1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
36 #include <linux/kernel.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
63 #include "ras/ras_event.h"
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
67 int sysctl_memory_failure_recovery __read_mostly = 1;
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
71 static bool __page_handle_poison(struct page *page)
75 zone_pcp_disable(page_zone(page));
76 ret = dissolve_free_huge_page(page);
78 ret = take_page_off_buddy(page);
79 zone_pcp_enable(page_zone(page));
84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
86 if (hugepage_or_freepage) {
88 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 * returns 0 for non-hugetlb pages as well.
91 if (!__page_handle_poison(page))
93 * We could fail to take off the target page from buddy
94 * for example due to racy page allocation, but that's
95 * acceptable because soft-offlined page is not broken
96 * and if someone really want to use it, they should
102 SetPageHWPoison(page);
106 num_poisoned_pages_inc();
111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
113 u32 hwpoison_filter_enable = 0;
114 u32 hwpoison_filter_dev_major = ~0U;
115 u32 hwpoison_filter_dev_minor = ~0U;
116 u64 hwpoison_filter_flags_mask;
117 u64 hwpoison_filter_flags_value;
118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
124 static int hwpoison_filter_dev(struct page *p)
126 struct address_space *mapping;
129 if (hwpoison_filter_dev_major == ~0U &&
130 hwpoison_filter_dev_minor == ~0U)
134 * page_mapping() does not accept slab pages.
139 mapping = page_mapping(p);
140 if (mapping == NULL || mapping->host == NULL)
143 dev = mapping->host->i_sb->s_dev;
144 if (hwpoison_filter_dev_major != ~0U &&
145 hwpoison_filter_dev_major != MAJOR(dev))
147 if (hwpoison_filter_dev_minor != ~0U &&
148 hwpoison_filter_dev_minor != MINOR(dev))
154 static int hwpoison_filter_flags(struct page *p)
156 if (!hwpoison_filter_flags_mask)
159 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
160 hwpoison_filter_flags_value)
167 * This allows stress tests to limit test scope to a collection of tasks
168 * by putting them under some memcg. This prevents killing unrelated/important
169 * processes such as /sbin/init. Note that the target task may share clean
170 * pages with init (eg. libc text), which is harmless. If the target task
171 * share _dirty_ pages with another task B, the test scheme must make sure B
172 * is also included in the memcg. At last, due to race conditions this filter
173 * can only guarantee that the page either belongs to the memcg tasks, or is
177 u64 hwpoison_filter_memcg;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
179 static int hwpoison_filter_task(struct page *p)
181 if (!hwpoison_filter_memcg)
184 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
190 static int hwpoison_filter_task(struct page *p) { return 0; }
193 int hwpoison_filter(struct page *p)
195 if (!hwpoison_filter_enable)
198 if (hwpoison_filter_dev(p))
201 if (hwpoison_filter_flags(p))
204 if (hwpoison_filter_task(p))
210 int hwpoison_filter(struct page *p)
216 EXPORT_SYMBOL_GPL(hwpoison_filter);
219 * Kill all processes that have a poisoned page mapped and then isolate
223 * Find all processes having the page mapped and kill them.
224 * But we keep a page reference around so that the page is not
225 * actually freed yet.
226 * Then stash the page away
228 * There's no convenient way to get back to mapped processes
229 * from the VMAs. So do a brute-force search over all
232 * Remember that machine checks are not common (or rather
233 * if they are common you have other problems), so this shouldn't
234 * be a performance issue.
236 * Also there are some races possible while we get from the
237 * error detection to actually handle it.
242 struct task_struct *tsk;
248 * Send all the processes who have the page mapped a signal.
249 * ``action optional'' if they are not immediately affected by the error
250 * ``action required'' if error happened in current execution context
252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
254 struct task_struct *t = tk->tsk;
255 short addr_lsb = tk->size_shift;
258 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
259 pfn, t->comm, t->pid);
261 if (flags & MF_ACTION_REQUIRED) {
263 ret = force_sig_mceerr(BUS_MCEERR_AR,
264 (void __user *)tk->addr, addr_lsb);
266 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
271 * Don't use force here, it's convenient if the signal
272 * can be temporarily blocked.
273 * This could cause a loop when the user sets SIGBUS
274 * to SIG_IGN, but hopefully no one will do that?
276 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
277 addr_lsb, t); /* synchronous? */
280 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
281 t->comm, t->pid, ret);
286 * Unknown page type encountered. Try to check whether it can turn PageLRU by
289 void shake_page(struct page *p)
296 if (PageLRU(p) || is_free_buddy_page(p))
301 * TODO: Could shrink slab caches here if a lightweight range-based
302 * shrinker will be available.
305 EXPORT_SYMBOL_GPL(shake_page);
307 static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
310 unsigned long address = vma_address(page, vma);
311 unsigned long ret = 0;
318 pgd = pgd_offset(vma->vm_mm, address);
319 if (!pgd_present(*pgd))
321 p4d = p4d_offset(pgd, address);
322 if (!p4d_present(*p4d))
324 pud = pud_offset(p4d, address);
325 if (!pud_present(*pud))
327 if (pud_devmap(*pud))
329 pmd = pmd_offset(pud, address);
330 if (!pmd_present(*pmd))
332 if (pmd_devmap(*pmd))
334 pte = pte_offset_map(pmd, address);
335 if (pte_present(*pte) && pte_devmap(*pte))
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
358 pr_err("Memory failure: Out of memory while machine check handling\n");
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
366 tk->size_shift = page_shift(compound_head(p));
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
386 get_task_struct(tsk);
388 list_add_tail(&tk->nd, to_kill);
392 * Kill the processes that have been collected earlier.
