1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
68 #include "ras/ras_event.h"
70 static int sysctl_memory_failure_early_kill __read_mostly;
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
76 static bool hw_memory_failure __read_mostly = false;
78 inline void num_poisoned_pages_inc(unsigned long pfn)
80 atomic_long_inc(&num_poisoned_pages);
81 memblk_nr_poison_inc(pfn);
84 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
86 atomic_long_sub(i, &num_poisoned_pages);
88 memblk_nr_poison_sub(pfn, i);
92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93 * @_name: name of the file in the per NUMA sysfs directory.
95 #define MF_ATTR_RO(_name) \
96 static ssize_t _name##_show(struct device *dev, \
97 struct device_attribute *attr, \
100 struct memory_failure_stats *mf_stats = \
101 &NODE_DATA(dev->id)->mf_stats; \
102 return sprintf(buf, "%lu\n", mf_stats->_name); \
104 static DEVICE_ATTR_RO(_name)
110 MF_ATTR_RO(recovered);
112 static struct attribute *memory_failure_attr[] = {
113 &dev_attr_total.attr,
114 &dev_attr_ignored.attr,
115 &dev_attr_failed.attr,
116 &dev_attr_delayed.attr,
117 &dev_attr_recovered.attr,
121 const struct attribute_group memory_failure_attr_group = {
122 .name = "memory_failure",
123 .attrs = memory_failure_attr,
127 static struct ctl_table memory_failure_table[] = {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
149 static int __init memory_failure_sysctl_init(void)
151 register_sysctl_init("vm", memory_failure_table);
154 late_initcall(memory_failure_sysctl_init);
155 #endif /* CONFIG_SYSCTL */
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
163 static int __page_handle_poison(struct page *page)
167 zone_pcp_disable(page_zone(page));
168 ret = dissolve_free_huge_page(page);
170 ret = take_page_off_buddy(page);
171 zone_pcp_enable(page_zone(page));
176 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
178 if (hugepage_or_freepage) {
180 * Doing this check for free pages is also fine since dissolve_free_huge_page
181 * returns 0 for non-hugetlb pages as well.
183 if (__page_handle_poison(page) <= 0)
185 * We could fail to take off the target page from buddy
186 * for example due to racy page allocation, but that's
187 * acceptable because soft-offlined page is not broken
188 * and if someone really want to use it, they should
194 SetPageHWPoison(page);
198 num_poisoned_pages_inc(page_to_pfn(page));
203 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
205 u32 hwpoison_filter_enable = 0;
206 u32 hwpoison_filter_dev_major = ~0U;
207 u32 hwpoison_filter_dev_minor = ~0U;
208 u64 hwpoison_filter_flags_mask;
209 u64 hwpoison_filter_flags_value;
210 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
211 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
216 static int hwpoison_filter_dev(struct page *p)
218 struct address_space *mapping;
221 if (hwpoison_filter_dev_major == ~0U &&
222 hwpoison_filter_dev_minor == ~0U)
225 mapping = page_mapping(p);
226 if (mapping == NULL || mapping->host == NULL)
229 dev = mapping->host->i_sb->s_dev;
230 if (hwpoison_filter_dev_major != ~0U &&
231 hwpoison_filter_dev_major != MAJOR(dev))
233 if (hwpoison_filter_dev_minor != ~0U &&
234 hwpoison_filter_dev_minor != MINOR(dev))
240 static int hwpoison_filter_flags(struct page *p)
242 if (!hwpoison_filter_flags_mask)
245 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
246 hwpoison_filter_flags_value)
253 * This allows stress tests to limit test scope to a collection of tasks
254 * by putting them under some memcg. This prevents killing unrelated/important
255 * processes such as /sbin/init. Note that the target task may share clean
256 * pages with init (eg. libc text), which is harmless. If the target task
257 * share _dirty_ pages with another task B, the test scheme must make sure B
258 * is also included in the memcg. At last, due to race conditions this filter
259 * can only guarantee that the page either belongs to the memcg tasks, or is
263 u64 hwpoison_filter_memcg;
264 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
265 static int hwpoison_filter_task(struct page *p)
267 if (!hwpoison_filter_memcg)
270 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
276 static int hwpoison_filter_task(struct page *p) { return 0; }
279 int hwpoison_filter(struct page *p)
281 if (!hwpoison_filter_enable)
284 if (hwpoison_filter_dev(p))
287 if (hwpoison_filter_flags(p))
290 if (hwpoison_filter_task(p))
296 int hwpoison_filter(struct page *p)
302 EXPORT_SYMBOL_GPL(hwpoison_filter);
305 * Kill all processes that have a poisoned page mapped and then isolate
309 * Find all processes having the page mapped and kill them.
310 * But we keep a page reference around so that the page is not
311 * actually freed yet.
312 * Then stash the page away
314 * There's no convenient way to get back to mapped processes
315 * from the VMAs. So do a brute-force search over all
318 * Remember that machine checks are not common (or rather
319 * if they are common you have other problems), so this shouldn't
320 * be a performance issue.
322 * Also there are some races possible while we get from the
323 * error detection to actually handle it.
328 struct task_struct *tsk;
334 * Send all the processes who have the page mapped a signal.
335 * ``action optional'' if they are not immediately affected by the error
336 * ``action required'' if error happened in current execution context
338 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
340 struct task_struct *t = tk->tsk;
341 short addr_lsb = tk->size_shift;
344 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
345 pfn, t->comm, t->pid);
347 if ((flags & MF_ACTION_REQUIRED) && (t == current))
348 ret = force_sig_mceerr(BUS_MCEERR_AR,
349 (void __user *)tk->addr, addr_lsb);
352 * Signal other processes sharing the page if they have
354 * Don't use force here, it's convenient if the signal
355 * can be temporarily blocked.
356 * This could cause a loop when the user sets SIGBUS
357 * to SIG_IGN, but hopefully no one will do that?
359 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 pr_info("Error sending signal to %s:%d: %d\n",
363 t->comm, t->pid, ret);
368 * Unknown page type encountered. Try to check whether it can turn PageLRU by
371 void shake_page(struct page *p)
378 if (PageLRU(p) || is_free_buddy_page(p))
383 * TODO: Could shrink slab caches here if a lightweight range-based
384 * shrinker will be available.
387 EXPORT_SYMBOL_GPL(shake_page);
389 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
390 unsigned long address)
392 unsigned long ret = 0;
399 VM_BUG_ON_VMA(address == -EFAULT, vma);
400 pgd = pgd_offset(vma->vm_mm, address);
401 if (!pgd_present(*pgd))
403 p4d = p4d_offset(pgd, address);
404 if (!p4d_present(*p4d))
406 pud = pud_offset(p4d, address);
407 if (!pud_present(*pud))
409 if (pud_devmap(*pud))
411 pmd = pmd_offset(pud, address);
412 if (!pmd_present(*pmd))
414 if (pmd_devmap(*pmd))
416 pte = pte_offset_map(pmd, address);
417 if (pte_present(*pte) && pte_devmap(*pte))
424 * Failure handling: if we can't find or can't kill a process there's
425 * not much we can do. We just print a message and ignore otherwise.
