Merge tag 'mips-fixes_5.15_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[platform/kernel/linux-rpi.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap            1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 /* memcg and lruvec stats flushing */
107 static void flush_memcg_stats_dwork(struct work_struct *w);
108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
109 static DEFINE_SPINLOCK(stats_flush_lock);
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113
114 /*
115  * Cgroups above their limits are maintained in a RB-Tree, independent of
116  * their hierarchy representation
117  */
118
119 struct mem_cgroup_tree_per_node {
120         struct rb_root rb_root;
121         struct rb_node *rb_rightmost;
122         spinlock_t lock;
123 };
124
125 struct mem_cgroup_tree {
126         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133         struct list_head list;
134         struct eventfd_ctx *eventfd;
135 };
136
137 /*
138  * cgroup_event represents events which userspace want to receive.
139  */
140 struct mem_cgroup_event {
141         /*
142          * memcg which the event belongs to.
143          */
144         struct mem_cgroup *memcg;
145         /*
146          * eventfd to signal userspace about the event.
147          */
148         struct eventfd_ctx *eventfd;
149         /*
150          * Each of these stored in a list by the cgroup.
151          */
152         struct list_head list;
153         /*
154          * register_event() callback will be used to add new userspace
155          * waiter for changes related to this event.  Use eventfd_signal()
156          * on eventfd to send notification to userspace.
157          */
158         int (*register_event)(struct mem_cgroup *memcg,
159                               struct eventfd_ctx *eventfd, const char *args);
160         /*
161          * unregister_event() callback will be called when userspace closes
162          * the eventfd or on cgroup removing.  This callback must be set,
163          * if you want provide notification functionality.
164          */
165         void (*unregister_event)(struct mem_cgroup *memcg,
166                                  struct eventfd_ctx *eventfd);
167         /*
168          * All fields below needed to unregister event when
169          * userspace closes eventfd.
170          */
171         poll_table pt;
172         wait_queue_head_t *wqh;
173         wait_queue_entry_t wait;
174         struct work_struct remove;
175 };
176
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179
180 /* Stuffs for move charges at task migration. */
181 /*
182  * Types of charges to be moved.
183  */
184 #define MOVE_ANON       0x1U
185 #define MOVE_FILE       0x2U
186 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
187
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190         spinlock_t        lock; /* for from, to */
191         struct mm_struct  *mm;
192         struct mem_cgroup *from;
193         struct mem_cgroup *to;
194         unsigned long flags;
195         unsigned long precharge;
196         unsigned long moved_charge;
197         unsigned long moved_swap;
198         struct task_struct *moving_task;        /* a task moving charges */
199         wait_queue_head_t waitq;                /* a waitq for other context */
200 } mc = {
201         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204
205 /*
206  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207  * limit reclaim to prevent infinite loops, if they ever occur.
208  */
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211
212 /* for encoding cft->private value on file */
213 enum res_type {
214         _MEM,
215         _MEMSWAP,
216         _OOM_TYPE,
217         _KMEM,
218         _TCP,
219 };
220
221 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
222 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
223 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
224 /* Used for OOM notifier */
225 #define OOM_CONTROL             (0)
226
227 /*
228  * Iteration constructs for visiting all cgroups (under a tree).  If
229  * loops are exited prematurely (break), mem_cgroup_iter_break() must
230  * be used for reference counting.
231  */
232 #define for_each_mem_cgroup_tree(iter, root)            \
233         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
234              iter != NULL;                              \
235              iter = mem_cgroup_iter(root, iter, NULL))
236
237 #define for_each_mem_cgroup(iter)                       \
238         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
239              iter != NULL;                              \
240              iter = mem_cgroup_iter(NULL, iter, NULL))
241
242 static inline bool should_force_charge(void)
243 {
244         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
245                 (current->flags & PF_EXITING);
246 }
247
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251         if (!memcg)
252                 memcg = root_mem_cgroup;
253         return &memcg->vmpressure;
254 }
255
256 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
257 {
258         return container_of(vmpr, struct mem_cgroup, vmpressure);
259 }
260
261 #ifdef CONFIG_MEMCG_KMEM
262 extern spinlock_t css_set_lock;
263
264 bool mem_cgroup_kmem_disabled(void)
265 {
266         return cgroup_memory_nokmem;
267 }
268
269 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
270                                       unsigned int nr_pages);
271
272 static void obj_cgroup_release(struct percpu_ref *ref)
273 {
274         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
275         unsigned int nr_bytes;
276         unsigned int nr_pages;
277         unsigned long flags;
278
279         /*
280          * At this point all allocated objects are freed, and
281          * objcg->nr_charged_bytes can't have an arbitrary byte value.
282          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
283          *
284          * The following sequence can lead to it:
285          * 1) CPU0: objcg == stock->cached_objcg
286          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
287          *          PAGE_SIZE bytes are charged
288          * 3) CPU1: a process from another memcg is allocating something,
289          *          the stock if flushed,
290          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
291          * 5) CPU0: we do release this object,
292          *          92 bytes are added to stock->nr_bytes
293          * 6) CPU0: stock is flushed,
294          *          92 bytes are added to objcg->nr_charged_bytes
295          *
296          * In the result, nr_charged_bytes == PAGE_SIZE.
297          * This page will be uncharged in obj_cgroup_release().
298          */
299         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
300         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
301         nr_pages = nr_bytes >> PAGE_SHIFT;
302
303         if (nr_pages)
304                 obj_cgroup_uncharge_pages(objcg, nr_pages);
305
306         spin_lock_irqsave(&css_set_lock, flags);
307         list_del(&objcg->list);
308         spin_unlock_irqrestore(&css_set_lock, flags);
309
310         percpu_ref_exit(ref);
311         kfree_rcu(objcg, rcu);
312 }
313
314 static struct obj_cgroup *obj_cgroup_alloc(void)
315 {
316         struct obj_cgroup *objcg;
317         int ret;
318
319         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
320         if (!objcg)
321                 return NULL;
322
323         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
324                               GFP_KERNEL);
325         if (ret) {
326                 kfree(objcg);
327                 return NULL;
328         }
329         INIT_LIST_HEAD(&objcg->list);
330         return objcg;
331 }
332
333 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
334                                   struct mem_cgroup *parent)
335 {
336         struct obj_cgroup *objcg, *iter;
337
338         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
339
340         spin_lock_irq(&css_set_lock);
341
342         /* 1) Ready to reparent active objcg. */
343         list_add(&objcg->list, &memcg->objcg_list);
344         /* 2) Reparent active objcg and already reparented objcgs to parent. */
345         list_for_each_entry(iter, &memcg->objcg_list, list)
346                 WRITE_ONCE(iter->memcg, parent);
347         /* 3) Move already reparented objcgs to the parent's list */
348         list_splice(&memcg->objcg_list, &parent->objcg_list);
349
350         spin_unlock_irq(&css_set_lock);
351
352         percpu_ref_kill(&objcg->refcnt);
353 }
354
355 /*
356  * This will be used as a shrinker list's index.
357  * The main reason for not using cgroup id for this:
358  *  this works better in sparse environments, where we have a lot of memcgs,
359  *  but only a few kmem-limited. Or also, if we have, for instance, 200
360  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
361  *  200 entry array for that.
362  *
363  * The current size of the caches array is stored in memcg_nr_cache_ids. It
364  * will double each time we have to increase it.
365  */
366 static DEFINE_IDA(memcg_cache_ida);
367 int memcg_nr_cache_ids;
368
369 /* Protects memcg_nr_cache_ids */
370 static DECLARE_RWSEM(memcg_cache_ids_sem);
371
372 void memcg_get_cache_ids(void)
373 {
374         down_read(&memcg_cache_ids_sem);
375 }
376
377 void memcg_put_cache_ids(void)
378 {
379         up_read(&memcg_cache_ids_sem);
380 }
381
382 /*
383  * MIN_SIZE is different than 1, because we would like to avoid going through
384  * the alloc/free process all the time. In a small machine, 4 kmem-limited
385  * cgroups is a reasonable guess. In the future, it could be a parameter or
386  * tunable, but that is strictly not necessary.
387  *
388  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
389  * this constant directly from cgroup, but it is understandable that this is
390  * better kept as an internal representation in cgroup.c. In any case, the
391  * cgrp_id space is not getting any smaller, and we don't have to necessarily
392  * increase ours as well if it increases.
393  */
394 #define MEMCG_CACHES_MIN_SIZE 4
395 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
396
397 /*
398  * A lot of the calls to the cache allocation functions are expected to be
399  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
400  * conditional to this static branch, we'll have to allow modules that does
401  * kmem_cache_alloc and the such to see this symbol as well
402  */
403 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
404 EXPORT_SYMBOL(memcg_kmem_enabled_key);
405 #endif
406
407 /**
408  * mem_cgroup_css_from_page - css of the memcg associated with a page
409  * @page: page of interest
410  *
411  * If memcg is bound to the default hierarchy, css of the memcg associated
412  * with @page is returned.  The returned css remains associated with @page
413  * until it is released.
414  *
415  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
416  * is returned.
417  */
418 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
419 {
420         struct mem_cgroup *memcg;
421
422         memcg = page_memcg(page);
423
424         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
425                 memcg = root_mem_cgroup;
426
427         return &memcg->css;
428 }
429
430 /**
431  * page_cgroup_ino - return inode number of the memcg a page is charged to
432  * @page: the page
433  *
434  * Look up the closest online ancestor of the memory cgroup @page is charged to
435  * and return its inode number or 0 if @page is not charged to any cgroup. It
436  * is safe to call this function without holding a reference to @page.
437  *
438  * Note, this function is inherently racy, because there is nothing to prevent
439  * the cgroup inode from getting torn down and potentially reallocated a moment
440  * after page_cgroup_ino() returns, so it only should be used by callers that
441  * do not care (such as procfs interfaces).
442  */
443 ino_t page_cgroup_ino(struct page *page)
444 {
445         struct mem_cgroup *memcg;
446         unsigned long ino = 0;
447
448         rcu_read_lock();
449         memcg = page_memcg_check(page);
450
451         while (memcg && !(memcg->css.flags & CSS_ONLINE))
452                 memcg = parent_mem_cgroup(memcg);
453         if (memcg)
454                 ino = cgroup_ino(memcg->css.cgroup);
455         rcu_read_unlock();
456         return ino;
457 }
458
459 static struct mem_cgroup_per_node *
460 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
461 {
462         int nid = page_to_nid(page);
463
464         return memcg->nodeinfo[nid];
465 }
466
467 static struct mem_cgroup_tree_per_node *
468 soft_limit_tree_node(int nid)
469 {
470         return soft_limit_tree.rb_tree_per_node[nid];
471 }
472
473 static struct mem_cgroup_tree_per_node *
474 soft_limit_tree_from_page(struct page *page)
475 {
476         int nid = page_to_nid(page);
477
478         return soft_limit_tree.rb_tree_per_node[nid];
479 }
480
481 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
482                                          struct mem_cgroup_tree_per_node *mctz,
483                                          unsigned long new_usage_in_excess)
484 {
485         struct rb_node **p = &mctz->rb_root.rb_node;
486         struct rb_node *parent = NULL;
487         struct mem_cgroup_per_node *mz_node;
488         bool rightmost = true;
489
490         if (mz->on_tree)
491                 return;
492
493         mz->usage_in_excess = new_usage_in_excess;
494         if (!mz->usage_in_excess)
495                 return;
496         while (*p) {
497                 parent = *p;
498                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
499                                         tree_node);
500                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
501                         p = &(*p)->rb_left;
502                         rightmost = false;
503                 } else {
504                         p = &(*p)->rb_right;
505                 }
506         }
507
508         if (rightmost)
509                 mctz->rb_rightmost = &mz->tree_node;
510
511         rb_link_node(&mz->tree_node, parent, p);
512         rb_insert_color(&mz->tree_node, &mctz->rb_root);
513         mz->on_tree = true;
514 }
515
516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
517                                          struct mem_cgroup_tree_per_node *mctz)
518 {
519         if (!mz->on_tree)
520                 return;
521
522         if (&mz->tree_node == mctz->rb_rightmost)
523                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
524
525         rb_erase(&mz->tree_node, &mctz->rb_root);
526         mz->on_tree = false;
527 }
528
529 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
530                                        struct mem_cgroup_tree_per_node *mctz)
531 {
532         unsigned long flags;
533
534         spin_lock_irqsave(&mctz->lock, flags);
535         __mem_cgroup_remove_exceeded(mz, mctz);
536         spin_unlock_irqrestore(&mctz->lock, flags);
537 }
538
539 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
540 {
541         unsigned long nr_pages = page_counter_read(&memcg->memory);
542         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
543         unsigned long excess = 0;
544
545         if (nr_pages > soft_limit)
546                 excess = nr_pages - soft_limit;
547
548         return excess;
549 }
550
551 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
552 {
553         unsigned long excess;
554         struct mem_cgroup_per_node *mz;
555         struct mem_cgroup_tree_per_node *mctz;
556
557         mctz = soft_limit_tree_from_page(page);
558         if (!mctz)
559                 return;
560         /*
561          * Necessary to update all ancestors when hierarchy is used.
562          * because their event counter is not touched.
563          */
564         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
565                 mz = mem_cgroup_page_nodeinfo(memcg, page);
566                 excess = soft_limit_excess(memcg);
567                 /*
568                  * We have to update the tree if mz is on RB-tree or
569                  * mem is over its softlimit.
570                  */
571                 if (excess || mz->on_tree) {
572                         unsigned long flags;
573
574                         spin_lock_irqsave(&mctz->lock, flags);
575                         /* if on-tree, remove it */
576                         if (mz->on_tree)
577                                 __mem_cgroup_remove_exceeded(mz, mctz);
578                         /*
579                          * Insert again. mz->usage_in_excess will be updated.
580                          * If excess is 0, no tree ops.
581                          */
582                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
583                         spin_unlock_irqrestore(&mctz->lock, flags);
584                 }
585         }
586 }
587
588 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
589 {
590         struct mem_cgroup_tree_per_node *mctz;
591         struct mem_cgroup_per_node *mz;
592         int nid;
593
594         for_each_node(nid) {
595                 mz = memcg->nodeinfo[nid];
596                 mctz = soft_limit_tree_node(nid);
597                 if (mctz)
598                         mem_cgroup_remove_exceeded(mz, mctz);
599         }
600 }
601
602 static struct mem_cgroup_per_node *
603 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
604 {
605         struct mem_cgroup_per_node *mz;
606
607 retry:
608         mz = NULL;
609         if (!mctz->rb_rightmost)
610                 goto done;              /* Nothing to reclaim from */
611
612         mz = rb_entry(mctz->rb_rightmost,
613                       struct mem_cgroup_per_node, tree_node);
614         /*
615          * Remove the node now but someone else can add it back,
616          * we will to add it back at the end of reclaim to its correct
617          * position in the tree.
618          */
619         __mem_cgroup_remove_exceeded(mz, mctz);
620         if (!soft_limit_excess(mz->memcg) ||
621             !css_tryget(&mz->memcg->css))
622                 goto retry;
623 done:
624         return mz;
625 }
626
627 static struct mem_cgroup_per_node *
628 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
629 {
630         struct mem_cgroup_per_node *mz;
631
632         spin_lock_irq(&mctz->lock);
633         mz = __mem_cgroup_largest_soft_limit_node(mctz);
634         spin_unlock_irq(&mctz->lock);
635         return mz;
636 }
637
638 /**
639  * __mod_memcg_state - update cgroup memory statistics
640  * @memcg: the memory cgroup
641  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
642  * @val: delta to add to the counter, can be negative
643  */
644 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
645 {
646         if (mem_cgroup_disabled())
647                 return;
648
649         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
650         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
651 }
652
653 /* idx can be of type enum memcg_stat_item or node_stat_item. */
654 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
655 {
656         long x = 0;
657         int cpu;
658
659         for_each_possible_cpu(cpu)
660                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
661 #ifdef CONFIG_SMP
662         if (x < 0)
663                 x = 0;
664 #endif
665         return x;
666 }
667
668 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
669                               int val)
670 {
671         struct mem_cgroup_per_node *pn;
672         struct mem_cgroup *memcg;
673
674         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
675         memcg = pn->memcg;
676
677         /* Update memcg */
678         __mod_memcg_state(memcg, idx, val);
679
680         /* Update lruvec */
681         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
682 }
683
684 /**
685  * __mod_lruvec_state - update lruvec memory statistics
686  * @lruvec: the lruvec
687  * @idx: the stat item
688  * @val: delta to add to the counter, can be negative
689  *
690  * The lruvec is the intersection of the NUMA node and a cgroup. This
691  * function updates the all three counters that are affected by a
692  * change of state at this level: per-node, per-cgroup, per-lruvec.
693  */
694 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
695                         int val)
696 {
697         /* Update node */
698         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
699
700         /* Update memcg and lruvec */
701         if (!mem_cgroup_disabled())
702                 __mod_memcg_lruvec_state(lruvec, idx, val);
703 }
704
705 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
706                              int val)
707 {
708         struct page *head = compound_head(page); /* rmap on tail pages */
709         struct mem_cgroup *memcg;
710         pg_data_t *pgdat = page_pgdat(page);
711         struct lruvec *lruvec;
712
713         rcu_read_lock();
714         memcg = page_memcg(head);
715         /* Untracked pages have no memcg, no lruvec. Update only the node */
716         if (!memcg) {
717                 rcu_read_unlock();
718                 __mod_node_page_state(pgdat, idx, val);
719                 return;
720         }
721
722         lruvec = mem_cgroup_lruvec(memcg, pgdat);
723         __mod_lruvec_state(lruvec, idx, val);
724         rcu_read_unlock();
725 }
726 EXPORT_SYMBOL(__mod_lruvec_page_state);
727
728 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
729 {
730         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
731         struct mem_cgroup *memcg;
732         struct lruvec *lruvec;
733
734         rcu_read_lock();
735         memcg = mem_cgroup_from_obj(p);
736
737         /*
738          * Untracked pages have no memcg, no lruvec. Update only the
739          * node. If we reparent the slab objects to the root memcg,
740          * when we free the slab object, we need to update the per-memcg
741          * vmstats to keep it correct for the root memcg.
742          */
743         if (!memcg) {
744                 __mod_node_page_state(pgdat, idx, val);
745         } else {
746                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
747                 __mod_lruvec_state(lruvec, idx, val);
748         }
749         rcu_read_unlock();
750 }
751
752 /*
753  * mod_objcg_mlstate() may be called with irq enabled, so
754  * mod_memcg_lruvec_state() should be used.
755  */
756 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
757                                      struct pglist_data *pgdat,
758                                      enum node_stat_item idx, int nr)
759 {
760         struct mem_cgroup *memcg;
761         struct lruvec *lruvec;
762
763         rcu_read_lock();
764         memcg = obj_cgroup_memcg(objcg);
765         lruvec = mem_cgroup_lruvec(memcg, pgdat);
766         mod_memcg_lruvec_state(lruvec, idx, nr);
767         rcu_read_unlock();
768 }
769
770 /**
771  * __count_memcg_events - account VM events in a cgroup
772  * @memcg: the memory cgroup
773  * @idx: the event item
774  * @count: the number of events that occurred
775  */
776 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
777                           unsigned long count)
778 {
779         if (mem_cgroup_disabled())
780                 return;
781
782         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
783         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
784 }
785
786 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
787 {
788         return READ_ONCE(memcg->vmstats.events[event]);
789 }
790
791 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
792 {
793         long x = 0;
794         int cpu;
795
796         for_each_possible_cpu(cpu)
797                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
798         return x;
799 }
800
801 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
802                                          struct page *page,
803                                          int nr_pages)
804 {
805         /* pagein of a big page is an event. So, ignore page size */
806         if (nr_pages > 0)
807                 __count_memcg_events(memcg, PGPGIN, 1);
808         else {
809                 __count_memcg_events(memcg, PGPGOUT, 1);
810                 nr_pages = -nr_pages; /* for event */
811         }
812
813         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
814 }
815
816 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
817                                        enum mem_cgroup_events_target target)
818 {
819         unsigned long val, next;
820
821         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
822         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
823         /* from time_after() in jiffies.h */
824         if ((long)(next - val) < 0) {
825                 switch (target) {
826                 case MEM_CGROUP_TARGET_THRESH:
827                         next = val + THRESHOLDS_EVENTS_TARGET;
828                         break;
829                 case MEM_CGROUP_TARGET_SOFTLIMIT:
830                         next = val + SOFTLIMIT_EVENTS_TARGET;
831                         break;
832                 default:
833                         break;
834                 }
835                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
836                 return true;
837         }
838         return false;
839 }
840
841 /*
842  * Check events in order.
843  *
844  */
845 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
846 {
847         /* threshold event is triggered in finer grain than soft limit */
848         if (unlikely(mem_cgroup_event_ratelimit(memcg,
849                                                 MEM_CGROUP_TARGET_THRESH))) {
850                 bool do_softlimit;
851
852                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
853                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
854                 mem_cgroup_threshold(memcg);
855                 if (unlikely(do_softlimit))
856                         mem_cgroup_update_tree(memcg, page);
857         }
858 }
859
860 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
861 {
862         /*
863          * mm_update_next_owner() may clear mm->owner to NULL
864          * if it races with swapoff, page migration, etc.
865          * So this can be called with p == NULL.
866          */
867         if (unlikely(!p))
868                 return NULL;
869
870         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
871 }
872 EXPORT_SYMBOL(mem_cgroup_from_task);
873
874 static __always_inline struct mem_cgroup *active_memcg(void)
875 {
876         if (!in_task())
877                 return this_cpu_read(int_active_memcg);
878         else
879                 return current->active_memcg;
880 }
881
882 /**
883  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
884  * @mm: mm from which memcg should be extracted. It can be NULL.
885  *
886  * Obtain a reference on mm->memcg and returns it if successful. If mm
887  * is NULL, then the memcg is chosen as follows:
888  * 1) The active memcg, if set.
889  * 2) current->mm->memcg, if available
890  * 3) root memcg
891  * If mem_cgroup is disabled, NULL is returned.
892  */
893 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
894 {
895         struct mem_cgroup *memcg;
896
897         if (mem_cgroup_disabled())
898                 return NULL;
899
900         /*
901          * Page cache insertions can happen without an
902          * actual mm context, e.g. during disk probing
903          * on boot, loopback IO, acct() writes etc.
904          *
905          * No need to css_get on root memcg as the reference
906          * counting is disabled on the root level in the
907          * cgroup core. See CSS_NO_REF.
908          */
909         if (unlikely(!mm)) {
910                 memcg = active_memcg();
911                 if (unlikely(memcg)) {
912                         /* remote memcg must hold a ref */
913                         css_get(&memcg->css);
914                         return memcg;
915                 }
916                 mm = current->mm;
917                 if (unlikely(!mm))
918                         return root_mem_cgroup;
919         }
920
921         rcu_read_lock();
922         do {
923                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924                 if (unlikely(!memcg))
925                         memcg = root_mem_cgroup;
926         } while (!css_tryget(&memcg->css));
927         rcu_read_unlock();
928         return memcg;
929 }
930 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
931
932 static __always_inline bool memcg_kmem_bypass(void)
933 {
934         /* Allow remote memcg charging from any context. */
935         if (unlikely(active_memcg()))
936                 return false;
937
938         /* Memcg to charge can't be determined. */
939         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
940                 return true;
941
942         return false;
943 }
944
945 /**
946  * mem_cgroup_iter - iterate over memory cgroup hierarchy
947  * @root: hierarchy root
948  * @prev: previously returned memcg, NULL on first invocation
949  * @reclaim: cookie for shared reclaim walks, NULL for full walks
950  *
951  * Returns references to children of the hierarchy below @root, or
952  * @root itself, or %NULL after a full round-trip.
953  *
954  * Caller must pass the return value in @prev on subsequent
955  * invocations for reference counting, or use mem_cgroup_iter_break()
956  * to cancel a hierarchy walk before the round-trip is complete.
957  *
958  * Reclaimers can specify a node in @reclaim to divide up the memcgs
959  * in the hierarchy among all concurrent reclaimers operating on the
960  * same node.
961  */
962 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
963                                    struct mem_cgroup *prev,
964                                    struct mem_cgroup_reclaim_cookie *reclaim)
965 {
966         struct mem_cgroup_reclaim_iter *iter;
967         struct cgroup_subsys_state *css = NULL;
968         struct mem_cgroup *memcg = NULL;
969         struct mem_cgroup *pos = NULL;
970
971         if (mem_cgroup_disabled())
972                 return NULL;
973
974         if (!root)
975                 root = root_mem_cgroup;
976
977         if (prev && !reclaim)
978                 pos = prev;
979
980         rcu_read_lock();
981
982         if (reclaim) {
983                 struct mem_cgroup_per_node *mz;
984
985                 mz = root->nodeinfo[reclaim->pgdat->node_id];
986                 iter = &mz->iter;
987
988                 if (prev && reclaim->generation != iter->generation)
989                         goto out_unlock;
990
991                 while (1) {
992                         pos = READ_ONCE(iter->position);
993                         if (!pos || css_tryget(&pos->css))
994                                 break;
995                         /*
996                          * css reference reached zero, so iter->position will
997                          * be cleared by ->css_released. However, we should not
998                          * rely on this happening soon, because ->css_released
999                          * is called from a work queue, and by busy-waiting we
1000                          * might block it. So we clear iter->position right
1001                          * away.
1002                          */
1003                         (void)cmpxchg(&iter->position, pos, NULL);
1004                 }
1005         }
1006
1007         if (pos)
1008                 css = &pos->css;
1009
1010         for (;;) {
1011                 css = css_next_descendant_pre(css, &root->css);
1012                 if (!css) {
1013                         /*
1014                          * Reclaimers share the hierarchy walk, and a
1015                          * new one might jump in right at the end of
1016                          * the hierarchy - make sure they see at least
1017                          * one group and restart from the beginning.
1018                          */
1019                         if (!prev)
1020                                 continue;
1021                         break;
1022                 }
1023
1024                 /*
1025                  * Verify the css and acquire a reference.  The root
1026                  * is provided by the caller, so we know it's alive
1027                  * and kicking, and don't take an extra reference.
1028                  */
1029                 memcg = mem_cgroup_from_css(css);
1030
1031                 if (css == &root->css)
1032                         break;
1033
1034                 if (css_tryget(css))
1035                         break;
1036
1037                 memcg = NULL;
1038         }
1039
1040         if (reclaim) {
1041                 /*
1042                  * The position could have already been updated by a competing
1043                  * thread, so check that the value hasn't changed since we read
1044                  * it to avoid reclaiming from the same cgroup twice.
