1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 static const char * const mem_cgroup_stat_names[] = {
111 static const char * const mem_cgroup_events_names[] = {
118 static const char * const mem_cgroup_lru_names[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
153 * cgroup_event represents events which userspace want to receive.
155 struct mem_cgroup_event {
157 * memcg which the event belongs to.
159 struct mem_cgroup *memcg;
161 * eventfd to signal userspace about the event.
163 struct eventfd_ctx *eventfd;
165 * Each of these stored in a list by the cgroup.
167 struct list_head list;
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
187 wait_queue_head_t *wqh;
189 struct work_struct remove;
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
195 /* Stuffs for move charges at task migration. */
197 * Types of charges to be moved.
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 /* for encoding cft->private value on file */
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
265 return (memcg == root_mem_cgroup);
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
286 void memcg_get_cache_ids(void)
288 down_read(&memcg_cache_ids_sem);
291 void memcg_put_cache_ids(void)
293 up_read(&memcg_cache_ids_sem);
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
320 #endif /* !CONFIG_SLOB */
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
335 struct mem_cgroup *memcg;
337 memcg = page->mem_cgroup;
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
358 ino_t page_cgroup_ino(struct page *page)
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
368 ino = cgroup_ino(memcg->css.cgroup);
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
376 int nid = page_to_nid(page);
378 return memcg->nodeinfo[nid];
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
384 return soft_limit_tree.rb_tree_per_node[nid];
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
390 int nid = page_to_nid(page);
392 return soft_limit_tree.rb_tree_per_node[nid];
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
432 rb_erase(&mz->tree_node, &mctz->rb_root);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
464 mctz = soft_limit_tree_from_page(page);
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
476 if (excess || mz->on_tree) {
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
482 __mem_cgroup_remove_exceeded(mz, mctz);
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
514 rightmost = rb_last(&mctz->rb_root);
516 goto done; /* Nothing to reclaim from */
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
535 struct mem_cgroup_per_node *mz;
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
544 * Return page count for single (non recursive) @memcg.
546 * Implementation Note: reading percpu statistics for memcg.
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
585 unsigned long val = 0;
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
595 bool compound, int nr_pages)
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
614 /* pagein of a big page is an event. So, ignore page size */
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
635 if (!(BIT(lru) & lru_mask))
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
646 unsigned long nr = 0;
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
657 unsigned long val, next;
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
676 __this_cpu_write(memcg->stat->targets[target], next);
683 * Check events in order.
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
692 bool do_numainfo __maybe_unused;
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
722 EXPORT_SYMBOL(mem_cgroup_from_task);
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
726 struct mem_cgroup *memcg = NULL;
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
736 memcg = root_mem_cgroup;
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
742 } while (!css_tryget_online(&memcg->css));
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
773 if (mem_cgroup_disabled())
777 root = root_mem_cgroup;
779 if (prev && !reclaim)
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
791 struct mem_cgroup_per_node *mz;
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
796 if (prev && reclaim->generation != iter->generation)
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
811 (void)cmpxchg(&iter->position, pos, NULL);
819 css = css_next_descendant_pre(css, &root->css);
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
837 memcg = mem_cgroup_from_css(css);
839 if (css == &root->css)
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
854 (void)cmpxchg(&iter->position, pos, memcg);
862 reclaim->generation = iter->generation;
868 if (prev && prev != root)
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
896 while ((memcg = parent_mem_cgroup(memcg))) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
901 cmpxchg(&iter->position,
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
916 iter = mem_cgroup_iter(root, iter, NULL))
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
926 * @zone: zone of the page
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
934 struct mem_cgroup_per_node *mz;
935 struct mem_cgroup *memcg;
936 struct lruvec *lruvec;
938 if (mem_cgroup_disabled()) {
939 lruvec = &pgdat->lruvec;
943 memcg = page->mem_cgroup;
945 * Swapcache readahead pages are added to the LRU - and
946 * possibly migrated - before they are charged.
949 memcg = root_mem_cgroup;
951 mz = mem_cgroup_page_nodeinfo(memcg, page);
952 lruvec = &mz->lruvec;
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
977 struct mem_cgroup_per_node *mz;
978 unsigned long *lru_size;
982 if (mem_cgroup_disabled())
985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 lru_size = mz->lru_size + lru;
987 empty = list_empty(lruvec->lists + lru);
990 *lru_size += nr_pages;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1001 *lru_size += nr_pages;
1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1006 struct mem_cgroup *task_memcg;
1007 struct task_struct *p;
1010 p = find_lock_task_mm(task);
1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1032 * @memcg: the memory cgroup
1034 * Returns the maximum amount of memory @mem can be charged with, in
1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
1043 count = page_counter_read(&memcg->memory);
1044 limit = READ_ONCE(memcg->memory.limit);
1046 margin = limit - count;
1048 if (do_memsw_account()) {
1049 count = page_counter_read(&memcg->memsw);
1050 limit = READ_ONCE(memcg->memsw.limit);
1052 margin = min(margin, limit - count);
1061 * A routine for checking "mem" is under move_account() or not.
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1076 spin_lock(&mc.lock);
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
1085 spin_unlock(&mc.lock);
1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1091 if (mc.moving_task && current != mc.moving_task) {
1092 if (mem_cgroup_under_move(memcg)) {
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1098 finish_wait(&mc.waitq, &wait);
1105 #define K(x) ((x) << (PAGE_SHIFT-10))
1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1116 struct mem_cgroup *iter;
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1126 pr_info("Memory limit reached of cgroup ");
1129 pr_cont_cgroup_path(memcg->css.cgroup);
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1144 for_each_mem_cgroup_tree(iter, memcg) {
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 K(mem_cgroup_read_stat(iter, i)));
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1171 struct mem_cgroup *iter;
1173 for_each_mem_cgroup_tree(iter, memcg)
1179 * Return the memory (and swap, if configured) limit for a memcg.
1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183 unsigned long limit;
1185 limit = memcg->memory.limit;
1186 if (mem_cgroup_swappiness(memcg)) {
1187 unsigned long memsw_limit;
1188 unsigned long swap_limit;
1190 memsw_limit = memcg->memsw.limit;
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1201 struct oom_control oc = {
1205 .gfp_mask = gfp_mask,
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1214 mutex_lock(&oom_lock);
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
1221 if (task_will_free_mem(current)) {
1222 mark_oom_victim(current);
1223 wake_oom_reaper(current);
1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229 for_each_mem_cgroup_tree(iter, memcg) {
1230 struct css_task_iter it;
1231 struct task_struct *task;
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
1235 switch (oom_scan_process_thread(&oc, task)) {
1236 case OOM_SCAN_SELECT:
1238 put_task_struct(chosen);
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1243 case OOM_SCAN_CONTINUE:
1245 case OOM_SCAN_ABORT:
1246 css_task_iter_end(&it);
1247 mem_cgroup_iter_break(memcg, iter);
1249 put_task_struct(chosen);
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
1256 points = oom_badness(task, memcg, NULL, totalpages);
1257 if (!points || points < chosen_points)
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1265 put_task_struct(chosen);
1267 chosen_points = points;
1268 get_task_struct(chosen);
1270 css_task_iter_end(&it);
1274 points = chosen_points * 1000 / totalpages;
1275 oom_kill_process(&oc, chosen, points, totalpages,
1276 "Memory cgroup out of memory");
1279 mutex_unlock(&oom_lock);
1283 #if MAX_NUMNODES > 1
1286 * test_mem_cgroup_node_reclaimable
1287 * @memcg: the target memcg
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 int nid, bool noswap)
1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1300 if (noswap || !total_swap_pages)
1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1321 if (!atomic_read(&memcg->numainfo_events))
1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1326 /* make a nodemask where this memcg uses memory from */
1327 memcg->scan_nodes = node_states[N_MEMORY];
1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1349 * Now, we use round-robin. Better algorithm is welcomed.
