Action Optional for other non current
460 * processes sharing the same error page,if the process is "early kill", the
461 * task_struct of the dedicated thread will also be returned.
463 static struct task_struct *task_early_kill(struct task_struct *tsk,
469 * Comparing ->mm here because current task might represent
470 * a subthread, while tsk always points to the main thread.
472 if (force_early && tsk->mm == current->mm)
475 return find_early_kill_thread(tsk);
479 * Collect processes when the error hit an anonymous page.
481 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
484 struct folio *folio = page_folio(page);
485 struct vm_area_struct *vma;
486 struct task_struct *tsk;
490 av = folio_lock_anon_vma_read(folio, NULL);
491 if (av == NULL) /* Not actually mapped anymore */
494 pgoff = page_to_pgoff(page);
495 read_lock(&tasklist_lock);
496 for_each_process (tsk) {
497 struct anon_vma_chain *vmac;
498 struct task_struct *t = task_early_kill(tsk, force_early);
502 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
505 if (!page_mapped_in_vma(page, vma))
507 if (vma->vm_mm == t->mm)
508 add_to_kill(t, page, vma, to_kill);
511 read_unlock(&tasklist_lock);
512 page_unlock_anon_vma_read(av);
516 * Collect processes when the error hit a file mapped page.
518 static void collect_procs_file(struct page *page, struct list_head *to_kill,
521 struct vm_area_struct *vma;
522 struct task_struct *tsk;
523 struct address_space *mapping = page->mapping;
526 i_mmap_lock_read(mapping);
527 read_lock(&tasklist_lock);
528 pgoff = page_to_pgoff(page);
529 for_each_process(tsk) {
530 struct task_struct *t = task_early_kill(tsk, force_early);
534 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
537 * Send early kill signal to tasks where a vma covers
538 * the page but the corrupted page is not necessarily
539 * mapped it in its pte.
540 * Assume applications who requested early kill want
541 * to be informed of all such data corruptions.
543 if (vma->vm_mm == t->mm)
544 add_to_kill(t, page, vma, to_kill);
547 read_unlock(&tasklist_lock);
548 i_mmap_unlock_read(mapping);
552 * Collect the processes who have the corrupted page mapped to kill.
554 static void collect_procs(struct page *page, struct list_head *tokill,
561 collect_procs_anon(page, tokill, force_early);
563 collect_procs_file(page, tokill, force_early);
572 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
575 tk->size_shift = shift;
578 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
579 unsigned long poisoned_pfn, struct to_kill *tk)
581 unsigned long pfn = 0;
583 if (pte_present(pte)) {
586 swp_entry_t swp = pte_to_swp_entry(pte);
588 if (is_hwpoison_entry(swp))
589 pfn = hwpoison_entry_to_pfn(swp);
592 if (!pfn || pfn != poisoned_pfn)
595 set_to_kill(tk, addr, shift);
599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
600 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
601 struct hwp_walk *hwp)
605 unsigned long hwpoison_vaddr;
607 if (!pmd_present(pmd))
610 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
611 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
612 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
619 struct hwp_walk *hwp)
625 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
626 unsigned long end, struct mm_walk *walk)
628 struct hwp_walk *hwp = walk->private;
630 pte_t *ptep, *mapped_pte;
633 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
635 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
640 if (pmd_trans_unstable(pmdp))
643 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
645 for (; addr != end; ptep++, addr += PAGE_SIZE) {
646 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 pte_unmap_unlock(mapped_pte, ptl);
657 #ifdef CONFIG_HUGETLB_PAGE
658 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
659 unsigned long addr, unsigned long end,
660 struct mm_walk *walk)
662 struct hwp_walk *hwp = walk->private;
663 pte_t pte = huge_ptep_get(ptep);
664 struct hstate *h = hstate_vma(walk->vma);
666 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
670 #define hwpoison_hugetlb_range NULL
673 static const struct mm_walk_ops hwp_walk_ops = {
674 .pmd_entry = hwpoison_pte_range,
675 .hugetlb_entry = hwpoison_hugetlb_range,
679 * Sends SIGBUS to the current process with error info.
681 * This function is intended to handle "Action Required" MCEs on already
682 * hardware poisoned pages. They could happen, for example, when
683 * memory_failure() failed to unmap the error page at the first call, or
684 * when multiple local machine checks happened on different CPUs.
686 * MCE handler currently has no easy access to the error virtual address,
687 * so this function walks page table to find it. The returned virtual address
688 * is proper in most cases, but it could be wrong when the application
689 * process has multiple entries mapping the error page.
