memcg: fix unit mismatch in memcg oom limit calculation
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         struct mm_struct *mm;
296         wait_queue_head_t waitq;                /* a waitq for other context */
297 } mc = {
298         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
300 };
301
302 static bool move_anon(void)
303 {
304         return test_bit(MOVE_CHARGE_TYPE_ANON,
305                                         &mc.to->move_charge_at_immigrate);
306 }
307
308 static bool move_file(void)
309 {
310         return test_bit(MOVE_CHARGE_TYPE_FILE,
311                                         &mc.to->move_charge_at_immigrate);
312 }
313
314 /*
315  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316  * limit reclaim to prevent infinite loops, if they ever occur.
317  */
318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320
321 enum charge_type {
322         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323         MEM_CGROUP_CHARGE_TYPE_MAPPED,
324         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
325         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
326         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
327         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
328         NR_CHARGE_TYPE,
329 };
330
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE      (1UL << PCG_CACHE)
333 #define PCGF_USED       (1UL << PCG_USED)
334 #define PCGF_LOCK       (1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT       (1UL << PCG_ACCT)
337
338 /* for encoding cft->private value on file */
339 #define _MEM                    (0)
340 #define _MEMSWAP                (1)
341 #define _OOM_TYPE               (2)
342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL             (0)
347
348 /*
349  * Reclaim flags for mem_cgroup_hierarchical_reclaim
350  */
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
356 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357
358 static void mem_cgroup_get(struct mem_cgroup *mem);
359 static void mem_cgroup_put(struct mem_cgroup *mem);
360 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361 static void drain_all_stock_async(void);
362
363 static struct mem_cgroup_per_zone *
364 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 {
366         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
367 }
368
369 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 {
371         return &mem->css;
372 }
373
374 static struct mem_cgroup_per_zone *
375 page_cgroup_zoneinfo(struct page_cgroup *pc)
376 {
377         struct mem_cgroup *mem = pc->mem_cgroup;
378         int nid = page_cgroup_nid(pc);
379         int zid = page_cgroup_zid(pc);
380
381         if (!mem)
382                 return NULL;
383
384         return mem_cgroup_zoneinfo(mem, nid, zid);
385 }
386
387 static struct mem_cgroup_tree_per_zone *
388 soft_limit_tree_node_zone(int nid, int zid)
389 {
390         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391 }
392
393 static struct mem_cgroup_tree_per_zone *
394 soft_limit_tree_from_page(struct page *page)
395 {
396         int nid = page_to_nid(page);
397         int zid = page_zonenum(page);
398
399         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400 }
401
402 static void
403 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404                                 struct mem_cgroup_per_zone *mz,
405                                 struct mem_cgroup_tree_per_zone *mctz,
406                                 unsigned long long new_usage_in_excess)
407 {
408         struct rb_node **p = &mctz->rb_root.rb_node;
409         struct rb_node *parent = NULL;
410         struct mem_cgroup_per_zone *mz_node;
411
412         if (mz->on_tree)
413                 return;
414
415         mz->usage_in_excess = new_usage_in_excess;
416         if (!mz->usage_in_excess)
417                 return;
418         while (*p) {
419                 parent = *p;
420                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421                                         tree_node);
422                 if (mz->usage_in_excess < mz_node->usage_in_excess)
423                         p = &(*p)->rb_left;
424                 /*
425                  * We can't avoid mem cgroups that are over their soft
426                  * limit by the same amount
427                  */
428                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429                         p = &(*p)->rb_right;
430         }
431         rb_link_node(&mz->tree_node, parent, p);
432         rb_insert_color(&mz->tree_node, &mctz->rb_root);
433         mz->on_tree = true;
434 }
435
436 static void
437 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438                                 struct mem_cgroup_per_zone *mz,
439                                 struct mem_cgroup_tree_per_zone *mctz)
440 {
441         if (!mz->on_tree)
442                 return;
443         rb_erase(&mz->tree_node, &mctz->rb_root);
444         mz->on_tree = false;
445 }
446
447 static void
448 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449                                 struct mem_cgroup_per_zone *mz,
450                                 struct mem_cgroup_tree_per_zone *mctz)
451 {
452         spin_lock(&mctz->lock);
453         __mem_cgroup_remove_exceeded(mem, mz, mctz);
454         spin_unlock(&mctz->lock);
455 }
456
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459 {
460         unsigned long long excess;
461         struct mem_cgroup_per_zone *mz;
462         struct mem_cgroup_tree_per_zone *mctz;
463         int nid = page_to_nid(page);
464         int zid = page_zonenum(page);
465         mctz = soft_limit_tree_from_page(page);
466
467         /*
468          * Necessary to update all ancestors when hierarchy is used.
469          * because their event counter is not touched.
470          */
471         for (; mem; mem = parent_mem_cgroup(mem)) {
472                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
473                 excess = res_counter_soft_limit_excess(&mem->res);
474                 /*
475                  * We have to update the tree if mz is on RB-tree or
476                  * mem is over its softlimit.
477                  */
478                 if (excess || mz->on_tree) {
479                         spin_lock(&mctz->lock);
480                         /* if on-tree, remove it */
481                         if (mz->on_tree)
482                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483                         /*
484                          * Insert again. mz->usage_in_excess will be updated.
485                          * If excess is 0, no tree ops.
486                          */
487                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488                         spin_unlock(&mctz->lock);
489                 }
490         }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494 {
495         int node, zone;
496         struct mem_cgroup_per_zone *mz;
497         struct mem_cgroup_tree_per_zone *mctz;
498
499         for_each_node_state(node, N_POSSIBLE) {
500                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501                         mz = mem_cgroup_zoneinfo(mem, node, zone);
502                         mctz = soft_limit_tree_node_zone(node, zone);
503                         mem_cgroup_remove_exceeded(mem, mz, mctz);
504                 }
505         }
506 }
507
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509 {
510         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
511 }
512
513 static struct mem_cgroup_per_zone *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515 {
516         struct rb_node *rightmost = NULL;
517         struct mem_cgroup_per_zone *mz;
518
519 retry:
520         mz = NULL;
521         rightmost = rb_last(&mctz->rb_root);
522         if (!rightmost)
523                 goto done;              /* Nothing to reclaim from */
524
525         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526         /*
527          * Remove the node now but someone else can add it back,
528          * we will to add it back at the end of reclaim to its correct
529          * position in the tree.
530          */
531         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533                 !css_tryget(&mz->mem->css))
534                 goto retry;
535 done:
536         return mz;
537 }
538
539 static struct mem_cgroup_per_zone *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541 {
542         struct mem_cgroup_per_zone *mz;
543
544         spin_lock(&mctz->lock);
545         mz = __mem_cgroup_largest_soft_limit_node(mctz);
546         spin_unlock(&mctz->lock);
547         return mz;
548 }
549
550 /*
551  * Implementation Note: reading percpu statistics for memcg.
552  *
553  * Both of vmstat[] and percpu_counter has threshold and do periodic
554  * synchronization to implement "quick" read. There are trade-off between
555  * reading cost and precision of value. Then, we may have a chance to implement
556  * a periodic synchronizion of counter in memcg's counter.
557  *
558  * But this _read() function is used for user interface now. The user accounts
559  * memory usage by memory cgroup and he _always_ requires exact value because
560  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561  * have to visit all online cpus and make sum. So, for now, unnecessary
562  * synchronization is not implemented. (just implemented for cpu hotplug)
563  *
564  * If there are kernel internal actions which can make use of some not-exact
565  * value, and reading all cpu value can be performance bottleneck in some
566  * common workload, threashold and synchonization as vmstat[] should be
567  * implemented.
568  */
569 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570                 enum mem_cgroup_stat_index idx)
571 {
572         int cpu;
573         s64 val = 0;
574
575         get_online_cpus();
576         for_each_online_cpu(cpu)
577                 val += per_cpu(mem->stat->count[idx], cpu);
578 #ifdef CONFIG_HOTPLUG_CPU
579         spin_lock(&mem->pcp_counter_lock);
580         val += mem->nocpu_base.count[idx];
581         spin_unlock(&mem->pcp_counter_lock);
582 #endif
583         put_online_cpus();
584         return val;
585 }
586
587 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588 {
589         s64 ret;
590
591         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593         return ret;
594 }
595
596 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597                                          bool charge)
598 {
599         int val = (charge) ? 1 : -1;
600         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
601 }
602
603 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604                                          struct page_cgroup *pc,
605                                          bool charge)
606 {
607         int val = (charge) ? 1 : -1;
608
609         preempt_disable();
610
611         if (PageCgroupCache(pc))
612                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613         else
614                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
615
616         if (charge)
617                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618         else
619                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
621
622         preempt_enable();
623 }
624
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626                                         enum lru_list idx)
627 {
628         int nid, zid;
629         struct mem_cgroup_per_zone *mz;
630         u64 total = 0;
631
632         for_each_online_node(nid)
633                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
635                         total += MEM_CGROUP_ZSTAT(mz, idx);
636                 }
637         return total;
638 }
639
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641 {
642         s64 val;
643
644         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646         return !(val & ((1 << event_mask_shift) - 1));
647 }
648
649 /*
650  * Check events in order.
651  *
652  */
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654 {
655         /* threshold event is triggered in finer grain than soft limit */
656         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657                 mem_cgroup_threshold(mem);
658                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659                         mem_cgroup_update_tree(mem, page);
660         }
661 }
662
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664 {
665         return container_of(cgroup_subsys_state(cont,
666                                 mem_cgroup_subsys_id), struct mem_cgroup,
667                                 css);
668 }
669
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 {
672         /*
673          * mm_update_next_owner() may clear mm->owner to NULL
674          * if it races with swapoff, page migration, etc.
675          * So this can be called with p == NULL.
676          */
677         if (unlikely(!p))
678                 return NULL;
679
680         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681                                 struct mem_cgroup, css);
682 }
683
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685 {
686         struct mem_cgroup *mem = NULL;
687
688         if (!mm)
689                 return NULL;
690         /*
691          * Because we have no locks, mm->owner's may be being moved to other
692          * cgroup. We use css_tryget() here even if this looks
693          * pessimistic (rather than adding locks here).
694          */
695         rcu_read_lock();
696         do {
697                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698                 if (unlikely(!mem))
699                         break;
700         } while (!css_tryget(&mem->css));
701         rcu_read_unlock();
702         return mem;
703 }
704
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707 {
708         struct cgroup_subsys_state *css;
709         int found;
710
711         if (!mem) /* ROOT cgroup has the smallest ID */
712                 return root_mem_cgroup; /*css_put/get against root is ignored*/
713         if (!mem->use_hierarchy) {
714                 if (css_tryget(&mem->css))
715                         return mem;
716                 return NULL;
717         }
718         rcu_read_lock();
719         /*
720          * searching a memory cgroup which has the smallest ID under given
721          * ROOT cgroup. (ID >= 1)
722          */
723         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724         if (css && css_tryget(css))
725                 mem = container_of(css, struct mem_cgroup, css);
726         else
727                 mem = NULL;
728         rcu_read_unlock();
729         return mem;
730 }
731
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733                                         struct mem_cgroup *root,
734                                         bool cond)
735 {
736         int nextid = css_id(&iter->css) + 1;
737         int found;
738         int hierarchy_used;
739         struct cgroup_subsys_state *css;
740
741         hierarchy_used = iter->use_hierarchy;
742
743         css_put(&iter->css);
744         /* If no ROOT, walk all, ignore hierarchy */
745         if (!cond || (root && !hierarchy_used))
746                 return NULL;
747
748         if (!root)
749                 root = root_mem_cgroup;
750
751         do {
752                 iter = NULL;
753                 rcu_read_lock();
754
755                 css = css_get_next(&mem_cgroup_subsys, nextid,
756                                 &root->css, &found);
757                 if (css && css_tryget(css))
758                         iter = container_of(css, struct mem_cgroup, css);
759                 rcu_read_unlock();
760                 /* If css is NULL, no more cgroups will be found */
761                 nextid = found + 1;
762         } while (css && !iter);
763
764         return iter;
765 }
766 /*
767  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768  * be careful that "break" loop is not allowed. We have reference count.
769  * Instead of that modify "cond" to be false and "continue" to exit the loop.
770  */
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772         for (iter = mem_cgroup_start_loop(root);\
773              iter != NULL;\
774              iter = mem_cgroup_get_next(iter, root, cond))
775
776 #define for_each_mem_cgroup_tree(iter, root) \
777         for_each_mem_cgroup_tree_cond(iter, root, true)
778
779 #define for_each_mem_cgroup_all(iter) \
780         for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
782
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784 {
785         return (mem == root_mem_cgroup);
786 }
787
788 /*
789  * Following LRU functions are allowed to be used without PCG_LOCK.
790  * Operations are called by routine of global LRU independently from memcg.
791  * What we have to take care of here is validness of pc->mem_cgroup.
792  *
793  * Changes to pc->mem_cgroup happens when
794  * 1. charge
795  * 2. moving account
796  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797  * It is added to LRU before charge.
798  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799  * When moving account, the page is not on LRU. It's isolated.
800  */
801
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803 {
804         struct page_cgroup *pc;
805         struct mem_cgroup_per_zone *mz;
806
807         if (mem_cgroup_disabled())
808                 return;
809         pc = lookup_page_cgroup(page);
810         /* can happen while we handle swapcache. */
811         if (!TestClearPageCgroupAcctLRU(pc))
812                 return;
813         VM_BUG_ON(!pc->mem_cgroup);
814         /*
815          * We don't check PCG_USED bit. It's cleared when the "page" is finally
816          * removed from global LRU.
817          */
818         mz = page_cgroup_zoneinfo(pc);
819         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820         if (mem_cgroup_is_root(pc->mem_cgroup))
821                 return;
822         VM_BUG_ON(list_empty(&pc->lru));
823         list_del_init(&pc->lru);
824         return;
825 }
826
827 void mem_cgroup_del_lru(struct page *page)
828 {
829         mem_cgroup_del_lru_list(page, page_lru(page));
830 }
831
832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833 {
834         struct mem_cgroup_per_zone *mz;
835         struct page_cgroup *pc;
836
837         if (mem_cgroup_disabled())
838                 return;
839
840         pc = lookup_page_cgroup(page);
841         /*
842          * Used bit is set without atomic ops but after smp_wmb().
843          * For making pc->mem_cgroup visible, insert smp_rmb() here.
844          */
845         smp_rmb();
846         /* unused or root page is not rotated. */
847         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
848                 return;
849         mz = page_cgroup_zoneinfo(pc);
850         list_move(&pc->lru, &mz->lists[lru]);
851 }
852
853 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854 {
855         struct page_cgroup *pc;
856         struct mem_cgroup_per_zone *mz;
857
858         if (mem_cgroup_disabled())
859                 return;
860         pc = lookup_page_cgroup(page);
861         VM_BUG_ON(PageCgroupAcctLRU(pc));
862         /*
863          * Used bit is set without atomic ops but after smp_wmb().
864          * For making pc->mem_cgroup visible, insert smp_rmb() here.
865          */
866         smp_rmb();
867         if (!PageCgroupUsed(pc))
868                 return;
869
870         mz = page_cgroup_zoneinfo(pc);
871         MEM_CGROUP_ZSTAT(mz, lru) += 1;
872         SetPageCgroupAcctLRU(pc);
873         if (mem_cgroup_is_root(pc->mem_cgroup))
874                 return;
875         list_add(&pc->lru, &mz->lists[lru]);
876 }
877
878 /*
879  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880  * lru because the page may.be reused after it's fully uncharged (because of
881  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882  * it again. This function is only used to charge SwapCache. It's done under
883  * lock_page and expected that zone->lru_lock is never held.
884  */
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886 {
887         unsigned long flags;
888         struct zone *zone = page_zone(page);
889         struct page_cgroup *pc = lookup_page_cgroup(page);
890
891         spin_lock_irqsave(&zone->lru_lock, flags);
892         /*
893          * Forget old LRU when this page_cgroup is *not* used. This Used bit
894          * is guarded by lock_page() because the page is SwapCache.
895          */
896         if (!PageCgroupUsed(pc))
897                 mem_cgroup_del_lru_list(page, page_lru(page));
898         spin_unlock_irqrestore(&zone->lru_lock, flags);
899 }
900
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902 {
903         unsigned long flags;
904         struct zone *zone = page_zone(page);
905         struct page_cgroup *pc = lookup_page_cgroup(page);
906
907         spin_lock_irqsave(&zone->lru_lock, flags);
908         /* link when the page is linked to LRU but page_cgroup isn't */
909         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910                 mem_cgroup_add_lru_list(page, page_lru(page));
911         spin_unlock_irqrestore(&zone->lru_lock, flags);
912 }
913
914
915 void mem_cgroup_move_lists(struct page *page,
916                            enum lru_list from, enum lru_list to)
917 {
918         if (mem_cgroup_disabled())
919                 return;
920         mem_cgroup_del_lru_list(page, from);
921         mem_cgroup_add_lru_list(page, to);
922 }
923
924 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925 {
926         int ret;
927         struct mem_cgroup *curr = NULL;
928         struct task_struct *p;
929
930         p = find_lock_task_mm(task);
931         if (!p)
932                 return 0;
933         curr = try_get_mem_cgroup_from_mm(p->mm);
934         task_unlock(p);
935         if (!curr)
936                 return 0;
937         /*
938          * We should check use_hierarchy of "mem" not "curr". Because checking
939          * use_hierarchy of "curr" here make this function true if hierarchy is
940          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941          * hierarchy(even if use_hierarchy is disabled in "mem").