1045                  */
1046                 (void)cmpxchg(&iter->position, pos, memcg);
1047
1048                 if (pos)
1049                         css_put(&pos->css);
1050
1051                 if (!memcg)
1052                         iter->generation++;
1053                 else if (!prev)
1054                         reclaim->generation = iter->generation;
1055         }
1056
1057 out_unlock:
1058         rcu_read_unlock();
1059         if (prev && prev != root)
1060                 css_put(&prev->css);
1061
1062         return memcg;
1063 }
1064
1065 /**
1066  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1067  * @root: hierarchy root
1068  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1069  */
1070 void mem_cgroup_iter_break(struct mem_cgroup *root,
1071                            struct mem_cgroup *prev)
1072 {
1073         if (!root)
1074                 root = root_mem_cgroup;
1075         if (prev && prev != root)
1076                 css_put(&prev->css);
1077 }
1078
1079 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1080                                         struct mem_cgroup *dead_memcg)
1081 {
1082         struct mem_cgroup_reclaim_iter *iter;
1083         struct mem_cgroup_per_node *mz;
1084         int nid;
1085
1086         for_each_node(nid) {
1087                 mz = from->nodeinfo[nid];
1088                 iter = &mz->iter;
1089                 cmpxchg(&iter->position, dead_memcg, NULL);
1090         }
1091 }
1092
1093 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1094 {
1095         struct mem_cgroup *memcg = dead_memcg;
1096         struct mem_cgroup *last;
1097
1098         do {
1099                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1100                 last = memcg;
1101         } while ((memcg = parent_mem_cgroup(memcg)));
1102
1103         /*
1104          * When cgruop1 non-hierarchy mode is used,
1105          * parent_mem_cgroup() does not walk all the way up to the
1106          * cgroup root (root_mem_cgroup). So we have to handle
1107          * dead_memcg from cgroup root separately.
1108          */
1109         if (last != root_mem_cgroup)
1110                 __invalidate_reclaim_iterators(root_mem_cgroup,
1111                                                 dead_memcg);
1112 }
1113
1114 /**
1115  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1116  * @memcg: hierarchy root
1117  * @fn: function to call for each task
1118  * @arg: argument passed to @fn
1119  *
1120  * This function iterates over tasks attached to @memcg or to any of its
1121  * descendants and calls @fn for each task. If @fn returns a non-zero
1122  * value, the function breaks the iteration loop and returns the value.
1123  * Otherwise, it will iterate over all tasks and return 0.
1124  *
1125  * This function must not be called for the root memory cgroup.
1126  */
1127 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1128                           int (*fn)(struct task_struct *, void *), void *arg)
1129 {
1130         struct mem_cgroup *iter;
1131         int ret = 0;
1132
1133         BUG_ON(memcg == root_mem_cgroup);
1134
1135         for_each_mem_cgroup_tree(iter, memcg) {
1136                 struct css_task_iter it;
1137                 struct task_struct *task;
1138
1139                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1140                 while (!ret && (task = css_task_iter_next(&it)))
1141                         ret = fn(task, arg);
1142                 css_task_iter_end(&it);
1143                 if (ret) {
1144                         mem_cgroup_iter_break(memcg, iter);
1145                         break;
1146                 }
1147         }
1148         return ret;
1149 }
1150
1151 #ifdef CONFIG_DEBUG_VM
1152 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1153 {
1154         struct mem_cgroup *memcg;
1155
1156         if (mem_cgroup_disabled())
1157                 return;
1158
1159         memcg = page_memcg(page);
1160
1161         if (!memcg)
1162                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1163         else
1164                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1165 }
1166 #endif
1167
1168 /**
1169  * lock_page_lruvec - lock and return lruvec for a given page.
1170  * @page: the page
1171  *
1172  * These functions are safe to use under any of the following conditions:
1173  * - page locked
1174  * - PageLRU cleared
1175  * - lock_page_memcg()
1176  * - page->_refcount is zero
1177  */
1178 struct lruvec *lock_page_lruvec(struct page *page)
1179 {
1180         struct lruvec *lruvec;
1181
1182         lruvec = mem_cgroup_page_lruvec(page);
1183         spin_lock(&lruvec->lru_lock);
1184
1185         lruvec_memcg_debug(lruvec, page);
1186
1187         return lruvec;
1188 }
1189
1190 struct lruvec *lock_page_lruvec_irq(struct page *page)
1191 {
1192         struct lruvec *lruvec;
1193
1194         lruvec = mem_cgroup_page_lruvec(page);
1195         spin_lock_irq(&lruvec->lru_lock);
1196
1197         lruvec_memcg_debug(lruvec, page);
1198
1199         return lruvec;
1200 }
1201
1202 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1203 {
1204         struct lruvec *lruvec;
1205
1206         lruvec = mem_cgroup_page_lruvec(page);
1207         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1208
1209         lruvec_memcg_debug(lruvec, page);
1210
1211         return lruvec;
1212 }
1213
1214 /**
1215  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1216  * @lruvec: mem_cgroup per zone lru vector
1217  * @lru: index of lru list the page is sitting on
1218  * @zid: zone id of the accounted pages
1219  * @nr_pages: positive when adding or negative when removing
1220  *
1221  * This function must be called under lru_lock, just before a page is added
1222  * to or just after a page is removed from an lru list (that ordering being
1223  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1224  */
1225 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1226                                 int zid, int nr_pages)
1227 {
1228         struct mem_cgroup_per_node *mz;
1229         unsigned long *lru_size;
1230         long size;
1231
1232         if (mem_cgroup_disabled())
1233                 return;
1234
1235         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1236         lru_size = &mz->lru_zone_size[zid][lru];
1237
1238         if (nr_pages < 0)
1239                 *lru_size += nr_pages;
1240
1241         size = *lru_size;
1242         if (WARN_ONCE(size < 0,
1243                 "%s(%p, %d, %d): lru_size %ld\n",
1244                 __func__, lruvec, lru, nr_pages, size)) {
1245                 VM_BUG_ON(1);
1246                 *lru_size = 0;
1247         }
1248
1249         if (nr_pages > 0)
1250                 *lru_size += nr_pages;
1251 }
1252
1253 /**
1254  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1255  * @memcg: the memory cgroup
1256  *
1257  * Returns the maximum amount of memory @mem can be charged with, in
1258  * pages.
1259  */
1260 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261 {
1262         unsigned long margin = 0;
1263         unsigned long count;
1264         unsigned long limit;
1265
1266         count = page_counter_read(&memcg->memory);
1267         limit = READ_ONCE(memcg->memory.max);
1268         if (count < limit)
1269                 margin = limit - count;
1270
1271         if (do_memsw_account()) {
1272                 count = page_counter_read(&memcg->memsw);
1273                 limit = READ_ONCE(memcg->memsw.max);
1274                 if (count < limit)
1275                         margin = min(margin, limit - count);
1276                 else
1277                         margin = 0;
1278         }
1279
1280         return margin;
1281 }
1282
1283 /*
1284  * A routine for checking "mem" is under move_account() or not.
1285  *
1286  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1287  * moving cgroups. This is for waiting at high-memory pressure
1288  * caused by "move".
1289  */
1290 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1291 {
1292         struct mem_cgroup *from;
1293         struct mem_cgroup *to;
1294         bool ret = false;
1295         /*
1296          * Unlike task_move routines, we access mc.to, mc.from not under
1297          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1298          */
1299         spin_lock(&mc.lock);
1300         from = mc.from;
1301         to = mc.to;
1302         if (!from)
1303                 goto unlock;
1304
1305         ret = mem_cgroup_is_descendant(from, memcg) ||
1306                 mem_cgroup_is_descendant(to, memcg);
1307 unlock:
1308         spin_unlock(&mc.lock);
1309         return ret;
1310 }
1311
1312 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1313 {
1314         if (mc.moving_task && current != mc.moving_task) {
1315                 if (mem_cgroup_under_move(memcg)) {
1316                         DEFINE_WAIT(wait);
1317                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1318                         /* moving charge context might have finished. */
1319                         if (mc.moving_task)
1320                                 schedule();
1321                         finish_wait(&mc.waitq, &wait);
1322                         return true;
1323                 }
1324         }
1325         return false;
1326 }
1327
1328 struct memory_stat {
1329         const char *name;
1330         unsigned int idx;
1331 };
1332
1333 static const struct memory_stat memory_stats[] = {
1334         { "anon",                       NR_ANON_MAPPED                  },
1335         { "file",                       NR_FILE_PAGES                   },
1336         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1337         { "pagetables",                 NR_PAGETABLE                    },
1338         { "percpu",                     MEMCG_PERCPU_B                  },
1339         { "sock",                       MEMCG_SOCK                      },
1340         { "shmem",                      NR_SHMEM                        },
1341         { "file_mapped",                NR_FILE_MAPPED                  },
1342         { "file_dirty",                 NR_FILE_DIRTY                   },
1343         { "file_writeback",             NR_WRITEBACK                    },
1344 #ifdef CONFIG_SWAP
1345         { "swapcached",                 NR_SWAPCACHE                    },
1346 #endif
1347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1348         { "anon_thp",                   NR_ANON_THPS                    },
1349         { "file_thp",                   NR_FILE_THPS                    },
1350         { "shmem_thp",                  NR_SHMEM_THPS                   },
1351 #endif
1352         { "inactive_anon",              NR_INACTIVE_ANON                },
1353         { "active_anon",                NR_ACTIVE_ANON                  },
1354         { "inactive_file",              NR_INACTIVE_FILE                },
1355         { "active_file",                NR_ACTIVE_FILE                  },
1356         { "unevictable",                NR_UNEVICTABLE                  },
1357         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1358         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1359
1360         /* The memory events */
1361         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1362         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1363         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1364         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1365         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1366         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1367         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1368 };
1369
1370 /* Translate stat items to the correct unit for memory.stat output */
1371 static int memcg_page_state_unit(int item)
1372 {
1373         switch (item) {
1374         case MEMCG_PERCPU_B:
1375         case NR_SLAB_RECLAIMABLE_B:
1376         case NR_SLAB_UNRECLAIMABLE_B:
1377         case WORKINGSET_REFAULT_ANON:
1378         case WORKINGSET_REFAULT_FILE:
1379         case WORKINGSET_ACTIVATE_ANON:
1380         case WORKINGSET_ACTIVATE_FILE:
1381         case WORKINGSET_RESTORE_ANON:
1382         case WORKINGSET_RESTORE_FILE:
1383         case WORKINGSET_NODERECLAIM:
1384                 return 1;
1385         case NR_KERNEL_STACK_KB:
1386                 return SZ_1K;
1387         default:
1388                 return PAGE_SIZE;
1389         }
1390 }
1391
1392 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1393                                                     int item)
1394 {
1395         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1396 }
1397
1398 static char *memory_stat_format(struct mem_cgroup *memcg)
1399 {
1400         struct seq_buf s;
1401         int i;
1402
1403         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1404         if (!s.buffer)
1405                 return NULL;
1406
1407         /*
1408          * Provide statistics on the state of the memory subsystem as
1409          * well as cumulative event counters that show past behavior.
1410          *
1411          * This list is ordered following a combination of these gradients:
1412          * 1) generic big picture -> specifics and details
1413          * 2) reflecting userspace activity -> reflecting kernel heuristics
1414          *
1415          * Current memory state:
1416          */
1417         cgroup_rstat_flush(memcg->css.cgroup);
1418
1419         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1420                 u64 size;
1421
1422                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1423                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1424
1425                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1426                         size += memcg_page_state_output(memcg,
1427                                                         NR_SLAB_RECLAIMABLE_B);
1428                         seq_buf_printf(&s, "slab %llu\n", size);
1429                 }
1430         }
1431
1432         /* Accumulated memory events */
1433
1434         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1435                        memcg_events(memcg, PGFAULT));
1436         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1437                        memcg_events(memcg, PGMAJFAULT));
1438         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1439                        memcg_events(memcg, PGREFILL));
1440         seq_buf_printf(&s, "pgscan %lu\n",
1441                        memcg_events(memcg, PGSCAN_KSWAPD) +
1442                        memcg_events(memcg, PGSCAN_DIRECT));
1443         seq_buf_printf(&s, "pgsteal %lu\n",
1444                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1445                        memcg_events(memcg, PGSTEAL_DIRECT));
1446         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1447                        memcg_events(memcg, PGACTIVATE));
1448         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1449                        memcg_events(memcg, PGDEACTIVATE));
1450         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1451                        memcg_events(memcg, PGLAZYFREE));
1452         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1453                        memcg_events(memcg, PGLAZYFREED));
1454
1455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1456         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1457                        memcg_events(memcg, THP_FAULT_ALLOC));
1458         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1459                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1460 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1461
1462         /* The above should easily fit into one page */
1463         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1464
1465         return s.buffer;
1466 }
1467
1468 #define K(x) ((x) << (PAGE_SHIFT-10))
1469 /**
1470  * mem_cgroup_print_oom_context: Print OOM information relevant to
1471  * memory controller.
1472  * @memcg: The memory cgroup that went over limit
1473  * @p: Task that is going to be killed
1474  *
1475  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1476  * enabled
1477  */
1478 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1479 {
1480         rcu_read_lock();
1481
1482         if (memcg) {
1483                 pr_cont(",oom_memcg=");
1484                 pr_cont_cgroup_path(memcg->css.cgroup);
1485         } else
1486                 pr_cont(",global_oom");
1487         if (p) {
1488                 pr_cont(",task_memcg=");
1489                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1490         }
1491         rcu_read_unlock();
1492 }
1493
1494 /**
1495  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1496  * memory controller.
1497  * @memcg: The memory cgroup that went over limit
1498  */
1499 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1500 {
1501         char *buf;
1502
1503         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1504                 K((u64)page_counter_read(&memcg->memory)),
1505                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1506         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1507                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1508                         K((u64)page_counter_read(&memcg->swap)),
1509                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1510         else {
1511                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1512                         K((u64)page_counter_read(&memcg->memsw)),
1513                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1514                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1515                         K((u64)page_counter_read(&memcg->kmem)),
1516                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1517         }
1518
1519         pr_info("Memory cgroup stats for ");
1520         pr_cont_cgroup_path(memcg->css.cgroup);
1521         pr_cont(":");
1522         buf = memory_stat_format(memcg);
1523         if (!buf)
1524                 return;
1525         pr_info("%s", buf);
1526         kfree(buf);
1527 }
1528
1529 /*
1530  * Return the memory (and swap, if configured) limit for a memcg.
1531  */
1532 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1533 {
1534         unsigned long max = READ_ONCE(memcg->memory.max);
1535
1536         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1537                 if (mem_cgroup_swappiness(memcg))
1538                         max += min(READ_ONCE(memcg->swap.max),
1539                                    (unsigned long)total_swap_pages);
1540         } else { /* v1 */
1541                 if (mem_cgroup_swappiness(memcg)) {
1542                         /* Calculate swap excess capacity from memsw limit */
1543                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1544
1545                         max += min(swap, (unsigned long)total_swap_pages);
1546                 }
1547         }
1548         return max;
1549 }
1550
1551 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1552 {
1553         return page_counter_read(&memcg->memory);
1554 }
1555
1556 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1557                                      int order)
1558 {
1559         struct oom_control oc = {
1560                 .zonelist = NULL,
1561                 .nodemask = NULL,
1562                 .memcg = memcg,
1563                 .gfp_mask = gfp_mask,
1564                 .order = order,
1565         };
1566         bool ret = true;
1567
1568         if (mutex_lock_killable(&oom_lock))
1569                 return true;
1570
1571         if (mem_cgroup_margin(memcg) >= (1 << order))
1572                 goto unlock;
1573
1574         /*
1575          * A few threads which were not waiting at mutex_lock_killable() can
1576          * fail to bail out. Therefore, check again after holding oom_lock.
1577          */
1578         ret = should_force_charge() || out_of_memory(&oc);
1579
1580 unlock:
1581         mutex_unlock(&oom_lock);
1582         return ret;
1583 }
1584
1585 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1586                                    pg_data_t *pgdat,
1587                                    gfp_t gfp_mask,
1588                                    unsigned long *total_scanned)
1589 {
1590         struct mem_cgroup *victim = NULL;
1591         int total = 0;
1592         int loop = 0;
1593         unsigned long excess;
1594         unsigned long nr_scanned;
1595         struct mem_cgroup_reclaim_cookie reclaim = {
1596                 .pgdat = pgdat,
1597         };
1598
1599         excess = soft_limit_excess(root_memcg);
1600
1601         while (1) {
1602                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1603                 if (!victim) {
1604                         loop++;
1605                         if (loop >= 2) {
1606                                 /*
1607                                  * If we have not been able to reclaim
1608                                  * anything, it might because there are
1609                                  * no reclaimable pages under this hierarchy
1610                                  */
1611                                 if (!total)
1612                                         break;
1613                                 /*
1614                                  * We want to do more targeted reclaim.
1615                                  * excess >> 2 is not to excessive so as to
1616                                  * reclaim too much, nor too less that we keep
1617                                  * coming back to reclaim from this cgroup
1618                                  */
1619                                 if (total >= (excess >> 2) ||
1620                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1621                                         break;
1622                         }
1623                         continue;
1624                 }
1625                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1626                                         pgdat, &nr_scanned);
1627                 *total_scanned += nr_scanned;
1628                 if (!soft_limit_excess(root_memcg))
1629                         break;
1630         }
1631         mem_cgroup_iter_break(root_memcg, victim);
1632         return total;
1633 }
1634
1635 #ifdef CONFIG_LOCKDEP
1636 static struct lockdep_map memcg_oom_lock_dep_map = {
1637         .name = "memcg_oom_lock",
1638 };
1639 #endif
1640
1641 static DEFINE_SPINLOCK(memcg_oom_lock);
1642
1643 /*
1644  * Check OOM-Killer is already running under our hierarchy.
1645  * If someone is running, return false.
1646  */
1647 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1648 {
1649         struct mem_cgroup *iter, *failed = NULL;
1650
1651         spin_lock(&memcg_oom_lock);
1652
1653         for_each_mem_cgroup_tree(iter, memcg) {
1654                 if (iter->oom_lock) {
1655                         /*
1656                          * this subtree of our hierarchy is already locked
1657                          * so we cannot give a lock.
1658                          */
1659                         failed = iter;
1660                         mem_cgroup_iter_break(memcg, iter);
1661                         break;
1662                 } else
1663                         iter->oom_lock = true;
1664         }
1665
1666         if (failed) {
1667                 /*
1668                  * OK, we failed to lock the whole subtree so we have
1669                  * to clean up what we set up to the failing subtree
1670                  */
1671                 for_each_mem_cgroup_tree(iter, memcg) {
1672                         if (iter == failed) {
1673                                 mem_cgroup_iter_break(memcg, iter);
1674                                 break;
1675                         }
1676                         iter->oom_lock = false;
1677                 }
1678         } else
1679                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1680
1681         spin_unlock(&memcg_oom_lock);
1682
1683         return !failed;
1684 }
1685
1686 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1687 {
1688         struct mem_cgroup *iter;
1689
1690         spin_lock(&memcg_oom_lock);
1691         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1692         for_each_mem_cgroup_tree(iter, memcg)
1693                 iter->oom_lock = false;
1694         spin_unlock(&memcg_oom_lock);
1695 }
1696
1697 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1698 {
1699         struct mem_cgroup *iter;
1700
1701         spin_lock(&memcg_oom_lock);
1702         for_each_mem_cgroup_tree(iter, memcg)
1703                 iter->under_oom++;
1704         spin_unlock(&memcg_oom_lock);
1705 }
1706
1707 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1708 {
1709         struct mem_cgroup *iter;
1710
1711         /*
1712          * Be careful about under_oom underflows because a child memcg
1713          * could have been added after mem_cgroup_mark_under_oom.
1714          */
1715         spin_lock(&memcg_oom_lock);
1716         for_each_mem_cgroup_tree(iter, memcg)
1717                 if (iter->under_oom > 0)
1718                         iter->under_oom--;
1719         spin_unlock(&memcg_oom_lock);
1720 }
1721
1722 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1723
1724 struct oom_wait_info {
1725         struct mem_cgroup *memcg;
1726         wait_queue_entry_t      wait;
1727 };
1728
1729 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1730         unsigned mode, int sync, void *arg)
1731 {
1732         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1733         struct mem_cgroup *oom_wait_memcg;
1734         struct oom_wait_info *oom_wait_info;
1735
1736         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1737         oom_wait_memcg = oom_wait_info->memcg;
1738
1739         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1740             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1741                 return 0;
1742         return autoremove_wake_function(wait, mode, sync, arg);
1743 }
1744
1745 static void memcg_oom_recover(struct mem_cgroup *memcg)
1746 {
1747         /*
1748          * For the following lockless ->under_oom test, the only required
1749          * guarantee is that it must see the state asserted by an OOM when
1750          * this function is called as a result of userland actions
1751          * triggered by the notification of the OOM.  This is trivially
1752          * achieved by invoking mem_cgroup_mark_under_oom() before
1753          * triggering notification.
1754          */
1755         if (memcg && memcg->under_oom)
1756                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1757 }
1758
1759 enum oom_status {
1760         OOM_SUCCESS,
1761         OOM_FAILED,
1762         OOM_ASYNC,
1763         OOM_SKIPPED
1764 };
1765
1766 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1767 {
1768         enum oom_status ret;
1769         bool locked;
1770
1771         if (order > PAGE_ALLOC_COSTLY_ORDER)
1772                 return OOM_SKIPPED;
1773
1774         memcg_memory_event(memcg, MEMCG_OOM);
1775
1776         /*
1777          * We are in the middle of the charge context here, so we
1778          * don't want to block when potentially sitting on a callstack
1779          * that holds all kinds of filesystem and mm locks.
1780          *
1781          * cgroup1 allows disabling the OOM killer and waiting for outside
1782          * handling until the charge can succeed; remember the context and put
1783          * the task to sleep at the end of the page fault when all locks are
1784          * released.
1785          *
1786          * On the other hand, in-kernel OOM killer allows for an async victim
1787          * memory reclaim (oom_reaper) and that means that we are not solely
1788          * relying on the oom victim to make a forward progress and we can
1789          * invoke the oom killer here.
1790          *
1791          * Please note that mem_cgroup_out_of_memory might fail to find a
1792          * victim and then we have to bail out from the charge path.
1793          */
1794         if (memcg->oom_kill_disable) {
1795                 if (!current->in_user_fault)
1796                         return OOM_SKIPPED;
1797                 css_get(&memcg->css);
1798                 current->memcg_in_oom = memcg;
1799                 current->memcg_oom_gfp_mask = mask;
1800                 current->memcg_oom_order = order;
1801
1802                 return OOM_ASYNC;
1803         }
1804
1805         mem_cgroup_mark_under_oom(memcg);
1806
1807         locked = mem_cgroup_oom_trylock(memcg);
1808
1809         if (locked)
1810                 mem_cgroup_oom_notify(memcg);
1811
1812         mem_cgroup_unmark_under_oom(memcg);
1813         if (mem_cgroup_out_of_memory(memcg, mask, order))
1814                 ret = OOM_SUCCESS;
1815         else
1816                 ret = OOM_FAILED;
1817
1818         if (locked)
1819                 mem_cgroup_oom_unlock(memcg);
1820
1821         return ret;
1822 }
1823
1824 /**
1825  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1826  * @handle: actually kill/wait or just clean up the OOM state
1827  *
1828  * This has to be called at the end of a page fault if the memcg OOM
1829  * handler was enabled.
1830  *
1831  * Memcg supports userspace OOM handling where failed allocations must
1832  * sleep on a waitqueue until the userspace task resolves the
1833  * situation.  Sleeping directly in the charge context with all kinds
1834  * of locks held is not a good idea, instead we remember an OOM state
1835  * in the task and mem_cgroup_oom_synchronize() has to be called at
1836  * the end of the page fault to complete the OOM handling.
1837  *
1838  * Returns %true if an ongoing memcg OOM situation was detected and
1839  * completed, %false otherwise.
1840  */
1841 bool mem_cgroup_oom_synchronize(bool handle)
1842 {
1843         struct mem_cgroup *memcg = current->memcg_in_oom;
1844         struct oom_wait_info owait;
1845         bool locked;
1846
1847         /* OOM is global, do not handle */
1848         if (!memcg)
1849                 return false;
1850
1851         if (!handle)
1852                 goto cleanup;
1853
1854         owait.memcg = memcg;
1855         owait.wait.flags = 0;
1856         owait.wait.func = memcg_oom_wake_function;
1857         owait.wait.private = current;
1858         INIT_LIST_HEAD(&owait.wait.entry);
1859
1860         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1861         mem_cgroup_mark_under_oom(memcg);
1862
1863         locked = mem_cgroup_oom_trylock(memcg);
1864
1865         if (locked)
1866                 mem_cgroup_oom_notify(memcg);
1867
1868         if (locked && !memcg->oom_kill_disable) {
1869                 mem_cgroup_unmark_under_oom(memcg);
1870                 finish_wait(&memcg_oom_waitq, &owait.wait);
1871                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1872                                          current->memcg_oom_order);
1873         } else {
1874                 schedule();
1875                 mem_cgroup_unmark_under_oom(memcg);
1876                 finish_wait(&memcg_oom_waitq, &owait.wait);
1877         }
1878
1879         if (locked) {
1880                 mem_cgroup_oom_unlock(memcg);
1881                 /*
1882                  * There is no guarantee that an OOM-lock contender
1883                  * sees the wakeups triggered by the OOM kill
1884                  * uncharges.  Wake any sleepers explicitly.
1885                  */
1886                 memcg_oom_recover(memcg);
1887         }
1888 cleanup:
1889         current->memcg_in_oom = NULL;
1890         css_put(&memcg->css);
1891         return true;
1892 }
1893
1894 /**
1895  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1896  * @victim: task to be killed by the OOM killer
1897  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1898  *
1899  * Returns a pointer to a memory cgroup, which has to be cleaned up
1900  * by killing all belonging OOM-killable tasks.
1901  *
1902  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1903  */
1904 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1905                                             struct mem_cgroup *oom_domain)
1906 {
1907         struct mem_cgroup *oom_group = NULL;
1908         struct mem_cgroup *memcg;
1909
1910         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1911                 return NULL;
1912
1913         if (!oom_domain)
1914                 oom_domain = root_mem_cgroup;
1915
1916         rcu_read_lock();
1917
1918         memcg = mem_cgroup_from_task(victim);
1919         if (memcg == root_mem_cgroup)
1920                 goto out;
1921
1922         /*
1923          * If the victim task has been asynchronously moved to a different
1924          * memory cgroup, we might end up killing tasks outside oom_domain.
1925          * In this case it's better to ignore memory.group.oom.
1926          */
1927         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1928                 goto out;
1929
1930         /*
1931          * Traverse the memory cgroup hierarchy from the victim task's
1932          * cgroup up to the OOMing cgroup (or root) to find the
1933          * highest-level memory cgroup with oom.group set.
1934          */
1935         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1936                 if (memcg->oom_group)
1937                         oom_group = memcg;
1938
1939                 if (memcg == oom_domain)
1940                         break;
1941         }
1942
1943         if (oom_group)
1944                 css_get(&oom_group->css);
1945 out:
1946         rcu_read_unlock();
1947
1948         return oom_group;
1949 }
1950
1951 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1952 {
1953         pr_info("Tasks in ");
1954         pr_cont_cgroup_path(memcg->css.cgroup);
1955         pr_cont(" are going to be killed due to memory.oom.group set\n");
1956 }
1957
1958 /**
1959  * lock_page_memcg - lock a page and memcg binding
1960  * @page: the page
1961  *
1962  * This function protects unlocked LRU pages from being moved to
1963  * another cgroup.
1964  *
1965  * It ensures lifetime of the locked memcg. Caller is responsible
1966  * for the lifetime of the page.