394 * Only do anything when FORCEKILL is set, otherwise just free the
395 * list (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
402 struct to_kill *tk, *next;
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
428 put_task_struct(tk->tsk);
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
443 struct task_struct *t;
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
450 if (sysctl_memory_failure_early_kill)
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
469 static struct task_struct *task_early_kill(struct task_struct *tsk,
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
478 if (force_early && tsk->mm == current->mm)
481 return find_early_kill_thread(tsk);
485 * Collect processes when the error hit an anonymous page.
487 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
510 if (!page_mapped_in_vma(page, vma))
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
521 * Collect processes when the error hit a file mapped page.
523 static void collect_procs_file(struct page *page, struct list_head *to_kill,
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
557 * Collect the processes who have the corrupted page mapped to kill.
559 static void collect_procs(struct page *page, struct list_head *tokill,
566 collect_procs_anon(page, tokill, force_early);
568 collect_procs_file(page, tokill, force_early);
577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
580 tk->size_shift = shift;
583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
586 unsigned long pfn = 0;
588 if (pte_present(pte)) {
591 swp_entry_t swp = pte_to_swp_entry(pte);
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
597 if (!pfn || pfn != poisoned_pfn)
600 set_to_kill(tk, addr, shift);
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
610 unsigned long hwpoison_vaddr;
612 if (!pmd_present(pmd))
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
635 pte_t *ptep, *mapped_pte;
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
645 if (pmd_trans_unstable(pmdp))
648 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
650 for (; addr != end; ptep++, addr += PAGE_SIZE) {
651 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
656 pte_unmap_unlock(mapped_pte, ptl);
662 #ifdef CONFIG_HUGETLB_PAGE
663 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
664 unsigned long addr, unsigned long end,
665 struct mm_walk *walk)
667 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
668 pte_t pte = huge_ptep_get(ptep);
669 struct hstate *h = hstate_vma(walk->vma);
671 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
675 #define hwpoison_hugetlb_range NULL
678 static const struct mm_walk_ops hwp_walk_ops = {
679 .pmd_entry = hwpoison_pte_range,
680 .hugetlb_entry = hwpoison_hugetlb_range,
684 * Sends SIGBUS to the current process with error info.
686 * This function is intended to handle "Action Required" MCEs on already
687 * hardware poisoned pages. They could happen, for example, when
688 * memory_failure() failed to unmap the error page at the first call, or
689 * when multiple local machine checks happened on different CPUs.
691 * MCE handler currently has no easy access to the error virtual address,
692 * so this function walks page table to find it. The returned virtual address
693 * is proper in most cases, but it could be wrong when the application
694 * process has multiple entries mapping the error page.
696 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
700 struct hwp_walk priv = {
705 mmap_read_lock(p->mm);
706 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
708 if (ret == 1 && priv.tk.addr)
709 kill_proc(&priv.tk, pfn, flags);
710 mmap_read_unlock(p->mm);
711 return ret ? -EFAULT : -EHWPOISON;
714 static const char *action_name[] = {
715 [MF_IGNORED] = "Ignored",
716 [MF_FAILED] = "Failed",
717 [MF_DELAYED] = "Delayed",
718 [MF_RECOVERED] = "Recovered",
721 static const char * const action_page_types[] = {
722 [MF_MSG_KERNEL] = "reserved kernel page",
723 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
724 [MF_MSG_SLAB] = "kernel slab page",
725 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_DAX] = "dax page",
741 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
742 [MF_MSG_UNKNOWN] = "unknown page",
746 * XXX: It is possible that a page is isolated from LRU cache,
747 * and then kept in swap cache or failed to remove from page cache.
748 * The page count will stop it from being freed by unpoison.
749 * Stress tests should be aware of this memory leak problem.
751 static int delete_from_lru_cache(struct page *p)
753 if (!isolate_lru_page(p)) {
755 * Clear sensible page flags, so that the buddy system won't
756 * complain when the page is unpoison-and-freed.
759 ClearPageUnevictable(p);
762 * Poisoned page might never drop its ref count to 0 so we have
763 * to uncharge it manually from its memcg.
765 mem_cgroup_uncharge(page_folio(p));
768 * drop the page count elevated by isolate_lru_page()
776 static int truncate_error_page(struct page *p, unsigned long pfn,
777 struct address_space *mapping)
781 if (mapping->a_ops->error_remove_page) {
782 int err = mapping->a_ops->error_remove_page(mapping, p);
785 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 } else if (page_has_private(p) &&
788 !try_to_release_page(p, GFP_NOIO)) {
789 pr_info("Memory failure: %#lx: failed to release buffers\n",
796 * If the file system doesn't support it just invalidate
797 * This fails on dirty or anything with private pages
799 if (invalidate_inode_page(p))
802 pr_info("Memory failure: %#lx: Failed to invalidate\n",
812 enum mf_action_page_type type;
814 /* Callback ->action() has to unlock the relevant page inside it. */
815 int (*action)(struct page_state *ps, struct page *p);
819 * Return true if page is still referenced by others, otherwise return
822 * The extra_pins is true when one extra refcount is expected.