1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
1358 node = next_node_in(node, memcg->scan_nodes);
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1367 memcg->last_scanned_node = node;
1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1380 unsigned long *total_scanned)
1382 struct mem_cgroup *victim = NULL;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
1392 excess = soft_limit_excess(root_memcg);
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419 pgdat, &nr_scanned);
1420 *total_scanned += nr_scanned;
1421 if (!soft_limit_excess(root_memcg))
1424 mem_cgroup_iter_break(root_memcg, victim);
1428 #ifdef CONFIG_LOCKDEP
1429 static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1434 static DEFINE_SPINLOCK(memcg_oom_lock);
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1442 struct mem_cgroup *iter, *failed = NULL;
1444 spin_lock(&memcg_oom_lock);
1446 for_each_mem_cgroup_tree(iter, memcg) {
1447 if (iter->oom_lock) {
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1453 mem_cgroup_iter_break(memcg, iter);
1456 iter->oom_lock = true;
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1469 iter->oom_lock = false;
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1474 spin_unlock(&memcg_oom_lock);
1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1481 struct mem_cgroup *iter;
1483 spin_lock(&memcg_oom_lock);
1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485 for_each_mem_cgroup_tree(iter, memcg)
1486 iter->oom_lock = false;
1487 spin_unlock(&memcg_oom_lock);
1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1492 struct mem_cgroup *iter;
1494 spin_lock(&memcg_oom_lock);
1495 for_each_mem_cgroup_tree(iter, memcg)
1497 spin_unlock(&memcg_oom_lock);
1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1502 struct mem_cgroup *iter;
1505 * When a new child is created while the hierarchy is under oom,
1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1508 spin_lock(&memcg_oom_lock);
1509 for_each_mem_cgroup_tree(iter, memcg)
1510 if (iter->under_oom > 0)
1512 spin_unlock(&memcg_oom_lock);
1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1517 struct oom_wait_info {
1518 struct mem_cgroup *memcg;
1522 static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
1527 struct oom_wait_info *oom_wait_info;
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530 oom_wait_memcg = oom_wait_info->memcg;
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1535 return autoremove_wake_function(wait, mode, sync, arg);
1538 static void memcg_oom_recover(struct mem_cgroup *memcg)
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1548 if (memcg && memcg->under_oom)
1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1554 if (!current->memcg_may_oom)
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
1570 css_get(&memcg->css);
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578 * @handle: actually kill/wait or just clean up the OOM state
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
1583 * Memcg supports userspace OOM handling where failed allocations must
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588 * the end of the page fault to complete the OOM handling.
1590 * Returns %true if an ongoing memcg OOM situation was detected and
1591 * completed, %false otherwise.
1593 bool mem_cgroup_oom_synchronize(bool handle)
1595 struct mem_cgroup *memcg = current->memcg_in_oom;
1596 struct oom_wait_info owait;
1599 /* OOM is global, do not handle */
1603 if (!handle || oom_killer_disabled)
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 mem_cgroup_mark_under_oom(memcg);
1615 locked = mem_cgroup_oom_trylock(memcg);
1618 mem_cgroup_oom_notify(memcg);
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1632 mem_cgroup_oom_unlock(memcg);
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1638 memcg_oom_recover(memcg);
1641 current->memcg_in_oom = NULL;
1642 css_put(&memcg->css);
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
1653 void lock_page_memcg(struct page *page)
1655 struct mem_cgroup *memcg;
1656 unsigned long flags;
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1665 if (mem_cgroup_disabled())
1668 memcg = page->mem_cgroup;
1669 if (unlikely(!memcg))
1672 if (atomic_read(&memcg->moving_account) <= 0)
1675 spin_lock_irqsave(&memcg->move_lock, flags);
1676 if (memcg != page->mem_cgroup) {
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
1684 * the task who has the lock for unlock_page_memcg().
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
1691 EXPORT_SYMBOL(lock_page_memcg);
1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
1697 void unlock_page_memcg(struct page *page)
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1712 EXPORT_SYMBOL(unlock_page_memcg);
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1718 #define CHARGE_BATCH 32U
1719 struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
1721 unsigned int nr_pages;
1722 struct work_struct work;
1723 unsigned long flags;
1724 #define FLUSHING_CACHED_CHARGE 0
1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727 static DEFINE_MUTEX(percpu_charge_mutex);
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1738 * returns true if successful, false otherwise.
1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1742 struct memcg_stock_pcp *stock;
1743 unsigned long flags;
1746 if (nr_pages > CHARGE_BATCH)
1749 local_irq_save(flags);
1751 stock = this_cpu_ptr(&memcg_stock);
1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1753 stock->nr_pages -= nr_pages;
1757 local_irq_restore(flags);
1763 * Returns stocks cached in percpu and reset cached information.
1765 static void drain_stock(struct memcg_stock_pcp *stock)
1767 struct mem_cgroup *old = stock->cached;
1769 if (stock->nr_pages) {
1770 page_counter_uncharge(&old->memory, stock->nr_pages);
1771 if (do_memsw_account())
1772 page_counter_uncharge(&old->memsw, stock->nr_pages);
1773 css_put_many(&old->css, stock->nr_pages);
1774 stock->nr_pages = 0;
1776 stock->cached = NULL;
1779 static void drain_local_stock(struct work_struct *dummy)
1781 struct memcg_stock_pcp *stock;
1782 unsigned long flags;
1784 local_irq_save(flags);
1786 stock = this_cpu_ptr(&memcg_stock);
1788 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1790 local_irq_restore(flags);
1794 * Cache charges(val) to local per_cpu area.
1795 * This will be consumed by consume_stock() function, later.
1797 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 struct memcg_stock_pcp *stock;
1800 unsigned long flags;
1802 local_irq_save(flags);
1804 stock = this_cpu_ptr(&memcg_stock);
1805 if (stock->cached != memcg) { /* reset if necessary */
1807 stock->cached = memcg;
1809 stock->nr_pages += nr_pages;
1811 local_irq_restore(flags);
1815 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1816 * of the hierarchy under it.
1818 static void drain_all_stock(struct mem_cgroup *root_memcg)
1822 /* If someone's already draining, avoid adding running more workers. */
1823 if (!mutex_trylock(&percpu_charge_mutex))
1825 /* Notify other cpus that system-wide "drain" is running */
1828 for_each_online_cpu(cpu) {
1829 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1830 struct mem_cgroup *memcg;
1832 memcg = stock->cached;
1833 if (!memcg || !stock->nr_pages)
1835 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1837 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1839 drain_local_stock(&stock->work);
1841 schedule_work_on(cpu, &stock->work);
1846 mutex_unlock(&percpu_charge_mutex);
1849 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1850 unsigned long action,
1853 int cpu = (unsigned long)hcpu;
1854 struct memcg_stock_pcp *stock;
1856 if (action == CPU_ONLINE)
1859 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1862 stock = &per_cpu(memcg_stock, cpu);
1867 static void reclaim_high(struct mem_cgroup *memcg,
1868 unsigned int nr_pages,
1872 if (page_counter_read(&memcg->memory) <= memcg->high)
1874 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1875 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1876 } while ((memcg = parent_mem_cgroup(memcg)));
1879 static void high_work_func(struct work_struct *work)
1881 struct mem_cgroup *memcg;
1883 memcg = container_of(work, struct mem_cgroup, high_work);
1884 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1888 * Scheduled by try_charge() to be executed from the userland return path
1889 * and reclaims memory over the high limit.
1891 void mem_cgroup_handle_over_high(void)
1893 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1894 struct mem_cgroup *memcg;
1896 if (likely(!nr_pages))
1899 memcg = get_mem_cgroup_from_mm(current->mm);
1900 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1901 css_put(&memcg->css);
1902 current->memcg_nr_pages_over_high = 0;
1905 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1906 unsigned int nr_pages)
1908 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1909 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1910 struct mem_cgroup *mem_over_limit;
1911 struct page_counter *counter;
1912 unsigned long nr_reclaimed;
1913 bool may_swap = true;
1914 bool drained = false;
1916 if (mem_cgroup_is_root(memcg))
1919 if (consume_stock(memcg, nr_pages))
1922 if (!do_memsw_account() ||
1923 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1924 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1926 if (do_memsw_account())
1927 page_counter_uncharge(&memcg->memsw, batch);
1928 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1930 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1934 if (batch > nr_pages) {
1940 * Unlike in global OOM situations, memcg is not in a physical
1941 * memory shortage. Allow dying and OOM-killed tasks to
1942 * bypass the last charges so that they can exit quickly and
1943 * free their memory.
1945 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1946 fatal_signal_pending(current) ||
1947 current->flags & PF_EXITING))
1950 if (unlikely(task_in_memcg_oom(current)))
1953 if (!gfpflags_allow_blocking(gfp_mask))
1956 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1958 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1959 gfp_mask, may_swap);
1961 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1965 drain_all_stock(mem_over_limit);
1970 if (gfp_mask & __GFP_NORETRY)
1973 * Even though the limit is exceeded at this point, reclaim
1974 * may have been able to free some pages. Retry the charge
1975 * before killing the task.
1977 * Only for regular pages, though: huge pages are rather
1978 * unlikely to succeed so close to the limit, and we fall back
1979 * to regular pages anyway in case of failure.
1981 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1984 * At task move, charge accounts can be doubly counted. So, it's
1985 * better to wait until the end of task_move if something is going on.
1987 if (mem_cgroup_wait_acct_move(mem_over_limit))
1993 if (gfp_mask & __GFP_NOFAIL)
1996 if (fatal_signal_pending(current))
1999 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2001 mem_cgroup_oom(mem_over_limit, gfp_mask,
2002 get_order(nr_pages * PAGE_SIZE));
2004 if (!(gfp_mask & __GFP_NOFAIL))
2008 * The allocation either can't fail or will lead to more memory
2009 * being freed very soon. Allow memory usage go over the limit
2010 * temporarily by force charging it.