428 #define FSDAX_INVALID_PGOFF ULONG_MAX
431 * Schedule a process for later kill.
432 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
434 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
435 * filesystem with a memory failure handler has claimed the
436 * memory_failure event. In all other cases, page->index and
437 * page->mapping are sufficient for mapping the page back to its
438 * corresponding user virtual address.
440 static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 struct vm_area_struct *vma, struct list_head *to_kill,
442 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
448 pr_err("Out of memory while machine check handling\n");
452 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
453 if (is_zone_device_page(p)) {
454 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
455 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
456 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
458 tk->size_shift = page_shift(compound_head(p));
461 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
462 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
463 * so "tk->size_shift == 0" effectively checks no mapping on
464 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
465 * to a process' address space, it's possible not all N VMAs
466 * contain mappings for the page, but at least one VMA does.
467 * Only deliver SIGBUS with payload derived from the VMA that
468 * has a mapping for the page.
470 if (tk->addr == -EFAULT) {
471 pr_info("Unable to find user space address %lx in %s\n",
472 page_to_pfn(p), tsk->comm);
473 } else if (tk->size_shift == 0) {
478 get_task_struct(tsk);
480 list_add_tail(&tk->nd, to_kill);
483 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
484 struct vm_area_struct *vma,
485 struct list_head *to_kill)
487 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491 static bool task_in_to_kill_list(struct list_head *to_kill,
492 struct task_struct *tsk)
494 struct to_kill *tk, *next;
496 list_for_each_entry_safe(tk, next, to_kill, nd) {
503 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
504 struct vm_area_struct *vma, struct list_head *to_kill,
505 unsigned long ksm_addr)
507 if (!task_in_to_kill_list(to_kill, tsk))
508 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512 * Kill the processes that have been collected earlier.
514 * Only do anything when FORCEKILL is set, otherwise just free the
515 * list (this is used for clean pages which do not need killing)
516 * Also when FAIL is set do a force kill because something went
519 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
520 unsigned long pfn, int flags)
522 struct to_kill *tk, *next;
524 list_for_each_entry_safe(tk, next, to_kill, nd) {
527 * In case something went wrong with munmapping
528 * make sure the process doesn't catch the
529 * signal and then access the memory. Just kill it.
531 if (fail || tk->addr == -EFAULT) {
532 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
533 pfn, tk->tsk->comm, tk->tsk->pid);
534 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
535 tk->tsk, PIDTYPE_PID);
539 * In theory the process could have mapped
540 * something else on the address in-between. We could
541 * check for that, but we need to tell the
544 else if (kill_proc(tk, pfn, flags) < 0)
545 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
546 pfn, tk->tsk->comm, tk->tsk->pid);
549 put_task_struct(tk->tsk);
555 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
556 * on behalf of the thread group. Return task_struct of the (first found)
557 * dedicated thread if found, and return NULL otherwise.
559 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
560 * have to call rcu_read_lock/unlock() in this function.
562 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
564 struct task_struct *t;
566 for_each_thread(tsk, t) {
567 if (t->flags & PF_MCE_PROCESS) {
568 if (t->flags & PF_MCE_EARLY)
571 if (sysctl_memory_failure_early_kill)
579 * Determine whether a given process is "early kill" process which expects
580 * to be signaled when some page under the process is hwpoisoned.
581 * Return task_struct of the dedicated thread (main thread unless explicitly
582 * specified) if the process is "early kill" and otherwise returns NULL.
584 * Note that the above is true for Action Optional case. For Action Required
585 * case, it's only meaningful to the current thread which need to be signaled
586 * with SIGBUS, this error is Action Optional for other non current
587 * processes sharing the same error page,if the process is "early kill", the
588 * task_struct of the dedicated thread will also be returned.
590 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
595 * Comparing ->mm here because current task might represent
596 * a subthread, while tsk always points to the main thread.
598 if (force_early && tsk->mm == current->mm)
601 return find_early_kill_thread(tsk);
605 * Collect processes when the error hit an anonymous page.
607 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
610 struct folio *folio = page_folio(page);
611 struct vm_area_struct *vma;
612 struct task_struct *tsk;
616 av = folio_lock_anon_vma_read(folio, NULL);
617 if (av == NULL) /* Not actually mapped anymore */
620 pgoff = page_to_pgoff(page);
621 read_lock(&tasklist_lock);
622 for_each_process (tsk) {
623 struct anon_vma_chain *vmac;
624 struct task_struct *t = task_early_kill(tsk, force_early);
628 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 if (vma->vm_mm != t->mm)
633 if (!page_mapped_in_vma(page, vma))
635 add_to_kill_anon_file(t, page, vma, to_kill);
638 read_unlock(&tasklist_lock);
639 anon_vma_unlock_read(av);
643 * Collect processes when the error hit a file mapped page.
645 static void collect_procs_file(struct page *page, struct list_head *to_kill,
648 struct vm_area_struct *vma;
649 struct task_struct *tsk;
650 struct address_space *mapping = page->mapping;
653 i_mmap_lock_read(mapping);
654 read_lock(&tasklist_lock);
655 pgoff = page_to_pgoff(page);
656 for_each_process(tsk) {
657 struct task_struct *t = task_early_kill(tsk, force_early);
661 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 * Send early kill signal to tasks where a vma covers
665 * the page but the corrupted page is not necessarily
666 * mapped it in its pte.
667 * Assume applications who requested early kill want
668 * to be informed of all such data corruptions.
670 if (vma->vm_mm == t->mm)
671 add_to_kill_anon_file(t, page, vma, to_kill);
674 read_unlock(&tasklist_lock);
675 i_mmap_unlock_read(mapping);
679 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
680 struct vm_area_struct *vma,
681 struct list_head *to_kill, pgoff_t pgoff)
683 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
687 * Collect processes when the error hit a fsdax page.
689 static void collect_procs_fsdax(struct page *page,
690 struct address_space *mapping, pgoff_t pgoff,
691 struct list_head *to_kill)
693 struct vm_area_struct *vma;
694 struct task_struct *tsk;
696 i_mmap_lock_read(mapping);
697 read_lock(&tasklist_lock);
698 for_each_process(tsk) {
699 struct task_struct *t = task_early_kill(tsk, true);
703 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
704 if (vma->vm_mm == t->mm)
705 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
708 read_unlock(&tasklist_lock);
709 i_mmap_unlock_read(mapping);
711 #endif /* CONFIG_FS_DAX */
714 * Collect the processes who have the corrupted page mapped to kill.