824 static bool has_extra_refcount(struct page_state *ps, struct page *p,
827 int count = page_count(p) - 1;
833 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
834 page_to_pfn(p), action_page_types[ps->type], count);
842 * Error hit kernel page.
843 * Do nothing, try to be lucky and not touch this instead. For a few cases we
844 * could be more sophisticated.
846 static int me_kernel(struct page_state *ps, struct page *p)
853 * Page in unknown state. Do nothing.
855 static int me_unknown(struct page_state *ps, struct page *p)
857 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
863 * Clean (or cleaned) page cache page.
865 static int me_pagecache_clean(struct page_state *ps, struct page *p)
868 struct address_space *mapping;
871 delete_from_lru_cache(p);
874 * For anonymous pages we're done the only reference left
875 * should be the one m_f() holds.
883 * Now truncate the page in the page cache. This is really
884 * more like a "temporary hole punch"
885 * Don't do this for block devices when someone else
886 * has a reference, because it could be file system metadata
887 * and that's not safe to truncate.
889 mapping = page_mapping(p);
892 * Page has been teared down in the meanwhile
899 * The shmem page is kept in page cache instead of truncating
900 * so is expected to have an extra refcount after error-handling.
902 extra_pins = shmem_mapping(mapping);
905 * Truncation is a bit tricky. Enable it per file system for now.
907 * Open: to take i_rwsem or not for this? Right now we don't.
909 ret = truncate_error_page(p, page_to_pfn(p), mapping);
910 if (has_extra_refcount(ps, p, extra_pins))
920 * Dirty pagecache page
921 * Issues: when the error hit a hole page the error is not properly
924 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
926 struct address_space *mapping = page_mapping(p);
929 /* TBD: print more information about the file. */
932 * IO error will be reported by write(), fsync(), etc.
933 * who check the mapping.
934 * This way the application knows that something went
935 * wrong with its dirty file data.
937 * There's one open issue:
939 * The EIO will be only reported on the next IO
940 * operation and then cleared through the IO map.
941 * Normally Linux has two mechanisms to pass IO error
942 * first through the AS_EIO flag in the address space
943 * and then through the PageError flag in the page.
944 * Since we drop pages on memory failure handling the
945 * only mechanism open to use is through AS_AIO.
947 * This has the disadvantage that it gets cleared on
948 * the first operation that returns an error, while
949 * the PageError bit is more sticky and only cleared
950 * when the page is reread or dropped. If an
951 * application assumes it will always get error on
952 * fsync, but does other operations on the fd before
953 * and the page is dropped between then the error
954 * will not be properly reported.
956 * This can already happen even without hwpoisoned
957 * pages: first on metadata IO errors (which only
958 * report through AS_EIO) or when the page is dropped
961 * So right now we assume that the application DTRT on
962 * the first EIO, but we're not worse than other parts
965 mapping_set_error(mapping, -EIO);
968 return me_pagecache_clean(ps, p);
972 * Clean and dirty swap cache.
974 * Dirty swap cache page is tricky to handle. The page could live both in page
975 * cache and swap cache(ie. page is freshly swapped in). So it could be
976 * referenced concurrently by 2 types of PTEs:
977 * normal PTEs and swap PTEs. We try to handle them consistently by calling
978 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
980 * - clear dirty bit to prevent IO
982 * - but keep in the swap cache, so that when we return to it on
983 * a later page fault, we know the application is accessing
984 * corrupted data and shall be killed (we installed simple
985 * interception code in do_swap_page to catch it).
987 * Clean swap cache pages can be directly isolated. A later page fault will
988 * bring in the known good data from disk.
990 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
993 bool extra_pins = false;
996 /* Trigger EIO in shmem: */
997 ClearPageUptodate(p);
999 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1002 if (ret == MF_DELAYED)
1005 if (has_extra_refcount(ps, p, extra_pins))
1011 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1015 delete_from_swap_cache(p);
1017 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1020 if (has_extra_refcount(ps, p, false))
1027 * Huge pages. Needs work.
1029 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1030 * To narrow down kill region to one page, we need to break up pmd.
1032 static int me_huge_page(struct page_state *ps, struct page *p)
1035 struct page *hpage = compound_head(p);
1036 struct address_space *mapping;
1038 if (!PageHuge(hpage))
1041 mapping = page_mapping(hpage);
1043 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1049 * migration entry prevents later access on error anonymous
1050 * hugepage, so we can free and dissolve it into buddy to
1051 * save healthy subpages.
1053 if (PageAnon(hpage))
1055 if (__page_handle_poison(p)) {
1061 if (has_extra_refcount(ps, p, false))
1068 * Various page states we can handle.
1070 * A page state is defined by its current page->flags bits.
1071 * The table matches them in order and calls the right handler.
1073 * This is quite tricky because we can access page at any time
1074 * in its live cycle, so all accesses have to be extremely careful.