2012 page_counter_charge(&memcg->memory, nr_pages);
2013 if (do_memsw_account())
2014 page_counter_charge(&memcg->memsw, nr_pages);
2015 css_get_many(&memcg->css, nr_pages);
2020 css_get_many(&memcg->css, batch);
2021 if (batch > nr_pages)
2022 refill_stock(memcg, batch - nr_pages);
2025 * If the hierarchy is above the normal consumption range, schedule
2026 * reclaim on returning to userland. We can perform reclaim here
2027 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2028 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2029 * not recorded as it most likely matches current's and won't
2030 * change in the meantime. As high limit is checked again before
2031 * reclaim, the cost of mismatch is negligible.
2034 if (page_counter_read(&memcg->memory) > memcg->high) {
2035 /* Don't bother a random interrupted task */
2036 if (in_interrupt()) {
2037 schedule_work(&memcg->high_work);
2040 current->memcg_nr_pages_over_high += batch;
2041 set_notify_resume(current);
2044 } while ((memcg = parent_mem_cgroup(memcg)));
2049 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2051 if (mem_cgroup_is_root(memcg))
2054 page_counter_uncharge(&memcg->memory, nr_pages);
2055 if (do_memsw_account())
2056 page_counter_uncharge(&memcg->memsw, nr_pages);
2058 css_put_many(&memcg->css, nr_pages);
2061 static void lock_page_lru(struct page *page, int *isolated)
2063 struct zone *zone = page_zone(page);
2065 spin_lock_irq(zone_lru_lock(zone));
2066 if (PageLRU(page)) {
2067 struct lruvec *lruvec;
2069 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2071 del_page_from_lru_list(page, lruvec, page_lru(page));
2077 static void unlock_page_lru(struct page *page, int isolated)
2079 struct zone *zone = page_zone(page);
2082 struct lruvec *lruvec;
2084 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2085 VM_BUG_ON_PAGE(PageLRU(page), page);
2087 add_page_to_lru_list(page, lruvec, page_lru(page));
2089 spin_unlock_irq(zone_lru_lock(zone));
2092 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2097 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2100 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2101 * may already be on some other mem_cgroup's LRU. Take care of it.
2104 lock_page_lru(page, &isolated);
2107 * Nobody should be changing or seriously looking at
2108 * page->mem_cgroup at this point:
2110 * - the page is uncharged
2112 * - the page is off-LRU
2114 * - an anonymous fault has exclusive page access, except for
2115 * a locked page table
2117 * - a page cache insertion, a swapin fault, or a migration
2118 * have the page locked
2120 page->mem_cgroup = memcg;
2123 unlock_page_lru(page, isolated);
2127 static int memcg_alloc_cache_id(void)
2132 id = ida_simple_get(&memcg_cache_ida,
2133 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2137 if (id < memcg_nr_cache_ids)
2141 * There's no space for the new id in memcg_caches arrays,
2142 * so we have to grow them.
2144 down_write(&memcg_cache_ids_sem);
2146 size = 2 * (id + 1);
2147 if (size < MEMCG_CACHES_MIN_SIZE)
2148 size = MEMCG_CACHES_MIN_SIZE;
2149 else if (size > MEMCG_CACHES_MAX_SIZE)
2150 size = MEMCG_CACHES_MAX_SIZE;
2152 err = memcg_update_all_caches(size);
2154 err = memcg_update_all_list_lrus(size);
2156 memcg_nr_cache_ids = size;
2158 up_write(&memcg_cache_ids_sem);
2161 ida_simple_remove(&memcg_cache_ida, id);
2167 static void memcg_free_cache_id(int id)
2169 ida_simple_remove(&memcg_cache_ida, id);
2172 struct memcg_kmem_cache_create_work {
2173 struct mem_cgroup *memcg;
2174 struct kmem_cache *cachep;
2175 struct work_struct work;
2178 static void memcg_kmem_cache_create_func(struct work_struct *w)
2180 struct memcg_kmem_cache_create_work *cw =
2181 container_of(w, struct memcg_kmem_cache_create_work, work);
2182 struct mem_cgroup *memcg = cw->memcg;
2183 struct kmem_cache *cachep = cw->cachep;
2185 memcg_create_kmem_cache(memcg, cachep);
2187 css_put(&memcg->css);
2192 * Enqueue the creation of a per-memcg kmem_cache.
2194 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 struct kmem_cache *cachep)
2197 struct memcg_kmem_cache_create_work *cw;
2199 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2203 css_get(&memcg->css);
2206 cw->cachep = cachep;
2207 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2209 schedule_work(&cw->work);
2212 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2213 struct kmem_cache *cachep)
2216 * We need to stop accounting when we kmalloc, because if the
2217 * corresponding kmalloc cache is not yet created, the first allocation
2218 * in __memcg_schedule_kmem_cache_create will recurse.
2220 * However, it is better to enclose the whole function. Depending on
2221 * the debugging options enabled, INIT_WORK(), for instance, can
2222 * trigger an allocation. This too, will make us recurse. Because at
2223 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2224 * the safest choice is to do it like this, wrapping the whole function.
2226 current->memcg_kmem_skip_account = 1;
2227 __memcg_schedule_kmem_cache_create(memcg, cachep);
2228 current->memcg_kmem_skip_account = 0;
2231 static inline bool memcg_kmem_bypass(void)
2233 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2239 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2240 * @cachep: the original global kmem cache
2242 * Return the kmem_cache we're supposed to use for a slab allocation.
2243 * We try to use the current memcg's version of the cache.
2245 * If the cache does not exist yet, if we are the first user of it, we
2246 * create it asynchronously in a workqueue and let the current allocation
2247 * go through with the original cache.
2249 * This function takes a reference to the cache it returns to assure it
2250 * won't get destroyed while we are working with it. Once the caller is
2251 * done with it, memcg_kmem_put_cache() must be called to release the
2254 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *memcg_cachep;
2260 VM_BUG_ON(!is_root_cache(cachep));
2262 if (memcg_kmem_bypass())
2265 if (current->memcg_kmem_skip_account)
2268 memcg = get_mem_cgroup_from_mm(current->mm);
2269 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2273 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2274 if (likely(memcg_cachep))
2275 return memcg_cachep;
2278 * If we are in a safe context (can wait, and not in interrupt
2279 * context), we could be be predictable and return right away.
2280 * This would guarantee that the allocation being performed
2281 * already belongs in the new cache.
2283 * However, there are some clashes that can arrive from locking.
2284 * For instance, because we acquire the slab_mutex while doing
2285 * memcg_create_kmem_cache, this means no further allocation
2286 * could happen with the slab_mutex held. So it's better to
2289 memcg_schedule_kmem_cache_create(memcg, cachep);
2291 css_put(&memcg->css);
2296 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2297 * @cachep: the cache returned by memcg_kmem_get_cache
2299 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2301 if (!is_root_cache(cachep))
2302 css_put(&cachep->memcg_params.memcg->css);
2306 * memcg_kmem_charge: charge a kmem page
2307 * @page: page to charge
2308 * @gfp: reclaim mode
2309 * @order: allocation order
2310 * @memcg: memory cgroup to charge
2312 * Returns 0 on success, an error code on failure.
2314 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2315 struct mem_cgroup *memcg)
2317 unsigned int nr_pages = 1 << order;
2318 struct page_counter *counter;
2321 ret = try_charge(memcg, gfp, nr_pages);
2325 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2326 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2327 cancel_charge(memcg, nr_pages);
2331 page->mem_cgroup = memcg;
2337 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2338 * @page: page to charge
2339 * @gfp: reclaim mode
2340 * @order: allocation order
2342 * Returns 0 on success, an error code on failure.
2344 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2346 struct mem_cgroup *memcg;
2349 if (memcg_kmem_bypass())
2352 memcg = get_mem_cgroup_from_mm(current->mm);
2353 if (!mem_cgroup_is_root(memcg)) {
2354 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2356 __SetPageKmemcg(page);
2358 css_put(&memcg->css);
2362 * memcg_kmem_uncharge: uncharge a kmem page
2363 * @page: page to uncharge
2364 * @order: allocation order
2366 void memcg_kmem_uncharge(struct page *page, int order)
2368 struct mem_cgroup *memcg = page->mem_cgroup;
2369 unsigned int nr_pages = 1 << order;
2374 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2376 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2377 page_counter_uncharge(&memcg->kmem, nr_pages);
2379 page_counter_uncharge(&memcg->memory, nr_pages);
2380 if (do_memsw_account())
2381 page_counter_uncharge(&memcg->memsw, nr_pages);
2383 page->mem_cgroup = NULL;
2385 /* slab pages do not have PageKmemcg flag set */
2386 if (PageKmemcg(page))
2387 __ClearPageKmemcg(page);
2389 css_put_many(&memcg->css, nr_pages);
2391 #endif /* !CONFIG_SLOB */
2393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2396 * Because tail pages are not marked as "used", set it. We're under
2397 * zone_lru_lock and migration entries setup in all page mappings.