716 static void collect_procs(struct page *page, struct list_head *tokill,
721 if (unlikely(PageKsm(page)))
722 collect_procs_ksm(page, tokill, force_early);
723 else if (PageAnon(page))
724 collect_procs_anon(page, tokill, force_early);
726 collect_procs_file(page, tokill, force_early);
735 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
738 tk->size_shift = shift;
741 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
742 unsigned long poisoned_pfn, struct to_kill *tk)
744 unsigned long pfn = 0;
746 if (pte_present(pte)) {
749 swp_entry_t swp = pte_to_swp_entry(pte);
751 if (is_hwpoison_entry(swp))
752 pfn = swp_offset_pfn(swp);
755 if (!pfn || pfn != poisoned_pfn)
758 set_to_kill(tk, addr, shift);
762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
763 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
764 struct hwp_walk *hwp)
768 unsigned long hwpoison_vaddr;
770 if (!pmd_present(pmd))
773 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
774 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
775 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
781 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
782 struct hwp_walk *hwp)
788 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
789 unsigned long end, struct mm_walk *walk)
791 struct hwp_walk *hwp = walk->private;
793 pte_t *ptep, *mapped_pte;
796 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
798 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
803 if (pmd_trans_unstable(pmdp))
806 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
808 for (; addr != end; ptep++, addr += PAGE_SIZE) {
809 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
814 pte_unmap_unlock(mapped_pte, ptl);
820 #ifdef CONFIG_HUGETLB_PAGE
821 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
822 unsigned long addr, unsigned long end,
823 struct mm_walk *walk)
825 struct hwp_walk *hwp = walk->private;
826 pte_t pte = huge_ptep_get(ptep);
827 struct hstate *h = hstate_vma(walk->vma);
829 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
833 #define hwpoison_hugetlb_range NULL
836 static const struct mm_walk_ops hwp_walk_ops = {
837 .pmd_entry = hwpoison_pte_range,
838 .hugetlb_entry = hwpoison_hugetlb_range,
842 * Sends SIGBUS to the current process with error info.
844 * This function is intended to handle "Action Required" MCEs on already
845 * hardware poisoned pages. They could happen, for example, when
846 * memory_failure() failed to unmap the error page at the first call, or
847 * when multiple local machine checks happened on different CPUs.
849 * MCE handler currently has no easy access to the error virtual address,
850 * so this function walks page table to find it. The returned virtual address
851 * is proper in most cases, but it could be wrong when the application
852 * process has multiple entries mapping the error page.
854 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
858 struct hwp_walk priv = {
866 mmap_read_lock(p->mm);
867 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
869 if (ret == 1 && priv.tk.addr)
870 kill_proc(&priv.tk, pfn, flags);
873 mmap_read_unlock(p->mm);
874 return ret > 0 ? -EHWPOISON : -EFAULT;
877 static const char *action_name[] = {
878 [MF_IGNORED] = "Ignored",
879 [MF_FAILED] = "Failed",
880 [MF_DELAYED] = "Delayed",
881 [MF_RECOVERED] = "Recovered",
884 static const char * const action_page_types[] = {
885 [MF_MSG_KERNEL] = "reserved kernel page",
886 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
887 [MF_MSG_SLAB] = "kernel slab page",
888 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
889 [MF_MSG_HUGE] = "huge page",
890 [MF_MSG_FREE_HUGE] = "free huge page",
891 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
892 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
893 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
894 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
895 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
896 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
897 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
898 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
899 [MF_MSG_CLEAN_LRU] = "clean LRU page",
900 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
901 [MF_MSG_BUDDY] = "free buddy page",
902 [MF_MSG_DAX] = "dax page",
903 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
904 [MF_MSG_UNKNOWN] = "unknown page",
908 * XXX: It is possible that a page is isolated from LRU cache,
909 * and then kept in swap cache or failed to remove from page cache.
910 * The page count will stop it from being freed by unpoison.
911 * Stress tests should be aware of this memory leak problem.
913 static int delete_from_lru_cache(struct page *p)
915 if (isolate_lru_page(p)) {
917 * Clear sensible page flags, so that the buddy system won't
918 * complain when the page is unpoison-and-freed.
921 ClearPageUnevictable(p);
924 * Poisoned page might never drop its ref count to 0 so we have
925 * to uncharge it manually from its memcg.
927 mem_cgroup_uncharge(page_folio(p));
930 * drop the page count elevated by isolate_lru_page()
938 static int truncate_error_page(struct page *p, unsigned long pfn,
939 struct address_space *mapping)
943 if (mapping->a_ops->error_remove_page) {
944 struct folio *folio = page_folio(p);
945 int err = mapping->a_ops->error_remove_page(mapping, p);
948 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
949 } else if (folio_has_private(folio) &&
950 !filemap_release_folio(folio, GFP_NOIO)) {
951 pr_info("%#lx: failed to release buffers\n", pfn);
957 * If the file system doesn't support it just invalidate
958 * This fails on dirty or anything with private pages
960 if (invalidate_inode_page(p))
963 pr_info("%#lx: Failed to invalidate\n", pfn);
972 enum mf_action_page_type type;
974 /* Callback ->action() has to unlock the relevant page inside it. */
975 int (*action)(struct page_state *ps, struct page *p);
979 * Return true if page is still referenced by others, otherwise return
982 * The extra_pins is true when one extra refcount is expected.
984 static bool has_extra_refcount(struct page_state *ps, struct page *p,
987 int count = page_count(p) - 1;
993 pr_err("%#lx: %s still referenced by %d users\n",
994 page_to_pfn(p), action_page_types[ps->type], count);
1002 * Error hit kernel page.
1003 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1004 * could be more sophisticated.
1006 static int me_kernel(struct page_state *ps, struct page *p)
1013 * Page in unknown state. Do nothing.
1015 static int me_unknown(struct page_state *ps, struct page *p)
1017 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1023 * Clean (or cleaned) page cache page.
1025 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1028 struct address_space *mapping;
1031 delete_from_lru_cache(p);
1034 * For anonymous pages we're done the only reference left
1035 * should be the one m_f() holds.
1043 * Now truncate the page in the page cache. This is really
1044 * more like a "temporary hole punch"
1045 * Don't do this for block devices when someone else
1046 * has a reference, because it could be file system metadata
1047 * and that's not safe to truncate.
1049 mapping = page_mapping(p);
1052 * Page has been teared down in the meanwhile
1059 * The shmem page is kept in page cache instead of truncating
1060 * so is expected to have an extra refcount after error-handling.
1062 extra_pins = shmem_mapping(mapping);
1065 * Truncation is a bit tricky. Enable it per file system for now.
1067 * Open: to take i_rwsem or not for this? Right now we don't.
