1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
36 #include <linux/kernel.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
64 #include "ras/ras_event.h"
66 int sysctl_memory_failure_early_kill __read_mostly = 0;
68 int sysctl_memory_failure_recovery __read_mostly = 1;
70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 static bool __page_handle_poison(struct page *page)
76 zone_pcp_disable(page_zone(page));
77 ret = dissolve_free_huge_page(page);
79 ret = take_page_off_buddy(page);
80 zone_pcp_enable(page_zone(page));
85 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
87 if (hugepage_or_freepage) {
89 * Doing this check for free pages is also fine since dissolve_free_huge_page
90 * returns 0 for non-hugetlb pages as well.
92 if (!__page_handle_poison(page))
94 * We could fail to take off the target page from buddy
95 * for example due to racy page allocation, but that's
96 * acceptable because soft-offlined page is not broken
97 * and if someone really want to use it, they should
103 SetPageHWPoison(page);
107 num_poisoned_pages_inc();
112 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
114 u32 hwpoison_filter_enable = 0;
115 u32 hwpoison_filter_dev_major = ~0U;
116 u32 hwpoison_filter_dev_minor = ~0U;
117 u64 hwpoison_filter_flags_mask;
118 u64 hwpoison_filter_flags_value;
119 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
123 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
125 static int hwpoison_filter_dev(struct page *p)
127 struct address_space *mapping;
130 if (hwpoison_filter_dev_major == ~0U &&
131 hwpoison_filter_dev_minor == ~0U)
134 mapping = page_mapping(p);
135 if (mapping == NULL || mapping->host == NULL)
138 dev = mapping->host->i_sb->s_dev;
139 if (hwpoison_filter_dev_major != ~0U &&
140 hwpoison_filter_dev_major != MAJOR(dev))
142 if (hwpoison_filter_dev_minor != ~0U &&
143 hwpoison_filter_dev_minor != MINOR(dev))
149 static int hwpoison_filter_flags(struct page *p)
151 if (!hwpoison_filter_flags_mask)
154 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
155 hwpoison_filter_flags_value)
162 * This allows stress tests to limit test scope to a collection of tasks
163 * by putting them under some memcg. This prevents killing unrelated/important
164 * processes such as /sbin/init. Note that the target task may share clean
165 * pages with init (eg. libc text), which is harmless. If the target task
166 * share _dirty_ pages with another task B, the test scheme must make sure B
167 * is also included in the memcg. At last, due to race conditions this filter
168 * can only guarantee that the page either belongs to the memcg tasks, or is
172 u64 hwpoison_filter_memcg;
173 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
174 static int hwpoison_filter_task(struct page *p)
176 if (!hwpoison_filter_memcg)
179 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
185 static int hwpoison_filter_task(struct page *p) { return 0; }
188 int hwpoison_filter(struct page *p)
190 if (!hwpoison_filter_enable)
193 if (hwpoison_filter_dev(p))
196 if (hwpoison_filter_flags(p))
199 if (hwpoison_filter_task(p))
205 int hwpoison_filter(struct page *p)
211 EXPORT_SYMBOL_GPL(hwpoison_filter);
214 * Kill all processes that have a poisoned page mapped and then isolate
218 * Find all processes having the page mapped and kill them.
219 * But we keep a page reference around so that the page is not
220 * actually freed yet.
221 * Then stash the page away
223 * There's no convenient way to get back to mapped processes
224 * from the VMAs. So do a brute-force search over all
227 * Remember that machine checks are not common (or rather
228 * if they are common you have other problems), so this shouldn't
229 * be a performance issue.
231 * Also there are some races possible while we get from the
232 * error detection to actually handle it.
237 struct task_struct *tsk;
243 * Send all the processes who have the page mapped a signal.
244 * ``action optional'' if they are not immediately affected by the error
245 * ``action required'' if error happened in current execution context
247 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
249 struct task_struct *t = tk->tsk;
250 short addr_lsb = tk->size_shift;
253 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
254 pfn, t->comm, t->pid);
256 if ((flags & MF_ACTION_REQUIRED) && (t == current))
257 ret = force_sig_mceerr(BUS_MCEERR_AR,
258 (void __user *)tk->addr, addr_lsb);
261 * Signal other processes sharing the page if they have
263 * Don't use force here, it's convenient if the signal
264 * can be temporarily blocked.
265 * This could cause a loop when the user sets SIGBUS
266 * to SIG_IGN, but hopefully no one will do that?
268 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
269 addr_lsb, t); /* synchronous? */
271 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
272 t->comm, t->pid, ret);
277 * Unknown page type encountered. Try to check whether it can turn PageLRU by
280 void shake_page(struct page *p)
287 if (PageLRU(p) || is_free_buddy_page(p))
292 * TODO: Could shrink slab caches here if a lightweight range-based
293 * shrinker will be available.
296 EXPORT_SYMBOL_GPL(shake_page);
298 static unsigned long dev_pagemap_mapping_shift(struct page *page,
299 struct vm_area_struct *vma)
301 unsigned long address = vma_address(page, vma);
302 unsigned long ret = 0;
309 VM_BUG_ON_VMA(address == -EFAULT, vma);
310 pgd = pgd_offset(vma->vm_mm, address);
311 if (!pgd_present(*pgd))
313 p4d = p4d_offset(pgd, address);
314 if (!p4d_present(*p4d))
316 pud = pud_offset(p4d, address);
317 if (!pud_present(*pud))
319 if (pud_devmap(*pud))
321 pmd = pmd_offset(pud, address);
322 if (!pmd_present(*pmd))
324 if (pmd_devmap(*pmd))
326 pte = pte_offset_map(pmd, address);
327 if (pte_present(*pte) && pte_devmap(*pte))
334 * Failure handling: if we can't find or can't kill a process there's
335 * not much we can do. We just print a message and ignore otherwise.
339 * Schedule a process for later kill.
