memcg: add lock to synchronize page accounting and migration
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         struct mm_struct *mm;
296         wait_queue_head_t waitq;                /* a waitq for other context */
297 } mc = {
298         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
300 };
301
302 static bool move_anon(void)
303 {
304         return test_bit(MOVE_CHARGE_TYPE_ANON,
305                                         &mc.to->move_charge_at_immigrate);
306 }
307
308 static bool move_file(void)
309 {
310         return test_bit(MOVE_CHARGE_TYPE_FILE,
311                                         &mc.to->move_charge_at_immigrate);
312 }
313
314 /*
315  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316  * limit reclaim to prevent infinite loops, if they ever occur.
317  */
318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320
321 enum charge_type {
322         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323         MEM_CGROUP_CHARGE_TYPE_MAPPED,
324         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
325         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
326         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
327         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
328         NR_CHARGE_TYPE,
329 };
330
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE      (1UL << PCG_CACHE)
333 #define PCGF_USED       (1UL << PCG_USED)
334 #define PCGF_LOCK       (1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT       (1UL << PCG_ACCT)
337
338 /* for encoding cft->private value on file */
339 #define _MEM                    (0)
340 #define _MEMSWAP                (1)
341 #define _OOM_TYPE               (2)
342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL             (0)
347
348 /*
349  * Reclaim flags for mem_cgroup_hierarchical_reclaim
350  */
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
356 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357
358 static void mem_cgroup_get(struct mem_cgroup *mem);
359 static void mem_cgroup_put(struct mem_cgroup *mem);
360 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361 static void drain_all_stock_async(void);
362
363 static struct mem_cgroup_per_zone *
364 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 {
366         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
367 }
368
369 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 {
371         return &mem->css;
372 }
373
374 static struct mem_cgroup_per_zone *
375 page_cgroup_zoneinfo(struct page_cgroup *pc)
376 {
377         struct mem_cgroup *mem = pc->mem_cgroup;
378         int nid = page_cgroup_nid(pc);
379         int zid = page_cgroup_zid(pc);
380
381         if (!mem)
382                 return NULL;
383
384         return mem_cgroup_zoneinfo(mem, nid, zid);
385 }
386
387 static struct mem_cgroup_tree_per_zone *
388 soft_limit_tree_node_zone(int nid, int zid)
389 {
390         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391 }
392
393 static struct mem_cgroup_tree_per_zone *
394 soft_limit_tree_from_page(struct page *page)
395 {
396         int nid = page_to_nid(page);
397         int zid = page_zonenum(page);
398
399         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400 }
401
402 static void
403 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404                                 struct mem_cgroup_per_zone *mz,
405                                 struct mem_cgroup_tree_per_zone *mctz,
406                                 unsigned long long new_usage_in_excess)
407 {
408         struct rb_node **p = &mctz->rb_root.rb_node;
409         struct rb_node *parent = NULL;
410         struct mem_cgroup_per_zone *mz_node;
411
412         if (mz->on_tree)
413                 return;
414
415         mz->usage_in_excess = new_usage_in_excess;
416         if (!mz->usage_in_excess)
417                 return;
418         while (*p) {
419                 parent = *p;
420                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421                                         tree_node);
422                 if (mz->usage_in_excess < mz_node->usage_in_excess)
423                         p = &(*p)->rb_left;
424                 /*
425                  * We can't avoid mem cgroups that are over their soft
426                  * limit by the same amount
427                  */
428                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429                         p = &(*p)->rb_right;
430         }
431         rb_link_node(&mz->tree_node, parent, p);
432         rb_insert_color(&mz->tree_node, &mctz->rb_root);
433         mz->on_tree = true;
434 }
435
436 static void
437 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438                                 struct mem_cgroup_per_zone *mz,
439                                 struct mem_cgroup_tree_per_zone *mctz)
440 {
441         if (!mz->on_tree)
442                 return;
443         rb_erase(&mz->tree_node, &mctz->rb_root);
444         mz->on_tree = false;
445 }
446
447 static void
448 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449                                 struct mem_cgroup_per_zone *mz,
450                                 struct mem_cgroup_tree_per_zone *mctz)
451 {
452         spin_lock(&mctz->lock);
453         __mem_cgroup_remove_exceeded(mem, mz, mctz);
454         spin_unlock(&mctz->lock);
455 }
456
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459 {
460         unsigned long long excess;
461         struct mem_cgroup_per_zone *mz;
462         struct mem_cgroup_tree_per_zone *mctz;
463         int nid = page_to_nid(page);
464         int zid = page_zonenum(page);
465         mctz = soft_limit_tree_from_page(page);
466
467         /*
468          * Necessary to update all ancestors when hierarchy is used.
469          * because their event counter is not touched.
470          */
471         for (; mem; mem = parent_mem_cgroup(mem)) {
472                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
473                 excess = res_counter_soft_limit_excess(&mem->res);
474                 /*
475                  * We have to update the tree if mz is on RB-tree or
476                  * mem is over its softlimit.
477                  */
478                 if (excess || mz->on_tree) {
479                         spin_lock(&mctz->lock);
480                         /* if on-tree, remove it */
481                         if (mz->on_tree)
482                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483                         /*
484                          * Insert again. mz->usage_in_excess will be updated.
485                          * If excess is 0, no tree ops.
486                          */
487                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488                         spin_unlock(&mctz->lock);
489                 }
490         }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494 {
495         int node, zone;
496         struct mem_cgroup_per_zone *mz;
497         struct mem_cgroup_tree_per_zone *mctz;
498
499         for_each_node_state(node, N_POSSIBLE) {
500                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501                         mz = mem_cgroup_zoneinfo(mem, node, zone);
502                         mctz = soft_limit_tree_node_zone(node, zone);
503                         mem_cgroup_remove_exceeded(mem, mz, mctz);
504                 }
505         }
506 }
507
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509 {
510         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
511 }
512
513 static struct mem_cgroup_per_zone *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515 {
516         struct rb_node *rightmost = NULL;
517         struct mem_cgroup_per_zone *mz;
518
519 retry:
520         mz = NULL;
521         rightmost = rb_last(&mctz->rb_root);
522         if (!rightmost)
523                 goto done;              /* Nothing to reclaim from */
524
525         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526         /*
527          * Remove the node now but someone else can add it back,
528          * we will to add it back at the end of reclaim to its correct
529          * position in the tree.
530          */
531         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533                 !css_tryget(&mz->mem->css))
534                 goto retry;
535 done:
536         return mz;
537 }
538
539 static struct mem_cgroup_per_zone *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541 {
542         struct mem_cgroup_per_zone *mz;
543
544         spin_lock(&mctz->lock);
545         mz = __mem_cgroup_largest_soft_limit_node(mctz);
546         spin_unlock(&mctz->lock);
547         return mz;
548 }
549
550 /*
551  * Implementation Note: reading percpu statistics for memcg.
552  *
553  * Both of vmstat[] and percpu_counter has threshold and do periodic
554  * synchronization to implement "quick" read. There are trade-off between
555  * reading cost and precision of value. Then, we may have a chance to implement
556  * a periodic synchronizion of counter in memcg's counter.
557  *
558  * But this _read() function is used for user interface now. The user accounts
559  * memory usage by memory cgroup and he _always_ requires exact value because
560  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561  * have to visit all online cpus and make sum. So, for now, unnecessary
562  * synchronization is not implemented. (just implemented for cpu hotplug)
563  *
564  * If there are kernel internal actions which can make use of some not-exact
565  * value, and reading all cpu value can be performance bottleneck in some
566  * common workload, threashold and synchonization as vmstat[] should be
567  * implemented.
568  */
569 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570                 enum mem_cgroup_stat_index idx)
571 {
572         int cpu;
573         s64 val = 0;
574
575         get_online_cpus();
576         for_each_online_cpu(cpu)
577                 val += per_cpu(mem->stat->count[idx], cpu);
578 #ifdef CONFIG_HOTPLUG_CPU
579         spin_lock(&mem->pcp_counter_lock);
580         val += mem->nocpu_base.count[idx];
581         spin_unlock(&mem->pcp_counter_lock);
582 #endif
583         put_online_cpus();
584         return val;
585 }
586
587 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588 {
589         s64 ret;
590
591         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593         return ret;
594 }
595
596 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597                                          bool charge)
598 {
599         int val = (charge) ? 1 : -1;
600         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
601 }
602
603 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604                                          struct page_cgroup *pc,
605                                          bool charge)
606 {
607         int val = (charge) ? 1 : -1;
608
609         preempt_disable();
610
611         if (PageCgroupCache(pc))
612                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613         else
614                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
615
616         if (charge)
617                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618         else
619                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
621
622         preempt_enable();
623 }
624
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626                                         enum lru_list idx)
627 {
628         int nid, zid;
629         struct mem_cgroup_per_zone *mz;
630         u64 total = 0;
631
632         for_each_online_node(nid)
633                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
635                         total += MEM_CGROUP_ZSTAT(mz, idx);
636                 }
637         return total;
638 }
639
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641 {
642         s64 val;
643
644         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646         return !(val & ((1 << event_mask_shift) - 1));
647 }
648
649 /*
650  * Check events in order.
651  *
652  */
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654 {
655         /* threshold event is triggered in finer grain than soft limit */
656         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657                 mem_cgroup_threshold(mem);
658                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659                         mem_cgroup_update_tree(mem, page);
660         }
661 }
662
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664 {
665         return container_of(cgroup_subsys_state(cont,
666                                 mem_cgroup_subsys_id), struct mem_cgroup,
667                                 css);
668 }
669
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 {
672         /*
673          * mm_update_next_owner() may clear mm->owner to NULL
674          * if it races with swapoff, page migration, etc.
675          * So this can be called with p == NULL.
676          */
677         if (unlikely(!p))
678                 return NULL;
679
680         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681                                 struct mem_cgroup, css);
682 }
683
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685 {
686         struct mem_cgroup *mem = NULL;
687
688         if (!mm)
689                 return NULL;
690         /*
691          * Because we have no locks, mm->owner's may be being moved to other
692          * cgroup. We use css_tryget() here even if this looks
693          * pessimistic (rather than adding locks here).
694          */
695         rcu_read_lock();
696         do {
697                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698                 if (unlikely(!mem))
699                         break;
700         } while (!css_tryget(&mem->css));
701         rcu_read_unlock();
702         return mem;
703 }
704
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707 {
708         struct cgroup_subsys_state *css;
709         int found;
710
711         if (!mem) /* ROOT cgroup has the smallest ID */
712                 return root_mem_cgroup; /*css_put/get against root is ignored*/
713         if (!mem->use_hierarchy) {
714                 if (css_tryget(&mem->css))
715                         return mem;
716                 return NULL;
717         }
718         rcu_read_lock();
719         /*
720          * searching a memory cgroup which has the smallest ID under given
721          * ROOT cgroup. (ID >= 1)
722          */
723         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724         if (css && css_tryget(css))
725                 mem = container_of(css, struct mem_cgroup, css);
726         else
727                 mem = NULL;
728         rcu_read_unlock();
729         return mem;
730 }
731
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733                                         struct mem_cgroup *root,
734                                         bool cond)
735 {
736         int nextid = css_id(&iter->css) + 1;
737         int found;
738         int hierarchy_used;
739         struct cgroup_subsys_state *css;
740
741         hierarchy_used = iter->use_hierarchy;
742
743         css_put(&iter->css);
744         /* If no ROOT, walk all, ignore hierarchy */
745         if (!cond || (root && !hierarchy_used))
746                 return NULL;
747
748         if (!root)
749                 root = root_mem_cgroup;
750
751         do {
752                 iter = NULL;
753                 rcu_read_lock();
754
755                 css = css_get_next(&mem_cgroup_subsys, nextid,
756                                 &root->css, &found);
757                 if (css && css_tryget(css))
758                         iter = container_of(css, struct mem_cgroup, css);
759                 rcu_read_unlock();
760                 /* If css is NULL, no more cgroups will be found */
761                 nextid = found + 1;
762         } while (css && !iter);
763
764         return iter;
765 }
766 /*
767  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768  * be careful that "break" loop is not allowed. We have reference count.
769  * Instead of that modify "cond" to be false and "continue" to exit the loop.
770  */
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772         for (iter = mem_cgroup_start_loop(root);\
773              iter != NULL;\
774              iter = mem_cgroup_get_next(iter, root, cond))
775
776 #define for_each_mem_cgroup_tree(iter, root) \
777         for_each_mem_cgroup_tree_cond(iter, root, true)
778
779 #define for_each_mem_cgroup_all(iter) \
780         for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
782
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784 {
785         return (mem == root_mem_cgroup);
786 }
787
788 /*
789  * Following LRU functions are allowed to be used without PCG_LOCK.
790  * Operations are called by routine of global LRU independently from memcg.
791  * What we have to take care of here is validness of pc->mem_cgroup.
792  *
793  * Changes to pc->mem_cgroup happens when
794  * 1. charge
795  * 2. moving account
796  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797  * It is added to LRU before charge.
798  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799  * When moving account, the page is not on LRU. It's isolated.
800  */
801
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803 {
804         struct page_cgroup *pc;
805         struct mem_cgroup_per_zone *mz;
806
807         if (mem_cgroup_disabled())
808                 return;
809         pc = lookup_page_cgroup(page);
810         /* can happen while we handle swapcache. */
811         if (!TestClearPageCgroupAcctLRU(pc))
812                 return;
813         VM_BUG_ON(!pc->mem_cgroup);
814         /*
815          * We don't check PCG_USED bit. It's cleared when the "page" is finally
816          * removed from global LRU.
817          */
818         mz = page_cgroup_zoneinfo(pc);
819         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820         if (mem_cgroup_is_root(pc->mem_cgroup))
821                 return;
822         VM_BUG_ON(list_empty(&pc->lru));
823         list_del_init(&pc->lru);
824         return;
825 }
826
827 void mem_cgroup_del_lru(struct page *page)
828 {
829         mem_cgroup_del_lru_list(page, page_lru(page));
830 }
831
832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833 {
834         struct mem_cgroup_per_zone *mz;
835         struct page_cgroup *pc;
836
837         if (mem_cgroup_disabled())
838                 return;
839
840         pc = lookup_page_cgroup(page);
841         /*
842          * Used bit is set without atomic ops but after smp_wmb().
843          * For making pc->mem_cgroup visible, insert smp_rmb() here.
844          */
845         smp_rmb();
846         /* unused or root page is not rotated. */
847         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
848                 return;
849         mz = page_cgroup_zoneinfo(pc);
850         list_move(&pc->lru, &mz->lists[lru]);
851 }
852
853 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854 {
855         struct page_cgroup *pc;
856         struct mem_cgroup_per_zone *mz;
857
858         if (mem_cgroup_disabled())
859                 return;
860         pc = lookup_page_cgroup(page);
861         VM_BUG_ON(PageCgroupAcctLRU(pc));
862         /*
863          * Used bit is set without atomic ops but after smp_wmb().
864          * For making pc->mem_cgroup visible, insert smp_rmb() here.
865          */
866         smp_rmb();
867         if (!PageCgroupUsed(pc))
868                 return;
869
870         mz = page_cgroup_zoneinfo(pc);
871         MEM_CGROUP_ZSTAT(mz, lru) += 1;
872         SetPageCgroupAcctLRU(pc);
873         if (mem_cgroup_is_root(pc->mem_cgroup))
874                 return;
875         list_add(&pc->lru, &mz->lists[lru]);
876 }
877
878 /*
879  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880  * lru because the page may.be reused after it's fully uncharged (because of
881  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882  * it again. This function is only used to charge SwapCache. It's done under
883  * lock_page and expected that zone->lru_lock is never held.
884  */
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886 {
887         unsigned long flags;
888         struct zone *zone = page_zone(page);
889         struct page_cgroup *pc = lookup_page_cgroup(page);
890
891         spin_lock_irqsave(&zone->lru_lock, flags);
892         /*
893          * Forget old LRU when this page_cgroup is *not* used. This Used bit
894          * is guarded by lock_page() because the page is SwapCache.
895          */
896         if (!PageCgroupUsed(pc))
897                 mem_cgroup_del_lru_list(page, page_lru(page));
898         spin_unlock_irqrestore(&zone->lru_lock, flags);
899 }
900
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902 {
903         unsigned long flags;
904         struct zone *zone = page_zone(page);
905         struct page_cgroup *pc = lookup_page_cgroup(page);
906
907         spin_lock_irqsave(&zone->lru_lock, flags);
908         /* link when the page is linked to LRU but page_cgroup isn't */
909         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910                 mem_cgroup_add_lru_list(page, page_lru(page));
911         spin_unlock_irqrestore(&zone->lru_lock, flags);
912 }
913
914
915 void mem_cgroup_move_lists(struct page *page,
916                            enum lru_list from, enum lru_list to)
917 {
918         if (mem_cgroup_disabled())
919                 return;
920         mem_cgroup_del_lru_list(page, from);
921         mem_cgroup_add_lru_list(page, to);
922 }
923
924 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925 {
926         int ret;
927         struct mem_cgroup *curr = NULL;
928         struct task_struct *p;
929
930         p = find_lock_task_mm(task);
931         if (!p)
932                 return 0;
933         curr = try_get_mem_cgroup_from_mm(p->mm);
934         task_unlock(p);
935         if (!curr)
936                 return 0;
937         /*
938          * We should check use_hierarchy of "mem" not "curr". Because checking
939          * use_hierarchy of "curr" here make this function true if hierarchy is
940          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941          * hierarchy(even if use_hierarchy is disabled in "mem").