1069 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1070 if (has_extra_refcount(ps, p, extra_pins))
1080 * Dirty pagecache page
1081 * Issues: when the error hit a hole page the error is not properly
1084 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1086 struct address_space *mapping = page_mapping(p);
1089 /* TBD: print more information about the file. */
1092 * IO error will be reported by write(), fsync(), etc.
1093 * who check the mapping.
1094 * This way the application knows that something went
1095 * wrong with its dirty file data.
1097 * There's one open issue:
1099 * The EIO will be only reported on the next IO
1100 * operation and then cleared through the IO map.
1101 * Normally Linux has two mechanisms to pass IO error
1102 * first through the AS_EIO flag in the address space
1103 * and then through the PageError flag in the page.
1104 * Since we drop pages on memory failure handling the
1105 * only mechanism open to use is through AS_AIO.
1107 * This has the disadvantage that it gets cleared on
1108 * the first operation that returns an error, while
1109 * the PageError bit is more sticky and only cleared
1110 * when the page is reread or dropped. If an
1111 * application assumes it will always get error on
1112 * fsync, but does other operations on the fd before
1113 * and the page is dropped between then the error
1114 * will not be properly reported.
1116 * This can already happen even without hwpoisoned
1117 * pages: first on metadata IO errors (which only
1118 * report through AS_EIO) or when the page is dropped
1119 * at the wrong time.
1121 * So right now we assume that the application DTRT on
1122 * the first EIO, but we're not worse than other parts
1125 mapping_set_error(mapping, -EIO);
1128 return me_pagecache_clean(ps, p);
1132 * Clean and dirty swap cache.
1134 * Dirty swap cache page is tricky to handle. The page could live both in page
1135 * cache and swap cache(ie. page is freshly swapped in). So it could be
1136 * referenced concurrently by 2 types of PTEs:
1137 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1138 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1140 * - clear dirty bit to prevent IO
1142 * - but keep in the swap cache, so that when we return to it on
1143 * a later page fault, we know the application is accessing
1144 * corrupted data and shall be killed (we installed simple
1145 * interception code in do_swap_page to catch it).
1147 * Clean swap cache pages can be directly isolated. A later page fault will
1148 * bring in the known good data from disk.
1150 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1153 bool extra_pins = false;
1156 /* Trigger EIO in shmem: */
1157 ClearPageUptodate(p);
1159 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1162 if (ret == MF_DELAYED)
1165 if (has_extra_refcount(ps, p, extra_pins))
1171 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1173 struct folio *folio = page_folio(p);
1176 delete_from_swap_cache(folio);
1178 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1179 folio_unlock(folio);
1181 if (has_extra_refcount(ps, p, false))
1188 * Huge pages. Needs work.
1190 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1191 * To narrow down kill region to one page, we need to break up pmd.
1193 static int me_huge_page(struct page_state *ps, struct page *p)
1196 struct page *hpage = compound_head(p);
1197 struct address_space *mapping;
1198 bool extra_pins = false;
1200 if (!PageHuge(hpage))
1203 mapping = page_mapping(hpage);
1205 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1206 /* The page is kept in page cache. */
1212 * migration entry prevents later access on error hugepage,
1213 * so we can free and dissolve it into buddy to save healthy
1217 if (__page_handle_poison(p) >= 0) {
1225 if (has_extra_refcount(ps, p, extra_pins))
1232 * Various page states we can handle.
1234 * A page state is defined by its current page->flags bits.
1235 * The table matches them in order and calls the right handler.
1237 * This is quite tricky because we can access page at any time
1238 * in its live cycle, so all accesses have to be extremely careful.
1240 * This is not complete. More states could be added.
1241 * For any missing state don't attempt recovery.
1244 #define dirty (1UL << PG_dirty)
1245 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1246 #define unevict (1UL << PG_unevictable)
1247 #define mlock (1UL << PG_mlocked)
1248 #define lru (1UL << PG_lru)
1249 #define head (1UL << PG_head)
1250 #define slab (1UL << PG_slab)
1251 #define reserved (1UL << PG_reserved)
1253 static struct page_state error_states[] = {
1254 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1256 * free pages are specially detected outside this table:
1257 * PG_buddy pages only make a small fraction of all free pages.
1261 * Could in theory check if slab page is free or if we can drop
1262 * currently unused objects without touching them. But just
1263 * treat it as standard kernel for now.
1265 { slab, slab, MF_MSG_SLAB, me_kernel },
1267 { head, head, MF_MSG_HUGE, me_huge_page },
1269 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1270 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1272 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1273 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1275 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1276 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1278 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1279 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1282 * Catchall entry: must be at end.
1284 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1296 static void update_per_node_mf_stats(unsigned long pfn,
1297 enum mf_result result)
1299 int nid = MAX_NUMNODES;
1300 struct memory_failure_stats *mf_stats = NULL;
1302 nid = pfn_to_nid(pfn);
1303 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1308 mf_stats = &NODE_DATA(nid)->mf_stats;
1311 ++mf_stats->ignored;
1317 ++mf_stats->delayed;
1320 ++mf_stats->recovered;
1323 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1330 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1333 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 enum mf_result result)
1336 trace_memory_failure_event(pfn, type, result);
1338 num_poisoned_pages_inc(pfn);
1340 update_per_node_mf_stats(pfn, result);
1342 pr_err("%#lx: recovery action for %s: %s\n",
1343 pfn, action_page_types[type], action_name[result]);
1345 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1348 static int page_action(struct page_state *ps, struct page *p,
1353 /* page p should be unlocked after returning from ps->action(). */
1354 result = ps->action(ps, p);
1356 /* Could do more checks here if page looks ok */
1358 * Could adjust zone counters here to correct for the missing page.
1361 return action_result(pfn, ps->type, result);
1364 static inline bool PageHWPoisonTakenOff(struct page *page)
1366 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1369 void SetPageHWPoisonTakenOff(struct page *page)
1371 set_page_private(page, MAGIC_HWPOISON);
1374 void ClearPageHWPoisonTakenOff(struct page *page)
1376 if (PageHWPoison(page))
1377 set_page_private(page, 0);
1381 * Return true if a page type of a given page is supported by hwpoison
1382 * mechanism (while handling could fail), otherwise false. This function
1383 * does not return true for hugetlb or device memory pages, so it's assumed
1384 * to be called only in the context where we never have such pages.
1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1388 /* Soft offline could migrate non-LRU movable pages */
1389 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1392 return PageLRU(page) || is_free_buddy_page(page);
1395 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1397 struct folio *folio = page_folio(page);
1399 bool hugetlb = false;
1401 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1406 * This check prevents from calling folio_try_get() for any
1407 * unsupported type of folio in order to reduce the risk of unexpected
1408 * races caused by taking a folio refcount.