691 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
695 struct hwp_walk priv = {
700 mmap_read_lock(p->mm);
701 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
703 if (ret == 1 && priv.tk.addr)
704 kill_proc(&priv.tk, pfn, flags);
707 mmap_read_unlock(p->mm);
708 return ret > 0 ? -EHWPOISON : -EFAULT;
711 static const char *action_name[] = {
712 [MF_IGNORED] = "Ignored",
713 [MF_FAILED] = "Failed",
714 [MF_DELAYED] = "Delayed",
715 [MF_RECOVERED] = "Recovered",
718 static const char * const action_page_types[] = {
719 [MF_MSG_KERNEL] = "reserved kernel page",
720 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
721 [MF_MSG_SLAB] = "kernel slab page",
722 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
723 [MF_MSG_HUGE] = "huge page",
724 [MF_MSG_FREE_HUGE] = "free huge page",
725 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
726 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
727 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
728 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
729 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
730 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
731 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
732 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
733 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
734 [MF_MSG_CLEAN_LRU] = "clean LRU page",
735 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
736 [MF_MSG_BUDDY] = "free buddy page",
737 [MF_MSG_DAX] = "dax page",
738 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
739 [MF_MSG_UNKNOWN] = "unknown page",
743 * XXX: It is possible that a page is isolated from LRU cache,
744 * and then kept in swap cache or failed to remove from page cache.
745 * The page count will stop it from being freed by unpoison.
746 * Stress tests should be aware of this memory leak problem.
748 static int delete_from_lru_cache(struct page *p)
750 if (!isolate_lru_page(p)) {
752 * Clear sensible page flags, so that the buddy system won't
753 * complain when the page is unpoison-and-freed.
756 ClearPageUnevictable(p);
759 * Poisoned page might never drop its ref count to 0 so we have
760 * to uncharge it manually from its memcg.
762 mem_cgroup_uncharge(page_folio(p));
765 * drop the page count elevated by isolate_lru_page()
773 static int truncate_error_page(struct page *p, unsigned long pfn,
774 struct address_space *mapping)
778 if (mapping->a_ops->error_remove_page) {
779 int err = mapping->a_ops->error_remove_page(mapping, p);
782 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
784 } else if (page_has_private(p) &&
785 !try_to_release_page(p, GFP_NOIO)) {
786 pr_info("Memory failure: %#lx: failed to release buffers\n",
793 * If the file system doesn't support it just invalidate
794 * This fails on dirty or anything with private pages
796 if (invalidate_inode_page(p))
799 pr_info("Memory failure: %#lx: Failed to invalidate\n",
809 enum mf_action_page_type type;
811 /* Callback ->action() has to unlock the relevant page inside it. */
812 int (*action)(struct page_state *ps, struct page *p);
816 * Return true if page is still referenced by others, otherwise return
819 * The extra_pins is true when one extra refcount is expected.
821 static bool has_extra_refcount(struct page_state *ps, struct page *p,
824 int count = page_count(p) - 1;
830 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
831 page_to_pfn(p), action_page_types[ps->type], count);
839 * Error hit kernel page.
840 * Do nothing, try to be lucky and not touch this instead. For a few cases we
841 * could be more sophisticated.
843 static int me_kernel(struct page_state *ps, struct page *p)
850 * Page in unknown state. Do nothing.
852 static int me_unknown(struct page_state *ps, struct page *p)
854 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
860 * Clean (or cleaned) page cache page.
862 static int me_pagecache_clean(struct page_state *ps, struct page *p)
865 struct address_space *mapping;
868 delete_from_lru_cache(p);
871 * For anonymous pages we're done the only reference left
872 * should be the one m_f() holds.
880 * Now truncate the page in the page cache. This is really
881 * more like a "temporary hole punch"
882 * Don't do this for block devices when someone else
883 * has a reference, because it could be file system metadata
884 * and that's not safe to truncate.
886 mapping = page_mapping(p);
889 * Page has been teared down in the meanwhile
896 * The shmem page is kept in page cache instead of truncating
897 * so is expected to have an extra refcount after error-handling.
899 extra_pins = shmem_mapping(mapping);
902 * Truncation is a bit tricky. Enable it per file system for now.
904 * Open: to take i_rwsem or not for this? Right now we don't.
906 ret = truncate_error_page(p, page_to_pfn(p), mapping);
907 if (has_extra_refcount(ps, p, extra_pins))
917 * Dirty pagecache page
918 * Issues: when the error hit a hole page the error is not properly
921 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
923 struct address_space *mapping = page_mapping(p);
926 /* TBD: print more information about the file. */
929 * IO error will be reported by write(), fsync(), etc.
930 * who check the mapping.
931 * This way the application knows that something went
932 * wrong with its dirty file data.
934 * There's one open issue:
936 * The EIO will be only reported on the next IO
937 * operation and then cleared through the IO map.
938 * Normally Linux has two mechanisms to pass IO error
939 * first through the AS_EIO flag in the address space
940 * and then through the PageError flag in the page.
941 * Since we drop pages on memory failure handling the
942 * only mechanism open to use is through AS_AIO.
944 * This has the disadvantage that it gets cleared on
945 * the first operation that returns an error, while
946 * the PageError bit is more sticky and only cleared
947 * when the page is reread or dropped. If an
948 * application assumes it will always get error on
949 * fsync, but does other operations on the fd before
950 * and the page is dropped between then the error
951 * will not be properly reported.