942          */
943         if (mem->use_hierarchy)
944                 ret = css_is_ancestor(&curr->css, &mem->css);
945         else
946                 ret = (curr == mem);
947         css_put(&curr->css);
948         return ret;
949 }
950
951 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 {
953         unsigned long active;
954         unsigned long inactive;
955         unsigned long gb;
956         unsigned long inactive_ratio;
957
958         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960
961         gb = (inactive + active) >> (30 - PAGE_SHIFT);
962         if (gb)
963                 inactive_ratio = int_sqrt(10 * gb);
964         else
965                 inactive_ratio = 1;
966
967         if (present_pages) {
968                 present_pages[0] = inactive;
969                 present_pages[1] = active;
970         }
971
972         return inactive_ratio;
973 }
974
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976 {
977         unsigned long active;
978         unsigned long inactive;
979         unsigned long present_pages[2];
980         unsigned long inactive_ratio;
981
982         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984         inactive = present_pages[0];
985         active = present_pages[1];
986
987         if (inactive * inactive_ratio < active)
988                 return 1;
989
990         return 0;
991 }
992
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994 {
995         unsigned long active;
996         unsigned long inactive;
997
998         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001         return (active > inactive);
1002 }
1003
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005                                        struct zone *zone,
1006                                        enum lru_list lru)
1007 {
1008         int nid = zone_to_nid(zone);
1009         int zid = zone_idx(zone);
1010         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012         return MEM_CGROUP_ZSTAT(mz, lru);
1013 }
1014
1015 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016                                                       struct zone *zone)
1017 {
1018         int nid = zone_to_nid(zone);
1019         int zid = zone_idx(zone);
1020         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022         return &mz->reclaim_stat;
1023 }
1024
1025 struct zone_reclaim_stat *
1026 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027 {
1028         struct page_cgroup *pc;
1029         struct mem_cgroup_per_zone *mz;
1030
1031         if (mem_cgroup_disabled())
1032                 return NULL;
1033
1034         pc = lookup_page_cgroup(page);
1035         /*
1036          * Used bit is set without atomic ops but after smp_wmb().
1037          * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038          */
1039         smp_rmb();
1040         if (!PageCgroupUsed(pc))
1041                 return NULL;
1042
1043         mz = page_cgroup_zoneinfo(pc);
1044         if (!mz)
1045                 return NULL;
1046
1047         return &mz->reclaim_stat;
1048 }
1049
1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051                                         struct list_head *dst,
1052                                         unsigned long *scanned, int order,
1053                                         int mode, struct zone *z,
1054                                         struct mem_cgroup *mem_cont,
1055                                         int active, int file)
1056 {
1057         unsigned long nr_taken = 0;
1058         struct page *page;
1059         unsigned long scan;
1060         LIST_HEAD(pc_list);
1061         struct list_head *src;
1062         struct page_cgroup *pc, *tmp;
1063         int nid = zone_to_nid(z);
1064         int zid = zone_idx(z);
1065         struct mem_cgroup_per_zone *mz;
1066         int lru = LRU_FILE * file + active;
1067         int ret;
1068
1069         BUG_ON(!mem_cont);
1070         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071         src = &mz->lists[lru];
1072
1073         scan = 0;
1074         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1075                 if (scan >= nr_to_scan)
1076                         break;
1077
1078                 page = pc->page;
1079                 if (unlikely(!PageCgroupUsed(pc)))
1080                         continue;
1081                 if (unlikely(!PageLRU(page)))
1082                         continue;
1083
1084                 scan++;
1085                 ret = __isolate_lru_page(page, mode, file);
1086                 switch (ret) {
1087                 case 0:
1088                         list_move(&page->lru, dst);
1089                         mem_cgroup_del_lru(page);
1090                         nr_taken += hpage_nr_pages(page);
1091                         break;
1092                 case -EBUSY:
1093                         /* we don't affect global LRU but rotate in our LRU */
1094                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1095                         break;
1096                 default:
1097                         break;
1098                 }
1099         }
1100
1101         *scanned = scan;
1102
1103         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104                                       0, 0, 0, mode);
1105
1106         return nr_taken;
1107 }
1108
1109 #define mem_cgroup_from_res_counter(counter, member)    \
1110         container_of(counter, struct mem_cgroup, member)
1111
1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113 {
1114         if (do_swap_account) {
1115                 if (res_counter_check_under_limit(&mem->res) &&
1116                         res_counter_check_under_limit(&mem->memsw))
1117                         return true;
1118         } else
1119                 if (res_counter_check_under_limit(&mem->res))
1120                         return true;
1121         return false;
1122 }
1123
1124 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125 {
1126         struct cgroup *cgrp = memcg->css.cgroup;
1127         unsigned int swappiness;
1128
1129         /* root ? */
1130         if (cgrp->parent == NULL)
1131                 return vm_swappiness;
1132
1133         spin_lock(&memcg->reclaim_param_lock);
1134         swappiness = memcg->swappiness;
1135         spin_unlock(&memcg->reclaim_param_lock);
1136
1137         return swappiness;
1138 }
1139
1140 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141 {
1142         int cpu;
1143
1144         get_online_cpus();
1145         spin_lock(&mem->pcp_counter_lock);
1146         for_each_online_cpu(cpu)
1147                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149         spin_unlock(&mem->pcp_counter_lock);
1150         put_online_cpus();
1151
1152         synchronize_rcu();
1153 }
1154
1155 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156 {
1157         int cpu;
1158
1159         if (!mem)
1160                 return;
1161         get_online_cpus();
1162         spin_lock(&mem->pcp_counter_lock);
1163         for_each_online_cpu(cpu)
1164                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166         spin_unlock(&mem->pcp_counter_lock);
1167         put_online_cpus();
1168 }
1169 /*
1170  * 2 routines for checking "mem" is under move_account() or not.
1171  *
1172  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173  *                        for avoiding race in accounting. If true,
1174  *                        pc->mem_cgroup may be overwritten.
1175  *
1176  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177  *                        under hierarchy of moving cgroups. This is for
1178  *                        waiting at hith-memory prressure caused by "move".
1179  */
1180
1181 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182 {
1183         VM_BUG_ON(!rcu_read_lock_held());
1184         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1185 }
1186
1187 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188 {
1189         struct mem_cgroup *from;
1190         struct mem_cgroup *to;
1191         bool ret = false;
1192         /*
1193          * Unlike task_move routines, we access mc.to, mc.from not under
1194          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195          */
1196         spin_lock(&mc.lock);
1197         from = mc.from;
1198         to = mc.to;
1199         if (!from)
1200                 goto unlock;
1201         if (from == mem || to == mem
1202             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1204                 ret = true;
1205 unlock:
1206         spin_unlock(&mc.lock);
1207         return ret;
1208 }
1209
1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211 {
1212         if (mc.moving_task && current != mc.moving_task) {
1213                 if (mem_cgroup_under_move(mem)) {
1214                         DEFINE_WAIT(wait);
1215                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216                         /* moving charge context might have finished. */
1217                         if (mc.moving_task)
1218                                 schedule();
1219                         finish_wait(&mc.waitq, &wait);
1220                         return true;
1221                 }
1222         }
1223         return false;
1224 }
1225
1226 /**
1227  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228  * @memcg: The memory cgroup that went over limit
1229  * @p: Task that is going to be killed
1230  *
1231  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232  * enabled
1233  */
1234 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235 {
1236         struct cgroup *task_cgrp;
1237         struct cgroup *mem_cgrp;
1238         /*
1239          * Need a buffer in BSS, can't rely on allocations. The code relies
1240          * on the assumption that OOM is serialized for memory controller.
1241          * If this assumption is broken, revisit this code.
1242          */
1243         static char memcg_name[PATH_MAX];
1244         int ret;
1245
1246         if (!memcg || !p)
1247                 return;
1248
1249
1250         rcu_read_lock();
1251
1252         mem_cgrp = memcg->css.cgroup;
1253         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254
1255         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256         if (ret < 0) {
1257                 /*
1258                  * Unfortunately, we are unable to convert to a useful name
1259                  * But we'll still print out the usage information
1260                  */
1261                 rcu_read_unlock();
1262                 goto done;
1263         }
1264         rcu_read_unlock();
1265
1266         printk(KERN_INFO "Task in %s killed", memcg_name);
1267
1268         rcu_read_lock();
1269         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270         if (ret < 0) {
1271                 rcu_read_unlock();
1272                 goto done;
1273         }
1274         rcu_read_unlock();
1275
1276         /*
1277          * Continues from above, so we don't need an KERN_ level
1278          */
1279         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280 done:
1281
1282         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287                 "failcnt %llu\n",
1288                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291 }
1292
1293 /*
1294  * This function returns the number of memcg under hierarchy tree. Returns
1295  * 1(self count) if no children.
1296  */
1297 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298 {
1299         int num = 0;
1300         struct mem_cgroup *iter;
1301
1302         for_each_mem_cgroup_tree(iter, mem)
1303                 num++;
1304         return num;
1305 }
1306
1307 /*
1308  * Return the memory (and swap, if configured) limit for a memcg.
1309  */
1310 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311 {
1312         u64 limit;
1313         u64 memsw;
1314
1315         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1316         limit += total_swap_pages << PAGE_SHIFT;
1317
1318         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1319         /*
1320          * If memsw is finite and limits the amount of swap space available
1321          * to this memcg, return that limit.
1322          */
1323         return min(limit, memsw);
1324 }
1325
1326 /*
1327  * Visit the first child (need not be the first child as per the ordering
1328  * of the cgroup list, since we track last_scanned_child) of @mem and use
1329  * that to reclaim free pages from.
1330  */
1331 static struct mem_cgroup *
1332 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1333 {
1334         struct mem_cgroup *ret = NULL;
1335         struct cgroup_subsys_state *css;
1336         int nextid, found;
1337
1338         if (!root_mem->use_hierarchy) {
1339                 css_get(&root_mem->css);
1340                 ret = root_mem;
1341         }
1342
1343         while (!ret) {
1344                 rcu_read_lock();
1345                 nextid = root_mem->last_scanned_child + 1;
1346                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1347                                    &found);
1348                 if (css && css_tryget(css))
1349                         ret = container_of(css, struct mem_cgroup, css);
1350
1351                 rcu_read_unlock();
1352                 /* Updates scanning parameter */
1353                 spin_lock(&root_mem->reclaim_param_lock);
1354                 if (!css) {
1355                         /* this means start scan from ID:1 */
1356                         root_mem->last_scanned_child = 0;
1357                 } else
1358                         root_mem->last_scanned_child = found;
1359                 spin_unlock(&root_mem->reclaim_param_lock);
1360         }
1361
1362         return ret;
1363 }
1364
1365 /*
1366  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1367  * we reclaimed from, so that we don't end up penalizing one child extensively
1368  * based on its position in the children list.
1369  *
1370  * root_mem is the original ancestor that we've been reclaim from.
1371  *
1372  * We give up and return to the caller when we visit root_mem twice.
1373  * (other groups can be removed while we're walking....)
1374  *
1375  * If shrink==true, for avoiding to free too much, this returns immedieately.
1376  */
1377 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1378                                                 struct zone *zone,
1379                                                 gfp_t gfp_mask,
1380                                                 unsigned long reclaim_options)
1381 {
1382         struct mem_cgroup *victim;
1383         int ret, total = 0;
1384         int loop = 0;
1385         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1386         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1387         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1388         unsigned long excess = mem_cgroup_get_excess(root_mem);
1389
1390         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1391         if (root_mem->memsw_is_minimum)
1392                 noswap = true;
1393
1394         while (1) {
1395                 victim = mem_cgroup_select_victim(root_mem);
1396                 if (victim == root_mem) {
1397                         loop++;
1398                         if (loop >= 1)
1399                                 drain_all_stock_async();
1400                         if (loop >= 2) {
1401                                 /*
1402                                  * If we have not been able to reclaim
1403                                  * anything, it might because there are
1404                                  * no reclaimable pages under this hierarchy
1405                                  */
1406                                 if (!check_soft || !total) {
1407                                         css_put(&victim->css);
1408                                         break;
1409                                 }
1410                                 /*
1411                                  * We want to do more targetted reclaim.
1412                                  * excess >> 2 is not to excessive so as to
1413                                  * reclaim too much, nor too less that we keep
1414                                  * coming back to reclaim from this cgroup
1415                                  */
1416                                 if (total >= (excess >> 2) ||
1417                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1418                                         css_put(&victim->css);
1419                                         break;
1420                                 }
1421                         }
1422                 }
1423                 if (!mem_cgroup_local_usage(victim)) {
1424                         /* this cgroup's local usage == 0 */
1425                         css_put(&victim->css);
1426                         continue;
1427                 }
1428                 /* we use swappiness of local cgroup */
1429                 if (check_soft)
1430                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1431                                 noswap, get_swappiness(victim), zone);
1432                 else
1433                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1434                                                 noswap, get_swappiness(victim));
1435                 css_put(&victim->css);
1436                 /*
1437                  * At shrinking usage, we can't check we should stop here or
1438                  * reclaim more. It's depends on callers. last_scanned_child
1439                  * will work enough for keeping fairness under tree.
1440                  */
1441                 if (shrink)
1442                         return ret;
1443                 total += ret;
1444                 if (check_soft) {
1445                         if (res_counter_check_under_soft_limit(&root_mem->res))
1446                                 return total;
1447                 } else if (mem_cgroup_check_under_limit(root_mem))
1448                         return 1 + total;
1449         }
1450         return total;
1451 }
1452
1453 /*
1454  * Check OOM-Killer is already running under our hierarchy.
1455  * If someone is running, return false.
1456  */
1457 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1458 {
1459         int x, lock_count = 0;
1460         struct mem_cgroup *iter;
1461
1462         for_each_mem_cgroup_tree(iter, mem) {
1463                 x = atomic_inc_return(&iter->oom_lock);
1464                 lock_count = max(x, lock_count);
1465         }
1466
1467         if (lock_count == 1)
1468                 return true;
1469         return false;
1470 }
1471
1472 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1473 {
1474         struct mem_cgroup *iter;
1475
1476         /*
1477          * When a new child is created while the hierarchy is under oom,
1478          * mem_cgroup_oom_lock() may not be called. We have to use
1479          * atomic_add_unless() here.
1480          */
1481         for_each_mem_cgroup_tree(iter, mem)
1482                 atomic_add_unless(&iter->oom_lock, -1, 0);
1483         return 0;
1484 }
1485
1486
1487 static DEFINE_MUTEX(memcg_oom_mutex);
1488 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1489
1490 struct oom_wait_info {
1491         struct mem_cgroup *mem;
1492         wait_queue_t    wait;
1493 };
1494
1495 static int memcg_oom_wake_function(wait_queue_t *wait,
1496         unsigned mode, int sync, void *arg)
1497 {
1498         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1499         struct oom_wait_info *oom_wait_info;
1500
1501         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1502
1503         if (oom_wait_info->mem == wake_mem)
1504                 goto wakeup;
1505         /* if no hierarchy, no match */
1506         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1507                 return 0;
1508         /*
1509          * Both of oom_wait_info->mem and wake_mem are stable under us.
1510          * Then we can use css_is_ancestor without taking care of RCU.
1511          */
1512         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1513             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1514                 return 0;
1515
1516 wakeup:
1517         return autoremove_wake_function(wait, mode, sync, arg);
1518 }
1519
1520 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1521 {
1522         /* for filtering, pass "mem" as argument. */
1523         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1524 }
1525
1526 static void memcg_oom_recover(struct mem_cgroup *mem)
1527 {
1528         if (mem && atomic_read(&mem->oom_lock))
1529                 memcg_wakeup_oom(mem);
1530 }
1531
1532 /*
1533  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1534  */
1535 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1536 {
1537         struct oom_wait_info owait;
1538         bool locked, need_to_kill;
1539
1540         owait.mem = mem;
1541         owait.wait.flags = 0;
1542         owait.wait.func = memcg_oom_wake_function;
1543         owait.wait.private = current;
1544         INIT_LIST_HEAD(&owait.wait.task_list);
1545         need_to_kill = true;
1546         /* At first, try to OOM lock hierarchy under mem.*/
1547         mutex_lock(&memcg_oom_mutex);
1548         locked = mem_cgroup_oom_lock(mem);
1549         /*
1550          * Even if signal_pending(), we can't quit charge() loop without
1551          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1552          * under OOM is always welcomed, use TASK_KILLABLE here.
1553          */
1554         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1555         if (!locked || mem->oom_kill_disable)
1556                 need_to_kill = false;
1557         if (locked)
1558                 mem_cgroup_oom_notify(mem);
1559         mutex_unlock(&memcg_oom_mutex);
1560
1561         if (need_to_kill) {
1562                 finish_wait(&memcg_oom_waitq, &owait.wait);
1563                 mem_cgroup_out_of_memory(mem, mask);
1564         } else {
1565                 schedule();
1566                 finish_wait(&memcg_oom_waitq, &owait.wait);
1567         }
1568         mutex_lock(&memcg_oom_mutex);
1569         mem_cgroup_oom_unlock(mem);
1570         memcg_wakeup_oom(mem);
1571         mutex_unlock(&memcg_oom_mutex);
1572
1573         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1574                 return false;
1575         /* Give chance to dying process */
1576         schedule_timeout(1);
1577         return true;
1578 }
1579
1580 /*
1581  * Currently used to update mapped file statistics, but the routine can be
1582  * generalized to update other statistics as well.