1410 if (!HWPoisonHandlable(&folio->page, flags))
1413 if (folio_try_get(folio)) {
1414 if (folio == page_folio(page))
1417 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1424 static int get_any_page(struct page *p, unsigned long flags)
1426 int ret = 0, pass = 0;
1427 bool count_increased = false;
1429 if (flags & MF_COUNT_INCREASED)
1430 count_increased = true;
1433 if (!count_increased) {
1434 ret = __get_hwpoison_page(p, flags);
1436 if (page_count(p)) {
1437 /* We raced with an allocation, retry. */
1441 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1442 /* We raced with put_page, retry. */
1448 } else if (ret == -EBUSY) {
1450 * We raced with (possibly temporary) unhandlable
1462 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1466 * A page we cannot handle. Check whether we can turn
1467 * it into something we can handle.
1472 count_increased = false;
1480 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1485 static int __get_unpoison_page(struct page *page)
1487 struct folio *folio = page_folio(page);
1489 bool hugetlb = false;
1491 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1496 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1497 * but also isolated from buddy freelist, so need to identify the
1498 * state and have to cancel both operations to unpoison.
1500 if (PageHWPoisonTakenOff(page))
1503 return get_page_unless_zero(page) ? 1 : 0;
1507 * get_hwpoison_page() - Get refcount for memory error handling
1508 * @p: Raw error page (hit by memory error)
1509 * @flags: Flags controlling behavior of error handling
1511 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1512 * error on it, after checking that the error page is in a well-defined state
1513 * (defined as a page-type we can successfully handle the memory error on it,
1514 * such as LRU page and hugetlb page).
1516 * Memory error handling could be triggered at any time on any type of page,
1517 * so it's prone to race with typical memory management lifecycle (like
1518 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1519 * extra care for the error page's state (as done in __get_hwpoison_page()),
1520 * and has some retry logic in get_any_page().
1522 * When called from unpoison_memory(), the caller should already ensure that
1523 * the given page has PG_hwpoison. So it's never reused for other page
1524 * allocations, and __get_unpoison_page() never races with them.
1526 * Return: 0 on failure,
1527 * 1 on success for in-use pages in a well-defined state,
1528 * -EIO for pages on which we can not handle memory errors,
1529 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1530 * operations like allocation and free,
1531 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1533 static int get_hwpoison_page(struct page *p, unsigned long flags)
1537 zone_pcp_disable(page_zone(p));
1538 if (flags & MF_UNPOISON)
1539 ret = __get_unpoison_page(p);
1541 ret = get_any_page(p, flags);
1542 zone_pcp_enable(page_zone(p));
1548 * Do all that is necessary to remove user space mappings. Unmap
1549 * the pages and send SIGBUS to the processes if the data was dirty.
1551 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1552 int flags, struct page *hpage)
1554 struct folio *folio = page_folio(hpage);
1555 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1556 struct address_space *mapping;
1560 bool mlocked = PageMlocked(hpage);
1563 * Here we are interested only in user-mapped pages, so skip any
1564 * other types of pages.
1566 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1568 if (!(PageLRU(hpage) || PageHuge(p)))
1572 * This check implies we don't kill processes if their pages
1573 * are in the swap cache early. Those are always late kills.
1575 if (!page_mapped(hpage))
1578 if (PageSwapCache(p)) {
1579 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1580 ttu &= ~TTU_HWPOISON;
1584 * Propagate the dirty bit from PTEs to struct page first, because we
1585 * need this to decide if we should kill or just drop the page.
1586 * XXX: the dirty test could be racy: set_page_dirty() may not always
1587 * be called inside page lock (it's recommended but not enforced).
1589 mapping = page_mapping(hpage);
1590 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1591 mapping_can_writeback(mapping)) {
1592 if (page_mkclean(hpage)) {
1593 SetPageDirty(hpage);
1595 ttu &= ~TTU_HWPOISON;
1596 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1602 * First collect all the processes that have the page
1603 * mapped in dirty form. This has to be done before try_to_unmap,
1604 * because ttu takes the rmap data structures down.
1606 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1608 if (PageHuge(hpage) && !PageAnon(hpage)) {
1610 * For hugetlb pages in shared mappings, try_to_unmap
1611 * could potentially call huge_pmd_unshare. Because of
1612 * this, take semaphore in write mode here and set
1613 * TTU_RMAP_LOCKED to indicate we have taken the lock
1614 * at this higher level.
1616 mapping = hugetlb_page_mapping_lock_write(hpage);
1618 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1619 i_mmap_unlock_write(mapping);
1621 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1623 try_to_unmap(folio, ttu);
1626 unmap_success = !page_mapped(hpage);
1628 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1629 pfn, page_mapcount(hpage));
1632 * try_to_unmap() might put mlocked page in lru cache, so call
1633 * shake_page() again to ensure that it's flushed.
1639 * Now that the dirty bit has been propagated to the
1640 * struct page and all unmaps done we can decide if
1641 * killing is needed or not. Only kill when the page
1642 * was dirty or the process is not restartable,
1643 * otherwise the tokill list is merely
1644 * freed. When there was a problem unmapping earlier
1645 * use a more force-full uncatchable kill to prevent
1646 * any accesses to the poisoned memory.
1648 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1650 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1652 return unmap_success;
1655 static int identify_page_state(unsigned long pfn, struct page *p,
1656 unsigned long page_flags)
1658 struct page_state *ps;
1661 * The first check uses the current page flags which may not have any
1662 * relevant information. The second check with the saved page flags is
1663 * carried out only if the first check can't determine the page status.
1665 for (ps = error_states;; ps++)
1666 if ((p->flags & ps->mask) == ps->res)
1669 page_flags |= (p->flags & (1UL << PG_dirty));
1672 for (ps = error_states;; ps++)
1673 if ((page_flags & ps->mask) == ps->res)
1675 return page_action(ps, p, pfn);
1678 static int try_to_split_thp_page(struct page *page)
1683 ret = split_huge_page(page);
1692 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1693 struct address_space *mapping, pgoff_t index, int flags)
1696 unsigned long size = 0;
1698 list_for_each_entry(tk, to_kill, nd)
1700 size = max(size, 1UL << tk->size_shift);
1704 * Unmap the largest mapping to avoid breaking up device-dax
1705 * mappings which are constant size. The actual size of the
1706 * mapping being torn down is communicated in siginfo, see
1709 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1711 unmap_mapping_range(mapping, start, size, 0);
1714 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1717 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1718 struct dev_pagemap *pgmap)
1720 struct page *page = pfn_to_page(pfn);
1726 * Pages instantiated by device-dax (not filesystem-dax)
1727 * may be compound pages.
1729 page = compound_head(page);
1732 * Prevent the inode from being freed while we are interrogating
1733 * the address_space, typically this would be handled by
1734 * lock_page(), but dax pages do not use the page lock. This
1735 * also prevents changes to the mapping of this pfn until
1736 * poison signaling is complete.