953 * This can already happen even without hwpoisoned
954 * pages: first on metadata IO errors (which only
955 * report through AS_EIO) or when the page is dropped
958 * So right now we assume that the application DTRT on
959 * the first EIO, but we're not worse than other parts
962 mapping_set_error(mapping, -EIO);
965 return me_pagecache_clean(ps, p);
969 * Clean and dirty swap cache.
971 * Dirty swap cache page is tricky to handle. The page could live both in page
972 * cache and swap cache(ie. page is freshly swapped in). So it could be
973 * referenced concurrently by 2 types of PTEs:
974 * normal PTEs and swap PTEs. We try to handle them consistently by calling
975 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
977 * - clear dirty bit to prevent IO
979 * - but keep in the swap cache, so that when we return to it on
980 * a later page fault, we know the application is accessing
981 * corrupted data and shall be killed (we installed simple
982 * interception code in do_swap_page to catch it).
984 * Clean swap cache pages can be directly isolated. A later page fault will
985 * bring in the known good data from disk.
987 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
990 bool extra_pins = false;
993 /* Trigger EIO in shmem: */
994 ClearPageUptodate(p);
996 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
999 if (ret == MF_DELAYED)
1002 if (has_extra_refcount(ps, p, extra_pins))
1008 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1012 delete_from_swap_cache(p);
1014 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1017 if (has_extra_refcount(ps, p, false))
1024 * Huge pages. Needs work.
1026 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1027 * To narrow down kill region to one page, we need to break up pmd.
1029 static int me_huge_page(struct page_state *ps, struct page *p)
1032 struct page *hpage = compound_head(p);
1033 struct address_space *mapping;
1035 if (!PageHuge(hpage))
1038 mapping = page_mapping(hpage);
1040 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1046 * migration entry prevents later access on error hugepage,
1047 * so we can free and dissolve it into buddy to save healthy
1051 if (__page_handle_poison(p)) {
1057 if (has_extra_refcount(ps, p, false))
1064 * Various page states we can handle.
1066 * A page state is defined by its current page->flags bits.
1067 * The table matches them in order and calls the right handler.
1069 * This is quite tricky because we can access page at any time
1070 * in its live cycle, so all accesses have to be extremely careful.
1072 * This is not complete. More states could be added.
1073 * For any missing state don't attempt recovery.
1076 #define dirty (1UL << PG_dirty)
1077 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1078 #define unevict (1UL << PG_unevictable)
1079 #define mlock (1UL << PG_mlocked)
1080 #define lru (1UL << PG_lru)
1081 #define head (1UL << PG_head)
1082 #define slab (1UL << PG_slab)
1083 #define reserved (1UL << PG_reserved)
1085 static struct page_state error_states[] = {
1086 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1088 * free pages are specially detected outside this table:
1089 * PG_buddy pages only make a small fraction of all free pages.
1093 * Could in theory check if slab page is free or if we can drop
1094 * currently unused objects without touching them. But just
1095 * treat it as standard kernel for now.
1097 { slab, slab, MF_MSG_SLAB, me_kernel },
1099 { head, head, MF_MSG_HUGE, me_huge_page },
1101 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1102 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1104 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1105 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1107 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1108 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1110 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1111 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1114 * Catchall entry: must be at end.
1116 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1129 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1130 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1132 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1133 enum mf_result result)
1135 trace_memory_failure_event(pfn, type, result);
1137 num_poisoned_pages_inc();
1138 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1139 pfn, action_page_types[type], action_name[result]);
1142 static int page_action(struct page_state *ps, struct page *p,
1147 /* page p should be unlocked after returning from ps->action(). */
1148 result = ps->action(ps, p);
1150 action_result(pfn, ps->type, result);
1152 /* Could do more checks here if page looks ok */
1154 * Could adjust zone counters here to correct for the missing page.
1157 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1160 static inline bool PageHWPoisonTakenOff(struct page *page)
1162 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1165 void SetPageHWPoisonTakenOff(struct page *page)
1167 set_page_private(page, MAGIC_HWPOISON);
1170 void ClearPageHWPoisonTakenOff(struct page *page)
1172 if (PageHWPoison(page))
1173 set_page_private(page, 0);
1177 * Return true if a page type of a given page is supported by hwpoison
1178 * mechanism (while handling could fail), otherwise false. This function
1179 * does not return true for hugetlb or device memory pages, so it's assumed
1180 * to be called only in the context where we never have such pages.
1182 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1184 /* Soft offline could migrate non-LRU movable pages */
1185 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1188 return PageLRU(page) || is_free_buddy_page(page);
1191 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1193 struct page *head = compound_head(page);
1195 bool hugetlb = false;
1197 ret = get_hwpoison_huge_page(head, &hugetlb);
1202 * This check prevents from calling get_hwpoison_unless_zero()
1203 * for any unsupported type of page in order to reduce the risk of
1204 * unexpected races caused by taking a page refcount.