942          */
943         if (mem->use_hierarchy)
944                 ret = css_is_ancestor(&curr->css, &mem->css);
945         else
946                 ret = (curr == mem);
947         css_put(&curr->css);
948         return ret;
949 }
950
951 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 {
953         unsigned long active;
954         unsigned long inactive;
955         unsigned long gb;
956         unsigned long inactive_ratio;
957
958         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960
961         gb = (inactive + active) >> (30 - PAGE_SHIFT);
962         if (gb)
963                 inactive_ratio = int_sqrt(10 * gb);
964         else
965                 inactive_ratio = 1;
966
967         if (present_pages) {
968                 present_pages[0] = inactive;
969                 present_pages[1] = active;
970         }
971
972         return inactive_ratio;
973 }
974
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976 {
977         unsigned long active;
978         unsigned long inactive;
979         unsigned long present_pages[2];
980         unsigned long inactive_ratio;
981
982         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984         inactive = present_pages[0];
985         active = present_pages[1];
986
987         if (inactive * inactive_ratio < active)
988                 return 1;
989
990         return 0;
991 }
992
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994 {
995         unsigned long active;
996         unsigned long inactive;
997
998         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001         return (active > inactive);
1002 }
1003
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005                                        struct zone *zone,
1006                                        enum lru_list lru)
1007 {
1008         int nid = zone_to_nid(zone);
1009         int zid = zone_idx(zone);
1010         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012         return MEM_CGROUP_ZSTAT(mz, lru);
1013 }
1014
1015 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016                                                       struct zone *zone)
1017 {
1018         int nid = zone_to_nid(zone);
1019         int zid = zone_idx(zone);
1020         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022         return &mz->reclaim_stat;
1023 }
1024
1025 struct zone_reclaim_stat *
1026 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027 {
1028         struct page_cgroup *pc;
1029         struct mem_cgroup_per_zone *mz;
1030
1031         if (mem_cgroup_disabled())
1032                 return NULL;
1033
1034         pc = lookup_page_cgroup(page);
1035         /*
1036          * Used bit is set without atomic ops but after smp_wmb().
1037          * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038          */
1039         smp_rmb();
1040         if (!PageCgroupUsed(pc))
1041                 return NULL;
1042
1043         mz = page_cgroup_zoneinfo(pc);
1044         if (!mz)
1045                 return NULL;
1046
1047         return &mz->reclaim_stat;
1048 }
1049
1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051                                         struct list_head *dst,
1052                                         unsigned long *scanned, int order,
1053                                         int mode, struct zone *z,
1054                                         struct mem_cgroup *mem_cont,
1055                                         int active, int file)
1056 {
1057         unsigned long nr_taken = 0;
1058         struct page *page;
1059         unsigned long scan;
1060         LIST_HEAD(pc_list);
1061         struct list_head *src;
1062         struct page_cgroup *pc, *tmp;
1063         int nid = zone_to_nid(z);
1064         int zid = zone_idx(z);
1065         struct mem_cgroup_per_zone *mz;
1066         int lru = LRU_FILE * file + active;
1067         int ret;
1068
1069         BUG_ON(!mem_cont);
1070         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071         src = &mz->lists[lru];
1072
1073         scan = 0;
1074         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1075                 if (scan >= nr_to_scan)
1076                         break;
1077
1078                 page = pc->page;
1079                 if (unlikely(!PageCgroupUsed(pc)))
1080                         continue;
1081                 if (unlikely(!PageLRU(page)))
1082                         continue;
1083
1084                 scan++;
1085                 ret = __isolate_lru_page(page, mode, file);
1086                 switch (ret) {
1087                 case 0:
1088                         list_move(&page->lru, dst);
1089                         mem_cgroup_del_lru(page);
1090                         nr_taken += hpage_nr_pages(page);
1091                         break;
1092                 case -EBUSY:
1093                         /* we don't affect global LRU but rotate in our LRU */
1094                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1095                         break;
1096                 default:
1097                         break;
1098                 }
1099         }
1100
1101         *scanned = scan;
1102
1103         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104                                       0, 0, 0, mode);
1105
1106         return nr_taken;
1107 }
1108
1109 #define mem_cgroup_from_res_counter(counter, member)    \
1110         container_of(counter, struct mem_cgroup, member)
1111
1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113 {
1114         if (do_swap_account) {
1115                 if (res_counter_check_under_limit(&mem->res) &&
1116                         res_counter_check_under_limit(&mem->memsw))
1117                         return true;
1118         } else
1119                 if (res_counter_check_under_limit(&mem->res))
1120                         return true;
1121         return false;
1122 }
1123
1124 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125 {
1126         struct cgroup *cgrp = memcg->css.cgroup;
1127         unsigned int swappiness;
1128
1129         /* root ? */
1130         if (cgrp->parent == NULL)
1131                 return vm_swappiness;
1132
1133         spin_lock(&memcg->reclaim_param_lock);
1134         swappiness = memcg->swappiness;
1135         spin_unlock(&memcg->reclaim_param_lock);
1136
1137         return swappiness;
1138 }
1139
1140 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141 {
1142         int cpu;
1143
1144         get_online_cpus();
1145         spin_lock(&mem->pcp_counter_lock);
1146         for_each_online_cpu(cpu)
1147                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149         spin_unlock(&mem->pcp_counter_lock);
1150         put_online_cpus();
1151
1152         synchronize_rcu();
1153 }
1154
1155 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156 {
1157         int cpu;
1158
1159         if (!mem)
1160                 return;
1161         get_online_cpus();
1162         spin_lock(&mem->pcp_counter_lock);
1163         for_each_online_cpu(cpu)
1164                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166         spin_unlock(&mem->pcp_counter_lock);
1167         put_online_cpus();
1168 }
1169 /*
1170  * 2 routines for checking "mem" is under move_account() or not.
1171  *
1172  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173  *                        for avoiding race in accounting. If true,
1174  *                        pc->mem_cgroup may be overwritten.
1175  *
1176  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177  *                        under hierarchy of moving cgroups. This is for
1178  *                        waiting at hith-memory prressure caused by "move".
1179  */
1180
1181 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182 {
1183         VM_BUG_ON(!rcu_read_lock_held());
1184         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1185 }
1186
1187 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188 {
1189         struct mem_cgroup *from;
1190         struct mem_cgroup *to;
1191         bool ret = false;
1192         /*
1193          * Unlike task_move routines, we access mc.to, mc.from not under
1194          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195          */
1196         spin_lock(&mc.lock);
1197         from = mc.from;
1198         to = mc.to;
1199         if (!from)
1200                 goto unlock;
1201         if (from == mem || to == mem
1202             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1204                 ret = true;
1205 unlock:
1206         spin_unlock(&mc.lock);
1207         return ret;
1208 }
1209
1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211 {
1212         if (mc.moving_task && current != mc.moving_task) {
1213                 if (mem_cgroup_under_move(mem)) {
1214                         DEFINE_WAIT(wait);
1215                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216                         /* moving charge context might have finished. */
1217                         if (mc.moving_task)
1218                                 schedule();
1219                         finish_wait(&mc.waitq, &wait);
1220                         return true;
1221                 }
1222         }
1223         return false;
1224 }
1225
1226 /**
1227  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228  * @memcg: The memory cgroup that went over limit
1229  * @p: Task that is going to be killed
1230  *
1231  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232  * enabled
1233  */
1234 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235 {
1236         struct cgroup *task_cgrp;
1237         struct cgroup *mem_cgrp;
1238         /*
1239          * Need a buffer in BSS, can't rely on allocations. The code relies
1240          * on the assumption that OOM is serialized for memory controller.
1241          * If this assumption is broken, revisit this code.
1242          */
1243         static char memcg_name[PATH_MAX];
1244         int ret;
1245
1246         if (!memcg || !p)
1247                 return;
1248
1249
1250         rcu_read_lock();
1251
1252         mem_cgrp = memcg->css.cgroup;
1253         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254
1255         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256         if (ret < 0) {
1257                 /*
1258                  * Unfortunately, we are unable to convert to a useful name
1259                  * But we'll still print out the usage information
1260                  */
1261                 rcu_read_unlock();
1262                 goto done;
1263         }
1264         rcu_read_unlock();
1265
1266         printk(KERN_INFO "Task in %s killed", memcg_name);
1267
1268         rcu_read_lock();
1269         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270         if (ret < 0) {
1271                 rcu_read_unlock();
1272                 goto done;
1273         }
1274         rcu_read_unlock();
1275
1276         /*
1277          * Continues from above, so we don't need an KERN_ level
1278          */
1279         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280 done:
1281
1282         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287                 "failcnt %llu\n",
1288                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291 }
1292
1293 /*
1294  * This function returns the number of memcg under hierarchy tree. Returns
1295  * 1(self count) if no children.
1296  */
1297 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298 {
1299         int num = 0;
1300         struct mem_cgroup *iter;
1301
1302         for_each_mem_cgroup_tree(iter, mem)
1303                 num++;
1304         return num;
1305 }
1306
1307 /*
1308  * Return the memory (and swap, if configured) limit for a memcg.
1309  */
1310 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311 {
1312         u64 limit;
1313         u64 memsw;
1314
1315         limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1316                         total_swap_pages;
1317         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1318         /*
1319          * If memsw is finite and limits the amount of swap space available
1320          * to this memcg, return that limit.
1321          */
1322         return min(limit, memsw);
1323 }
1324
1325 /*
1326  * Visit the first child (need not be the first child as per the ordering
1327  * of the cgroup list, since we track last_scanned_child) of @mem and use
1328  * that to reclaim free pages from.
1329  */
1330 static struct mem_cgroup *
1331 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1332 {
1333         struct mem_cgroup *ret = NULL;
1334         struct cgroup_subsys_state *css;
1335         int nextid, found;
1336
1337         if (!root_mem->use_hierarchy) {
1338                 css_get(&root_mem->css);
1339                 ret = root_mem;
1340         }
1341
1342         while (!ret) {
1343                 rcu_read_lock();
1344                 nextid = root_mem->last_scanned_child + 1;
1345                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346                                    &found);
1347                 if (css && css_tryget(css))
1348                         ret = container_of(css, struct mem_cgroup, css);
1349
1350                 rcu_read_unlock();
1351                 /* Updates scanning parameter */
1352                 spin_lock(&root_mem->reclaim_param_lock);
1353                 if (!css) {
1354                         /* this means start scan from ID:1 */
1355                         root_mem->last_scanned_child = 0;
1356                 } else
1357                         root_mem->last_scanned_child = found;
1358                 spin_unlock(&root_mem->reclaim_param_lock);
1359         }
1360
1361         return ret;
1362 }
1363
1364 /*
1365  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366  * we reclaimed from, so that we don't end up penalizing one child extensively
1367  * based on its position in the children list.
1368  *
1369  * root_mem is the original ancestor that we've been reclaim from.
1370  *
1371  * We give up and return to the caller when we visit root_mem twice.
1372  * (other groups can be removed while we're walking....)
1373  *
1374  * If shrink==true, for avoiding to free too much, this returns immedieately.
1375  */
1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377                                                 struct zone *zone,
1378                                                 gfp_t gfp_mask,
1379                                                 unsigned long reclaim_options)
1380 {
1381         struct mem_cgroup *victim;
1382         int ret, total = 0;
1383         int loop = 0;
1384         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387         unsigned long excess = mem_cgroup_get_excess(root_mem);
1388
1389         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390         if (root_mem->memsw_is_minimum)
1391                 noswap = true;
1392
1393         while (1) {
1394                 victim = mem_cgroup_select_victim(root_mem);
1395                 if (victim == root_mem) {
1396                         loop++;
1397                         if (loop >= 1)
1398                                 drain_all_stock_async();
1399                         if (loop >= 2) {
1400                                 /*
1401                                  * If we have not been able to reclaim
1402                                  * anything, it might because there are
1403                                  * no reclaimable pages under this hierarchy
1404                                  */
1405                                 if (!check_soft || !total) {
1406                                         css_put(&victim->css);
1407                                         break;
1408                                 }
1409                                 /*
1410                                  * We want to do more targetted reclaim.
1411                                  * excess >> 2 is not to excessive so as to
1412                                  * reclaim too much, nor too less that we keep
1413                                  * coming back to reclaim from this cgroup
1414                                  */
1415                                 if (total >= (excess >> 2) ||
1416                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417                                         css_put(&victim->css);
1418                                         break;
1419                                 }
1420                         }
1421                 }
1422                 if (!mem_cgroup_local_usage(victim)) {
1423                         /* this cgroup's local usage == 0 */
1424                         css_put(&victim->css);
1425                         continue;
1426                 }
1427                 /* we use swappiness of local cgroup */
1428                 if (check_soft)
1429                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430                                 noswap, get_swappiness(victim), zone);
1431                 else
1432                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433                                                 noswap, get_swappiness(victim));
1434                 css_put(&victim->css);
1435                 /*
1436                  * At shrinking usage, we can't check we should stop here or
1437                  * reclaim more. It's depends on callers. last_scanned_child
1438                  * will work enough for keeping fairness under tree.
1439                  */
1440                 if (shrink)
1441                         return ret;
1442                 total += ret;
1443                 if (check_soft) {
1444                         if (res_counter_check_under_soft_limit(&root_mem->res))
1445                                 return total;
1446                 } else if (mem_cgroup_check_under_limit(root_mem))
1447                         return 1 + total;
1448         }
1449         return total;
1450 }
1451
1452 /*
1453  * Check OOM-Killer is already running under our hierarchy.
1454  * If someone is running, return false.
1455  */
1456 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1457 {
1458         int x, lock_count = 0;
1459         struct mem_cgroup *iter;
1460
1461         for_each_mem_cgroup_tree(iter, mem) {
1462                 x = atomic_inc_return(&iter->oom_lock);
1463                 lock_count = max(x, lock_count);
1464         }
1465
1466         if (lock_count == 1)
1467                 return true;
1468         return false;
1469 }
1470
1471 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1472 {
1473         struct mem_cgroup *iter;
1474
1475         /*
1476          * When a new child is created while the hierarchy is under oom,
1477          * mem_cgroup_oom_lock() may not be called. We have to use
1478          * atomic_add_unless() here.
1479          */
1480         for_each_mem_cgroup_tree(iter, mem)
1481                 atomic_add_unless(&iter->oom_lock, -1, 0);
1482         return 0;
1483 }
1484
1485
1486 static DEFINE_MUTEX(memcg_oom_mutex);
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488
1489 struct oom_wait_info {
1490         struct mem_cgroup *mem;
1491         wait_queue_t    wait;
1492 };
1493
1494 static int memcg_oom_wake_function(wait_queue_t *wait,
1495         unsigned mode, int sync, void *arg)
1496 {
1497         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498         struct oom_wait_info *oom_wait_info;
1499
1500         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501
1502         if (oom_wait_info->mem == wake_mem)
1503                 goto wakeup;
1504         /* if no hierarchy, no match */
1505         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506                 return 0;
1507         /*
1508          * Both of oom_wait_info->mem and wake_mem are stable under us.
1509          * Then we can use css_is_ancestor without taking care of RCU.
1510          */
1511         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513                 return 0;
1514
1515 wakeup:
1516         return autoremove_wake_function(wait, mode, sync, arg);
1517 }
1518
1519 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1520 {
1521         /* for filtering, pass "mem" as argument. */
1522         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1523 }
1524
1525 static void memcg_oom_recover(struct mem_cgroup *mem)
1526 {
1527         if (mem && atomic_read(&mem->oom_lock))
1528                 memcg_wakeup_oom(mem);
1529 }
1530
1531 /*
1532  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1533  */
1534 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1535 {
1536         struct oom_wait_info owait;
1537         bool locked, need_to_kill;
1538
1539         owait.mem = mem;
1540         owait.wait.flags = 0;
1541         owait.wait.func = memcg_oom_wake_function;
1542         owait.wait.private = current;
1543         INIT_LIST_HEAD(&owait.wait.task_list);
1544         need_to_kill = true;
1545         /* At first, try to OOM lock hierarchy under mem.*/
1546         mutex_lock(&memcg_oom_mutex);
1547         locked = mem_cgroup_oom_lock(mem);
1548         /*
1549          * Even if signal_pending(), we can't quit charge() loop without
1550          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551          * under OOM is always welcomed, use TASK_KILLABLE here.
1552          */
1553         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554         if (!locked || mem->oom_kill_disable)
1555                 need_to_kill = false;
1556         if (locked)
1557                 mem_cgroup_oom_notify(mem);
1558         mutex_unlock(&memcg_oom_mutex);
1559
1560         if (need_to_kill) {
1561                 finish_wait(&memcg_oom_waitq, &owait.wait);
1562                 mem_cgroup_out_of_memory(mem, mask);
1563         } else {
1564                 schedule();
1565                 finish_wait(&memcg_oom_waitq, &owait.wait);
1566         }
1567         mutex_lock(&memcg_oom_mutex);
1568         mem_cgroup_oom_unlock(mem);
1569         memcg_wakeup_oom(mem);
1570         mutex_unlock(&memcg_oom_mutex);
1571
1572         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573                 return false;
1574         /* Give chance to dying process */
1575         schedule_timeout(1);
1576         return true;
1577 }
1578
1579 /*
1580  * Currently used to update mapped file statistics, but the routine can be
1581  * generalized to update other statistics as well.