1583  *
1584  * Notes: Race condition
1585  *
1586  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1587  * it tends to be costly. But considering some conditions, we doesn't need
1588  * to do so _always_.
1589  *
1590  * Considering "charge", lock_page_cgroup() is not required because all
1591  * file-stat operations happen after a page is attached to radix-tree. There
1592  * are no race with "charge".
1593  *
1594  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1595  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1596  * if there are race with "uncharge". Statistics itself is properly handled
1597  * by flags.
1598  *
1599  * Considering "move", this is an only case we see a race. To make the race
1600  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1601  * possibility of race condition. If there is, we take a lock.
1602  */
1603
1604 void mem_cgroup_update_page_stat(struct page *page,
1605                                  enum mem_cgroup_page_stat_item idx, int val)
1606 {
1607         struct mem_cgroup *mem;
1608         struct page_cgroup *pc = lookup_page_cgroup(page);
1609         bool need_unlock = false;
1610         unsigned long uninitialized_var(flags);
1611
1612         if (unlikely(!pc))
1613                 return;
1614
1615         rcu_read_lock();
1616         mem = pc->mem_cgroup;
1617         if (unlikely(!mem || !PageCgroupUsed(pc)))
1618                 goto out;
1619         /* pc->mem_cgroup is unstable ? */
1620         if (unlikely(mem_cgroup_stealed(mem))) {
1621                 /* take a lock against to access pc->mem_cgroup */
1622                 move_lock_page_cgroup(pc, &flags);
1623                 need_unlock = true;
1624                 mem = pc->mem_cgroup;
1625                 if (!mem || !PageCgroupUsed(pc))
1626                         goto out;
1627         }
1628
1629         switch (idx) {
1630         case MEMCG_NR_FILE_MAPPED:
1631                 if (val > 0)
1632                         SetPageCgroupFileMapped(pc);
1633                 else if (!page_mapped(page))
1634                         ClearPageCgroupFileMapped(pc);
1635                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1636                 break;
1637         default:
1638                 BUG();
1639         }
1640
1641         this_cpu_add(mem->stat->count[idx], val);
1642
1643 out:
1644         if (unlikely(need_unlock))
1645                 move_unlock_page_cgroup(pc, &flags);
1646         rcu_read_unlock();
1647         return;
1648 }
1649 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1650
1651 /*
1652  * size of first charge trial. "32" comes from vmscan.c's magic value.
1653  * TODO: maybe necessary to use big numbers in big irons.
1654  */
1655 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1656 struct memcg_stock_pcp {
1657         struct mem_cgroup *cached; /* this never be root cgroup */
1658         int charge;
1659         struct work_struct work;
1660 };
1661 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1662 static atomic_t memcg_drain_count;
1663
1664 /*
1665  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1666  * from local stock and true is returned. If the stock is 0 or charges from a
1667  * cgroup which is not current target, returns false. This stock will be
1668  * refilled.
1669  */
1670 static bool consume_stock(struct mem_cgroup *mem)
1671 {
1672         struct memcg_stock_pcp *stock;
1673         bool ret = true;
1674
1675         stock = &get_cpu_var(memcg_stock);
1676         if (mem == stock->cached && stock->charge)
1677                 stock->charge -= PAGE_SIZE;
1678         else /* need to call res_counter_charge */
1679                 ret = false;
1680         put_cpu_var(memcg_stock);
1681         return ret;
1682 }
1683
1684 /*
1685  * Returns stocks cached in percpu to res_counter and reset cached information.
1686  */
1687 static void drain_stock(struct memcg_stock_pcp *stock)
1688 {
1689         struct mem_cgroup *old = stock->cached;
1690
1691         if (stock->charge) {
1692                 res_counter_uncharge(&old->res, stock->charge);
1693                 if (do_swap_account)
1694                         res_counter_uncharge(&old->memsw, stock->charge);
1695         }
1696         stock->cached = NULL;
1697         stock->charge = 0;
1698 }
1699
1700 /*
1701  * This must be called under preempt disabled or must be called by
1702  * a thread which is pinned to local cpu.
1703  */
1704 static void drain_local_stock(struct work_struct *dummy)
1705 {
1706         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1707         drain_stock(stock);
1708 }
1709
1710 /*
1711  * Cache charges(val) which is from res_counter, to local per_cpu area.
1712  * This will be consumed by consume_stock() function, later.
1713  */
1714 static void refill_stock(struct mem_cgroup *mem, int val)
1715 {
1716         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1717
1718         if (stock->cached != mem) { /* reset if necessary */
1719                 drain_stock(stock);
1720                 stock->cached = mem;
1721         }
1722         stock->charge += val;
1723         put_cpu_var(memcg_stock);
1724 }
1725
1726 /*
1727  * Tries to drain stocked charges in other cpus. This function is asynchronous
1728  * and just put a work per cpu for draining localy on each cpu. Caller can
1729  * expects some charges will be back to res_counter later but cannot wait for
1730  * it.
1731  */
1732 static void drain_all_stock_async(void)
1733 {
1734         int cpu;
1735         /* This function is for scheduling "drain" in asynchronous way.
1736          * The result of "drain" is not directly handled by callers. Then,
1737          * if someone is calling drain, we don't have to call drain more.
1738          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1739          * there is a race. We just do loose check here.
1740          */
1741         if (atomic_read(&memcg_drain_count))
1742                 return;
1743         /* Notify other cpus that system-wide "drain" is running */
1744         atomic_inc(&memcg_drain_count);
1745         get_online_cpus();
1746         for_each_online_cpu(cpu) {
1747                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1748                 schedule_work_on(cpu, &stock->work);
1749         }
1750         put_online_cpus();
1751         atomic_dec(&memcg_drain_count);
1752         /* We don't wait for flush_work */
1753 }
1754
1755 /* This is a synchronous drain interface. */
1756 static void drain_all_stock_sync(void)
1757 {
1758         /* called when force_empty is called */
1759         atomic_inc(&memcg_drain_count);
1760         schedule_on_each_cpu(drain_local_stock);
1761         atomic_dec(&memcg_drain_count);
1762 }
1763
1764 /*
1765  * This function drains percpu counter value from DEAD cpu and
1766  * move it to local cpu. Note that this function can be preempted.
1767  */
1768 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1769 {
1770         int i;
1771
1772         spin_lock(&mem->pcp_counter_lock);
1773         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1774                 s64 x = per_cpu(mem->stat->count[i], cpu);
1775
1776                 per_cpu(mem->stat->count[i], cpu) = 0;
1777                 mem->nocpu_base.count[i] += x;
1778         }
1779         /* need to clear ON_MOVE value, works as a kind of lock. */
1780         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1781         spin_unlock(&mem->pcp_counter_lock);
1782 }
1783
1784 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1785 {
1786         int idx = MEM_CGROUP_ON_MOVE;
1787
1788         spin_lock(&mem->pcp_counter_lock);
1789         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1790         spin_unlock(&mem->pcp_counter_lock);
1791 }
1792
1793 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1794                                         unsigned long action,
1795                                         void *hcpu)
1796 {
1797         int cpu = (unsigned long)hcpu;
1798         struct memcg_stock_pcp *stock;
1799         struct mem_cgroup *iter;
1800
1801         if ((action == CPU_ONLINE)) {
1802                 for_each_mem_cgroup_all(iter)
1803                         synchronize_mem_cgroup_on_move(iter, cpu);
1804                 return NOTIFY_OK;
1805         }
1806
1807         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1808                 return NOTIFY_OK;
1809
1810         for_each_mem_cgroup_all(iter)
1811                 mem_cgroup_drain_pcp_counter(iter, cpu);
1812
1813         stock = &per_cpu(memcg_stock, cpu);
1814         drain_stock(stock);
1815         return NOTIFY_OK;
1816 }
1817
1818
1819 /* See __mem_cgroup_try_charge() for details */
1820 enum {
1821         CHARGE_OK,              /* success */
1822         CHARGE_RETRY,           /* need to retry but retry is not bad */
1823         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1824         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1825         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1826 };
1827
1828 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1829                                 int csize, bool oom_check)
1830 {
1831         struct mem_cgroup *mem_over_limit;
1832         struct res_counter *fail_res;
1833         unsigned long flags = 0;
1834         int ret;
1835
1836         ret = res_counter_charge(&mem->res, csize, &fail_res);
1837
1838         if (likely(!ret)) {
1839                 if (!do_swap_account)
1840                         return CHARGE_OK;
1841                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1842                 if (likely(!ret))
1843                         return CHARGE_OK;
1844
1845                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1846                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1847         } else
1848                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1849
1850         if (csize > PAGE_SIZE) /* change csize and retry */
1851                 return CHARGE_RETRY;
1852
1853         if (!(gfp_mask & __GFP_WAIT))
1854                 return CHARGE_WOULDBLOCK;
1855
1856         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1857                                         gfp_mask, flags);
1858         /*
1859          * try_to_free_mem_cgroup_pages() might not give us a full
1860          * picture of reclaim. Some pages are reclaimed and might be
1861          * moved to swap cache or just unmapped from the cgroup.
1862          * Check the limit again to see if the reclaim reduced the
1863          * current usage of the cgroup before giving up
1864          */
1865         if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1866                 return CHARGE_RETRY;
1867
1868         /*
1869          * At task move, charge accounts can be doubly counted. So, it's
1870          * better to wait until the end of task_move if something is going on.
1871          */
1872         if (mem_cgroup_wait_acct_move(mem_over_limit))
1873                 return CHARGE_RETRY;
1874
1875         /* If we don't need to call oom-killer at el, return immediately */
1876         if (!oom_check)
1877                 return CHARGE_NOMEM;
1878         /* check OOM */
1879         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1880                 return CHARGE_OOM_DIE;
1881
1882         return CHARGE_RETRY;
1883 }
1884
1885 /*
1886  * Unlike exported interface, "oom" parameter is added. if oom==true,
1887  * oom-killer can be invoked.
1888  */
1889 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1890                                    gfp_t gfp_mask,
1891                                    struct mem_cgroup **memcg, bool oom,
1892                                    int page_size)
1893 {
1894         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1895         struct mem_cgroup *mem = NULL;
1896         int ret;
1897         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1898
1899         /*
1900          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1901          * in system level. So, allow to go ahead dying process in addition to
1902          * MEMDIE process.
1903          */
1904         if (unlikely(test_thread_flag(TIF_MEMDIE)
1905                      || fatal_signal_pending(current)))
1906                 goto bypass;
1907
1908         /*
1909          * We always charge the cgroup the mm_struct belongs to.
1910          * The mm_struct's mem_cgroup changes on task migration if the
1911          * thread group leader migrates. It's possible that mm is not
1912          * set, if so charge the init_mm (happens for pagecache usage).
1913          */
1914         if (!*memcg && !mm)
1915                 goto bypass;
1916 again:
1917         if (*memcg) { /* css should be a valid one */
1918                 mem = *memcg;
1919                 VM_BUG_ON(css_is_removed(&mem->css));
1920                 if (mem_cgroup_is_root(mem))
1921                         goto done;
1922                 if (page_size == PAGE_SIZE && consume_stock(mem))
1923                         goto done;
1924                 css_get(&mem->css);
1925         } else {
1926                 struct task_struct *p;
1927
1928                 rcu_read_lock();
1929                 p = rcu_dereference(mm->owner);
1930                 /*
1931                  * Because we don't have task_lock(), "p" can exit.
1932                  * In that case, "mem" can point to root or p can be NULL with
1933                  * race with swapoff. Then, we have small risk of mis-accouning.
1934                  * But such kind of mis-account by race always happens because
1935                  * we don't have cgroup_mutex(). It's overkill and we allo that
1936                  * small race, here.
1937                  * (*) swapoff at el will charge against mm-struct not against
1938                  * task-struct. So, mm->owner can be NULL.
1939                  */
1940                 mem = mem_cgroup_from_task(p);
1941                 if (!mem || mem_cgroup_is_root(mem)) {
1942                         rcu_read_unlock();
1943                         goto done;
1944                 }
1945                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1946                         /*
1947                          * It seems dagerous to access memcg without css_get().
1948                          * But considering how consume_stok works, it's not
1949                          * necessary. If consume_stock success, some charges
1950                          * from this memcg are cached on this cpu. So, we
1951                          * don't need to call css_get()/css_tryget() before
1952                          * calling consume_stock().
1953                          */
1954                         rcu_read_unlock();
1955                         goto done;
1956                 }
1957                 /* after here, we may be blocked. we need to get refcnt */
1958                 if (!css_tryget(&mem->css)) {
1959                         rcu_read_unlock();
1960                         goto again;
1961                 }
1962                 rcu_read_unlock();
1963         }
1964
1965         do {
1966                 bool oom_check;
1967
1968                 /* If killed, bypass charge */
1969                 if (fatal_signal_pending(current)) {
1970                         css_put(&mem->css);
1971                         goto bypass;
1972                 }
1973
1974                 oom_check = false;
1975                 if (oom && !nr_oom_retries) {
1976                         oom_check = true;
1977                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1978                 }
1979
1980                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1981
1982                 switch (ret) {
1983                 case CHARGE_OK:
1984                         break;
1985                 case CHARGE_RETRY: /* not in OOM situation but retry */
1986                         csize = page_size;
1987                         css_put(&mem->css);
1988                         mem = NULL;
1989                         goto again;
1990                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1991                         css_put(&mem->css);
1992                         goto nomem;
1993                 case CHARGE_NOMEM: /* OOM routine works */
1994                         if (!oom) {
1995                                 css_put(&mem->css);
1996                                 goto nomem;
1997                         }
1998                         /* If oom, we never return -ENOMEM */
1999                         nr_oom_retries--;
2000                         break;
2001                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2002                         css_put(&mem->css);
2003                         goto bypass;
2004                 }
2005         } while (ret != CHARGE_OK);
2006
2007         if (csize > page_size)
2008                 refill_stock(mem, csize - page_size);
2009         css_put(&mem->css);
2010 done:
2011         *memcg = mem;
2012         return 0;
2013 nomem:
2014         *memcg = NULL;
2015         return -ENOMEM;
2016 bypass:
2017         *memcg = NULL;
2018         return 0;
2019 }
2020
2021 /*
2022  * Somemtimes we have to undo a charge we got by try_charge().
2023  * This function is for that and do uncharge, put css's refcnt.
2024  * gotten by try_charge().
2025  */
2026 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2027                                                         unsigned long count)
2028 {
2029         if (!mem_cgroup_is_root(mem)) {
2030                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2031                 if (do_swap_account)
2032                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2033         }
2034 }
2035
2036 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2037                                      int page_size)
2038 {
2039         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2040 }
2041
2042 /*
2043  * A helper function to get mem_cgroup from ID. must be called under
2044  * rcu_read_lock(). The caller must check css_is_removed() or some if
2045  * it's concern. (dropping refcnt from swap can be called against removed
2046  * memcg.)
2047  */
2048 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2049 {
2050         struct cgroup_subsys_state *css;
2051
2052         /* ID 0 is unused ID */
2053         if (!id)
2054                 return NULL;
2055         css = css_lookup(&mem_cgroup_subsys, id);
2056         if (!css)
2057                 return NULL;
2058         return container_of(css, struct mem_cgroup, css);
2059 }
2060
2061 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2062 {
2063         struct mem_cgroup *mem = NULL;
2064         struct page_cgroup *pc;
2065         unsigned short id;
2066         swp_entry_t ent;
2067
2068         VM_BUG_ON(!PageLocked(page));
2069
2070         pc = lookup_page_cgroup(page);
2071         lock_page_cgroup(pc);
2072         if (PageCgroupUsed(pc)) {
2073                 mem = pc->mem_cgroup;
2074                 if (mem && !css_tryget(&mem->css))
2075                         mem = NULL;
2076         } else if (PageSwapCache(page)) {
2077                 ent.val = page_private(page);
2078                 id = lookup_swap_cgroup(ent);
2079                 rcu_read_lock();
2080                 mem = mem_cgroup_lookup(id);
2081                 if (mem && !css_tryget(&mem->css))
2082                         mem = NULL;
2083                 rcu_read_unlock();
2084         }
2085         unlock_page_cgroup(pc);
2086         return mem;
2087 }
2088
2089 /*
2090  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2091  * USED state. If already USED, uncharge and return.
2092  */
2093 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2094                                          struct page_cgroup *pc,
2095                                          enum charge_type ctype)
2096 {
2097         pc->mem_cgroup = mem;
2098         /*
2099          * We access a page_cgroup asynchronously without lock_page_cgroup().
2100          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2101          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2102          * before USED bit, we need memory barrier here.
2103          * See mem_cgroup_add_lru_list(), etc.
2104          */
2105         smp_wmb();
2106         switch (ctype) {
2107         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2108         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2109                 SetPageCgroupCache(pc);
2110                 SetPageCgroupUsed(pc);
2111                 break;
2112         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2113                 ClearPageCgroupCache(pc);
2114                 SetPageCgroupUsed(pc);
2115                 break;
2116         default:
2117                 break;
2118         }
2119
2120         mem_cgroup_charge_statistics(mem, pc, true);
2121 }
2122
2123 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2124                                        struct page_cgroup *pc,
2125                                        enum charge_type ctype,
2126                                        int page_size)
2127 {
2128         int i;
2129         int count = page_size >> PAGE_SHIFT;
2130
2131         /* try_charge() can return NULL to *memcg, taking care of it. */
2132         if (!mem)
2133                 return;
2134
2135         lock_page_cgroup(pc);
2136         if (unlikely(PageCgroupUsed(pc))) {
2137                 unlock_page_cgroup(pc);
2138                 mem_cgroup_cancel_charge(mem, page_size);
2139                 return;
2140         }
2141
2142         /*
2143          * we don't need page_cgroup_lock about tail pages, becase they are not
2144          * accessed by any other context at this point.