1206 if (!HWPoisonHandlable(head, flags))
1209 if (get_page_unless_zero(head)) {
1210 if (head == compound_head(page))
1213 pr_info("Memory failure: %#lx cannot catch tail\n",
1221 static int get_any_page(struct page *p, unsigned long flags)
1223 int ret = 0, pass = 0;
1224 bool count_increased = false;
1226 if (flags & MF_COUNT_INCREASED)
1227 count_increased = true;
1230 if (!count_increased) {
1231 ret = __get_hwpoison_page(p, flags);
1233 if (page_count(p)) {
1234 /* We raced with an allocation, retry. */
1238 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1239 /* We raced with put_page, retry. */
1245 } else if (ret == -EBUSY) {
1247 * We raced with (possibly temporary) unhandlable
1259 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1263 * A page we cannot handle. Check whether we can turn
1264 * it into something we can handle.
1269 count_increased = false;
1277 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1282 static int __get_unpoison_page(struct page *page)
1284 struct page *head = compound_head(page);
1286 bool hugetlb = false;
1288 ret = get_hwpoison_huge_page(head, &hugetlb);
1293 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1294 * but also isolated from buddy freelist, so need to identify the
1295 * state and have to cancel both operations to unpoison.
1297 if (PageHWPoisonTakenOff(page))
1300 return get_page_unless_zero(page) ? 1 : 0;
1304 * get_hwpoison_page() - Get refcount for memory error handling
1305 * @p: Raw error page (hit by memory error)
1306 * @flags: Flags controlling behavior of error handling
1308 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1309 * error on it, after checking that the error page is in a well-defined state
1310 * (defined as a page-type we can successfully handle the memory error on it,
1311 * such as LRU page and hugetlb page).
1313 * Memory error handling could be triggered at any time on any type of page,
1314 * so it's prone to race with typical memory management lifecycle (like
1315 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1316 * extra care for the error page's state (as done in __get_hwpoison_page()),
1317 * and has some retry logic in get_any_page().
1319 * When called from unpoison_memory(), the caller should already ensure that
1320 * the given page has PG_hwpoison. So it's never reused for other page
1321 * allocations, and __get_unpoison_page() never races with them.
1323 * Return: 0 on failure,
1324 * 1 on success for in-use pages in a well-defined state,
1325 * -EIO for pages on which we can not handle memory errors,
1326 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1327 * operations like allocation and free,
1328 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1330 static int get_hwpoison_page(struct page *p, unsigned long flags)
1334 zone_pcp_disable(page_zone(p));
1335 if (flags & MF_UNPOISON)
1336 ret = __get_unpoison_page(p);
1338 ret = get_any_page(p, flags);
1339 zone_pcp_enable(page_zone(p));
1345 * Do all that is necessary to remove user space mappings. Unmap
1346 * the pages and send SIGBUS to the processes if the data was dirty.
1348 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1349 int flags, struct page *hpage)
1351 struct folio *folio = page_folio(hpage);
1352 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1353 struct address_space *mapping;
1356 int kill = 1, forcekill;
1357 bool mlocked = PageMlocked(hpage);
1360 * Here we are interested only in user-mapped pages, so skip any
1361 * other types of pages.
1363 if (PageReserved(p) || PageSlab(p))
1365 if (!(PageLRU(hpage) || PageHuge(p)))
1369 * This check implies we don't kill processes if their pages
1370 * are in the swap cache early. Those are always late kills.
1372 if (!page_mapped(hpage))
1376 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1380 if (PageSwapCache(p)) {
1381 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1383 ttu |= TTU_IGNORE_HWPOISON;
1387 * Propagate the dirty bit from PTEs to struct page first, because we
1388 * need this to decide if we should kill or just drop the page.
1389 * XXX: the dirty test could be racy: set_page_dirty() may not always
1390 * be called inside page lock (it's recommended but not enforced).
1392 mapping = page_mapping(hpage);
1393 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1394 mapping_can_writeback(mapping)) {
1395 if (page_mkclean(hpage)) {
1396 SetPageDirty(hpage);
1399 ttu |= TTU_IGNORE_HWPOISON;
1400 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1406 * First collect all the processes that have the page
1407 * mapped in dirty form. This has to be done before try_to_unmap,
1408 * because ttu takes the rmap data structures down.
1410 * Error handling: We ignore errors here because
1411 * there's nothing that can be done.
1414 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1416 if (PageHuge(hpage) && !PageAnon(hpage)) {
1418 * For hugetlb pages in shared mappings, try_to_unmap
1419 * could potentially call huge_pmd_unshare. Because of
1420 * this, take semaphore in write mode here and set
1421 * TTU_RMAP_LOCKED to indicate we have taken the lock
1422 * at this higher level.
1424 mapping = hugetlb_page_mapping_lock_write(hpage);
1426 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1427 i_mmap_unlock_write(mapping);
1429 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1431 try_to_unmap(folio, ttu);
1434 unmap_success = !page_mapped(hpage);
1436 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1437 pfn, page_mapcount(hpage));
1440 * try_to_unmap() might put mlocked page in lru cache, so call
1441 * shake_page() again to ensure that it's flushed.