340 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
342 static void add_to_kill(struct task_struct *tsk, struct page *p,
343 struct vm_area_struct *vma,
344 struct list_head *to_kill)
348 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
350 pr_err("Memory failure: Out of memory while machine check handling\n");
354 tk->addr = page_address_in_vma(p, vma);
355 if (is_zone_device_page(p))
356 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
358 tk->size_shift = page_shift(compound_head(p));
361 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
362 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
363 * so "tk->size_shift == 0" effectively checks no mapping on
364 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
365 * to a process' address space, it's possible not all N VMAs
366 * contain mappings for the page, but at least one VMA does.
367 * Only deliver SIGBUS with payload derived from the VMA that
368 * has a mapping for the page.
370 if (tk->addr == -EFAULT) {
371 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
372 page_to_pfn(p), tsk->comm);
373 } else if (tk->size_shift == 0) {
378 get_task_struct(tsk);
380 list_add_tail(&tk->nd, to_kill);
384 * Kill the processes that have been collected earlier.
386 * Only do anything when FORCEKILL is set, otherwise just free the
387 * list (this is used for clean pages which do not need killing)
388 * Also when FAIL is set do a force kill because something went
391 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
392 unsigned long pfn, int flags)
394 struct to_kill *tk, *next;
396 list_for_each_entry_safe (tk, next, to_kill, nd) {
399 * In case something went wrong with munmapping
400 * make sure the process doesn't catch the
401 * signal and then access the memory. Just kill it.
403 if (fail || tk->addr == -EFAULT) {
404 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
405 pfn, tk->tsk->comm, tk->tsk->pid);
406 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
407 tk->tsk, PIDTYPE_PID);
411 * In theory the process could have mapped
412 * something else on the address in-between. We could
413 * check for that, but we need to tell the
416 else if (kill_proc(tk, pfn, flags) < 0)
417 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
418 pfn, tk->tsk->comm, tk->tsk->pid);
420 put_task_struct(tk->tsk);
426 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
427 * on behalf of the thread group. Return task_struct of the (first found)
428 * dedicated thread if found, and return NULL otherwise.
430 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
431 * have to call rcu_read_lock/unlock() in this function.
433 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
435 struct task_struct *t;
437 for_each_thread(tsk, t) {
438 if (t->flags & PF_MCE_PROCESS) {
439 if (t->flags & PF_MCE_EARLY)
442 if (sysctl_memory_failure_early_kill)
450 * Determine whether a given process is "early kill" process which expects
451 * to be signaled when some page under the process is hwpoisoned.
452 * Return task_struct of the dedicated thread (main thread unless explicitly
453 * specified) if the process is "early kill" and otherwise returns NULL.
455 * Note that the above is true for Action Optional case. For Action Required
456 * case, it's only meaningful to the current thread which need to be signaled
457 * with SIGBUS, this error is Action Optional for other non current
458 * processes sharing the same error page,if the process is "early kill", the
459 * task_struct of the dedicated thread will also be returned.
461 static struct task_struct *task_early_kill(struct task_struct *tsk,
467 * Comparing ->mm here because current task might represent
468 * a subthread, while tsk always points to the main thread.
470 if (force_early && tsk->mm == current->mm)
473 return find_early_kill_thread(tsk);
477 * Collect processes when the error hit an anonymous page.
479 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
482 struct folio *folio = page_folio(page);
483 struct vm_area_struct *vma;
484 struct task_struct *tsk;
488 av = folio_lock_anon_vma_read(folio, NULL);
489 if (av == NULL) /* Not actually mapped anymore */
492 pgoff = page_to_pgoff(page);
493 read_lock(&tasklist_lock);
494 for_each_process (tsk) {
495 struct anon_vma_chain *vmac;
496 struct task_struct *t = task_early_kill(tsk, force_early);
500 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
503 if (!page_mapped_in_vma(page, vma))
505 if (vma->vm_mm == t->mm)
506 add_to_kill(t, page, vma, to_kill);
509 read_unlock(&tasklist_lock);
510 page_unlock_anon_vma_read(av);
514 * Collect processes when the error hit a file mapped page.
516 static void collect_procs_file(struct page *page, struct list_head *to_kill,
519 struct vm_area_struct *vma;
520 struct task_struct *tsk;
521 struct address_space *mapping = page->mapping;
524 i_mmap_lock_read(mapping);
525 read_lock(&tasklist_lock);
526 pgoff = page_to_pgoff(page);
527 for_each_process(tsk) {
528 struct task_struct *t = task_early_kill(tsk, force_early);
532 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
535 * Send early kill signal to tasks where a vma covers
536 * the page but the corrupted page is not necessarily
537 * mapped it in its pte.
538 * Assume applications who requested early kill want
539 * to be informed of all such data corruptions.
541 if (vma->vm_mm == t->mm)
542 add_to_kill(t, page, vma, to_kill);
545 read_unlock(&tasklist_lock);
546 i_mmap_unlock_read(mapping);
550 * Collect the processes who have the corrupted page mapped to kill.
552 static void collect_procs(struct page *page, struct list_head *tokill,
559 collect_procs_anon(page, tokill, force_early);
561 collect_procs_file(page, tokill, force_early);
570 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
573 tk->size_shift = shift;
576 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
577 unsigned long poisoned_pfn, struct to_kill *tk)
579 unsigned long pfn = 0;
581 if (pte_present(pte)) {
584 swp_entry_t swp = pte_to_swp_entry(pte);
586 if (is_hwpoison_entry(swp))
587 pfn = hwpoison_entry_to_pfn(swp);
590 if (!pfn || pfn != poisoned_pfn)
593 set_to_kill(tk, addr, shift);
597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
599 struct hwp_walk *hwp)
603 unsigned long hwpoison_vaddr;
605 if (!pmd_present(pmd))
608 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
609 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
610 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
616 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
617 struct hwp_walk *hwp)
623 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
624 unsigned long end, struct mm_walk *walk)
626 struct hwp_walk *hwp = walk->private;
628 pte_t *ptep, *mapped_pte;
631 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
633 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
638 if (pmd_trans_unstable(pmdp))
641 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
643 for (; addr != end; ptep++, addr += PAGE_SIZE) {
644 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
649 pte_unmap_unlock(mapped_pte, ptl);
655 #ifdef CONFIG_HUGETLB_PAGE
656 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
657 unsigned long addr, unsigned long end,
658 struct mm_walk *walk)
660 struct hwp_walk *hwp = walk->private;
661 pte_t pte = huge_ptep_get(ptep);
662 struct hstate *h = hstate_vma(walk->vma);
664 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
668 #define hwpoison_hugetlb_range NULL
671 static const struct mm_walk_ops hwp_walk_ops = {
672 .pmd_entry = hwpoison_pte_range,
673 .hugetlb_entry = hwpoison_hugetlb_range,
677 * Sends SIGBUS to the current process with error info.