2145          */
2146         for (i = 0; i < count; i++)
2147                 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
2148
2149         unlock_page_cgroup(pc);
2150         /*
2151          * "charge_statistics" updated event counter. Then, check it.
2152          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2153          * if they exceeds softlimit.
2154          */
2155         memcg_check_events(mem, pc->page);
2156 }
2157
2158 /**
2159  * __mem_cgroup_move_account - move account of the page
2160  * @pc: page_cgroup of the page.
2161  * @from: mem_cgroup which the page is moved from.
2162  * @to: mem_cgroup which the page is moved to. @from != @to.
2163  * @uncharge: whether we should call uncharge and css_put against @from.
2164  *
2165  * The caller must confirm following.
2166  * - page is not on LRU (isolate_page() is useful.)
2167  * - the pc is locked, used, and ->mem_cgroup points to @from.
2168  *
2169  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2170  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2171  * true, this function does "uncharge" from old cgroup, but it doesn't if
2172  * @uncharge is false, so a caller should do "uncharge".
2173  */
2174
2175 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2176         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2177 {
2178         VM_BUG_ON(from == to);
2179         VM_BUG_ON(PageLRU(pc->page));
2180         VM_BUG_ON(!page_is_cgroup_locked(pc));
2181         VM_BUG_ON(!PageCgroupUsed(pc));
2182         VM_BUG_ON(pc->mem_cgroup != from);
2183
2184         if (PageCgroupFileMapped(pc)) {
2185                 /* Update mapped_file data for mem_cgroup */
2186                 preempt_disable();
2187                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2188                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2189                 preempt_enable();
2190         }
2191         mem_cgroup_charge_statistics(from, pc, false);
2192         if (uncharge)
2193                 /* This is not "cancel", but cancel_charge does all we need. */
2194                 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2195
2196         /* caller should have done css_get */
2197         pc->mem_cgroup = to;
2198         mem_cgroup_charge_statistics(to, pc, true);
2199         /*
2200          * We charges against "to" which may not have any tasks. Then, "to"
2201          * can be under rmdir(). But in current implementation, caller of
2202          * this function is just force_empty() and move charge, so it's
2203          * garanteed that "to" is never removed. So, we don't check rmdir
2204          * status here.
2205          */
2206 }
2207
2208 /*
2209  * check whether the @pc is valid for moving account and call
2210  * __mem_cgroup_move_account()
2211  */
2212 static int mem_cgroup_move_account(struct page_cgroup *pc,
2213                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2214 {
2215         int ret = -EINVAL;
2216         unsigned long flags;
2217
2218         lock_page_cgroup(pc);
2219         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2220                 move_lock_page_cgroup(pc, &flags);
2221                 __mem_cgroup_move_account(pc, from, to, uncharge);
2222                 move_unlock_page_cgroup(pc, &flags);
2223                 ret = 0;
2224         }
2225         unlock_page_cgroup(pc);
2226         /*
2227          * check events
2228          */
2229         memcg_check_events(to, pc->page);
2230         memcg_check_events(from, pc->page);
2231         return ret;
2232 }
2233
2234 /*
2235  * move charges to its parent.
2236  */
2237
2238 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2239                                   struct mem_cgroup *child,
2240                                   gfp_t gfp_mask)
2241 {
2242         struct page *page = pc->page;
2243         struct cgroup *cg = child->css.cgroup;
2244         struct cgroup *pcg = cg->parent;
2245         struct mem_cgroup *parent;
2246         int ret;
2247
2248         /* Is ROOT ? */
2249         if (!pcg)
2250                 return -EINVAL;
2251
2252         ret = -EBUSY;
2253         if (!get_page_unless_zero(page))
2254                 goto out;
2255         if (isolate_lru_page(page))
2256                 goto put;
2257
2258         parent = mem_cgroup_from_cont(pcg);
2259         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2260                                       PAGE_SIZE);
2261         if (ret || !parent)
2262                 goto put_back;
2263
2264         ret = mem_cgroup_move_account(pc, child, parent, true);
2265         if (ret)
2266                 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2267 put_back:
2268         putback_lru_page(page);
2269 put:
2270         put_page(page);
2271 out:
2272         return ret;
2273 }
2274
2275 /*
2276  * Charge the memory controller for page usage.
2277  * Return
2278  * 0 if the charge was successful
2279  * < 0 if the cgroup is over its limit
2280  */
2281 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2282                                 gfp_t gfp_mask, enum charge_type ctype)
2283 {
2284         struct mem_cgroup *mem = NULL;
2285         struct page_cgroup *pc;
2286         int ret;
2287         int page_size = PAGE_SIZE;
2288
2289         if (PageTransHuge(page)) {
2290                 page_size <<= compound_order(page);
2291                 VM_BUG_ON(!PageTransHuge(page));
2292         }
2293
2294         pc = lookup_page_cgroup(page);
2295         /* can happen at boot */
2296         if (unlikely(!pc))
2297                 return 0;
2298         prefetchw(pc);
2299
2300         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2301         if (ret || !mem)
2302                 return ret;
2303
2304         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2305         return 0;
2306 }
2307
2308 int mem_cgroup_newpage_charge(struct page *page,
2309                               struct mm_struct *mm, gfp_t gfp_mask)
2310 {
2311         if (mem_cgroup_disabled())
2312                 return 0;
2313         /*
2314          * If already mapped, we don't have to account.
2315          * If page cache, page->mapping has address_space.
2316          * But page->mapping may have out-of-use anon_vma pointer,
2317          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2318          * is NULL.
2319          */
2320         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2321                 return 0;
2322         if (unlikely(!mm))
2323                 mm = &init_mm;
2324         return mem_cgroup_charge_common(page, mm, gfp_mask,
2325                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2326 }
2327
2328 static void
2329 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2330                                         enum charge_type ctype);
2331
2332 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2333                                 gfp_t gfp_mask)
2334 {
2335         int ret;
2336
2337         if (mem_cgroup_disabled())
2338                 return 0;
2339         if (PageCompound(page))
2340                 return 0;
2341         /*
2342          * Corner case handling. This is called from add_to_page_cache()
2343          * in usual. But some FS (shmem) precharges this page before calling it
2344          * and call add_to_page_cache() with GFP_NOWAIT.
2345          *
2346          * For GFP_NOWAIT case, the page may be pre-charged before calling
2347          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2348          * charge twice. (It works but has to pay a bit larger cost.)
2349          * And when the page is SwapCache, it should take swap information
2350          * into account. This is under lock_page() now.
2351          */
2352         if (!(gfp_mask & __GFP_WAIT)) {
2353                 struct page_cgroup *pc;
2354
2355                 pc = lookup_page_cgroup(page);
2356                 if (!pc)
2357                         return 0;
2358                 lock_page_cgroup(pc);
2359                 if (PageCgroupUsed(pc)) {
2360                         unlock_page_cgroup(pc);
2361                         return 0;
2362                 }
2363                 unlock_page_cgroup(pc);
2364         }
2365
2366         if (unlikely(!mm))
2367                 mm = &init_mm;
2368
2369         if (page_is_file_cache(page))
2370                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2371                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2372
2373         /* shmem */
2374         if (PageSwapCache(page)) {
2375                 struct mem_cgroup *mem = NULL;
2376
2377                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2378                 if (!ret)
2379                         __mem_cgroup_commit_charge_swapin(page, mem,
2380                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2381         } else
2382                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2383                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2384
2385         return ret;
2386 }
2387
2388 /*
2389  * While swap-in, try_charge -> commit or cancel, the page is locked.
2390  * And when try_charge() successfully returns, one refcnt to memcg without
2391  * struct page_cgroup is acquired. This refcnt will be consumed by
2392  * "commit()" or removed by "cancel()"
2393  */
2394 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2395                                  struct page *page,
2396                                  gfp_t mask, struct mem_cgroup **ptr)
2397 {
2398         struct mem_cgroup *mem;
2399         int ret;
2400
2401         if (mem_cgroup_disabled())
2402                 return 0;
2403
2404         if (!do_swap_account)
2405                 goto charge_cur_mm;
2406         /*
2407          * A racing thread's fault, or swapoff, may have already updated
2408          * the pte, and even removed page from swap cache: in those cases
2409          * do_swap_page()'s pte_same() test will fail; but there's also a
2410          * KSM case which does need to charge the page.
2411          */
2412         if (!PageSwapCache(page))
2413                 goto charge_cur_mm;
2414         mem = try_get_mem_cgroup_from_page(page);
2415         if (!mem)
2416                 goto charge_cur_mm;
2417         *ptr = mem;
2418         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2419         css_put(&mem->css);
2420         return ret;
2421 charge_cur_mm:
2422         if (unlikely(!mm))
2423                 mm = &init_mm;
2424         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2425 }
2426
2427 static void
2428 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2429                                         enum charge_type ctype)
2430 {
2431         struct page_cgroup *pc;
2432
2433         if (mem_cgroup_disabled())
2434                 return;
2435         if (!ptr)
2436                 return;
2437         cgroup_exclude_rmdir(&ptr->css);
2438         pc = lookup_page_cgroup(page);
2439         mem_cgroup_lru_del_before_commit_swapcache(page);
2440         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2441         mem_cgroup_lru_add_after_commit_swapcache(page);
2442         /*
2443          * Now swap is on-memory. This means this page may be
2444          * counted both as mem and swap....double count.
2445          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2446          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2447          * may call delete_from_swap_cache() before reach here.
2448          */
2449         if (do_swap_account && PageSwapCache(page)) {
2450                 swp_entry_t ent = {.val = page_private(page)};
2451                 unsigned short id;
2452                 struct mem_cgroup *memcg;
2453
2454                 id = swap_cgroup_record(ent, 0);
2455                 rcu_read_lock();
2456                 memcg = mem_cgroup_lookup(id);
2457                 if (memcg) {
2458                         /*
2459                          * This recorded memcg can be obsolete one. So, avoid
2460                          * calling css_tryget
2461                          */
2462                         if (!mem_cgroup_is_root(memcg))
2463                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2464                         mem_cgroup_swap_statistics(memcg, false);
2465                         mem_cgroup_put(memcg);
2466                 }
2467                 rcu_read_unlock();
2468         }
2469         /*
2470          * At swapin, we may charge account against cgroup which has no tasks.
2471          * So, rmdir()->pre_destroy() can be called while we do this charge.
2472          * In that case, we need to call pre_destroy() again. check it here.
2473          */
2474         cgroup_release_and_wakeup_rmdir(&ptr->css);
2475 }
2476
2477 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2478 {
2479         __mem_cgroup_commit_charge_swapin(page, ptr,
2480                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2481 }
2482
2483 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2484 {
2485         if (mem_cgroup_disabled())
2486                 return;
2487         if (!mem)
2488                 return;
2489         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2490 }
2491
2492 static void
2493 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2494               int page_size)
2495 {
2496         struct memcg_batch_info *batch = NULL;
2497         bool uncharge_memsw = true;
2498         /* If swapout, usage of swap doesn't decrease */
2499         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2500                 uncharge_memsw = false;
2501
2502         batch = &current->memcg_batch;
2503         /*
2504          * In usual, we do css_get() when we remember memcg pointer.
2505          * But in this case, we keep res->usage until end of a series of
2506          * uncharges. Then, it's ok to ignore memcg's refcnt.
2507          */
2508         if (!batch->memcg)
2509                 batch->memcg = mem;
2510         /*
2511          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2512          * In those cases, all pages freed continously can be expected to be in
2513          * the same cgroup and we have chance to coalesce uncharges.
2514          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2515          * because we want to do uncharge as soon as possible.
2516          */
2517
2518         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2519                 goto direct_uncharge;
2520
2521         if (page_size != PAGE_SIZE)
2522                 goto direct_uncharge;
2523
2524         /*
2525          * In typical case, batch->memcg == mem. This means we can
2526          * merge a series of uncharges to an uncharge of res_counter.
2527          * If not, we uncharge res_counter ony by one.
2528          */
2529         if (batch->memcg != mem)
2530                 goto direct_uncharge;
2531         /* remember freed charge and uncharge it later */
2532         batch->bytes += PAGE_SIZE;
2533         if (uncharge_memsw)
2534                 batch->memsw_bytes += PAGE_SIZE;
2535         return;
2536 direct_uncharge:
2537         res_counter_uncharge(&mem->res, page_size);
2538         if (uncharge_memsw)
2539                 res_counter_uncharge(&mem->memsw, page_size);
2540         if (unlikely(batch->memcg != mem))
2541                 memcg_oom_recover(mem);
2542         return;
2543 }
2544
2545 /*
2546  * uncharge if !page_mapped(page)
2547  */
2548 static struct mem_cgroup *
2549 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2550 {
2551         int i;
2552         int count;
2553         struct page_cgroup *pc;
2554         struct mem_cgroup *mem = NULL;
2555         int page_size = PAGE_SIZE;
2556
2557         if (mem_cgroup_disabled())
2558                 return NULL;
2559
2560         if (PageSwapCache(page))
2561                 return NULL;
2562
2563         if (PageTransHuge(page)) {
2564                 page_size <<= compound_order(page);
2565                 VM_BUG_ON(!PageTransHuge(page));
2566         }
2567
2568         count = page_size >> PAGE_SHIFT;
2569         /*
2570          * Check if our page_cgroup is valid
2571          */
2572         pc = lookup_page_cgroup(page);
2573         if (unlikely(!pc || !PageCgroupUsed(pc)))
2574                 return NULL;
2575
2576         lock_page_cgroup(pc);
2577
2578         mem = pc->mem_cgroup;
2579
2580         if (!PageCgroupUsed(pc))
2581                 goto unlock_out;
2582
2583         switch (ctype) {
2584         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2585         case MEM_CGROUP_CHARGE_TYPE_DROP:
2586                 /* See mem_cgroup_prepare_migration() */
2587                 if (page_mapped(page) || PageCgroupMigration(pc))
2588                         goto unlock_out;
2589                 break;
2590         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2591                 if (!PageAnon(page)) {  /* Shared memory */
2592                         if (page->mapping && !page_is_file_cache(page))
2593                                 goto unlock_out;
2594                 } else if (page_mapped(page)) /* Anon */
2595                                 goto unlock_out;
2596                 break;
2597         default:
2598                 break;
2599         }
2600
2601         for (i = 0; i < count; i++)
2602                 mem_cgroup_charge_statistics(mem, pc + i, false);
2603
2604         ClearPageCgroupUsed(pc);
2605         /*
2606          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2607          * freed from LRU. This is safe because uncharged page is expected not
2608          * to be reused (freed soon). Exception is SwapCache, it's handled by
2609          * special functions.
2610          */
2611
2612         unlock_page_cgroup(pc);
2613         /*
2614          * even after unlock, we have mem->res.usage here and this memcg
2615          * will never be freed.
2616          */
2617         memcg_check_events(mem, page);
2618         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2619                 mem_cgroup_swap_statistics(mem, true);
2620                 mem_cgroup_get(mem);
2621         }
2622         if (!mem_cgroup_is_root(mem))
2623                 __do_uncharge(mem, ctype, page_size);
2624
2625         return mem;
2626
2627 unlock_out:
2628         unlock_page_cgroup(pc);
2629         return NULL;
2630 }
2631
2632 void mem_cgroup_uncharge_page(struct page *page)
2633 {
2634         /* early check. */
2635         if (page_mapped(page))
2636                 return;
2637         if (page->mapping && !PageAnon(page))
2638                 return;
2639         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2640 }
2641
2642 void mem_cgroup_uncharge_cache_page(struct page *page)
2643 {
2644         VM_BUG_ON(page_mapped(page));
2645         VM_BUG_ON(page->mapping);
2646         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2647 }
2648
2649 /*
2650  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2651  * In that cases, pages are freed continuously and we can expect pages
2652  * are in the same memcg. All these calls itself limits the number of
2653  * pages freed at once, then uncharge_start/end() is called properly.
2654  * This may be called prural(2) times in a context,
2655  */
2656
2657 void mem_cgroup_uncharge_start(void)
2658 {
2659         current->memcg_batch.do_batch++;
2660         /* We can do nest. */
2661         if (current->memcg_batch.do_batch == 1) {
2662                 current->memcg_batch.memcg = NULL;
2663                 current->memcg_batch.bytes = 0;
2664                 current->memcg_batch.memsw_bytes = 0;
2665         }
2666 }
2667
2668 void mem_cgroup_uncharge_end(void)
2669 {
2670         struct memcg_batch_info *batch = &current->memcg_batch;
2671
2672         if (!batch->do_batch)
2673                 return;
2674
2675         batch->do_batch--;
2676         if (batch->do_batch) /* If stacked, do nothing. */
2677                 return;
2678
2679         if (!batch->memcg)
2680                 return;
2681         /*
2682          * This "batch->memcg" is valid without any css_get/put etc...
2683          * bacause we hide charges behind us.