1582  *
1583  * Notes: Race condition
1584  *
1585  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586  * it tends to be costly. But considering some conditions, we doesn't need
1587  * to do so _always_.
1588  *
1589  * Considering "charge", lock_page_cgroup() is not required because all
1590  * file-stat operations happen after a page is attached to radix-tree. There
1591  * are no race with "charge".
1592  *
1593  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595  * if there are race with "uncharge". Statistics itself is properly handled
1596  * by flags.
1597  *
1598  * Considering "move", this is an only case we see a race. To make the race
1599  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600  * possibility of race condition. If there is, we take a lock.
1601  */
1602
1603 void mem_cgroup_update_page_stat(struct page *page,
1604                                  enum mem_cgroup_page_stat_item idx, int val)
1605 {
1606         struct mem_cgroup *mem;
1607         struct page_cgroup *pc = lookup_page_cgroup(page);
1608         bool need_unlock = false;
1609         unsigned long uninitialized_var(flags);
1610
1611         if (unlikely(!pc))
1612                 return;
1613
1614         rcu_read_lock();
1615         mem = pc->mem_cgroup;
1616         if (unlikely(!mem || !PageCgroupUsed(pc)))
1617                 goto out;
1618         /* pc->mem_cgroup is unstable ? */
1619         if (unlikely(mem_cgroup_stealed(mem))) {
1620                 /* take a lock against to access pc->mem_cgroup */
1621                 move_lock_page_cgroup(pc, &flags);
1622                 need_unlock = true;
1623                 mem = pc->mem_cgroup;
1624                 if (!mem || !PageCgroupUsed(pc))
1625                         goto out;
1626         }
1627
1628         switch (idx) {
1629         case MEMCG_NR_FILE_MAPPED:
1630                 if (val > 0)
1631                         SetPageCgroupFileMapped(pc);
1632                 else if (!page_mapped(page))
1633                         ClearPageCgroupFileMapped(pc);
1634                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1635                 break;
1636         default:
1637                 BUG();
1638         }
1639
1640         this_cpu_add(mem->stat->count[idx], val);
1641
1642 out:
1643         if (unlikely(need_unlock))
1644                 move_unlock_page_cgroup(pc, &flags);
1645         rcu_read_unlock();
1646         return;
1647 }
1648 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1649
1650 /*
1651  * size of first charge trial. "32" comes from vmscan.c's magic value.
1652  * TODO: maybe necessary to use big numbers in big irons.
1653  */
1654 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1655 struct memcg_stock_pcp {
1656         struct mem_cgroup *cached; /* this never be root cgroup */
1657         int charge;
1658         struct work_struct work;
1659 };
1660 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1661 static atomic_t memcg_drain_count;
1662
1663 /*
1664  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1665  * from local stock and true is returned. If the stock is 0 or charges from a
1666  * cgroup which is not current target, returns false. This stock will be
1667  * refilled.
1668  */
1669 static bool consume_stock(struct mem_cgroup *mem)
1670 {
1671         struct memcg_stock_pcp *stock;
1672         bool ret = true;
1673
1674         stock = &get_cpu_var(memcg_stock);
1675         if (mem == stock->cached && stock->charge)
1676                 stock->charge -= PAGE_SIZE;
1677         else /* need to call res_counter_charge */
1678                 ret = false;
1679         put_cpu_var(memcg_stock);
1680         return ret;
1681 }
1682
1683 /*
1684  * Returns stocks cached in percpu to res_counter and reset cached information.
1685  */
1686 static void drain_stock(struct memcg_stock_pcp *stock)
1687 {
1688         struct mem_cgroup *old = stock->cached;
1689
1690         if (stock->charge) {
1691                 res_counter_uncharge(&old->res, stock->charge);
1692                 if (do_swap_account)
1693                         res_counter_uncharge(&old->memsw, stock->charge);
1694         }
1695         stock->cached = NULL;
1696         stock->charge = 0;
1697 }
1698
1699 /*
1700  * This must be called under preempt disabled or must be called by
1701  * a thread which is pinned to local cpu.
1702  */
1703 static void drain_local_stock(struct work_struct *dummy)
1704 {
1705         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1706         drain_stock(stock);
1707 }
1708
1709 /*
1710  * Cache charges(val) which is from res_counter, to local per_cpu area.
1711  * This will be consumed by consume_stock() function, later.
1712  */
1713 static void refill_stock(struct mem_cgroup *mem, int val)
1714 {
1715         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1716
1717         if (stock->cached != mem) { /* reset if necessary */
1718                 drain_stock(stock);
1719                 stock->cached = mem;
1720         }
1721         stock->charge += val;
1722         put_cpu_var(memcg_stock);
1723 }
1724
1725 /*
1726  * Tries to drain stocked charges in other cpus. This function is asynchronous
1727  * and just put a work per cpu for draining localy on each cpu. Caller can
1728  * expects some charges will be back to res_counter later but cannot wait for
1729  * it.
1730  */
1731 static void drain_all_stock_async(void)
1732 {
1733         int cpu;
1734         /* This function is for scheduling "drain" in asynchronous way.
1735          * The result of "drain" is not directly handled by callers. Then,
1736          * if someone is calling drain, we don't have to call drain more.
1737          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1738          * there is a race. We just do loose check here.
1739          */
1740         if (atomic_read(&memcg_drain_count))
1741                 return;
1742         /* Notify other cpus that system-wide "drain" is running */
1743         atomic_inc(&memcg_drain_count);
1744         get_online_cpus();
1745         for_each_online_cpu(cpu) {
1746                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1747                 schedule_work_on(cpu, &stock->work);
1748         }
1749         put_online_cpus();
1750         atomic_dec(&memcg_drain_count);
1751         /* We don't wait for flush_work */
1752 }
1753
1754 /* This is a synchronous drain interface. */
1755 static void drain_all_stock_sync(void)
1756 {
1757         /* called when force_empty is called */
1758         atomic_inc(&memcg_drain_count);
1759         schedule_on_each_cpu(drain_local_stock);
1760         atomic_dec(&memcg_drain_count);
1761 }
1762
1763 /*
1764  * This function drains percpu counter value from DEAD cpu and
1765  * move it to local cpu. Note that this function can be preempted.
1766  */
1767 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1768 {
1769         int i;
1770
1771         spin_lock(&mem->pcp_counter_lock);
1772         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1773                 s64 x = per_cpu(mem->stat->count[i], cpu);
1774
1775                 per_cpu(mem->stat->count[i], cpu) = 0;
1776                 mem->nocpu_base.count[i] += x;
1777         }
1778         /* need to clear ON_MOVE value, works as a kind of lock. */
1779         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1780         spin_unlock(&mem->pcp_counter_lock);
1781 }
1782
1783 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1784 {
1785         int idx = MEM_CGROUP_ON_MOVE;
1786
1787         spin_lock(&mem->pcp_counter_lock);
1788         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1789         spin_unlock(&mem->pcp_counter_lock);
1790 }
1791
1792 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1793                                         unsigned long action,
1794                                         void *hcpu)
1795 {
1796         int cpu = (unsigned long)hcpu;
1797         struct memcg_stock_pcp *stock;
1798         struct mem_cgroup *iter;
1799
1800         if ((action == CPU_ONLINE)) {
1801                 for_each_mem_cgroup_all(iter)
1802                         synchronize_mem_cgroup_on_move(iter, cpu);
1803                 return NOTIFY_OK;
1804         }
1805
1806         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1807                 return NOTIFY_OK;
1808
1809         for_each_mem_cgroup_all(iter)
1810                 mem_cgroup_drain_pcp_counter(iter, cpu);
1811
1812         stock = &per_cpu(memcg_stock, cpu);
1813         drain_stock(stock);
1814         return NOTIFY_OK;
1815 }
1816
1817
1818 /* See __mem_cgroup_try_charge() for details */
1819 enum {
1820         CHARGE_OK,              /* success */
1821         CHARGE_RETRY,           /* need to retry but retry is not bad */
1822         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1823         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1824         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1825 };
1826
1827 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1828                                 int csize, bool oom_check)
1829 {
1830         struct mem_cgroup *mem_over_limit;
1831         struct res_counter *fail_res;
1832         unsigned long flags = 0;
1833         int ret;
1834
1835         ret = res_counter_charge(&mem->res, csize, &fail_res);
1836
1837         if (likely(!ret)) {
1838                 if (!do_swap_account)
1839                         return CHARGE_OK;
1840                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1841                 if (likely(!ret))
1842                         return CHARGE_OK;
1843
1844                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1845                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1846         } else
1847                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1848
1849         if (csize > PAGE_SIZE) /* change csize and retry */
1850                 return CHARGE_RETRY;
1851
1852         if (!(gfp_mask & __GFP_WAIT))
1853                 return CHARGE_WOULDBLOCK;
1854
1855         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1856                                         gfp_mask, flags);
1857         /*
1858          * try_to_free_mem_cgroup_pages() might not give us a full
1859          * picture of reclaim. Some pages are reclaimed and might be
1860          * moved to swap cache or just unmapped from the cgroup.
1861          * Check the limit again to see if the reclaim reduced the
1862          * current usage of the cgroup before giving up
1863          */
1864         if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1865                 return CHARGE_RETRY;
1866
1867         /*
1868          * At task move, charge accounts can be doubly counted. So, it's
1869          * better to wait until the end of task_move if something is going on.
1870          */
1871         if (mem_cgroup_wait_acct_move(mem_over_limit))
1872                 return CHARGE_RETRY;
1873
1874         /* If we don't need to call oom-killer at el, return immediately */
1875         if (!oom_check)
1876                 return CHARGE_NOMEM;
1877         /* check OOM */
1878         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1879                 return CHARGE_OOM_DIE;
1880
1881         return CHARGE_RETRY;
1882 }
1883
1884 /*
1885  * Unlike exported interface, "oom" parameter is added. if oom==true,
1886  * oom-killer can be invoked.
1887  */
1888 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1889                                    gfp_t gfp_mask,
1890                                    struct mem_cgroup **memcg, bool oom,
1891                                    int page_size)
1892 {
1893         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1894         struct mem_cgroup *mem = NULL;
1895         int ret;
1896         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1897
1898         /*
1899          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1900          * in system level. So, allow to go ahead dying process in addition to
1901          * MEMDIE process.
1902          */
1903         if (unlikely(test_thread_flag(TIF_MEMDIE)
1904                      || fatal_signal_pending(current)))
1905                 goto bypass;
1906
1907         /*
1908          * We always charge the cgroup the mm_struct belongs to.
1909          * The mm_struct's mem_cgroup changes on task migration if the
1910          * thread group leader migrates. It's possible that mm is not
1911          * set, if so charge the init_mm (happens for pagecache usage).
1912          */
1913         if (!*memcg && !mm)
1914                 goto bypass;
1915 again:
1916         if (*memcg) { /* css should be a valid one */
1917                 mem = *memcg;
1918                 VM_BUG_ON(css_is_removed(&mem->css));
1919                 if (mem_cgroup_is_root(mem))
1920                         goto done;
1921                 if (page_size == PAGE_SIZE && consume_stock(mem))
1922                         goto done;
1923                 css_get(&mem->css);
1924         } else {
1925                 struct task_struct *p;
1926
1927                 rcu_read_lock();
1928                 p = rcu_dereference(mm->owner);
1929                 /*
1930                  * Because we don't have task_lock(), "p" can exit.
1931                  * In that case, "mem" can point to root or p can be NULL with
1932                  * race with swapoff. Then, we have small risk of mis-accouning.
1933                  * But such kind of mis-account by race always happens because
1934                  * we don't have cgroup_mutex(). It's overkill and we allo that
1935                  * small race, here.
1936                  * (*) swapoff at el will charge against mm-struct not against
1937                  * task-struct. So, mm->owner can be NULL.
1938                  */
1939                 mem = mem_cgroup_from_task(p);
1940                 if (!mem || mem_cgroup_is_root(mem)) {
1941                         rcu_read_unlock();
1942                         goto done;
1943                 }
1944                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1945                         /*
1946                          * It seems dagerous to access memcg without css_get().
1947                          * But considering how consume_stok works, it's not
1948                          * necessary. If consume_stock success, some charges
1949                          * from this memcg are cached on this cpu. So, we
1950                          * don't need to call css_get()/css_tryget() before
1951                          * calling consume_stock().
1952                          */
1953                         rcu_read_unlock();
1954                         goto done;
1955                 }
1956                 /* after here, we may be blocked. we need to get refcnt */
1957                 if (!css_tryget(&mem->css)) {
1958                         rcu_read_unlock();
1959                         goto again;
1960                 }
1961                 rcu_read_unlock();
1962         }
1963
1964         do {
1965                 bool oom_check;
1966
1967                 /* If killed, bypass charge */
1968                 if (fatal_signal_pending(current)) {
1969                         css_put(&mem->css);
1970                         goto bypass;
1971                 }
1972
1973                 oom_check = false;
1974                 if (oom && !nr_oom_retries) {
1975                         oom_check = true;
1976                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1977                 }
1978
1979                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1980
1981                 switch (ret) {
1982                 case CHARGE_OK:
1983                         break;
1984                 case CHARGE_RETRY: /* not in OOM situation but retry */
1985                         csize = page_size;
1986                         css_put(&mem->css);
1987                         mem = NULL;
1988                         goto again;
1989                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1990                         css_put(&mem->css);
1991                         goto nomem;
1992                 case CHARGE_NOMEM: /* OOM routine works */
1993                         if (!oom) {
1994                                 css_put(&mem->css);
1995                                 goto nomem;
1996                         }
1997                         /* If oom, we never return -ENOMEM */
1998                         nr_oom_retries--;
1999                         break;
2000                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2001                         css_put(&mem->css);
2002                         goto bypass;
2003                 }
2004         } while (ret != CHARGE_OK);
2005
2006         if (csize > page_size)
2007                 refill_stock(mem, csize - page_size);
2008         css_put(&mem->css);
2009 done:
2010         *memcg = mem;
2011         return 0;
2012 nomem:
2013         *memcg = NULL;
2014         return -ENOMEM;
2015 bypass:
2016         *memcg = NULL;
2017         return 0;
2018 }
2019
2020 /*
2021  * Somemtimes we have to undo a charge we got by try_charge().
2022  * This function is for that and do uncharge, put css's refcnt.
2023  * gotten by try_charge().
2024  */
2025 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2026                                                         unsigned long count)
2027 {
2028         if (!mem_cgroup_is_root(mem)) {
2029                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2030                 if (do_swap_account)
2031                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2032         }
2033 }
2034
2035 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2036                                      int page_size)
2037 {
2038         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2039 }
2040
2041 /*
2042  * A helper function to get mem_cgroup from ID. must be called under
2043  * rcu_read_lock(). The caller must check css_is_removed() or some if
2044  * it's concern. (dropping refcnt from swap can be called against removed
2045  * memcg.)
2046  */
2047 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2048 {
2049         struct cgroup_subsys_state *css;
2050
2051         /* ID 0 is unused ID */
2052         if (!id)
2053                 return NULL;
2054         css = css_lookup(&mem_cgroup_subsys, id);
2055         if (!css)
2056                 return NULL;
2057         return container_of(css, struct mem_cgroup, css);
2058 }
2059
2060 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2061 {
2062         struct mem_cgroup *mem = NULL;
2063         struct page_cgroup *pc;
2064         unsigned short id;
2065         swp_entry_t ent;
2066
2067         VM_BUG_ON(!PageLocked(page));
2068
2069         pc = lookup_page_cgroup(page);
2070         lock_page_cgroup(pc);
2071         if (PageCgroupUsed(pc)) {
2072                 mem = pc->mem_cgroup;
2073                 if (mem && !css_tryget(&mem->css))
2074                         mem = NULL;
2075         } else if (PageSwapCache(page)) {
2076                 ent.val = page_private(page);
2077                 id = lookup_swap_cgroup(ent);
2078                 rcu_read_lock();
2079                 mem = mem_cgroup_lookup(id);
2080                 if (mem && !css_tryget(&mem->css))
2081                         mem = NULL;
2082                 rcu_read_unlock();
2083         }
2084         unlock_page_cgroup(pc);
2085         return mem;
2086 }
2087
2088 /*
2089  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2090  * USED state. If already USED, uncharge and return.
2091  */
2092 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2093                                          struct page_cgroup *pc,
2094                                          enum charge_type ctype)
2095 {
2096         pc->mem_cgroup = mem;
2097         /*
2098          * We access a page_cgroup asynchronously without lock_page_cgroup().
2099          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2100          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2101          * before USED bit, we need memory barrier here.
2102          * See mem_cgroup_add_lru_list(), etc.
2103          */
2104         smp_wmb();
2105         switch (ctype) {
2106         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2107         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2108                 SetPageCgroupCache(pc);
2109                 SetPageCgroupUsed(pc);
2110                 break;
2111         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2112                 ClearPageCgroupCache(pc);
2113                 SetPageCgroupUsed(pc);
2114                 break;
2115         default:
2116                 break;
2117         }
2118
2119         mem_cgroup_charge_statistics(mem, pc, true);
2120 }
2121
2122 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2123                                        struct page_cgroup *pc,
2124                                        enum charge_type ctype,
2125                                        int page_size)
2126 {
2127         int i;
2128         int count = page_size >> PAGE_SHIFT;
2129
2130         /* try_charge() can return NULL to *memcg, taking care of it. */
2131         if (!mem)
2132                 return;
2133
2134         lock_page_cgroup(pc);
2135         if (unlikely(PageCgroupUsed(pc))) {
2136                 unlock_page_cgroup(pc);
2137                 mem_cgroup_cancel_charge(mem, page_size);
2138                 return;
2139         }
2140
2141         /*
2142          * we don't need page_cgroup_lock about tail pages, becase they are not
2143          * accessed by any other context at this point.