2399 void mem_cgroup_split_huge_fixup(struct page *head)
2403 if (mem_cgroup_disabled())
2406 for (i = 1; i < HPAGE_PMD_NR; i++)
2407 head[i].mem_cgroup = head->mem_cgroup;
2409 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2414 #ifdef CONFIG_MEMCG_SWAP
2415 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2418 int val = (charge) ? 1 : -1;
2419 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2423 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2424 * @entry: swap entry to be moved
2425 * @from: mem_cgroup which the entry is moved from
2426 * @to: mem_cgroup which the entry is moved to
2428 * It succeeds only when the swap_cgroup's record for this entry is the same
2429 * as the mem_cgroup's id of @from.
2431 * Returns 0 on success, -EINVAL on failure.
2433 * The caller must have charged to @to, IOW, called page_counter_charge() about
2434 * both res and memsw, and called css_get().
2436 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437 struct mem_cgroup *from, struct mem_cgroup *to)
2439 unsigned short old_id, new_id;
2441 old_id = mem_cgroup_id(from);
2442 new_id = mem_cgroup_id(to);
2444 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2445 mem_cgroup_swap_statistics(from, false);
2446 mem_cgroup_swap_statistics(to, true);
2452 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2453 struct mem_cgroup *from, struct mem_cgroup *to)
2459 static DEFINE_MUTEX(memcg_limit_mutex);
2461 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2462 unsigned long limit)
2464 unsigned long curusage;
2465 unsigned long oldusage;
2466 bool enlarge = false;
2471 * For keeping hierarchical_reclaim simple, how long we should retry
2472 * is depends on callers. We set our retry-count to be function
2473 * of # of children which we should visit in this loop.
2475 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2476 mem_cgroup_count_children(memcg);
2478 oldusage = page_counter_read(&memcg->memory);
2481 if (signal_pending(current)) {
2486 mutex_lock(&memcg_limit_mutex);
2487 if (limit > memcg->memsw.limit) {
2488 mutex_unlock(&memcg_limit_mutex);
2492 if (limit > memcg->memory.limit)
2494 ret = page_counter_limit(&memcg->memory, limit);
2495 mutex_unlock(&memcg_limit_mutex);
2500 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2502 curusage = page_counter_read(&memcg->memory);
2503 /* Usage is reduced ? */
2504 if (curusage >= oldusage)
2507 oldusage = curusage;
2508 } while (retry_count);
2510 if (!ret && enlarge)
2511 memcg_oom_recover(memcg);
2516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2517 unsigned long limit)
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
2525 /* see mem_cgroup_resize_res_limit */
2526 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2527 mem_cgroup_count_children(memcg);
2529 oldusage = page_counter_read(&memcg->memsw);
2532 if (signal_pending(current)) {
2537 mutex_lock(&memcg_limit_mutex);
2538 if (limit < memcg->memory.limit) {
2539 mutex_unlock(&memcg_limit_mutex);
2543 if (limit > memcg->memsw.limit)
2545 ret = page_counter_limit(&memcg->memsw, limit);
2546 mutex_unlock(&memcg_limit_mutex);
2551 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2553 curusage = page_counter_read(&memcg->memsw);
2554 /* Usage is reduced ? */
2555 if (curusage >= oldusage)
2558 oldusage = curusage;
2559 } while (retry_count);
2561 if (!ret && enlarge)
2562 memcg_oom_recover(memcg);
2567 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2569 unsigned long *total_scanned)
2571 unsigned long nr_reclaimed = 0;
2572 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2573 unsigned long reclaimed;
2575 struct mem_cgroup_tree_per_node *mctz;
2576 unsigned long excess;
2577 unsigned long nr_scanned;
2582 mctz = soft_limit_tree_node(pgdat->node_id);
2585 * Do not even bother to check the largest node if the root
2586 * is empty. Do it lockless to prevent lock bouncing. Races
2587 * are acceptable as soft limit is best effort anyway.
2589 if (RB_EMPTY_ROOT(&mctz->rb_root))
2593 * This loop can run a while, specially if mem_cgroup's continuously
2594 * keep exceeding their soft limit and putting the system under
2601 mz = mem_cgroup_largest_soft_limit_node(mctz);
2606 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2607 gfp_mask, &nr_scanned);
2608 nr_reclaimed += reclaimed;
2609 *total_scanned += nr_scanned;
2610 spin_lock_irq(&mctz->lock);
2611 __mem_cgroup_remove_exceeded(mz, mctz);
2614 * If we failed to reclaim anything from this memory cgroup
2615 * it is time to move on to the next cgroup
2619 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2621 excess = soft_limit_excess(mz->memcg);
2623 * One school of thought says that we should not add
2624 * back the node to the tree if reclaim returns 0.
2625 * But our reclaim could return 0, simply because due
2626 * to priority we are exposing a smaller subset of
2627 * memory to reclaim from. Consider this as a longer
2630 /* If excess == 0, no tree ops */
2631 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2632 spin_unlock_irq(&mctz->lock);
2633 css_put(&mz->memcg->css);
2636 * Could not reclaim anything and there are no more
2637 * mem cgroups to try or we seem to be looping without
2638 * reclaiming anything.
2640 if (!nr_reclaimed &&
2642 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2644 } while (!nr_reclaimed);
2646 css_put(&next_mz->memcg->css);
2647 return nr_reclaimed;
2651 * Test whether @memcg has children, dead or alive. Note that this
2652 * function doesn't care whether @memcg has use_hierarchy enabled and
2653 * returns %true if there are child csses according to the cgroup
2654 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2656 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2661 ret = css_next_child(NULL, &memcg->css);
2667 * Reclaims as many pages from the given memcg as possible.
2669 * Caller is responsible for holding css reference for memcg.
2671 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2673 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2675 /* we call try-to-free pages for make this cgroup empty */
2676 lru_add_drain_all();
2677 /* try to free all pages in this cgroup */
2678 while (nr_retries && page_counter_read(&memcg->memory)) {
2681 if (signal_pending(current))
2684 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2688 /* maybe some writeback is necessary */
2689 congestion_wait(BLK_RW_ASYNC, HZ/10);
2697 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2698 char *buf, size_t nbytes,
2701 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2703 if (mem_cgroup_is_root(memcg))
2705 return mem_cgroup_force_empty(memcg) ?: nbytes;
2708 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2711 return mem_cgroup_from_css(css)->use_hierarchy;
2714 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2715 struct cftype *cft, u64 val)
2718 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2719 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2721 if (memcg->use_hierarchy == val)
2725 * If parent's use_hierarchy is set, we can't make any modifications
2726 * in the child subtrees. If it is unset, then the change can
2727 * occur, provided the current cgroup has no children.
2729 * For the root cgroup, parent_mem is NULL, we allow value to be
2730 * set if there are no children.
2732 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2733 (val == 1 || val == 0)) {
2734 if (!memcg_has_children(memcg))
2735 memcg->use_hierarchy = val;
2744 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2746 struct mem_cgroup *iter;
2749 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_STAT; i++)
2753 stat[i] += mem_cgroup_read_stat(iter, i);
2757 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2759 struct mem_cgroup *iter;
2762 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2766 events[i] += mem_cgroup_read_events(iter, i);
2770 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2772 unsigned long val = 0;
2774 if (mem_cgroup_is_root(memcg)) {
2775 struct mem_cgroup *iter;
2777 for_each_mem_cgroup_tree(iter, memcg) {
2778 val += mem_cgroup_read_stat(iter,
2779 MEM_CGROUP_STAT_CACHE);
2780 val += mem_cgroup_read_stat(iter,
2781 MEM_CGROUP_STAT_RSS);
2783 val += mem_cgroup_read_stat(iter,
2784 MEM_CGROUP_STAT_SWAP);
2788 val = page_counter_read(&memcg->memory);
2790 val = page_counter_read(&memcg->memsw);
2803 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2807 struct page_counter *counter;
2809 switch (MEMFILE_TYPE(cft->private)) {
2811 counter = &memcg->memory;
2814 counter = &memcg->memsw;
2817 counter = &memcg->kmem;
2820 counter = &memcg->tcpmem;
2826 switch (MEMFILE_ATTR(cft->private)) {
2828 if (counter == &memcg->memory)
2829 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2830 if (counter == &memcg->memsw)
2831 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2832 return (u64)page_counter_read(counter) * PAGE_SIZE;
2834 return (u64)counter->limit * PAGE_SIZE;
2836 return (u64)counter->watermark * PAGE_SIZE;
2838 return counter->failcnt;
2839 case RES_SOFT_LIMIT:
2840 return (u64)memcg->soft_limit * PAGE_SIZE;
2847 static int memcg_online_kmem(struct mem_cgroup *memcg)
2851 if (cgroup_memory_nokmem)
2854 BUG_ON(memcg->kmemcg_id >= 0);
2855 BUG_ON(memcg->kmem_state);
2857 memcg_id = memcg_alloc_cache_id();
2861 static_branch_inc(&memcg_kmem_enabled_key);
2863 * A memory cgroup is considered kmem-online as soon as it gets
2864 * kmemcg_id. Setting the id after enabling static branching will
2865 * guarantee no one starts accounting before all call sites are
2868 memcg->kmemcg_id = memcg_id;
2869 memcg->kmem_state = KMEM_ONLINE;
2874 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2876 struct cgroup_subsys_state *css;
2877 struct mem_cgroup *parent, *child;
2880 if (memcg->kmem_state != KMEM_ONLINE)
2883 * Clear the online state before clearing memcg_caches array
2884 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2885 * guarantees that no cache will be created for this cgroup
2886 * after we are done (see memcg_create_kmem_cache()).