1738 cookie = dax_lock_page(page);
1742 if (hwpoison_filter(page)) {
1747 switch (pgmap->type) {
1748 case MEMORY_DEVICE_PRIVATE:
1749 case MEMORY_DEVICE_COHERENT:
1751 * TODO: Handle device pages which may need coordination
1752 * with device-side memory.
1761 * Use this flag as an indication that the dax page has been
1762 * remapped UC to prevent speculative consumption of poison.
1764 SetPageHWPoison(page);
1767 * Unlike System-RAM there is no possibility to swap in a
1768 * different physical page at a given virtual address, so all
1769 * userspace consumption of ZONE_DEVICE memory necessitates
1770 * SIGBUS (i.e. MF_MUST_KILL)
1772 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1773 collect_procs(page, &to_kill, true);
1775 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1777 dax_unlock_page(page, cookie);
1781 #ifdef CONFIG_FS_DAX
1783 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1784 * @mapping: address_space of the file in use
1785 * @index: start pgoff of the range within the file
1786 * @count: length of the range, in unit of PAGE_SIZE
1787 * @mf_flags: memory failure flags
1789 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1790 unsigned long count, int mf_flags)
1795 size_t end = index + count;
1797 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1799 for (; index < end; index++) {
1801 cookie = dax_lock_mapping_entry(mapping, index, &page);
1807 SetPageHWPoison(page);
1809 collect_procs_fsdax(page, mapping, index, &to_kill);
1810 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1813 dax_unlock_mapping_entry(mapping, index, cookie);
1817 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1818 #endif /* CONFIG_FS_DAX */
1820 #ifdef CONFIG_HUGETLB_PAGE
1822 * Struct raw_hwp_page represents information about "raw error page",
1823 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1825 struct raw_hwp_page {
1826 struct llist_node node;
1830 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1832 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1835 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1837 struct llist_head *head;
1838 struct llist_node *t, *tnode;
1839 unsigned long count = 0;
1841 head = raw_hwp_list_head(folio);
1842 llist_for_each_safe(tnode, t, head->first) {
1843 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1846 SetPageHWPoison(p->page);
1848 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1852 llist_del_all(head);
1856 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1858 struct llist_head *head;
1859 struct raw_hwp_page *raw_hwp;
1860 struct llist_node *t, *tnode;
1861 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1864 * Once the hwpoison hugepage has lost reliable raw error info,
1865 * there is little meaning to keep additional error info precisely,
1866 * so skip to add additional raw error info.
1868 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1870 head = raw_hwp_list_head(folio);
1871 llist_for_each_safe(tnode, t, head->first) {
1872 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1874 if (p->page == page)
1878 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1880 raw_hwp->page = page;
1881 llist_add(&raw_hwp->node, head);
1882 /* the first error event will be counted in action_result(). */
1884 num_poisoned_pages_inc(page_to_pfn(page));
1887 * Failed to save raw error info. We no longer trace all
1888 * hwpoisoned subpages, and we need refuse to free/dissolve
1889 * this hwpoisoned hugepage.
1891 folio_set_hugetlb_raw_hwp_unreliable(folio);
1893 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1894 * used any more, so free it.
1896 __folio_free_raw_hwp(folio, false);
1901 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1904 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1905 * pages for tail pages are required but they don't exist.
1907 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1911 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1917 return __folio_free_raw_hwp(folio, move_flag);
1920 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1922 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1924 folio_clear_hwpoison(folio);
1925 folio_free_raw_hwp(folio, true);
1929 * Called from hugetlb code with hugetlb_lock held.
1933 * 1 - in-use hugepage
1934 * 2 - not a hugepage
1935 * -EBUSY - the hugepage is busy (try to retry)
1936 * -EHWPOISON - the hugepage is already hwpoisoned
1938 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1939 bool *migratable_cleared)
1941 struct page *page = pfn_to_page(pfn);
1942 struct folio *folio = page_folio(page);
1943 int ret = 2; /* fallback to normal page handling */
1944 bool count_increased = false;
1946 if (!folio_test_hugetlb(folio))
1949 if (flags & MF_COUNT_INCREASED) {
1951 count_increased = true;
1952 } else if (folio_test_hugetlb_freed(folio)) {
1954 } else if (folio_test_hugetlb_migratable(folio)) {
1955 ret = folio_try_get(folio);
1957 count_increased = true;
1960 if (!(flags & MF_NO_RETRY))
1964 if (folio_set_hugetlb_hwpoison(folio, page)) {
1970 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1971 * from being migrated by memory hotremove.
1973 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1974 folio_clear_hugetlb_migratable(folio);
1975 *migratable_cleared = true;
1980 if (count_increased)
1986 * Taking refcount of hugetlb pages needs extra care about race conditions
1987 * with basic operations like hugepage allocation/free/demotion.
1988 * So some of prechecks for hwpoison (pinning, and testing/setting
1989 * PageHWPoison) should be done in single hugetlb_lock range.
1991 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1994 struct page *p = pfn_to_page(pfn);
1995 struct folio *folio;
1996 unsigned long page_flags;
1997 bool migratable_cleared = false;
2001 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2002 if (res == 2) { /* fallback to normal page handling */
2005 } else if (res == -EHWPOISON) {
2006 pr_err("%#lx: already hardware poisoned\n", pfn);
2007 if (flags & MF_ACTION_REQUIRED) {
2008 folio = page_folio(p);
2009 res = kill_accessing_process(current, folio_pfn(folio), flags);
2012 } else if (res == -EBUSY) {
2013 if (!(flags & MF_NO_RETRY)) {
2014 flags |= MF_NO_RETRY;
2017 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2020 folio = page_folio(p);
2023 if (hwpoison_filter(p)) {
2024 folio_clear_hugetlb_hwpoison(folio);
2025 if (migratable_cleared)
2026 folio_set_hugetlb_migratable(folio);
2027 folio_unlock(folio);
2034 * Handling free hugepage. The possible race with hugepage allocation
2035 * or demotion can be prevented by PageHWPoison flag.
2038 folio_unlock(folio);
2039 if (__page_handle_poison(p) >= 0) {
2045 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2048 page_flags = folio->flags;
2050 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2051 folio_unlock(folio);
2052 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2055 return identify_page_state(pfn, p, page_flags);
2059 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2064 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2068 #endif /* CONFIG_HUGETLB_PAGE */
2070 /* Drop the extra refcount in case we come from madvise() */
2071 static void put_ref_page(unsigned long pfn, int flags)
2075 if (!(flags & MF_COUNT_INCREASED))
2078 page = pfn_to_page(pfn);
2083 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2084 struct dev_pagemap *pgmap)
2088 put_ref_page(pfn, flags);
2090 /* device metadata space is not recoverable */
2091 if (!pgmap_pfn_valid(pgmap, pfn))
2095 * Call driver's implementation to handle the memory failure, otherwise
2096 * fall back to generic handler.