2144          */
2145         for (i = 0; i < count; i++)
2146                 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
2147
2148         unlock_page_cgroup(pc);
2149         /*
2150          * "charge_statistics" updated event counter. Then, check it.
2151          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2152          * if they exceeds softlimit.
2153          */
2154         memcg_check_events(mem, pc->page);
2155 }
2156
2157 /**
2158  * __mem_cgroup_move_account - move account of the page
2159  * @pc: page_cgroup of the page.
2160  * @from: mem_cgroup which the page is moved from.
2161  * @to: mem_cgroup which the page is moved to. @from != @to.
2162  * @uncharge: whether we should call uncharge and css_put against @from.
2163  *
2164  * The caller must confirm following.
2165  * - page is not on LRU (isolate_page() is useful.)
2166  * - the pc is locked, used, and ->mem_cgroup points to @from.
2167  *
2168  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2169  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2170  * true, this function does "uncharge" from old cgroup, but it doesn't if
2171  * @uncharge is false, so a caller should do "uncharge".
2172  */
2173
2174 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2175         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2176 {
2177         VM_BUG_ON(from == to);
2178         VM_BUG_ON(PageLRU(pc->page));
2179         VM_BUG_ON(!page_is_cgroup_locked(pc));
2180         VM_BUG_ON(!PageCgroupUsed(pc));
2181         VM_BUG_ON(pc->mem_cgroup != from);
2182
2183         if (PageCgroupFileMapped(pc)) {
2184                 /* Update mapped_file data for mem_cgroup */
2185                 preempt_disable();
2186                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2188                 preempt_enable();
2189         }
2190         mem_cgroup_charge_statistics(from, pc, false);
2191         if (uncharge)
2192                 /* This is not "cancel", but cancel_charge does all we need. */
2193                 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2194
2195         /* caller should have done css_get */
2196         pc->mem_cgroup = to;
2197         mem_cgroup_charge_statistics(to, pc, true);
2198         /*
2199          * We charges against "to" which may not have any tasks. Then, "to"
2200          * can be under rmdir(). But in current implementation, caller of
2201          * this function is just force_empty() and move charge, so it's
2202          * garanteed that "to" is never removed. So, we don't check rmdir
2203          * status here.
2204          */
2205 }
2206
2207 /*
2208  * check whether the @pc is valid for moving account and call
2209  * __mem_cgroup_move_account()
2210  */
2211 static int mem_cgroup_move_account(struct page_cgroup *pc,
2212                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2213 {
2214         int ret = -EINVAL;
2215         unsigned long flags;
2216
2217         lock_page_cgroup(pc);
2218         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2219                 move_lock_page_cgroup(pc, &flags);
2220                 __mem_cgroup_move_account(pc, from, to, uncharge);
2221                 move_unlock_page_cgroup(pc, &flags);
2222                 ret = 0;
2223         }
2224         unlock_page_cgroup(pc);
2225         /*
2226          * check events
2227          */
2228         memcg_check_events(to, pc->page);
2229         memcg_check_events(from, pc->page);
2230         return ret;
2231 }
2232
2233 /*
2234  * move charges to its parent.
2235  */
2236
2237 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2238                                   struct mem_cgroup *child,
2239                                   gfp_t gfp_mask)
2240 {
2241         struct page *page = pc->page;
2242         struct cgroup *cg = child->css.cgroup;
2243         struct cgroup *pcg = cg->parent;
2244         struct mem_cgroup *parent;
2245         int ret;
2246
2247         /* Is ROOT ? */
2248         if (!pcg)
2249                 return -EINVAL;
2250
2251         ret = -EBUSY;
2252         if (!get_page_unless_zero(page))
2253                 goto out;
2254         if (isolate_lru_page(page))
2255                 goto put;
2256
2257         parent = mem_cgroup_from_cont(pcg);
2258         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2259                                       PAGE_SIZE);
2260         if (ret || !parent)
2261                 goto put_back;
2262
2263         ret = mem_cgroup_move_account(pc, child, parent, true);
2264         if (ret)
2265                 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2266 put_back:
2267         putback_lru_page(page);
2268 put:
2269         put_page(page);
2270 out:
2271         return ret;
2272 }
2273
2274 /*
2275  * Charge the memory controller for page usage.
2276  * Return
2277  * 0 if the charge was successful
2278  * < 0 if the cgroup is over its limit
2279  */
2280 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2281                                 gfp_t gfp_mask, enum charge_type ctype)
2282 {
2283         struct mem_cgroup *mem = NULL;
2284         struct page_cgroup *pc;
2285         int ret;
2286         int page_size = PAGE_SIZE;
2287
2288         if (PageTransHuge(page)) {
2289                 page_size <<= compound_order(page);
2290                 VM_BUG_ON(!PageTransHuge(page));
2291         }
2292
2293         pc = lookup_page_cgroup(page);
2294         /* can happen at boot */
2295         if (unlikely(!pc))
2296                 return 0;
2297         prefetchw(pc);
2298
2299         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2300         if (ret || !mem)
2301                 return ret;
2302
2303         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2304         return 0;
2305 }
2306
2307 int mem_cgroup_newpage_charge(struct page *page,
2308                               struct mm_struct *mm, gfp_t gfp_mask)
2309 {
2310         if (mem_cgroup_disabled())
2311                 return 0;
2312         /*
2313          * If already mapped, we don't have to account.
2314          * If page cache, page->mapping has address_space.
2315          * But page->mapping may have out-of-use anon_vma pointer,
2316          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2317          * is NULL.
2318          */
2319         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2320                 return 0;
2321         if (unlikely(!mm))
2322                 mm = &init_mm;
2323         return mem_cgroup_charge_common(page, mm, gfp_mask,
2324                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2325 }
2326
2327 static void
2328 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2329                                         enum charge_type ctype);
2330
2331 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2332                                 gfp_t gfp_mask)
2333 {
2334         int ret;
2335
2336         if (mem_cgroup_disabled())
2337                 return 0;
2338         if (PageCompound(page))
2339                 return 0;
2340         /*
2341          * Corner case handling. This is called from add_to_page_cache()
2342          * in usual. But some FS (shmem) precharges this page before calling it
2343          * and call add_to_page_cache() with GFP_NOWAIT.
2344          *
2345          * For GFP_NOWAIT case, the page may be pre-charged before calling
2346          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2347          * charge twice. (It works but has to pay a bit larger cost.)
2348          * And when the page is SwapCache, it should take swap information
2349          * into account. This is under lock_page() now.
2350          */
2351         if (!(gfp_mask & __GFP_WAIT)) {
2352                 struct page_cgroup *pc;
2353
2354                 pc = lookup_page_cgroup(page);
2355                 if (!pc)
2356                         return 0;
2357                 lock_page_cgroup(pc);
2358                 if (PageCgroupUsed(pc)) {
2359                         unlock_page_cgroup(pc);
2360                         return 0;
2361                 }
2362                 unlock_page_cgroup(pc);
2363         }
2364
2365         if (unlikely(!mm))
2366                 mm = &init_mm;
2367
2368         if (page_is_file_cache(page))
2369                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2370                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2371
2372         /* shmem */
2373         if (PageSwapCache(page)) {
2374                 struct mem_cgroup *mem = NULL;
2375
2376                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2377                 if (!ret)
2378                         __mem_cgroup_commit_charge_swapin(page, mem,
2379                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2380         } else
2381                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2382                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2383
2384         return ret;
2385 }
2386
2387 /*
2388  * While swap-in, try_charge -> commit or cancel, the page is locked.
2389  * And when try_charge() successfully returns, one refcnt to memcg without
2390  * struct page_cgroup is acquired. This refcnt will be consumed by
2391  * "commit()" or removed by "cancel()"
2392  */
2393 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2394                                  struct page *page,
2395                                  gfp_t mask, struct mem_cgroup **ptr)
2396 {
2397         struct mem_cgroup *mem;
2398         int ret;
2399
2400         if (mem_cgroup_disabled())
2401                 return 0;
2402
2403         if (!do_swap_account)
2404                 goto charge_cur_mm;
2405         /*
2406          * A racing thread's fault, or swapoff, may have already updated
2407          * the pte, and even removed page from swap cache: in those cases
2408          * do_swap_page()'s pte_same() test will fail; but there's also a
2409          * KSM case which does need to charge the page.
2410          */
2411         if (!PageSwapCache(page))
2412                 goto charge_cur_mm;
2413         mem = try_get_mem_cgroup_from_page(page);
2414         if (!mem)
2415                 goto charge_cur_mm;
2416         *ptr = mem;
2417         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2418         css_put(&mem->css);
2419         return ret;
2420 charge_cur_mm:
2421         if (unlikely(!mm))
2422                 mm = &init_mm;
2423         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2424 }
2425
2426 static void
2427 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2428                                         enum charge_type ctype)
2429 {
2430         struct page_cgroup *pc;
2431
2432         if (mem_cgroup_disabled())
2433                 return;
2434         if (!ptr)
2435                 return;
2436         cgroup_exclude_rmdir(&ptr->css);
2437         pc = lookup_page_cgroup(page);
2438         mem_cgroup_lru_del_before_commit_swapcache(page);
2439         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2440         mem_cgroup_lru_add_after_commit_swapcache(page);
2441         /*
2442          * Now swap is on-memory. This means this page may be
2443          * counted both as mem and swap....double count.
2444          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2445          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2446          * may call delete_from_swap_cache() before reach here.
2447          */
2448         if (do_swap_account && PageSwapCache(page)) {
2449                 swp_entry_t ent = {.val = page_private(page)};
2450                 unsigned short id;
2451                 struct mem_cgroup *memcg;
2452
2453                 id = swap_cgroup_record(ent, 0);
2454                 rcu_read_lock();
2455                 memcg = mem_cgroup_lookup(id);
2456                 if (memcg) {
2457                         /*
2458                          * This recorded memcg can be obsolete one. So, avoid
2459                          * calling css_tryget
2460                          */
2461                         if (!mem_cgroup_is_root(memcg))
2462                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2463                         mem_cgroup_swap_statistics(memcg, false);
2464                         mem_cgroup_put(memcg);
2465                 }
2466                 rcu_read_unlock();
2467         }
2468         /*
2469          * At swapin, we may charge account against cgroup which has no tasks.
2470          * So, rmdir()->pre_destroy() can be called while we do this charge.
2471          * In that case, we need to call pre_destroy() again. check it here.
2472          */
2473         cgroup_release_and_wakeup_rmdir(&ptr->css);
2474 }
2475
2476 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2477 {
2478         __mem_cgroup_commit_charge_swapin(page, ptr,
2479                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2480 }
2481
2482 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2483 {
2484         if (mem_cgroup_disabled())
2485                 return;
2486         if (!mem)
2487                 return;
2488         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2489 }
2490
2491 static void
2492 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2493               int page_size)
2494 {
2495         struct memcg_batch_info *batch = NULL;
2496         bool uncharge_memsw = true;
2497         /* If swapout, usage of swap doesn't decrease */
2498         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2499                 uncharge_memsw = false;
2500
2501         batch = &current->memcg_batch;
2502         /*
2503          * In usual, we do css_get() when we remember memcg pointer.
2504          * But in this case, we keep res->usage until end of a series of
2505          * uncharges. Then, it's ok to ignore memcg's refcnt.
2506          */
2507         if (!batch->memcg)
2508                 batch->memcg = mem;
2509         /*
2510          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2511          * In those cases, all pages freed continously can be expected to be in
2512          * the same cgroup and we have chance to coalesce uncharges.
2513          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2514          * because we want to do uncharge as soon as possible.
2515          */
2516
2517         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2518                 goto direct_uncharge;
2519
2520         if (page_size != PAGE_SIZE)
2521                 goto direct_uncharge;
2522
2523         /*
2524          * In typical case, batch->memcg == mem. This means we can
2525          * merge a series of uncharges to an uncharge of res_counter.
2526          * If not, we uncharge res_counter ony by one.
2527          */
2528         if (batch->memcg != mem)
2529                 goto direct_uncharge;
2530         /* remember freed charge and uncharge it later */
2531         batch->bytes += PAGE_SIZE;
2532         if (uncharge_memsw)
2533                 batch->memsw_bytes += PAGE_SIZE;
2534         return;
2535 direct_uncharge:
2536         res_counter_uncharge(&mem->res, page_size);
2537         if (uncharge_memsw)
2538                 res_counter_uncharge(&mem->memsw, page_size);
2539         if (unlikely(batch->memcg != mem))
2540                 memcg_oom_recover(mem);
2541         return;
2542 }
2543
2544 /*
2545  * uncharge if !page_mapped(page)
2546  */
2547 static struct mem_cgroup *
2548 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2549 {
2550         int i;
2551         int count;
2552         struct page_cgroup *pc;
2553         struct mem_cgroup *mem = NULL;
2554         int page_size = PAGE_SIZE;
2555
2556         if (mem_cgroup_disabled())
2557                 return NULL;
2558
2559         if (PageSwapCache(page))
2560                 return NULL;
2561
2562         if (PageTransHuge(page)) {
2563                 page_size <<= compound_order(page);
2564                 VM_BUG_ON(!PageTransHuge(page));
2565         }
2566
2567         count = page_size >> PAGE_SHIFT;
2568         /*
2569          * Check if our page_cgroup is valid
2570          */
2571         pc = lookup_page_cgroup(page);
2572         if (unlikely(!pc || !PageCgroupUsed(pc)))
2573                 return NULL;
2574
2575         lock_page_cgroup(pc);
2576
2577         mem = pc->mem_cgroup;
2578
2579         if (!PageCgroupUsed(pc))
2580                 goto unlock_out;
2581
2582         switch (ctype) {
2583         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2584         case MEM_CGROUP_CHARGE_TYPE_DROP:
2585                 /* See mem_cgroup_prepare_migration() */
2586                 if (page_mapped(page) || PageCgroupMigration(pc))
2587                         goto unlock_out;
2588                 break;
2589         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2590                 if (!PageAnon(page)) {  /* Shared memory */
2591                         if (page->mapping && !page_is_file_cache(page))
2592                                 goto unlock_out;
2593                 } else if (page_mapped(page)) /* Anon */
2594                                 goto unlock_out;
2595                 break;
2596         default:
2597                 break;
2598         }
2599
2600         for (i = 0; i < count; i++)
2601                 mem_cgroup_charge_statistics(mem, pc + i, false);
2602
2603         ClearPageCgroupUsed(pc);
2604         /*
2605          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2606          * freed from LRU. This is safe because uncharged page is expected not
2607          * to be reused (freed soon). Exception is SwapCache, it's handled by
2608          * special functions.
2609          */
2610
2611         unlock_page_cgroup(pc);
2612         /*
2613          * even after unlock, we have mem->res.usage here and this memcg
2614          * will never be freed.
2615          */
2616         memcg_check_events(mem, page);
2617         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2618                 mem_cgroup_swap_statistics(mem, true);
2619                 mem_cgroup_get(mem);
2620         }
2621         if (!mem_cgroup_is_root(mem))
2622                 __do_uncharge(mem, ctype, page_size);
2623
2624         return mem;
2625
2626 unlock_out:
2627         unlock_page_cgroup(pc);
2628         return NULL;
2629 }
2630
2631 void mem_cgroup_uncharge_page(struct page *page)
2632 {
2633         /* early check. */
2634         if (page_mapped(page))
2635                 return;
2636         if (page->mapping && !PageAnon(page))
2637                 return;
2638         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2639 }
2640
2641 void mem_cgroup_uncharge_cache_page(struct page *page)
2642 {
2643         VM_BUG_ON(page_mapped(page));
2644         VM_BUG_ON(page->mapping);
2645         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2646 }
2647
2648 /*
2649  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2650  * In that cases, pages are freed continuously and we can expect pages
2651  * are in the same memcg. All these calls itself limits the number of
2652  * pages freed at once, then uncharge_start/end() is called properly.
2653  * This may be called prural(2) times in a context,
2654  */
2655
2656 void mem_cgroup_uncharge_start(void)
2657 {
2658         current->memcg_batch.do_batch++;
2659         /* We can do nest. */
2660         if (current->memcg_batch.do_batch == 1) {
2661                 current->memcg_batch.memcg = NULL;
2662                 current->memcg_batch.bytes = 0;
2663                 current->memcg_batch.memsw_bytes = 0;
2664         }
2665 }
2666
2667 void mem_cgroup_uncharge_end(void)
2668 {
2669         struct memcg_batch_info *batch = &current->memcg_batch;
2670
2671         if (!batch->do_batch)
2672                 return;
2673
2674         batch->do_batch--;
2675         if (batch->do_batch) /* If stacked, do nothing. */
2676                 return;
2677
2678         if (!batch->memcg)
2679                 return;
2680         /*
2681          * This "batch->memcg" is valid without any css_get/put etc...
2682          * bacause we hide charges behind us.