1967  */
1968 void lock_page_memcg(struct page *page)
1969 {
1970         struct page *head = compound_head(page); /* rmap on tail pages */
1971         struct mem_cgroup *memcg;
1972         unsigned long flags;
1973
1974         /*
1975          * The RCU lock is held throughout the transaction.  The fast
1976          * path can get away without acquiring the memcg->move_lock
1977          * because page moving starts with an RCU grace period.
1978          */
1979         rcu_read_lock();
1980
1981         if (mem_cgroup_disabled())
1982                 return;
1983 again:
1984         memcg = page_memcg(head);
1985         if (unlikely(!memcg))
1986                 return;
1987
1988 #ifdef CONFIG_PROVE_LOCKING
1989         local_irq_save(flags);
1990         might_lock(&memcg->move_lock);
1991         local_irq_restore(flags);
1992 #endif
1993
1994         if (atomic_read(&memcg->moving_account) <= 0)
1995                 return;
1996
1997         spin_lock_irqsave(&memcg->move_lock, flags);
1998         if (memcg != page_memcg(head)) {
1999                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2000                 goto again;
2001         }
2002
2003         /*
2004          * When charge migration first begins, we can have multiple
2005          * critical sections holding the fast-path RCU lock and one
2006          * holding the slowpath move_lock. Track the task who has the
2007          * move_lock for unlock_page_memcg().
2008          */
2009         memcg->move_lock_task = current;
2010         memcg->move_lock_flags = flags;
2011 }
2012 EXPORT_SYMBOL(lock_page_memcg);
2013
2014 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2015 {
2016         if (memcg && memcg->move_lock_task == current) {
2017                 unsigned long flags = memcg->move_lock_flags;
2018
2019                 memcg->move_lock_task = NULL;
2020                 memcg->move_lock_flags = 0;
2021
2022                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2023         }
2024
2025         rcu_read_unlock();
2026 }
2027
2028 /**
2029  * unlock_page_memcg - unlock a page and memcg binding
2030  * @page: the page
2031  */
2032 void unlock_page_memcg(struct page *page)
2033 {
2034         struct page *head = compound_head(page);
2035
2036         __unlock_page_memcg(page_memcg(head));
2037 }
2038 EXPORT_SYMBOL(unlock_page_memcg);
2039
2040 struct obj_stock {
2041 #ifdef CONFIG_MEMCG_KMEM
2042         struct obj_cgroup *cached_objcg;
2043         struct pglist_data *cached_pgdat;
2044         unsigned int nr_bytes;
2045         int nr_slab_reclaimable_b;
2046         int nr_slab_unreclaimable_b;
2047 #else
2048         int dummy[0];
2049 #endif
2050 };
2051
2052 struct memcg_stock_pcp {
2053         struct mem_cgroup *cached; /* this never be root cgroup */
2054         unsigned int nr_pages;
2055         struct obj_stock task_obj;
2056         struct obj_stock irq_obj;
2057
2058         struct work_struct work;
2059         unsigned long flags;
2060 #define FLUSHING_CACHED_CHARGE  0
2061 };
2062 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063 static DEFINE_MUTEX(percpu_charge_mutex);
2064
2065 #ifdef CONFIG_MEMCG_KMEM
2066 static void drain_obj_stock(struct obj_stock *stock);
2067 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2068                                      struct mem_cgroup *root_memcg);
2069
2070 #else
2071 static inline void drain_obj_stock(struct obj_stock *stock)
2072 {
2073 }
2074 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2075                                      struct mem_cgroup *root_memcg)
2076 {
2077         return false;
2078 }
2079 #endif
2080
2081 /*
2082  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2083  * sequence used in this case to access content from object stock is slow.
2084  * To optimize for user context access, there are now two object stocks for
2085  * task context and interrupt context access respectively.
2086  *
2087  * The task context object stock can be accessed by disabling preemption only
2088  * which is cheap in non-preempt kernel. The interrupt context object stock
2089  * can only be accessed after disabling interrupt. User context code can
2090  * access interrupt object stock, but not vice versa.
2091  */
2092 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2093 {
2094         struct memcg_stock_pcp *stock;
2095
2096         if (likely(in_task())) {
2097                 *pflags = 0UL;
2098                 preempt_disable();
2099                 stock = this_cpu_ptr(&memcg_stock);
2100                 return &stock->task_obj;
2101         }
2102
2103         local_irq_save(*pflags);
2104         stock = this_cpu_ptr(&memcg_stock);
2105         return &stock->irq_obj;
2106 }
2107
2108 static inline void put_obj_stock(unsigned long flags)
2109 {
2110         if (likely(in_task()))
2111                 preempt_enable();
2112         else
2113                 local_irq_restore(flags);
2114 }
2115
2116 /**
2117  * consume_stock: Try to consume stocked charge on this cpu.
2118  * @memcg: memcg to consume from.
2119  * @nr_pages: how many pages to charge.
2120  *
2121  * The charges will only happen if @memcg matches the current cpu's memcg
2122  * stock, and at least @nr_pages are available in that stock.  Failure to
2123  * service an allocation will refill the stock.
2124  *
2125  * returns true if successful, false otherwise.
2126  */
2127 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2128 {
2129         struct memcg_stock_pcp *stock;
2130         unsigned long flags;
2131         bool ret = false;
2132
2133         if (nr_pages > MEMCG_CHARGE_BATCH)
2134                 return ret;
2135
2136         local_irq_save(flags);
2137
2138         stock = this_cpu_ptr(&memcg_stock);
2139         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2140                 stock->nr_pages -= nr_pages;
2141                 ret = true;
2142         }
2143
2144         local_irq_restore(flags);
2145
2146         return ret;
2147 }
2148
2149 /*
2150  * Returns stocks cached in percpu and reset cached information.
2151  */
2152 static void drain_stock(struct memcg_stock_pcp *stock)
2153 {
2154         struct mem_cgroup *old = stock->cached;
2155
2156         if (!old)
2157                 return;
2158
2159         if (stock->nr_pages) {
2160                 page_counter_uncharge(&old->memory, stock->nr_pages);
2161                 if (do_memsw_account())
2162                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2163                 stock->nr_pages = 0;
2164         }
2165
2166         css_put(&old->css);
2167         stock->cached = NULL;
2168 }
2169
2170 static void drain_local_stock(struct work_struct *dummy)
2171 {
2172         struct memcg_stock_pcp *stock;
2173         unsigned long flags;
2174
2175         /*
2176          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2177          * drain_stock races is that we always operate on local CPU stock
2178          * here with IRQ disabled
2179          */
2180         local_irq_save(flags);
2181
2182         stock = this_cpu_ptr(&memcg_stock);
2183         drain_obj_stock(&stock->irq_obj);
2184         if (in_task())
2185                 drain_obj_stock(&stock->task_obj);
2186         drain_stock(stock);
2187         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2188
2189         local_irq_restore(flags);
2190 }
2191
2192 /*
2193  * Cache charges(val) to local per_cpu area.
2194  * This will be consumed by consume_stock() function, later.
2195  */
2196 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2197 {
2198         struct memcg_stock_pcp *stock;
2199         unsigned long flags;
2200
2201         local_irq_save(flags);
2202
2203         stock = this_cpu_ptr(&memcg_stock);
2204         if (stock->cached != memcg) { /* reset if necessary */
2205                 drain_stock(stock);
2206                 css_get(&memcg->css);
2207                 stock->cached = memcg;
2208         }
2209         stock->nr_pages += nr_pages;
2210
2211         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2212                 drain_stock(stock);
2213
2214         local_irq_restore(flags);
2215 }
2216
2217 /*
2218  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2219  * of the hierarchy under it.
2220  */
2221 static void drain_all_stock(struct mem_cgroup *root_memcg)
2222 {
2223         int cpu, curcpu;
2224
2225         /* If someone's already draining, avoid adding running more workers. */
2226         if (!mutex_trylock(&percpu_charge_mutex))
2227                 return;
2228         /*
2229          * Notify other cpus that system-wide "drain" is running
2230          * We do not care about races with the cpu hotplug because cpu down
2231          * as well as workers from this path always operate on the local
2232          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2233          */
2234         curcpu = get_cpu();
2235         for_each_online_cpu(cpu) {
2236                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2237                 struct mem_cgroup *memcg;
2238                 bool flush = false;
2239
2240                 rcu_read_lock();
2241                 memcg = stock->cached;
2242                 if (memcg && stock->nr_pages &&
2243                     mem_cgroup_is_descendant(memcg, root_memcg))
2244                         flush = true;
2245                 else if (obj_stock_flush_required(stock, root_memcg))
2246                         flush = true;
2247                 rcu_read_unlock();
2248
2249                 if (flush &&
2250                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2251                         if (cpu == curcpu)
2252                                 drain_local_stock(&stock->work);
2253                         else
2254                                 schedule_work_on(cpu, &stock->work);
2255                 }
2256         }
2257         put_cpu();
2258         mutex_unlock(&percpu_charge_mutex);
2259 }
2260
2261 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2262 {
2263         struct memcg_stock_pcp *stock;
2264
2265         stock = &per_cpu(memcg_stock, cpu);
2266         drain_stock(stock);
2267
2268         return 0;
2269 }
2270
2271 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2272                                   unsigned int nr_pages,
2273                                   gfp_t gfp_mask)
2274 {
2275         unsigned long nr_reclaimed = 0;
2276
2277         do {
2278                 unsigned long pflags;
2279
2280                 if (page_counter_read(&memcg->memory) <=
2281                     READ_ONCE(memcg->memory.high))
2282                         continue;
2283
2284                 memcg_memory_event(memcg, MEMCG_HIGH);
2285
2286                 psi_memstall_enter(&pflags);
2287                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2288                                                              gfp_mask, true);
2289                 psi_memstall_leave(&pflags);
2290         } while ((memcg = parent_mem_cgroup(memcg)) &&
2291                  !mem_cgroup_is_root(memcg));
2292
2293         return nr_reclaimed;
2294 }
2295
2296 static void high_work_func(struct work_struct *work)
2297 {
2298         struct mem_cgroup *memcg;
2299
2300         memcg = container_of(work, struct mem_cgroup, high_work);
2301         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2302 }
2303
2304 /*
2305  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2306  * enough to still cause a significant slowdown in most cases, while still
2307  * allowing diagnostics and tracing to proceed without becoming stuck.
2308  */
2309 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2310
2311 /*
2312  * When calculating the delay, we use these either side of the exponentiation to
2313  * maintain precision and scale to a reasonable number of jiffies (see the table
2314  * below.
2315  *
2316  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2317  *   overage ratio to a delay.
2318  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2319  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2320  *   to produce a reasonable delay curve.
2321  *
2322  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2323  * reasonable delay curve compared to precision-adjusted overage, not
2324  * penalising heavily at first, but still making sure that growth beyond the
2325  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2326  * example, with a high of 100 megabytes:
2327  *
2328  *  +-------+------------------------+
2329  *  | usage | time to allocate in ms |
2330  *  +-------+------------------------+
2331  *  | 100M  |                      0 |
2332  *  | 101M  |                      6 |
2333  *  | 102M  |                     25 |
2334  *  | 103M  |                     57 |
2335  *  | 104M  |                    102 |
2336  *  | 105M  |                    159 |
2337  *  | 106M  |                    230 |
2338  *  | 107M  |                    313 |
2339  *  | 108M  |                    409 |
2340  *  | 109M  |                    518 |
2341  *  | 110M  |                    639 |
2342  *  | 111M  |                    774 |
2343  *  | 112M  |                    921 |
2344  *  | 113M  |                   1081 |
2345  *  | 114M  |                   1254 |
2346  *  | 115M  |                   1439 |
2347  *  | 116M  |                   1638 |
2348  *  | 117M  |                   1849 |
2349  *  | 118M  |                   2000 |
2350  *  | 119M  |                   2000 |
2351  *  | 120M  |                   2000 |
2352  *  +-------+------------------------+
2353  */
2354  #define MEMCG_DELAY_PRECISION_SHIFT 20
2355  #define MEMCG_DELAY_SCALING_SHIFT 14
2356
2357 static u64 calculate_overage(unsigned long usage, unsigned long high)
2358 {
2359         u64 overage;
2360
2361         if (usage <= high)
2362                 return 0;
2363
2364         /*
2365          * Prevent division by 0 in overage calculation by acting as if
2366          * it was a threshold of 1 page
2367          */
2368         high = max(high, 1UL);
2369
2370         overage = usage - high;
2371         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2372         return div64_u64(overage, high);
2373 }
2374
2375 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2376 {
2377         u64 overage, max_overage = 0;
2378
2379         do {
2380                 overage = calculate_overage(page_counter_read(&memcg->memory),
2381                                             READ_ONCE(memcg->memory.high));
2382                 max_overage = max(overage, max_overage);
2383         } while ((memcg = parent_mem_cgroup(memcg)) &&
2384                  !mem_cgroup_is_root(memcg));
2385
2386         return max_overage;
2387 }
2388
2389 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2390 {
2391         u64 overage, max_overage = 0;
2392
2393         do {
2394                 overage = calculate_overage(page_counter_read(&memcg->swap),
2395                                             READ_ONCE(memcg->swap.high));
2396                 if (overage)
2397                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2398                 max_overage = max(overage, max_overage);
2399         } while ((memcg = parent_mem_cgroup(memcg)) &&
2400                  !mem_cgroup_is_root(memcg));
2401
2402         return max_overage;
2403 }
2404
2405 /*
2406  * Get the number of jiffies that we should penalise a mischievous cgroup which
2407  * is exceeding its memory.high by checking both it and its ancestors.
2408  */
2409 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2410                                           unsigned int nr_pages,
2411                                           u64 max_overage)
2412 {
2413         unsigned long penalty_jiffies;
2414
2415         if (!max_overage)
2416                 return 0;
2417
2418         /*
2419          * We use overage compared to memory.high to calculate the number of
2420          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2421          * fairly lenient on small overages, and increasingly harsh when the
2422          * memcg in question makes it clear that it has no intention of stopping
2423          * its crazy behaviour, so we exponentially increase the delay based on
2424          * overage amount.
2425          */
2426         penalty_jiffies = max_overage * max_overage * HZ;
2427         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2428         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2429
2430         /*
2431          * Factor in the task's own contribution to the overage, such that four
2432          * N-sized allocations are throttled approximately the same as one
2433          * 4N-sized allocation.
2434          *
2435          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2436          * larger the current charge patch is than that.
2437          */
2438         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2439 }
2440
2441 /*
2442  * Scheduled by try_charge() to be executed from the userland return path
2443  * and reclaims memory over the high limit.
2444  */
2445 void mem_cgroup_handle_over_high(void)
2446 {
2447         unsigned long penalty_jiffies;
2448         unsigned long pflags;
2449         unsigned long nr_reclaimed;
2450         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2451         int nr_retries = MAX_RECLAIM_RETRIES;
2452         struct mem_cgroup *memcg;
2453         bool in_retry = false;
2454
2455         if (likely(!nr_pages))
2456                 return;
2457
2458         memcg = get_mem_cgroup_from_mm(current->mm);
2459         current->memcg_nr_pages_over_high = 0;
2460
2461 retry_reclaim:
2462         /*
2463          * The allocating task should reclaim at least the batch size, but for
2464          * subsequent retries we only want to do what's necessary to prevent oom
2465          * or breaching resource isolation.
2466          *
2467          * This is distinct from memory.max or page allocator behaviour because
2468          * memory.high is currently batched, whereas memory.max and the page
2469          * allocator run every time an allocation is made.
2470          */
2471         nr_reclaimed = reclaim_high(memcg,
2472                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2473                                     GFP_KERNEL);
2474
2475         /*
2476          * memory.high is breached and reclaim is unable to keep up. Throttle
2477          * allocators proactively to slow down excessive growth.
2478          */
2479         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2480                                                mem_find_max_overage(memcg));
2481
2482         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2483                                                 swap_find_max_overage(memcg));
2484
2485         /*
2486          * Clamp the max delay per usermode return so as to still keep the
2487          * application moving forwards and also permit diagnostics, albeit
2488          * extremely slowly.
2489          */
2490         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2491
2492         /*
2493          * Don't sleep if the amount of jiffies this memcg owes us is so low
2494          * that it's not even worth doing, in an attempt to be nice to those who
2495          * go only a small amount over their memory.high value and maybe haven't
2496          * been aggressively reclaimed enough yet.
2497          */
2498         if (penalty_jiffies <= HZ / 100)
2499                 goto out;
2500
2501         /*
2502          * If reclaim is making forward progress but we're still over
2503          * memory.high, we want to encourage that rather than doing allocator
2504          * throttling.
2505          */
2506         if (nr_reclaimed || nr_retries--) {
2507                 in_retry = true;
2508                 goto retry_reclaim;
2509         }
2510
2511         /*
2512          * If we exit early, we're guaranteed to die (since
2513          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2514          * need to account for any ill-begotten jiffies to pay them off later.
2515          */
2516         psi_memstall_enter(&pflags);
2517         schedule_timeout_killable(penalty_jiffies);
2518         psi_memstall_leave(&pflags);
2519
2520 out:
2521         css_put(&memcg->css);
2522 }
2523
2524 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2525                         unsigned int nr_pages)
2526 {
2527         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2528         int nr_retries = MAX_RECLAIM_RETRIES;
2529         struct mem_cgroup *mem_over_limit;
2530         struct page_counter *counter;
2531         enum oom_status oom_status;
2532         unsigned long nr_reclaimed;
2533         bool may_swap = true;
2534         bool drained = false;
2535         unsigned long pflags;
2536
2537 retry:
2538         if (consume_stock(memcg, nr_pages))
2539                 return 0;
2540
2541         if (!do_memsw_account() ||
2542             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2543                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2544                         goto done_restock;
2545                 if (do_memsw_account())
2546                         page_counter_uncharge(&memcg->memsw, batch);
2547                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2548         } else {
2549                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2550                 may_swap = false;
2551         }
2552
2553         if (batch > nr_pages) {
2554                 batch = nr_pages;
2555                 goto retry;
2556         }
2557
2558         /*
2559          * Memcg doesn't have a dedicated reserve for atomic
2560          * allocations. But like the global atomic pool, we need to
2561          * put the burden of reclaim on regular allocation requests
2562          * and let these go through as privileged allocations.
2563          */
2564         if (gfp_mask & __GFP_ATOMIC)
2565                 goto force;
2566
2567         /*
2568          * Unlike in global OOM situations, memcg is not in a physical
2569          * memory shortage.  Allow dying and OOM-killed tasks to
2570          * bypass the last charges so that they can exit quickly and
2571          * free their memory.
2572          */
2573         if (unlikely(should_force_charge()))
2574                 goto force;
2575
2576         /*
2577          * Prevent unbounded recursion when reclaim operations need to
2578          * allocate memory. This might exceed the limits temporarily,
2579          * but we prefer facilitating memory reclaim and getting back
2580          * under the limit over triggering OOM kills in these cases.
2581          */
2582         if (unlikely(current->flags & PF_MEMALLOC))
2583                 goto force;
2584
2585         if (unlikely(task_in_memcg_oom(current)))
2586                 goto nomem;
2587
2588         if (!gfpflags_allow_blocking(gfp_mask))
2589                 goto nomem;
2590
2591         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2592
2593         psi_memstall_enter(&pflags);
2594         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2595                                                     gfp_mask, may_swap);
2596         psi_memstall_leave(&pflags);
2597
2598         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2599                 goto retry;
2600
2601         if (!drained) {
2602                 drain_all_stock(mem_over_limit);
2603                 drained = true;
2604                 goto retry;
2605         }
2606
2607         if (gfp_mask & __GFP_NORETRY)
2608                 goto nomem;
2609         /*
2610          * Even though the limit is exceeded at this point, reclaim
2611          * may have been able to free some pages.  Retry the charge
2612          * before killing the task.
2613          *
2614          * Only for regular pages, though: huge pages are rather
2615          * unlikely to succeed so close to the limit, and we fall back
2616          * to regular pages anyway in case of failure.
2617          */
2618         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2619                 goto retry;
2620         /*
2621          * At task move, charge accounts can be doubly counted. So, it's
2622          * better to wait until the end of task_move if something is going on.
2623          */
2624         if (mem_cgroup_wait_acct_move(mem_over_limit))
2625                 goto retry;
2626
2627         if (nr_retries--)
2628                 goto retry;
2629
2630         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2631                 goto nomem;
2632
2633         if (fatal_signal_pending(current))
2634                 goto force;
2635
2636         /*
2637          * keep retrying as long as the memcg oom killer is able to make
2638          * a forward progress or bypass the charge if the oom killer
2639          * couldn't make any progress.
2640          */
2641         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2642                        get_order(nr_pages * PAGE_SIZE));
2643         switch (oom_status) {
2644         case OOM_SUCCESS:
2645                 nr_retries = MAX_RECLAIM_RETRIES;
2646                 goto retry;
2647         case OOM_FAILED:
2648                 goto force;
2649         default:
2650                 goto nomem;
2651         }
2652 nomem:
2653         if (!(gfp_mask & __GFP_NOFAIL))
2654                 return -ENOMEM;
2655 force:
2656         /*
2657          * The allocation either can't fail or will lead to more memory
2658          * being freed very soon.  Allow memory usage go over the limit
2659          * temporarily by force charging it.
2660          */
2661         page_counter_charge(&memcg->memory, nr_pages);
2662         if (do_memsw_account())
2663                 page_counter_charge(&memcg->memsw, nr_pages);
2664
2665         return 0;
2666
2667 done_restock:
2668         if (batch > nr_pages)
2669                 refill_stock(memcg, batch - nr_pages);
2670
2671         /*
2672          * If the hierarchy is above the normal consumption range, schedule
2673          * reclaim on returning to userland.  We can perform reclaim here
2674          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2675          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2676          * not recorded as it most likely matches current's and won't
2677          * change in the meantime.  As high limit is checked again before
2678          * reclaim, the cost of mismatch is negligible.
2679          */
2680         do {
2681                 bool mem_high, swap_high;
2682
2683                 mem_high = page_counter_read(&memcg->memory) >
2684                         READ_ONCE(memcg->memory.high);
2685                 swap_high = page_counter_read(&memcg->swap) >
2686                         READ_ONCE(memcg->swap.high);
2687
2688                 /* Don't bother a random interrupted task */
2689                 if (in_interrupt()) {
2690                         if (mem_high) {
2691                                 schedule_work(&memcg->high_work);
2692                                 break;
2693                         }
2694                         continue;
2695                 }
2696
2697                 if (mem_high || swap_high) {
2698                         /*
2699                          * The allocating tasks in this cgroup will need to do
2700                          * reclaim or be throttled to prevent further growth
2701                          * of the memory or swap footprints.
2702                          *
2703                          * Target some best-effort fairness between the tasks,
2704                          * and distribute reclaim work and delay penalties
2705                          * based on how much each task is actually allocating.
2706                          */
2707                         current->memcg_nr_pages_over_high += batch;
2708                         set_notify_resume(current);
2709                         break;
2710                 }
2711         } while ((memcg = parent_mem_cgroup(memcg)));
2712
2713         return 0;
2714 }
2715
2716 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2717                              unsigned int nr_pages)
2718 {
2719         if (mem_cgroup_is_root(memcg))
2720                 return 0;
2721
2722         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2723 }
2724
2725 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2726 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2727 {
2728         if (mem_cgroup_is_root(memcg))
2729                 return;
2730
2731         page_counter_uncharge(&memcg->memory, nr_pages);
2732         if (do_memsw_account())
2733                 page_counter_uncharge(&memcg->memsw, nr_pages);
2734 }
2735 #endif
2736
2737 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2738 {
2739         VM_BUG_ON_PAGE(page_memcg(page), page);
2740         /*
2741          * Any of the following ensures page's memcg stability:
2742          *
2743          * - the page lock
2744          * - LRU isolation
2745          * - lock_page_memcg()
2746          * - exclusive reference
2747          */
2748         page->memcg_data = (unsigned long)memcg;
2749 }
2750
2751 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2752 {
2753         struct mem_cgroup *memcg;
2754
2755         rcu_read_lock();
2756 retry:
2757         memcg = obj_cgroup_memcg(objcg);
2758         if (unlikely(!css_tryget(&memcg->css)))
2759                 goto retry;
2760         rcu_read_unlock();
2761
2762         return memcg;
2763 }
2764
2765 #ifdef CONFIG_MEMCG_KMEM
2766 /*
2767  * The allocated objcg pointers array is not accounted directly.
2768  * Moreover, it should not come from DMA buffer and is not readily
2769  * reclaimable. So those GFP bits should be masked off.
2770  */
2771 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2772
2773 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2774                                  gfp_t gfp, bool new_page)
2775 {
2776         unsigned int objects = objs_per_slab_page(s, page);
2777         unsigned long memcg_data;
2778         void *vec;
2779
2780         gfp &= ~OBJCGS_CLEAR_MASK;
2781         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2782                            page_to_nid(page));
2783         if (!vec)
2784                 return -ENOMEM;
2785
2786         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2787         if (new_page) {
2788                 /*
2789                  * If the slab page is brand new and nobody can yet access
2790                  * it's memcg_data, no synchronization is required and
2791                  * memcg_data can be simply assigned.
2792                  */
2793                 page->memcg_data = memcg_data;
2794         } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2795                 /*
2796                  * If the slab page is already in use, somebody can allocate
2797                  * and assign obj_cgroups in parallel. In this case the existing
2798                  * objcg vector should be reused.
2799                  */
2800                 kfree(vec);
2801                 return 0;
2802         }
2803
2804         kmemleak_not_leak(vec);
2805         return 0;
2806 }
2807
2808 /*
2809  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2810  *
2811  * A passed kernel object can be a slab object or a generic kernel page, so
2812  * different mechanisms for getting the memory cgroup pointer should be used.
2813  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2814  * can not know for sure how the kernel object is implemented.
2815  * mem_cgroup_from_obj() can be safely used in such cases.
2816  *
2817  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2818  * cgroup_mutex, etc.
2819  */
2820 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2821 {
2822         struct page *page;
2823
2824         if (mem_cgroup_disabled())
2825                 return NULL;
2826
2827         page = virt_to_head_page(p);
2828
2829         /*
2830          * Slab objects are accounted individually, not per-page.
2831          * Memcg membership data for each individual object is saved in
2832          * the page->obj_cgroups.
2833          */
2834         if (page_objcgs_check(page)) {
2835                 struct obj_cgroup *objcg;
2836                 unsigned int off;
2837
2838                 off = obj_to_index(page->slab_cache, page, p);
2839                 objcg = page_objcgs(page)[off];
2840                 if (objcg)
2841                         return obj_cgroup_memcg(objcg);
2842
2843                 return NULL;
2844         }
2845
2846         /*
2847          * page_memcg_check() is used here, because page_has_obj_cgroups()
2848          * check above could fail because the object cgroups vector wasn't set
2849          * at that moment, but it can be set concurrently.
2850          * page_memcg_check(page) will guarantee that a proper memory
2851          * cgroup pointer or NULL will be returned.