2888 memcg->kmem_state = KMEM_ALLOCATED;
2890 memcg_deactivate_kmem_caches(memcg);
2892 kmemcg_id = memcg->kmemcg_id;
2893 BUG_ON(kmemcg_id < 0);
2895 parent = parent_mem_cgroup(memcg);
2897 parent = root_mem_cgroup;
2900 * Change kmemcg_id of this cgroup and all its descendants to the
2901 * parent's id, and then move all entries from this cgroup's list_lrus
2902 * to ones of the parent. After we have finished, all list_lrus
2903 * corresponding to this cgroup are guaranteed to remain empty. The
2904 * ordering is imposed by list_lru_node->lock taken by
2905 * memcg_drain_all_list_lrus().
2907 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2908 css_for_each_descendant_pre(css, &memcg->css) {
2909 child = mem_cgroup_from_css(css);
2910 BUG_ON(child->kmemcg_id != kmemcg_id);
2911 child->kmemcg_id = parent->kmemcg_id;
2912 if (!memcg->use_hierarchy)
2917 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2919 memcg_free_cache_id(kmemcg_id);
2922 static void memcg_free_kmem(struct mem_cgroup *memcg)
2924 /* css_alloc() failed, offlining didn't happen */
2925 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2926 memcg_offline_kmem(memcg);
2928 if (memcg->kmem_state == KMEM_ALLOCATED) {
2929 memcg_destroy_kmem_caches(memcg);
2930 static_branch_dec(&memcg_kmem_enabled_key);
2931 WARN_ON(page_counter_read(&memcg->kmem));
2935 static int memcg_online_kmem(struct mem_cgroup *memcg)
2939 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2942 static void memcg_free_kmem(struct mem_cgroup *memcg)
2945 #endif /* !CONFIG_SLOB */
2947 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2948 unsigned long limit)
2952 mutex_lock(&memcg_limit_mutex);
2953 ret = page_counter_limit(&memcg->kmem, limit);
2954 mutex_unlock(&memcg_limit_mutex);
2958 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2962 mutex_lock(&memcg_limit_mutex);
2964 ret = page_counter_limit(&memcg->tcpmem, limit);
2968 if (!memcg->tcpmem_active) {
2970 * The active flag needs to be written after the static_key
2971 * update. This is what guarantees that the socket activation
2972 * function is the last one to run. See sock_update_memcg() for
2973 * details, and note that we don't mark any socket as belonging
2974 * to this memcg until that flag is up.
2976 * We need to do this, because static_keys will span multiple
2977 * sites, but we can't control their order. If we mark a socket
2978 * as accounted, but the accounting functions are not patched in
2979 * yet, we'll lose accounting.
2981 * We never race with the readers in sock_update_memcg(),
2982 * because when this value change, the code to process it is not
2985 static_branch_inc(&memcg_sockets_enabled_key);
2986 memcg->tcpmem_active = true;
2989 mutex_unlock(&memcg_limit_mutex);
2994 * The user of this function is...
2997 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2998 char *buf, size_t nbytes, loff_t off)
3000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3001 unsigned long nr_pages;
3004 buf = strstrip(buf);
3005 ret = page_counter_memparse(buf, "-1", &nr_pages);
3009 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3015 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3020 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3023 ret = memcg_update_kmem_limit(memcg, nr_pages);
3026 ret = memcg_update_tcp_limit(memcg, nr_pages);
3030 case RES_SOFT_LIMIT:
3031 memcg->soft_limit = nr_pages;
3035 return ret ?: nbytes;
3038 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3039 size_t nbytes, loff_t off)
3041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3042 struct page_counter *counter;
3044 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3046 counter = &memcg->memory;
3049 counter = &memcg->memsw;
3052 counter = &memcg->kmem;
3055 counter = &memcg->tcpmem;
3061 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3063 page_counter_reset_watermark(counter);
3066 counter->failcnt = 0;
3075 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3078 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3082 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3083 struct cftype *cft, u64 val)
3085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3087 if (val & ~MOVE_MASK)
3091 * No kind of locking is needed in here, because ->can_attach() will
3092 * check this value once in the beginning of the process, and then carry
3093 * on with stale data. This means that changes to this value will only
3094 * affect task migrations starting after the change.
3096 memcg->move_charge_at_immigrate = val;
3100 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3101 struct cftype *cft, u64 val)
3108 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3112 unsigned int lru_mask;
3115 static const struct numa_stat stats[] = {
3116 { "total", LRU_ALL },
3117 { "file", LRU_ALL_FILE },
3118 { "anon", LRU_ALL_ANON },
3119 { "unevictable", BIT(LRU_UNEVICTABLE) },
3121 const struct numa_stat *stat;
3124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3126 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3128 seq_printf(m, "%s=%lu", stat->name, nr);
3129 for_each_node_state(nid, N_MEMORY) {
3130 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3132 seq_printf(m, " N%d=%lu", nid, nr);
3137 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3138 struct mem_cgroup *iter;
3141 for_each_mem_cgroup_tree(iter, memcg)
3142 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3143 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3144 for_each_node_state(nid, N_MEMORY) {
3146 for_each_mem_cgroup_tree(iter, memcg)
3147 nr += mem_cgroup_node_nr_lru_pages(
3148 iter, nid, stat->lru_mask);
3149 seq_printf(m, " N%d=%lu", nid, nr);
3156 #endif /* CONFIG_NUMA */
3158 static int memcg_stat_show(struct seq_file *m, void *v)
3160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3161 unsigned long memory, memsw;
3162 struct mem_cgroup *mi;
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3166 MEM_CGROUP_STAT_NSTATS);
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3168 MEM_CGROUP_EVENTS_NSTATS);
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3175 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3179 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3180 mem_cgroup_read_events(memcg, i));
3182 for (i = 0; i < NR_LRU_LISTS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3184 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3186 /* Hierarchical information */
3187 memory = memsw = PAGE_COUNTER_MAX;
3188 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3189 memory = min(memory, mi->memory.limit);
3190 memsw = min(memsw, mi->memsw.limit);
3192 seq_printf(m, "hierarchical_memory_limit %llu\n",
3193 (u64)memory * PAGE_SIZE);
3194 if (do_memsw_account())
3195 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3196 (u64)memsw * PAGE_SIZE);
3198 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3199 unsigned long long val = 0;
3201 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3203 for_each_mem_cgroup_tree(mi, memcg)
3204 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3205 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3208 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3209 unsigned long long val = 0;
3211 for_each_mem_cgroup_tree(mi, memcg)
3212 val += mem_cgroup_read_events(mi, i);
3213 seq_printf(m, "total_%s %llu\n",
3214 mem_cgroup_events_names[i], val);
3217 for (i = 0; i < NR_LRU_LISTS; i++) {
3218 unsigned long long val = 0;
3220 for_each_mem_cgroup_tree(mi, memcg)
3221 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3222 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3225 #ifdef CONFIG_DEBUG_VM
3228 struct mem_cgroup_per_node *mz;
3229 struct zone_reclaim_stat *rstat;
3230 unsigned long recent_rotated[2] = {0, 0};
3231 unsigned long recent_scanned[2] = {0, 0};
3233 for_each_online_pgdat(pgdat) {
3234 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3235 rstat = &mz->lruvec.reclaim_stat;
3237 recent_rotated[0] += rstat->recent_rotated[0];
3238 recent_rotated[1] += rstat->recent_rotated[1];
3239 recent_scanned[0] += rstat->recent_scanned[0];
3240 recent_scanned[1] += rstat->recent_scanned[1];
3242 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3243 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3244 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3245 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3252 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3257 return mem_cgroup_swappiness(memcg);
3260 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3261 struct cftype *cft, u64 val)
3263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3269 memcg->swappiness = val;
3271 vm_swappiness = val;
3276 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3278 struct mem_cgroup_threshold_ary *t;
3279 unsigned long usage;
3284 t = rcu_dereference(memcg->thresholds.primary);
3286 t = rcu_dereference(memcg->memsw_thresholds.primary);
3291 usage = mem_cgroup_usage(memcg, swap);
3294 * current_threshold points to threshold just below or equal to usage.
3295 * If it's not true, a threshold was crossed after last
3296 * call of __mem_cgroup_threshold().
3298 i = t->current_threshold;
3301 * Iterate backward over array of thresholds starting from
3302 * current_threshold and check if a threshold is crossed.
3303 * If none of thresholds below usage is crossed, we read
3304 * only one element of the array here.