2683          */
2684         if (batch->bytes)
2685                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2686         if (batch->memsw_bytes)
2687                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2688         memcg_oom_recover(batch->memcg);
2689         /* forget this pointer (for sanity check) */
2690         batch->memcg = NULL;
2691 }
2692
2693 #ifdef CONFIG_SWAP
2694 /*
2695  * called after __delete_from_swap_cache() and drop "page" account.
2696  * memcg information is recorded to swap_cgroup of "ent"
2697  */
2698 void
2699 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2700 {
2701         struct mem_cgroup *memcg;
2702         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2703
2704         if (!swapout) /* this was a swap cache but the swap is unused ! */
2705                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2706
2707         memcg = __mem_cgroup_uncharge_common(page, ctype);
2708
2709         /*
2710          * record memcg information,  if swapout && memcg != NULL,
2711          * mem_cgroup_get() was called in uncharge().
2712          */
2713         if (do_swap_account && swapout && memcg)
2714                 swap_cgroup_record(ent, css_id(&memcg->css));
2715 }
2716 #endif
2717
2718 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2719 /*
2720  * called from swap_entry_free(). remove record in swap_cgroup and
2721  * uncharge "memsw" account.
2722  */
2723 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2724 {
2725         struct mem_cgroup *memcg;
2726         unsigned short id;
2727
2728         if (!do_swap_account)
2729                 return;
2730
2731         id = swap_cgroup_record(ent, 0);
2732         rcu_read_lock();
2733         memcg = mem_cgroup_lookup(id);
2734         if (memcg) {
2735                 /*
2736                  * We uncharge this because swap is freed.
2737                  * This memcg can be obsolete one. We avoid calling css_tryget
2738                  */
2739                 if (!mem_cgroup_is_root(memcg))
2740                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2741                 mem_cgroup_swap_statistics(memcg, false);
2742                 mem_cgroup_put(memcg);
2743         }
2744         rcu_read_unlock();
2745 }
2746
2747 /**
2748  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2749  * @entry: swap entry to be moved
2750  * @from:  mem_cgroup which the entry is moved from
2751  * @to:  mem_cgroup which the entry is moved to
2752  * @need_fixup: whether we should fixup res_counters and refcounts.
2753  *
2754  * It succeeds only when the swap_cgroup's record for this entry is the same
2755  * as the mem_cgroup's id of @from.
2756  *
2757  * Returns 0 on success, -EINVAL on failure.
2758  *
2759  * The caller must have charged to @to, IOW, called res_counter_charge() about
2760  * both res and memsw, and called css_get().
2761  */
2762 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2763                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2764 {
2765         unsigned short old_id, new_id;
2766
2767         old_id = css_id(&from->css);
2768         new_id = css_id(&to->css);
2769
2770         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2771                 mem_cgroup_swap_statistics(from, false);
2772                 mem_cgroup_swap_statistics(to, true);
2773                 /*
2774                  * This function is only called from task migration context now.
2775                  * It postpones res_counter and refcount handling till the end
2776                  * of task migration(mem_cgroup_clear_mc()) for performance
2777                  * improvement. But we cannot postpone mem_cgroup_get(to)
2778                  * because if the process that has been moved to @to does
2779                  * swap-in, the refcount of @to might be decreased to 0.
2780                  */
2781                 mem_cgroup_get(to);
2782                 if (need_fixup) {
2783                         if (!mem_cgroup_is_root(from))
2784                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2785                         mem_cgroup_put(from);
2786                         /*
2787                          * we charged both to->res and to->memsw, so we should
2788                          * uncharge to->res.
2789                          */
2790                         if (!mem_cgroup_is_root(to))
2791                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2792                 }
2793                 return 0;
2794         }
2795         return -EINVAL;
2796 }
2797 #else
2798 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2799                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2800 {
2801         return -EINVAL;
2802 }
2803 #endif
2804
2805 /*
2806  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2807  * page belongs to.
2808  */
2809 int mem_cgroup_prepare_migration(struct page *page,
2810         struct page *newpage, struct mem_cgroup **ptr)
2811 {
2812         struct page_cgroup *pc;
2813         struct mem_cgroup *mem = NULL;
2814         enum charge_type ctype;
2815         int ret = 0;
2816
2817         VM_BUG_ON(PageTransHuge(page));
2818         if (mem_cgroup_disabled())
2819                 return 0;
2820
2821         pc = lookup_page_cgroup(page);
2822         lock_page_cgroup(pc);
2823         if (PageCgroupUsed(pc)) {
2824                 mem = pc->mem_cgroup;
2825                 css_get(&mem->css);
2826                 /*
2827                  * At migrating an anonymous page, its mapcount goes down
2828                  * to 0 and uncharge() will be called. But, even if it's fully
2829                  * unmapped, migration may fail and this page has to be
2830                  * charged again. We set MIGRATION flag here and delay uncharge
2831                  * until end_migration() is called
2832                  *
2833                  * Corner Case Thinking
2834                  * A)
2835                  * When the old page was mapped as Anon and it's unmap-and-freed
2836                  * while migration was ongoing.
2837                  * If unmap finds the old page, uncharge() of it will be delayed
2838                  * until end_migration(). If unmap finds a new page, it's
2839                  * uncharged when it make mapcount to be 1->0. If unmap code
2840                  * finds swap_migration_entry, the new page will not be mapped
2841                  * and end_migration() will find it(mapcount==0).
2842                  *
2843                  * B)
2844                  * When the old page was mapped but migraion fails, the kernel
2845                  * remaps it. A charge for it is kept by MIGRATION flag even
2846                  * if mapcount goes down to 0. We can do remap successfully
2847                  * without charging it again.
2848                  *
2849                  * C)
2850                  * The "old" page is under lock_page() until the end of
2851                  * migration, so, the old page itself will not be swapped-out.
2852                  * If the new page is swapped out before end_migraton, our
2853                  * hook to usual swap-out path will catch the event.
2854                  */
2855                 if (PageAnon(page))
2856                         SetPageCgroupMigration(pc);
2857         }
2858         unlock_page_cgroup(pc);
2859         /*
2860          * If the page is not charged at this point,
2861          * we return here.
2862          */
2863         if (!mem)
2864                 return 0;
2865
2866         *ptr = mem;
2867         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2868         css_put(&mem->css);/* drop extra refcnt */
2869         if (ret || *ptr == NULL) {
2870                 if (PageAnon(page)) {
2871                         lock_page_cgroup(pc);
2872                         ClearPageCgroupMigration(pc);
2873                         unlock_page_cgroup(pc);
2874                         /*
2875                          * The old page may be fully unmapped while we kept it.
2876                          */
2877                         mem_cgroup_uncharge_page(page);
2878                 }
2879                 return -ENOMEM;
2880         }
2881         /*
2882          * We charge new page before it's used/mapped. So, even if unlock_page()
2883          * is called before end_migration, we can catch all events on this new
2884          * page. In the case new page is migrated but not remapped, new page's
2885          * mapcount will be finally 0 and we call uncharge in end_migration().
2886          */
2887         pc = lookup_page_cgroup(newpage);
2888         if (PageAnon(page))
2889                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2890         else if (page_is_file_cache(page))
2891                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2892         else
2893                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2894         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2895         return ret;
2896 }
2897
2898 /* remove redundant charge if migration failed*/
2899 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2900         struct page *oldpage, struct page *newpage)
2901 {
2902         struct page *used, *unused;
2903         struct page_cgroup *pc;
2904
2905         if (!mem)
2906                 return;
2907         /* blocks rmdir() */
2908         cgroup_exclude_rmdir(&mem->css);
2909         /* at migration success, oldpage->mapping is NULL. */
2910         if (oldpage->mapping) {
2911                 used = oldpage;
2912                 unused = newpage;
2913         } else {
2914                 used = newpage;
2915                 unused = oldpage;
2916         }
2917         /*
2918          * We disallowed uncharge of pages under migration because mapcount
2919          * of the page goes down to zero, temporarly.
2920          * Clear the flag and check the page should be charged.
2921          */
2922         pc = lookup_page_cgroup(oldpage);
2923         lock_page_cgroup(pc);
2924         ClearPageCgroupMigration(pc);
2925         unlock_page_cgroup(pc);
2926
2927         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2928
2929         /*
2930          * If a page is a file cache, radix-tree replacement is very atomic
2931          * and we can skip this check. When it was an Anon page, its mapcount
2932          * goes down to 0. But because we added MIGRATION flage, it's not
2933          * uncharged yet. There are several case but page->mapcount check
2934          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2935          * check. (see prepare_charge() also)
2936          */
2937         if (PageAnon(used))
2938                 mem_cgroup_uncharge_page(used);
2939         /*
2940          * At migration, we may charge account against cgroup which has no
2941          * tasks.
2942          * So, rmdir()->pre_destroy() can be called while we do this charge.
2943          * In that case, we need to call pre_destroy() again. check it here.
2944          */
2945         cgroup_release_and_wakeup_rmdir(&mem->css);
2946 }
2947
2948 /*
2949  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2950  * Calling hierarchical_reclaim is not enough because we should update
2951  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2952  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2953  * not from the memcg which this page would be charged to.
2954  * try_charge_swapin does all of these works properly.
2955  */
2956 int mem_cgroup_shmem_charge_fallback(struct page *page,
2957                             struct mm_struct *mm,
2958                             gfp_t gfp_mask)
2959 {
2960         struct mem_cgroup *mem = NULL;
2961         int ret;
2962
2963         if (mem_cgroup_disabled())
2964                 return 0;
2965
2966         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2967         if (!ret)
2968                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2969
2970         return ret;
2971 }
2972
2973 static DEFINE_MUTEX(set_limit_mutex);
2974
2975 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2976                                 unsigned long long val)
2977 {
2978         int retry_count;
2979         u64 memswlimit, memlimit;
2980         int ret = 0;
2981         int children = mem_cgroup_count_children(memcg);
2982         u64 curusage, oldusage;
2983         int enlarge;
2984
2985         /*
2986          * For keeping hierarchical_reclaim simple, how long we should retry
2987          * is depends on callers. We set our retry-count to be function
2988          * of # of children which we should visit in this loop.
2989          */
2990         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2991
2992         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2993
2994         enlarge = 0;
2995         while (retry_count) {
2996                 if (signal_pending(current)) {
2997                         ret = -EINTR;
2998                         break;
2999                 }
3000                 /*
3001                  * Rather than hide all in some function, I do this in
3002                  * open coded manner. You see what this really does.
3003                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3004                  */
3005                 mutex_lock(&set_limit_mutex);
3006                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3007                 if (memswlimit < val) {
3008                         ret = -EINVAL;
3009                         mutex_unlock(&set_limit_mutex);
3010                         break;
3011                 }
3012
3013                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3014                 if (memlimit < val)
3015                         enlarge = 1;
3016
3017                 ret = res_counter_set_limit(&memcg->res, val);
3018                 if (!ret) {
3019                         if (memswlimit == val)
3020                                 memcg->memsw_is_minimum = true;
3021                         else
3022                                 memcg->memsw_is_minimum = false;
3023                 }
3024                 mutex_unlock(&set_limit_mutex);
3025
3026                 if (!ret)
3027                         break;
3028
3029                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3030                                                 MEM_CGROUP_RECLAIM_SHRINK);
3031                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3032                 /* Usage is reduced ? */
3033                 if (curusage >= oldusage)
3034                         retry_count--;
3035                 else
3036                         oldusage = curusage;
3037         }
3038         if (!ret && enlarge)
3039                 memcg_oom_recover(memcg);
3040
3041         return ret;
3042 }
3043
3044 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3045                                         unsigned long long val)
3046 {
3047         int retry_count;
3048         u64 memlimit, memswlimit, oldusage, curusage;
3049         int children = mem_cgroup_count_children(memcg);
3050         int ret = -EBUSY;
3051         int enlarge = 0;
3052
3053         /* see mem_cgroup_resize_res_limit */
3054         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3055         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3056         while (retry_count) {
3057                 if (signal_pending(current)) {
3058                         ret = -EINTR;
3059                         break;
3060                 }
3061                 /*
3062                  * Rather than hide all in some function, I do this in
3063                  * open coded manner. You see what this really does.
3064                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3065                  */
3066                 mutex_lock(&set_limit_mutex);
3067                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3068                 if (memlimit > val) {
3069                         ret = -EINVAL;
3070                         mutex_unlock(&set_limit_mutex);
3071                         break;
3072                 }
3073                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3074                 if (memswlimit < val)
3075                         enlarge = 1;
3076                 ret = res_counter_set_limit(&memcg->memsw, val);
3077                 if (!ret) {
3078                         if (memlimit == val)
3079                                 memcg->memsw_is_minimum = true;
3080                         else
3081                                 memcg->memsw_is_minimum = false;
3082                 }
3083                 mutex_unlock(&set_limit_mutex);
3084
3085                 if (!ret)
3086                         break;
3087
3088                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3089                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3090                                                 MEM_CGROUP_RECLAIM_SHRINK);
3091                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3092                 /* Usage is reduced ? */
3093                 if (curusage >= oldusage)
3094                         retry_count--;
3095                 else
3096                         oldusage = curusage;
3097         }
3098         if (!ret && enlarge)
3099                 memcg_oom_recover(memcg);
3100         return ret;
3101 }
3102
3103 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3104                                             gfp_t gfp_mask)
3105 {
3106         unsigned long nr_reclaimed = 0;
3107         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3108         unsigned long reclaimed;
3109         int loop = 0;
3110         struct mem_cgroup_tree_per_zone *mctz;
3111         unsigned long long excess;
3112
3113         if (order > 0)
3114                 return 0;
3115
3116         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3117         /*
3118          * This loop can run a while, specially if mem_cgroup's continuously
3119          * keep exceeding their soft limit and putting the system under
3120          * pressure
3121          */
3122         do {
3123                 if (next_mz)
3124                         mz = next_mz;
3125                 else
3126                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3127                 if (!mz)
3128                         break;
3129
3130                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3131                                                 gfp_mask,
3132                                                 MEM_CGROUP_RECLAIM_SOFT);
3133                 nr_reclaimed += reclaimed;
3134                 spin_lock(&mctz->lock);
3135
3136                 /*
3137                  * If we failed to reclaim anything from this memory cgroup
3138                  * it is time to move on to the next cgroup
3139                  */
3140                 next_mz = NULL;
3141                 if (!reclaimed) {
3142                         do {
3143                                 /*
3144                                  * Loop until we find yet another one.
3145                                  *
3146                                  * By the time we get the soft_limit lock
3147                                  * again, someone might have aded the
3148                                  * group back on the RB tree. Iterate to
3149                                  * make sure we get a different mem.
3150                                  * mem_cgroup_largest_soft_limit_node returns
3151                                  * NULL if no other cgroup is present on
3152                                  * the tree
3153                                  */
3154                                 next_mz =
3155                                 __mem_cgroup_largest_soft_limit_node(mctz);
3156                                 if (next_mz == mz) {
3157                                         css_put(&next_mz->mem->css);
3158                                         next_mz = NULL;
3159                                 } else /* next_mz == NULL or other memcg */
3160                                         break;
3161                         } while (1);
3162                 }
3163                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3164                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3165                 /*
3166                  * One school of thought says that we should not add
3167                  * back the node to the tree if reclaim returns 0.
3168                  * But our reclaim could return 0, simply because due
3169                  * to priority we are exposing a smaller subset of
3170                  * memory to reclaim from. Consider this as a longer
3171                  * term TODO.
3172                  */
3173                 /* If excess == 0, no tree ops */
3174                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3175                 spin_unlock(&mctz->lock);
3176                 css_put(&mz->mem->css);
3177                 loop++;
3178                 /*
3179                  * Could not reclaim anything and there are no more
3180                  * mem cgroups to try or we seem to be looping without
3181                  * reclaiming anything.
3182                  */
3183                 if (!nr_reclaimed &&
3184                         (next_mz == NULL ||
3185                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3186                         break;
3187         } while (!nr_reclaimed);
3188         if (next_mz)
3189                 css_put(&next_mz->mem->css);
3190         return nr_reclaimed;
3191 }
3192
3193 /*
3194  * This routine traverse page_cgroup in given list and drop them all.
3195  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3196  */
3197 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3198                                 int node, int zid, enum lru_list lru)
3199 {
3200         struct zone *zone;
3201         struct mem_cgroup_per_zone *mz;
3202         struct page_cgroup *pc, *busy;
3203         unsigned long flags, loop;
3204         struct list_head *list;
3205         int ret = 0;
3206
3207         zone = &NODE_DATA(node)->node_zones[zid];
3208         mz = mem_cgroup_zoneinfo(mem, node, zid);
3209         list = &mz->lists[lru];
3210
3211         loop = MEM_CGROUP_ZSTAT(mz, lru);
3212         /* give some margin against EBUSY etc...*/
3213         loop += 256;
3214         busy = NULL;
3215         while (loop--) {
3216                 ret = 0;
3217                 spin_lock_irqsave(&zone->lru_lock, flags);
3218                 if (list_empty(list)) {
3219                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3220                         break;
3221                 }
3222                 pc = list_entry(list->prev, struct page_cgroup, lru);
3223                 if (busy == pc) {
3224                         list_move(&pc->lru, list);
3225                         busy = NULL;
3226                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3227                         continue;
3228                 }
3229                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3230
3231                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3232                 if (ret == -ENOMEM)
3233                         break;
3234
3235                 if (ret == -EBUSY || ret == -EINVAL) {
3236                         /* found lock contention or "pc" is obsolete. */
3237                         busy = pc;
3238                         cond_resched();
3239                 } else
3240                         busy = NULL;
3241         }
3242
3243         if (!ret && !list_empty(list))
3244                 return -EBUSY;
3245         return ret;
3246 }
3247
3248 /*
3249  * make mem_cgroup's charge to be 0 if there is no task.