2684          */
2685         if (batch->bytes)
2686                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2687         if (batch->memsw_bytes)
2688                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2689         memcg_oom_recover(batch->memcg);
2690         /* forget this pointer (for sanity check) */
2691         batch->memcg = NULL;
2692 }
2693
2694 #ifdef CONFIG_SWAP
2695 /*
2696  * called after __delete_from_swap_cache() and drop "page" account.
2697  * memcg information is recorded to swap_cgroup of "ent"
2698  */
2699 void
2700 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2701 {
2702         struct mem_cgroup *memcg;
2703         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2704
2705         if (!swapout) /* this was a swap cache but the swap is unused ! */
2706                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2707
2708         memcg = __mem_cgroup_uncharge_common(page, ctype);
2709
2710         /*
2711          * record memcg information,  if swapout && memcg != NULL,
2712          * mem_cgroup_get() was called in uncharge().
2713          */
2714         if (do_swap_account && swapout && memcg)
2715                 swap_cgroup_record(ent, css_id(&memcg->css));
2716 }
2717 #endif
2718
2719 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2720 /*
2721  * called from swap_entry_free(). remove record in swap_cgroup and
2722  * uncharge "memsw" account.
2723  */
2724 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2725 {
2726         struct mem_cgroup *memcg;
2727         unsigned short id;
2728
2729         if (!do_swap_account)
2730                 return;
2731
2732         id = swap_cgroup_record(ent, 0);
2733         rcu_read_lock();
2734         memcg = mem_cgroup_lookup(id);
2735         if (memcg) {
2736                 /*
2737                  * We uncharge this because swap is freed.
2738                  * This memcg can be obsolete one. We avoid calling css_tryget
2739                  */
2740                 if (!mem_cgroup_is_root(memcg))
2741                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2742                 mem_cgroup_swap_statistics(memcg, false);
2743                 mem_cgroup_put(memcg);
2744         }
2745         rcu_read_unlock();
2746 }
2747
2748 /**
2749  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2750  * @entry: swap entry to be moved
2751  * @from:  mem_cgroup which the entry is moved from
2752  * @to:  mem_cgroup which the entry is moved to
2753  * @need_fixup: whether we should fixup res_counters and refcounts.
2754  *
2755  * It succeeds only when the swap_cgroup's record for this entry is the same
2756  * as the mem_cgroup's id of @from.
2757  *
2758  * Returns 0 on success, -EINVAL on failure.
2759  *
2760  * The caller must have charged to @to, IOW, called res_counter_charge() about
2761  * both res and memsw, and called css_get().
2762  */
2763 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2764                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2765 {
2766         unsigned short old_id, new_id;
2767
2768         old_id = css_id(&from->css);
2769         new_id = css_id(&to->css);
2770
2771         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2772                 mem_cgroup_swap_statistics(from, false);
2773                 mem_cgroup_swap_statistics(to, true);
2774                 /*
2775                  * This function is only called from task migration context now.
2776                  * It postpones res_counter and refcount handling till the end
2777                  * of task migration(mem_cgroup_clear_mc()) for performance
2778                  * improvement. But we cannot postpone mem_cgroup_get(to)
2779                  * because if the process that has been moved to @to does
2780                  * swap-in, the refcount of @to might be decreased to 0.
2781                  */
2782                 mem_cgroup_get(to);
2783                 if (need_fixup) {
2784                         if (!mem_cgroup_is_root(from))
2785                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2786                         mem_cgroup_put(from);
2787                         /*
2788                          * we charged both to->res and to->memsw, so we should
2789                          * uncharge to->res.
2790                          */
2791                         if (!mem_cgroup_is_root(to))
2792                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2793                 }
2794                 return 0;
2795         }
2796         return -EINVAL;
2797 }
2798 #else
2799 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2800                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2801 {
2802         return -EINVAL;
2803 }
2804 #endif
2805
2806 /*
2807  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2808  * page belongs to.
2809  */
2810 int mem_cgroup_prepare_migration(struct page *page,
2811         struct page *newpage, struct mem_cgroup **ptr)
2812 {
2813         struct page_cgroup *pc;
2814         struct mem_cgroup *mem = NULL;
2815         enum charge_type ctype;
2816         int ret = 0;
2817
2818         VM_BUG_ON(PageTransHuge(page));
2819         if (mem_cgroup_disabled())
2820                 return 0;
2821
2822         pc = lookup_page_cgroup(page);
2823         lock_page_cgroup(pc);
2824         if (PageCgroupUsed(pc)) {
2825                 mem = pc->mem_cgroup;
2826                 css_get(&mem->css);
2827                 /*
2828                  * At migrating an anonymous page, its mapcount goes down
2829                  * to 0 and uncharge() will be called. But, even if it's fully
2830                  * unmapped, migration may fail and this page has to be
2831                  * charged again. We set MIGRATION flag here and delay uncharge
2832                  * until end_migration() is called
2833                  *
2834                  * Corner Case Thinking
2835                  * A)
2836                  * When the old page was mapped as Anon and it's unmap-and-freed
2837                  * while migration was ongoing.
2838                  * If unmap finds the old page, uncharge() of it will be delayed
2839                  * until end_migration(). If unmap finds a new page, it's
2840                  * uncharged when it make mapcount to be 1->0. If unmap code
2841                  * finds swap_migration_entry, the new page will not be mapped
2842                  * and end_migration() will find it(mapcount==0).
2843                  *
2844                  * B)
2845                  * When the old page was mapped but migraion fails, the kernel
2846                  * remaps it. A charge for it is kept by MIGRATION flag even
2847                  * if mapcount goes down to 0. We can do remap successfully
2848                  * without charging it again.
2849                  *
2850                  * C)
2851                  * The "old" page is under lock_page() until the end of
2852                  * migration, so, the old page itself will not be swapped-out.
2853                  * If the new page is swapped out before end_migraton, our
2854                  * hook to usual swap-out path will catch the event.
2855                  */
2856                 if (PageAnon(page))
2857                         SetPageCgroupMigration(pc);
2858         }
2859         unlock_page_cgroup(pc);
2860         /*
2861          * If the page is not charged at this point,
2862          * we return here.
2863          */
2864         if (!mem)
2865                 return 0;
2866
2867         *ptr = mem;
2868         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2869         css_put(&mem->css);/* drop extra refcnt */
2870         if (ret || *ptr == NULL) {
2871                 if (PageAnon(page)) {
2872                         lock_page_cgroup(pc);
2873                         ClearPageCgroupMigration(pc);
2874                         unlock_page_cgroup(pc);
2875                         /*
2876                          * The old page may be fully unmapped while we kept it.
2877                          */
2878                         mem_cgroup_uncharge_page(page);
2879                 }
2880                 return -ENOMEM;
2881         }
2882         /*
2883          * We charge new page before it's used/mapped. So, even if unlock_page()
2884          * is called before end_migration, we can catch all events on this new
2885          * page. In the case new page is migrated but not remapped, new page's
2886          * mapcount will be finally 0 and we call uncharge in end_migration().
2887          */
2888         pc = lookup_page_cgroup(newpage);
2889         if (PageAnon(page))
2890                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2891         else if (page_is_file_cache(page))
2892                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2893         else
2894                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2895         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2896         return ret;
2897 }
2898
2899 /* remove redundant charge if migration failed*/
2900 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2901         struct page *oldpage, struct page *newpage)
2902 {
2903         struct page *used, *unused;
2904         struct page_cgroup *pc;
2905
2906         if (!mem)
2907                 return;
2908         /* blocks rmdir() */
2909         cgroup_exclude_rmdir(&mem->css);
2910         /* at migration success, oldpage->mapping is NULL. */
2911         if (oldpage->mapping) {
2912                 used = oldpage;
2913                 unused = newpage;
2914         } else {
2915                 used = newpage;
2916                 unused = oldpage;
2917         }
2918         /*
2919          * We disallowed uncharge of pages under migration because mapcount
2920          * of the page goes down to zero, temporarly.
2921          * Clear the flag and check the page should be charged.
2922          */
2923         pc = lookup_page_cgroup(oldpage);
2924         lock_page_cgroup(pc);
2925         ClearPageCgroupMigration(pc);
2926         unlock_page_cgroup(pc);
2927
2928         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2929
2930         /*
2931          * If a page is a file cache, radix-tree replacement is very atomic
2932          * and we can skip this check. When it was an Anon page, its mapcount
2933          * goes down to 0. But because we added MIGRATION flage, it's not
2934          * uncharged yet. There are several case but page->mapcount check
2935          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2936          * check. (see prepare_charge() also)
2937          */
2938         if (PageAnon(used))
2939                 mem_cgroup_uncharge_page(used);
2940         /*
2941          * At migration, we may charge account against cgroup which has no
2942          * tasks.
2943          * So, rmdir()->pre_destroy() can be called while we do this charge.
2944          * In that case, we need to call pre_destroy() again. check it here.
2945          */
2946         cgroup_release_and_wakeup_rmdir(&mem->css);
2947 }
2948
2949 /*
2950  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2951  * Calling hierarchical_reclaim is not enough because we should update
2952  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2953  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2954  * not from the memcg which this page would be charged to.
2955  * try_charge_swapin does all of these works properly.
2956  */
2957 int mem_cgroup_shmem_charge_fallback(struct page *page,
2958                             struct mm_struct *mm,
2959                             gfp_t gfp_mask)
2960 {
2961         struct mem_cgroup *mem = NULL;
2962         int ret;
2963
2964         if (mem_cgroup_disabled())
2965                 return 0;
2966
2967         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2968         if (!ret)
2969                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2970
2971         return ret;
2972 }
2973
2974 static DEFINE_MUTEX(set_limit_mutex);
2975
2976 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2977                                 unsigned long long val)
2978 {
2979         int retry_count;
2980         u64 memswlimit, memlimit;
2981         int ret = 0;
2982         int children = mem_cgroup_count_children(memcg);
2983         u64 curusage, oldusage;
2984         int enlarge;
2985
2986         /*
2987          * For keeping hierarchical_reclaim simple, how long we should retry
2988          * is depends on callers. We set our retry-count to be function
2989          * of # of children which we should visit in this loop.
2990          */
2991         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2992
2993         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2994
2995         enlarge = 0;
2996         while (retry_count) {
2997                 if (signal_pending(current)) {
2998                         ret = -EINTR;
2999                         break;
3000                 }
3001                 /*
3002                  * Rather than hide all in some function, I do this in
3003                  * open coded manner. You see what this really does.
3004                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3005                  */
3006                 mutex_lock(&set_limit_mutex);
3007                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3008                 if (memswlimit < val) {
3009                         ret = -EINVAL;
3010                         mutex_unlock(&set_limit_mutex);
3011                         break;
3012                 }
3013
3014                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3015                 if (memlimit < val)
3016                         enlarge = 1;
3017
3018                 ret = res_counter_set_limit(&memcg->res, val);
3019                 if (!ret) {
3020                         if (memswlimit == val)
3021                                 memcg->memsw_is_minimum = true;
3022                         else
3023                                 memcg->memsw_is_minimum = false;
3024                 }
3025                 mutex_unlock(&set_limit_mutex);
3026
3027                 if (!ret)
3028                         break;
3029
3030                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3031                                                 MEM_CGROUP_RECLAIM_SHRINK);
3032                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3033                 /* Usage is reduced ? */
3034                 if (curusage >= oldusage)
3035                         retry_count--;
3036                 else
3037                         oldusage = curusage;
3038         }
3039         if (!ret && enlarge)
3040                 memcg_oom_recover(memcg);
3041
3042         return ret;
3043 }
3044
3045 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3046                                         unsigned long long val)
3047 {
3048         int retry_count;
3049         u64 memlimit, memswlimit, oldusage, curusage;
3050         int children = mem_cgroup_count_children(memcg);
3051         int ret = -EBUSY;
3052         int enlarge = 0;
3053
3054         /* see mem_cgroup_resize_res_limit */
3055         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3056         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3057         while (retry_count) {
3058                 if (signal_pending(current)) {
3059                         ret = -EINTR;
3060                         break;
3061                 }
3062                 /*
3063                  * Rather than hide all in some function, I do this in
3064                  * open coded manner. You see what this really does.
3065                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3066                  */
3067                 mutex_lock(&set_limit_mutex);
3068                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3069                 if (memlimit > val) {
3070                         ret = -EINVAL;
3071                         mutex_unlock(&set_limit_mutex);
3072                         break;
3073                 }
3074                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3075                 if (memswlimit < val)
3076                         enlarge = 1;
3077                 ret = res_counter_set_limit(&memcg->memsw, val);
3078                 if (!ret) {
3079                         if (memlimit == val)
3080                                 memcg->memsw_is_minimum = true;
3081                         else
3082                                 memcg->memsw_is_minimum = false;
3083                 }
3084                 mutex_unlock(&set_limit_mutex);
3085
3086                 if (!ret)
3087                         break;
3088
3089                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3090                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3091                                                 MEM_CGROUP_RECLAIM_SHRINK);
3092                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3093                 /* Usage is reduced ? */
3094                 if (curusage >= oldusage)
3095                         retry_count--;
3096                 else
3097                         oldusage = curusage;
3098         }
3099         if (!ret && enlarge)
3100                 memcg_oom_recover(memcg);
3101         return ret;
3102 }
3103
3104 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3105                                             gfp_t gfp_mask)
3106 {
3107         unsigned long nr_reclaimed = 0;
3108         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3109         unsigned long reclaimed;
3110         int loop = 0;
3111         struct mem_cgroup_tree_per_zone *mctz;
3112         unsigned long long excess;
3113
3114         if (order > 0)
3115                 return 0;
3116
3117         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3118         /*
3119          * This loop can run a while, specially if mem_cgroup's continuously
3120          * keep exceeding their soft limit and putting the system under
3121          * pressure
3122          */
3123         do {
3124                 if (next_mz)
3125                         mz = next_mz;
3126                 else
3127                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3128                 if (!mz)
3129                         break;
3130
3131                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3132                                                 gfp_mask,
3133                                                 MEM_CGROUP_RECLAIM_SOFT);
3134                 nr_reclaimed += reclaimed;
3135                 spin_lock(&mctz->lock);
3136
3137                 /*
3138                  * If we failed to reclaim anything from this memory cgroup
3139                  * it is time to move on to the next cgroup
3140                  */
3141                 next_mz = NULL;
3142                 if (!reclaimed) {
3143                         do {
3144                                 /*
3145                                  * Loop until we find yet another one.
3146                                  *
3147                                  * By the time we get the soft_limit lock
3148                                  * again, someone might have aded the
3149                                  * group back on the RB tree. Iterate to
3150                                  * make sure we get a different mem.
3151                                  * mem_cgroup_largest_soft_limit_node returns
3152                                  * NULL if no other cgroup is present on
3153                                  * the tree
3154                                  */
3155                                 next_mz =
3156                                 __mem_cgroup_largest_soft_limit_node(mctz);
3157                                 if (next_mz == mz) {
3158                                         css_put(&next_mz->mem->css);
3159                                         next_mz = NULL;
3160                                 } else /* next_mz == NULL or other memcg */
3161                                         break;
3162                         } while (1);
3163                 }
3164                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3165                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3166                 /*
3167                  * One school of thought says that we should not add
3168                  * back the node to the tree if reclaim returns 0.
3169                  * But our reclaim could return 0, simply because due
3170                  * to priority we are exposing a smaller subset of
3171                  * memory to reclaim from. Consider this as a longer
3172                  * term TODO.
3173                  */
3174                 /* If excess == 0, no tree ops */
3175                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3176                 spin_unlock(&mctz->lock);
3177                 css_put(&mz->mem->css);
3178                 loop++;
3179                 /*
3180                  * Could not reclaim anything and there are no more
3181                  * mem cgroups to try or we seem to be looping without
3182                  * reclaiming anything.
3183                  */
3184                 if (!nr_reclaimed &&
3185                         (next_mz == NULL ||
3186                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3187                         break;
3188         } while (!nr_reclaimed);
3189         if (next_mz)
3190                 css_put(&next_mz->mem->css);
3191         return nr_reclaimed;
3192 }
3193
3194 /*
3195  * This routine traverse page_cgroup in given list and drop them all.
3196  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3197  */
3198 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3199                                 int node, int zid, enum lru_list lru)
3200 {
3201         struct zone *zone;
3202         struct mem_cgroup_per_zone *mz;
3203         struct page_cgroup *pc, *busy;
3204         unsigned long flags, loop;
3205         struct list_head *list;
3206         int ret = 0;
3207
3208         zone = &NODE_DATA(node)->node_zones[zid];
3209         mz = mem_cgroup_zoneinfo(mem, node, zid);
3210         list = &mz->lists[lru];
3211
3212         loop = MEM_CGROUP_ZSTAT(mz, lru);
3213         /* give some margin against EBUSY etc...*/
3214         loop += 256;
3215         busy = NULL;
3216         while (loop--) {
3217                 ret = 0;
3218                 spin_lock_irqsave(&zone->lru_lock, flags);
3219                 if (list_empty(list)) {
3220                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3221                         break;
3222                 }
3223                 pc = list_entry(list->prev, struct page_cgroup, lru);
3224                 if (busy == pc) {
3225                         list_move(&pc->lru, list);
3226                         busy = NULL;
3227                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3228                         continue;
3229                 }
3230                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3231
3232                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3233                 if (ret == -ENOMEM)
3234                         break;
3235
3236                 if (ret == -EBUSY || ret == -EINVAL) {
3237                         /* found lock contention or "pc" is obsolete. */
3238                         busy = pc;
3239                         cond_resched();
3240                 } else
3241                         busy = NULL;
3242         }
3243
3244         if (!ret && !list_empty(list))
3245                 return -EBUSY;
3246         return ret;
3247 }
3248
3249 /*
3250  * make mem_cgroup's charge to be 0 if there is no task.