679 * This function is intended to handle "Action Required" MCEs on already
680 * hardware poisoned pages. They could happen, for example, when
681 * memory_failure() failed to unmap the error page at the first call, or
682 * when multiple local machine checks happened on different CPUs.
684 * MCE handler currently has no easy access to the error virtual address,
685 * so this function walks page table to find it. The returned virtual address
686 * is proper in most cases, but it could be wrong when the application
687 * process has multiple entries mapping the error page.
689 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
693 struct hwp_walk priv = {
698 mmap_read_lock(p->mm);
699 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
701 if (ret == 1 && priv.tk.addr)
702 kill_proc(&priv.tk, pfn, flags);
705 mmap_read_unlock(p->mm);
706 return ret > 0 ? -EHWPOISON : -EFAULT;
709 static const char *action_name[] = {
710 [MF_IGNORED] = "Ignored",
711 [MF_FAILED] = "Failed",
712 [MF_DELAYED] = "Delayed",
713 [MF_RECOVERED] = "Recovered",
716 static const char * const action_page_types[] = {
717 [MF_MSG_KERNEL] = "reserved kernel page",
718 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
719 [MF_MSG_SLAB] = "kernel slab page",
720 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
721 [MF_MSG_HUGE] = "huge page",
722 [MF_MSG_FREE_HUGE] = "free huge page",
723 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
724 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
725 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
726 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
727 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
728 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
729 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
730 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
731 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
732 [MF_MSG_CLEAN_LRU] = "clean LRU page",
733 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
734 [MF_MSG_BUDDY] = "free buddy page",
735 [MF_MSG_DAX] = "dax page",
736 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
737 [MF_MSG_UNKNOWN] = "unknown page",
741 * XXX: It is possible that a page is isolated from LRU cache,
742 * and then kept in swap cache or failed to remove from page cache.
743 * The page count will stop it from being freed by unpoison.
744 * Stress tests should be aware of this memory leak problem.
746 static int delete_from_lru_cache(struct page *p)
748 if (!isolate_lru_page(p)) {
750 * Clear sensible page flags, so that the buddy system won't
751 * complain when the page is unpoison-and-freed.
754 ClearPageUnevictable(p);
757 * Poisoned page might never drop its ref count to 0 so we have
758 * to uncharge it manually from its memcg.
760 mem_cgroup_uncharge(page_folio(p));
763 * drop the page count elevated by isolate_lru_page()
771 static int truncate_error_page(struct page *p, unsigned long pfn,
772 struct address_space *mapping)
776 if (mapping->a_ops->error_remove_page) {
777 int err = mapping->a_ops->error_remove_page(mapping, p);
780 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
782 } else if (page_has_private(p) &&
783 !try_to_release_page(p, GFP_NOIO)) {
784 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 * If the file system doesn't support it just invalidate
792 * This fails on dirty or anything with private pages
794 if (invalidate_inode_page(p))
797 pr_info("Memory failure: %#lx: Failed to invalidate\n",
807 enum mf_action_page_type type;
809 /* Callback ->action() has to unlock the relevant page inside it. */
810 int (*action)(struct page_state *ps, struct page *p);
814 * Return true if page is still referenced by others, otherwise return
817 * The extra_pins is true when one extra refcount is expected.
819 static bool has_extra_refcount(struct page_state *ps, struct page *p,
822 int count = page_count(p) - 1;
828 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
829 page_to_pfn(p), action_page_types[ps->type], count);
837 * Error hit kernel page.
838 * Do nothing, try to be lucky and not touch this instead. For a few cases we
839 * could be more sophisticated.
841 static int me_kernel(struct page_state *ps, struct page *p)
848 * Page in unknown state. Do nothing.
850 static int me_unknown(struct page_state *ps, struct page *p)
852 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
858 * Clean (or cleaned) page cache page.
860 static int me_pagecache_clean(struct page_state *ps, struct page *p)
863 struct address_space *mapping;
866 delete_from_lru_cache(p);
869 * For anonymous pages we're done the only reference left
870 * should be the one m_f() holds.
878 * Now truncate the page in the page cache. This is really
879 * more like a "temporary hole punch"
880 * Don't do this for block devices when someone else
881 * has a reference, because it could be file system metadata
882 * and that's not safe to truncate.
884 mapping = page_mapping(p);
887 * Page has been teared down in the meanwhile
894 * The shmem page is kept in page cache instead of truncating
895 * so is expected to have an extra refcount after error-handling.
897 extra_pins = shmem_mapping(mapping);
900 * Truncation is a bit tricky. Enable it per file system for now.
902 * Open: to take i_rwsem or not for this? Right now we don't.
904 ret = truncate_error_page(p, page_to_pfn(p), mapping);
905 if (has_extra_refcount(ps, p, extra_pins))
915 * Dirty pagecache page
916 * Issues: when the error hit a hole page the error is not properly
919 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
921 struct address_space *mapping = page_mapping(p);
924 /* TBD: print more information about the file. */
927 * IO error will be reported by write(), fsync(), etc.
928 * who check the mapping.
929 * This way the application knows that something went
930 * wrong with its dirty file data.
932 * There's one open issue:
934 * The EIO will be only reported on the next IO
935 * operation and then cleared through the IO map.
936 * Normally Linux has two mechanisms to pass IO error
937 * first through the AS_EIO flag in the address space
938 * and then through the PageError flag in the page.