3306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3309 /* i = current_threshold + 1 */
3313 * Iterate forward over array of thresholds starting from
3314 * current_threshold+1 and check if a threshold is crossed.
3315 * If none of thresholds above usage is crossed, we read
3316 * only one element of the array here.
3318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3319 eventfd_signal(t->entries[i].eventfd, 1);
3321 /* Update current_threshold */
3322 t->current_threshold = i - 1;
3327 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3330 __mem_cgroup_threshold(memcg, false);
3331 if (do_memsw_account())
3332 __mem_cgroup_threshold(memcg, true);
3334 memcg = parent_mem_cgroup(memcg);
3338 static int compare_thresholds(const void *a, const void *b)
3340 const struct mem_cgroup_threshold *_a = a;
3341 const struct mem_cgroup_threshold *_b = b;
3343 if (_a->threshold > _b->threshold)
3346 if (_a->threshold < _b->threshold)
3352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3354 struct mem_cgroup_eventfd_list *ev;
3356 spin_lock(&memcg_oom_lock);
3358 list_for_each_entry(ev, &memcg->oom_notify, list)
3359 eventfd_signal(ev->eventfd, 1);
3361 spin_unlock(&memcg_oom_lock);
3365 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3367 struct mem_cgroup *iter;
3369 for_each_mem_cgroup_tree(iter, memcg)
3370 mem_cgroup_oom_notify_cb(iter);
3373 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3374 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3376 struct mem_cgroup_thresholds *thresholds;
3377 struct mem_cgroup_threshold_ary *new;
3378 unsigned long threshold;
3379 unsigned long usage;
3382 ret = page_counter_memparse(args, "-1", &threshold);
3386 mutex_lock(&memcg->thresholds_lock);
3389 thresholds = &memcg->thresholds;
3390 usage = mem_cgroup_usage(memcg, false);
3391 } else if (type == _MEMSWAP) {
3392 thresholds = &memcg->memsw_thresholds;
3393 usage = mem_cgroup_usage(memcg, true);
3397 /* Check if a threshold crossed before adding a new one */
3398 if (thresholds->primary)
3399 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3401 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3403 /* Allocate memory for new array of thresholds */
3404 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3412 /* Copy thresholds (if any) to new array */
3413 if (thresholds->primary) {
3414 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3415 sizeof(struct mem_cgroup_threshold));
3418 /* Add new threshold */
3419 new->entries[size - 1].eventfd = eventfd;
3420 new->entries[size - 1].threshold = threshold;
3422 /* Sort thresholds. Registering of new threshold isn't time-critical */
3423 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3424 compare_thresholds, NULL);
3426 /* Find current threshold */
3427 new->current_threshold = -1;
3428 for (i = 0; i < size; i++) {
3429 if (new->entries[i].threshold <= usage) {
3431 * new->current_threshold will not be used until
3432 * rcu_assign_pointer(), so it's safe to increment
3435 ++new->current_threshold;
3440 /* Free old spare buffer and save old primary buffer as spare */
3441 kfree(thresholds->spare);
3442 thresholds->spare = thresholds->primary;
3444 rcu_assign_pointer(thresholds->primary, new);
3446 /* To be sure that nobody uses thresholds */
3450 mutex_unlock(&memcg->thresholds_lock);
3455 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 struct eventfd_ctx *eventfd, const char *args)
3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3461 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, const char *args)
3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3467 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3468 struct eventfd_ctx *eventfd, enum res_type type)
3470 struct mem_cgroup_thresholds *thresholds;
3471 struct mem_cgroup_threshold_ary *new;
3472 unsigned long usage;
3475 mutex_lock(&memcg->thresholds_lock);
3478 thresholds = &memcg->thresholds;
3479 usage = mem_cgroup_usage(memcg, false);
3480 } else if (type == _MEMSWAP) {
3481 thresholds = &memcg->memsw_thresholds;
3482 usage = mem_cgroup_usage(memcg, true);
3486 if (!thresholds->primary)
3489 /* Check if a threshold crossed before removing */
3490 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3492 /* Calculate new number of threshold */
3494 for (i = 0; i < thresholds->primary->size; i++) {
3495 if (thresholds->primary->entries[i].eventfd != eventfd)
3499 new = thresholds->spare;
3501 /* Set thresholds array to NULL if we don't have thresholds */
3510 /* Copy thresholds and find current threshold */
3511 new->current_threshold = -1;
3512 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3513 if (thresholds->primary->entries[i].eventfd == eventfd)
3516 new->entries[j] = thresholds->primary->entries[i];
3517 if (new->entries[j].threshold <= usage) {
3519 * new->current_threshold will not be used
3520 * until rcu_assign_pointer(), so it's safe to increment
3523 ++new->current_threshold;
3529 /* Swap primary and spare array */
3530 thresholds->spare = thresholds->primary;
3532 rcu_assign_pointer(thresholds->primary, new);
3534 /* To be sure that nobody uses thresholds */
3537 /* If all events are unregistered, free the spare array */
3539 kfree(thresholds->spare);
3540 thresholds->spare = NULL;
3543 mutex_unlock(&memcg->thresholds_lock);
3546 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3547 struct eventfd_ctx *eventfd)
3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3552 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd)
3555 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3558 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3559 struct eventfd_ctx *eventfd, const char *args)
3561 struct mem_cgroup_eventfd_list *event;
3563 event = kmalloc(sizeof(*event), GFP_KERNEL);
3567 spin_lock(&memcg_oom_lock);
3569 event->eventfd = eventfd;
3570 list_add(&event->list, &memcg->oom_notify);
3572 /* already in OOM ? */
3573 if (memcg->under_oom)
3574 eventfd_signal(eventfd, 1);
3575 spin_unlock(&memcg_oom_lock);
3580 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3581 struct eventfd_ctx *eventfd)
3583 struct mem_cgroup_eventfd_list *ev, *tmp;
3585 spin_lock(&memcg_oom_lock);
3587 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3588 if (ev->eventfd == eventfd) {
3589 list_del(&ev->list);
3594 spin_unlock(&memcg_oom_lock);
3597 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3599 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3601 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3602 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3606 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3607 struct cftype *cft, u64 val)
3609 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3611 /* cannot set to root cgroup and only 0 and 1 are allowed */
3612 if (!css->parent || !((val == 0) || (val == 1)))
3615 memcg->oom_kill_disable = val;
3617 memcg_oom_recover(memcg);
3622 #ifdef CONFIG_CGROUP_WRITEBACK
3624 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3626 return &memcg->cgwb_list;
3629 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3631 return wb_domain_init(&memcg->cgwb_domain, gfp);
3634 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3636 wb_domain_exit(&memcg->cgwb_domain);
3639 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3641 wb_domain_size_changed(&memcg->cgwb_domain);
3644 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 if (!memcg->css.parent)
3651 return &memcg->cgwb_domain;
3655 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3656 * @wb: bdi_writeback in question
3657 * @pfilepages: out parameter for number of file pages
3658 * @pheadroom: out parameter for number of allocatable pages according to memcg
3659 * @pdirty: out parameter for number of dirty pages
3660 * @pwriteback: out parameter for number of pages under writeback
3662 * Determine the numbers of file, headroom, dirty, and writeback pages in
3663 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3664 * is a bit more involved.
3666 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3667 * headroom is calculated as the lowest headroom of itself and the
3668 * ancestors. Note that this doesn't consider the actual amount of
3669 * available memory in the system. The caller should further cap
3670 * *@pheadroom accordingly.
3672 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3673 unsigned long *pheadroom, unsigned long *pdirty,
3674 unsigned long *pwriteback)
3676 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3677 struct mem_cgroup *parent;
3679 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3681 /* this should eventually include NR_UNSTABLE_NFS */
3682 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3683 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3684 (1 << LRU_ACTIVE_FILE));
3685 *pheadroom = PAGE_COUNTER_MAX;
3687 while ((parent = parent_mem_cgroup(memcg))) {
3688 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3689 unsigned long used = page_counter_read(&memcg->memory);
3691 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3696 #else /* CONFIG_CGROUP_WRITEBACK */
3698 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3703 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3707 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3711 #endif /* CONFIG_CGROUP_WRITEBACK */
3714 * DO NOT USE IN NEW FILES.
3716 * "cgroup.event_control" implementation.
3718 * This is way over-engineered. It tries to support fully configurable
3719 * events for each user. Such level of flexibility is completely
3720 * unnecessary especially in the light of the planned unified hierarchy.
3722 * Please deprecate this and replace with something simpler if at all
3727 * Unregister event and free resources.
3729 * Gets called from workqueue.
3731 static void memcg_event_remove(struct work_struct *work)
3733 struct mem_cgroup_event *event =
3734 container_of(work, struct mem_cgroup_event, remove);
3735 struct mem_cgroup *memcg = event->memcg;
3737 remove_wait_queue(event->wqh, &event->wait);
3739 event->unregister_event(memcg, event->eventfd);
3741 /* Notify userspace the event is going away. */
3742 eventfd_signal(event->eventfd, 1);
3744 eventfd_ctx_put(event->eventfd);
3746 css_put(&memcg->css);
3750 * Gets called on POLLHUP on eventfd when user closes it.