3250  * This enables deleting this mem_cgroup.
3251  */
3252 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3253 {
3254         int ret;
3255         int node, zid, shrink;
3256         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3257         struct cgroup *cgrp = mem->css.cgroup;
3258
3259         css_get(&mem->css);
3260
3261         shrink = 0;
3262         /* should free all ? */
3263         if (free_all)
3264                 goto try_to_free;
3265 move_account:
3266         do {
3267                 ret = -EBUSY;
3268                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3269                         goto out;
3270                 ret = -EINTR;
3271                 if (signal_pending(current))
3272                         goto out;
3273                 /* This is for making all *used* pages to be on LRU. */
3274                 lru_add_drain_all();
3275                 drain_all_stock_sync();
3276                 ret = 0;
3277                 mem_cgroup_start_move(mem);
3278                 for_each_node_state(node, N_HIGH_MEMORY) {
3279                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3280                                 enum lru_list l;
3281                                 for_each_lru(l) {
3282                                         ret = mem_cgroup_force_empty_list(mem,
3283                                                         node, zid, l);
3284                                         if (ret)
3285                                                 break;
3286                                 }
3287                         }
3288                         if (ret)
3289                                 break;
3290                 }
3291                 mem_cgroup_end_move(mem);
3292                 memcg_oom_recover(mem);
3293                 /* it seems parent cgroup doesn't have enough mem */
3294                 if (ret == -ENOMEM)
3295                         goto try_to_free;
3296                 cond_resched();
3297         /* "ret" should also be checked to ensure all lists are empty. */
3298         } while (mem->res.usage > 0 || ret);
3299 out:
3300         css_put(&mem->css);
3301         return ret;
3302
3303 try_to_free:
3304         /* returns EBUSY if there is a task or if we come here twice. */
3305         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3306                 ret = -EBUSY;
3307                 goto out;
3308         }
3309         /* we call try-to-free pages for make this cgroup empty */
3310         lru_add_drain_all();
3311         /* try to free all pages in this cgroup */
3312         shrink = 1;
3313         while (nr_retries && mem->res.usage > 0) {
3314                 int progress;
3315
3316                 if (signal_pending(current)) {
3317                         ret = -EINTR;
3318                         goto out;
3319                 }
3320                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3321                                                 false, get_swappiness(mem));
3322                 if (!progress) {
3323                         nr_retries--;
3324                         /* maybe some writeback is necessary */
3325                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3326                 }
3327
3328         }
3329         lru_add_drain();
3330         /* try move_account...there may be some *locked* pages. */
3331         goto move_account;
3332 }
3333
3334 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3335 {
3336         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3337 }
3338
3339
3340 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3341 {
3342         return mem_cgroup_from_cont(cont)->use_hierarchy;
3343 }
3344
3345 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3346                                         u64 val)
3347 {
3348         int retval = 0;
3349         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3350         struct cgroup *parent = cont->parent;
3351         struct mem_cgroup *parent_mem = NULL;
3352
3353         if (parent)
3354                 parent_mem = mem_cgroup_from_cont(parent);
3355
3356         cgroup_lock();
3357         /*
3358          * If parent's use_hierarchy is set, we can't make any modifications
3359          * in the child subtrees. If it is unset, then the change can
3360          * occur, provided the current cgroup has no children.
3361          *
3362          * For the root cgroup, parent_mem is NULL, we allow value to be
3363          * set if there are no children.
3364          */
3365         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3366                                 (val == 1 || val == 0)) {
3367                 if (list_empty(&cont->children))
3368                         mem->use_hierarchy = val;
3369                 else
3370                         retval = -EBUSY;
3371         } else
3372                 retval = -EINVAL;
3373         cgroup_unlock();
3374
3375         return retval;
3376 }
3377
3378
3379 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3380                                 enum mem_cgroup_stat_index idx)
3381 {
3382         struct mem_cgroup *iter;
3383         s64 val = 0;
3384
3385         /* each per cpu's value can be minus.Then, use s64 */
3386         for_each_mem_cgroup_tree(iter, mem)
3387                 val += mem_cgroup_read_stat(iter, idx);
3388
3389         if (val < 0) /* race ? */
3390                 val = 0;
3391         return val;
3392 }
3393
3394 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3395 {
3396         u64 val;
3397
3398         if (!mem_cgroup_is_root(mem)) {
3399                 if (!swap)
3400                         return res_counter_read_u64(&mem->res, RES_USAGE);
3401                 else
3402                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3403         }
3404
3405         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3406         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3407
3408         if (swap)
3409                 val += mem_cgroup_get_recursive_idx_stat(mem,
3410                                 MEM_CGROUP_STAT_SWAPOUT);
3411
3412         return val << PAGE_SHIFT;
3413 }
3414
3415 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3416 {
3417         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3418         u64 val;
3419         int type, name;
3420
3421         type = MEMFILE_TYPE(cft->private);
3422         name = MEMFILE_ATTR(cft->private);
3423         switch (type) {
3424         case _MEM:
3425                 if (name == RES_USAGE)
3426                         val = mem_cgroup_usage(mem, false);
3427                 else
3428                         val = res_counter_read_u64(&mem->res, name);
3429                 break;
3430         case _MEMSWAP:
3431                 if (name == RES_USAGE)
3432                         val = mem_cgroup_usage(mem, true);
3433                 else
3434                         val = res_counter_read_u64(&mem->memsw, name);
3435                 break;
3436         default:
3437                 BUG();
3438                 break;
3439         }
3440         return val;
3441 }
3442 /*
3443  * The user of this function is...
3444  * RES_LIMIT.
3445  */
3446 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3447                             const char *buffer)
3448 {
3449         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3450         int type, name;
3451         unsigned long long val;
3452         int ret;
3453
3454         type = MEMFILE_TYPE(cft->private);
3455         name = MEMFILE_ATTR(cft->private);
3456         switch (name) {
3457         case RES_LIMIT:
3458                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3459                         ret = -EINVAL;
3460                         break;
3461                 }
3462                 /* This function does all necessary parse...reuse it */
3463                 ret = res_counter_memparse_write_strategy(buffer, &val);
3464                 if (ret)
3465                         break;
3466                 if (type == _MEM)
3467                         ret = mem_cgroup_resize_limit(memcg, val);
3468                 else
3469                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3470                 break;
3471         case RES_SOFT_LIMIT:
3472                 ret = res_counter_memparse_write_strategy(buffer, &val);
3473                 if (ret)
3474                         break;
3475                 /*
3476                  * For memsw, soft limits are hard to implement in terms
3477                  * of semantics, for now, we support soft limits for
3478                  * control without swap
3479                  */
3480                 if (type == _MEM)
3481                         ret = res_counter_set_soft_limit(&memcg->res, val);
3482                 else
3483                         ret = -EINVAL;
3484                 break;
3485         default:
3486                 ret = -EINVAL; /* should be BUG() ? */
3487                 break;
3488         }
3489         return ret;
3490 }
3491
3492 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3493                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3494 {
3495         struct cgroup *cgroup;
3496         unsigned long long min_limit, min_memsw_limit, tmp;
3497
3498         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3499         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3500         cgroup = memcg->css.cgroup;
3501         if (!memcg->use_hierarchy)
3502                 goto out;
3503
3504         while (cgroup->parent) {
3505                 cgroup = cgroup->parent;
3506                 memcg = mem_cgroup_from_cont(cgroup);
3507                 if (!memcg->use_hierarchy)
3508                         break;
3509                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510                 min_limit = min(min_limit, tmp);
3511                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3512                 min_memsw_limit = min(min_memsw_limit, tmp);
3513         }
3514 out:
3515         *mem_limit = min_limit;
3516         *memsw_limit = min_memsw_limit;
3517         return;
3518 }
3519
3520 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3521 {
3522         struct mem_cgroup *mem;
3523         int type, name;
3524
3525         mem = mem_cgroup_from_cont(cont);
3526         type = MEMFILE_TYPE(event);
3527         name = MEMFILE_ATTR(event);
3528         switch (name) {
3529         case RES_MAX_USAGE:
3530                 if (type == _MEM)
3531                         res_counter_reset_max(&mem->res);
3532                 else
3533                         res_counter_reset_max(&mem->memsw);
3534                 break;
3535         case RES_FAILCNT:
3536                 if (type == _MEM)
3537                         res_counter_reset_failcnt(&mem->res);
3538                 else
3539                         res_counter_reset_failcnt(&mem->memsw);
3540                 break;
3541         }
3542
3543         return 0;
3544 }
3545
3546 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3547                                         struct cftype *cft)
3548 {
3549         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3550 }
3551
3552 #ifdef CONFIG_MMU
3553 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3554                                         struct cftype *cft, u64 val)
3555 {
3556         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3557
3558         if (val >= (1 << NR_MOVE_TYPE))
3559                 return -EINVAL;
3560         /*
3561          * We check this value several times in both in can_attach() and
3562          * attach(), so we need cgroup lock to prevent this value from being
3563          * inconsistent.
3564          */
3565         cgroup_lock();
3566         mem->move_charge_at_immigrate = val;
3567         cgroup_unlock();
3568
3569         return 0;
3570 }
3571 #else
3572 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3573                                         struct cftype *cft, u64 val)
3574 {
3575         return -ENOSYS;
3576 }
3577 #endif
3578
3579
3580 /* For read statistics */
3581 enum {
3582         MCS_CACHE,
3583         MCS_RSS,
3584         MCS_FILE_MAPPED,
3585         MCS_PGPGIN,
3586         MCS_PGPGOUT,
3587         MCS_SWAP,
3588         MCS_INACTIVE_ANON,
3589         MCS_ACTIVE_ANON,
3590         MCS_INACTIVE_FILE,
3591         MCS_ACTIVE_FILE,
3592         MCS_UNEVICTABLE,
3593         NR_MCS_STAT,
3594 };
3595
3596 struct mcs_total_stat {
3597         s64 stat[NR_MCS_STAT];
3598 };
3599
3600 struct {
3601         char *local_name;
3602         char *total_name;
3603 } memcg_stat_strings[NR_MCS_STAT] = {
3604         {"cache", "total_cache"},
3605         {"rss", "total_rss"},
3606         {"mapped_file", "total_mapped_file"},
3607         {"pgpgin", "total_pgpgin"},
3608         {"pgpgout", "total_pgpgout"},
3609         {"swap", "total_swap"},
3610         {"inactive_anon", "total_inactive_anon"},
3611         {"active_anon", "total_active_anon"},
3612         {"inactive_file", "total_inactive_file"},
3613         {"active_file", "total_active_file"},
3614         {"unevictable", "total_unevictable"}
3615 };
3616
3617
3618 static void
3619 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3620 {
3621         s64 val;
3622
3623         /* per cpu stat */
3624         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3625         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3626         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3627         s->stat[MCS_RSS] += val * PAGE_SIZE;
3628         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3629         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3630         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3631         s->stat[MCS_PGPGIN] += val;
3632         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3633         s->stat[MCS_PGPGOUT] += val;
3634         if (do_swap_account) {
3635                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3636                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3637         }
3638
3639         /* per zone stat */
3640         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3641         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3642         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3643         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3644         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3645         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3646         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3647         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3648         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3649         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3650 }
3651
3652 static void
3653 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3654 {
3655         struct mem_cgroup *iter;
3656
3657         for_each_mem_cgroup_tree(iter, mem)
3658                 mem_cgroup_get_local_stat(iter, s);
3659 }
3660
3661 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3662                                  struct cgroup_map_cb *cb)
3663 {
3664         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3665         struct mcs_total_stat mystat;
3666         int i;
3667
3668         memset(&mystat, 0, sizeof(mystat));
3669         mem_cgroup_get_local_stat(mem_cont, &mystat);
3670
3671         for (i = 0; i < NR_MCS_STAT; i++) {
3672                 if (i == MCS_SWAP && !do_swap_account)
3673                         continue;
3674                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3675         }
3676
3677         /* Hierarchical information */
3678         {
3679                 unsigned long long limit, memsw_limit;
3680                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3681                 cb->fill(cb, "hierarchical_memory_limit", limit);
3682                 if (do_swap_account)
3683                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3684         }
3685
3686         memset(&mystat, 0, sizeof(mystat));
3687         mem_cgroup_get_total_stat(mem_cont, &mystat);
3688         for (i = 0; i < NR_MCS_STAT; i++) {
3689                 if (i == MCS_SWAP && !do_swap_account)
3690                         continue;
3691                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3692         }
3693
3694 #ifdef CONFIG_DEBUG_VM
3695         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3696
3697         {
3698                 int nid, zid;
3699                 struct mem_cgroup_per_zone *mz;
3700                 unsigned long recent_rotated[2] = {0, 0};
3701                 unsigned long recent_scanned[2] = {0, 0};
3702
3703                 for_each_online_node(nid)
3704                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3705                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3706
3707                                 recent_rotated[0] +=
3708                                         mz->reclaim_stat.recent_rotated[0];
3709                                 recent_rotated[1] +=
3710                                         mz->reclaim_stat.recent_rotated[1];
3711                                 recent_scanned[0] +=
3712                                         mz->reclaim_stat.recent_scanned[0];
3713                                 recent_scanned[1] +=
3714                                         mz->reclaim_stat.recent_scanned[1];
3715                         }
3716                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3717                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3718                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3719                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3720         }
3721 #endif
3722
3723         return 0;
3724 }
3725
3726 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3727 {
3728         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3729
3730         return get_swappiness(memcg);
3731 }
3732
3733 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3734                                        u64 val)
3735 {
3736         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3737         struct mem_cgroup *parent;
3738
3739         if (val > 100)
3740                 return -EINVAL;
3741
3742         if (cgrp->parent == NULL)
3743                 return -EINVAL;
3744
3745         parent = mem_cgroup_from_cont(cgrp->parent);
3746
3747         cgroup_lock();
3748
3749         /* If under hierarchy, only empty-root can set this value */
3750         if ((parent->use_hierarchy) ||
3751             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3752                 cgroup_unlock();
3753                 return -EINVAL;
3754         }
3755
3756         spin_lock(&memcg->reclaim_param_lock);
3757         memcg->swappiness = val;
3758         spin_unlock(&memcg->reclaim_param_lock);
3759
3760         cgroup_unlock();
3761
3762         return 0;
3763 }
3764
3765 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3766 {
3767         struct mem_cgroup_threshold_ary *t;
3768         u64 usage;
3769         int i;
3770
3771         rcu_read_lock();
3772         if (!swap)
3773                 t = rcu_dereference(memcg->thresholds.primary);
3774         else
3775                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3776
3777         if (!t)
3778                 goto unlock;
3779
3780         usage = mem_cgroup_usage(memcg, swap);
3781
3782         /*
3783          * current_threshold points to threshold just below usage.
3784          * If it's not true, a threshold was crossed after last
3785          * call of __mem_cgroup_threshold().
3786          */
3787         i = t->current_threshold;
3788
3789         /*
3790          * Iterate backward over array of thresholds starting from
3791          * current_threshold and check if a threshold is crossed.
3792          * If none of thresholds below usage is crossed, we read
3793          * only one element of the array here.
3794          */
3795         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3796                 eventfd_signal(t->entries[i].eventfd, 1);
3797
3798         /* i = current_threshold + 1 */
3799         i++;
3800
3801         /*
3802          * Iterate forward over array of thresholds starting from
3803          * current_threshold+1 and check if a threshold is crossed.
3804          * If none of thresholds above usage is crossed, we read
3805          * only one element of the array here.