939 * Since we drop pages on memory failure handling the
940 * only mechanism open to use is through AS_AIO.
942 * This has the disadvantage that it gets cleared on
943 * the first operation that returns an error, while
944 * the PageError bit is more sticky and only cleared
945 * when the page is reread or dropped. If an
946 * application assumes it will always get error on
947 * fsync, but does other operations on the fd before
948 * and the page is dropped between then the error
949 * will not be properly reported.
951 * This can already happen even without hwpoisoned
952 * pages: first on metadata IO errors (which only
953 * report through AS_EIO) or when the page is dropped
956 * So right now we assume that the application DTRT on
957 * the first EIO, but we're not worse than other parts
960 mapping_set_error(mapping, -EIO);
963 return me_pagecache_clean(ps, p);
967 * Clean and dirty swap cache.
969 * Dirty swap cache page is tricky to handle. The page could live both in page
970 * cache and swap cache(ie. page is freshly swapped in). So it could be
971 * referenced concurrently by 2 types of PTEs:
972 * normal PTEs and swap PTEs. We try to handle them consistently by calling
973 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
975 * - clear dirty bit to prevent IO
977 * - but keep in the swap cache, so that when we return to it on
978 * a later page fault, we know the application is accessing
979 * corrupted data and shall be killed (we installed simple
980 * interception code in do_swap_page to catch it).
982 * Clean swap cache pages can be directly isolated. A later page fault will
983 * bring in the known good data from disk.
985 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
988 bool extra_pins = false;
991 /* Trigger EIO in shmem: */
992 ClearPageUptodate(p);
994 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
997 if (ret == MF_DELAYED)
1000 if (has_extra_refcount(ps, p, extra_pins))
1006 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1010 delete_from_swap_cache(p);
1012 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1015 if (has_extra_refcount(ps, p, false))
1022 * Huge pages. Needs work.
1024 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1025 * To narrow down kill region to one page, we need to break up pmd.
1027 static int me_huge_page(struct page_state *ps, struct page *p)
1030 struct page *hpage = compound_head(p);
1031 struct address_space *mapping;
1033 if (!PageHuge(hpage))
1036 mapping = page_mapping(hpage);
1038 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1044 * migration entry prevents later access on error hugepage,
1045 * so we can free and dissolve it into buddy to save healthy
1049 if (__page_handle_poison(p)) {
1055 if (has_extra_refcount(ps, p, false))
1062 * Various page states we can handle.
1064 * A page state is defined by its current page->flags bits.
1065 * The table matches them in order and calls the right handler.
1067 * This is quite tricky because we can access page at any time
1068 * in its live cycle, so all accesses have to be extremely careful.
1070 * This is not complete. More states could be added.
1071 * For any missing state don't attempt recovery.
1074 #define dirty (1UL << PG_dirty)
1075 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1076 #define unevict (1UL << PG_unevictable)
1077 #define mlock (1UL << PG_mlocked)
1078 #define lru (1UL << PG_lru)
1079 #define head (1UL << PG_head)
1080 #define slab (1UL << PG_slab)
1081 #define reserved (1UL << PG_reserved)
1083 static struct page_state error_states[] = {
1084 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1086 * free pages are specially detected outside this table:
1087 * PG_buddy pages only make a small fraction of all free pages.
1091 * Could in theory check if slab page is free or if we can drop
1092 * currently unused objects without touching them. But just
1093 * treat it as standard kernel for now.
1095 { slab, slab, MF_MSG_SLAB, me_kernel },
1097 { head, head, MF_MSG_HUGE, me_huge_page },
1099 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1100 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1102 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1103 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1105 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1106 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1108 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1109 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1112 * Catchall entry: must be at end.
1114 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1127 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1128 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1130 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1131 enum mf_result result)
1133 trace_memory_failure_event(pfn, type, result);
1135 num_poisoned_pages_inc();
1136 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1137 pfn, action_page_types[type], action_name[result]);
1140 static int page_action(struct page_state *ps, struct page *p,
1145 /* page p should be unlocked after returning from ps->action(). */
1146 result = ps->action(ps, p);
1148 action_result(pfn, ps->type, result);
1150 /* Could do more checks here if page looks ok */
1152 * Could adjust zone counters here to correct for the missing page.
1155 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1158 static inline bool PageHWPoisonTakenOff(struct page *page)
1160 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1163 void SetPageHWPoisonTakenOff(struct page *page)
1165 set_page_private(page, MAGIC_HWPOISON);
1168 void ClearPageHWPoisonTakenOff(struct page *page)
1170 if (PageHWPoison(page))
1171 set_page_private(page, 0);
1175 * Return true if a page type of a given page is supported by hwpoison
1176 * mechanism (while handling could fail), otherwise false. This function
1177 * does not return true for hugetlb or device memory pages, so it's assumed
1178 * to be called only in the context where we never have such pages.
1180 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1182 /* Soft offline could migrate non-LRU movable pages */
1183 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1186 return PageLRU(page) || is_free_buddy_page(page);
1189 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1191 struct page *head = compound_head(page);
1193 bool hugetlb = false;
1195 ret = get_hwpoison_huge_page(head, &hugetlb);
1200 * This check prevents from calling get_hwpoison_unless_zero()
1201 * for any unsupported type of page in order to reduce the risk of
1202 * unexpected races caused by taking a page refcount.
1204 if (!HWPoisonHandlable(head, flags))
1207 if (get_page_unless_zero(head)) {
1208 if (head == compound_head(page))
1211 pr_info("Memory failure: %#lx cannot catch tail\n",
1219 static int get_any_page(struct page *p, unsigned long flags)
1221 int ret = 0, pass = 0;
1222 bool count_increased = false;
1224 if (flags & MF_COUNT_INCREASED)
1225 count_increased = true;
1228 if (!count_increased) {
1229 ret = __get_hwpoison_page(p, flags);
1231 if (page_count(p)) {
1232 /* We raced with an allocation, retry. */
1236 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1237 /* We raced with put_page, retry. */
1243 } else if (ret == -EBUSY) {
1245 * We raced with (possibly temporary) unhandlable
1257 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1261 * A page we cannot handle. Check whether we can turn
1262 * it into something we can handle.