2098 if (pgmap_has_memory_failure(pgmap)) {
2099 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2101 * Fall back to generic handler too if operation is not
2102 * supported inside the driver/device/filesystem.
2104 if (rc != -EOPNOTSUPP)
2108 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2110 /* drop pgmap ref acquired in caller */
2111 put_dev_pagemap(pgmap);
2112 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2116 static DEFINE_MUTEX(mf_mutex);
2119 * memory_failure - Handle memory failure of a page.
2120 * @pfn: Page Number of the corrupted page
2121 * @flags: fine tune action taken
2123 * This function is called by the low level machine check code
2124 * of an architecture when it detects hardware memory corruption
2125 * of a page. It tries its best to recover, which includes
2126 * dropping pages, killing processes etc.
2128 * The function is primarily of use for corruptions that
2129 * happen outside the current execution context (e.g. when
2130 * detected by a background scrubber)
2132 * Must run in process context (e.g. a work queue) with interrupts
2133 * enabled and no spinlocks hold.
2135 * Return: 0 for successfully handled the memory error,
2136 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2137 * < 0(except -EOPNOTSUPP) on failure.
2139 int memory_failure(unsigned long pfn, int flags)
2143 struct dev_pagemap *pgmap;
2145 unsigned long page_flags;
2149 if (!sysctl_memory_failure_recovery)
2150 panic("Memory failure on page %lx", pfn);
2152 mutex_lock(&mf_mutex);
2154 if (!(flags & MF_SW_SIMULATED))
2155 hw_memory_failure = true;
2157 p = pfn_to_online_page(pfn);
2159 res = arch_memory_failure(pfn, flags);
2163 if (pfn_valid(pfn)) {
2164 pgmap = get_dev_pagemap(pfn, NULL);
2166 res = memory_failure_dev_pagemap(pfn, flags,
2171 pr_err("%#lx: memory outside kernel control\n", pfn);
2177 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2181 if (TestSetPageHWPoison(p)) {
2182 pr_err("%#lx: already hardware poisoned\n", pfn);
2184 if (flags & MF_ACTION_REQUIRED)
2185 res = kill_accessing_process(current, pfn, flags);
2186 if (flags & MF_COUNT_INCREASED)
2191 hpage = compound_head(p);
2194 * We need/can do nothing about count=0 pages.
2195 * 1) it's a free page, and therefore in safe hand:
2196 * check_new_page() will be the gate keeper.
2197 * 2) it's part of a non-compound high order page.
2198 * Implies some kernel user: cannot stop them from
2199 * R/W the page; let's pray that the page has been
2200 * used and will be freed some time later.
2201 * In fact it's dangerous to directly bump up page count from 0,
2202 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2204 if (!(flags & MF_COUNT_INCREASED)) {
2205 res = get_hwpoison_page(p, flags);
2207 if (is_free_buddy_page(p)) {
2208 if (take_page_off_buddy(p)) {
2212 /* We lost the race, try again */
2214 ClearPageHWPoison(p);
2220 res = action_result(pfn, MF_MSG_BUDDY, res);
2222 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2225 } else if (res < 0) {
2226 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2231 if (PageTransHuge(hpage)) {
2233 * The flag must be set after the refcount is bumped
2234 * otherwise it may race with THP split.
2235 * And the flag can't be set in get_hwpoison_page() since
2236 * it is called by soft offline too and it is just called
2237 * for !MF_COUNT_INCREASE. So here seems to be the best
2240 * Don't need care about the above error handling paths for
2241 * get_hwpoison_page() since they handle either free page
2242 * or unhandlable page. The refcount is bumped iff the
2243 * page is a valid handlable page.
2245 SetPageHasHWPoisoned(hpage);
2246 if (try_to_split_thp_page(p) < 0) {
2247 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2250 VM_BUG_ON_PAGE(!page_count(p), p);
2254 * We ignore non-LRU pages for good reasons.
2255 * - PG_locked is only well defined for LRU pages and a few others
2256 * - to avoid races with __SetPageLocked()
2257 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2258 * The check (unnecessarily) ignores LRU pages being isolated and
2259 * walked by the page reclaim code, however that's not a big loss.
2266 * We're only intended to deal with the non-Compound page here.
2267 * However, the page could have changed compound pages due to
2268 * race window. If this happens, we could try again to hopefully
2269 * handle the page next round.
2271 if (PageCompound(p)) {
2273 ClearPageHWPoison(p);
2276 flags &= ~MF_COUNT_INCREASED;
2280 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2285 * We use page flags to determine what action should be taken, but
2286 * the flags can be modified by the error containment action. One
2287 * example is an mlocked page, where PG_mlocked is cleared by
2288 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2289 * correctly, we save a copy of the page flags at this time.
2291 page_flags = p->flags;
2293 if (hwpoison_filter(p)) {
2294 ClearPageHWPoison(p);
2302 * __munlock_folio() may clear a writeback page's LRU flag without
2303 * page_lock. We need wait writeback completion for this page or it
2304 * may trigger vfs BUG while evict inode.
2306 if (!PageLRU(p) && !PageWriteback(p))
2307 goto identify_page_state;
2310 * It's very difficult to mess with pages currently under IO
2311 * and in many cases impossible, so we just avoid it here.
2313 wait_on_page_writeback(p);
2316 * Now take care of user space mappings.
2317 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2319 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2320 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2325 * Torn down by someone else?
2327 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2328 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2332 identify_page_state:
2333 res = identify_page_state(pfn, p, page_flags);
2334 mutex_unlock(&mf_mutex);
2339 mutex_unlock(&mf_mutex);
2342 EXPORT_SYMBOL_GPL(memory_failure);
2344 #define MEMORY_FAILURE_FIFO_ORDER 4
2345 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2347 struct memory_failure_entry {
2352 struct memory_failure_cpu {
2353 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2354 MEMORY_FAILURE_FIFO_SIZE);
2356 struct work_struct work;
2359 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2362 * memory_failure_queue - Schedule handling memory failure of a page.
2363 * @pfn: Page Number of the corrupted page
2364 * @flags: Flags for memory failure handling
2366 * This function is called by the low level hardware error handler
2367 * when it detects hardware memory corruption of a page. It schedules
2368 * the recovering of error page, including dropping pages, killing
2371 * The function is primarily of use for corruptions that
2372 * happen outside the current execution context (e.g. when
2373 * detected by a background scrubber)
2375 * Can run in IRQ context.