2852          */
2853         return page_memcg_check(page);
2854 }
2855
2856 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2857 {
2858         struct obj_cgroup *objcg = NULL;
2859         struct mem_cgroup *memcg;
2860
2861         if (memcg_kmem_bypass())
2862                 return NULL;
2863
2864         rcu_read_lock();
2865         if (unlikely(active_memcg()))
2866                 memcg = active_memcg();
2867         else
2868                 memcg = mem_cgroup_from_task(current);
2869
2870         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2871                 objcg = rcu_dereference(memcg->objcg);
2872                 if (objcg && obj_cgroup_tryget(objcg))
2873                         break;
2874                 objcg = NULL;
2875         }
2876         rcu_read_unlock();
2877
2878         return objcg;
2879 }
2880
2881 static int memcg_alloc_cache_id(void)
2882 {
2883         int id, size;
2884         int err;
2885
2886         id = ida_simple_get(&memcg_cache_ida,
2887                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2888         if (id < 0)
2889                 return id;
2890
2891         if (id < memcg_nr_cache_ids)
2892                 return id;
2893
2894         /*
2895          * There's no space for the new id in memcg_caches arrays,
2896          * so we have to grow them.
2897          */
2898         down_write(&memcg_cache_ids_sem);
2899
2900         size = 2 * (id + 1);
2901         if (size < MEMCG_CACHES_MIN_SIZE)
2902                 size = MEMCG_CACHES_MIN_SIZE;
2903         else if (size > MEMCG_CACHES_MAX_SIZE)
2904                 size = MEMCG_CACHES_MAX_SIZE;
2905
2906         err = memcg_update_all_list_lrus(size);
2907         if (!err)
2908                 memcg_nr_cache_ids = size;
2909
2910         up_write(&memcg_cache_ids_sem);
2911
2912         if (err) {
2913                 ida_simple_remove(&memcg_cache_ida, id);
2914                 return err;
2915         }
2916         return id;
2917 }
2918
2919 static void memcg_free_cache_id(int id)
2920 {
2921         ida_simple_remove(&memcg_cache_ida, id);
2922 }
2923
2924 /*
2925  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2926  * @objcg: object cgroup to uncharge
2927  * @nr_pages: number of pages to uncharge
2928  */
2929 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2930                                       unsigned int nr_pages)
2931 {
2932         struct mem_cgroup *memcg;
2933
2934         memcg = get_mem_cgroup_from_objcg(objcg);
2935
2936         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2937                 page_counter_uncharge(&memcg->kmem, nr_pages);
2938         refill_stock(memcg, nr_pages);
2939
2940         css_put(&memcg->css);
2941 }
2942
2943 /*
2944  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2945  * @objcg: object cgroup to charge
2946  * @gfp: reclaim mode
2947  * @nr_pages: number of pages to charge
2948  *
2949  * Returns 0 on success, an error code on failure.
2950  */
2951 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2952                                    unsigned int nr_pages)
2953 {
2954         struct page_counter *counter;
2955         struct mem_cgroup *memcg;
2956         int ret;
2957
2958         memcg = get_mem_cgroup_from_objcg(objcg);
2959
2960         ret = try_charge_memcg(memcg, gfp, nr_pages);
2961         if (ret)
2962                 goto out;
2963
2964         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2965             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2966
2967                 /*
2968                  * Enforce __GFP_NOFAIL allocation because callers are not
2969                  * prepared to see failures and likely do not have any failure
2970                  * handling code.
2971                  */
2972                 if (gfp & __GFP_NOFAIL) {
2973                         page_counter_charge(&memcg->kmem, nr_pages);
2974                         goto out;
2975                 }
2976                 cancel_charge(memcg, nr_pages);
2977                 ret = -ENOMEM;
2978         }
2979 out:
2980         css_put(&memcg->css);
2981
2982         return ret;
2983 }
2984
2985 /**
2986  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2987  * @page: page to charge
2988  * @gfp: reclaim mode
2989  * @order: allocation order
2990  *
2991  * Returns 0 on success, an error code on failure.
2992  */
2993 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2994 {
2995         struct obj_cgroup *objcg;
2996         int ret = 0;
2997
2998         objcg = get_obj_cgroup_from_current();
2999         if (objcg) {
3000                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3001                 if (!ret) {
3002                         page->memcg_data = (unsigned long)objcg |
3003                                 MEMCG_DATA_KMEM;
3004                         return 0;
3005                 }
3006                 obj_cgroup_put(objcg);
3007         }
3008         return ret;
3009 }
3010
3011 /**
3012  * __memcg_kmem_uncharge_page: uncharge a kmem page
3013  * @page: page to uncharge
3014  * @order: allocation order
3015  */
3016 void __memcg_kmem_uncharge_page(struct page *page, int order)
3017 {
3018         struct obj_cgroup *objcg;
3019         unsigned int nr_pages = 1 << order;
3020
3021         if (!PageMemcgKmem(page))
3022                 return;
3023
3024         objcg = __page_objcg(page);
3025         obj_cgroup_uncharge_pages(objcg, nr_pages);
3026         page->memcg_data = 0;
3027         obj_cgroup_put(objcg);
3028 }
3029
3030 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3031                      enum node_stat_item idx, int nr)
3032 {
3033         unsigned long flags;
3034         struct obj_stock *stock = get_obj_stock(&flags);
3035         int *bytes;
3036
3037         /*
3038          * Save vmstat data in stock and skip vmstat array update unless
3039          * accumulating over a page of vmstat data or when pgdat or idx
3040          * changes.
3041          */
3042         if (stock->cached_objcg != objcg) {
3043                 drain_obj_stock(stock);
3044                 obj_cgroup_get(objcg);
3045                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3046                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3047                 stock->cached_objcg = objcg;
3048                 stock->cached_pgdat = pgdat;
3049         } else if (stock->cached_pgdat != pgdat) {
3050                 /* Flush the existing cached vmstat data */
3051                 struct pglist_data *oldpg = stock->cached_pgdat;
3052
3053                 if (stock->nr_slab_reclaimable_b) {
3054                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3055                                           stock->nr_slab_reclaimable_b);
3056                         stock->nr_slab_reclaimable_b = 0;
3057                 }
3058                 if (stock->nr_slab_unreclaimable_b) {
3059                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3060                                           stock->nr_slab_unreclaimable_b);
3061                         stock->nr_slab_unreclaimable_b = 0;
3062                 }
3063                 stock->cached_pgdat = pgdat;
3064         }
3065
3066         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3067                                                : &stock->nr_slab_unreclaimable_b;
3068         /*
3069          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3070          * cached locally at least once before pushing it out.
3071          */
3072         if (!*bytes) {
3073                 *bytes = nr;
3074                 nr = 0;
3075         } else {
3076                 *bytes += nr;
3077                 if (abs(*bytes) > PAGE_SIZE) {
3078                         nr = *bytes;
3079                         *bytes = 0;
3080                 } else {
3081                         nr = 0;
3082                 }
3083         }
3084         if (nr)
3085                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3086
3087         put_obj_stock(flags);
3088 }
3089
3090 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3091 {
3092         unsigned long flags;
3093         struct obj_stock *stock = get_obj_stock(&flags);
3094         bool ret = false;
3095
3096         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3097                 stock->nr_bytes -= nr_bytes;
3098                 ret = true;
3099         }
3100
3101         put_obj_stock(flags);
3102
3103         return ret;
3104 }
3105
3106 static void drain_obj_stock(struct obj_stock *stock)
3107 {
3108         struct obj_cgroup *old = stock->cached_objcg;
3109
3110         if (!old)
3111                 return;
3112
3113         if (stock->nr_bytes) {
3114                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3115                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3116
3117                 if (nr_pages)
3118                         obj_cgroup_uncharge_pages(old, nr_pages);
3119
3120                 /*
3121                  * The leftover is flushed to the centralized per-memcg value.
3122                  * On the next attempt to refill obj stock it will be moved
3123                  * to a per-cpu stock (probably, on an other CPU), see
3124                  * refill_obj_stock().
3125                  *
3126                  * How often it's flushed is a trade-off between the memory
3127                  * limit enforcement accuracy and potential CPU contention,
3128                  * so it might be changed in the future.
3129                  */
3130                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3131                 stock->nr_bytes = 0;
3132         }
3133
3134         /*
3135          * Flush the vmstat data in current stock
3136          */
3137         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3138                 if (stock->nr_slab_reclaimable_b) {
3139                         mod_objcg_mlstate(old, stock->cached_pgdat,
3140                                           NR_SLAB_RECLAIMABLE_B,
3141                                           stock->nr_slab_reclaimable_b);
3142                         stock->nr_slab_reclaimable_b = 0;
3143                 }
3144                 if (stock->nr_slab_unreclaimable_b) {
3145                         mod_objcg_mlstate(old, stock->cached_pgdat,
3146                                           NR_SLAB_UNRECLAIMABLE_B,
3147                                           stock->nr_slab_unreclaimable_b);
3148                         stock->nr_slab_unreclaimable_b = 0;
3149                 }
3150                 stock->cached_pgdat = NULL;
3151         }
3152
3153         obj_cgroup_put(old);
3154         stock->cached_objcg = NULL;
3155 }
3156
3157 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3158                                      struct mem_cgroup *root_memcg)
3159 {
3160         struct mem_cgroup *memcg;
3161
3162         if (in_task() && stock->task_obj.cached_objcg) {
3163                 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3164                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3165                         return true;
3166         }
3167         if (stock->irq_obj.cached_objcg) {
3168                 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3169                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3170                         return true;
3171         }
3172
3173         return false;
3174 }
3175
3176 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3177                              bool allow_uncharge)
3178 {
3179         unsigned long flags;
3180         struct obj_stock *stock = get_obj_stock(&flags);
3181         unsigned int nr_pages = 0;
3182
3183         if (stock->cached_objcg != objcg) { /* reset if necessary */
3184                 drain_obj_stock(stock);
3185                 obj_cgroup_get(objcg);
3186                 stock->cached_objcg = objcg;
3187                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3188                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3189                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3190         }
3191         stock->nr_bytes += nr_bytes;
3192
3193         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3194                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3195                 stock->nr_bytes &= (PAGE_SIZE - 1);
3196         }
3197
3198         put_obj_stock(flags);
3199
3200         if (nr_pages)
3201                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3202 }
3203
3204 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3205 {
3206         unsigned int nr_pages, nr_bytes;
3207         int ret;
3208
3209         if (consume_obj_stock(objcg, size))
3210                 return 0;
3211
3212         /*
3213          * In theory, objcg->nr_charged_bytes can have enough
3214          * pre-charged bytes to satisfy the allocation. However,
3215          * flushing objcg->nr_charged_bytes requires two atomic
3216          * operations, and objcg->nr_charged_bytes can't be big.
3217          * The shared objcg->nr_charged_bytes can also become a
3218          * performance bottleneck if all tasks of the same memcg are
3219          * trying to update it. So it's better to ignore it and try
3220          * grab some new pages. The stock's nr_bytes will be flushed to
3221          * objcg->nr_charged_bytes later on when objcg changes.
3222          *
3223          * The stock's nr_bytes may contain enough pre-charged bytes
3224          * to allow one less page from being charged, but we can't rely
3225          * on the pre-charged bytes not being changed outside of
3226          * consume_obj_stock() or refill_obj_stock(). So ignore those
3227          * pre-charged bytes as well when charging pages. To avoid a
3228          * page uncharge right after a page charge, we set the
3229          * allow_uncharge flag to false when calling refill_obj_stock()
3230          * to temporarily allow the pre-charged bytes to exceed the page
3231          * size limit. The maximum reachable value of the pre-charged
3232          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3233          * race.
3234          */
3235         nr_pages = size >> PAGE_SHIFT;
3236         nr_bytes = size & (PAGE_SIZE - 1);
3237
3238         if (nr_bytes)
3239                 nr_pages += 1;
3240
3241         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3242         if (!ret && nr_bytes)
3243                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3244
3245         return ret;
3246 }
3247
3248 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3249 {
3250         refill_obj_stock(objcg, size, true);
3251 }
3252
3253 #endif /* CONFIG_MEMCG_KMEM */
3254
3255 /*
3256  * Because page_memcg(head) is not set on tails, set it now.
3257  */
3258 void split_page_memcg(struct page *head, unsigned int nr)
3259 {
3260         struct mem_cgroup *memcg = page_memcg(head);
3261         int i;
3262
3263         if (mem_cgroup_disabled() || !memcg)
3264                 return;
3265
3266         for (i = 1; i < nr; i++)
3267                 head[i].memcg_data = head->memcg_data;
3268
3269         if (PageMemcgKmem(head))
3270                 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3271         else
3272                 css_get_many(&memcg->css, nr - 1);
3273 }
3274
3275 #ifdef CONFIG_MEMCG_SWAP
3276 /**
3277  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3278  * @entry: swap entry to be moved
3279  * @from:  mem_cgroup which the entry is moved from
3280  * @to:  mem_cgroup which the entry is moved to
3281  *
3282  * It succeeds only when the swap_cgroup's record for this entry is the same
3283  * as the mem_cgroup's id of @from.
3284  *
3285  * Returns 0 on success, -EINVAL on failure.
3286  *
3287  * The caller must have charged to @to, IOW, called page_counter_charge() about
3288  * both res and memsw, and called css_get().
3289  */
3290 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3291                                 struct mem_cgroup *from, struct mem_cgroup *to)
3292 {
3293         unsigned short old_id, new_id;
3294
3295         old_id = mem_cgroup_id(from);
3296         new_id = mem_cgroup_id(to);
3297
3298         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3299                 mod_memcg_state(from, MEMCG_SWAP, -1);
3300                 mod_memcg_state(to, MEMCG_SWAP, 1);
3301                 return 0;
3302         }
3303         return -EINVAL;
3304 }
3305 #else
3306 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3307                                 struct mem_cgroup *from, struct mem_cgroup *to)
3308 {
3309         return -EINVAL;
3310 }
3311 #endif
3312
3313 static DEFINE_MUTEX(memcg_max_mutex);
3314
3315 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3316                                  unsigned long max, bool memsw)
3317 {
3318         bool enlarge = false;
3319         bool drained = false;
3320         int ret;
3321         bool limits_invariant;
3322         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3323
3324         do {
3325                 if (signal_pending(current)) {
3326                         ret = -EINTR;
3327                         break;
3328                 }
3329
3330                 mutex_lock(&memcg_max_mutex);
3331                 /*
3332                  * Make sure that the new limit (memsw or memory limit) doesn't
3333                  * break our basic invariant rule memory.max <= memsw.max.
3334                  */
3335                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3336                                            max <= memcg->memsw.max;
3337                 if (!limits_invariant) {
3338                         mutex_unlock(&memcg_max_mutex);
3339                         ret = -EINVAL;
3340                         break;
3341                 }
3342                 if (max > counter->max)
3343                         enlarge = true;
3344                 ret = page_counter_set_max(counter, max);
3345                 mutex_unlock(&memcg_max_mutex);
3346
3347                 if (!ret)
3348                         break;
3349
3350                 if (!drained) {
3351                         drain_all_stock(memcg);
3352                         drained = true;
3353                         continue;
3354                 }
3355
3356                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3357                                         GFP_KERNEL, !memsw)) {
3358                         ret = -EBUSY;
3359                         break;
3360                 }
3361         } while (true);
3362
3363         if (!ret && enlarge)
3364                 memcg_oom_recover(memcg);
3365
3366         return ret;
3367 }
3368
3369 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3370                                             gfp_t gfp_mask,
3371                                             unsigned long *total_scanned)
3372 {
3373         unsigned long nr_reclaimed = 0;
3374         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3375         unsigned long reclaimed;
3376         int loop = 0;
3377         struct mem_cgroup_tree_per_node *mctz;
3378         unsigned long excess;
3379         unsigned long nr_scanned;
3380
3381         if (order > 0)
3382                 return 0;
3383
3384         mctz = soft_limit_tree_node(pgdat->node_id);
3385
3386         /*
3387          * Do not even bother to check the largest node if the root
3388          * is empty. Do it lockless to prevent lock bouncing. Races
3389          * are acceptable as soft limit is best effort anyway.
3390          */
3391         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3392                 return 0;
3393
3394         /*
3395          * This loop can run a while, specially if mem_cgroup's continuously
3396          * keep exceeding their soft limit and putting the system under
3397          * pressure
3398          */
3399         do {
3400                 if (next_mz)
3401                         mz = next_mz;
3402                 else
3403                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3404                 if (!mz)
3405                         break;
3406
3407                 nr_scanned = 0;
3408                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3409                                                     gfp_mask, &nr_scanned);
3410                 nr_reclaimed += reclaimed;
3411                 *total_scanned += nr_scanned;
3412                 spin_lock_irq(&mctz->lock);
3413                 __mem_cgroup_remove_exceeded(mz, mctz);
3414
3415                 /*
3416                  * If we failed to reclaim anything from this memory cgroup
3417                  * it is time to move on to the next cgroup
3418                  */
3419                 next_mz = NULL;
3420                 if (!reclaimed)
3421                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3422
3423                 excess = soft_limit_excess(mz->memcg);
3424                 /*
3425                  * One school of thought says that we should not add
3426                  * back the node to the tree if reclaim returns 0.
3427                  * But our reclaim could return 0, simply because due
3428                  * to priority we are exposing a smaller subset of
3429                  * memory to reclaim from. Consider this as a longer
3430                  * term TODO.
3431                  */
3432                 /* If excess == 0, no tree ops */
3433                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3434                 spin_unlock_irq(&mctz->lock);
3435                 css_put(&mz->memcg->css);
3436                 loop++;
3437                 /*
3438                  * Could not reclaim anything and there are no more
3439                  * mem cgroups to try or we seem to be looping without
3440                  * reclaiming anything.
3441                  */
3442                 if (!nr_reclaimed &&
3443                         (next_mz == NULL ||
3444                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3445                         break;
3446         } while (!nr_reclaimed);
3447         if (next_mz)
3448                 css_put(&next_mz->memcg->css);
3449         return nr_reclaimed;
3450 }
3451
3452 /*
3453  * Reclaims as many pages from the given memcg as possible.
3454  *
3455  * Caller is responsible for holding css reference for memcg.
3456  */
3457 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3458 {
3459         int nr_retries = MAX_RECLAIM_RETRIES;
3460
3461         /* we call try-to-free pages for make this cgroup empty */
3462         lru_add_drain_all();
3463
3464         drain_all_stock(memcg);
3465
3466         /* try to free all pages in this cgroup */
3467         while (nr_retries && page_counter_read(&memcg->memory)) {
3468                 int progress;
3469
3470                 if (signal_pending(current))
3471                         return -EINTR;
3472
3473                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3474                                                         GFP_KERNEL, true);
3475                 if (!progress) {
3476                         nr_retries--;
3477                         /* maybe some writeback is necessary */
3478                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3479                 }
3480
3481         }
3482
3483         return 0;
3484 }
3485
3486 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3487                                             char *buf, size_t nbytes,
3488                                             loff_t off)
3489 {
3490         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3491
3492         if (mem_cgroup_is_root(memcg))
3493                 return -EINVAL;
3494         return mem_cgroup_force_empty(memcg) ?: nbytes;
3495 }
3496
3497 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3498                                      struct cftype *cft)
3499 {
3500         return 1;
3501 }
3502
3503 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3504                                       struct cftype *cft, u64 val)
3505 {
3506         if (val == 1)
3507                 return 0;
3508
3509         pr_warn_once("Non-hierarchical mode is deprecated. "
3510                      "Please report your usecase to linux-mm@kvack.org if you "
3511                      "depend on this functionality.\n");
3512
3513         return -EINVAL;
3514 }
3515
3516 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3517 {
3518         unsigned long val;
3519
3520         if (mem_cgroup_is_root(memcg)) {
3521                 /* mem_cgroup_threshold() calls here from irqsafe context */
3522                 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3523                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3524                         memcg_page_state(memcg, NR_ANON_MAPPED);
3525                 if (swap)
3526                         val += memcg_page_state(memcg, MEMCG_SWAP);
3527         } else {
3528                 if (!swap)
3529                         val = page_counter_read(&memcg->memory);
3530                 else
3531                         val = page_counter_read(&memcg->memsw);
3532         }
3533         return val;
3534 }
3535
3536 enum {
3537         RES_USAGE,
3538         RES_LIMIT,
3539         RES_MAX_USAGE,
3540         RES_FAILCNT,
3541         RES_SOFT_LIMIT,
3542 };
3543
3544 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3545                                struct cftype *cft)
3546 {
3547         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3548         struct page_counter *counter;
3549
3550         switch (MEMFILE_TYPE(cft->private)) {
3551         case _MEM:
3552                 counter = &memcg->memory;
3553                 break;
3554         case _MEMSWAP:
3555                 counter = &memcg->memsw;
3556                 break;
3557         case _KMEM:
3558                 counter = &memcg->kmem;
3559                 break;
3560         case _TCP:
3561                 counter = &memcg->tcpmem;
3562                 break;
3563         default:
3564                 BUG();
3565         }
3566
3567         switch (MEMFILE_ATTR(cft->private)) {
3568         case RES_USAGE:
3569                 if (counter == &memcg->memory)
3570                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3571                 if (counter == &memcg->memsw)
3572                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3573                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3574         case RES_LIMIT:
3575                 return (u64)counter->max * PAGE_SIZE;
3576         case RES_MAX_USAGE:
3577                 return (u64)counter->watermark * PAGE_SIZE;
3578         case RES_FAILCNT:
3579                 return counter->failcnt;
3580         case RES_SOFT_LIMIT:
3581                 return (u64)memcg->soft_limit * PAGE_SIZE;
3582         default:
3583                 BUG();
3584         }
3585 }
3586
3587 #ifdef CONFIG_MEMCG_KMEM
3588 static int memcg_online_kmem(struct mem_cgroup *memcg)
3589 {
3590         struct obj_cgroup *objcg;
3591         int memcg_id;
3592
3593         if (cgroup_memory_nokmem)
3594                 return 0;
3595
3596         BUG_ON(memcg->kmemcg_id >= 0);
3597         BUG_ON(memcg->kmem_state);
3598
3599         memcg_id = memcg_alloc_cache_id();
3600         if (memcg_id < 0)
3601                 return memcg_id;
3602
3603         objcg = obj_cgroup_alloc();
3604         if (!objcg) {
3605                 memcg_free_cache_id(memcg_id);
3606                 return -ENOMEM;
3607         }
3608         objcg->memcg = memcg;
3609         rcu_assign_pointer(memcg->objcg, objcg);
3610
3611         static_branch_enable(&memcg_kmem_enabled_key);
3612
3613         memcg->kmemcg_id = memcg_id;
3614         memcg->kmem_state = KMEM_ONLINE;
3615
3616         return 0;
3617 }
3618
3619 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3620 {
3621         struct cgroup_subsys_state *css;
3622         struct mem_cgroup *parent, *child;
3623         int kmemcg_id;
3624
3625         if (memcg->kmem_state != KMEM_ONLINE)
3626                 return;
3627
3628         memcg->kmem_state = KMEM_ALLOCATED;
3629
3630         parent = parent_mem_cgroup(memcg);
3631         if (!parent)
3632                 parent = root_mem_cgroup;
3633
3634         memcg_reparent_objcgs(memcg, parent);
3635
3636         kmemcg_id = memcg->kmemcg_id;
3637         BUG_ON(kmemcg_id < 0);
3638
3639         /*
3640          * Change kmemcg_id of this cgroup and all its descendants to the
3641          * parent's id, and then move all entries from this cgroup's list_lrus
3642          * to ones of the parent. After we have finished, all list_lrus
3643          * corresponding to this cgroup are guaranteed to remain empty. The
3644          * ordering is imposed by list_lru_node->lock taken by
3645          * memcg_drain_all_list_lrus().
3646          */
3647         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3648         css_for_each_descendant_pre(css, &memcg->css) {
3649                 child = mem_cgroup_from_css(css);
3650                 BUG_ON(child->kmemcg_id != kmemcg_id);
3651                 child->kmemcg_id = parent->kmemcg_id;
3652         }
3653         rcu_read_unlock();
3654
3655         memcg_drain_all_list_lrus(kmemcg_id, parent);
3656
3657         memcg_free_cache_id(kmemcg_id);
3658 }
3659
3660 static void memcg_free_kmem(struct mem_cgroup *memcg)
3661 {
3662         /* css_alloc() failed, offlining didn't happen */
3663         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3664                 memcg_offline_kmem(memcg);
3665 }
3666 #else
3667 static int memcg_online_kmem(struct mem_cgroup *memcg)
3668 {
3669         return 0;
3670 }
3671 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3672 {
3673 }
3674 static void memcg_free_kmem(struct mem_cgroup *memcg)
3675 {
3676 }
3677 #endif /* CONFIG_MEMCG_KMEM */
3678
3679 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3680                                  unsigned long max)
3681 {
3682         int ret;
3683
3684         mutex_lock(&memcg_max_mutex);
3685         ret = page_counter_set_max(&memcg->kmem, max);
3686         mutex_unlock(&memcg_max_mutex);
3687         return ret;
3688 }
3689
3690 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3691 {
3692         int ret;
3693
3694         mutex_lock(&memcg_max_mutex);
3695
3696         ret = page_counter_set_max(&memcg->tcpmem, max);
3697         if (ret)
3698                 goto out;
3699
3700         if (!memcg->tcpmem_active) {
3701                 /*
3702                  * The active flag needs to be written after the static_key
3703                  * update. This is what guarantees that the socket activation
3704                  * function is the last one to run. See mem_cgroup_sk_alloc()
3705                  * for details, and note that we don't mark any socket as
3706                  * belonging to this memcg until that flag is up.
3707                  *
3708                  * We need to do this, because static_keys will span multiple
3709                  * sites, but we can't control their order. If we mark a socket
3710                  * as accounted, but the accounting functions are not patched in
3711                  * yet, we'll lose accounting.
3712                  *
3713                  * We never race with the readers in mem_cgroup_sk_alloc(),
3714                  * because when this value change, the code to process it is not
3715                  * patched in yet.
3716                  */
3717                 static_branch_inc(&memcg_sockets_enabled_key);
3718                 memcg->tcpmem_active = true;
3719         }
3720 out:
3721         mutex_unlock(&memcg_max_mutex);
3722         return ret;
3723 }
3724
3725 /*
3726  * The user of this function is...
3727  * RES_LIMIT.