1267 count_increased = false;
1275 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1280 static int __get_unpoison_page(struct page *page)
1282 struct page *head = compound_head(page);
1284 bool hugetlb = false;
1286 ret = get_hwpoison_huge_page(head, &hugetlb);
1291 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1292 * but also isolated from buddy freelist, so need to identify the
1293 * state and have to cancel both operations to unpoison.
1295 if (PageHWPoisonTakenOff(page))
1298 return get_page_unless_zero(page) ? 1 : 0;
1302 * get_hwpoison_page() - Get refcount for memory error handling
1303 * @p: Raw error page (hit by memory error)
1304 * @flags: Flags controlling behavior of error handling
1306 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1307 * error on it, after checking that the error page is in a well-defined state
1308 * (defined as a page-type we can successfully handle the memory error on it,
1309 * such as LRU page and hugetlb page).
1311 * Memory error handling could be triggered at any time on any type of page,
1312 * so it's prone to race with typical memory management lifecycle (like
1313 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1314 * extra care for the error page's state (as done in __get_hwpoison_page()),
1315 * and has some retry logic in get_any_page().
1317 * When called from unpoison_memory(), the caller should already ensure that
1318 * the given page has PG_hwpoison. So it's never reused for other page
1319 * allocations, and __get_unpoison_page() never races with them.
1321 * Return: 0 on failure,
1322 * 1 on success for in-use pages in a well-defined state,
1323 * -EIO for pages on which we can not handle memory errors,
1324 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1325 * operations like allocation and free,
1326 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1328 static int get_hwpoison_page(struct page *p, unsigned long flags)
1332 zone_pcp_disable(page_zone(p));
1333 if (flags & MF_UNPOISON)
1334 ret = __get_unpoison_page(p);
1336 ret = get_any_page(p, flags);
1337 zone_pcp_enable(page_zone(p));
1343 * Do all that is necessary to remove user space mappings. Unmap
1344 * the pages and send SIGBUS to the processes if the data was dirty.
1346 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1347 int flags, struct page *hpage)
1349 struct folio *folio = page_folio(hpage);
1350 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1351 struct address_space *mapping;
1354 int kill = 1, forcekill;
1355 bool mlocked = PageMlocked(hpage);
1358 * Here we are interested only in user-mapped pages, so skip any
1359 * other types of pages.
1361 if (PageReserved(p) || PageSlab(p))
1363 if (!(PageLRU(hpage) || PageHuge(p)))
1367 * This check implies we don't kill processes if their pages
1368 * are in the swap cache early. Those are always late kills.
1370 if (!page_mapped(hpage))
1374 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1378 if (PageSwapCache(p)) {
1379 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1381 ttu |= TTU_IGNORE_HWPOISON;
1385 * Propagate the dirty bit from PTEs to struct page first, because we
1386 * need this to decide if we should kill or just drop the page.
1387 * XXX: the dirty test could be racy: set_page_dirty() may not always
1388 * be called inside page lock (it's recommended but not enforced).
1390 mapping = page_mapping(hpage);
1391 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1392 mapping_can_writeback(mapping)) {
1393 if (page_mkclean(hpage)) {
1394 SetPageDirty(hpage);
1397 ttu |= TTU_IGNORE_HWPOISON;
1398 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1404 * First collect all the processes that have the page
1405 * mapped in dirty form. This has to be done before try_to_unmap,
1406 * because ttu takes the rmap data structures down.
1408 * Error handling: We ignore errors here because
1409 * there's nothing that can be done.
1412 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1414 if (PageHuge(hpage) && !PageAnon(hpage)) {
1416 * For hugetlb pages in shared mappings, try_to_unmap
1417 * could potentially call huge_pmd_unshare. Because of
1418 * this, take semaphore in write mode here and set
1419 * TTU_RMAP_LOCKED to indicate we have taken the lock
1420 * at this higher level.
1422 mapping = hugetlb_page_mapping_lock_write(hpage);
1424 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1425 i_mmap_unlock_write(mapping);
1427 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1429 try_to_unmap(folio, ttu);
1432 unmap_success = !page_mapped(hpage);
1434 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1435 pfn, page_mapcount(hpage));
1438 * try_to_unmap() might put mlocked page in lru cache, so call
1439 * shake_page() again to ensure that it's flushed.
1445 * Now that the dirty bit has been propagated to the
1446 * struct page and all unmaps done we can decide if
1447 * killing is needed or not. Only kill when the page
1448 * was dirty or the process is not restartable,
1449 * otherwise the tokill list is merely
1450 * freed. When there was a problem unmapping earlier
1451 * use a more force-full uncatchable kill to prevent
1452 * any accesses to the poisoned memory.
1454 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1455 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1457 return unmap_success;
1460 static int identify_page_state(unsigned long pfn, struct page *p,
1461 unsigned long page_flags)
1463 struct page_state *ps;
1466 * The first check uses the current page flags which may not have any
1467 * relevant information. The second check with the saved page flags is
1468 * carried out only if the first check can't determine the page status.
1470 for (ps = error_states;; ps++)
1471 if ((p->flags & ps->mask) == ps->res)
1474 page_flags |= (p->flags & (1UL << PG_dirty));
1477 for (ps = error_states;; ps++)
1478 if ((page_flags & ps->mask) == ps->res)
1480 return page_action(ps, p, pfn);
1483 static int try_to_split_thp_page(struct page *page, const char *msg)
1486 if (unlikely(split_huge_page(page))) {
1487 unsigned long pfn = page_to_pfn(page);
1490 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1500 * Called from hugetlb code with hugetlb_lock held.