3752 * Called with wqh->lock held and interrupts disabled.
3754 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3755 int sync, void *key)
3757 struct mem_cgroup_event *event =
3758 container_of(wait, struct mem_cgroup_event, wait);
3759 struct mem_cgroup *memcg = event->memcg;
3760 unsigned long flags = (unsigned long)key;
3762 if (flags & POLLHUP) {
3764 * If the event has been detached at cgroup removal, we
3765 * can simply return knowing the other side will cleanup
3768 * We can't race against event freeing since the other
3769 * side will require wqh->lock via remove_wait_queue(),
3772 spin_lock(&memcg->event_list_lock);
3773 if (!list_empty(&event->list)) {
3774 list_del_init(&event->list);
3776 * We are in atomic context, but cgroup_event_remove()
3777 * may sleep, so we have to call it in workqueue.
3779 schedule_work(&event->remove);
3781 spin_unlock(&memcg->event_list_lock);
3787 static void memcg_event_ptable_queue_proc(struct file *file,
3788 wait_queue_head_t *wqh, poll_table *pt)
3790 struct mem_cgroup_event *event =
3791 container_of(pt, struct mem_cgroup_event, pt);
3794 add_wait_queue(wqh, &event->wait);
3798 * DO NOT USE IN NEW FILES.
3800 * Parse input and register new cgroup event handler.
3802 * Input must be in format '<event_fd> <control_fd> <args>'.
3803 * Interpretation of args is defined by control file implementation.
3805 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3806 char *buf, size_t nbytes, loff_t off)
3808 struct cgroup_subsys_state *css = of_css(of);
3809 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3810 struct mem_cgroup_event *event;
3811 struct cgroup_subsys_state *cfile_css;
3812 unsigned int efd, cfd;
3819 buf = strstrip(buf);
3821 efd = simple_strtoul(buf, &endp, 10);
3826 cfd = simple_strtoul(buf, &endp, 10);
3827 if ((*endp != ' ') && (*endp != '\0'))
3831 event = kzalloc(sizeof(*event), GFP_KERNEL);
3835 event->memcg = memcg;
3836 INIT_LIST_HEAD(&event->list);
3837 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3838 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3839 INIT_WORK(&event->remove, memcg_event_remove);
3847 event->eventfd = eventfd_ctx_fileget(efile.file);
3848 if (IS_ERR(event->eventfd)) {
3849 ret = PTR_ERR(event->eventfd);
3856 goto out_put_eventfd;
3859 /* the process need read permission on control file */
3860 /* AV: shouldn't we check that it's been opened for read instead? */
3861 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3866 * Determine the event callbacks and set them in @event. This used
3867 * to be done via struct cftype but cgroup core no longer knows
3868 * about these events. The following is crude but the whole thing
3869 * is for compatibility anyway.
3871 * DO NOT ADD NEW FILES.
3873 name = cfile.file->f_path.dentry->d_name.name;
3875 if (!strcmp(name, "memory.usage_in_bytes")) {
3876 event->register_event = mem_cgroup_usage_register_event;
3877 event->unregister_event = mem_cgroup_usage_unregister_event;
3878 } else if (!strcmp(name, "memory.oom_control")) {
3879 event->register_event = mem_cgroup_oom_register_event;
3880 event->unregister_event = mem_cgroup_oom_unregister_event;
3881 } else if (!strcmp(name, "memory.pressure_level")) {
3882 event->register_event = vmpressure_register_event;
3883 event->unregister_event = vmpressure_unregister_event;
3884 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3885 event->register_event = memsw_cgroup_usage_register_event;
3886 event->unregister_event = memsw_cgroup_usage_unregister_event;
3893 * Verify @cfile should belong to @css. Also, remaining events are
3894 * automatically removed on cgroup destruction but the removal is
3895 * asynchronous, so take an extra ref on @css.
3897 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3898 &memory_cgrp_subsys);
3900 if (IS_ERR(cfile_css))
3902 if (cfile_css != css) {
3907 ret = event->register_event(memcg, event->eventfd, buf);
3911 efile.file->f_op->poll(efile.file, &event->pt);
3913 spin_lock(&memcg->event_list_lock);
3914 list_add(&event->list, &memcg->event_list);
3915 spin_unlock(&memcg->event_list_lock);
3927 eventfd_ctx_put(event->eventfd);
3936 static struct cftype mem_cgroup_legacy_files[] = {
3938 .name = "usage_in_bytes",
3939 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3940 .read_u64 = mem_cgroup_read_u64,
3943 .name = "max_usage_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3945 .write = mem_cgroup_reset,
3946 .read_u64 = mem_cgroup_read_u64,
3949 .name = "limit_in_bytes",
3950 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3951 .write = mem_cgroup_write,
3952 .read_u64 = mem_cgroup_read_u64,
3955 .name = "soft_limit_in_bytes",
3956 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3957 .write = mem_cgroup_write,
3958 .read_u64 = mem_cgroup_read_u64,
3962 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3963 .write = mem_cgroup_reset,
3964 .read_u64 = mem_cgroup_read_u64,
3968 .seq_show = memcg_stat_show,
3971 .name = "force_empty",
3972 .write = mem_cgroup_force_empty_write,
3975 .name = "use_hierarchy",
3976 .write_u64 = mem_cgroup_hierarchy_write,
3977 .read_u64 = mem_cgroup_hierarchy_read,
3980 .name = "cgroup.event_control", /* XXX: for compat */
3981 .write = memcg_write_event_control,
3982 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3985 .name = "swappiness",
3986 .read_u64 = mem_cgroup_swappiness_read,
3987 .write_u64 = mem_cgroup_swappiness_write,
3990 .name = "move_charge_at_immigrate",
3991 .read_u64 = mem_cgroup_move_charge_read,
3992 .write_u64 = mem_cgroup_move_charge_write,
3995 .name = "oom_control",
3996 .seq_show = mem_cgroup_oom_control_read,
3997 .write_u64 = mem_cgroup_oom_control_write,
3998 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4001 .name = "pressure_level",
4005 .name = "numa_stat",
4006 .seq_show = memcg_numa_stat_show,
4010 .name = "kmem.limit_in_bytes",
4011 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4012 .write = mem_cgroup_write,
4013 .read_u64 = mem_cgroup_read_u64,
4016 .name = "kmem.usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4018 .read_u64 = mem_cgroup_read_u64,
4021 .name = "kmem.failcnt",
4022 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4023 .write = mem_cgroup_reset,
4024 .read_u64 = mem_cgroup_read_u64,
4027 .name = "kmem.max_usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4032 #ifdef CONFIG_SLABINFO
4034 .name = "kmem.slabinfo",
4035 .seq_start = slab_start,
4036 .seq_next = slab_next,
4037 .seq_stop = slab_stop,
4038 .seq_show = memcg_slab_show,
4042 .name = "kmem.tcp.limit_in_bytes",
4043 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4044 .write = mem_cgroup_write,
4045 .read_u64 = mem_cgroup_read_u64,
4048 .name = "kmem.tcp.usage_in_bytes",
4049 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4050 .read_u64 = mem_cgroup_read_u64,
4053 .name = "kmem.tcp.failcnt",
4054 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4055 .write = mem_cgroup_reset,
4056 .read_u64 = mem_cgroup_read_u64,
4059 .name = "kmem.tcp.max_usage_in_bytes",
4060 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4061 .write = mem_cgroup_reset,
4062 .read_u64 = mem_cgroup_read_u64,
4064 { }, /* terminate */
4068 * Private memory cgroup IDR
4070 * Swap-out records and page cache shadow entries need to store memcg
4071 * references in constrained space, so we maintain an ID space that is
4072 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4073 * memory-controlled cgroups to 64k.
4075 * However, there usually are many references to the oflline CSS after
4076 * the cgroup has been destroyed, such as page cache or reclaimable
4077 * slab objects, that don't need to hang on to the ID. We want to keep
4078 * those dead CSS from occupying IDs, or we might quickly exhaust the
4079 * relatively small ID space and prevent the creation of new cgroups
4080 * even when there are much fewer than 64k cgroups - possibly none.
4082 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4083 * be freed and recycled when it's no longer needed, which is usually
4084 * when the CSS is offlined.
4086 * The only exception to that are records of swapped out tmpfs/shmem
4087 * pages that need to be attributed to live ancestors on swapin. But
4088 * those references are manageable from userspace.
4091 static DEFINE_IDR(mem_cgroup_idr);
4093 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4095 atomic_add(n, &memcg->id.ref);
4098 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4100 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4101 idr_remove(&mem_cgroup_idr, memcg->id.id);
4104 /* Memcg ID pins CSS */
4105 css_put(&memcg->css);
4109 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4111 mem_cgroup_id_get_many(memcg, 1);
4114 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4116 mem_cgroup_id_put_many(memcg, 1);
4120 * mem_cgroup_from_id - look up a memcg from a memcg id
4121 * @id: the memcg id to look up
4123 * Caller must hold rcu_read_lock().