1447 * Now that the dirty bit has been propagated to the
1448 * struct page and all unmaps done we can decide if
1449 * killing is needed or not. Only kill when the page
1450 * was dirty or the process is not restartable,
1451 * otherwise the tokill list is merely
1452 * freed. When there was a problem unmapping earlier
1453 * use a more force-full uncatchable kill to prevent
1454 * any accesses to the poisoned memory.
1456 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1457 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1459 return unmap_success;
1462 static int identify_page_state(unsigned long pfn, struct page *p,
1463 unsigned long page_flags)
1465 struct page_state *ps;
1468 * The first check uses the current page flags which may not have any
1469 * relevant information. The second check with the saved page flags is
1470 * carried out only if the first check can't determine the page status.
1472 for (ps = error_states;; ps++)
1473 if ((p->flags & ps->mask) == ps->res)
1476 page_flags |= (p->flags & (1UL << PG_dirty));
1479 for (ps = error_states;; ps++)
1480 if ((page_flags & ps->mask) == ps->res)
1482 return page_action(ps, p, pfn);
1485 static int try_to_split_thp_page(struct page *page, const char *msg)
1488 if (unlikely(split_huge_page(page))) {
1489 unsigned long pfn = page_to_pfn(page);
1492 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1502 * Called from hugetlb code with hugetlb_lock held.
1506 * 1 - in-use hugepage
1507 * 2 - not a hugepage
1508 * -EBUSY - the hugepage is busy (try to retry)
1509 * -EHWPOISON - the hugepage is already hwpoisoned
1511 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1513 struct page *page = pfn_to_page(pfn);
1514 struct page *head = compound_head(page);
1515 int ret = 2; /* fallback to normal page handling */
1516 bool count_increased = false;
1518 if (!PageHeadHuge(head))
1521 if (flags & MF_COUNT_INCREASED) {
1523 count_increased = true;
1524 } else if (HPageFreed(head)) {
1526 } else if (HPageMigratable(head)) {
1527 ret = get_page_unless_zero(head);
1529 count_increased = true;
1535 if (TestSetPageHWPoison(head)) {
1542 if (count_increased)
1547 #ifdef CONFIG_HUGETLB_PAGE
1549 * Taking refcount of hugetlb pages needs extra care about race conditions
1550 * with basic operations like hugepage allocation/free/demotion.
1551 * So some of prechecks for hwpoison (pinning, and testing/setting
1552 * PageHWPoison) should be done in single hugetlb_lock range.
1554 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1557 struct page *p = pfn_to_page(pfn);
1559 unsigned long page_flags;
1564 res = get_huge_page_for_hwpoison(pfn, flags);
1565 if (res == 2) { /* fallback to normal page handling */
1568 } else if (res == -EHWPOISON) {
1569 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1570 if (flags & MF_ACTION_REQUIRED) {
1571 head = compound_head(p);
1572 res = kill_accessing_process(current, page_to_pfn(head), flags);
1575 } else if (res == -EBUSY) {
1580 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1584 head = compound_head(p);
1587 if (hwpoison_filter(p)) {
1588 ClearPageHWPoison(head);
1594 * Handling free hugepage. The possible race with hugepage allocation
1595 * or demotion can be prevented by PageHWPoison flag.
1600 if (__page_handle_poison(p)) {
1604 action_result(pfn, MF_MSG_FREE_HUGE, res);
1605 return res == MF_RECOVERED ? 0 : -EBUSY;
1608 page_flags = head->flags;
1611 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1612 * simply disable it. In order to make it work properly, we need
1614 * - conversion of a pud that maps an error hugetlb into hwpoison
1615 * entry properly works, and
1616 * - other mm code walking over page table is aware of pud-aligned
1619 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1620 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1625 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1626 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1631 return identify_page_state(pfn, p, page_flags);
1637 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1643 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1644 struct dev_pagemap *pgmap)
1646 struct page *page = pfn_to_page(pfn);
1647 unsigned long size = 0;
1654 if (flags & MF_COUNT_INCREASED)
1656 * Drop the extra refcount in case we come from madvise().
1660 /* device metadata space is not recoverable */
1661 if (!pgmap_pfn_valid(pgmap, pfn)) {
1667 * Pages instantiated by device-dax (not filesystem-dax)
1668 * may be compound pages.
1670 page = compound_head(page);
1673 * Prevent the inode from being freed while we are interrogating
1674 * the address_space, typically this would be handled by
1675 * lock_page(), but dax pages do not use the page lock. This
1676 * also prevents changes to the mapping of this pfn until
1677 * poison signaling is complete.
1679 cookie = dax_lock_page(page);
1683 if (hwpoison_filter(page)) {
1688 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1690 * TODO: Handle HMM pages which may need coordination
1691 * with device-side memory.
1697 * Use this flag as an indication that the dax page has been
1698 * remapped UC to prevent speculative consumption of poison.