3806          */
3807         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3808                 eventfd_signal(t->entries[i].eventfd, 1);
3809
3810         /* Update current_threshold */
3811         t->current_threshold = i - 1;
3812 unlock:
3813         rcu_read_unlock();
3814 }
3815
3816 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3817 {
3818         while (memcg) {
3819                 __mem_cgroup_threshold(memcg, false);
3820                 if (do_swap_account)
3821                         __mem_cgroup_threshold(memcg, true);
3822
3823                 memcg = parent_mem_cgroup(memcg);
3824         }
3825 }
3826
3827 static int compare_thresholds(const void *a, const void *b)
3828 {
3829         const struct mem_cgroup_threshold *_a = a;
3830         const struct mem_cgroup_threshold *_b = b;
3831
3832         return _a->threshold - _b->threshold;
3833 }
3834
3835 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3836 {
3837         struct mem_cgroup_eventfd_list *ev;
3838
3839         list_for_each_entry(ev, &mem->oom_notify, list)
3840                 eventfd_signal(ev->eventfd, 1);
3841         return 0;
3842 }
3843
3844 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3845 {
3846         struct mem_cgroup *iter;
3847
3848         for_each_mem_cgroup_tree(iter, mem)
3849                 mem_cgroup_oom_notify_cb(iter);
3850 }
3851
3852 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3853         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3854 {
3855         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3856         struct mem_cgroup_thresholds *thresholds;
3857         struct mem_cgroup_threshold_ary *new;
3858         int type = MEMFILE_TYPE(cft->private);
3859         u64 threshold, usage;
3860         int i, size, ret;
3861
3862         ret = res_counter_memparse_write_strategy(args, &threshold);
3863         if (ret)
3864                 return ret;
3865
3866         mutex_lock(&memcg->thresholds_lock);
3867
3868         if (type == _MEM)
3869                 thresholds = &memcg->thresholds;
3870         else if (type == _MEMSWAP)
3871                 thresholds = &memcg->memsw_thresholds;
3872         else
3873                 BUG();
3874
3875         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3876
3877         /* Check if a threshold crossed before adding a new one */
3878         if (thresholds->primary)
3879                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3880
3881         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3882
3883         /* Allocate memory for new array of thresholds */
3884         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3885                         GFP_KERNEL);
3886         if (!new) {
3887                 ret = -ENOMEM;
3888                 goto unlock;
3889         }
3890         new->size = size;
3891
3892         /* Copy thresholds (if any) to new array */
3893         if (thresholds->primary) {
3894                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3895                                 sizeof(struct mem_cgroup_threshold));
3896         }
3897
3898         /* Add new threshold */
3899         new->entries[size - 1].eventfd = eventfd;
3900         new->entries[size - 1].threshold = threshold;
3901
3902         /* Sort thresholds. Registering of new threshold isn't time-critical */
3903         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3904                         compare_thresholds, NULL);
3905
3906         /* Find current threshold */
3907         new->current_threshold = -1;
3908         for (i = 0; i < size; i++) {
3909                 if (new->entries[i].threshold < usage) {
3910                         /*
3911                          * new->current_threshold will not be used until
3912                          * rcu_assign_pointer(), so it's safe to increment
3913                          * it here.
3914                          */
3915                         ++new->current_threshold;
3916                 }
3917         }
3918
3919         /* Free old spare buffer and save old primary buffer as spare */
3920         kfree(thresholds->spare);
3921         thresholds->spare = thresholds->primary;
3922
3923         rcu_assign_pointer(thresholds->primary, new);
3924
3925         /* To be sure that nobody uses thresholds */
3926         synchronize_rcu();
3927
3928 unlock:
3929         mutex_unlock(&memcg->thresholds_lock);
3930
3931         return ret;
3932 }
3933
3934 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3935         struct cftype *cft, struct eventfd_ctx *eventfd)
3936 {
3937         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3938         struct mem_cgroup_thresholds *thresholds;
3939         struct mem_cgroup_threshold_ary *new;
3940         int type = MEMFILE_TYPE(cft->private);
3941         u64 usage;
3942         int i, j, size;
3943
3944         mutex_lock(&memcg->thresholds_lock);
3945         if (type == _MEM)
3946                 thresholds = &memcg->thresholds;
3947         else if (type == _MEMSWAP)
3948                 thresholds = &memcg->memsw_thresholds;
3949         else
3950                 BUG();
3951
3952         /*
3953          * Something went wrong if we trying to unregister a threshold
3954          * if we don't have thresholds
3955          */
3956         BUG_ON(!thresholds);
3957
3958         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3959
3960         /* Check if a threshold crossed before removing */
3961         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3962
3963         /* Calculate new number of threshold */
3964         size = 0;
3965         for (i = 0; i < thresholds->primary->size; i++) {
3966                 if (thresholds->primary->entries[i].eventfd != eventfd)
3967                         size++;
3968         }
3969
3970         new = thresholds->spare;
3971
3972         /* Set thresholds array to NULL if we don't have thresholds */
3973         if (!size) {
3974                 kfree(new);
3975                 new = NULL;
3976                 goto swap_buffers;
3977         }
3978
3979         new->size = size;
3980
3981         /* Copy thresholds and find current threshold */
3982         new->current_threshold = -1;
3983         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3984                 if (thresholds->primary->entries[i].eventfd == eventfd)
3985                         continue;
3986
3987                 new->entries[j] = thresholds->primary->entries[i];
3988                 if (new->entries[j].threshold < usage) {
3989                         /*
3990                          * new->current_threshold will not be used
3991                          * until rcu_assign_pointer(), so it's safe to increment
3992                          * it here.
3993                          */
3994                         ++new->current_threshold;
3995                 }
3996                 j++;
3997         }
3998
3999 swap_buffers:
4000         /* Swap primary and spare array */
4001         thresholds->spare = thresholds->primary;
4002         rcu_assign_pointer(thresholds->primary, new);
4003
4004         /* To be sure that nobody uses thresholds */
4005         synchronize_rcu();
4006
4007         mutex_unlock(&memcg->thresholds_lock);
4008 }
4009
4010 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4011         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4012 {
4013         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4014         struct mem_cgroup_eventfd_list *event;
4015         int type = MEMFILE_TYPE(cft->private);
4016
4017         BUG_ON(type != _OOM_TYPE);
4018         event = kmalloc(sizeof(*event), GFP_KERNEL);
4019         if (!event)
4020                 return -ENOMEM;
4021
4022         mutex_lock(&memcg_oom_mutex);
4023
4024         event->eventfd = eventfd;
4025         list_add(&event->list, &memcg->oom_notify);
4026
4027         /* already in OOM ? */
4028         if (atomic_read(&memcg->oom_lock))
4029                 eventfd_signal(eventfd, 1);
4030         mutex_unlock(&memcg_oom_mutex);
4031
4032         return 0;
4033 }
4034
4035 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4036         struct cftype *cft, struct eventfd_ctx *eventfd)
4037 {
4038         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4039         struct mem_cgroup_eventfd_list *ev, *tmp;
4040         int type = MEMFILE_TYPE(cft->private);
4041
4042         BUG_ON(type != _OOM_TYPE);
4043
4044         mutex_lock(&memcg_oom_mutex);
4045
4046         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4047                 if (ev->eventfd == eventfd) {
4048                         list_del(&ev->list);
4049                         kfree(ev);
4050                 }
4051         }
4052
4053         mutex_unlock(&memcg_oom_mutex);
4054 }
4055
4056 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4057         struct cftype *cft,  struct cgroup_map_cb *cb)
4058 {
4059         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4060
4061         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4062
4063         if (atomic_read(&mem->oom_lock))
4064                 cb->fill(cb, "under_oom", 1);
4065         else
4066                 cb->fill(cb, "under_oom", 0);
4067         return 0;
4068 }
4069
4070 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4071         struct cftype *cft, u64 val)
4072 {
4073         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4074         struct mem_cgroup *parent;
4075
4076         /* cannot set to root cgroup and only 0 and 1 are allowed */
4077         if (!cgrp->parent || !((val == 0) || (val == 1)))
4078                 return -EINVAL;
4079
4080         parent = mem_cgroup_from_cont(cgrp->parent);
4081
4082         cgroup_lock();
4083         /* oom-kill-disable is a flag for subhierarchy. */
4084         if ((parent->use_hierarchy) ||
4085             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4086                 cgroup_unlock();
4087                 return -EINVAL;
4088         }
4089         mem->oom_kill_disable = val;
4090         if (!val)
4091                 memcg_oom_recover(mem);
4092         cgroup_unlock();
4093         return 0;
4094 }
4095
4096 static struct cftype mem_cgroup_files[] = {
4097         {
4098                 .name = "usage_in_bytes",
4099                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4100                 .read_u64 = mem_cgroup_read,
4101                 .register_event = mem_cgroup_usage_register_event,
4102                 .unregister_event = mem_cgroup_usage_unregister_event,
4103         },
4104         {
4105                 .name = "max_usage_in_bytes",
4106                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4107                 .trigger = mem_cgroup_reset,
4108                 .read_u64 = mem_cgroup_read,
4109         },
4110         {
4111                 .name = "limit_in_bytes",
4112                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4113                 .write_string = mem_cgroup_write,
4114                 .read_u64 = mem_cgroup_read,
4115         },
4116         {
4117                 .name = "soft_limit_in_bytes",
4118                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4119                 .write_string = mem_cgroup_write,
4120                 .read_u64 = mem_cgroup_read,
4121         },
4122         {
4123                 .name = "failcnt",
4124                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4125                 .trigger = mem_cgroup_reset,
4126                 .read_u64 = mem_cgroup_read,
4127         },
4128         {
4129                 .name = "stat",
4130                 .read_map = mem_control_stat_show,
4131         },
4132         {
4133                 .name = "force_empty",
4134                 .trigger = mem_cgroup_force_empty_write,
4135         },
4136         {
4137                 .name = "use_hierarchy",
4138                 .write_u64 = mem_cgroup_hierarchy_write,
4139                 .read_u64 = mem_cgroup_hierarchy_read,
4140         },
4141         {
4142                 .name = "swappiness",
4143                 .read_u64 = mem_cgroup_swappiness_read,
4144                 .write_u64 = mem_cgroup_swappiness_write,
4145         },
4146         {
4147                 .name = "move_charge_at_immigrate",
4148                 .read_u64 = mem_cgroup_move_charge_read,
4149                 .write_u64 = mem_cgroup_move_charge_write,
4150         },
4151         {
4152                 .name = "oom_control",
4153                 .read_map = mem_cgroup_oom_control_read,
4154                 .write_u64 = mem_cgroup_oom_control_write,
4155                 .register_event = mem_cgroup_oom_register_event,
4156                 .unregister_event = mem_cgroup_oom_unregister_event,
4157                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4158         },
4159 };
4160
4161 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4162 static struct cftype memsw_cgroup_files[] = {
4163         {
4164                 .name = "memsw.usage_in_bytes",
4165                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4166                 .read_u64 = mem_cgroup_read,
4167                 .register_event = mem_cgroup_usage_register_event,
4168                 .unregister_event = mem_cgroup_usage_unregister_event,
4169         },
4170         {
4171                 .name = "memsw.max_usage_in_bytes",
4172                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4173                 .trigger = mem_cgroup_reset,
4174                 .read_u64 = mem_cgroup_read,
4175         },
4176         {
4177                 .name = "memsw.limit_in_bytes",
4178                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4179                 .write_string = mem_cgroup_write,
4180                 .read_u64 = mem_cgroup_read,
4181         },
4182         {
4183                 .name = "memsw.failcnt",
4184                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4185                 .trigger = mem_cgroup_reset,
4186                 .read_u64 = mem_cgroup_read,
4187         },
4188 };
4189
4190 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4191 {
4192         if (!do_swap_account)
4193                 return 0;
4194         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4195                                 ARRAY_SIZE(memsw_cgroup_files));
4196 };
4197 #else
4198 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4199 {
4200         return 0;
4201 }
4202 #endif
4203
4204 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4205 {
4206         struct mem_cgroup_per_node *pn;
4207         struct mem_cgroup_per_zone *mz;
4208         enum lru_list l;
4209         int zone, tmp = node;
4210         /*
4211          * This routine is called against possible nodes.
4212          * But it's BUG to call kmalloc() against offline node.
4213          *
4214          * TODO: this routine can waste much memory for nodes which will
4215          *       never be onlined. It's better to use memory hotplug callback
4216          *       function.
4217          */
4218         if (!node_state(node, N_NORMAL_MEMORY))
4219                 tmp = -1;
4220         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4221         if (!pn)
4222                 return 1;
4223
4224         mem->info.nodeinfo[node] = pn;
4225         memset(pn, 0, sizeof(*pn));
4226
4227         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4228                 mz = &pn->zoneinfo[zone];
4229                 for_each_lru(l)
4230                         INIT_LIST_HEAD(&mz->lists[l]);
4231                 mz->usage_in_excess = 0;
4232                 mz->on_tree = false;
4233                 mz->mem = mem;
4234         }
4235         return 0;
4236 }
4237
4238 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4239 {
4240         kfree(mem->info.nodeinfo[node]);
4241 }
4242
4243 static struct mem_cgroup *mem_cgroup_alloc(void)
4244 {
4245         struct mem_cgroup *mem;
4246         int size = sizeof(struct mem_cgroup);
4247
4248         /* Can be very big if MAX_NUMNODES is very big */
4249         if (size < PAGE_SIZE)
4250                 mem = kmalloc(size, GFP_KERNEL);
4251         else
4252                 mem = vmalloc(size);
4253
4254         if (!mem)
4255                 return NULL;
4256
4257         memset(mem, 0, size);
4258         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4259         if (!mem->stat)
4260                 goto out_free;
4261         spin_lock_init(&mem->pcp_counter_lock);
4262         return mem;
4263
4264 out_free:
4265         if (size < PAGE_SIZE)
4266                 kfree(mem);
4267         else
4268                 vfree(mem);
4269         return NULL;
4270 }
4271
4272 /*
4273  * At destroying mem_cgroup, references from swap_cgroup can remain.
4274  * (scanning all at force_empty is too costly...)
4275  *
4276  * Instead of clearing all references at force_empty, we remember
4277  * the number of reference from swap_cgroup and free mem_cgroup when
4278  * it goes down to 0.
4279  *
4280  * Removal of cgroup itself succeeds regardless of refs from swap.
4281  */
4282
4283 static void __mem_cgroup_free(struct mem_cgroup *mem)
4284 {
4285         int node;
4286
4287         mem_cgroup_remove_from_trees(mem);
4288         free_css_id(&mem_cgroup_subsys, &mem->css);
4289
4290         for_each_node_state(node, N_POSSIBLE)
4291                 free_mem_cgroup_per_zone_info(mem, node);
4292
4293         free_percpu(mem->stat);
4294         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4295                 kfree(mem);
4296         else
4297                 vfree(mem);
4298 }
4299
4300 static void mem_cgroup_get(struct mem_cgroup *mem)
4301 {
4302         atomic_inc(&mem->refcnt);
4303 }
4304
4305 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4306 {
4307         if (atomic_sub_and_test(count, &mem->refcnt)) {
4308                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4309                 __mem_cgroup_free(mem);
4310                 if (parent)
4311                         mem_cgroup_put(parent);
4312         }
4313 }
4314
4315 static void mem_cgroup_put(struct mem_cgroup *mem)
4316 {
4317         __mem_cgroup_put(mem, 1);
4318 }
4319
4320 /*
4321  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4322  */
4323 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4324 {
4325         if (!mem->res.parent)
4326                 return NULL;
4327         return mem_cgroup_from_res_counter(mem->res.parent, res);
4328 }
4329
4330 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4331 static void __init enable_swap_cgroup(void)
4332 {
4333         if (!mem_cgroup_disabled() && really_do_swap_account)
4334                 do_swap_account = 1;
4335 }
4336 #else
4337 static void __init enable_swap_cgroup(void)
4338 {
4339 }
4340 #endif
4341
4342 static int mem_cgroup_soft_limit_tree_init(void)
4343 {
4344         struct mem_cgroup_tree_per_node *rtpn;
4345         struct mem_cgroup_tree_per_zone *rtpz;
4346         int tmp, node, zone;
4347
4348         for_each_node_state(node, N_POSSIBLE) {
4349                 tmp = node;
4350                 if (!node_state(node, N_NORMAL_MEMORY))
4351                         tmp = -1;
4352                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4353                 if (!rtpn)
4354                         return 1;
4355
4356                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4357
4358                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4359                         rtpz = &rtpn->rb_tree_per_zone[zone];
4360                         rtpz->rb_root = RB_ROOT;
4361                         spin_lock_init(&rtpz->lock);
4362                 }
4363         }
4364         return 0;
4365 }
4366
4367 static struct cgroup_subsys_state * __ref
4368 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4369 {
4370         struct mem_cgroup *mem, *parent;
4371         long error = -ENOMEM;
4372         int node;
4373
4374         mem = mem_cgroup_alloc();
4375         if (!mem)
4376                 return ERR_PTR(error);
4377
4378         for_each_node_state(node, N_POSSIBLE)
4379                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4380                         goto free_out;
4381
4382         /* root ? */
4383         if (cont->parent == NULL) {
4384                 int cpu;
4385                 enable_swap_cgroup();
4386                 parent = NULL;
4387                 root_mem_cgroup = mem;
4388                 if (mem_cgroup_soft_limit_tree_init())
4389                         goto free_out;
4390                 for_each_possible_cpu(cpu) {
4391                         struct memcg_stock_pcp *stock =
4392                                                 &per_cpu(memcg_stock, cpu);
4393                         INIT_WORK(&stock->work, drain_local_stock);
4394                 }
4395                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4396         } else {
4397                 parent = mem_cgroup_from_cont(cont->parent);
4398                 mem->use_hierarchy = parent->use_hierarchy;
4399                 mem->oom_kill_disable = parent->oom_kill_disable;
4400         }
4401
4402         if (parent && parent->use_hierarchy) {
4403                 res_counter_init(&mem->res, &parent->res);
4404                 res_counter_init(&mem->memsw, &parent->memsw);
4405                 /*
4406                  * We increment refcnt of the parent to ensure that we can
4407                  * safely access it on res_counter_charge/uncharge.
4408                  * This refcnt will be decremented when freeing this
4409                  * mem_cgroup(see mem_cgroup_put).