1076 * This is not complete. More states could be added.
1077 * For any missing state don't attempt recovery.
1080 #define dirty (1UL << PG_dirty)
1081 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1082 #define unevict (1UL << PG_unevictable)
1083 #define mlock (1UL << PG_mlocked)
1084 #define lru (1UL << PG_lru)
1085 #define head (1UL << PG_head)
1086 #define slab (1UL << PG_slab)
1087 #define reserved (1UL << PG_reserved)
1089 static struct page_state error_states[] = {
1090 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1092 * free pages are specially detected outside this table:
1093 * PG_buddy pages only make a small fraction of all free pages.
1097 * Could in theory check if slab page is free or if we can drop
1098 * currently unused objects without touching them. But just
1099 * treat it as standard kernel for now.
1101 { slab, slab, MF_MSG_SLAB, me_kernel },
1103 { head, head, MF_MSG_HUGE, me_huge_page },
1105 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1106 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1108 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1109 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1111 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1112 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1114 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1115 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1118 * Catchall entry: must be at end.
1120 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1133 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1134 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1136 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1137 enum mf_result result)
1139 trace_memory_failure_event(pfn, type, result);
1141 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1142 pfn, action_page_types[type], action_name[result]);
1145 static int page_action(struct page_state *ps, struct page *p,
1150 /* page p should be unlocked after returning from ps->action(). */
1151 result = ps->action(ps, p);
1153 action_result(pfn, ps->type, result);
1155 /* Could do more checks here if page looks ok */
1157 * Could adjust zone counters here to correct for the missing page.
1160 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1163 static inline bool PageHWPoisonTakenOff(struct page *page)
1165 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1168 void SetPageHWPoisonTakenOff(struct page *page)
1170 set_page_private(page, MAGIC_HWPOISON);
1173 void ClearPageHWPoisonTakenOff(struct page *page)
1175 if (PageHWPoison(page))
1176 set_page_private(page, 0);
1180 * Return true if a page type of a given page is supported by hwpoison
1181 * mechanism (while handling could fail), otherwise false. This function
1182 * does not return true for hugetlb or device memory pages, so it's assumed
1183 * to be called only in the context where we never have such pages.
1185 static inline bool HWPoisonHandlable(struct page *page)
1187 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1190 static int __get_hwpoison_page(struct page *page)
1192 struct page *head = compound_head(page);
1194 bool hugetlb = false;
1196 ret = get_hwpoison_huge_page(head, &hugetlb);
1201 * This check prevents from calling get_hwpoison_unless_zero()
1202 * for any unsupported type of page in order to reduce the risk of
1203 * unexpected races caused by taking a page refcount.
1205 if (!HWPoisonHandlable(head))
1208 if (get_page_unless_zero(head)) {
1209 if (head == compound_head(page))
1212 pr_info("Memory failure: %#lx cannot catch tail\n",
1220 static int get_any_page(struct page *p, unsigned long flags)
1222 int ret = 0, pass = 0;
1223 bool count_increased = false;
1225 if (flags & MF_COUNT_INCREASED)
1226 count_increased = true;
1229 if (!count_increased) {
1230 ret = __get_hwpoison_page(p);
1232 if (page_count(p)) {
1233 /* We raced with an allocation, retry. */
1237 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1238 /* We raced with put_page, retry. */
1244 } else if (ret == -EBUSY) {
1246 * We raced with (possibly temporary) unhandlable
1258 if (PageHuge(p) || HWPoisonHandlable(p)) {
1262 * A page we cannot handle. Check whether we can turn
1263 * it into something we can handle.
1268 count_increased = false;
1276 dump_page(p, "hwpoison: unhandlable page");
1281 static int __get_unpoison_page(struct page *page)
1283 struct page *head = compound_head(page);
1285 bool hugetlb = false;
1287 ret = get_hwpoison_huge_page(head, &hugetlb);
1292 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1293 * but also isolated from buddy freelist, so need to identify the
1294 * state and have to cancel both operations to unpoison.
1296 if (PageHWPoisonTakenOff(page))
1299 return get_page_unless_zero(page) ? 1 : 0;
1303 * get_hwpoison_page() - Get refcount for memory error handling
1304 * @p: Raw error page (hit by memory error)
1305 * @flags: Flags controlling behavior of error handling
1307 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1308 * error on it, after checking that the error page is in a well-defined state
1309 * (defined as a page-type we can successfully handle the memory error on it,
1310 * such as LRU page and hugetlb page).
1312 * Memory error handling could be triggered at any time on any type of page,
1313 * so it's prone to race with typical memory management lifecycle (like
1314 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1315 * extra care for the error page's state (as done in __get_hwpoison_page()),
1316 * and has some retry logic in get_any_page().
1318 * When called from unpoison_memory(), the caller should already ensure that
1319 * the given page has PG_hwpoison. So it's never reused for other page
1320 * allocations, and __get_unpoison_page() never races with them.