1700 SetPageHWPoison(page);
1703 * Unlike System-RAM there is no possibility to swap in a
1704 * different physical page at a given virtual address, so all
1705 * userspace consumption of ZONE_DEVICE memory necessitates
1706 * SIGBUS (i.e. MF_MUST_KILL)
1708 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1709 collect_procs(page, &tokill, true);
1711 list_for_each_entry(tk, &tokill, nd)
1713 size = max(size, 1UL << tk->size_shift);
1716 * Unmap the largest mapping to avoid breaking up
1717 * device-dax mappings which are constant size. The
1718 * actual size of the mapping being torn down is
1719 * communicated in siginfo, see kill_proc()
1721 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1722 unmap_mapping_range(page->mapping, start, size, 0);
1724 kill_procs(&tokill, true, false, pfn, flags);
1727 dax_unlock_page(page, cookie);
1729 /* drop pgmap ref acquired in caller */
1730 put_dev_pagemap(pgmap);
1731 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1735 static DEFINE_MUTEX(mf_mutex);
1738 * memory_failure - Handle memory failure of a page.
1739 * @pfn: Page Number of the corrupted page
1740 * @flags: fine tune action taken
1742 * This function is called by the low level machine check code
1743 * of an architecture when it detects hardware memory corruption
1744 * of a page. It tries its best to recover, which includes
1745 * dropping pages, killing processes etc.
1747 * The function is primarily of use for corruptions that
1748 * happen outside the current execution context (e.g. when
1749 * detected by a background scrubber)
1751 * Must run in process context (e.g. a work queue) with interrupts
1752 * enabled and no spinlocks hold.
1754 * Return: 0 for successfully handled the memory error,
1755 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1756 * < 0(except -EOPNOTSUPP) on failure.
1758 int memory_failure(unsigned long pfn, int flags)
1762 struct dev_pagemap *pgmap;
1764 unsigned long page_flags;
1768 if (!sysctl_memory_failure_recovery)
1769 panic("Memory failure on page %lx", pfn);
1771 mutex_lock(&mf_mutex);
1773 if (!(flags & MF_SW_SIMULATED))
1774 hw_memory_failure = true;
1776 p = pfn_to_online_page(pfn);
1778 res = arch_memory_failure(pfn, flags);
1782 if (pfn_valid(pfn)) {
1783 pgmap = get_dev_pagemap(pfn, NULL);
1785 res = memory_failure_dev_pagemap(pfn, flags,
1790 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1797 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1801 if (TestSetPageHWPoison(p)) {
1802 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1805 if (flags & MF_ACTION_REQUIRED)
1806 res = kill_accessing_process(current, pfn, flags);
1807 if (flags & MF_COUNT_INCREASED)
1812 hpage = compound_head(p);
1815 * We need/can do nothing about count=0 pages.
1816 * 1) it's a free page, and therefore in safe hand:
1817 * prep_new_page() will be the gate keeper.
1818 * 2) it's part of a non-compound high order page.
1819 * Implies some kernel user: cannot stop them from
1820 * R/W the page; let's pray that the page has been
1821 * used and will be freed some time later.
1822 * In fact it's dangerous to directly bump up page count from 0,
1823 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1825 if (!(flags & MF_COUNT_INCREASED)) {
1826 res = get_hwpoison_page(p, flags);
1828 if (is_free_buddy_page(p)) {
1829 if (take_page_off_buddy(p)) {
1833 /* We lost the race, try again */
1835 ClearPageHWPoison(p);
1841 action_result(pfn, MF_MSG_BUDDY, res);
1842 res = res == MF_RECOVERED ? 0 : -EBUSY;
1844 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1848 } else if (res < 0) {
1849 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1855 if (PageTransHuge(hpage)) {
1857 * The flag must be set after the refcount is bumped
1858 * otherwise it may race with THP split.
1859 * And the flag can't be set in get_hwpoison_page() since
1860 * it is called by soft offline too and it is just called
1861 * for !MF_COUNT_INCREASE. So here seems to be the best
1864 * Don't need care about the above error handling paths for
1865 * get_hwpoison_page() since they handle either free page
1866 * or unhandlable page. The refcount is bumped iff the
1867 * page is a valid handlable page.
1869 SetPageHasHWPoisoned(hpage);
1870 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1871 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1875 VM_BUG_ON_PAGE(!page_count(p), p);
1879 * We ignore non-LRU pages for good reasons.
1880 * - PG_locked is only well defined for LRU pages and a few others
1881 * - to avoid races with __SetPageLocked()
1882 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1883 * The check (unnecessarily) ignores LRU pages being isolated and
1884 * walked by the page reclaim code, however that's not a big loss.
1891 * We're only intended to deal with the non-Compound page here.
1892 * However, the page could have changed compound pages due to
1893 * race window. If this happens, we could try again to hopefully
1894 * handle the page next round.