1504 * 1 - in-use hugepage
1505 * 2 - not a hugepage
1506 * -EBUSY - the hugepage is busy (try to retry)
1507 * -EHWPOISON - the hugepage is already hwpoisoned
1509 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1511 struct page *page = pfn_to_page(pfn);
1512 struct page *head = compound_head(page);
1513 int ret = 2; /* fallback to normal page handling */
1514 bool count_increased = false;
1516 if (!PageHeadHuge(head))
1519 if (flags & MF_COUNT_INCREASED) {
1521 count_increased = true;
1522 } else if (HPageFreed(head)) {
1524 } else if (HPageMigratable(head)) {
1525 ret = get_page_unless_zero(head);
1527 count_increased = true;
1533 if (TestSetPageHWPoison(head)) {
1540 if (count_increased)
1545 #ifdef CONFIG_HUGETLB_PAGE
1547 * Taking refcount of hugetlb pages needs extra care about race conditions
1548 * with basic operations like hugepage allocation/free/demotion.
1549 * So some of prechecks for hwpoison (pinning, and testing/setting
1550 * PageHWPoison) should be done in single hugetlb_lock range.
1552 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1555 struct page *p = pfn_to_page(pfn);
1557 unsigned long page_flags;
1562 res = get_huge_page_for_hwpoison(pfn, flags);
1563 if (res == 2) { /* fallback to normal page handling */
1566 } else if (res == -EHWPOISON) {
1567 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1568 if (flags & MF_ACTION_REQUIRED) {
1569 head = compound_head(p);
1570 res = kill_accessing_process(current, page_to_pfn(head), flags);
1573 } else if (res == -EBUSY) {
1578 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1582 head = compound_head(p);
1585 if (hwpoison_filter(p)) {
1586 ClearPageHWPoison(head);
1592 * Handling free hugepage. The possible race with hugepage allocation
1593 * or demotion can be prevented by PageHWPoison flag.
1598 if (__page_handle_poison(p)) {
1602 action_result(pfn, MF_MSG_FREE_HUGE, res);
1603 return res == MF_RECOVERED ? 0 : -EBUSY;
1606 page_flags = head->flags;
1609 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1610 * simply disable it. In order to make it work properly, we need
1612 * - conversion of a pud that maps an error hugetlb into hwpoison
1613 * entry properly works, and
1614 * - other mm code walking over page table is aware of pud-aligned
1617 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1618 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1623 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1624 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1629 return identify_page_state(pfn, p, page_flags);
1635 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1641 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1642 struct dev_pagemap *pgmap)
1644 struct page *page = pfn_to_page(pfn);
1645 unsigned long size = 0;
1652 if (flags & MF_COUNT_INCREASED)
1654 * Drop the extra refcount in case we come from madvise().
1658 /* device metadata space is not recoverable */
1659 if (!pgmap_pfn_valid(pgmap, pfn)) {
1665 * Pages instantiated by device-dax (not filesystem-dax)
1666 * may be compound pages.
1668 page = compound_head(page);
1671 * Prevent the inode from being freed while we are interrogating
1672 * the address_space, typically this would be handled by
1673 * lock_page(), but dax pages do not use the page lock. This
1674 * also prevents changes to the mapping of this pfn until
1675 * poison signaling is complete.
1677 cookie = dax_lock_page(page);
1681 if (hwpoison_filter(page)) {
1686 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1688 * TODO: Handle HMM pages which may need coordination
1689 * with device-side memory.
1695 * Use this flag as an indication that the dax page has been
1696 * remapped UC to prevent speculative consumption of poison.
1698 SetPageHWPoison(page);
1701 * Unlike System-RAM there is no possibility to swap in a
1702 * different physical page at a given virtual address, so all
1703 * userspace consumption of ZONE_DEVICE memory necessitates
1704 * SIGBUS (i.e. MF_MUST_KILL)
1706 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1707 collect_procs(page, &tokill, true);
1709 list_for_each_entry(tk, &tokill, nd)
1711 size = max(size, 1UL << tk->size_shift);
1714 * Unmap the largest mapping to avoid breaking up
1715 * device-dax mappings which are constant size. The
1716 * actual size of the mapping being torn down is
1717 * communicated in siginfo, see kill_proc()
1719 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1720 unmap_mapping_range(page->mapping, start, size, 0);
1722 kill_procs(&tokill, true, false, pfn, flags);
1725 dax_unlock_page(page, cookie);
1727 /* drop pgmap ref acquired in caller */
1728 put_dev_pagemap(pgmap);
1729 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1733 static DEFINE_MUTEX(mf_mutex);
1736 * memory_failure - Handle memory failure of a page.
1737 * @pfn: Page Number of the corrupted page
1738 * @flags: fine tune action taken
1740 * This function is called by the low level machine check code
1741 * of an architecture when it detects hardware memory corruption
1742 * of a page. It tries its best to recover, which includes
1743 * dropping pages, killing processes etc.
1745 * The function is primarily of use for corruptions that
1746 * happen outside the current execution context (e.g. when
1747 * detected by a background scrubber)
1749 * Must run in process context (e.g. a work queue) with interrupts
1750 * enabled and no spinlocks hold.
1752 * Return: 0 for successfully handled the memory error,
1753 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1754 * < 0(except -EOPNOTSUPP) on failure.
1756 int memory_failure(unsigned long pfn, int flags)
1760 struct dev_pagemap *pgmap;
1762 unsigned long page_flags;
1766 if (!sysctl_memory_failure_recovery)
1767 panic("Memory failure on page %lx", pfn);
1769 mutex_lock(&mf_mutex);
1771 p = pfn_to_online_page(pfn);
1773 res = arch_memory_failure(pfn, flags);
1777 if (pfn_valid(pfn)) {
1778 pgmap = get_dev_pagemap(pfn, NULL);
1780 res = memory_failure_dev_pagemap(pfn, flags,
1785 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1792 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1796 if (TestSetPageHWPoison(p)) {
1797 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1800 if (flags & MF_ACTION_REQUIRED)
1801 res = kill_accessing_process(current, pfn, flags);
1802 if (flags & MF_COUNT_INCREASED)
1807 hpage = compound_head(p);
1810 * We need/can do nothing about count=0 pages.