1322 * Return: 0 on failure,
1323 * 1 on success for in-use pages in a well-defined state,
1324 * -EIO for pages on which we can not handle memory errors,
1325 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1326 * operations like allocation and free,
1327 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1329 static int get_hwpoison_page(struct page *p, unsigned long flags)
1333 zone_pcp_disable(page_zone(p));
1334 if (flags & MF_UNPOISON)
1335 ret = __get_unpoison_page(p);
1337 ret = get_any_page(p, flags);
1338 zone_pcp_enable(page_zone(p));
1344 * Do all that is necessary to remove user space mappings. Unmap
1345 * the pages and send SIGBUS to the processes if the data was dirty.
1347 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1348 int flags, struct page *hpage)
1350 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1351 struct address_space *mapping;
1354 int kill = 1, forcekill;
1355 bool mlocked = PageMlocked(hpage);
1358 * Here we are interested only in user-mapped pages, so skip any
1359 * other types of pages.
1361 if (PageReserved(p) || PageSlab(p))
1363 if (!(PageLRU(hpage) || PageHuge(p)))
1367 * This check implies we don't kill processes if their pages
1368 * are in the swap cache early. Those are always late kills.
1370 if (!page_mapped(hpage))
1374 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1378 if (PageSwapCache(p)) {
1379 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1381 ttu |= TTU_IGNORE_HWPOISON;
1385 * Propagate the dirty bit from PTEs to struct page first, because we
1386 * need this to decide if we should kill or just drop the page.
1387 * XXX: the dirty test could be racy: set_page_dirty() may not always
1388 * be called inside page lock (it's recommended but not enforced).
1390 mapping = page_mapping(hpage);
1391 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1392 mapping_can_writeback(mapping)) {
1393 if (page_mkclean(hpage)) {
1394 SetPageDirty(hpage);
1397 ttu |= TTU_IGNORE_HWPOISON;
1398 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1404 * First collect all the processes that have the page
1405 * mapped in dirty form. This has to be done before try_to_unmap,
1406 * because ttu takes the rmap data structures down.
1408 * Error handling: We ignore errors here because
1409 * there's nothing that can be done.
1412 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1414 if (!PageHuge(hpage)) {
1415 try_to_unmap(hpage, ttu);
1417 if (!PageAnon(hpage)) {
1419 * For hugetlb pages in shared mappings, try_to_unmap
1420 * could potentially call huge_pmd_unshare. Because of
1421 * this, take semaphore in write mode here and set
1422 * TTU_RMAP_LOCKED to indicate we have taken the lock
1423 * at this higher level.
1425 mapping = hugetlb_page_mapping_lock_write(hpage);
1427 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1428 i_mmap_unlock_write(mapping);
1430 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1432 try_to_unmap(hpage, ttu);
1436 unmap_success = !page_mapped(hpage);
1438 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1439 pfn, page_mapcount(hpage));
1442 * try_to_unmap() might put mlocked page in lru cache, so call
1443 * shake_page() again to ensure that it's flushed.
1449 * Now that the dirty bit has been propagated to the
1450 * struct page and all unmaps done we can decide if
1451 * killing is needed or not. Only kill when the page
1452 * was dirty or the process is not restartable,
1453 * otherwise the tokill list is merely
1454 * freed. When there was a problem unmapping earlier
1455 * use a more force-full uncatchable kill to prevent
1456 * any accesses to the poisoned memory.
1458 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1459 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1461 return unmap_success;
1464 static int identify_page_state(unsigned long pfn, struct page *p,
1465 unsigned long page_flags)
1467 struct page_state *ps;
1470 * The first check uses the current page flags which may not have any
1471 * relevant information. The second check with the saved page flags is
1472 * carried out only if the first check can't determine the page status.
1474 for (ps = error_states;; ps++)
1475 if ((p->flags & ps->mask) == ps->res)
1478 page_flags |= (p->flags & (1UL << PG_dirty));
1481 for (ps = error_states;; ps++)
1482 if ((page_flags & ps->mask) == ps->res)
1484 return page_action(ps, p, pfn);
1487 static int try_to_split_thp_page(struct page *page, const char *msg)
1490 if (unlikely(split_huge_page(page))) {
1491 unsigned long pfn = page_to_pfn(page);
1494 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1503 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1505 struct page *p = pfn_to_page(pfn);
1506 struct page *head = compound_head(p);
1508 unsigned long page_flags;
1510 if (TestSetPageHWPoison(head)) {
1511 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1514 if (flags & MF_ACTION_REQUIRED)
1515 res = kill_accessing_process(current, page_to_pfn(head), flags);
1519 num_poisoned_pages_inc();
1521 if (!(flags & MF_COUNT_INCREASED)) {
1522 res = get_hwpoison_page(p, flags);
1525 if (hwpoison_filter(p)) {
1526 if (TestClearPageHWPoison(head))
1527 num_poisoned_pages_dec();
1533 if (__page_handle_poison(p)) {
1537 action_result(pfn, MF_MSG_FREE_HUGE, res);
1538 return res == MF_RECOVERED ? 0 : -EBUSY;
1539 } else if (res < 0) {
1540 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1546 page_flags = head->flags;
1549 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1550 * simply disable it. In order to make it work properly, we need
1552 * - conversion of a pud that maps an error hugetlb into hwpoison
1553 * entry properly works, and
1554 * - other mm code walking over page table is aware of pud-aligned
1557 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1558 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1563 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1564 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1569 return identify_page_state(pfn, p, page_flags);
1575 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1576 struct dev_pagemap *pgmap)
1578 struct page *page = pfn_to_page(pfn);
1579 unsigned long size = 0;
1586 if (flags & MF_COUNT_INCREASED)
1588 * Drop the extra refcount in case we come from madvise().