1896 if (PageCompound(p)) {
1898 ClearPageHWPoison(p);
1901 flags &= ~MF_COUNT_INCREASED;
1905 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1911 * We use page flags to determine what action should be taken, but
1912 * the flags can be modified by the error containment action. One
1913 * example is an mlocked page, where PG_mlocked is cleared by
1914 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1915 * correctly, we save a copy of the page flags at this time.
1917 page_flags = p->flags;
1919 if (hwpoison_filter(p)) {
1920 TestClearPageHWPoison(p);
1928 * __munlock_pagevec may clear a writeback page's LRU flag without
1929 * page_lock. We need wait writeback completion for this page or it
1930 * may trigger vfs BUG while evict inode.
1932 if (!PageLRU(p) && !PageWriteback(p))
1933 goto identify_page_state;
1936 * It's very difficult to mess with pages currently under IO
1937 * and in many cases impossible, so we just avoid it here.
1939 wait_on_page_writeback(p);
1942 * Now take care of user space mappings.
1943 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1945 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1946 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1952 * Torn down by someone else?
1954 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1955 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1960 identify_page_state:
1961 res = identify_page_state(pfn, p, page_flags);
1962 mutex_unlock(&mf_mutex);
1967 mutex_unlock(&mf_mutex);
1970 EXPORT_SYMBOL_GPL(memory_failure);
1972 #define MEMORY_FAILURE_FIFO_ORDER 4
1973 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1975 struct memory_failure_entry {
1980 struct memory_failure_cpu {
1981 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1982 MEMORY_FAILURE_FIFO_SIZE);
1984 struct work_struct work;
1987 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1990 * memory_failure_queue - Schedule handling memory failure of a page.
1991 * @pfn: Page Number of the corrupted page
1992 * @flags: Flags for memory failure handling
1994 * This function is called by the low level hardware error handler
1995 * when it detects hardware memory corruption of a page. It schedules
1996 * the recovering of error page, including dropping pages, killing
1999 * The function is primarily of use for corruptions that
2000 * happen outside the current execution context (e.g. when
2001 * detected by a background scrubber)
2003 * Can run in IRQ context.
2005 void memory_failure_queue(unsigned long pfn, int flags)
2007 struct memory_failure_cpu *mf_cpu;
2008 unsigned long proc_flags;
2009 struct memory_failure_entry entry = {
2014 mf_cpu = &get_cpu_var(memory_failure_cpu);
2015 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2016 if (kfifo_put(&mf_cpu->fifo, entry))
2017 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2019 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
2021 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2022 put_cpu_var(memory_failure_cpu);
2024 EXPORT_SYMBOL_GPL(memory_failure_queue);
2026 static void memory_failure_work_func(struct work_struct *work)
2028 struct memory_failure_cpu *mf_cpu;
2029 struct memory_failure_entry entry = { 0, };
2030 unsigned long proc_flags;
2033 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2035 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2036 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2037 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2040 if (entry.flags & MF_SOFT_OFFLINE)
2041 soft_offline_page(entry.pfn, entry.flags);
2043 memory_failure(entry.pfn, entry.flags);
2048 * Process memory_failure work queued on the specified CPU.
2049 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2051 void memory_failure_queue_kick(int cpu)
2053 struct memory_failure_cpu *mf_cpu;
2055 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2056 cancel_work_sync(&mf_cpu->work);
2057 memory_failure_work_func(&mf_cpu->work);
2060 static int __init memory_failure_init(void)
2062 struct memory_failure_cpu *mf_cpu;
2065 for_each_possible_cpu(cpu) {
2066 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2067 spin_lock_init(&mf_cpu->lock);
2068 INIT_KFIFO(mf_cpu->fifo);
2069 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2074 core_initcall(memory_failure_init);
2076 #define unpoison_pr_info(fmt, pfn, rs) \
2078 if (__ratelimit(rs)) \
2079 pr_info(fmt, pfn); \
2083 * unpoison_memory - Unpoison a previously poisoned page
2084 * @pfn: Page number of the to be unpoisoned page
2086 * Software-unpoison a page that has been poisoned by
2087 * memory_failure() earlier.
2089 * This is only done on the software-level, so it only works
2090 * for linux injected failures, not real hardware failures
2092 * Returns 0 for success, otherwise -errno.