3728  */
3729 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3730                                 char *buf, size_t nbytes, loff_t off)
3731 {
3732         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3733         unsigned long nr_pages;
3734         int ret;
3735
3736         buf = strstrip(buf);
3737         ret = page_counter_memparse(buf, "-1", &nr_pages);
3738         if (ret)
3739                 return ret;
3740
3741         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3742         case RES_LIMIT:
3743                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3744                         ret = -EINVAL;
3745                         break;
3746                 }
3747                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3748                 case _MEM:
3749                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3750                         break;
3751                 case _MEMSWAP:
3752                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3753                         break;
3754                 case _KMEM:
3755                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3756                                      "Please report your usecase to linux-mm@kvack.org if you "
3757                                      "depend on this functionality.\n");
3758                         ret = memcg_update_kmem_max(memcg, nr_pages);
3759                         break;
3760                 case _TCP:
3761                         ret = memcg_update_tcp_max(memcg, nr_pages);
3762                         break;
3763                 }
3764                 break;
3765         case RES_SOFT_LIMIT:
3766                 memcg->soft_limit = nr_pages;
3767                 ret = 0;
3768                 break;
3769         }
3770         return ret ?: nbytes;
3771 }
3772
3773 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3774                                 size_t nbytes, loff_t off)
3775 {
3776         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777         struct page_counter *counter;
3778
3779         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3780         case _MEM:
3781                 counter = &memcg->memory;
3782                 break;
3783         case _MEMSWAP:
3784                 counter = &memcg->memsw;
3785                 break;
3786         case _KMEM:
3787                 counter = &memcg->kmem;
3788                 break;
3789         case _TCP:
3790                 counter = &memcg->tcpmem;
3791                 break;
3792         default:
3793                 BUG();
3794         }
3795
3796         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797         case RES_MAX_USAGE:
3798                 page_counter_reset_watermark(counter);
3799                 break;
3800         case RES_FAILCNT:
3801                 counter->failcnt = 0;
3802                 break;
3803         default:
3804                 BUG();
3805         }
3806
3807         return nbytes;
3808 }
3809
3810 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3811                                         struct cftype *cft)
3812 {
3813         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3814 }
3815
3816 #ifdef CONFIG_MMU
3817 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818                                         struct cftype *cft, u64 val)
3819 {
3820         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3821
3822         if (val & ~MOVE_MASK)
3823                 return -EINVAL;
3824
3825         /*
3826          * No kind of locking is needed in here, because ->can_attach() will
3827          * check this value once in the beginning of the process, and then carry
3828          * on with stale data. This means that changes to this value will only
3829          * affect task migrations starting after the change.
3830          */
3831         memcg->move_charge_at_immigrate = val;
3832         return 0;
3833 }
3834 #else
3835 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3836                                         struct cftype *cft, u64 val)
3837 {
3838         return -ENOSYS;
3839 }
3840 #endif
3841
3842 #ifdef CONFIG_NUMA
3843
3844 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3845 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3846 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3847
3848 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3849                                 int nid, unsigned int lru_mask, bool tree)
3850 {
3851         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3852         unsigned long nr = 0;
3853         enum lru_list lru;
3854
3855         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3856
3857         for_each_lru(lru) {
3858                 if (!(BIT(lru) & lru_mask))
3859                         continue;
3860                 if (tree)
3861                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3862                 else
3863                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3864         }
3865         return nr;
3866 }
3867
3868 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3869                                              unsigned int lru_mask,
3870                                              bool tree)
3871 {
3872         unsigned long nr = 0;
3873         enum lru_list lru;
3874
3875         for_each_lru(lru) {
3876                 if (!(BIT(lru) & lru_mask))
3877                         continue;
3878                 if (tree)
3879                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3880                 else
3881                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3882         }
3883         return nr;
3884 }
3885
3886 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3887 {
3888         struct numa_stat {
3889                 const char *name;
3890                 unsigned int lru_mask;
3891         };
3892
3893         static const struct numa_stat stats[] = {
3894                 { "total", LRU_ALL },
3895                 { "file", LRU_ALL_FILE },
3896                 { "anon", LRU_ALL_ANON },
3897                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3898         };
3899         const struct numa_stat *stat;
3900         int nid;
3901         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3902
3903         cgroup_rstat_flush(memcg->css.cgroup);
3904
3905         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3906                 seq_printf(m, "%s=%lu", stat->name,
3907                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908                                                    false));
3909                 for_each_node_state(nid, N_MEMORY)
3910                         seq_printf(m, " N%d=%lu", nid,
3911                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3912                                                         stat->lru_mask, false));
3913                 seq_putc(m, '\n');
3914         }
3915
3916         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3917
3918                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3919                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3920                                                    true));
3921                 for_each_node_state(nid, N_MEMORY)
3922                         seq_printf(m, " N%d=%lu", nid,
3923                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3924                                                         stat->lru_mask, true));
3925                 seq_putc(m, '\n');
3926         }
3927
3928         return 0;
3929 }
3930 #endif /* CONFIG_NUMA */
3931
3932 static const unsigned int memcg1_stats[] = {
3933         NR_FILE_PAGES,
3934         NR_ANON_MAPPED,
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936         NR_ANON_THPS,
3937 #endif
3938         NR_SHMEM,
3939         NR_FILE_MAPPED,
3940         NR_FILE_DIRTY,
3941         NR_WRITEBACK,
3942         MEMCG_SWAP,
3943 };
3944
3945 static const char *const memcg1_stat_names[] = {
3946         "cache",
3947         "rss",
3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949         "rss_huge",
3950 #endif
3951         "shmem",
3952         "mapped_file",
3953         "dirty",
3954         "writeback",
3955         "swap",
3956 };
3957
3958 /* Universal VM events cgroup1 shows, original sort order */
3959 static const unsigned int memcg1_events[] = {
3960         PGPGIN,
3961         PGPGOUT,
3962         PGFAULT,
3963         PGMAJFAULT,
3964 };
3965
3966 static int memcg_stat_show(struct seq_file *m, void *v)
3967 {
3968         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3969         unsigned long memory, memsw;
3970         struct mem_cgroup *mi;
3971         unsigned int i;
3972
3973         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3974
3975         cgroup_rstat_flush(memcg->css.cgroup);
3976
3977         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3978                 unsigned long nr;
3979
3980                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3981                         continue;
3982                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3983                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3984         }
3985
3986         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3987                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3988                            memcg_events_local(memcg, memcg1_events[i]));
3989
3990         for (i = 0; i < NR_LRU_LISTS; i++)
3991                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3992                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3993                            PAGE_SIZE);
3994
3995         /* Hierarchical information */
3996         memory = memsw = PAGE_COUNTER_MAX;
3997         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3998                 memory = min(memory, READ_ONCE(mi->memory.max));
3999                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4000         }
4001         seq_printf(m, "hierarchical_memory_limit %llu\n",
4002                    (u64)memory * PAGE_SIZE);
4003         if (do_memsw_account())
4004                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4005                            (u64)memsw * PAGE_SIZE);
4006
4007         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4008                 unsigned long nr;
4009
4010                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4011                         continue;
4012                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4013                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4014                                                 (u64)nr * PAGE_SIZE);
4015         }
4016
4017         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4018                 seq_printf(m, "total_%s %llu\n",
4019                            vm_event_name(memcg1_events[i]),
4020                            (u64)memcg_events(memcg, memcg1_events[i]));
4021
4022         for (i = 0; i < NR_LRU_LISTS; i++)
4023                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4024                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4025                            PAGE_SIZE);
4026
4027 #ifdef CONFIG_DEBUG_VM
4028         {
4029                 pg_data_t *pgdat;
4030                 struct mem_cgroup_per_node *mz;
4031                 unsigned long anon_cost = 0;
4032                 unsigned long file_cost = 0;
4033
4034                 for_each_online_pgdat(pgdat) {
4035                         mz = memcg->nodeinfo[pgdat->node_id];
4036
4037                         anon_cost += mz->lruvec.anon_cost;
4038                         file_cost += mz->lruvec.file_cost;
4039                 }
4040                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4041                 seq_printf(m, "file_cost %lu\n", file_cost);
4042         }
4043 #endif
4044
4045         return 0;
4046 }
4047
4048 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4049                                       struct cftype *cft)
4050 {
4051         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4052
4053         return mem_cgroup_swappiness(memcg);
4054 }
4055
4056 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4057                                        struct cftype *cft, u64 val)
4058 {
4059         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4060
4061         if (val > 200)
4062                 return -EINVAL;
4063
4064         if (!mem_cgroup_is_root(memcg))
4065                 memcg->swappiness = val;
4066         else
4067                 vm_swappiness = val;
4068
4069         return 0;
4070 }
4071
4072 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4073 {
4074         struct mem_cgroup_threshold_ary *t;
4075         unsigned long usage;
4076         int i;
4077
4078         rcu_read_lock();
4079         if (!swap)
4080                 t = rcu_dereference(memcg->thresholds.primary);
4081         else
4082                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4083
4084         if (!t)
4085                 goto unlock;
4086
4087         usage = mem_cgroup_usage(memcg, swap);
4088
4089         /*
4090          * current_threshold points to threshold just below or equal to usage.
4091          * If it's not true, a threshold was crossed after last
4092          * call of __mem_cgroup_threshold().
4093          */
4094         i = t->current_threshold;
4095
4096         /*
4097          * Iterate backward over array of thresholds starting from
4098          * current_threshold and check if a threshold is crossed.
4099          * If none of thresholds below usage is crossed, we read
4100          * only one element of the array here.
4101          */
4102         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4103                 eventfd_signal(t->entries[i].eventfd, 1);
4104
4105         /* i = current_threshold + 1 */
4106         i++;
4107
4108         /*
4109          * Iterate forward over array of thresholds starting from
4110          * current_threshold+1 and check if a threshold is crossed.
4111          * If none of thresholds above usage is crossed, we read
4112          * only one element of the array here.
4113          */
4114         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4115                 eventfd_signal(t->entries[i].eventfd, 1);
4116
4117         /* Update current_threshold */
4118         t->current_threshold = i - 1;
4119 unlock:
4120         rcu_read_unlock();
4121 }
4122
4123 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4124 {
4125         while (memcg) {
4126                 __mem_cgroup_threshold(memcg, false);
4127                 if (do_memsw_account())
4128                         __mem_cgroup_threshold(memcg, true);
4129
4130                 memcg = parent_mem_cgroup(memcg);
4131         }
4132 }
4133
4134 static int compare_thresholds(const void *a, const void *b)
4135 {
4136         const struct mem_cgroup_threshold *_a = a;
4137         const struct mem_cgroup_threshold *_b = b;
4138
4139         if (_a->threshold > _b->threshold)
4140                 return 1;
4141
4142         if (_a->threshold < _b->threshold)
4143                 return -1;
4144
4145         return 0;
4146 }
4147
4148 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4149 {
4150         struct mem_cgroup_eventfd_list *ev;
4151
4152         spin_lock(&memcg_oom_lock);
4153
4154         list_for_each_entry(ev, &memcg->oom_notify, list)
4155                 eventfd_signal(ev->eventfd, 1);
4156
4157         spin_unlock(&memcg_oom_lock);
4158         return 0;
4159 }
4160
4161 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4162 {
4163         struct mem_cgroup *iter;
4164
4165         for_each_mem_cgroup_tree(iter, memcg)
4166                 mem_cgroup_oom_notify_cb(iter);
4167 }
4168
4169 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4170         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4171 {
4172         struct mem_cgroup_thresholds *thresholds;
4173         struct mem_cgroup_threshold_ary *new;
4174         unsigned long threshold;
4175         unsigned long usage;
4176         int i, size, ret;
4177
4178         ret = page_counter_memparse(args, "-1", &threshold);
4179         if (ret)
4180                 return ret;
4181
4182         mutex_lock(&memcg->thresholds_lock);
4183
4184         if (type == _MEM) {
4185                 thresholds = &memcg->thresholds;
4186                 usage = mem_cgroup_usage(memcg, false);
4187         } else if (type == _MEMSWAP) {
4188                 thresholds = &memcg->memsw_thresholds;
4189                 usage = mem_cgroup_usage(memcg, true);
4190         } else
4191                 BUG();
4192
4193         /* Check if a threshold crossed before adding a new one */
4194         if (thresholds->primary)
4195                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4196
4197         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4198
4199         /* Allocate memory for new array of thresholds */
4200         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4201         if (!new) {
4202                 ret = -ENOMEM;
4203                 goto unlock;
4204         }
4205         new->size = size;
4206
4207         /* Copy thresholds (if any) to new array */
4208         if (thresholds->primary)
4209                 memcpy(new->entries, thresholds->primary->entries,
4210                        flex_array_size(new, entries, size - 1));
4211
4212         /* Add new threshold */
4213         new->entries[size - 1].eventfd = eventfd;
4214         new->entries[size - 1].threshold = threshold;
4215
4216         /* Sort thresholds. Registering of new threshold isn't time-critical */
4217         sort(new->entries, size, sizeof(*new->entries),
4218                         compare_thresholds, NULL);
4219
4220         /* Find current threshold */
4221         new->current_threshold = -1;
4222         for (i = 0; i < size; i++) {
4223                 if (new->entries[i].threshold <= usage) {
4224                         /*
4225                          * new->current_threshold will not be used until
4226                          * rcu_assign_pointer(), so it's safe to increment
4227                          * it here.
4228                          */
4229                         ++new->current_threshold;
4230                 } else
4231                         break;
4232         }
4233
4234         /* Free old spare buffer and save old primary buffer as spare */
4235         kfree(thresholds->spare);
4236         thresholds->spare = thresholds->primary;
4237
4238         rcu_assign_pointer(thresholds->primary, new);
4239
4240         /* To be sure that nobody uses thresholds */
4241         synchronize_rcu();
4242
4243 unlock:
4244         mutex_unlock(&memcg->thresholds_lock);
4245
4246         return ret;
4247 }
4248
4249 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4250         struct eventfd_ctx *eventfd, const char *args)
4251 {
4252         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4253 }
4254
4255 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4256         struct eventfd_ctx *eventfd, const char *args)
4257 {
4258         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4259 }
4260
4261 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4262         struct eventfd_ctx *eventfd, enum res_type type)
4263 {
4264         struct mem_cgroup_thresholds *thresholds;
4265         struct mem_cgroup_threshold_ary *new;
4266         unsigned long usage;
4267         int i, j, size, entries;
4268
4269         mutex_lock(&memcg->thresholds_lock);
4270
4271         if (type == _MEM) {
4272                 thresholds = &memcg->thresholds;
4273                 usage = mem_cgroup_usage(memcg, false);
4274         } else if (type == _MEMSWAP) {
4275                 thresholds = &memcg->memsw_thresholds;
4276                 usage = mem_cgroup_usage(memcg, true);
4277         } else
4278                 BUG();
4279
4280         if (!thresholds->primary)
4281                 goto unlock;
4282
4283         /* Check if a threshold crossed before removing */
4284         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4285
4286         /* Calculate new number of threshold */
4287         size = entries = 0;
4288         for (i = 0; i < thresholds->primary->size; i++) {
4289                 if (thresholds->primary->entries[i].eventfd != eventfd)
4290                         size++;
4291                 else
4292                         entries++;
4293         }
4294
4295         new = thresholds->spare;
4296
4297         /* If no items related to eventfd have been cleared, nothing to do */
4298         if (!entries)
4299                 goto unlock;
4300
4301         /* Set thresholds array to NULL if we don't have thresholds */
4302         if (!size) {
4303                 kfree(new);
4304                 new = NULL;
4305                 goto swap_buffers;
4306         }
4307
4308         new->size = size;
4309
4310         /* Copy thresholds and find current threshold */
4311         new->current_threshold = -1;
4312         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4313                 if (thresholds->primary->entries[i].eventfd == eventfd)
4314                         continue;
4315
4316                 new->entries[j] = thresholds->primary->entries[i];
4317                 if (new->entries[j].threshold <= usage) {
4318                         /*
4319                          * new->current_threshold will not be used
4320                          * until rcu_assign_pointer(), so it's safe to increment
4321                          * it here.
4322                          */
4323                         ++new->current_threshold;
4324                 }
4325                 j++;
4326         }
4327
4328 swap_buffers:
4329         /* Swap primary and spare array */
4330         thresholds->spare = thresholds->primary;
4331
4332         rcu_assign_pointer(thresholds->primary, new);
4333
4334         /* To be sure that nobody uses thresholds */
4335         synchronize_rcu();
4336
4337         /* If all events are unregistered, free the spare array */
4338         if (!new) {
4339                 kfree(thresholds->spare);
4340                 thresholds->spare = NULL;
4341         }
4342 unlock:
4343         mutex_unlock(&memcg->thresholds_lock);
4344 }
4345
4346 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4347         struct eventfd_ctx *eventfd)
4348 {
4349         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4350 }
4351
4352 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4353         struct eventfd_ctx *eventfd)
4354 {
4355         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4356 }
4357
4358 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4359         struct eventfd_ctx *eventfd, const char *args)
4360 {
4361         struct mem_cgroup_eventfd_list *event;
4362
4363         event = kmalloc(sizeof(*event), GFP_KERNEL);
4364         if (!event)
4365                 return -ENOMEM;
4366
4367         spin_lock(&memcg_oom_lock);
4368
4369         event->eventfd = eventfd;
4370         list_add(&event->list, &memcg->oom_notify);
4371
4372         /* already in OOM ? */
4373         if (memcg->under_oom)
4374                 eventfd_signal(eventfd, 1);
4375         spin_unlock(&memcg_oom_lock);
4376
4377         return 0;
4378 }
4379
4380 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4381         struct eventfd_ctx *eventfd)
4382 {
4383         struct mem_cgroup_eventfd_list *ev, *tmp;
4384
4385         spin_lock(&memcg_oom_lock);
4386
4387         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4388                 if (ev->eventfd == eventfd) {
4389                         list_del(&ev->list);
4390                         kfree(ev);
4391                 }
4392         }
4393
4394         spin_unlock(&memcg_oom_lock);
4395 }
4396
4397 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4398 {
4399         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4400
4401         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4402         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4403         seq_printf(sf, "oom_kill %lu\n",
4404                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4405         return 0;
4406 }
4407
4408 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4409         struct cftype *cft, u64 val)
4410 {
4411         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4412
4413         /* cannot set to root cgroup and only 0 and 1 are allowed */
4414         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4415                 return -EINVAL;
4416
4417         memcg->oom_kill_disable = val;
4418         if (!val)
4419                 memcg_oom_recover(memcg);
4420
4421         return 0;
4422 }
4423
4424 #ifdef CONFIG_CGROUP_WRITEBACK
4425
4426 #include <trace/events/writeback.h>
4427
4428 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4429 {
4430         return wb_domain_init(&memcg->cgwb_domain, gfp);
4431 }
4432
4433 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4434 {
4435         wb_domain_exit(&memcg->cgwb_domain);
4436 }
4437
4438 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4439 {
4440         wb_domain_size_changed(&memcg->cgwb_domain);
4441 }
4442
4443 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4444 {
4445         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4446
4447         if (!memcg->css.parent)
4448                 return NULL;
4449
4450         return &memcg->cgwb_domain;
4451 }
4452
4453 /**
4454  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4455  * @wb: bdi_writeback in question
4456  * @pfilepages: out parameter for number of file pages
4457  * @pheadroom: out parameter for number of allocatable pages according to memcg
4458  * @pdirty: out parameter for number of dirty pages
4459  * @pwriteback: out parameter for number of pages under writeback
4460  *
4461  * Determine the numbers of file, headroom, dirty, and writeback pages in
4462  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4463  * is a bit more involved.
4464  *
4465  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4466  * headroom is calculated as the lowest headroom of itself and the
4467  * ancestors.  Note that this doesn't consider the actual amount of
4468  * available memory in the system.  The caller should further cap
4469  * *@pheadroom accordingly.
4470  */
4471 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4472                          unsigned long *pheadroom, unsigned long *pdirty,
4473                          unsigned long *pwriteback)
4474 {
4475         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4476         struct mem_cgroup *parent;
4477
4478         cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4479
4480         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4481         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4482         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4483                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4484
4485         *pheadroom = PAGE_COUNTER_MAX;
4486         while ((parent = parent_mem_cgroup(memcg))) {
4487                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4488                                             READ_ONCE(memcg->memory.high));
4489                 unsigned long used = page_counter_read(&memcg->memory);
4490
4491                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4492                 memcg = parent;
4493         }
4494 }
4495
4496 /*
4497  * Foreign dirty flushing
4498  *
4499  * There's an inherent mismatch between memcg and writeback.  The former
4500  * tracks ownership per-page while the latter per-inode.  This was a
4501  * deliberate design decision because honoring per-page ownership in the
4502  * writeback path is complicated, may lead to higher CPU and IO overheads
4503  * and deemed unnecessary given that write-sharing an inode across
4504  * different cgroups isn't a common use-case.
4505  *
4506  * Combined with inode majority-writer ownership switching, this works well
4507  * enough in most cases but there are some pathological cases.  For
4508  * example, let's say there are two cgroups A and B which keep writing to
4509  * different but confined parts of the same inode.  B owns the inode and
4510  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4511  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4512  * triggering background writeback.  A will be slowed down without a way to
4513  * make writeback of the dirty pages happen.
4514  *
4515  * Conditions like the above can lead to a cgroup getting repeatedly and
4516  * severely throttled after making some progress after each
4517  * dirty_expire_interval while the underlying IO device is almost
4518  * completely idle.
4519  *
4520  * Solving this problem completely requires matching the ownership tracking
4521  * granularities between memcg and writeback in either direction.  However,
4522  * the more egregious behaviors can be avoided by simply remembering the
4523  * most recent foreign dirtying events and initiating remote flushes on
4524  * them when local writeback isn't enough to keep the memory clean enough.
4525  *
4526  * The following two functions implement such mechanism.  When a foreign
4527  * page - a page whose memcg and writeback ownerships don't match - is
4528  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4529  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4530  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4531  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4532  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4533  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4534  * limited to MEMCG_CGWB_FRN_CNT.
4535  *
4536  * The mechanism only remembers IDs and doesn't hold any object references.
4537  * As being wrong occasionally doesn't matter, updates and accesses to the
4538  * records are lockless and racy.
4539  */
4540 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4541                                              struct bdi_writeback *wb)
4542 {
4543         struct mem_cgroup *memcg = page_memcg(page);
4544         struct memcg_cgwb_frn *frn;
4545         u64 now = get_jiffies_64();
4546         u64 oldest_at = now;
4547         int oldest = -1;
4548         int i;
4549
4550         trace_track_foreign_dirty(page, wb);
4551
4552         /*
4553          * Pick the slot to use.  If there is already a slot for @wb, keep
4554          * using it.  If not replace the oldest one which isn't being
4555          * written out.
4556          */
4557         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4558                 frn = &memcg->cgwb_frn[i];
4559                 if (frn->bdi_id == wb->bdi->id &&
4560                     frn->memcg_id == wb->memcg_css->id)
4561                         break;
4562                 if (time_before64(frn->at, oldest_at) &&
4563                     atomic_read(&frn->done.cnt) == 1) {
4564                         oldest = i;
4565                         oldest_at = frn->at;
4566                 }
4567         }
4568
4569         if (i < MEMCG_CGWB_FRN_CNT) {
4570                 /*
4571                  * Re-using an existing one.  Update timestamp lazily to
4572                  * avoid making the cacheline hot.  We want them to be
4573                  * reasonably up-to-date and significantly shorter than
4574                  * dirty_expire_interval as that's what expires the record.
4575                  * Use the shorter of 1s and dirty_expire_interval / 8.
4576                  */
4577                 unsigned long update_intv =
4578                         min_t(unsigned long, HZ,
4579                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4580
4581                 if (time_before64(frn->at, now - update_intv))
4582                         frn->at = now;
4583         } else if (oldest >= 0) {
4584                 /* replace the oldest free one */
4585                 frn = &memcg->cgwb_frn[oldest];
4586                 frn->bdi_id = wb->bdi->id;
4587                 frn->memcg_id = wb->memcg_css->id;
4588                 frn->at = now;
4589         }
4590 }
4591
4592 /* issue foreign writeback flushes for recorded foreign dirtying events */
4593 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4594 {
4595         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4596         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4597         u64 now = jiffies_64;
4598         int i;
4599
4600         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4601                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4602
4603                 /*
4604                  * If the record is older than dirty_expire_interval,
4605                  * writeback on it has already started.  No need to kick it
4606                  * off again.  Also, don't start a new one if there's
4607                  * already one in flight.
4608                  */
4609                 if (time_after64(frn->at, now - intv) &&
4610                     atomic_read(&frn->done.cnt) == 1) {
4611                         frn->at = 0;
4612                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4613                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4614                                                WB_REASON_FOREIGN_FLUSH,
4615                                                &frn->done);
4616                 }
4617         }
4618 }
4619
4620 #else   /* CONFIG_CGROUP_WRITEBACK */
4621
4622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4623 {
4624         return 0;
4625 }
4626
4627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4628 {
4629 }
4630
4631 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4632 {
4633 }
4634
4635 #endif  /* CONFIG_CGROUP_WRITEBACK */
4636
4637 /*
4638  * DO NOT USE IN NEW FILES.
4639  *
4640  * "cgroup.event_control" implementation.
4641  *
4642  * This is way over-engineered.  It tries to support fully configurable
4643  * events for each user.  Such level of flexibility is completely
4644  * unnecessary especially in the light of the planned unified hierarchy.
4645  *
4646  * Please deprecate this and replace with something simpler if at all
4647  * possible.
4648  */
4649
4650 /*
4651  * Unregister event and free resources.
4652  *
4653  * Gets called from workqueue.
4654  */
4655 static void memcg_event_remove(struct work_struct *work)
4656 {
4657         struct mem_cgroup_event *event =
4658                 container_of(work, struct mem_cgroup_event, remove);
4659         struct mem_cgroup *memcg = event->memcg;
4660
4661         remove_wait_queue(event->wqh, &event->wait);
4662
4663         event->unregister_event(memcg, event->eventfd);
4664
4665         /* Notify userspace the event is going away. */
4666         eventfd_signal(event->eventfd, 1);
4667
4668         eventfd_ctx_put(event->eventfd);
4669         kfree(event);
4670         css_put(&memcg->css);
4671 }
4672
4673 /*
4674  * Gets called on EPOLLHUP on eventfd when user closes it.
4675  *
4676  * Called with wqh->lock held and interrupts disabled.
4677  */
4678 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4679                             int sync, void *key)
4680 {
4681         struct mem_cgroup_event *event =
4682                 container_of(wait, struct mem_cgroup_event, wait);
4683         struct mem_cgroup *memcg = event->memcg;
4684         __poll_t flags = key_to_poll(key);
4685
4686         if (flags & EPOLLHUP) {
4687                 /*
4688                  * If the event has been detached at cgroup removal, we
4689                  * can simply return knowing the other side will cleanup
4690                  * for us.
4691                  *
4692                  * We can't race against event freeing since the other
4693                  * side will require wqh->lock via remove_wait_queue(),
4694                  * which we hold.
4695                  */
4696                 spin_lock(&memcg->event_list_lock);
4697                 if (!list_empty(&event->list)) {
4698                         list_del_init(&event->list);
4699                         /*
4700                          * We are in atomic context, but cgroup_event_remove()
4701                          * may sleep, so we have to call it in workqueue.
4702                          */
4703                         schedule_work(&event->remove);
4704                 }
4705                 spin_unlock(&memcg->event_list_lock);
4706         }
4707
4708         return 0;
4709 }
4710
4711 static void memcg_event_ptable_queue_proc(struct file *file,
4712                 wait_queue_head_t *wqh, poll_table *pt)
4713 {
4714         struct mem_cgroup_event *event =
4715                 container_of(pt, struct mem_cgroup_event, pt);
4716
4717         event->wqh = wqh;
4718         add_wait_queue(wqh, &event->wait);
4719 }
4720
4721 /*
4722  * DO NOT USE IN NEW FILES.
4723  *
4724  * Parse input and register new cgroup event handler.
4725  *
4726  * Input must be in format '<event_fd> <control_fd> <args>'.
4727  * Interpretation of args is defined by control file implementation.