1592 /* device metadata space is not recoverable */
1593 if (!pgmap_pfn_valid(pgmap, pfn)) {
1599 * Prevent the inode from being freed while we are interrogating
1600 * the address_space, typically this would be handled by
1601 * lock_page(), but dax pages do not use the page lock. This
1602 * also prevents changes to the mapping of this pfn until
1603 * poison signaling is complete.
1605 cookie = dax_lock_page(page);
1609 if (hwpoison_filter(page)) {
1614 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1616 * TODO: Handle HMM pages which may need coordination
1617 * with device-side memory.
1623 * Use this flag as an indication that the dax page has been
1624 * remapped UC to prevent speculative consumption of poison.
1626 SetPageHWPoison(page);
1629 * Unlike System-RAM there is no possibility to swap in a
1630 * different physical page at a given virtual address, so all
1631 * userspace consumption of ZONE_DEVICE memory necessitates
1632 * SIGBUS (i.e. MF_MUST_KILL)
1634 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1635 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1637 list_for_each_entry(tk, &tokill, nd)
1639 size = max(size, 1UL << tk->size_shift);
1642 * Unmap the largest mapping to avoid breaking up
1643 * device-dax mappings which are constant size. The
1644 * actual size of the mapping being torn down is
1645 * communicated in siginfo, see kill_proc()
1647 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1648 unmap_mapping_range(page->mapping, start, size, 0);
1650 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1653 dax_unlock_page(page, cookie);
1655 /* drop pgmap ref acquired in caller */
1656 put_dev_pagemap(pgmap);
1657 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1661 static DEFINE_MUTEX(mf_mutex);
1664 * memory_failure - Handle memory failure of a page.
1665 * @pfn: Page Number of the corrupted page
1666 * @flags: fine tune action taken
1668 * This function is called by the low level machine check code
1669 * of an architecture when it detects hardware memory corruption
1670 * of a page. It tries its best to recover, which includes
1671 * dropping pages, killing processes etc.
1673 * The function is primarily of use for corruptions that
1674 * happen outside the current execution context (e.g. when
1675 * detected by a background scrubber)
1677 * Must run in process context (e.g. a work queue) with interrupts
1678 * enabled and no spinlocks hold.
1680 int memory_failure(unsigned long pfn, int flags)
1684 struct page *orig_head;
1685 struct dev_pagemap *pgmap;
1687 unsigned long page_flags;
1690 if (!sysctl_memory_failure_recovery)
1691 panic("Memory failure on page %lx", pfn);
1693 mutex_lock(&mf_mutex);
1695 p = pfn_to_online_page(pfn);
1697 res = arch_memory_failure(pfn, flags);
1701 if (pfn_valid(pfn)) {
1702 pgmap = get_dev_pagemap(pfn, NULL);
1704 res = memory_failure_dev_pagemap(pfn, flags,
1709 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1717 res = memory_failure_hugetlb(pfn, flags);
1721 if (TestSetPageHWPoison(p)) {
1722 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1725 if (flags & MF_ACTION_REQUIRED)
1726 res = kill_accessing_process(current, pfn, flags);
1730 orig_head = hpage = compound_head(p);
1731 num_poisoned_pages_inc();
1734 * We need/can do nothing about count=0 pages.
1735 * 1) it's a free page, and therefore in safe hand:
1736 * prep_new_page() will be the gate keeper.
1737 * 2) it's part of a non-compound high order page.
1738 * Implies some kernel user: cannot stop them from
1739 * R/W the page; let's pray that the page has been
1740 * used and will be freed some time later.
1741 * In fact it's dangerous to directly bump up page count from 0,
1742 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1744 if (!(flags & MF_COUNT_INCREASED)) {
1745 res = get_hwpoison_page(p, flags);
1747 if (is_free_buddy_page(p)) {
1748 if (take_page_off_buddy(p)) {
1752 /* We lost the race, try again */
1754 ClearPageHWPoison(p);
1755 num_poisoned_pages_dec();
1761 action_result(pfn, MF_MSG_BUDDY, res);
1762 res = res == MF_RECOVERED ? 0 : -EBUSY;
1764 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1768 } else if (res < 0) {
1769 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1775 if (PageTransHuge(hpage)) {
1777 * The flag must be set after the refcount is bumped
1778 * otherwise it may race with THP split.
1779 * And the flag can't be set in get_hwpoison_page() since
1780 * it is called by soft offline too and it is just called
1781 * for !MF_COUNT_INCREASE. So here seems to be the best
1784 * Don't need care about the above error handling paths for
1785 * get_hwpoison_page() since they handle either free page
1786 * or unhandlable page. The refcount is bumped iff the
1787 * page is a valid handlable page.
1789 SetPageHasHWPoisoned(hpage);
1790 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1791 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1795 VM_BUG_ON_PAGE(!page_count(p), p);
1799 * We ignore non-LRU pages for good reasons.