1811 * 1) it's a free page, and therefore in safe hand:
1812 * prep_new_page() will be the gate keeper.
1813 * 2) it's part of a non-compound high order page.
1814 * Implies some kernel user: cannot stop them from
1815 * R/W the page; let's pray that the page has been
1816 * used and will be freed some time later.
1817 * In fact it's dangerous to directly bump up page count from 0,
1818 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1820 if (!(flags & MF_COUNT_INCREASED)) {
1821 res = get_hwpoison_page(p, flags);
1823 if (is_free_buddy_page(p)) {
1824 if (take_page_off_buddy(p)) {
1828 /* We lost the race, try again */
1830 ClearPageHWPoison(p);
1836 action_result(pfn, MF_MSG_BUDDY, res);
1837 res = res == MF_RECOVERED ? 0 : -EBUSY;
1839 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1843 } else if (res < 0) {
1844 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1850 if (PageTransHuge(hpage)) {
1852 * The flag must be set after the refcount is bumped
1853 * otherwise it may race with THP split.
1854 * And the flag can't be set in get_hwpoison_page() since
1855 * it is called by soft offline too and it is just called
1856 * for !MF_COUNT_INCREASE. So here seems to be the best
1859 * Don't need care about the above error handling paths for
1860 * get_hwpoison_page() since they handle either free page
1861 * or unhandlable page. The refcount is bumped iff the
1862 * page is a valid handlable page.
1864 SetPageHasHWPoisoned(hpage);
1865 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1866 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1870 VM_BUG_ON_PAGE(!page_count(p), p);
1874 * We ignore non-LRU pages for good reasons.
1875 * - PG_locked is only well defined for LRU pages and a few others
1876 * - to avoid races with __SetPageLocked()
1877 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1878 * The check (unnecessarily) ignores LRU pages being isolated and
1879 * walked by the page reclaim code, however that's not a big loss.
1886 * We're only intended to deal with the non-Compound page here.
1887 * However, the page could have changed compound pages due to
1888 * race window. If this happens, we could try again to hopefully
1889 * handle the page next round.
1891 if (PageCompound(p)) {
1893 ClearPageHWPoison(p);
1896 flags &= ~MF_COUNT_INCREASED;
1900 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1906 * We use page flags to determine what action should be taken, but
1907 * the flags can be modified by the error containment action. One
1908 * example is an mlocked page, where PG_mlocked is cleared by
1909 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1910 * correctly, we save a copy of the page flags at this time.
1912 page_flags = p->flags;
1914 if (hwpoison_filter(p)) {
1915 TestClearPageHWPoison(p);
1923 * __munlock_pagevec may clear a writeback page's LRU flag without
1924 * page_lock. We need wait writeback completion for this page or it
1925 * may trigger vfs BUG while evict inode.
1927 if (!PageLRU(p) && !PageWriteback(p))
1928 goto identify_page_state;
1931 * It's very difficult to mess with pages currently under IO
1932 * and in many cases impossible, so we just avoid it here.
1934 wait_on_page_writeback(p);
1937 * Now take care of user space mappings.
1938 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1940 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1941 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1947 * Torn down by someone else?
1949 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1950 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1955 identify_page_state:
1956 res = identify_page_state(pfn, p, page_flags);
1957 mutex_unlock(&mf_mutex);
1962 mutex_unlock(&mf_mutex);
1965 EXPORT_SYMBOL_GPL(memory_failure);
1967 #define MEMORY_FAILURE_FIFO_ORDER 4
1968 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1970 struct memory_failure_entry {
1975 struct memory_failure_cpu {
1976 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1977 MEMORY_FAILURE_FIFO_SIZE);
1979 struct work_struct work;
1982 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1985 * memory_failure_queue - Schedule handling memory failure of a page.
1986 * @pfn: Page Number of the corrupted page
1987 * @flags: Flags for memory failure handling
1989 * This function is called by the low level hardware error handler
1990 * when it detects hardware memory corruption of a page. It schedules
1991 * the recovering of error page, including dropping pages, killing
1994 * The function is primarily of use for corruptions that
1995 * happen outside the current execution context (e.g. when
1996 * detected by a background scrubber)
1998 * Can run in IRQ context.
2000 void memory_failure_queue(unsigned long pfn, int flags)
2002 struct memory_failure_cpu *mf_cpu;
2003 unsigned long proc_flags;
2004 struct memory_failure_entry entry = {
2009 mf_cpu = &get_cpu_var(memory_failure_cpu);
2010 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2011 if (kfifo_put(&mf_cpu->fifo, entry))
2012 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2014 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
2016 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2017 put_cpu_var(memory_failure_cpu);
2019 EXPORT_SYMBOL_GPL(memory_failure_queue);
2021 static void memory_failure_work_func(struct work_struct *work)
2023 struct memory_failure_cpu *mf_cpu;
2024 struct memory_failure_entry entry = { 0, };
2025 unsigned long proc_flags;
2028 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2030 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2031 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2032 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2035 if (entry.flags & MF_SOFT_OFFLINE)
2036 soft_offline_page(entry.pfn, entry.flags);
2038 memory_failure(entry.pfn, entry.flags);
2043 * Process memory_failure work queued on the specified CPU.
2044 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2046 void memory_failure_queue_kick(int cpu)
2048 struct memory_failure_cpu *mf_cpu;
2050 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2051 cancel_work_sync(&mf_cpu->work);
2052 memory_failure_work_func(&mf_cpu->work);
2055 static int __init memory_failure_init(void)
2057 struct memory_failure_cpu *mf_cpu;
2060 for_each_possible_cpu(cpu) {
2061 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2062 spin_lock_init(&mf_cpu->lock);
2063 INIT_KFIFO(mf_cpu->fifo);
2064 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2069 core_initcall(memory_failure_init);
2071 #define unpoison_pr_info(fmt, pfn, rs) \
2073 if (__ratelimit(rs)) \
2074 pr_info(fmt, pfn); \
2078 * unpoison_memory - Unpoison a previously poisoned page
2079 * @pfn: Page number of the to be unpoisoned page
2081 * Software-unpoison a page that has been poisoned by
2082 * memory_failure() earlier.