4728  */
4729 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4730                                          char *buf, size_t nbytes, loff_t off)
4731 {
4732         struct cgroup_subsys_state *css = of_css(of);
4733         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4734         struct mem_cgroup_event *event;
4735         struct cgroup_subsys_state *cfile_css;
4736         unsigned int efd, cfd;
4737         struct fd efile;
4738         struct fd cfile;
4739         const char *name;
4740         char *endp;
4741         int ret;
4742
4743         buf = strstrip(buf);
4744
4745         efd = simple_strtoul(buf, &endp, 10);
4746         if (*endp != ' ')
4747                 return -EINVAL;
4748         buf = endp + 1;
4749
4750         cfd = simple_strtoul(buf, &endp, 10);
4751         if ((*endp != ' ') && (*endp != '\0'))
4752                 return -EINVAL;
4753         buf = endp + 1;
4754
4755         event = kzalloc(sizeof(*event), GFP_KERNEL);
4756         if (!event)
4757                 return -ENOMEM;
4758
4759         event->memcg = memcg;
4760         INIT_LIST_HEAD(&event->list);
4761         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4762         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4763         INIT_WORK(&event->remove, memcg_event_remove);
4764
4765         efile = fdget(efd);
4766         if (!efile.file) {
4767                 ret = -EBADF;
4768                 goto out_kfree;
4769         }
4770
4771         event->eventfd = eventfd_ctx_fileget(efile.file);
4772         if (IS_ERR(event->eventfd)) {
4773                 ret = PTR_ERR(event->eventfd);
4774                 goto out_put_efile;
4775         }
4776
4777         cfile = fdget(cfd);
4778         if (!cfile.file) {
4779                 ret = -EBADF;
4780                 goto out_put_eventfd;
4781         }
4782
4783         /* the process need read permission on control file */
4784         /* AV: shouldn't we check that it's been opened for read instead? */
4785         ret = file_permission(cfile.file, MAY_READ);
4786         if (ret < 0)
4787                 goto out_put_cfile;
4788
4789         /*
4790          * Determine the event callbacks and set them in @event.  This used
4791          * to be done via struct cftype but cgroup core no longer knows
4792          * about these events.  The following is crude but the whole thing
4793          * is for compatibility anyway.
4794          *
4795          * DO NOT ADD NEW FILES.
4796          */
4797         name = cfile.file->f_path.dentry->d_name.name;
4798
4799         if (!strcmp(name, "memory.usage_in_bytes")) {
4800                 event->register_event = mem_cgroup_usage_register_event;
4801                 event->unregister_event = mem_cgroup_usage_unregister_event;
4802         } else if (!strcmp(name, "memory.oom_control")) {
4803                 event->register_event = mem_cgroup_oom_register_event;
4804                 event->unregister_event = mem_cgroup_oom_unregister_event;
4805         } else if (!strcmp(name, "memory.pressure_level")) {
4806                 event->register_event = vmpressure_register_event;
4807                 event->unregister_event = vmpressure_unregister_event;
4808         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4809                 event->register_event = memsw_cgroup_usage_register_event;
4810                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4811         } else {
4812                 ret = -EINVAL;
4813                 goto out_put_cfile;
4814         }
4815
4816         /*
4817          * Verify @cfile should belong to @css.  Also, remaining events are
4818          * automatically removed on cgroup destruction but the removal is
4819          * asynchronous, so take an extra ref on @css.
4820          */
4821         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4822                                                &memory_cgrp_subsys);
4823         ret = -EINVAL;
4824         if (IS_ERR(cfile_css))
4825                 goto out_put_cfile;
4826         if (cfile_css != css) {
4827                 css_put(cfile_css);
4828                 goto out_put_cfile;
4829         }
4830
4831         ret = event->register_event(memcg, event->eventfd, buf);
4832         if (ret)
4833                 goto out_put_css;
4834
4835         vfs_poll(efile.file, &event->pt);
4836
4837         spin_lock_irq(&memcg->event_list_lock);
4838         list_add(&event->list, &memcg->event_list);
4839         spin_unlock_irq(&memcg->event_list_lock);
4840
4841         fdput(cfile);
4842         fdput(efile);
4843
4844         return nbytes;
4845
4846 out_put_css:
4847         css_put(css);
4848 out_put_cfile:
4849         fdput(cfile);
4850 out_put_eventfd:
4851         eventfd_ctx_put(event->eventfd);
4852 out_put_efile:
4853         fdput(efile);
4854 out_kfree:
4855         kfree(event);
4856
4857         return ret;
4858 }
4859
4860 static struct cftype mem_cgroup_legacy_files[] = {
4861         {
4862                 .name = "usage_in_bytes",
4863                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4864                 .read_u64 = mem_cgroup_read_u64,
4865         },
4866         {
4867                 .name = "max_usage_in_bytes",
4868                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4869                 .write = mem_cgroup_reset,
4870                 .read_u64 = mem_cgroup_read_u64,
4871         },
4872         {
4873                 .name = "limit_in_bytes",
4874                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4875                 .write = mem_cgroup_write,
4876                 .read_u64 = mem_cgroup_read_u64,
4877         },
4878         {
4879                 .name = "soft_limit_in_bytes",
4880                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4881                 .write = mem_cgroup_write,
4882                 .read_u64 = mem_cgroup_read_u64,
4883         },
4884         {
4885                 .name = "failcnt",
4886                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4887                 .write = mem_cgroup_reset,
4888                 .read_u64 = mem_cgroup_read_u64,
4889         },
4890         {
4891                 .name = "stat",
4892                 .seq_show = memcg_stat_show,
4893         },
4894         {
4895                 .name = "force_empty",
4896                 .write = mem_cgroup_force_empty_write,
4897         },
4898         {
4899                 .name = "use_hierarchy",
4900                 .write_u64 = mem_cgroup_hierarchy_write,
4901                 .read_u64 = mem_cgroup_hierarchy_read,
4902         },
4903         {
4904                 .name = "cgroup.event_control",         /* XXX: for compat */
4905                 .write = memcg_write_event_control,
4906                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4907         },
4908         {
4909                 .name = "swappiness",
4910                 .read_u64 = mem_cgroup_swappiness_read,
4911                 .write_u64 = mem_cgroup_swappiness_write,
4912         },
4913         {
4914                 .name = "move_charge_at_immigrate",
4915                 .read_u64 = mem_cgroup_move_charge_read,
4916                 .write_u64 = mem_cgroup_move_charge_write,
4917         },
4918         {
4919                 .name = "oom_control",
4920                 .seq_show = mem_cgroup_oom_control_read,
4921                 .write_u64 = mem_cgroup_oom_control_write,
4922                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4923         },
4924         {
4925                 .name = "pressure_level",
4926         },
4927 #ifdef CONFIG_NUMA
4928         {
4929                 .name = "numa_stat",
4930                 .seq_show = memcg_numa_stat_show,
4931         },
4932 #endif
4933         {
4934                 .name = "kmem.limit_in_bytes",
4935                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4936                 .write = mem_cgroup_write,
4937                 .read_u64 = mem_cgroup_read_u64,
4938         },
4939         {
4940                 .name = "kmem.usage_in_bytes",
4941                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4942                 .read_u64 = mem_cgroup_read_u64,
4943         },
4944         {
4945                 .name = "kmem.failcnt",
4946                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4947                 .write = mem_cgroup_reset,
4948                 .read_u64 = mem_cgroup_read_u64,
4949         },
4950         {
4951                 .name = "kmem.max_usage_in_bytes",
4952                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4953                 .write = mem_cgroup_reset,
4954                 .read_u64 = mem_cgroup_read_u64,
4955         },
4956 #if defined(CONFIG_MEMCG_KMEM) && \
4957         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4958         {
4959                 .name = "kmem.slabinfo",
4960                 .seq_show = memcg_slab_show,
4961         },
4962 #endif
4963         {
4964                 .name = "kmem.tcp.limit_in_bytes",
4965                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4966                 .write = mem_cgroup_write,
4967                 .read_u64 = mem_cgroup_read_u64,
4968         },
4969         {
4970                 .name = "kmem.tcp.usage_in_bytes",
4971                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4972                 .read_u64 = mem_cgroup_read_u64,
4973         },
4974         {
4975                 .name = "kmem.tcp.failcnt",
4976                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4977                 .write = mem_cgroup_reset,
4978                 .read_u64 = mem_cgroup_read_u64,
4979         },
4980         {
4981                 .name = "kmem.tcp.max_usage_in_bytes",
4982                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4983                 .write = mem_cgroup_reset,
4984                 .read_u64 = mem_cgroup_read_u64,
4985         },
4986         { },    /* terminate */
4987 };
4988
4989 /*
4990  * Private memory cgroup IDR
4991  *
4992  * Swap-out records and page cache shadow entries need to store memcg
4993  * references in constrained space, so we maintain an ID space that is
4994  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4995  * memory-controlled cgroups to 64k.
4996  *
4997  * However, there usually are many references to the offline CSS after
4998  * the cgroup has been destroyed, such as page cache or reclaimable
4999  * slab objects, that don't need to hang on to the ID. We want to keep
5000  * those dead CSS from occupying IDs, or we might quickly exhaust the
5001  * relatively small ID space and prevent the creation of new cgroups
5002  * even when there are much fewer than 64k cgroups - possibly none.
5003  *
5004  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5005  * be freed and recycled when it's no longer needed, which is usually
5006  * when the CSS is offlined.
5007  *
5008  * The only exception to that are records of swapped out tmpfs/shmem
5009  * pages that need to be attributed to live ancestors on swapin. But
5010  * those references are manageable from userspace.
5011  */
5012
5013 static DEFINE_IDR(mem_cgroup_idr);
5014
5015 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5016 {
5017         if (memcg->id.id > 0) {
5018                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5019                 memcg->id.id = 0;
5020         }
5021 }
5022
5023 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5024                                                   unsigned int n)
5025 {
5026         refcount_add(n, &memcg->id.ref);
5027 }
5028
5029 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5030 {
5031         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5032                 mem_cgroup_id_remove(memcg);
5033
5034                 /* Memcg ID pins CSS */
5035                 css_put(&memcg->css);
5036         }
5037 }
5038
5039 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5040 {
5041         mem_cgroup_id_put_many(memcg, 1);
5042 }
5043
5044 /**
5045  * mem_cgroup_from_id - look up a memcg from a memcg id
5046  * @id: the memcg id to look up
5047  *
5048  * Caller must hold rcu_read_lock().
5049  */
5050 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5051 {
5052         WARN_ON_ONCE(!rcu_read_lock_held());
5053         return idr_find(&mem_cgroup_idr, id);
5054 }
5055
5056 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5057 {
5058         struct mem_cgroup_per_node *pn;
5059         int tmp = node;
5060         /*
5061          * This routine is called against possible nodes.
5062          * But it's BUG to call kmalloc() against offline node.
5063          *
5064          * TODO: this routine can waste much memory for nodes which will
5065          *       never be onlined. It's better to use memory hotplug callback
5066          *       function.
5067          */
5068         if (!node_state(node, N_NORMAL_MEMORY))
5069                 tmp = -1;
5070         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5071         if (!pn)
5072                 return 1;
5073
5074         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5075                                                    GFP_KERNEL_ACCOUNT);
5076         if (!pn->lruvec_stats_percpu) {
5077                 kfree(pn);
5078                 return 1;
5079         }
5080
5081         lruvec_init(&pn->lruvec);
5082         pn->usage_in_excess = 0;
5083         pn->on_tree = false;
5084         pn->memcg = memcg;
5085
5086         memcg->nodeinfo[node] = pn;
5087         return 0;
5088 }
5089
5090 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5091 {
5092         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5093
5094         if (!pn)
5095                 return;
5096
5097         free_percpu(pn->lruvec_stats_percpu);
5098         kfree(pn);
5099 }
5100
5101 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5102 {
5103         int node;
5104
5105         for_each_node(node)
5106                 free_mem_cgroup_per_node_info(memcg, node);
5107         free_percpu(memcg->vmstats_percpu);
5108         kfree(memcg);
5109 }
5110
5111 static void mem_cgroup_free(struct mem_cgroup *memcg)
5112 {
5113         memcg_wb_domain_exit(memcg);
5114         __mem_cgroup_free(memcg);
5115 }
5116
5117 static struct mem_cgroup *mem_cgroup_alloc(void)
5118 {
5119         struct mem_cgroup *memcg;
5120         unsigned int size;
5121         int node;
5122         int __maybe_unused i;
5123         long error = -ENOMEM;
5124
5125         size = sizeof(struct mem_cgroup);
5126         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5127
5128         memcg = kzalloc(size, GFP_KERNEL);
5129         if (!memcg)
5130                 return ERR_PTR(error);
5131
5132         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5133                                  1, MEM_CGROUP_ID_MAX,
5134                                  GFP_KERNEL);
5135         if (memcg->id.id < 0) {
5136                 error = memcg->id.id;
5137                 goto fail;
5138         }
5139
5140         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5141                                                  GFP_KERNEL_ACCOUNT);
5142         if (!memcg->vmstats_percpu)
5143                 goto fail;
5144
5145         for_each_node(node)
5146                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5147                         goto fail;
5148
5149         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5150                 goto fail;
5151
5152         INIT_WORK(&memcg->high_work, high_work_func);
5153         INIT_LIST_HEAD(&memcg->oom_notify);
5154         mutex_init(&memcg->thresholds_lock);
5155         spin_lock_init(&memcg->move_lock);
5156         vmpressure_init(&memcg->vmpressure);
5157         INIT_LIST_HEAD(&memcg->event_list);
5158         spin_lock_init(&memcg->event_list_lock);
5159         memcg->socket_pressure = jiffies;
5160 #ifdef CONFIG_MEMCG_KMEM
5161         memcg->kmemcg_id = -1;
5162         INIT_LIST_HEAD(&memcg->objcg_list);
5163 #endif
5164 #ifdef CONFIG_CGROUP_WRITEBACK
5165         INIT_LIST_HEAD(&memcg->cgwb_list);
5166         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5167                 memcg->cgwb_frn[i].done =
5168                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5169 #endif
5170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5171         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5172         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5173         memcg->deferred_split_queue.split_queue_len = 0;
5174 #endif
5175         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5176         return memcg;
5177 fail:
5178         mem_cgroup_id_remove(memcg);
5179         __mem_cgroup_free(memcg);
5180         return ERR_PTR(error);
5181 }
5182
5183 static struct cgroup_subsys_state * __ref
5184 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5185 {
5186         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5187         struct mem_cgroup *memcg, *old_memcg;
5188         long error = -ENOMEM;
5189
5190         old_memcg = set_active_memcg(parent);
5191         memcg = mem_cgroup_alloc();
5192         set_active_memcg(old_memcg);
5193         if (IS_ERR(memcg))
5194                 return ERR_CAST(memcg);
5195
5196         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5197         memcg->soft_limit = PAGE_COUNTER_MAX;
5198         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5199         if (parent) {
5200                 memcg->swappiness = mem_cgroup_swappiness(parent);
5201                 memcg->oom_kill_disable = parent->oom_kill_disable;
5202
5203                 page_counter_init(&memcg->memory, &parent->memory);
5204                 page_counter_init(&memcg->swap, &parent->swap);
5205                 page_counter_init(&memcg->kmem, &parent->kmem);
5206                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5207         } else {
5208                 page_counter_init(&memcg->memory, NULL);
5209                 page_counter_init(&memcg->swap, NULL);
5210                 page_counter_init(&memcg->kmem, NULL);
5211                 page_counter_init(&memcg->tcpmem, NULL);
5212
5213                 root_mem_cgroup = memcg;
5214                 return &memcg->css;
5215         }
5216
5217         /* The following stuff does not apply to the root */
5218         error = memcg_online_kmem(memcg);
5219         if (error)
5220                 goto fail;
5221
5222         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5223                 static_branch_inc(&memcg_sockets_enabled_key);
5224
5225         return &memcg->css;
5226 fail:
5227         mem_cgroup_id_remove(memcg);
5228         mem_cgroup_free(memcg);
5229         return ERR_PTR(error);
5230 }
5231
5232 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5233 {
5234         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5235
5236         /*
5237          * A memcg must be visible for expand_shrinker_info()
5238          * by the time the maps are allocated. So, we allocate maps
5239          * here, when for_each_mem_cgroup() can't skip it.
5240          */
5241         if (alloc_shrinker_info(memcg)) {
5242                 mem_cgroup_id_remove(memcg);
5243                 return -ENOMEM;
5244         }
5245
5246         /* Online state pins memcg ID, memcg ID pins CSS */
5247         refcount_set(&memcg->id.ref, 1);
5248         css_get(css);
5249
5250         if (unlikely(mem_cgroup_is_root(memcg)))
5251                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5252                                    2UL*HZ);
5253         return 0;
5254 }
5255
5256 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5257 {
5258         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5259         struct mem_cgroup_event *event, *tmp;
5260
5261         /*
5262          * Unregister events and notify userspace.
5263          * Notify userspace about cgroup removing only after rmdir of cgroup
5264          * directory to avoid race between userspace and kernelspace.
5265          */
5266         spin_lock_irq(&memcg->event_list_lock);
5267         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5268                 list_del_init(&event->list);
5269                 schedule_work(&event->remove);
5270         }
5271         spin_unlock_irq(&memcg->event_list_lock);
5272
5273         page_counter_set_min(&memcg->memory, 0);
5274         page_counter_set_low(&memcg->memory, 0);
5275
5276         memcg_offline_kmem(memcg);
5277         reparent_shrinker_deferred(memcg);
5278         wb_memcg_offline(memcg);
5279
5280         drain_all_stock(memcg);
5281
5282         mem_cgroup_id_put(memcg);
5283 }
5284
5285 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5286 {
5287         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5288
5289         invalidate_reclaim_iterators(memcg);
5290 }
5291
5292 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5293 {
5294         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5295         int __maybe_unused i;
5296
5297 #ifdef CONFIG_CGROUP_WRITEBACK
5298         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5299                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5300 #endif
5301         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5302                 static_branch_dec(&memcg_sockets_enabled_key);
5303
5304         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5305                 static_branch_dec(&memcg_sockets_enabled_key);
5306
5307         vmpressure_cleanup(&memcg->vmpressure);
5308         cancel_work_sync(&memcg->high_work);
5309         mem_cgroup_remove_from_trees(memcg);
5310         free_shrinker_info(memcg);
5311         memcg_free_kmem(memcg);
5312         mem_cgroup_free(memcg);
5313 }
5314
5315 /**
5316  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5317  * @css: the target css
5318  *
5319  * Reset the states of the mem_cgroup associated with @css.  This is
5320  * invoked when the userland requests disabling on the default hierarchy
5321  * but the memcg is pinned through dependency.  The memcg should stop
5322  * applying policies and should revert to the vanilla state as it may be
5323  * made visible again.
5324  *
5325  * The current implementation only resets the essential configurations.
5326  * This needs to be expanded to cover all the visible parts.
5327  */
5328 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5329 {
5330         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5331
5332         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5333         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5334         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5335         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5336         page_counter_set_min(&memcg->memory, 0);
5337         page_counter_set_low(&memcg->memory, 0);
5338         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5339         memcg->soft_limit = PAGE_COUNTER_MAX;
5340         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5341         memcg_wb_domain_size_changed(memcg);
5342 }
5343
5344 void mem_cgroup_flush_stats(void)
5345 {
5346         if (!spin_trylock(&stats_flush_lock))
5347                 return;
5348
5349         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5350         spin_unlock(&stats_flush_lock);
5351 }
5352
5353 static void flush_memcg_stats_dwork(struct work_struct *w)
5354 {
5355         mem_cgroup_flush_stats();
5356         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5357 }
5358
5359 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5360 {
5361         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5362         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5363         struct memcg_vmstats_percpu *statc;
5364         long delta, v;
5365         int i, nid;
5366
5367         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5368
5369         for (i = 0; i < MEMCG_NR_STAT; i++) {
5370                 /*
5371                  * Collect the aggregated propagation counts of groups
5372                  * below us. We're in a per-cpu loop here and this is
5373                  * a global counter, so the first cycle will get them.
5374                  */
5375                 delta = memcg->vmstats.state_pending[i];
5376                 if (delta)
5377                         memcg->vmstats.state_pending[i] = 0;
5378
5379                 /* Add CPU changes on this level since the last flush */
5380                 v = READ_ONCE(statc->state[i]);
5381                 if (v != statc->state_prev[i]) {
5382                         delta += v - statc->state_prev[i];
5383                         statc->state_prev[i] = v;
5384                 }
5385
5386                 if (!delta)
5387                         continue;
5388
5389                 /* Aggregate counts on this level and propagate upwards */
5390                 memcg->vmstats.state[i] += delta;
5391                 if (parent)
5392                         parent->vmstats.state_pending[i] += delta;
5393         }
5394
5395         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5396                 delta = memcg->vmstats.events_pending[i];
5397                 if (delta)
5398                         memcg->vmstats.events_pending[i] = 0;
5399
5400                 v = READ_ONCE(statc->events[i]);
5401                 if (v != statc->events_prev[i]) {
5402                         delta += v - statc->events_prev[i];
5403                         statc->events_prev[i] = v;
5404                 }
5405
5406                 if (!delta)
5407                         continue;
5408
5409                 memcg->vmstats.events[i] += delta;
5410                 if (parent)
5411                         parent->vmstats.events_pending[i] += delta;
5412         }
5413
5414         for_each_node_state(nid, N_MEMORY) {
5415                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5416                 struct mem_cgroup_per_node *ppn = NULL;
5417                 struct lruvec_stats_percpu *lstatc;
5418
5419                 if (parent)
5420                         ppn = parent->nodeinfo[nid];
5421
5422                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5423
5424                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5425                         delta = pn->lruvec_stats.state_pending[i];
5426                         if (delta)
5427                                 pn->lruvec_stats.state_pending[i] = 0;
5428
5429                         v = READ_ONCE(lstatc->state[i]);
5430                         if (v != lstatc->state_prev[i]) {
5431                                 delta += v - lstatc->state_prev[i];
5432                                 lstatc->state_prev[i] = v;
5433                         }
5434
5435                         if (!delta)
5436                                 continue;
5437
5438                         pn->lruvec_stats.state[i] += delta;
5439                         if (ppn)
5440                                 ppn->lruvec_stats.state_pending[i] += delta;
5441                 }
5442         }
5443 }
5444
5445 #ifdef CONFIG_MMU
5446 /* Handlers for move charge at task migration. */
5447 static int mem_cgroup_do_precharge(unsigned long count)
5448 {
5449         int ret;
5450
5451         /* Try a single bulk charge without reclaim first, kswapd may wake */
5452         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5453         if (!ret) {
5454                 mc.precharge += count;
5455                 return ret;
5456         }
5457
5458         /* Try charges one by one with reclaim, but do not retry */
5459         while (count--) {
5460                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5461                 if (ret)
5462                         return ret;
5463                 mc.precharge++;
5464                 cond_resched();
5465         }
5466         return 0;
5467 }
5468
5469 union mc_target {
5470         struct page     *page;
5471         swp_entry_t     ent;
5472 };
5473
5474 enum mc_target_type {
5475         MC_TARGET_NONE = 0,
5476         MC_TARGET_PAGE,
5477         MC_TARGET_SWAP,
5478         MC_TARGET_DEVICE,
5479 };
5480
5481 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5482                                                 unsigned long addr, pte_t ptent)
5483 {
5484         struct page *page = vm_normal_page(vma, addr, ptent);
5485
5486         if (!page || !page_mapped(page))
5487                 return NULL;
5488         if (PageAnon(page)) {
5489                 if (!(mc.flags & MOVE_ANON))
5490                         return NULL;
5491         } else {
5492                 if (!(mc.flags & MOVE_FILE))
5493                         return NULL;
5494         }
5495         if (!get_page_unless_zero(page))
5496                 return NULL;
5497
5498         return page;
5499 }
5500
5501 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5502 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5503                         pte_t ptent, swp_entry_t *entry)
5504 {
5505         struct page *page = NULL;
5506         swp_entry_t ent = pte_to_swp_entry(ptent);
5507
5508         if (!(mc.flags & MOVE_ANON))
5509                 return NULL;
5510
5511         /*
5512          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5513          * a device and because they are not accessible by CPU they are store
5514          * as special swap entry in the CPU page table.
5515          */
5516         if (is_device_private_entry(ent)) {
5517                 page = pfn_swap_entry_to_page(ent);
5518                 /*
5519                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5520                  * a refcount of 1 when free (unlike normal page)
5521                  */
5522                 if (!page_ref_add_unless(page, 1, 1))
5523                         return NULL;
5524                 return page;
5525         }
5526
5527         if (non_swap_entry(ent))
5528                 return NULL;
5529
5530         /*
5531          * Because lookup_swap_cache() updates some statistics counter,
5532          * we call find_get_page() with swapper_space directly.
5533          */
5534         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5535         entry->val = ent.val;
5536
5537         return page;
5538 }
5539 #else
5540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5541                         pte_t ptent, swp_entry_t *entry)
5542 {
5543         return NULL;
5544 }
5545 #endif
5546
5547 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5548                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5549 {
5550         if (!vma->vm_file) /* anonymous vma */
5551                 return NULL;
5552         if (!(mc.flags & MOVE_FILE))
5553                 return NULL;
5554
5555         /* page is moved even if it's not RSS of this task(page-faulted). */
5556         /* shmem/tmpfs may report page out on swap: account for that too. */
5557         return find_get_incore_page(vma->vm_file->f_mapping,
5558                         linear_page_index(vma, addr));
5559 }
5560
5561 /**
5562  * mem_cgroup_move_account - move account of the page
5563  * @page: the page
5564  * @compound: charge the page as compound or small page
5565  * @from: mem_cgroup which the page is moved from.
5566  * @to: mem_cgroup which the page is moved to. @from != @to.
5567  *
5568  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5569  *
5570  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5571  * from old cgroup.
5572  */
5573 static int mem_cgroup_move_account(struct page *page,
5574                                    bool compound,
5575                                    struct mem_cgroup *from,
5576                                    struct mem_cgroup *to)
5577 {
5578         struct lruvec *from_vec, *to_vec;
5579         struct pglist_data *pgdat;
5580         unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5581         int ret;
5582
5583         VM_BUG_ON(from == to);
5584         VM_BUG_ON_PAGE(PageLRU(page), page);
5585         VM_BUG_ON(compound && !PageTransHuge(page));
5586
5587         /*
5588          * Prevent mem_cgroup_migrate() from looking at
5589          * page's memory cgroup of its source page while we change it.
5590          */
5591         ret = -EBUSY;
5592         if (!trylock_page(page))
5593                 goto out;
5594
5595         ret = -EINVAL;
5596         if (page_memcg(page) != from)
5597                 goto out_unlock;
5598
5599         pgdat = page_pgdat(page);
5600         from_vec = mem_cgroup_lruvec(from, pgdat);
5601         to_vec = mem_cgroup_lruvec(to, pgdat);
5602
5603         lock_page_memcg(page);
5604
5605         if (PageAnon(page)) {
5606                 if (page_mapped(page)) {
5607                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5608                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5609                         if (PageTransHuge(page)) {
5610                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5611                                                    -nr_pages);
5612                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5613                                                    nr_pages);
5614                         }
5615                 }
5616         } else {
5617                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5618                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5619
5620                 if (PageSwapBacked(page)) {
5621                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5622                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5623                 }
5624
5625                 if (page_mapped(page)) {
5626                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5627                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5628                 }
5629
5630                 if (PageDirty(page)) {
5631                         struct address_space *mapping = page_mapping(page);
5632
5633                         if (mapping_can_writeback(mapping)) {
5634                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5635                                                    -nr_pages);
5636                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5637                                                    nr_pages);
5638                         }
5639                 }
5640         }
5641
5642         if (PageWriteback(page)) {
5643                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5644                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5645         }
5646
5647         /*
5648          * All state has been migrated, let's switch to the new memcg.