1800 * - PG_locked is only well defined for LRU pages and a few others
1801 * - to avoid races with __SetPageLocked()
1802 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1803 * The check (unnecessarily) ignores LRU pages being isolated and
1804 * walked by the page reclaim code, however that's not a big loss.
1811 * The page could have changed compound pages during the locking.
1812 * If this happens just bail out.
1814 if (PageCompound(p) && compound_head(p) != orig_head) {
1815 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1821 * We use page flags to determine what action should be taken, but
1822 * the flags can be modified by the error containment action. One
1823 * example is an mlocked page, where PG_mlocked is cleared by
1824 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1825 * correctly, we save a copy of the page flags at this time.
1827 page_flags = p->flags;
1829 if (hwpoison_filter(p)) {
1830 if (TestClearPageHWPoison(p))
1831 num_poisoned_pages_dec();
1838 * __munlock_pagevec may clear a writeback page's LRU flag without
1839 * page_lock. We need wait writeback completion for this page or it
1840 * may trigger vfs BUG while evict inode.
1842 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1843 goto identify_page_state;
1846 * It's very difficult to mess with pages currently under IO
1847 * and in many cases impossible, so we just avoid it here.
1849 wait_on_page_writeback(p);
1852 * Now take care of user space mappings.
1853 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1855 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1856 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1862 * Torn down by someone else?
1864 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1865 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1870 identify_page_state:
1871 res = identify_page_state(pfn, p, page_flags);
1872 mutex_unlock(&mf_mutex);
1877 mutex_unlock(&mf_mutex);
1880 EXPORT_SYMBOL_GPL(memory_failure);
1882 #define MEMORY_FAILURE_FIFO_ORDER 4
1883 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1885 struct memory_failure_entry {
1890 struct memory_failure_cpu {
1891 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1892 MEMORY_FAILURE_FIFO_SIZE);
1894 struct work_struct work;
1897 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1900 * memory_failure_queue - Schedule handling memory failure of a page.
1901 * @pfn: Page Number of the corrupted page
1902 * @flags: Flags for memory failure handling
1904 * This function is called by the low level hardware error handler
1905 * when it detects hardware memory corruption of a page. It schedules
1906 * the recovering of error page, including dropping pages, killing
1909 * The function is primarily of use for corruptions that
1910 * happen outside the current execution context (e.g. when
1911 * detected by a background scrubber)
1913 * Can run in IRQ context.
1915 void memory_failure_queue(unsigned long pfn, int flags)
1917 struct memory_failure_cpu *mf_cpu;
1918 unsigned long proc_flags;
1919 struct memory_failure_entry entry = {
1924 mf_cpu = &get_cpu_var(memory_failure_cpu);
1925 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1926 if (kfifo_put(&mf_cpu->fifo, entry))
1927 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1929 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1931 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1932 put_cpu_var(memory_failure_cpu);
1934 EXPORT_SYMBOL_GPL(memory_failure_queue);
1936 static void memory_failure_work_func(struct work_struct *work)
1938 struct memory_failure_cpu *mf_cpu;
1939 struct memory_failure_entry entry = { 0, };
1940 unsigned long proc_flags;
1943 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1945 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1946 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1947 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1950 if (entry.flags & MF_SOFT_OFFLINE)
1951 soft_offline_page(entry.pfn, entry.flags);
1953 memory_failure(entry.pfn, entry.flags);
1958 * Process memory_failure work queued on the specified CPU.
1959 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1961 void memory_failure_queue_kick(int cpu)
1963 struct memory_failure_cpu *mf_cpu;
1965 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1966 cancel_work_sync(&mf_cpu->work);
1967 memory_failure_work_func(&mf_cpu->work);
1970 static int __init memory_failure_init(void)
1972 struct memory_failure_cpu *mf_cpu;
1975 for_each_possible_cpu(cpu) {
1976 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1977 spin_lock_init(&mf_cpu->lock);
1978 INIT_KFIFO(mf_cpu->fifo);
1979 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1984 core_initcall(memory_failure_init);
1986 #define unpoison_pr_info(fmt, pfn, rs) \
1988 if (__ratelimit(rs)) \
1989 pr_info(fmt, pfn); \
1992 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
1994 if (TestClearPageHWPoison(p)) {
1995 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1996 page_to_pfn(p), rs);
1997 num_poisoned_pages_dec();
2003 static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2006 if (put_page_back_buddy(p)) {
2007 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2008 page_to_pfn(p), rs);
2015 * unpoison_memory - Unpoison a previously poisoned page
2016 * @pfn: Page number of the to be unpoisoned page
2018 * Software-unpoison a page that has been poisoned by
2019 * memory_failure() earlier.
2021 * This is only done on the software-level, so it only works
2022 * for linux injected failures, not real hardware failures
2024 * Returns 0 for success, otherwise -errno.