3251  * This enables deleting this mem_cgroup.
3252  */
3253 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3254 {
3255         int ret;
3256         int node, zid, shrink;
3257         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3258         struct cgroup *cgrp = mem->css.cgroup;
3259
3260         css_get(&mem->css);
3261
3262         shrink = 0;
3263         /* should free all ? */
3264         if (free_all)
3265                 goto try_to_free;
3266 move_account:
3267         do {
3268                 ret = -EBUSY;
3269                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3270                         goto out;
3271                 ret = -EINTR;
3272                 if (signal_pending(current))
3273                         goto out;
3274                 /* This is for making all *used* pages to be on LRU. */
3275                 lru_add_drain_all();
3276                 drain_all_stock_sync();
3277                 ret = 0;
3278                 mem_cgroup_start_move(mem);
3279                 for_each_node_state(node, N_HIGH_MEMORY) {
3280                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3281                                 enum lru_list l;
3282                                 for_each_lru(l) {
3283                                         ret = mem_cgroup_force_empty_list(mem,
3284                                                         node, zid, l);
3285                                         if (ret)
3286                                                 break;
3287                                 }
3288                         }
3289                         if (ret)
3290                                 break;
3291                 }
3292                 mem_cgroup_end_move(mem);
3293                 memcg_oom_recover(mem);
3294                 /* it seems parent cgroup doesn't have enough mem */
3295                 if (ret == -ENOMEM)
3296                         goto try_to_free;
3297                 cond_resched();
3298         /* "ret" should also be checked to ensure all lists are empty. */
3299         } while (mem->res.usage > 0 || ret);
3300 out:
3301         css_put(&mem->css);
3302         return ret;
3303
3304 try_to_free:
3305         /* returns EBUSY if there is a task or if we come here twice. */
3306         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3307                 ret = -EBUSY;
3308                 goto out;
3309         }
3310         /* we call try-to-free pages for make this cgroup empty */
3311         lru_add_drain_all();
3312         /* try to free all pages in this cgroup */
3313         shrink = 1;
3314         while (nr_retries && mem->res.usage > 0) {
3315                 int progress;
3316
3317                 if (signal_pending(current)) {
3318                         ret = -EINTR;
3319                         goto out;
3320                 }
3321                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3322                                                 false, get_swappiness(mem));
3323                 if (!progress) {
3324                         nr_retries--;
3325                         /* maybe some writeback is necessary */
3326                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3327                 }
3328
3329         }
3330         lru_add_drain();
3331         /* try move_account...there may be some *locked* pages. */
3332         goto move_account;
3333 }
3334
3335 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3336 {
3337         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3338 }
3339
3340
3341 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3342 {
3343         return mem_cgroup_from_cont(cont)->use_hierarchy;
3344 }
3345
3346 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3347                                         u64 val)
3348 {
3349         int retval = 0;
3350         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3351         struct cgroup *parent = cont->parent;
3352         struct mem_cgroup *parent_mem = NULL;
3353
3354         if (parent)
3355                 parent_mem = mem_cgroup_from_cont(parent);
3356
3357         cgroup_lock();
3358         /*
3359          * If parent's use_hierarchy is set, we can't make any modifications
3360          * in the child subtrees. If it is unset, then the change can
3361          * occur, provided the current cgroup has no children.
3362          *
3363          * For the root cgroup, parent_mem is NULL, we allow value to be
3364          * set if there are no children.
3365          */
3366         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3367                                 (val == 1 || val == 0)) {
3368                 if (list_empty(&cont->children))
3369                         mem->use_hierarchy = val;
3370                 else
3371                         retval = -EBUSY;
3372         } else
3373                 retval = -EINVAL;
3374         cgroup_unlock();
3375
3376         return retval;
3377 }
3378
3379
3380 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3381                                 enum mem_cgroup_stat_index idx)
3382 {
3383         struct mem_cgroup *iter;
3384         s64 val = 0;
3385
3386         /* each per cpu's value can be minus.Then, use s64 */
3387         for_each_mem_cgroup_tree(iter, mem)
3388                 val += mem_cgroup_read_stat(iter, idx);
3389
3390         if (val < 0) /* race ? */
3391                 val = 0;
3392         return val;
3393 }
3394
3395 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3396 {
3397         u64 val;
3398
3399         if (!mem_cgroup_is_root(mem)) {
3400                 if (!swap)
3401                         return res_counter_read_u64(&mem->res, RES_USAGE);
3402                 else
3403                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3404         }
3405
3406         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3407         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3408
3409         if (swap)
3410                 val += mem_cgroup_get_recursive_idx_stat(mem,
3411                                 MEM_CGROUP_STAT_SWAPOUT);
3412
3413         return val << PAGE_SHIFT;
3414 }
3415
3416 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3417 {
3418         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3419         u64 val;
3420         int type, name;
3421
3422         type = MEMFILE_TYPE(cft->private);
3423         name = MEMFILE_ATTR(cft->private);
3424         switch (type) {
3425         case _MEM:
3426                 if (name == RES_USAGE)
3427                         val = mem_cgroup_usage(mem, false);
3428                 else
3429                         val = res_counter_read_u64(&mem->res, name);
3430                 break;
3431         case _MEMSWAP:
3432                 if (name == RES_USAGE)
3433                         val = mem_cgroup_usage(mem, true);
3434                 else
3435                         val = res_counter_read_u64(&mem->memsw, name);
3436                 break;
3437         default:
3438                 BUG();
3439                 break;
3440         }
3441         return val;
3442 }
3443 /*
3444  * The user of this function is...
3445  * RES_LIMIT.
3446  */
3447 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3448                             const char *buffer)
3449 {
3450         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3451         int type, name;
3452         unsigned long long val;
3453         int ret;
3454
3455         type = MEMFILE_TYPE(cft->private);
3456         name = MEMFILE_ATTR(cft->private);
3457         switch (name) {
3458         case RES_LIMIT:
3459                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3460                         ret = -EINVAL;
3461                         break;
3462                 }
3463                 /* This function does all necessary parse...reuse it */
3464                 ret = res_counter_memparse_write_strategy(buffer, &val);
3465                 if (ret)
3466                         break;
3467                 if (type == _MEM)
3468                         ret = mem_cgroup_resize_limit(memcg, val);
3469                 else
3470                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3471                 break;
3472         case RES_SOFT_LIMIT:
3473                 ret = res_counter_memparse_write_strategy(buffer, &val);
3474                 if (ret)
3475                         break;
3476                 /*
3477                  * For memsw, soft limits are hard to implement in terms
3478                  * of semantics, for now, we support soft limits for
3479                  * control without swap
3480                  */
3481                 if (type == _MEM)
3482                         ret = res_counter_set_soft_limit(&memcg->res, val);
3483                 else
3484                         ret = -EINVAL;
3485                 break;
3486         default:
3487                 ret = -EINVAL; /* should be BUG() ? */
3488                 break;
3489         }
3490         return ret;
3491 }
3492
3493 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3494                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3495 {
3496         struct cgroup *cgroup;
3497         unsigned long long min_limit, min_memsw_limit, tmp;
3498
3499         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3501         cgroup = memcg->css.cgroup;
3502         if (!memcg->use_hierarchy)
3503                 goto out;
3504
3505         while (cgroup->parent) {
3506                 cgroup = cgroup->parent;
3507                 memcg = mem_cgroup_from_cont(cgroup);
3508                 if (!memcg->use_hierarchy)
3509                         break;
3510                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3511                 min_limit = min(min_limit, tmp);
3512                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3513                 min_memsw_limit = min(min_memsw_limit, tmp);
3514         }
3515 out:
3516         *mem_limit = min_limit;
3517         *memsw_limit = min_memsw_limit;
3518         return;
3519 }
3520
3521 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3522 {
3523         struct mem_cgroup *mem;
3524         int type, name;
3525
3526         mem = mem_cgroup_from_cont(cont);
3527         type = MEMFILE_TYPE(event);
3528         name = MEMFILE_ATTR(event);
3529         switch (name) {
3530         case RES_MAX_USAGE:
3531                 if (type == _MEM)
3532                         res_counter_reset_max(&mem->res);
3533                 else
3534                         res_counter_reset_max(&mem->memsw);
3535                 break;
3536         case RES_FAILCNT:
3537                 if (type == _MEM)
3538                         res_counter_reset_failcnt(&mem->res);
3539                 else
3540                         res_counter_reset_failcnt(&mem->memsw);
3541                 break;
3542         }
3543
3544         return 0;
3545 }
3546
3547 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3548                                         struct cftype *cft)
3549 {
3550         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3551 }
3552
3553 #ifdef CONFIG_MMU
3554 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3555                                         struct cftype *cft, u64 val)
3556 {
3557         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3558
3559         if (val >= (1 << NR_MOVE_TYPE))
3560                 return -EINVAL;
3561         /*
3562          * We check this value several times in both in can_attach() and
3563          * attach(), so we need cgroup lock to prevent this value from being
3564          * inconsistent.
3565          */
3566         cgroup_lock();
3567         mem->move_charge_at_immigrate = val;
3568         cgroup_unlock();
3569
3570         return 0;
3571 }
3572 #else
3573 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3574                                         struct cftype *cft, u64 val)
3575 {
3576         return -ENOSYS;
3577 }
3578 #endif
3579
3580
3581 /* For read statistics */
3582 enum {
3583         MCS_CACHE,
3584         MCS_RSS,
3585         MCS_FILE_MAPPED,
3586         MCS_PGPGIN,
3587         MCS_PGPGOUT,
3588         MCS_SWAP,
3589         MCS_INACTIVE_ANON,
3590         MCS_ACTIVE_ANON,
3591         MCS_INACTIVE_FILE,
3592         MCS_ACTIVE_FILE,
3593         MCS_UNEVICTABLE,
3594         NR_MCS_STAT,
3595 };
3596
3597 struct mcs_total_stat {
3598         s64 stat[NR_MCS_STAT];
3599 };
3600
3601 struct {
3602         char *local_name;
3603         char *total_name;
3604 } memcg_stat_strings[NR_MCS_STAT] = {
3605         {"cache", "total_cache"},
3606         {"rss", "total_rss"},
3607         {"mapped_file", "total_mapped_file"},
3608         {"pgpgin", "total_pgpgin"},
3609         {"pgpgout", "total_pgpgout"},
3610         {"swap", "total_swap"},
3611         {"inactive_anon", "total_inactive_anon"},
3612         {"active_anon", "total_active_anon"},
3613         {"inactive_file", "total_inactive_file"},
3614         {"active_file", "total_active_file"},
3615         {"unevictable", "total_unevictable"}
3616 };
3617
3618
3619 static void
3620 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3621 {
3622         s64 val;
3623
3624         /* per cpu stat */
3625         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3626         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3627         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3628         s->stat[MCS_RSS] += val * PAGE_SIZE;
3629         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3630         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3631         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3632         s->stat[MCS_PGPGIN] += val;
3633         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3634         s->stat[MCS_PGPGOUT] += val;
3635         if (do_swap_account) {
3636                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3637                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3638         }
3639
3640         /* per zone stat */
3641         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3642         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3643         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3644         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3645         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3646         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3647         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3648         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3649         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3650         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3651 }
3652
3653 static void
3654 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3655 {
3656         struct mem_cgroup *iter;
3657
3658         for_each_mem_cgroup_tree(iter, mem)
3659                 mem_cgroup_get_local_stat(iter, s);
3660 }
3661
3662 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3663                                  struct cgroup_map_cb *cb)
3664 {
3665         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3666         struct mcs_total_stat mystat;
3667         int i;
3668
3669         memset(&mystat, 0, sizeof(mystat));
3670         mem_cgroup_get_local_stat(mem_cont, &mystat);
3671
3672         for (i = 0; i < NR_MCS_STAT; i++) {
3673                 if (i == MCS_SWAP && !do_swap_account)
3674                         continue;
3675                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3676         }
3677
3678         /* Hierarchical information */
3679         {
3680                 unsigned long long limit, memsw_limit;
3681                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3682                 cb->fill(cb, "hierarchical_memory_limit", limit);
3683                 if (do_swap_account)
3684                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3685         }
3686
3687         memset(&mystat, 0, sizeof(mystat));
3688         mem_cgroup_get_total_stat(mem_cont, &mystat);
3689         for (i = 0; i < NR_MCS_STAT; i++) {
3690                 if (i == MCS_SWAP && !do_swap_account)
3691                         continue;
3692                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3693         }
3694
3695 #ifdef CONFIG_DEBUG_VM
3696         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3697
3698         {
3699                 int nid, zid;
3700                 struct mem_cgroup_per_zone *mz;
3701                 unsigned long recent_rotated[2] = {0, 0};
3702                 unsigned long recent_scanned[2] = {0, 0};
3703
3704                 for_each_online_node(nid)
3705                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3706                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3707
3708                                 recent_rotated[0] +=
3709                                         mz->reclaim_stat.recent_rotated[0];
3710                                 recent_rotated[1] +=
3711                                         mz->reclaim_stat.recent_rotated[1];
3712                                 recent_scanned[0] +=
3713                                         mz->reclaim_stat.recent_scanned[0];
3714                                 recent_scanned[1] +=
3715                                         mz->reclaim_stat.recent_scanned[1];
3716                         }
3717                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3718                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3719                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3720                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3721         }
3722 #endif
3723
3724         return 0;
3725 }
3726
3727 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3728 {
3729         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3730
3731         return get_swappiness(memcg);
3732 }
3733
3734 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3735                                        u64 val)
3736 {
3737         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3738         struct mem_cgroup *parent;
3739
3740         if (val > 100)
3741                 return -EINVAL;
3742
3743         if (cgrp->parent == NULL)
3744                 return -EINVAL;
3745
3746         parent = mem_cgroup_from_cont(cgrp->parent);
3747
3748         cgroup_lock();
3749
3750         /* If under hierarchy, only empty-root can set this value */
3751         if ((parent->use_hierarchy) ||
3752             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3753                 cgroup_unlock();
3754                 return -EINVAL;
3755         }
3756
3757         spin_lock(&memcg->reclaim_param_lock);
3758         memcg->swappiness = val;
3759         spin_unlock(&memcg->reclaim_param_lock);
3760
3761         cgroup_unlock();
3762
3763         return 0;
3764 }
3765
3766 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3767 {
3768         struct mem_cgroup_threshold_ary *t;
3769         u64 usage;
3770         int i;
3771
3772         rcu_read_lock();
3773         if (!swap)
3774                 t = rcu_dereference(memcg->thresholds.primary);
3775         else
3776                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3777
3778         if (!t)
3779                 goto unlock;
3780
3781         usage = mem_cgroup_usage(memcg, swap);
3782
3783         /*
3784          * current_threshold points to threshold just below usage.
3785          * If it's not true, a threshold was crossed after last
3786          * call of __mem_cgroup_threshold().
3787          */
3788         i = t->current_threshold;
3789
3790         /*
3791          * Iterate backward over array of thresholds starting from
3792          * current_threshold and check if a threshold is crossed.
3793          * If none of thresholds below usage is crossed, we read
3794          * only one element of the array here.
3795          */
3796         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3797                 eventfd_signal(t->entries[i].eventfd, 1);
3798
3799         /* i = current_threshold + 1 */
3800         i++;
3801
3802         /*
3803          * Iterate forward over array of thresholds starting from
3804          * current_threshold+1 and check if a threshold is crossed.
3805          * If none of thresholds above usage is crossed, we read
3806          * only one element of the array here.