2377 void memory_failure_queue(unsigned long pfn, int flags)
2379 struct memory_failure_cpu *mf_cpu;
2380 unsigned long proc_flags;
2381 struct memory_failure_entry entry = {
2386 mf_cpu = &get_cpu_var(memory_failure_cpu);
2387 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2388 if (kfifo_put(&mf_cpu->fifo, entry))
2389 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2391 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2393 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2394 put_cpu_var(memory_failure_cpu);
2396 EXPORT_SYMBOL_GPL(memory_failure_queue);
2398 static void memory_failure_work_func(struct work_struct *work)
2400 struct memory_failure_cpu *mf_cpu;
2401 struct memory_failure_entry entry = { 0, };
2402 unsigned long proc_flags;
2405 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2407 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2408 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2409 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2412 if (entry.flags & MF_SOFT_OFFLINE)
2413 soft_offline_page(entry.pfn, entry.flags);
2415 memory_failure(entry.pfn, entry.flags);
2420 * Process memory_failure work queued on the specified CPU.
2421 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2423 void memory_failure_queue_kick(int cpu)
2425 struct memory_failure_cpu *mf_cpu;
2427 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2428 cancel_work_sync(&mf_cpu->work);
2429 memory_failure_work_func(&mf_cpu->work);
2432 static int __init memory_failure_init(void)
2434 struct memory_failure_cpu *mf_cpu;
2437 for_each_possible_cpu(cpu) {
2438 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2439 spin_lock_init(&mf_cpu->lock);
2440 INIT_KFIFO(mf_cpu->fifo);
2441 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2446 core_initcall(memory_failure_init);
2449 #define pr_fmt(fmt) "" fmt
2450 #define unpoison_pr_info(fmt, pfn, rs) \
2452 if (__ratelimit(rs)) \
2453 pr_info(fmt, pfn); \
2457 * unpoison_memory - Unpoison a previously poisoned page
2458 * @pfn: Page number of the to be unpoisoned page
2460 * Software-unpoison a page that has been poisoned by
2461 * memory_failure() earlier.
2463 * This is only done on the software-level, so it only works
2464 * for linux injected failures, not real hardware failures
2466 * Returns 0 for success, otherwise -errno.
2468 int unpoison_memory(unsigned long pfn)
2470 struct folio *folio;
2473 unsigned long count = 1;
2475 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2476 DEFAULT_RATELIMIT_BURST);
2478 if (!pfn_valid(pfn))
2481 p = pfn_to_page(pfn);
2482 folio = page_folio(p);
2484 mutex_lock(&mf_mutex);
2486 if (hw_memory_failure) {
2487 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2493 if (!folio_test_hwpoison(folio)) {
2494 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2499 if (folio_ref_count(folio) > 1) {
2500 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2505 if (folio_mapped(folio)) {
2506 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2511 if (folio_mapping(folio)) {
2512 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2517 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2520 ret = get_hwpoison_page(p, MF_UNPOISON);
2524 count = folio_free_raw_hwp(folio, false);
2530 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2531 } else if (ret < 0) {
2532 if (ret == -EHWPOISON) {
2533 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2535 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2540 count = folio_free_raw_hwp(folio, false);
2549 if (TestClearPageHWPoison(p)) {
2556 mutex_unlock(&mf_mutex);
2559 num_poisoned_pages_sub(pfn, 1);
2560 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2561 page_to_pfn(p), &unpoison_rs);
2565 EXPORT_SYMBOL(unpoison_memory);
2567 static bool isolate_page(struct page *page, struct list_head *pagelist)
2569 bool isolated = false;
2571 if (PageHuge(page)) {
2572 isolated = isolate_hugetlb(page_folio(page), pagelist);
2574 bool lru = !__PageMovable(page);
2577 isolated = isolate_lru_page(page);
2579 isolated = isolate_movable_page(page,
2580 ISOLATE_UNEVICTABLE);
2583 list_add(&page->lru, pagelist);
2585 inc_node_page_state(page, NR_ISOLATED_ANON +
2586 page_is_file_lru(page));
2591 * If we succeed to isolate the page, we grabbed another refcount on
2592 * the page, so we can safely drop the one we got from get_any_pages().
2593 * If we failed to isolate the page, it means that we cannot go further
2594 * and we will return an error, so drop the reference we got from
2595 * get_any_pages() as well.
2602 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2603 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2604 * If the page is mapped, it migrates the contents over.
2606 static int soft_offline_in_use_page(struct page *page)
2609 unsigned long pfn = page_to_pfn(page);
2610 struct page *hpage = compound_head(page);
2611 char const *msg_page[] = {"page", "hugepage"};
2612 bool huge = PageHuge(page);
2613 LIST_HEAD(pagelist);
2614 struct migration_target_control mtc = {
2615 .nid = NUMA_NO_NODE,
2616 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2619 if (!huge && PageTransHuge(hpage)) {
2620 if (try_to_split_thp_page(page)) {
2621 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2628 if (!PageHuge(page))
2629 wait_on_page_writeback(page);
2630 if (PageHWPoison(page)) {
2633 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2637 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2639 * Try to invalidate first. This should work for
2640 * non dirty unmapped page cache pages.
2642 ret = invalidate_inode_page(page);
2646 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2647 page_handle_poison(page, false, true);
2651 if (isolate_page(hpage, &pagelist)) {
2652 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2653 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2655 bool release = !huge;
2657 if (!page_handle_poison(page, huge, release))
2660 if (!list_empty(&pagelist))
2661 putback_movable_pages(&pagelist);
2663 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2664 pfn, msg_page[huge], ret, &page->flags);
2669 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2670 pfn, msg_page[huge], page_count(page), &page->flags);
2677 * soft_offline_page - Soft offline a page.
2678 * @pfn: pfn to soft-offline
2679 * @flags: flags. Same as memory_failure().
2681 * Returns 0 on success
2682 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2683 * < 0 otherwise negated errno.
2685 * Soft offline a page, by migration or invalidation,
2686 * without killing anything. This is for the case when
2687 * a page is not corrupted yet (so it's still valid to access),
2688 * but has had a number of corrected errors and is better taken
2691 * The actual policy on when to do that is maintained by
2694 * This should never impact any application or cause data loss,
2695 * however it might take some time.
2697 * This is not a 100% solution for all memory, but tries to be
2698 * ``good enough'' for the majority of memory.
2700 int soft_offline_page(unsigned long pfn, int flags)
2703 bool try_again = true;
2706 if (!pfn_valid(pfn)) {
2707 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2711 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2712 page = pfn_to_online_page(pfn);
2714 put_ref_page(pfn, flags);
2718 mutex_lock(&mf_mutex);
2720 if (PageHWPoison(page)) {
2721 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2722 put_ref_page(pfn, flags);
2723 mutex_unlock(&mf_mutex);
2729 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2732 if (hwpoison_filter(page)) {
2736 mutex_unlock(&mf_mutex);
2741 ret = soft_offline_in_use_page(page);
2742 } else if (ret == 0) {
2743 if (!page_handle_poison(page, true, false) && try_again) {
2745 flags &= ~MF_COUNT_INCREASED;
2750 mutex_unlock(&mf_mutex);