4410                  */
4411                 mem_cgroup_get(parent);
4412         } else {
4413                 res_counter_init(&mem->res, NULL);
4414                 res_counter_init(&mem->memsw, NULL);
4415         }
4416         mem->last_scanned_child = 0;
4417         spin_lock_init(&mem->reclaim_param_lock);
4418         INIT_LIST_HEAD(&mem->oom_notify);
4419
4420         if (parent)
4421                 mem->swappiness = get_swappiness(parent);
4422         atomic_set(&mem->refcnt, 1);
4423         mem->move_charge_at_immigrate = 0;
4424         mutex_init(&mem->thresholds_lock);
4425         return &mem->css;
4426 free_out:
4427         __mem_cgroup_free(mem);
4428         root_mem_cgroup = NULL;
4429         return ERR_PTR(error);
4430 }
4431
4432 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4433                                         struct cgroup *cont)
4434 {
4435         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4436
4437         return mem_cgroup_force_empty(mem, false);
4438 }
4439
4440 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4441                                 struct cgroup *cont)
4442 {
4443         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4444
4445         mem_cgroup_put(mem);
4446 }
4447
4448 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4449                                 struct cgroup *cont)
4450 {
4451         int ret;
4452
4453         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4454                                 ARRAY_SIZE(mem_cgroup_files));
4455
4456         if (!ret)
4457                 ret = register_memsw_files(cont, ss);
4458         return ret;
4459 }
4460
4461 #ifdef CONFIG_MMU
4462 /* Handlers for move charge at task migration. */
4463 #define PRECHARGE_COUNT_AT_ONCE 256
4464 static int mem_cgroup_do_precharge(unsigned long count)
4465 {
4466         int ret = 0;
4467         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4468         struct mem_cgroup *mem = mc.to;
4469
4470         if (mem_cgroup_is_root(mem)) {
4471                 mc.precharge += count;
4472                 /* we don't need css_get for root */
4473                 return ret;
4474         }
4475         /* try to charge at once */
4476         if (count > 1) {
4477                 struct res_counter *dummy;
4478                 /*
4479                  * "mem" cannot be under rmdir() because we've already checked
4480                  * by cgroup_lock_live_cgroup() that it is not removed and we
4481                  * are still under the same cgroup_mutex. So we can postpone
4482                  * css_get().
4483                  */
4484                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4485                         goto one_by_one;
4486                 if (do_swap_account && res_counter_charge(&mem->memsw,
4487                                                 PAGE_SIZE * count, &dummy)) {
4488                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4489                         goto one_by_one;
4490                 }
4491                 mc.precharge += count;
4492                 return ret;
4493         }
4494 one_by_one:
4495         /* fall back to one by one charge */
4496         while (count--) {
4497                 if (signal_pending(current)) {
4498                         ret = -EINTR;
4499                         break;
4500                 }
4501                 if (!batch_count--) {
4502                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4503                         cond_resched();
4504                 }
4505                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4506                                               PAGE_SIZE);
4507                 if (ret || !mem)
4508                         /* mem_cgroup_clear_mc() will do uncharge later */
4509                         return -ENOMEM;
4510                 mc.precharge++;
4511         }
4512         return ret;
4513 }
4514
4515 /**
4516  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4517  * @vma: the vma the pte to be checked belongs
4518  * @addr: the address corresponding to the pte to be checked
4519  * @ptent: the pte to be checked
4520  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4521  *
4522  * Returns
4523  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4524  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4525  *     move charge. if @target is not NULL, the page is stored in target->page
4526  *     with extra refcnt got(Callers should handle it).
4527  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4528  *     target for charge migration. if @target is not NULL, the entry is stored
4529  *     in target->ent.
4530  *
4531  * Called with pte lock held.
4532  */
4533 union mc_target {
4534         struct page     *page;
4535         swp_entry_t     ent;
4536 };
4537
4538 enum mc_target_type {
4539         MC_TARGET_NONE, /* not used */
4540         MC_TARGET_PAGE,
4541         MC_TARGET_SWAP,
4542 };
4543
4544 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4545                                                 unsigned long addr, pte_t ptent)
4546 {
4547         struct page *page = vm_normal_page(vma, addr, ptent);
4548
4549         if (!page || !page_mapped(page))
4550                 return NULL;
4551         if (PageAnon(page)) {
4552                 /* we don't move shared anon */
4553                 if (!move_anon() || page_mapcount(page) > 2)
4554                         return NULL;
4555         } else if (!move_file())
4556                 /* we ignore mapcount for file pages */
4557                 return NULL;
4558         if (!get_page_unless_zero(page))
4559                 return NULL;
4560
4561         return page;
4562 }
4563
4564 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4565                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4566 {
4567         int usage_count;
4568         struct page *page = NULL;
4569         swp_entry_t ent = pte_to_swp_entry(ptent);
4570
4571         if (!move_anon() || non_swap_entry(ent))
4572                 return NULL;
4573         usage_count = mem_cgroup_count_swap_user(ent, &page);
4574         if (usage_count > 1) { /* we don't move shared anon */
4575                 if (page)
4576                         put_page(page);
4577                 return NULL;
4578         }
4579         if (do_swap_account)
4580                 entry->val = ent.val;
4581
4582         return page;
4583 }
4584
4585 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4586                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4587 {
4588         struct page *page = NULL;
4589         struct inode *inode;
4590         struct address_space *mapping;
4591         pgoff_t pgoff;
4592
4593         if (!vma->vm_file) /* anonymous vma */
4594                 return NULL;
4595         if (!move_file())
4596                 return NULL;
4597
4598         inode = vma->vm_file->f_path.dentry->d_inode;
4599         mapping = vma->vm_file->f_mapping;
4600         if (pte_none(ptent))
4601                 pgoff = linear_page_index(vma, addr);
4602         else /* pte_file(ptent) is true */
4603                 pgoff = pte_to_pgoff(ptent);
4604
4605         /* page is moved even if it's not RSS of this task(page-faulted). */
4606         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4607                 page = find_get_page(mapping, pgoff);
4608         } else { /* shmem/tmpfs file. we should take account of swap too. */
4609                 swp_entry_t ent;
4610                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4611                 if (do_swap_account)
4612                         entry->val = ent.val;
4613         }
4614
4615         return page;
4616 }
4617
4618 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4619                 unsigned long addr, pte_t ptent, union mc_target *target)
4620 {
4621         struct page *page = NULL;
4622         struct page_cgroup *pc;
4623         int ret = 0;
4624         swp_entry_t ent = { .val = 0 };
4625
4626         if (pte_present(ptent))
4627                 page = mc_handle_present_pte(vma, addr, ptent);
4628         else if (is_swap_pte(ptent))
4629                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4630         else if (pte_none(ptent) || pte_file(ptent))
4631                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4632
4633         if (!page && !ent.val)
4634                 return 0;
4635         if (page) {
4636                 pc = lookup_page_cgroup(page);
4637                 /*
4638                  * Do only loose check w/o page_cgroup lock.
4639                  * mem_cgroup_move_account() checks the pc is valid or not under
4640                  * the lock.
4641                  */
4642                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4643                         ret = MC_TARGET_PAGE;
4644                         if (target)
4645                                 target->page = page;
4646                 }
4647                 if (!ret || !target)
4648                         put_page(page);
4649         }
4650         /* There is a swap entry and a page doesn't exist or isn't charged */
4651         if (ent.val && !ret &&
4652                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4653                 ret = MC_TARGET_SWAP;
4654                 if (target)
4655                         target->ent = ent;
4656         }
4657         return ret;
4658 }
4659
4660 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4661                                         unsigned long addr, unsigned long end,
4662                                         struct mm_walk *walk)
4663 {
4664         struct vm_area_struct *vma = walk->private;
4665         pte_t *pte;
4666         spinlock_t *ptl;
4667
4668         VM_BUG_ON(pmd_trans_huge(*pmd));
4669         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4670         for (; addr != end; pte++, addr += PAGE_SIZE)
4671                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4672                         mc.precharge++; /* increment precharge temporarily */
4673         pte_unmap_unlock(pte - 1, ptl);
4674         cond_resched();
4675
4676         return 0;
4677 }
4678
4679 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4680 {
4681         unsigned long precharge;
4682         struct vm_area_struct *vma;
4683
4684         /* We've already held the mmap_sem */
4685         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4686                 struct mm_walk mem_cgroup_count_precharge_walk = {
4687                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4688                         .mm = mm,
4689                         .private = vma,
4690                 };
4691                 if (is_vm_hugetlb_page(vma))
4692                         continue;
4693                 walk_page_range(vma->vm_start, vma->vm_end,
4694                                         &mem_cgroup_count_precharge_walk);
4695         }
4696
4697         precharge = mc.precharge;
4698         mc.precharge = 0;
4699
4700         return precharge;
4701 }
4702
4703 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4704 {
4705         return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4706 }
4707
4708 static void mem_cgroup_clear_mc(void)
4709 {
4710         struct mem_cgroup *from = mc.from;
4711         struct mem_cgroup *to = mc.to;
4712
4713         /* we must uncharge all the leftover precharges from mc.to */
4714         if (mc.precharge) {
4715                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4716                 mc.precharge = 0;
4717         }
4718         /*
4719          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4720          * we must uncharge here.
4721          */
4722         if (mc.moved_charge) {
4723                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4724                 mc.moved_charge = 0;
4725         }
4726         /* we must fixup refcnts and charges */
4727         if (mc.moved_swap) {
4728                 /* uncharge swap account from the old cgroup */
4729                 if (!mem_cgroup_is_root(mc.from))
4730                         res_counter_uncharge(&mc.from->memsw,
4731                                                 PAGE_SIZE * mc.moved_swap);
4732                 __mem_cgroup_put(mc.from, mc.moved_swap);
4733
4734                 if (!mem_cgroup_is_root(mc.to)) {
4735                         /*
4736                          * we charged both to->res and to->memsw, so we should
4737                          * uncharge to->res.
4738                          */
4739                         res_counter_uncharge(&mc.to->res,
4740                                                 PAGE_SIZE * mc.moved_swap);
4741                 }
4742                 /* we've already done mem_cgroup_get(mc.to) */
4743
4744                 mc.moved_swap = 0;
4745         }
4746         if (mc.mm) {
4747                 up_read(&mc.mm->mmap_sem);
4748                 mmput(mc.mm);
4749         }
4750         spin_lock(&mc.lock);
4751         mc.from = NULL;
4752         mc.to = NULL;
4753         spin_unlock(&mc.lock);
4754         mc.moving_task = NULL;
4755         mc.mm = NULL;
4756         mem_cgroup_end_move(from);
4757         memcg_oom_recover(from);
4758         memcg_oom_recover(to);
4759         wake_up_all(&mc.waitq);
4760 }
4761
4762 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4763                                 struct cgroup *cgroup,
4764                                 struct task_struct *p,
4765                                 bool threadgroup)
4766 {
4767         int ret = 0;
4768         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4769
4770         if (mem->move_charge_at_immigrate) {
4771                 struct mm_struct *mm;
4772                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4773
4774                 VM_BUG_ON(from == mem);
4775
4776                 mm = get_task_mm(p);
4777                 if (!mm)
4778                         return 0;
4779                 /* We move charges only when we move a owner of the mm */
4780                 if (mm->owner == p) {
4781                         /*
4782                          * We do all the move charge works under one mmap_sem to
4783                          * avoid deadlock with down_write(&mmap_sem)
4784                          * -> try_charge() -> if (mc.moving_task) -> sleep.
4785                          */
4786                         down_read(&mm->mmap_sem);
4787
4788                         VM_BUG_ON(mc.from);
4789                         VM_BUG_ON(mc.to);
4790                         VM_BUG_ON(mc.precharge);
4791                         VM_BUG_ON(mc.moved_charge);
4792                         VM_BUG_ON(mc.moved_swap);
4793                         VM_BUG_ON(mc.moving_task);
4794                         VM_BUG_ON(mc.mm);
4795
4796                         mem_cgroup_start_move(from);
4797                         spin_lock(&mc.lock);
4798                         mc.from = from;
4799                         mc.to = mem;
4800                         mc.precharge = 0;
4801                         mc.moved_charge = 0;
4802                         mc.moved_swap = 0;
4803                         spin_unlock(&mc.lock);
4804                         mc.moving_task = current;
4805                         mc.mm = mm;
4806
4807                         ret = mem_cgroup_precharge_mc(mm);
4808                         if (ret)
4809                                 mem_cgroup_clear_mc();
4810                         /* We call up_read() and mmput() in clear_mc(). */
4811                 } else
4812                         mmput(mm);
4813         }
4814         return ret;
4815 }
4816
4817 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4818                                 struct cgroup *cgroup,
4819                                 struct task_struct *p,
4820                                 bool threadgroup)
4821 {
4822         mem_cgroup_clear_mc();
4823 }
4824
4825 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4826                                 unsigned long addr, unsigned long end,
4827                                 struct mm_walk *walk)
4828 {
4829         int ret = 0;
4830         struct vm_area_struct *vma = walk->private;
4831         pte_t *pte;
4832         spinlock_t *ptl;
4833
4834 retry:
4835         VM_BUG_ON(pmd_trans_huge(*pmd));
4836         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4837         for (; addr != end; addr += PAGE_SIZE) {
4838                 pte_t ptent = *(pte++);
4839                 union mc_target target;
4840                 int type;
4841                 struct page *page;
4842                 struct page_cgroup *pc;
4843                 swp_entry_t ent;
4844
4845                 if (!mc.precharge)
4846                         break;
4847
4848                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4849                 switch (type) {
4850                 case MC_TARGET_PAGE:
4851                         page = target.page;
4852                         if (isolate_lru_page(page))
4853                                 goto put;
4854                         pc = lookup_page_cgroup(page);
4855                         if (!mem_cgroup_move_account(pc,
4856                                                 mc.from, mc.to, false)) {
4857                                 mc.precharge--;
4858                                 /* we uncharge from mc.from later. */
4859                                 mc.moved_charge++;
4860                         }
4861                         putback_lru_page(page);
4862 put:                    /* is_target_pte_for_mc() gets the page */
4863                         put_page(page);
4864                         break;
4865                 case MC_TARGET_SWAP:
4866                         ent = target.ent;
4867                         if (!mem_cgroup_move_swap_account(ent,
4868                                                 mc.from, mc.to, false)) {
4869                                 mc.precharge--;
4870                                 /* we fixup refcnts and charges later. */
4871                                 mc.moved_swap++;
4872                         }
4873                         break;
4874                 default:
4875                         break;
4876                 }
4877         }
4878         pte_unmap_unlock(pte - 1, ptl);
4879         cond_resched();
4880
4881         if (addr != end) {
4882                 /*
4883                  * We have consumed all precharges we got in can_attach().
4884                  * We try charge one by one, but don't do any additional
4885                  * charges to mc.to if we have failed in charge once in attach()
4886                  * phase.
4887                  */
4888                 ret = mem_cgroup_do_precharge(1);
4889                 if (!ret)
4890                         goto retry;
4891         }
4892
4893         return ret;
4894 }
4895
4896 static void mem_cgroup_move_charge(struct mm_struct *mm)
4897 {
4898         struct vm_area_struct *vma;
4899
4900         lru_add_drain_all();
4901         /* We've already held the mmap_sem */
4902         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4903                 int ret;
4904                 struct mm_walk mem_cgroup_move_charge_walk = {
4905                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4906                         .mm = mm,
4907                         .private = vma,
4908                 };
4909                 if (is_vm_hugetlb_page(vma))
4910                         continue;
4911                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4912                                                 &mem_cgroup_move_charge_walk);
4913                 if (ret)
4914                         /*
4915                          * means we have consumed all precharges and failed in
4916                          * doing additional charge. Just abandon here.
4917                          */
4918                         break;
4919         }
4920 }
4921
4922 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4923                                 struct cgroup *cont,
4924                                 struct cgroup *old_cont,
4925                                 struct task_struct *p,
4926                                 bool threadgroup)
4927 {
4928         if (!mc.mm)
4929                 /* no need to move charge */
4930                 return;
4931
4932         mem_cgroup_move_charge(mc.mm);
4933         mem_cgroup_clear_mc();
4934 }
4935 #else   /* !CONFIG_MMU */
4936 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4937                                 struct cgroup *cgroup,
4938                                 struct task_struct *p,
4939                                 bool threadgroup)
4940 {
4941         return 0;
4942 }
4943 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4944                                 struct cgroup *cgroup,
4945                                 struct task_struct *p,
4946                                 bool threadgroup)
4947 {
4948 }
4949 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4950                                 struct cgroup *cont,
4951                                 struct cgroup *old_cont,
4952                                 struct task_struct *p,
4953                                 bool threadgroup)
4954 {
4955 }
4956 #endif
4957
4958 struct cgroup_subsys mem_cgroup_subsys = {
4959         .name = "memory",
4960         .subsys_id = mem_cgroup_subsys_id,
4961         .create = mem_cgroup_create,
4962         .pre_destroy = mem_cgroup_pre_destroy,
4963         .destroy = mem_cgroup_destroy,
4964         .populate = mem_cgroup_populate,
4965         .can_attach = mem_cgroup_can_attach,
4966         .cancel_attach = mem_cgroup_cancel_attach,
4967         .attach = mem_cgroup_move_task,
4968         .early_init = 0,
4969         .use_id = 1,
4970 };
4971
4972 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4973 static int __init enable_swap_account(char *s)
4974 {
4975         /* consider enabled if no parameter or 1 is given */
4976         if (!s || !strcmp(s, "1"))
4977                 really_do_swap_account = 1;
4978         else if (!strcmp(s, "0"))
4979                 really_do_swap_account = 0;
4980         return 1;
4981 }
4982 __setup("swapaccount", enable_swap_account);
4983
4984 static int __init disable_swap_account(char *s)
4985 {
4986         enable_swap_account("0");
4987         return 1;
4988 }
4989 __setup("noswapaccount", disable_swap_account);
4990 #endif