5649          *
5650          * It is safe to change page's memcg here because the page
5651          * is referenced, charged, isolated, and locked: we can't race
5652          * with (un)charging, migration, LRU putback, or anything else
5653          * that would rely on a stable page's memory cgroup.
5654          *
5655          * Note that lock_page_memcg is a memcg lock, not a page lock,
5656          * to save space. As soon as we switch page's memory cgroup to a
5657          * new memcg that isn't locked, the above state can change
5658          * concurrently again. Make sure we're truly done with it.
5659          */
5660         smp_mb();
5661
5662         css_get(&to->css);
5663         css_put(&from->css);
5664
5665         page->memcg_data = (unsigned long)to;
5666
5667         __unlock_page_memcg(from);
5668
5669         ret = 0;
5670
5671         local_irq_disable();
5672         mem_cgroup_charge_statistics(to, page, nr_pages);
5673         memcg_check_events(to, page);
5674         mem_cgroup_charge_statistics(from, page, -nr_pages);
5675         memcg_check_events(from, page);
5676         local_irq_enable();
5677 out_unlock:
5678         unlock_page(page);
5679 out:
5680         return ret;
5681 }
5682
5683 /**
5684  * get_mctgt_type - get target type of moving charge
5685  * @vma: the vma the pte to be checked belongs
5686  * @addr: the address corresponding to the pte to be checked
5687  * @ptent: the pte to be checked
5688  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5689  *
5690  * Returns
5691  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5692  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5693  *     move charge. if @target is not NULL, the page is stored in target->page
5694  *     with extra refcnt got(Callers should handle it).
5695  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5696  *     target for charge migration. if @target is not NULL, the entry is stored
5697  *     in target->ent.
5698  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5699  *     (so ZONE_DEVICE page and thus not on the lru).
5700  *     For now we such page is charge like a regular page would be as for all
5701  *     intent and purposes it is just special memory taking the place of a
5702  *     regular page.
5703  *
5704  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5705  *
5706  * Called with pte lock held.
5707  */
5708
5709 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5710                 unsigned long addr, pte_t ptent, union mc_target *target)
5711 {
5712         struct page *page = NULL;
5713         enum mc_target_type ret = MC_TARGET_NONE;
5714         swp_entry_t ent = { .val = 0 };
5715
5716         if (pte_present(ptent))
5717                 page = mc_handle_present_pte(vma, addr, ptent);
5718         else if (is_swap_pte(ptent))
5719                 page = mc_handle_swap_pte(vma, ptent, &ent);
5720         else if (pte_none(ptent))
5721                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5722
5723         if (!page && !ent.val)
5724                 return ret;
5725         if (page) {
5726                 /*
5727                  * Do only loose check w/o serialization.
5728                  * mem_cgroup_move_account() checks the page is valid or
5729                  * not under LRU exclusion.
5730                  */
5731                 if (page_memcg(page) == mc.from) {
5732                         ret = MC_TARGET_PAGE;
5733                         if (is_device_private_page(page))
5734                                 ret = MC_TARGET_DEVICE;
5735                         if (target)
5736                                 target->page = page;
5737                 }
5738                 if (!ret || !target)
5739                         put_page(page);
5740         }
5741         /*
5742          * There is a swap entry and a page doesn't exist or isn't charged.
5743          * But we cannot move a tail-page in a THP.
5744          */
5745         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5746             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5747                 ret = MC_TARGET_SWAP;
5748                 if (target)
5749                         target->ent = ent;
5750         }
5751         return ret;
5752 }
5753
5754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5755 /*
5756  * We don't consider PMD mapped swapping or file mapped pages because THP does
5757  * not support them for now.
5758  * Caller should make sure that pmd_trans_huge(pmd) is true.
5759  */
5760 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5761                 unsigned long addr, pmd_t pmd, union mc_target *target)
5762 {
5763         struct page *page = NULL;
5764         enum mc_target_type ret = MC_TARGET_NONE;
5765
5766         if (unlikely(is_swap_pmd(pmd))) {
5767                 VM_BUG_ON(thp_migration_supported() &&
5768                                   !is_pmd_migration_entry(pmd));
5769                 return ret;
5770         }
5771         page = pmd_page(pmd);
5772         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5773         if (!(mc.flags & MOVE_ANON))
5774                 return ret;
5775         if (page_memcg(page) == mc.from) {
5776                 ret = MC_TARGET_PAGE;
5777                 if (target) {
5778                         get_page(page);
5779                         target->page = page;
5780                 }
5781         }
5782         return ret;
5783 }
5784 #else
5785 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5786                 unsigned long addr, pmd_t pmd, union mc_target *target)
5787 {
5788         return MC_TARGET_NONE;
5789 }
5790 #endif
5791
5792 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5793                                         unsigned long addr, unsigned long end,
5794                                         struct mm_walk *walk)
5795 {
5796         struct vm_area_struct *vma = walk->vma;
5797         pte_t *pte;
5798         spinlock_t *ptl;
5799
5800         ptl = pmd_trans_huge_lock(pmd, vma);
5801         if (ptl) {
5802                 /*
5803                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5804                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5805                  * this might change.
5806                  */
5807                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5808                         mc.precharge += HPAGE_PMD_NR;
5809                 spin_unlock(ptl);
5810                 return 0;
5811         }
5812
5813         if (pmd_trans_unstable(pmd))
5814                 return 0;
5815         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5816         for (; addr != end; pte++, addr += PAGE_SIZE)
5817                 if (get_mctgt_type(vma, addr, *pte, NULL))
5818                         mc.precharge++; /* increment precharge temporarily */
5819         pte_unmap_unlock(pte - 1, ptl);
5820         cond_resched();
5821
5822         return 0;
5823 }
5824
5825 static const struct mm_walk_ops precharge_walk_ops = {
5826         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5827 };
5828
5829 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5830 {
5831         unsigned long precharge;
5832
5833         mmap_read_lock(mm);
5834         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5835         mmap_read_unlock(mm);
5836
5837         precharge = mc.precharge;
5838         mc.precharge = 0;
5839
5840         return precharge;
5841 }
5842
5843 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5844 {
5845         unsigned long precharge = mem_cgroup_count_precharge(mm);
5846
5847         VM_BUG_ON(mc.moving_task);
5848         mc.moving_task = current;
5849         return mem_cgroup_do_precharge(precharge);
5850 }
5851
5852 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5853 static void __mem_cgroup_clear_mc(void)
5854 {
5855         struct mem_cgroup *from = mc.from;
5856         struct mem_cgroup *to = mc.to;
5857
5858         /* we must uncharge all the leftover precharges from mc.to */
5859         if (mc.precharge) {
5860                 cancel_charge(mc.to, mc.precharge);
5861                 mc.precharge = 0;
5862         }
5863         /*
5864          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5865          * we must uncharge here.
5866          */
5867         if (mc.moved_charge) {
5868                 cancel_charge(mc.from, mc.moved_charge);
5869                 mc.moved_charge = 0;
5870         }
5871         /* we must fixup refcnts and charges */
5872         if (mc.moved_swap) {
5873                 /* uncharge swap account from the old cgroup */
5874                 if (!mem_cgroup_is_root(mc.from))
5875                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5876
5877                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5878
5879                 /*
5880                  * we charged both to->memory and to->memsw, so we
5881                  * should uncharge to->memory.
5882                  */
5883                 if (!mem_cgroup_is_root(mc.to))
5884                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5885
5886                 mc.moved_swap = 0;
5887         }
5888         memcg_oom_recover(from);
5889         memcg_oom_recover(to);
5890         wake_up_all(&mc.waitq);
5891 }
5892
5893 static void mem_cgroup_clear_mc(void)
5894 {
5895         struct mm_struct *mm = mc.mm;
5896
5897         /*
5898          * we must clear moving_task before waking up waiters at the end of
5899          * task migration.
5900          */
5901         mc.moving_task = NULL;
5902         __mem_cgroup_clear_mc();
5903         spin_lock(&mc.lock);
5904         mc.from = NULL;
5905         mc.to = NULL;
5906         mc.mm = NULL;
5907         spin_unlock(&mc.lock);
5908
5909         mmput(mm);
5910 }
5911
5912 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5913 {
5914         struct cgroup_subsys_state *css;
5915         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5916         struct mem_cgroup *from;
5917         struct task_struct *leader, *p;
5918         struct mm_struct *mm;
5919         unsigned long move_flags;
5920         int ret = 0;
5921
5922         /* charge immigration isn't supported on the default hierarchy */
5923         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5924                 return 0;
5925
5926         /*
5927          * Multi-process migrations only happen on the default hierarchy
5928          * where charge immigration is not used.  Perform charge
5929          * immigration if @tset contains a leader and whine if there are
5930          * multiple.
5931          */
5932         p = NULL;
5933         cgroup_taskset_for_each_leader(leader, css, tset) {
5934                 WARN_ON_ONCE(p);
5935                 p = leader;
5936                 memcg = mem_cgroup_from_css(css);
5937         }
5938         if (!p)
5939                 return 0;
5940
5941         /*
5942          * We are now committed to this value whatever it is. Changes in this
5943          * tunable will only affect upcoming migrations, not the current one.
5944          * So we need to save it, and keep it going.
5945          */
5946         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5947         if (!move_flags)
5948                 return 0;
5949
5950         from = mem_cgroup_from_task(p);
5951
5952         VM_BUG_ON(from == memcg);
5953
5954         mm = get_task_mm(p);
5955         if (!mm)
5956                 return 0;
5957         /* We move charges only when we move a owner of the mm */
5958         if (mm->owner == p) {
5959                 VM_BUG_ON(mc.from);
5960                 VM_BUG_ON(mc.to);
5961                 VM_BUG_ON(mc.precharge);
5962                 VM_BUG_ON(mc.moved_charge);
5963                 VM_BUG_ON(mc.moved_swap);
5964
5965                 spin_lock(&mc.lock);
5966                 mc.mm = mm;
5967                 mc.from = from;
5968                 mc.to = memcg;
5969                 mc.flags = move_flags;
5970                 spin_unlock(&mc.lock);
5971                 /* We set mc.moving_task later */
5972
5973                 ret = mem_cgroup_precharge_mc(mm);
5974                 if (ret)
5975                         mem_cgroup_clear_mc();
5976         } else {
5977                 mmput(mm);
5978         }
5979         return ret;
5980 }
5981
5982 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5983 {
5984         if (mc.to)
5985                 mem_cgroup_clear_mc();
5986 }
5987
5988 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5989                                 unsigned long addr, unsigned long end,
5990                                 struct mm_walk *walk)
5991 {
5992         int ret = 0;
5993         struct vm_area_struct *vma = walk->vma;
5994         pte_t *pte;
5995         spinlock_t *ptl;
5996         enum mc_target_type target_type;
5997         union mc_target target;
5998         struct page *page;
5999
6000         ptl = pmd_trans_huge_lock(pmd, vma);
6001         if (ptl) {
6002                 if (mc.precharge < HPAGE_PMD_NR) {
6003                         spin_unlock(ptl);
6004                         return 0;
6005                 }
6006                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6007                 if (target_type == MC_TARGET_PAGE) {
6008                         page = target.page;
6009                         if (!isolate_lru_page(page)) {
6010                                 if (!mem_cgroup_move_account(page, true,
6011                                                              mc.from, mc.to)) {
6012                                         mc.precharge -= HPAGE_PMD_NR;
6013                                         mc.moved_charge += HPAGE_PMD_NR;
6014                                 }
6015                                 putback_lru_page(page);
6016                         }
6017                         put_page(page);
6018                 } else if (target_type == MC_TARGET_DEVICE) {
6019                         page = target.page;
6020                         if (!mem_cgroup_move_account(page, true,
6021                                                      mc.from, mc.to)) {
6022                                 mc.precharge -= HPAGE_PMD_NR;
6023                                 mc.moved_charge += HPAGE_PMD_NR;
6024                         }
6025                         put_page(page);
6026                 }
6027                 spin_unlock(ptl);
6028                 return 0;
6029         }
6030
6031         if (pmd_trans_unstable(pmd))
6032                 return 0;
6033 retry:
6034         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6035         for (; addr != end; addr += PAGE_SIZE) {
6036                 pte_t ptent = *(pte++);
6037                 bool device = false;
6038                 swp_entry_t ent;
6039
6040                 if (!mc.precharge)
6041                         break;
6042
6043                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6044                 case MC_TARGET_DEVICE:
6045                         device = true;
6046                         fallthrough;
6047                 case MC_TARGET_PAGE:
6048                         page = target.page;
6049                         /*
6050                          * We can have a part of the split pmd here. Moving it
6051                          * can be done but it would be too convoluted so simply
6052                          * ignore such a partial THP and keep it in original
6053                          * memcg. There should be somebody mapping the head.
6054                          */
6055                         if (PageTransCompound(page))
6056                                 goto put;
6057                         if (!device && isolate_lru_page(page))
6058                                 goto put;
6059                         if (!mem_cgroup_move_account(page, false,
6060                                                 mc.from, mc.to)) {
6061                                 mc.precharge--;
6062                                 /* we uncharge from mc.from later. */
6063                                 mc.moved_charge++;
6064                         }
6065                         if (!device)
6066                                 putback_lru_page(page);
6067 put:                    /* get_mctgt_type() gets the page */
6068                         put_page(page);
6069                         break;
6070                 case MC_TARGET_SWAP:
6071                         ent = target.ent;
6072                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6073                                 mc.precharge--;
6074                                 mem_cgroup_id_get_many(mc.to, 1);
6075                                 /* we fixup other refcnts and charges later. */
6076                                 mc.moved_swap++;
6077                         }
6078                         break;
6079                 default:
6080                         break;
6081                 }
6082         }
6083         pte_unmap_unlock(pte - 1, ptl);
6084         cond_resched();
6085
6086         if (addr != end) {
6087                 /*
6088                  * We have consumed all precharges we got in can_attach().
6089                  * We try charge one by one, but don't do any additional
6090                  * charges to mc.to if we have failed in charge once in attach()
6091                  * phase.
6092                  */
6093                 ret = mem_cgroup_do_precharge(1);
6094                 if (!ret)
6095                         goto retry;
6096         }
6097
6098         return ret;
6099 }
6100
6101 static const struct mm_walk_ops charge_walk_ops = {
6102         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6103 };
6104
6105 static void mem_cgroup_move_charge(void)
6106 {
6107         lru_add_drain_all();
6108         /*
6109          * Signal lock_page_memcg() to take the memcg's move_lock
6110          * while we're moving its pages to another memcg. Then wait
6111          * for already started RCU-only updates to finish.
6112          */
6113         atomic_inc(&mc.from->moving_account);
6114         synchronize_rcu();
6115 retry:
6116         if (unlikely(!mmap_read_trylock(mc.mm))) {
6117                 /*
6118                  * Someone who are holding the mmap_lock might be waiting in
6119                  * waitq. So we cancel all extra charges, wake up all waiters,
6120                  * and retry. Because we cancel precharges, we might not be able
6121                  * to move enough charges, but moving charge is a best-effort
6122                  * feature anyway, so it wouldn't be a big problem.
6123                  */
6124                 __mem_cgroup_clear_mc();
6125                 cond_resched();
6126                 goto retry;
6127         }
6128         /*
6129          * When we have consumed all precharges and failed in doing
6130          * additional charge, the page walk just aborts.
6131          */
6132         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6133                         NULL);
6134
6135         mmap_read_unlock(mc.mm);
6136         atomic_dec(&mc.from->moving_account);
6137 }
6138
6139 static void mem_cgroup_move_task(void)
6140 {
6141         if (mc.to) {
6142                 mem_cgroup_move_charge();
6143                 mem_cgroup_clear_mc();
6144         }
6145 }
6146 #else   /* !CONFIG_MMU */
6147 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6148 {
6149         return 0;
6150 }
6151 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6152 {
6153 }
6154 static void mem_cgroup_move_task(void)
6155 {
6156 }
6157 #endif
6158
6159 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6160 {
6161         if (value == PAGE_COUNTER_MAX)
6162                 seq_puts(m, "max\n");
6163         else
6164                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6165
6166         return 0;
6167 }
6168
6169 static u64 memory_current_read(struct cgroup_subsys_state *css,
6170                                struct cftype *cft)
6171 {
6172         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6173
6174         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6175 }
6176
6177 static int memory_min_show(struct seq_file *m, void *v)
6178 {
6179         return seq_puts_memcg_tunable(m,
6180                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6181 }
6182
6183 static ssize_t memory_min_write(struct kernfs_open_file *of,
6184                                 char *buf, size_t nbytes, loff_t off)
6185 {
6186         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6187         unsigned long min;
6188         int err;
6189
6190         buf = strstrip(buf);
6191         err = page_counter_memparse(buf, "max", &min);
6192         if (err)
6193                 return err;
6194
6195         page_counter_set_min(&memcg->memory, min);
6196
6197         return nbytes;
6198 }
6199
6200 static int memory_low_show(struct seq_file *m, void *v)
6201 {
6202         return seq_puts_memcg_tunable(m,
6203                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6204 }
6205
6206 static ssize_t memory_low_write(struct kernfs_open_file *of,
6207                                 char *buf, size_t nbytes, loff_t off)
6208 {
6209         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210         unsigned long low;
6211         int err;
6212
6213         buf = strstrip(buf);
6214         err = page_counter_memparse(buf, "max", &low);
6215         if (err)
6216                 return err;
6217
6218         page_counter_set_low(&memcg->memory, low);
6219
6220         return nbytes;
6221 }
6222
6223 static int memory_high_show(struct seq_file *m, void *v)
6224 {
6225         return seq_puts_memcg_tunable(m,
6226                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6227 }
6228
6229 static ssize_t memory_high_write(struct kernfs_open_file *of,
6230                                  char *buf, size_t nbytes, loff_t off)
6231 {
6232         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6233         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6234         bool drained = false;
6235         unsigned long high;
6236         int err;
6237
6238         buf = strstrip(buf);
6239         err = page_counter_memparse(buf, "max", &high);
6240         if (err)
6241                 return err;
6242
6243         page_counter_set_high(&memcg->memory, high);
6244
6245         for (;;) {
6246                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6247                 unsigned long reclaimed;
6248
6249                 if (nr_pages <= high)
6250                         break;
6251
6252                 if (signal_pending(current))
6253                         break;
6254
6255                 if (!drained) {
6256                         drain_all_stock(memcg);
6257                         drained = true;
6258                         continue;
6259                 }
6260
6261                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6262                                                          GFP_KERNEL, true);
6263
6264                 if (!reclaimed && !nr_retries--)
6265                         break;
6266         }
6267
6268         memcg_wb_domain_size_changed(memcg);
6269         return nbytes;
6270 }
6271
6272 static int memory_max_show(struct seq_file *m, void *v)
6273 {
6274         return seq_puts_memcg_tunable(m,
6275                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6276 }
6277
6278 static ssize_t memory_max_write(struct kernfs_open_file *of,
6279                                 char *buf, size_t nbytes, loff_t off)
6280 {
6281         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6282         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6283         bool drained = false;
6284         unsigned long max;
6285         int err;
6286
6287         buf = strstrip(buf);
6288         err = page_counter_memparse(buf, "max", &max);
6289         if (err)
6290                 return err;
6291
6292         xchg(&memcg->memory.max, max);
6293
6294         for (;;) {
6295                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6296
6297                 if (nr_pages <= max)
6298                         break;
6299
6300                 if (signal_pending(current))
6301                         break;
6302
6303                 if (!drained) {
6304                         drain_all_stock(memcg);
6305                         drained = true;
6306                         continue;
6307                 }
6308
6309                 if (nr_reclaims) {
6310                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6311                                                           GFP_KERNEL, true))
6312                                 nr_reclaims--;
6313                         continue;
6314                 }
6315
6316                 memcg_memory_event(memcg, MEMCG_OOM);
6317                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6318                         break;
6319         }
6320
6321         memcg_wb_domain_size_changed(memcg);
6322         return nbytes;
6323 }
6324
6325 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6326 {
6327         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6328         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6329         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6330         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6331         seq_printf(m, "oom_kill %lu\n",
6332                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6333 }
6334
6335 static int memory_events_show(struct seq_file *m, void *v)
6336 {
6337         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6338
6339         __memory_events_show(m, memcg->memory_events);
6340         return 0;
6341 }
6342
6343 static int memory_events_local_show(struct seq_file *m, void *v)
6344 {
6345         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6346
6347         __memory_events_show(m, memcg->memory_events_local);
6348         return 0;
6349 }
6350
6351 static int memory_stat_show(struct seq_file *m, void *v)
6352 {
6353         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6354         char *buf;
6355
6356         buf = memory_stat_format(memcg);
6357         if (!buf)
6358                 return -ENOMEM;
6359         seq_puts(m, buf);
6360         kfree(buf);
6361         return 0;
6362 }
6363
6364 #ifdef CONFIG_NUMA
6365 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6366                                                      int item)
6367 {
6368         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6369 }
6370
6371 static int memory_numa_stat_show(struct seq_file *m, void *v)
6372 {
6373         int i;
6374         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6375
6376         cgroup_rstat_flush(memcg->css.cgroup);
6377
6378         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6379                 int nid;
6380
6381                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6382                         continue;
6383
6384                 seq_printf(m, "%s", memory_stats[i].name);
6385                 for_each_node_state(nid, N_MEMORY) {
6386                         u64 size;
6387                         struct lruvec *lruvec;
6388
6389                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6390                         size = lruvec_page_state_output(lruvec,
6391                                                         memory_stats[i].idx);
6392                         seq_printf(m, " N%d=%llu", nid, size);
6393                 }
6394                 seq_putc(m, '\n');
6395         }
6396
6397         return 0;
6398 }
6399 #endif
6400
6401 static int memory_oom_group_show(struct seq_file *m, void *v)
6402 {
6403         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404
6405         seq_printf(m, "%d\n", memcg->oom_group);
6406
6407         return 0;
6408 }
6409
6410 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6411                                       char *buf, size_t nbytes, loff_t off)
6412 {
6413         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6414         int ret, oom_group;
6415
6416         buf = strstrip(buf);
6417         if (!buf)
6418                 return -EINVAL;
6419
6420         ret = kstrtoint(buf, 0, &oom_group);
6421         if (ret)
6422                 return ret;
6423
6424         if (oom_group != 0 && oom_group != 1)
6425                 return -EINVAL;
6426
6427         memcg->oom_group = oom_group;
6428
6429         return nbytes;
6430 }
6431
6432 static struct cftype memory_files[] = {
6433         {
6434                 .name = "current",
6435                 .flags = CFTYPE_NOT_ON_ROOT,
6436                 .read_u64 = memory_current_read,
6437         },
6438         {
6439                 .name = "min",
6440                 .flags = CFTYPE_NOT_ON_ROOT,
6441                 .seq_show = memory_min_show,
6442                 .write = memory_min_write,
6443         },
6444         {
6445                 .name = "low",
6446                 .flags = CFTYPE_NOT_ON_ROOT,
6447                 .seq_show = memory_low_show,
6448                 .write = memory_low_write,
6449         },
6450         {
6451                 .name = "high",
6452                 .flags = CFTYPE_NOT_ON_ROOT,
6453                 .seq_show = memory_high_show,
6454                 .write = memory_high_write,
6455         },
6456         {
6457                 .name = "max",
6458                 .flags = CFTYPE_NOT_ON_ROOT,
6459                 .seq_show = memory_max_show,
6460                 .write = memory_max_write,
6461         },
6462         {
6463                 .name = "events",
6464                 .flags = CFTYPE_NOT_ON_ROOT,
6465                 .file_offset = offsetof(struct mem_cgroup, events_file),
6466                 .seq_show = memory_events_show,
6467         },
6468         {
6469                 .name = "events.local",
6470                 .flags = CFTYPE_NOT_ON_ROOT,
6471                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6472                 .seq_show = memory_events_local_show,
6473         },
6474         {
6475                 .name = "stat",
6476                 .seq_show = memory_stat_show,
6477         },
6478 #ifdef CONFIG_NUMA
6479         {
6480                 .name = "numa_stat",
6481                 .seq_show = memory_numa_stat_show,
6482         },
6483 #endif
6484         {
6485                 .name = "oom.group",
6486                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6487                 .seq_show = memory_oom_group_show,
6488                 .write = memory_oom_group_write,
6489         },
6490         { }     /* terminate */
6491 };
6492
6493 struct cgroup_subsys memory_cgrp_subsys = {
6494         .css_alloc = mem_cgroup_css_alloc,
6495         .css_online = mem_cgroup_css_online,
6496         .css_offline = mem_cgroup_css_offline,
6497         .css_released = mem_cgroup_css_released,
6498         .css_free = mem_cgroup_css_free,
6499         .css_reset = mem_cgroup_css_reset,
6500         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6501         .can_attach = mem_cgroup_can_attach,
6502         .cancel_attach = mem_cgroup_cancel_attach,
6503         .post_attach = mem_cgroup_move_task,
6504         .dfl_cftypes = memory_files,
6505         .legacy_cftypes = mem_cgroup_legacy_files,
6506         .early_init = 0,
6507 };
6508
6509 /*
6510  * This function calculates an individual cgroup's effective
6511  * protection which is derived from its own memory.min/low, its
6512  * parent's and siblings' settings, as well as the actual memory
6513  * distribution in the tree.
6514  *
6515  * The following rules apply to the effective protection values:
6516  *
6517  * 1. At the first level of reclaim, effective protection is equal to
6518  *    the declared protection in memory.min and memory.low.
6519  *
6520  * 2. To enable safe delegation of the protection configuration, at
6521  *    subsequent levels the effective protection is capped to the
6522  *    parent's effective protection.
6523  *
6524  * 3. To make complex and dynamic subtrees easier to configure, the
6525  *    user is allowed to overcommit the declared protection at a given
6526  *    level. If that is the case, the parent's effective protection is
6527  *    distributed to the children in proportion to how much protection
6528  *    they have declared and how much of it they are utilizing.
6529  *
6530  *    This makes distribution proportional, but also work-conserving:
6531  *    if one cgroup claims much more protection than it uses memory,
6532  *    the unused remainder is available to its siblings.
6533  *
6534  * 4. Conversely, when the declared protection is undercommitted at a
6535  *    given level, the distribution of the larger parental protection
6536  *    budget is NOT proportional. A cgroup's protection from a sibling
6537  *    is capped to its own memory.min/low setting.
6538  *
6539  * 5. However, to allow protecting recursive subtrees from each other
6540  *    without having to declare each individual cgroup's fixed share
6541  *    of the ancestor's claim to protection, any unutilized -
6542  *    "floating" - protection from up the tree is distributed in
6543  *    proportion to each cgroup's *usage*. This makes the protection
6544  *    neutral wrt sibling cgroups and lets them compete freely over
6545  *    the shared parental protection budget, but it protects the
6546  *    subtree as a whole from neighboring subtrees.