2084 * This is only done on the software-level, so it only works
2085 * for linux injected failures, not real hardware failures
2087 * Returns 0 for success, otherwise -errno.
2089 int unpoison_memory(unsigned long pfn)
2095 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2096 DEFAULT_RATELIMIT_BURST);
2098 if (!pfn_valid(pfn))
2101 p = pfn_to_page(pfn);
2102 page = compound_head(p);
2104 mutex_lock(&mf_mutex);
2106 if (!PageHWPoison(p)) {
2107 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2112 if (page_count(page) > 1) {
2113 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2118 if (page_mapped(page)) {
2119 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2124 if (page_mapping(page)) {
2125 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2130 if (PageSlab(page) || PageTable(page))
2133 ret = get_hwpoison_page(p, MF_UNPOISON);
2135 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2136 } else if (ret < 0) {
2137 if (ret == -EHWPOISON) {
2138 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2140 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2143 freeit = !!TestClearPageHWPoison(p);
2146 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2153 mutex_unlock(&mf_mutex);
2154 if (!ret || freeit) {
2155 num_poisoned_pages_dec();
2156 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2157 page_to_pfn(p), &unpoison_rs);
2161 EXPORT_SYMBOL(unpoison_memory);
2163 static bool isolate_page(struct page *page, struct list_head *pagelist)
2165 bool isolated = false;
2166 bool lru = PageLRU(page);
2168 if (PageHuge(page)) {
2169 isolated = isolate_huge_page(page, pagelist);
2172 isolated = !isolate_lru_page(page);
2174 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2177 list_add(&page->lru, pagelist);
2180 if (isolated && lru)
2181 inc_node_page_state(page, NR_ISOLATED_ANON +
2182 page_is_file_lru(page));
2185 * If we succeed to isolate the page, we grabbed another refcount on
2186 * the page, so we can safely drop the one we got from get_any_pages().
2187 * If we failed to isolate the page, it means that we cannot go further
2188 * and we will return an error, so drop the reference we got from
2189 * get_any_pages() as well.
2196 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2197 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2198 * If the page is mapped, it migrates the contents over.
2200 static int __soft_offline_page(struct page *page)
2203 unsigned long pfn = page_to_pfn(page);
2204 struct page *hpage = compound_head(page);
2205 char const *msg_page[] = {"page", "hugepage"};
2206 bool huge = PageHuge(page);
2207 LIST_HEAD(pagelist);
2208 struct migration_target_control mtc = {
2209 .nid = NUMA_NO_NODE,
2210 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2214 if (!PageHuge(page))
2215 wait_on_page_writeback(page);
2216 if (PageHWPoison(page)) {
2219 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2223 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2225 * Try to invalidate first. This should work for
2226 * non dirty unmapped page cache pages.
2228 ret = invalidate_inode_page(page);
2232 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2233 page_handle_poison(page, false, true);
2237 if (isolate_page(hpage, &pagelist)) {
2238 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2239 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2241 bool release = !huge;
2243 if (!page_handle_poison(page, huge, release))
2246 if (!list_empty(&pagelist))
2247 putback_movable_pages(&pagelist);
2249 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2250 pfn, msg_page[huge], ret, &page->flags);
2255 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2256 pfn, msg_page[huge], page_count(page), &page->flags);
2262 static int soft_offline_in_use_page(struct page *page)
2264 struct page *hpage = compound_head(page);
2266 if (!PageHuge(page) && PageTransHuge(hpage))
2267 if (try_to_split_thp_page(page, "soft offline") < 0)
2269 return __soft_offline_page(page);
2272 static int soft_offline_free_page(struct page *page)
2276 if (!page_handle_poison(page, true, false))
2282 static void put_ref_page(struct page *page)
2289 * soft_offline_page - Soft offline a page.
2290 * @pfn: pfn to soft-offline
2291 * @flags: flags. Same as memory_failure().
2293 * Returns 0 on success
2294 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2295 * < 0 otherwise negated errno.
2297 * Soft offline a page, by migration or invalidation,
2298 * without killing anything. This is for the case when
2299 * a page is not corrupted yet (so it's still valid to access),
2300 * but has had a number of corrected errors and is better taken
2303 * The actual policy on when to do that is maintained by
2306 * This should never impact any application or cause data loss,
2307 * however it might take some time.
2309 * This is not a 100% solution for all memory, but tries to be
2310 * ``good enough'' for the majority of memory.
2312 int soft_offline_page(unsigned long pfn, int flags)
2315 bool try_again = true;
2316 struct page *page, *ref_page = NULL;
2318 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2320 if (!pfn_valid(pfn))
2322 if (flags & MF_COUNT_INCREASED)
2323 ref_page = pfn_to_page(pfn);
2325 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2326 page = pfn_to_online_page(pfn);
2328 put_ref_page(ref_page);
2332 mutex_lock(&mf_mutex);
2334 if (PageHWPoison(page)) {
2335 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2336 put_ref_page(ref_page);
2337 mutex_unlock(&mf_mutex);
2343 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2346 if (hwpoison_filter(page)) {
2350 put_ref_page(ref_page);
2352 mutex_unlock(&mf_mutex);
2357 ret = soft_offline_in_use_page(page);
2358 } else if (ret == 0) {
2359 if (soft_offline_free_page(page) && try_again) {
2361 flags &= ~MF_COUNT_INCREASED;
2366 mutex_unlock(&mf_mutex);
2371 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2376 * A further optimization is to have per section refcounted
2377 * num_poisoned_pages. But that would need more space per memmap, so
2378 * for now just do a quick global check to speed up this routine in the
2379 * absence of bad pages.
2381 if (atomic_long_read(&num_poisoned_pages) == 0)
2384 for (i = 0; i < nr_pages; i++) {
2385 if (PageHWPoison(&memmap[i])) {
2386 num_poisoned_pages_dec();
2387 ClearPageHWPoison(&memmap[i]);