3807          */
3808         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3809                 eventfd_signal(t->entries[i].eventfd, 1);
3810
3811         /* Update current_threshold */
3812         t->current_threshold = i - 1;
3813 unlock:
3814         rcu_read_unlock();
3815 }
3816
3817 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3818 {
3819         while (memcg) {
3820                 __mem_cgroup_threshold(memcg, false);
3821                 if (do_swap_account)
3822                         __mem_cgroup_threshold(memcg, true);
3823
3824                 memcg = parent_mem_cgroup(memcg);
3825         }
3826 }
3827
3828 static int compare_thresholds(const void *a, const void *b)
3829 {
3830         const struct mem_cgroup_threshold *_a = a;
3831         const struct mem_cgroup_threshold *_b = b;
3832
3833         return _a->threshold - _b->threshold;
3834 }
3835
3836 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3837 {
3838         struct mem_cgroup_eventfd_list *ev;
3839
3840         list_for_each_entry(ev, &mem->oom_notify, list)
3841                 eventfd_signal(ev->eventfd, 1);
3842         return 0;
3843 }
3844
3845 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3846 {
3847         struct mem_cgroup *iter;
3848
3849         for_each_mem_cgroup_tree(iter, mem)
3850                 mem_cgroup_oom_notify_cb(iter);
3851 }
3852
3853 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3854         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3855 {
3856         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3857         struct mem_cgroup_thresholds *thresholds;
3858         struct mem_cgroup_threshold_ary *new;
3859         int type = MEMFILE_TYPE(cft->private);
3860         u64 threshold, usage;
3861         int i, size, ret;
3862
3863         ret = res_counter_memparse_write_strategy(args, &threshold);
3864         if (ret)
3865                 return ret;
3866
3867         mutex_lock(&memcg->thresholds_lock);
3868
3869         if (type == _MEM)
3870                 thresholds = &memcg->thresholds;
3871         else if (type == _MEMSWAP)
3872                 thresholds = &memcg->memsw_thresholds;
3873         else
3874                 BUG();
3875
3876         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3877
3878         /* Check if a threshold crossed before adding a new one */
3879         if (thresholds->primary)
3880                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3881
3882         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3883
3884         /* Allocate memory for new array of thresholds */
3885         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3886                         GFP_KERNEL);
3887         if (!new) {
3888                 ret = -ENOMEM;
3889                 goto unlock;
3890         }
3891         new->size = size;
3892
3893         /* Copy thresholds (if any) to new array */
3894         if (thresholds->primary) {
3895                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3896                                 sizeof(struct mem_cgroup_threshold));
3897         }
3898
3899         /* Add new threshold */
3900         new->entries[size - 1].eventfd = eventfd;
3901         new->entries[size - 1].threshold = threshold;
3902
3903         /* Sort thresholds. Registering of new threshold isn't time-critical */
3904         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3905                         compare_thresholds, NULL);
3906
3907         /* Find current threshold */
3908         new->current_threshold = -1;
3909         for (i = 0; i < size; i++) {
3910                 if (new->entries[i].threshold < usage) {
3911                         /*
3912                          * new->current_threshold will not be used until
3913                          * rcu_assign_pointer(), so it's safe to increment
3914                          * it here.
3915                          */
3916                         ++new->current_threshold;
3917                 }
3918         }
3919
3920         /* Free old spare buffer and save old primary buffer as spare */
3921         kfree(thresholds->spare);
3922         thresholds->spare = thresholds->primary;
3923
3924         rcu_assign_pointer(thresholds->primary, new);
3925
3926         /* To be sure that nobody uses thresholds */
3927         synchronize_rcu();
3928
3929 unlock:
3930         mutex_unlock(&memcg->thresholds_lock);
3931
3932         return ret;
3933 }
3934
3935 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3936         struct cftype *cft, struct eventfd_ctx *eventfd)
3937 {
3938         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3939         struct mem_cgroup_thresholds *thresholds;
3940         struct mem_cgroup_threshold_ary *new;
3941         int type = MEMFILE_TYPE(cft->private);
3942         u64 usage;
3943         int i, j, size;
3944
3945         mutex_lock(&memcg->thresholds_lock);
3946         if (type == _MEM)
3947                 thresholds = &memcg->thresholds;
3948         else if (type == _MEMSWAP)
3949                 thresholds = &memcg->memsw_thresholds;
3950         else
3951                 BUG();
3952
3953         /*
3954          * Something went wrong if we trying to unregister a threshold
3955          * if we don't have thresholds
3956          */
3957         BUG_ON(!thresholds);
3958
3959         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3960
3961         /* Check if a threshold crossed before removing */
3962         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3963
3964         /* Calculate new number of threshold */
3965         size = 0;
3966         for (i = 0; i < thresholds->primary->size; i++) {
3967                 if (thresholds->primary->entries[i].eventfd != eventfd)
3968                         size++;
3969         }
3970
3971         new = thresholds->spare;
3972
3973         /* Set thresholds array to NULL if we don't have thresholds */
3974         if (!size) {
3975                 kfree(new);
3976                 new = NULL;
3977                 goto swap_buffers;
3978         }
3979
3980         new->size = size;
3981
3982         /* Copy thresholds and find current threshold */
3983         new->current_threshold = -1;
3984         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3985                 if (thresholds->primary->entries[i].eventfd == eventfd)
3986                         continue;
3987
3988                 new->entries[j] = thresholds->primary->entries[i];
3989                 if (new->entries[j].threshold < usage) {
3990                         /*
3991                          * new->current_threshold will not be used
3992                          * until rcu_assign_pointer(), so it's safe to increment
3993                          * it here.
3994                          */
3995                         ++new->current_threshold;
3996                 }
3997                 j++;
3998         }
3999
4000 swap_buffers:
4001         /* Swap primary and spare array */
4002         thresholds->spare = thresholds->primary;
4003         rcu_assign_pointer(thresholds->primary, new);
4004
4005         /* To be sure that nobody uses thresholds */
4006         synchronize_rcu();
4007
4008         mutex_unlock(&memcg->thresholds_lock);
4009 }
4010
4011 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4012         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4013 {
4014         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4015         struct mem_cgroup_eventfd_list *event;
4016         int type = MEMFILE_TYPE(cft->private);
4017
4018         BUG_ON(type != _OOM_TYPE);
4019         event = kmalloc(sizeof(*event), GFP_KERNEL);
4020         if (!event)
4021                 return -ENOMEM;
4022
4023         mutex_lock(&memcg_oom_mutex);
4024
4025         event->eventfd = eventfd;
4026         list_add(&event->list, &memcg->oom_notify);
4027
4028         /* already in OOM ? */
4029         if (atomic_read(&memcg->oom_lock))
4030                 eventfd_signal(eventfd, 1);
4031         mutex_unlock(&memcg_oom_mutex);
4032
4033         return 0;
4034 }
4035
4036 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4037         struct cftype *cft, struct eventfd_ctx *eventfd)
4038 {
4039         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4040         struct mem_cgroup_eventfd_list *ev, *tmp;
4041         int type = MEMFILE_TYPE(cft->private);
4042
4043         BUG_ON(type != _OOM_TYPE);
4044
4045         mutex_lock(&memcg_oom_mutex);
4046
4047         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4048                 if (ev->eventfd == eventfd) {
4049                         list_del(&ev->list);
4050                         kfree(ev);
4051                 }
4052         }
4053
4054         mutex_unlock(&memcg_oom_mutex);
4055 }
4056
4057 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4058         struct cftype *cft,  struct cgroup_map_cb *cb)
4059 {
4060         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4061
4062         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4063
4064         if (atomic_read(&mem->oom_lock))
4065                 cb->fill(cb, "under_oom", 1);
4066         else
4067                 cb->fill(cb, "under_oom", 0);
4068         return 0;
4069 }
4070
4071 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4072         struct cftype *cft, u64 val)
4073 {
4074         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4075         struct mem_cgroup *parent;
4076
4077         /* cannot set to root cgroup and only 0 and 1 are allowed */
4078         if (!cgrp->parent || !((val == 0) || (val == 1)))
4079                 return -EINVAL;
4080
4081         parent = mem_cgroup_from_cont(cgrp->parent);
4082
4083         cgroup_lock();
4084         /* oom-kill-disable is a flag for subhierarchy. */
4085         if ((parent->use_hierarchy) ||
4086             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4087                 cgroup_unlock();
4088                 return -EINVAL;
4089         }
4090         mem->oom_kill_disable = val;
4091         if (!val)
4092                 memcg_oom_recover(mem);
4093         cgroup_unlock();
4094         return 0;
4095 }
4096
4097 static struct cftype mem_cgroup_files[] = {
4098         {
4099                 .name = "usage_in_bytes",
4100                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4101                 .read_u64 = mem_cgroup_read,
4102                 .register_event = mem_cgroup_usage_register_event,
4103                 .unregister_event = mem_cgroup_usage_unregister_event,
4104         },
4105         {
4106                 .name = "max_usage_in_bytes",
4107                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4108                 .trigger = mem_cgroup_reset,
4109                 .read_u64 = mem_cgroup_read,
4110         },
4111         {
4112                 .name = "limit_in_bytes",
4113                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4114                 .write_string = mem_cgroup_write,
4115                 .read_u64 = mem_cgroup_read,
4116         },
4117         {
4118                 .name = "soft_limit_in_bytes",
4119                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4120                 .write_string = mem_cgroup_write,
4121                 .read_u64 = mem_cgroup_read,
4122         },
4123         {
4124                 .name = "failcnt",
4125                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4126                 .trigger = mem_cgroup_reset,
4127                 .read_u64 = mem_cgroup_read,
4128         },
4129         {
4130                 .name = "stat",
4131                 .read_map = mem_control_stat_show,
4132         },
4133         {
4134                 .name = "force_empty",
4135                 .trigger = mem_cgroup_force_empty_write,
4136         },
4137         {
4138                 .name = "use_hierarchy",
4139                 .write_u64 = mem_cgroup_hierarchy_write,
4140                 .read_u64 = mem_cgroup_hierarchy_read,
4141         },
4142         {
4143                 .name = "swappiness",
4144                 .read_u64 = mem_cgroup_swappiness_read,
4145                 .write_u64 = mem_cgroup_swappiness_write,
4146         },
4147         {
4148                 .name = "move_charge_at_immigrate",
4149                 .read_u64 = mem_cgroup_move_charge_read,
4150                 .write_u64 = mem_cgroup_move_charge_write,
4151         },
4152         {
4153                 .name = "oom_control",
4154                 .read_map = mem_cgroup_oom_control_read,
4155                 .write_u64 = mem_cgroup_oom_control_write,
4156                 .register_event = mem_cgroup_oom_register_event,
4157                 .unregister_event = mem_cgroup_oom_unregister_event,
4158                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4159         },
4160 };
4161
4162 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4163 static struct cftype memsw_cgroup_files[] = {
4164         {
4165                 .name = "memsw.usage_in_bytes",
4166                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4167                 .read_u64 = mem_cgroup_read,
4168                 .register_event = mem_cgroup_usage_register_event,
4169                 .unregister_event = mem_cgroup_usage_unregister_event,
4170         },
4171         {
4172                 .name = "memsw.max_usage_in_bytes",
4173                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4174                 .trigger = mem_cgroup_reset,
4175                 .read_u64 = mem_cgroup_read,
4176         },
4177         {
4178                 .name = "memsw.limit_in_bytes",
4179                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4180                 .write_string = mem_cgroup_write,
4181                 .read_u64 = mem_cgroup_read,
4182         },
4183         {
4184                 .name = "memsw.failcnt",
4185                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4186                 .trigger = mem_cgroup_reset,
4187                 .read_u64 = mem_cgroup_read,
4188         },
4189 };
4190
4191 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4192 {
4193         if (!do_swap_account)
4194                 return 0;
4195         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4196                                 ARRAY_SIZE(memsw_cgroup_files));
4197 };
4198 #else
4199 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4200 {
4201         return 0;
4202 }
4203 #endif
4204
4205 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4206 {
4207         struct mem_cgroup_per_node *pn;
4208         struct mem_cgroup_per_zone *mz;
4209         enum lru_list l;
4210         int zone, tmp = node;
4211         /*
4212          * This routine is called against possible nodes.
4213          * But it's BUG to call kmalloc() against offline node.
4214          *
4215          * TODO: this routine can waste much memory for nodes which will
4216          *       never be onlined. It's better to use memory hotplug callback
4217          *       function.
4218          */
4219         if (!node_state(node, N_NORMAL_MEMORY))
4220                 tmp = -1;
4221         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4222         if (!pn)
4223                 return 1;
4224
4225         mem->info.nodeinfo[node] = pn;
4226         memset(pn, 0, sizeof(*pn));
4227
4228         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4229                 mz = &pn->zoneinfo[zone];
4230                 for_each_lru(l)
4231                         INIT_LIST_HEAD(&mz->lists[l]);
4232                 mz->usage_in_excess = 0;
4233                 mz->on_tree = false;
4234                 mz->mem = mem;
4235         }
4236         return 0;
4237 }
4238
4239 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4240 {
4241         kfree(mem->info.nodeinfo[node]);
4242 }
4243
4244 static struct mem_cgroup *mem_cgroup_alloc(void)
4245 {
4246         struct mem_cgroup *mem;
4247         int size = sizeof(struct mem_cgroup);
4248
4249         /* Can be very big if MAX_NUMNODES is very big */
4250         if (size < PAGE_SIZE)
4251                 mem = kmalloc(size, GFP_KERNEL);
4252         else
4253                 mem = vmalloc(size);
4254
4255         if (!mem)
4256                 return NULL;
4257
4258         memset(mem, 0, size);
4259         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4260         if (!mem->stat)
4261                 goto out_free;
4262         spin_lock_init(&mem->pcp_counter_lock);
4263         return mem;
4264
4265 out_free:
4266         if (size < PAGE_SIZE)
4267                 kfree(mem);
4268         else
4269                 vfree(mem);
4270         return NULL;
4271 }
4272
4273 /*
4274  * At destroying mem_cgroup, references from swap_cgroup can remain.
4275  * (scanning all at force_empty is too costly...)
4276  *
4277  * Instead of clearing all references at force_empty, we remember
4278  * the number of reference from swap_cgroup and free mem_cgroup when
4279  * it goes down to 0.
4280  *
4281  * Removal of cgroup itself succeeds regardless of refs from swap.
4282  */
4283
4284 static void __mem_cgroup_free(struct mem_cgroup *mem)
4285 {
4286         int node;
4287
4288         mem_cgroup_remove_from_trees(mem);
4289         free_css_id(&mem_cgroup_subsys, &mem->css);
4290
4291         for_each_node_state(node, N_POSSIBLE)
4292                 free_mem_cgroup_per_zone_info(mem, node);
4293
4294         free_percpu(mem->stat);
4295         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4296                 kfree(mem);
4297         else
4298                 vfree(mem);
4299 }
4300
4301 static void mem_cgroup_get(struct mem_cgroup *mem)
4302 {
4303         atomic_inc(&mem->refcnt);
4304 }
4305
4306 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4307 {
4308         if (atomic_sub_and_test(count, &mem->refcnt)) {
4309                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4310                 __mem_cgroup_free(mem);
4311                 if (parent)
4312                         mem_cgroup_put(parent);
4313         }
4314 }
4315
4316 static void mem_cgroup_put(struct mem_cgroup *mem)
4317 {
4318         __mem_cgroup_put(mem, 1);
4319 }
4320
4321 /*
4322  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4323  */
4324 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4325 {
4326         if (!mem->res.parent)
4327                 return NULL;
4328         return mem_cgroup_from_res_counter(mem->res.parent, res);
4329 }
4330
4331 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4332 static void __init enable_swap_cgroup(void)
4333 {
4334         if (!mem_cgroup_disabled() && really_do_swap_account)
4335                 do_swap_account = 1;
4336 }
4337 #else
4338 static void __init enable_swap_cgroup(void)
4339 {
4340 }
4341 #endif
4342
4343 static int mem_cgroup_soft_limit_tree_init(void)
4344 {
4345         struct mem_cgroup_tree_per_node *rtpn;
4346         struct mem_cgroup_tree_per_zone *rtpz;
4347         int tmp, node, zone;
4348
4349         for_each_node_state(node, N_POSSIBLE) {
4350                 tmp = node;
4351                 if (!node_state(node, N_NORMAL_MEMORY))
4352                         tmp = -1;
4353                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4354                 if (!rtpn)
4355                         return 1;
4356
4357                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4358
4359                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4360                         rtpz = &rtpn->rb_tree_per_zone[zone];
4361                         rtpz->rb_root = RB_ROOT;
4362                         spin_lock_init(&rtpz->lock);
4363                 }
4364         }
4365         return 0;
4366 }
4367
4368 static struct cgroup_subsys_state * __ref
4369 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4370 {
4371         struct mem_cgroup *mem, *parent;
4372         long error = -ENOMEM;
4373         int node;
4374
4375         mem = mem_cgroup_alloc();
4376         if (!mem)
4377                 return ERR_PTR(error);
4378
4379         for_each_node_state(node, N_POSSIBLE)
4380                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4381                         goto free_out;
4382
4383         /* root ? */
4384         if (cont->parent == NULL) {
4385                 int cpu;
4386                 enable_swap_cgroup();
4387                 parent = NULL;
4388                 root_mem_cgroup = mem;
4389                 if (mem_cgroup_soft_limit_tree_init())
4390                         goto free_out;
4391                 for_each_possible_cpu(cpu) {
4392                         struct memcg_stock_pcp *stock =
4393                                                 &per_cpu(memcg_stock, cpu);
4394                         INIT_WORK(&stock->work, drain_local_stock);
4395                 }
4396                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4397         } else {
4398                 parent = mem_cgroup_from_cont(cont->parent);
4399                 mem->use_hierarchy = parent->use_hierarchy;
4400                 mem->oom_kill_disable = parent->oom_kill_disable;
4401         }
4402
4403         if (parent && parent->use_hierarchy) {
4404                 res_counter_init(&mem->res, &parent->res);
4405                 res_counter_init(&mem->memsw, &parent->memsw);
4406                 /*
4407                  * We increment refcnt of the parent to ensure that we can
4408                  * safely access it on res_counter_charge/uncharge.
4409                  * This refcnt will be decremented when freeing this
4410                  * mem_cgroup(see mem_cgroup_put).