6547  *
6548  * Note that 4. and 5. are not in conflict: 4. is about protecting
6549  * against immediate siblings whereas 5. is about protecting against
6550  * neighboring subtrees.
6551  */
6552 static unsigned long effective_protection(unsigned long usage,
6553                                           unsigned long parent_usage,
6554                                           unsigned long setting,
6555                                           unsigned long parent_effective,
6556                                           unsigned long siblings_protected)
6557 {
6558         unsigned long protected;
6559         unsigned long ep;
6560
6561         protected = min(usage, setting);
6562         /*
6563          * If all cgroups at this level combined claim and use more
6564          * protection then what the parent affords them, distribute
6565          * shares in proportion to utilization.
6566          *
6567          * We are using actual utilization rather than the statically
6568          * claimed protection in order to be work-conserving: claimed
6569          * but unused protection is available to siblings that would
6570          * otherwise get a smaller chunk than what they claimed.
6571          */
6572         if (siblings_protected > parent_effective)
6573                 return protected * parent_effective / siblings_protected;
6574
6575         /*
6576          * Ok, utilized protection of all children is within what the
6577          * parent affords them, so we know whatever this child claims
6578          * and utilizes is effectively protected.
6579          *
6580          * If there is unprotected usage beyond this value, reclaim
6581          * will apply pressure in proportion to that amount.
6582          *
6583          * If there is unutilized protection, the cgroup will be fully
6584          * shielded from reclaim, but we do return a smaller value for
6585          * protection than what the group could enjoy in theory. This
6586          * is okay. With the overcommit distribution above, effective
6587          * protection is always dependent on how memory is actually
6588          * consumed among the siblings anyway.
6589          */
6590         ep = protected;
6591
6592         /*
6593          * If the children aren't claiming (all of) the protection
6594          * afforded to them by the parent, distribute the remainder in
6595          * proportion to the (unprotected) memory of each cgroup. That
6596          * way, cgroups that aren't explicitly prioritized wrt each
6597          * other compete freely over the allowance, but they are
6598          * collectively protected from neighboring trees.
6599          *
6600          * We're using unprotected memory for the weight so that if
6601          * some cgroups DO claim explicit protection, we don't protect
6602          * the same bytes twice.
6603          *
6604          * Check both usage and parent_usage against the respective
6605          * protected values. One should imply the other, but they
6606          * aren't read atomically - make sure the division is sane.
6607          */
6608         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6609                 return ep;
6610         if (parent_effective > siblings_protected &&
6611             parent_usage > siblings_protected &&
6612             usage > protected) {
6613                 unsigned long unclaimed;
6614
6615                 unclaimed = parent_effective - siblings_protected;
6616                 unclaimed *= usage - protected;
6617                 unclaimed /= parent_usage - siblings_protected;
6618
6619                 ep += unclaimed;
6620         }
6621
6622         return ep;
6623 }
6624
6625 /**
6626  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6627  * @root: the top ancestor of the sub-tree being checked
6628  * @memcg: the memory cgroup to check
6629  *
6630  * WARNING: This function is not stateless! It can only be used as part
6631  *          of a top-down tree iteration, not for isolated queries.
6632  */
6633 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6634                                      struct mem_cgroup *memcg)
6635 {
6636         unsigned long usage, parent_usage;
6637         struct mem_cgroup *parent;
6638
6639         if (mem_cgroup_disabled())
6640                 return;
6641
6642         if (!root)
6643                 root = root_mem_cgroup;
6644
6645         /*
6646          * Effective values of the reclaim targets are ignored so they
6647          * can be stale. Have a look at mem_cgroup_protection for more
6648          * details.
6649          * TODO: calculation should be more robust so that we do not need
6650          * that special casing.
6651          */
6652         if (memcg == root)
6653                 return;
6654
6655         usage = page_counter_read(&memcg->memory);
6656         if (!usage)
6657                 return;
6658
6659         parent = parent_mem_cgroup(memcg);
6660         /* No parent means a non-hierarchical mode on v1 memcg */
6661         if (!parent)
6662                 return;
6663
6664         if (parent == root) {
6665                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6666                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6667                 return;
6668         }
6669
6670         parent_usage = page_counter_read(&parent->memory);
6671
6672         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6673                         READ_ONCE(memcg->memory.min),
6674                         READ_ONCE(parent->memory.emin),
6675                         atomic_long_read(&parent->memory.children_min_usage)));
6676
6677         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6678                         READ_ONCE(memcg->memory.low),
6679                         READ_ONCE(parent->memory.elow),
6680                         atomic_long_read(&parent->memory.children_low_usage)));
6681 }
6682
6683 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6684 {
6685         unsigned int nr_pages = thp_nr_pages(page);
6686         int ret;
6687
6688         ret = try_charge(memcg, gfp, nr_pages);
6689         if (ret)
6690                 goto out;
6691
6692         css_get(&memcg->css);
6693         commit_charge(page, memcg);
6694
6695         local_irq_disable();
6696         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6697         memcg_check_events(memcg, page);
6698         local_irq_enable();
6699 out:
6700         return ret;
6701 }
6702
6703 /**
6704  * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6705  * @page: page to charge
6706  * @mm: mm context of the victim
6707  * @gfp_mask: reclaim mode
6708  *
6709  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6710  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6711  * charge to the active memcg.
6712  *
6713  * Do not use this for pages allocated for swapin.
6714  *
6715  * Returns 0 on success. Otherwise, an error code is returned.
6716  */
6717 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6718                         gfp_t gfp_mask)
6719 {
6720         struct mem_cgroup *memcg;
6721         int ret;
6722
6723         memcg = get_mem_cgroup_from_mm(mm);
6724         ret = charge_memcg(page, memcg, gfp_mask);
6725         css_put(&memcg->css);
6726
6727         return ret;
6728 }
6729
6730 /**
6731  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6732  * @page: page to charge
6733  * @mm: mm context of the victim
6734  * @gfp: reclaim mode
6735  * @entry: swap entry for which the page is allocated
6736  *
6737  * This function charges a page allocated for swapin. Please call this before
6738  * adding the page to the swapcache.
6739  *
6740  * Returns 0 on success. Otherwise, an error code is returned.
6741  */
6742 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6743                                   gfp_t gfp, swp_entry_t entry)
6744 {
6745         struct mem_cgroup *memcg;
6746         unsigned short id;
6747         int ret;
6748
6749         if (mem_cgroup_disabled())
6750                 return 0;
6751
6752         id = lookup_swap_cgroup_id(entry);
6753         rcu_read_lock();
6754         memcg = mem_cgroup_from_id(id);
6755         if (!memcg || !css_tryget_online(&memcg->css))
6756                 memcg = get_mem_cgroup_from_mm(mm);
6757         rcu_read_unlock();
6758
6759         ret = charge_memcg(page, memcg, gfp);
6760
6761         css_put(&memcg->css);
6762         return ret;
6763 }
6764
6765 /*
6766  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6767  * @entry: swap entry for which the page is charged
6768  *
6769  * Call this function after successfully adding the charged page to swapcache.
6770  *
6771  * Note: This function assumes the page for which swap slot is being uncharged
6772  * is order 0 page.
6773  */
6774 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6775 {
6776         /*
6777          * Cgroup1's unified memory+swap counter has been charged with the
6778          * new swapcache page, finish the transfer by uncharging the swap
6779          * slot. The swap slot would also get uncharged when it dies, but
6780          * it can stick around indefinitely and we'd count the page twice
6781          * the entire time.
6782          *
6783          * Cgroup2 has separate resource counters for memory and swap,
6784          * so this is a non-issue here. Memory and swap charge lifetimes
6785          * correspond 1:1 to page and swap slot lifetimes: we charge the
6786          * page to memory here, and uncharge swap when the slot is freed.
6787          */
6788         if (!mem_cgroup_disabled() && do_memsw_account()) {
6789                 /*
6790                  * The swap entry might not get freed for a long time,
6791                  * let's not wait for it.  The page already received a
6792                  * memory+swap charge, drop the swap entry duplicate.
6793                  */
6794                 mem_cgroup_uncharge_swap(entry, 1);
6795         }
6796 }
6797
6798 struct uncharge_gather {
6799         struct mem_cgroup *memcg;
6800         unsigned long nr_memory;
6801         unsigned long pgpgout;
6802         unsigned long nr_kmem;
6803         struct page *dummy_page;
6804 };
6805
6806 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6807 {
6808         memset(ug, 0, sizeof(*ug));
6809 }
6810
6811 static void uncharge_batch(const struct uncharge_gather *ug)
6812 {
6813         unsigned long flags;
6814
6815         if (ug->nr_memory) {
6816                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6817                 if (do_memsw_account())
6818                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6819                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6820                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6821                 memcg_oom_recover(ug->memcg);
6822         }
6823
6824         local_irq_save(flags);
6825         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6826         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6827         memcg_check_events(ug->memcg, ug->dummy_page);
6828         local_irq_restore(flags);
6829
6830         /* drop reference from uncharge_page */
6831         css_put(&ug->memcg->css);
6832 }
6833
6834 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6835 {
6836         unsigned long nr_pages;
6837         struct mem_cgroup *memcg;
6838         struct obj_cgroup *objcg;
6839         bool use_objcg = PageMemcgKmem(page);
6840
6841         VM_BUG_ON_PAGE(PageLRU(page), page);
6842
6843         /*
6844          * Nobody should be changing or seriously looking at
6845          * page memcg or objcg at this point, we have fully
6846          * exclusive access to the page.
6847          */
6848         if (use_objcg) {
6849                 objcg = __page_objcg(page);
6850                 /*
6851                  * This get matches the put at the end of the function and
6852                  * kmem pages do not hold memcg references anymore.
6853                  */
6854                 memcg = get_mem_cgroup_from_objcg(objcg);
6855         } else {
6856                 memcg = __page_memcg(page);
6857         }
6858
6859         if (!memcg)
6860                 return;
6861
6862         if (ug->memcg != memcg) {
6863                 if (ug->memcg) {
6864                         uncharge_batch(ug);
6865                         uncharge_gather_clear(ug);
6866                 }
6867                 ug->memcg = memcg;
6868                 ug->dummy_page = page;
6869
6870                 /* pairs with css_put in uncharge_batch */
6871                 css_get(&memcg->css);
6872         }
6873
6874         nr_pages = compound_nr(page);
6875
6876         if (use_objcg) {
6877                 ug->nr_memory += nr_pages;
6878                 ug->nr_kmem += nr_pages;
6879
6880                 page->memcg_data = 0;
6881                 obj_cgroup_put(objcg);
6882         } else {
6883                 /* LRU pages aren't accounted at the root level */
6884                 if (!mem_cgroup_is_root(memcg))
6885                         ug->nr_memory += nr_pages;
6886                 ug->pgpgout++;
6887
6888                 page->memcg_data = 0;
6889         }
6890
6891         css_put(&memcg->css);
6892 }
6893
6894 /**
6895  * __mem_cgroup_uncharge - uncharge a page
6896  * @page: page to uncharge
6897  *
6898  * Uncharge a page previously charged with __mem_cgroup_charge().
6899  */
6900 void __mem_cgroup_uncharge(struct page *page)
6901 {
6902         struct uncharge_gather ug;
6903
6904         /* Don't touch page->lru of any random page, pre-check: */
6905         if (!page_memcg(page))
6906                 return;
6907
6908         uncharge_gather_clear(&ug);
6909         uncharge_page(page, &ug);
6910         uncharge_batch(&ug);
6911 }
6912
6913 /**
6914  * __mem_cgroup_uncharge_list - uncharge a list of page
6915  * @page_list: list of pages to uncharge
6916  *
6917  * Uncharge a list of pages previously charged with
6918  * __mem_cgroup_charge().
6919  */
6920 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6921 {
6922         struct uncharge_gather ug;
6923         struct page *page;
6924
6925         uncharge_gather_clear(&ug);
6926         list_for_each_entry(page, page_list, lru)
6927                 uncharge_page(page, &ug);
6928         if (ug.memcg)
6929                 uncharge_batch(&ug);
6930 }
6931
6932 /**
6933  * mem_cgroup_migrate - charge a page's replacement
6934  * @oldpage: currently circulating page
6935  * @newpage: replacement page
6936  *
6937  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6938  * be uncharged upon free.
6939  *
6940  * Both pages must be locked, @newpage->mapping must be set up.
6941  */
6942 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6943 {
6944         struct mem_cgroup *memcg;
6945         unsigned int nr_pages;
6946         unsigned long flags;
6947
6948         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6949         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6950         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6951         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6952                        newpage);
6953
6954         if (mem_cgroup_disabled())
6955                 return;
6956
6957         /* Page cache replacement: new page already charged? */
6958         if (page_memcg(newpage))
6959                 return;
6960
6961         memcg = page_memcg(oldpage);
6962         VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6963         if (!memcg)
6964                 return;
6965
6966         /* Force-charge the new page. The old one will be freed soon */
6967         nr_pages = thp_nr_pages(newpage);
6968
6969         if (!mem_cgroup_is_root(memcg)) {
6970                 page_counter_charge(&memcg->memory, nr_pages);
6971                 if (do_memsw_account())
6972                         page_counter_charge(&memcg->memsw, nr_pages);
6973         }
6974
6975         css_get(&memcg->css);
6976         commit_charge(newpage, memcg);
6977
6978         local_irq_save(flags);
6979         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6980         memcg_check_events(memcg, newpage);
6981         local_irq_restore(flags);
6982 }
6983
6984 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6985 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6986
6987 void mem_cgroup_sk_alloc(struct sock *sk)
6988 {
6989         struct mem_cgroup *memcg;
6990
6991         if (!mem_cgroup_sockets_enabled)
6992                 return;
6993
6994         /* Do not associate the sock with unrelated interrupted task's memcg. */
6995         if (in_interrupt())
6996                 return;
6997
6998         rcu_read_lock();
6999         memcg = mem_cgroup_from_task(current);
7000         if (memcg == root_mem_cgroup)
7001                 goto out;
7002         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7003                 goto out;
7004         if (css_tryget(&memcg->css))
7005                 sk->sk_memcg = memcg;
7006 out:
7007         rcu_read_unlock();
7008 }
7009
7010 void mem_cgroup_sk_free(struct sock *sk)
7011 {
7012         if (sk->sk_memcg)
7013                 css_put(&sk->sk_memcg->css);
7014 }
7015
7016 /**
7017  * mem_cgroup_charge_skmem - charge socket memory
7018  * @memcg: memcg to charge
7019  * @nr_pages: number of pages to charge
7020  * @gfp_mask: reclaim mode
7021  *
7022  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7023  * @memcg's configured limit, %false if it doesn't.
7024  */
7025 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7026                              gfp_t gfp_mask)
7027 {
7028         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7029                 struct page_counter *fail;
7030
7031                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7032                         memcg->tcpmem_pressure = 0;
7033                         return true;
7034                 }
7035                 memcg->tcpmem_pressure = 1;
7036                 if (gfp_mask & __GFP_NOFAIL) {
7037                         page_counter_charge(&memcg->tcpmem, nr_pages);
7038                         return true;
7039                 }
7040                 return false;
7041         }
7042
7043         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7044                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7045                 return true;
7046         }
7047
7048         return false;
7049 }
7050
7051 /**
7052  * mem_cgroup_uncharge_skmem - uncharge socket memory
7053  * @memcg: memcg to uncharge
7054  * @nr_pages: number of pages to uncharge
7055  */
7056 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7057 {
7058         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7059                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7060                 return;
7061         }
7062
7063         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7064
7065         refill_stock(memcg, nr_pages);
7066 }
7067
7068 static int __init cgroup_memory(char *s)
7069 {
7070         char *token;
7071
7072         while ((token = strsep(&s, ",")) != NULL) {
7073                 if (!*token)
7074                         continue;
7075                 if (!strcmp(token, "nosocket"))
7076                         cgroup_memory_nosocket = true;
7077                 if (!strcmp(token, "nokmem"))
7078                         cgroup_memory_nokmem = true;
7079         }
7080         return 0;
7081 }
7082 __setup("cgroup.memory=", cgroup_memory);
7083
7084 /*
7085  * subsys_initcall() for memory controller.
7086  *
7087  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7088  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7089  * basically everything that doesn't depend on a specific mem_cgroup structure
7090  * should be initialized from here.
7091  */
7092 static int __init mem_cgroup_init(void)
7093 {
7094         int cpu, node;
7095
7096         /*
7097          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7098          * used for per-memcg-per-cpu caching of per-node statistics. In order
7099          * to work fine, we should make sure that the overfill threshold can't
7100          * exceed S32_MAX / PAGE_SIZE.
7101          */
7102         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7103
7104         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7105                                   memcg_hotplug_cpu_dead);
7106
7107         for_each_possible_cpu(cpu)
7108                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7109                           drain_local_stock);
7110
7111         for_each_node(node) {
7112                 struct mem_cgroup_tree_per_node *rtpn;
7113
7114                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7115                                     node_online(node) ? node : NUMA_NO_NODE);
7116
7117                 rtpn->rb_root = RB_ROOT;
7118                 rtpn->rb_rightmost = NULL;
7119                 spin_lock_init(&rtpn->lock);
7120                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7121         }
7122
7123         return 0;
7124 }
7125 subsys_initcall(mem_cgroup_init);
7126
7127 #ifdef CONFIG_MEMCG_SWAP
7128 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7129 {
7130         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7131                 /*
7132                  * The root cgroup cannot be destroyed, so it's refcount must
7133                  * always be >= 1.
7134                  */
7135                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7136                         VM_BUG_ON(1);
7137                         break;
7138                 }
7139                 memcg = parent_mem_cgroup(memcg);
7140                 if (!memcg)
7141                         memcg = root_mem_cgroup;
7142         }
7143         return memcg;
7144 }
7145
7146 /**
7147  * mem_cgroup_swapout - transfer a memsw charge to swap
7148  * @page: page whose memsw charge to transfer
7149  * @entry: swap entry to move the charge to
7150  *
7151  * Transfer the memsw charge of @page to @entry.
7152  */
7153 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7154 {
7155         struct mem_cgroup *memcg, *swap_memcg;
7156         unsigned int nr_entries;
7157         unsigned short oldid;
7158
7159         VM_BUG_ON_PAGE(PageLRU(page), page);
7160         VM_BUG_ON_PAGE(page_count(page), page);
7161
7162         if (mem_cgroup_disabled())
7163                 return;
7164
7165         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7166                 return;
7167
7168         memcg = page_memcg(page);
7169
7170         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7171         if (!memcg)
7172                 return;
7173
7174         /*
7175          * In case the memcg owning these pages has been offlined and doesn't
7176          * have an ID allocated to it anymore, charge the closest online
7177          * ancestor for the swap instead and transfer the memory+swap charge.
7178          */
7179         swap_memcg = mem_cgroup_id_get_online(memcg);
7180         nr_entries = thp_nr_pages(page);
7181         /* Get references for the tail pages, too */
7182         if (nr_entries > 1)
7183                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7184         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7185                                    nr_entries);
7186         VM_BUG_ON_PAGE(oldid, page);
7187         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7188
7189         page->memcg_data = 0;
7190
7191         if (!mem_cgroup_is_root(memcg))
7192                 page_counter_uncharge(&memcg->memory, nr_entries);
7193
7194         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7195                 if (!mem_cgroup_is_root(swap_memcg))
7196                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7197                 page_counter_uncharge(&memcg->memsw, nr_entries);
7198         }
7199
7200         /*
7201          * Interrupts should be disabled here because the caller holds the
7202          * i_pages lock which is taken with interrupts-off. It is
7203          * important here to have the interrupts disabled because it is the
7204          * only synchronisation we have for updating the per-CPU variables.
7205          */
7206         VM_BUG_ON(!irqs_disabled());
7207         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7208         memcg_check_events(memcg, page);
7209
7210         css_put(&memcg->css);
7211 }
7212
7213 /**
7214  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7215  * @page: page being added to swap
7216  * @entry: swap entry to charge
7217  *
7218  * Try to charge @page's memcg for the swap space at @entry.
7219  *
7220  * Returns 0 on success, -ENOMEM on failure.
7221  */
7222 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7223 {
7224         unsigned int nr_pages = thp_nr_pages(page);
7225         struct page_counter *counter;
7226         struct mem_cgroup *memcg;
7227         unsigned short oldid;
7228
7229         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7230                 return 0;
7231
7232         memcg = page_memcg(page);
7233
7234         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7235         if (!memcg)
7236                 return 0;
7237
7238         if (!entry.val) {
7239                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7240                 return 0;
7241         }
7242
7243         memcg = mem_cgroup_id_get_online(memcg);
7244
7245         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7246             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7247                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7248                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7249                 mem_cgroup_id_put(memcg);
7250                 return -ENOMEM;
7251         }
7252
7253         /* Get references for the tail pages, too */
7254         if (nr_pages > 1)
7255                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7256         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7257         VM_BUG_ON_PAGE(oldid, page);
7258         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7259
7260         return 0;
7261 }
7262
7263 /**
7264  * __mem_cgroup_uncharge_swap - uncharge swap space
7265  * @entry: swap entry to uncharge
7266  * @nr_pages: the amount of swap space to uncharge
7267  */
7268 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7269 {
7270         struct mem_cgroup *memcg;
7271         unsigned short id;
7272
7273         id = swap_cgroup_record(entry, 0, nr_pages);
7274         rcu_read_lock();
7275         memcg = mem_cgroup_from_id(id);
7276         if (memcg) {
7277                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7278                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7279                                 page_counter_uncharge(&memcg->swap, nr_pages);
7280                         else
7281                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7282                 }
7283                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7284                 mem_cgroup_id_put_many(memcg, nr_pages);
7285         }
7286         rcu_read_unlock();
7287 }
7288
7289 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7290 {
7291         long nr_swap_pages = get_nr_swap_pages();
7292
7293         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7294                 return nr_swap_pages;
7295         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7296                 nr_swap_pages = min_t(long, nr_swap_pages,
7297                                       READ_ONCE(memcg->swap.max) -
7298                                       page_counter_read(&memcg->swap));
7299         return nr_swap_pages;
7300 }
7301
7302 bool mem_cgroup_swap_full(struct page *page)
7303 {
7304         struct mem_cgroup *memcg;
7305
7306         VM_BUG_ON_PAGE(!PageLocked(page), page);
7307
7308         if (vm_swap_full())
7309                 return true;
7310         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7311                 return false;
7312
7313         memcg = page_memcg(page);
7314         if (!memcg)
7315                 return false;
7316
7317         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7318                 unsigned long usage = page_counter_read(&memcg->swap);
7319
7320                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7321                     usage * 2 >= READ_ONCE(memcg->swap.max))
7322                         return true;
7323         }
7324
7325         return false;
7326 }
7327
7328 static int __init setup_swap_account(char *s)
7329 {
7330         if (!strcmp(s, "1"))
7331                 cgroup_memory_noswap = false;
7332         else if (!strcmp(s, "0"))
7333                 cgroup_memory_noswap = true;
7334         return 1;
7335 }
7336 __setup("swapaccount=", setup_swap_account);
7337
7338 static u64 swap_current_read(struct cgroup_subsys_state *css,
7339                              struct cftype *cft)
7340 {
7341         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7342
7343         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7344 }
7345
7346 static int swap_high_show(struct seq_file *m, void *v)
7347 {
7348         return seq_puts_memcg_tunable(m,
7349                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7350 }
7351
7352 static ssize_t swap_high_write(struct kernfs_open_file *of,
7353                                char *buf, size_t nbytes, loff_t off)
7354 {
7355         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7356         unsigned long high;
7357         int err;
7358
7359         buf = strstrip(buf);
7360         err = page_counter_memparse(buf, "max", &high);
7361         if (err)
7362                 return err;
7363
7364         page_counter_set_high(&memcg->swap, high);
7365
7366         return nbytes;
7367 }
7368
7369 static int swap_max_show(struct seq_file *m, void *v)
7370 {
7371         return seq_puts_memcg_tunable(m,
7372                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7373 }
7374
7375 static ssize_t swap_max_write(struct kernfs_open_file *of,
7376                               char *buf, size_t nbytes, loff_t off)
7377 {
7378         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7379         unsigned long max;
7380         int err;
7381
7382         buf = strstrip(buf);
7383         err = page_counter_memparse(buf, "max", &max);
7384         if (err)
7385                 return err;
7386
7387         xchg(&memcg->swap.max, max);
7388
7389         return nbytes;
7390 }
7391
7392 static int swap_events_show(struct seq_file *m, void *v)
7393 {
7394         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7395
7396         seq_printf(m, "high %lu\n",
7397                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7398         seq_printf(m, "max %lu\n",
7399                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7400         seq_printf(m, "fail %lu\n",
7401                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7402
7403         return 0;
7404 }
7405
7406 static struct cftype swap_files[] = {
7407         {
7408                 .name = "swap.current",
7409                 .flags = CFTYPE_NOT_ON_ROOT,
7410                 .read_u64 = swap_current_read,
7411         },
7412         {
7413                 .name = "swap.high",
7414                 .flags = CFTYPE_NOT_ON_ROOT,
7415                 .seq_show = swap_high_show,
7416                 .write = swap_high_write,
7417         },
7418         {
7419                 .name = "swap.max",
7420                 .flags = CFTYPE_NOT_ON_ROOT,
7421                 .seq_show = swap_max_show,
7422                 .write = swap_max_write,
7423         },
7424         {
7425                 .name = "swap.events",
7426                 .flags = CFTYPE_NOT_ON_ROOT,
7427                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7428                 .seq_show = swap_events_show,
7429         },
7430         { }     /* terminate */
7431 };
7432
7433 static struct cftype memsw_files[] = {
7434         {
7435                 .name = "memsw.usage_in_bytes",
7436                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7437                 .read_u64 = mem_cgroup_read_u64,
7438         },
7439         {
7440                 .name = "memsw.max_usage_in_bytes",
7441                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7442                 .write = mem_cgroup_reset,
7443                 .read_u64 = mem_cgroup_read_u64,
7444         },
7445         {
7446                 .name = "memsw.limit_in_bytes",
7447                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7448                 .write = mem_cgroup_write,
7449                 .read_u64 = mem_cgroup_read_u64,
7450         },
7451         {
7452                 .name = "memsw.failcnt",
7453                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7454                 .write = mem_cgroup_reset,
7455                 .read_u64 = mem_cgroup_read_u64,
7456         },
7457         { },    /* terminate */
7458 };
7459
7460 /*
7461  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7462  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7463  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7464  * boot parameter. This may result in premature OOPS inside
7465  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7466  */
7467 static int __init mem_cgroup_swap_init(void)
7468 {
7469         /* No memory control -> no swap control */
7470         if (mem_cgroup_disabled())
7471                 cgroup_memory_noswap = true;
7472
7473         if (cgroup_memory_noswap)
7474                 return 0;
7475
7476         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7477         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7478
7479         return 0;
7480 }
7481 core_initcall(mem_cgroup_swap_init);
7482
7483 #endif /* CONFIG_MEMCG_SWAP */