2026 int unpoison_memory(unsigned long pfn)
2031 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2032 DEFAULT_RATELIMIT_BURST);
2034 if (!pfn_valid(pfn))
2037 p = pfn_to_page(pfn);
2038 page = compound_head(p);
2040 mutex_lock(&mf_mutex);
2042 if (!PageHWPoison(p)) {
2043 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2048 if (page_count(page) > 1) {
2049 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2054 if (page_mapped(page)) {
2055 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2060 if (page_mapping(page)) {
2061 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2066 if (PageSlab(page) || PageTable(page))
2069 ret = get_hwpoison_page(p, MF_UNPOISON);
2071 if (clear_page_hwpoison(&unpoison_rs, page))
2075 } else if (ret < 0) {
2076 if (ret == -EHWPOISON) {
2077 ret = unpoison_taken_off_page(&unpoison_rs, p);
2079 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2082 int freeit = clear_page_hwpoison(&unpoison_rs, p);
2085 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2092 mutex_unlock(&mf_mutex);
2095 EXPORT_SYMBOL(unpoison_memory);
2097 static bool isolate_page(struct page *page, struct list_head *pagelist)
2099 bool isolated = false;
2100 bool lru = PageLRU(page);
2102 if (PageHuge(page)) {
2103 isolated = isolate_huge_page(page, pagelist);
2106 isolated = !isolate_lru_page(page);
2108 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2111 list_add(&page->lru, pagelist);
2114 if (isolated && lru)
2115 inc_node_page_state(page, NR_ISOLATED_ANON +
2116 page_is_file_lru(page));
2119 * If we succeed to isolate the page, we grabbed another refcount on
2120 * the page, so we can safely drop the one we got from get_any_pages().
2121 * If we failed to isolate the page, it means that we cannot go further
2122 * and we will return an error, so drop the reference we got from
2123 * get_any_pages() as well.
2130 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2131 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2132 * If the page is mapped, it migrates the contents over.
2134 static int __soft_offline_page(struct page *page)
2137 unsigned long pfn = page_to_pfn(page);
2138 struct page *hpage = compound_head(page);
2139 char const *msg_page[] = {"page", "hugepage"};
2140 bool huge = PageHuge(page);
2141 LIST_HEAD(pagelist);
2142 struct migration_target_control mtc = {
2143 .nid = NUMA_NO_NODE,
2144 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2148 * Check PageHWPoison again inside page lock because PageHWPoison
2149 * is set by memory_failure() outside page lock. Note that
2150 * memory_failure() also double-checks PageHWPoison inside page lock,
2151 * so there's no race between soft_offline_page() and memory_failure().
2154 if (!PageHuge(page))
2155 wait_on_page_writeback(page);
2156 if (PageHWPoison(page)) {
2159 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2163 if (!PageHuge(page))
2165 * Try to invalidate first. This should work for
2166 * non dirty unmapped page cache pages.
2168 ret = invalidate_inode_page(page);
2172 * RED-PEN would be better to keep it isolated here, but we
2173 * would need to fix isolation locking first.
2176 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2177 page_handle_poison(page, false, true);
2181 if (isolate_page(hpage, &pagelist)) {
2182 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2183 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2185 bool release = !huge;
2187 if (!page_handle_poison(page, huge, release))
2190 if (!list_empty(&pagelist))
2191 putback_movable_pages(&pagelist);
2193 pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
2194 pfn, msg_page[huge], ret, &page->flags);
2199 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2200 pfn, msg_page[huge], page_count(page), &page->flags);
2206 static int soft_offline_in_use_page(struct page *page)
2208 struct page *hpage = compound_head(page);
2210 if (!PageHuge(page) && PageTransHuge(hpage))
2211 if (try_to_split_thp_page(page, "soft offline") < 0)
2213 return __soft_offline_page(page);
2216 static int soft_offline_free_page(struct page *page)
2220 if (!page_handle_poison(page, true, false))
2226 static void put_ref_page(struct page *page)
2233 * soft_offline_page - Soft offline a page.
2234 * @pfn: pfn to soft-offline
2235 * @flags: flags. Same as memory_failure().
2237 * Returns 0 on success, otherwise negated errno.
2239 * Soft offline a page, by migration or invalidation,
2240 * without killing anything. This is for the case when
2241 * a page is not corrupted yet (so it's still valid to access),
2242 * but has had a number of corrected errors and is better taken
2245 * The actual policy on when to do that is maintained by
2248 * This should never impact any application or cause data loss,
2249 * however it might take some time.
2251 * This is not a 100% solution for all memory, but tries to be
2252 * ``good enough'' for the majority of memory.
2254 int soft_offline_page(unsigned long pfn, int flags)
2257 bool try_again = true;
2258 struct page *page, *ref_page = NULL;
2260 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2262 if (!pfn_valid(pfn))
2264 if (flags & MF_COUNT_INCREASED)
2265 ref_page = pfn_to_page(pfn);
2267 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2268 page = pfn_to_online_page(pfn);
2270 put_ref_page(ref_page);
2274 mutex_lock(&mf_mutex);
2276 if (PageHWPoison(page)) {
2277 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2278 put_ref_page(ref_page);
2279 mutex_unlock(&mf_mutex);
2285 ret = get_hwpoison_page(page, flags);
2289 ret = soft_offline_in_use_page(page);
2290 } else if (ret == 0) {
2291 if (soft_offline_free_page(page) && try_again) {
2293 flags &= ~MF_COUNT_INCREASED;
2298 mutex_unlock(&mf_mutex);