2094 int unpoison_memory(unsigned long pfn)
2100 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2101 DEFAULT_RATELIMIT_BURST);
2103 if (!pfn_valid(pfn))
2106 p = pfn_to_page(pfn);
2107 page = compound_head(p);
2109 mutex_lock(&mf_mutex);
2111 if (hw_memory_failure) {
2112 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2118 if (!PageHWPoison(p)) {
2119 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2124 if (page_count(page) > 1) {
2125 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2130 if (page_mapped(page)) {
2131 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2136 if (page_mapping(page)) {
2137 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2142 if (PageSlab(page) || PageTable(page))
2145 ret = get_hwpoison_page(p, MF_UNPOISON);
2147 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2148 } else if (ret < 0) {
2149 if (ret == -EHWPOISON) {
2150 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2152 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2155 freeit = !!TestClearPageHWPoison(p);
2158 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2165 mutex_unlock(&mf_mutex);
2166 if (!ret || freeit) {
2167 num_poisoned_pages_dec();
2168 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2169 page_to_pfn(p), &unpoison_rs);
2173 EXPORT_SYMBOL(unpoison_memory);
2175 static bool isolate_page(struct page *page, struct list_head *pagelist)
2177 bool isolated = false;
2178 bool lru = PageLRU(page);
2180 if (PageHuge(page)) {
2181 isolated = isolate_huge_page(page, pagelist);
2184 isolated = !isolate_lru_page(page);
2186 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2189 list_add(&page->lru, pagelist);
2192 if (isolated && lru)
2193 inc_node_page_state(page, NR_ISOLATED_ANON +
2194 page_is_file_lru(page));
2197 * If we succeed to isolate the page, we grabbed another refcount on
2198 * the page, so we can safely drop the one we got from get_any_pages().
2199 * If we failed to isolate the page, it means that we cannot go further
2200 * and we will return an error, so drop the reference we got from
2201 * get_any_pages() as well.
2208 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2209 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2210 * If the page is mapped, it migrates the contents over.
2212 static int __soft_offline_page(struct page *page)
2215 unsigned long pfn = page_to_pfn(page);
2216 struct page *hpage = compound_head(page);
2217 char const *msg_page[] = {"page", "hugepage"};
2218 bool huge = PageHuge(page);
2219 LIST_HEAD(pagelist);
2220 struct migration_target_control mtc = {
2221 .nid = NUMA_NO_NODE,
2222 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2226 if (!PageHuge(page))
2227 wait_on_page_writeback(page);
2228 if (PageHWPoison(page)) {
2231 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2235 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2237 * Try to invalidate first. This should work for
2238 * non dirty unmapped page cache pages.
2240 ret = invalidate_inode_page(page);
2244 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2245 page_handle_poison(page, false, true);
2249 if (isolate_page(hpage, &pagelist)) {
2250 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2251 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2253 bool release = !huge;
2255 if (!page_handle_poison(page, huge, release))
2258 if (!list_empty(&pagelist))
2259 putback_movable_pages(&pagelist);
2261 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2262 pfn, msg_page[huge], ret, &page->flags);
2267 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2268 pfn, msg_page[huge], page_count(page), &page->flags);
2274 static int soft_offline_in_use_page(struct page *page)
2276 struct page *hpage = compound_head(page);
2278 if (!PageHuge(page) && PageTransHuge(hpage))
2279 if (try_to_split_thp_page(page, "soft offline") < 0)
2281 return __soft_offline_page(page);
2284 static int soft_offline_free_page(struct page *page)
2288 if (!page_handle_poison(page, true, false))
2294 static void put_ref_page(struct page *page)
2301 * soft_offline_page - Soft offline a page.
2302 * @pfn: pfn to soft-offline
2303 * @flags: flags. Same as memory_failure().
2305 * Returns 0 on success
2306 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2307 * < 0 otherwise negated errno.
2309 * Soft offline a page, by migration or invalidation,
2310 * without killing anything. This is for the case when
2311 * a page is not corrupted yet (so it's still valid to access),
2312 * but has had a number of corrected errors and is better taken
2315 * The actual policy on when to do that is maintained by
2318 * This should never impact any application or cause data loss,
2319 * however it might take some time.
2321 * This is not a 100% solution for all memory, but tries to be
2322 * ``good enough'' for the majority of memory.
2324 int soft_offline_page(unsigned long pfn, int flags)
2327 bool try_again = true;
2328 struct page *page, *ref_page = NULL;
2330 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2332 if (!pfn_valid(pfn))
2334 if (flags & MF_COUNT_INCREASED)
2335 ref_page = pfn_to_page(pfn);
2337 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2338 page = pfn_to_online_page(pfn);
2340 put_ref_page(ref_page);
2344 mutex_lock(&mf_mutex);
2346 if (PageHWPoison(page)) {
2347 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2348 put_ref_page(ref_page);
2349 mutex_unlock(&mf_mutex);
2355 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2358 if (hwpoison_filter(page)) {
2362 put_ref_page(ref_page);
2364 mutex_unlock(&mf_mutex);
2369 ret = soft_offline_in_use_page(page);
2370 } else if (ret == 0) {
2371 if (soft_offline_free_page(page) && try_again) {
2373 flags &= ~MF_COUNT_INCREASED;
2378 mutex_unlock(&mf_mutex);
2383 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2388 * A further optimization is to have per section refcounted
2389 * num_poisoned_pages. But that would need more space per memmap, so
2390 * for now just do a quick global check to speed up this routine in the
2391 * absence of bad pages.
2393 if (atomic_long_read(&num_poisoned_pages) == 0)
2396 for (i = 0; i < nr_pages; i++) {
2397 if (PageHWPoison(&memmap[i])) {
2398 num_poisoned_pages_dec();
2399 ClearPageHWPoison(&memmap[i]);