4411                  */
4412                 mem_cgroup_get(parent);
4413         } else {
4414                 res_counter_init(&mem->res, NULL);
4415                 res_counter_init(&mem->memsw, NULL);
4416         }
4417         mem->last_scanned_child = 0;
4418         spin_lock_init(&mem->reclaim_param_lock);
4419         INIT_LIST_HEAD(&mem->oom_notify);
4420
4421         if (parent)
4422                 mem->swappiness = get_swappiness(parent);
4423         atomic_set(&mem->refcnt, 1);
4424         mem->move_charge_at_immigrate = 0;
4425         mutex_init(&mem->thresholds_lock);
4426         return &mem->css;
4427 free_out:
4428         __mem_cgroup_free(mem);
4429         root_mem_cgroup = NULL;
4430         return ERR_PTR(error);
4431 }
4432
4433 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4434                                         struct cgroup *cont)
4435 {
4436         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4437
4438         return mem_cgroup_force_empty(mem, false);
4439 }
4440
4441 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4442                                 struct cgroup *cont)
4443 {
4444         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4445
4446         mem_cgroup_put(mem);
4447 }
4448
4449 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4450                                 struct cgroup *cont)
4451 {
4452         int ret;
4453
4454         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4455                                 ARRAY_SIZE(mem_cgroup_files));
4456
4457         if (!ret)
4458                 ret = register_memsw_files(cont, ss);
4459         return ret;
4460 }
4461
4462 #ifdef CONFIG_MMU
4463 /* Handlers for move charge at task migration. */
4464 #define PRECHARGE_COUNT_AT_ONCE 256
4465 static int mem_cgroup_do_precharge(unsigned long count)
4466 {
4467         int ret = 0;
4468         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4469         struct mem_cgroup *mem = mc.to;
4470
4471         if (mem_cgroup_is_root(mem)) {
4472                 mc.precharge += count;
4473                 /* we don't need css_get for root */
4474                 return ret;
4475         }
4476         /* try to charge at once */
4477         if (count > 1) {
4478                 struct res_counter *dummy;
4479                 /*
4480                  * "mem" cannot be under rmdir() because we've already checked
4481                  * by cgroup_lock_live_cgroup() that it is not removed and we
4482                  * are still under the same cgroup_mutex. So we can postpone
4483                  * css_get().
4484                  */
4485                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4486                         goto one_by_one;
4487                 if (do_swap_account && res_counter_charge(&mem->memsw,
4488                                                 PAGE_SIZE * count, &dummy)) {
4489                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4490                         goto one_by_one;
4491                 }
4492                 mc.precharge += count;
4493                 return ret;
4494         }
4495 one_by_one:
4496         /* fall back to one by one charge */
4497         while (count--) {
4498                 if (signal_pending(current)) {
4499                         ret = -EINTR;
4500                         break;
4501                 }
4502                 if (!batch_count--) {
4503                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4504                         cond_resched();
4505                 }
4506                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4507                                               PAGE_SIZE);
4508                 if (ret || !mem)
4509                         /* mem_cgroup_clear_mc() will do uncharge later */
4510                         return -ENOMEM;
4511                 mc.precharge++;
4512         }
4513         return ret;
4514 }
4515
4516 /**
4517  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4518  * @vma: the vma the pte to be checked belongs
4519  * @addr: the address corresponding to the pte to be checked
4520  * @ptent: the pte to be checked
4521  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4522  *
4523  * Returns
4524  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4525  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4526  *     move charge. if @target is not NULL, the page is stored in target->page
4527  *     with extra refcnt got(Callers should handle it).
4528  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4529  *     target for charge migration. if @target is not NULL, the entry is stored
4530  *     in target->ent.
4531  *
4532  * Called with pte lock held.
4533  */
4534 union mc_target {
4535         struct page     *page;
4536         swp_entry_t     ent;
4537 };
4538
4539 enum mc_target_type {
4540         MC_TARGET_NONE, /* not used */
4541         MC_TARGET_PAGE,
4542         MC_TARGET_SWAP,
4543 };
4544
4545 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4546                                                 unsigned long addr, pte_t ptent)
4547 {
4548         struct page *page = vm_normal_page(vma, addr, ptent);
4549
4550         if (!page || !page_mapped(page))
4551                 return NULL;
4552         if (PageAnon(page)) {
4553                 /* we don't move shared anon */
4554                 if (!move_anon() || page_mapcount(page) > 2)
4555                         return NULL;
4556         } else if (!move_file())
4557                 /* we ignore mapcount for file pages */
4558                 return NULL;
4559         if (!get_page_unless_zero(page))
4560                 return NULL;
4561
4562         return page;
4563 }
4564
4565 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4566                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4567 {
4568         int usage_count;
4569         struct page *page = NULL;
4570         swp_entry_t ent = pte_to_swp_entry(ptent);
4571
4572         if (!move_anon() || non_swap_entry(ent))
4573                 return NULL;
4574         usage_count = mem_cgroup_count_swap_user(ent, &page);
4575         if (usage_count > 1) { /* we don't move shared anon */
4576                 if (page)
4577                         put_page(page);
4578                 return NULL;
4579         }
4580         if (do_swap_account)
4581                 entry->val = ent.val;
4582
4583         return page;
4584 }
4585
4586 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4587                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4588 {
4589         struct page *page = NULL;
4590         struct inode *inode;
4591         struct address_space *mapping;
4592         pgoff_t pgoff;
4593
4594         if (!vma->vm_file) /* anonymous vma */
4595                 return NULL;
4596         if (!move_file())
4597                 return NULL;
4598
4599         inode = vma->vm_file->f_path.dentry->d_inode;
4600         mapping = vma->vm_file->f_mapping;
4601         if (pte_none(ptent))
4602                 pgoff = linear_page_index(vma, addr);
4603         else /* pte_file(ptent) is true */
4604                 pgoff = pte_to_pgoff(ptent);
4605
4606         /* page is moved even if it's not RSS of this task(page-faulted). */
4607         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4608                 page = find_get_page(mapping, pgoff);
4609         } else { /* shmem/tmpfs file. we should take account of swap too. */
4610                 swp_entry_t ent;
4611                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4612                 if (do_swap_account)
4613                         entry->val = ent.val;
4614         }
4615
4616         return page;
4617 }
4618
4619 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4620                 unsigned long addr, pte_t ptent, union mc_target *target)
4621 {
4622         struct page *page = NULL;
4623         struct page_cgroup *pc;
4624         int ret = 0;
4625         swp_entry_t ent = { .val = 0 };
4626
4627         if (pte_present(ptent))
4628                 page = mc_handle_present_pte(vma, addr, ptent);
4629         else if (is_swap_pte(ptent))
4630                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4631         else if (pte_none(ptent) || pte_file(ptent))
4632                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4633
4634         if (!page && !ent.val)
4635                 return 0;
4636         if (page) {
4637                 pc = lookup_page_cgroup(page);
4638                 /*
4639                  * Do only loose check w/o page_cgroup lock.
4640                  * mem_cgroup_move_account() checks the pc is valid or not under
4641                  * the lock.
4642                  */
4643                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4644                         ret = MC_TARGET_PAGE;
4645                         if (target)
4646                                 target->page = page;
4647                 }
4648                 if (!ret || !target)
4649                         put_page(page);
4650         }
4651         /* There is a swap entry and a page doesn't exist or isn't charged */
4652         if (ent.val && !ret &&
4653                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4654                 ret = MC_TARGET_SWAP;
4655                 if (target)
4656                         target->ent = ent;
4657         }
4658         return ret;
4659 }
4660
4661 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4662                                         unsigned long addr, unsigned long end,
4663                                         struct mm_walk *walk)
4664 {
4665         struct vm_area_struct *vma = walk->private;
4666         pte_t *pte;
4667         spinlock_t *ptl;
4668
4669         VM_BUG_ON(pmd_trans_huge(*pmd));
4670         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4671         for (; addr != end; pte++, addr += PAGE_SIZE)
4672                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4673                         mc.precharge++; /* increment precharge temporarily */
4674         pte_unmap_unlock(pte - 1, ptl);
4675         cond_resched();
4676
4677         return 0;
4678 }
4679
4680 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4681 {
4682         unsigned long precharge;
4683         struct vm_area_struct *vma;
4684
4685         /* We've already held the mmap_sem */
4686         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4687                 struct mm_walk mem_cgroup_count_precharge_walk = {
4688                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4689                         .mm = mm,
4690                         .private = vma,
4691                 };
4692                 if (is_vm_hugetlb_page(vma))
4693                         continue;
4694                 walk_page_range(vma->vm_start, vma->vm_end,
4695                                         &mem_cgroup_count_precharge_walk);
4696         }
4697
4698         precharge = mc.precharge;
4699         mc.precharge = 0;
4700
4701         return precharge;
4702 }
4703
4704 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4705 {
4706         return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4707 }
4708
4709 static void mem_cgroup_clear_mc(void)
4710 {
4711         struct mem_cgroup *from = mc.from;
4712         struct mem_cgroup *to = mc.to;
4713
4714         /* we must uncharge all the leftover precharges from mc.to */
4715         if (mc.precharge) {
4716                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4717                 mc.precharge = 0;
4718         }
4719         /*
4720          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4721          * we must uncharge here.
4722          */
4723         if (mc.moved_charge) {
4724                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4725                 mc.moved_charge = 0;
4726         }
4727         /* we must fixup refcnts and charges */
4728         if (mc.moved_swap) {
4729                 /* uncharge swap account from the old cgroup */
4730                 if (!mem_cgroup_is_root(mc.from))
4731                         res_counter_uncharge(&mc.from->memsw,
4732                                                 PAGE_SIZE * mc.moved_swap);
4733                 __mem_cgroup_put(mc.from, mc.moved_swap);
4734
4735                 if (!mem_cgroup_is_root(mc.to)) {
4736                         /*
4737                          * we charged both to->res and to->memsw, so we should
4738                          * uncharge to->res.
4739                          */
4740                         res_counter_uncharge(&mc.to->res,
4741                                                 PAGE_SIZE * mc.moved_swap);
4742                 }
4743                 /* we've already done mem_cgroup_get(mc.to) */
4744
4745                 mc.moved_swap = 0;
4746         }
4747         if (mc.mm) {
4748                 up_read(&mc.mm->mmap_sem);
4749                 mmput(mc.mm);
4750         }
4751         spin_lock(&mc.lock);
4752         mc.from = NULL;
4753         mc.to = NULL;
4754         spin_unlock(&mc.lock);
4755         mc.moving_task = NULL;
4756         mc.mm = NULL;
4757         mem_cgroup_end_move(from);
4758         memcg_oom_recover(from);
4759         memcg_oom_recover(to);
4760         wake_up_all(&mc.waitq);
4761 }
4762
4763 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4764                                 struct cgroup *cgroup,
4765                                 struct task_struct *p,
4766                                 bool threadgroup)
4767 {
4768         int ret = 0;
4769         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4770
4771         if (mem->move_charge_at_immigrate) {
4772                 struct mm_struct *mm;
4773                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4774
4775                 VM_BUG_ON(from == mem);
4776
4777                 mm = get_task_mm(p);
4778                 if (!mm)
4779                         return 0;
4780                 /* We move charges only when we move a owner of the mm */
4781                 if (mm->owner == p) {
4782                         /*
4783                          * We do all the move charge works under one mmap_sem to
4784                          * avoid deadlock with down_write(&mmap_sem)
4785                          * -> try_charge() -> if (mc.moving_task) -> sleep.
4786                          */
4787                         down_read(&mm->mmap_sem);
4788
4789                         VM_BUG_ON(mc.from);
4790                         VM_BUG_ON(mc.to);
4791                         VM_BUG_ON(mc.precharge);
4792                         VM_BUG_ON(mc.moved_charge);
4793                         VM_BUG_ON(mc.moved_swap);
4794                         VM_BUG_ON(mc.moving_task);
4795                         VM_BUG_ON(mc.mm);
4796
4797                         mem_cgroup_start_move(from);
4798                         spin_lock(&mc.lock);
4799                         mc.from = from;
4800                         mc.to = mem;
4801                         mc.precharge = 0;
4802                         mc.moved_charge = 0;
4803                         mc.moved_swap = 0;
4804                         spin_unlock(&mc.lock);
4805                         mc.moving_task = current;
4806                         mc.mm = mm;
4807
4808                         ret = mem_cgroup_precharge_mc(mm);
4809                         if (ret)
4810                                 mem_cgroup_clear_mc();
4811                         /* We call up_read() and mmput() in clear_mc(). */
4812                 } else
4813                         mmput(mm);
4814         }
4815         return ret;
4816 }
4817
4818 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4819                                 struct cgroup *cgroup,
4820                                 struct task_struct *p,
4821                                 bool threadgroup)
4822 {
4823         mem_cgroup_clear_mc();
4824 }
4825
4826 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4827                                 unsigned long addr, unsigned long end,
4828                                 struct mm_walk *walk)
4829 {
4830         int ret = 0;
4831         struct vm_area_struct *vma = walk->private;
4832         pte_t *pte;
4833         spinlock_t *ptl;
4834
4835 retry:
4836         VM_BUG_ON(pmd_trans_huge(*pmd));
4837         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4838         for (; addr != end; addr += PAGE_SIZE) {
4839                 pte_t ptent = *(pte++);
4840                 union mc_target target;
4841                 int type;
4842                 struct page *page;
4843                 struct page_cgroup *pc;
4844                 swp_entry_t ent;
4845
4846                 if (!mc.precharge)
4847                         break;
4848
4849                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4850                 switch (type) {
4851                 case MC_TARGET_PAGE:
4852                         page = target.page;
4853                         if (isolate_lru_page(page))
4854                                 goto put;
4855                         pc = lookup_page_cgroup(page);
4856                         if (!mem_cgroup_move_account(pc,
4857                                                 mc.from, mc.to, false)) {
4858                                 mc.precharge--;
4859                                 /* we uncharge from mc.from later. */
4860                                 mc.moved_charge++;
4861                         }
4862                         putback_lru_page(page);
4863 put:                    /* is_target_pte_for_mc() gets the page */
4864                         put_page(page);
4865                         break;
4866                 case MC_TARGET_SWAP:
4867                         ent = target.ent;
4868                         if (!mem_cgroup_move_swap_account(ent,
4869                                                 mc.from, mc.to, false)) {
4870                                 mc.precharge--;
4871                                 /* we fixup refcnts and charges later. */
4872                                 mc.moved_swap++;
4873                         }
4874                         break;
4875                 default:
4876                         break;
4877                 }
4878         }
4879         pte_unmap_unlock(pte - 1, ptl);
4880         cond_resched();
4881
4882         if (addr != end) {
4883                 /*
4884                  * We have consumed all precharges we got in can_attach().
4885                  * We try charge one by one, but don't do any additional
4886                  * charges to mc.to if we have failed in charge once in attach()
4887                  * phase.
4888                  */
4889                 ret = mem_cgroup_do_precharge(1);
4890                 if (!ret)
4891                         goto retry;
4892         }
4893
4894         return ret;
4895 }
4896
4897 static void mem_cgroup_move_charge(struct mm_struct *mm)
4898 {
4899         struct vm_area_struct *vma;
4900
4901         lru_add_drain_all();
4902         /* We've already held the mmap_sem */
4903         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4904                 int ret;
4905                 struct mm_walk mem_cgroup_move_charge_walk = {
4906                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4907                         .mm = mm,
4908                         .private = vma,
4909                 };
4910                 if (is_vm_hugetlb_page(vma))
4911                         continue;
4912                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4913                                                 &mem_cgroup_move_charge_walk);
4914                 if (ret)
4915                         /*
4916                          * means we have consumed all precharges and failed in
4917                          * doing additional charge. Just abandon here.
4918                          */
4919                         break;
4920         }
4921 }
4922
4923 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4924                                 struct cgroup *cont,
4925                                 struct cgroup *old_cont,
4926                                 struct task_struct *p,
4927                                 bool threadgroup)
4928 {
4929         if (!mc.mm)
4930                 /* no need to move charge */
4931                 return;
4932
4933         mem_cgroup_move_charge(mc.mm);
4934         mem_cgroup_clear_mc();
4935 }
4936 #else   /* !CONFIG_MMU */
4937 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4938                                 struct cgroup *cgroup,
4939                                 struct task_struct *p,
4940                                 bool threadgroup)
4941 {
4942         return 0;
4943 }
4944 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4945                                 struct cgroup *cgroup,
4946                                 struct task_struct *p,
4947                                 bool threadgroup)
4948 {
4949 }
4950 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4951                                 struct cgroup *cont,
4952                                 struct cgroup *old_cont,
4953                                 struct task_struct *p,
4954                                 bool threadgroup)
4955 {
4956 }
4957 #endif
4958
4959 struct cgroup_subsys mem_cgroup_subsys = {
4960         .name = "memory",
4961         .subsys_id = mem_cgroup_subsys_id,
4962         .create = mem_cgroup_create,
4963         .pre_destroy = mem_cgroup_pre_destroy,
4964         .destroy = mem_cgroup_destroy,
4965         .populate = mem_cgroup_populate,
4966         .can_attach = mem_cgroup_can_attach,
4967         .cancel_attach = mem_cgroup_cancel_attach,
4968         .attach = mem_cgroup_move_task,
4969         .early_init = 0,
4970         .use_id = 1,
4971 };
4972
4973 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4974 static int __init enable_swap_account(char *s)
4975 {
4976         /* consider enabled if no parameter or 1 is given */
4977         if (!s || !strcmp(s, "1"))
4978                 really_do_swap_account = 1;
4979         else if (!strcmp(s, "0"))
4980                 really_do_swap_account = 0;
4981         return 1;
4982 }
4983 __setup("swapaccount", enable_swap_account);
4984
4985 static int __init disable_swap_account(char *s)
4986 {
4987         enable_swap_account("0");
4988         return 1;
4989 }
4990 __setup("noswapaccount", disable_swap_account);
4991 #endif