4125 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4127 WARN_ON_ONCE(!rcu_read_lock_held());
4128 return idr_find(&mem_cgroup_idr, id);
4131 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133 struct mem_cgroup_per_node *pn;
4136 * This routine is called against possible nodes.
4137 * But it's BUG to call kmalloc() against offline node.
4139 * TODO: this routine can waste much memory for nodes which will
4140 * never be onlined. It's better to use memory hotplug callback
4143 if (!node_state(node, N_NORMAL_MEMORY))
4145 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4149 lruvec_init(&pn->lruvec);
4150 pn->usage_in_excess = 0;
4151 pn->on_tree = false;
4154 memcg->nodeinfo[node] = pn;
4158 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4160 kfree(memcg->nodeinfo[node]);
4163 static void mem_cgroup_free(struct mem_cgroup *memcg)
4167 memcg_wb_domain_exit(memcg);
4169 free_mem_cgroup_per_node_info(memcg, node);
4170 free_percpu(memcg->stat);
4174 static struct mem_cgroup *mem_cgroup_alloc(void)
4176 struct mem_cgroup *memcg;
4180 size = sizeof(struct mem_cgroup);
4181 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4183 memcg = kzalloc(size, GFP_KERNEL);
4187 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4188 1, MEM_CGROUP_ID_MAX,
4190 if (memcg->id.id < 0)
4193 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4198 if (alloc_mem_cgroup_per_node_info(memcg, node))
4201 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4204 INIT_WORK(&memcg->high_work, high_work_func);
4205 memcg->last_scanned_node = MAX_NUMNODES;
4206 INIT_LIST_HEAD(&memcg->oom_notify);
4207 mutex_init(&memcg->thresholds_lock);
4208 spin_lock_init(&memcg->move_lock);
4209 vmpressure_init(&memcg->vmpressure);
4210 INIT_LIST_HEAD(&memcg->event_list);
4211 spin_lock_init(&memcg->event_list_lock);
4212 memcg->socket_pressure = jiffies;
4214 memcg->kmemcg_id = -1;
4216 #ifdef CONFIG_CGROUP_WRITEBACK
4217 INIT_LIST_HEAD(&memcg->cgwb_list);
4219 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4222 if (memcg->id.id > 0)
4223 idr_remove(&mem_cgroup_idr, memcg->id.id);
4224 mem_cgroup_free(memcg);
4228 static struct cgroup_subsys_state * __ref
4229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4231 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4232 struct mem_cgroup *memcg;
4233 long error = -ENOMEM;
4235 memcg = mem_cgroup_alloc();
4237 return ERR_PTR(error);
4239 memcg->high = PAGE_COUNTER_MAX;
4240 memcg->soft_limit = PAGE_COUNTER_MAX;
4242 memcg->swappiness = mem_cgroup_swappiness(parent);
4243 memcg->oom_kill_disable = parent->oom_kill_disable;
4245 if (parent && parent->use_hierarchy) {
4246 memcg->use_hierarchy = true;
4247 page_counter_init(&memcg->memory, &parent->memory);
4248 page_counter_init(&memcg->swap, &parent->swap);
4249 page_counter_init(&memcg->memsw, &parent->memsw);
4250 page_counter_init(&memcg->kmem, &parent->kmem);
4251 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4253 page_counter_init(&memcg->memory, NULL);
4254 page_counter_init(&memcg->swap, NULL);
4255 page_counter_init(&memcg->memsw, NULL);
4256 page_counter_init(&memcg->kmem, NULL);
4257 page_counter_init(&memcg->tcpmem, NULL);
4259 * Deeper hierachy with use_hierarchy == false doesn't make
4260 * much sense so let cgroup subsystem know about this
4261 * unfortunate state in our controller.
4263 if (parent != root_mem_cgroup)
4264 memory_cgrp_subsys.broken_hierarchy = true;
4267 /* The following stuff does not apply to the root */
4269 root_mem_cgroup = memcg;
4273 error = memcg_online_kmem(memcg);
4277 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4278 static_branch_inc(&memcg_sockets_enabled_key);
4282 mem_cgroup_free(memcg);
4283 return ERR_PTR(-ENOMEM);
4286 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4288 /* Online state pins memcg ID, memcg ID pins CSS */
4289 mem_cgroup_id_get(mem_cgroup_from_css(css));
4294 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297 struct mem_cgroup_event *event, *tmp;
4300 * Unregister events and notify userspace.
4301 * Notify userspace about cgroup removing only after rmdir of cgroup
4302 * directory to avoid race between userspace and kernelspace.
4304 spin_lock(&memcg->event_list_lock);
4305 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4306 list_del_init(&event->list);
4307 schedule_work(&event->remove);
4309 spin_unlock(&memcg->event_list_lock);
4311 memcg_offline_kmem(memcg);
4312 wb_memcg_offline(memcg);
4314 mem_cgroup_id_put(memcg);
4317 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321 invalidate_reclaim_iterators(memcg);
4324 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4329 static_branch_dec(&memcg_sockets_enabled_key);
4331 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4332 static_branch_dec(&memcg_sockets_enabled_key);
4334 vmpressure_cleanup(&memcg->vmpressure);
4335 cancel_work_sync(&memcg->high_work);
4336 mem_cgroup_remove_from_trees(memcg);
4337 memcg_free_kmem(memcg);
4338 mem_cgroup_free(memcg);
4342 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4343 * @css: the target css
4345 * Reset the states of the mem_cgroup associated with @css. This is
4346 * invoked when the userland requests disabling on the default hierarchy
4347 * but the memcg is pinned through dependency. The memcg should stop
4348 * applying policies and should revert to the vanilla state as it may be
4349 * made visible again.
4351 * The current implementation only resets the essential configurations.
4352 * This needs to be expanded to cover all the visible parts.
4354 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4358 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4359 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4360 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4361 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4362 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4364 memcg->high = PAGE_COUNTER_MAX;
4365 memcg->soft_limit = PAGE_COUNTER_MAX;
4366 memcg_wb_domain_size_changed(memcg);
4370 /* Handlers for move charge at task migration. */
4371 static int mem_cgroup_do_precharge(unsigned long count)
4375 /* Try a single bulk charge without reclaim first, kswapd may wake */
4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4378 mc.precharge += count;
4382 /* Try charges one by one with reclaim */
4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4398 enum mc_target_type {
4404 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4405 unsigned long addr, pte_t ptent)
4407 struct page *page = vm_normal_page(vma, addr, ptent);
4409 if (!page || !page_mapped(page))
4411 if (PageAnon(page)) {
4412 if (!(mc.flags & MOVE_ANON))
4415 if (!(mc.flags & MOVE_FILE))
4418 if (!get_page_unless_zero(page))
4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426 pte_t ptent, swp_entry_t *entry)
4428 struct page *page = NULL;
4429 swp_entry_t ent = pte_to_swp_entry(ptent);
4431 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4434 * Because lookup_swap_cache() updates some statistics counter,
4435 * we call find_get_page() with swapper_space directly.
4437 page = find_get_page(swap_address_space(ent), ent.val);
4438 if (do_memsw_account())
4439 entry->val = ent.val;
4444 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4445 pte_t ptent, swp_entry_t *entry)
4451 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4452 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4454 struct page *page = NULL;
4455 struct address_space *mapping;
4458 if (!vma->vm_file) /* anonymous vma */
4460 if (!(mc.flags & MOVE_FILE))
4463 mapping = vma->vm_file->f_mapping;
4464 pgoff = linear_page_index(vma, addr);
4466 /* page is moved even if it's not RSS of this task(page-faulted). */
4468 /* shmem/tmpfs may report page out on swap: account for that too. */
4469 if (shmem_mapping(mapping)) {
4470 page = find_get_entry(mapping, pgoff);
4471 if (radix_tree_exceptional_entry(page)) {
4472 swp_entry_t swp = radix_to_swp_entry(page);
4473 if (do_memsw_account())
4475 page = find_get_page(swap_address_space(swp), swp.val);
4478 page = find_get_page(mapping, pgoff);
4480 page = find_get_page(mapping, pgoff);
4486 * mem_cgroup_move_account - move account of the page
4488 * @compound: charge the page as compound or small page
4489 * @from: mem_cgroup which the page is moved from.
4490 * @to: mem_cgroup which the page is moved to. @from != @to.
4492 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4494 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4497 static int mem_cgroup_move_account(struct page *page,
4499 struct mem_cgroup *from,
4500 struct mem_cgroup *to)
4502 unsigned long flags;
4503 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4507 VM_BUG_ON(from == to);
4508 VM_BUG_ON_PAGE(PageLRU(page), page);
4509 VM_BUG_ON(compound && !PageTransHuge(page));
4512 * Prevent mem_cgroup_migrate() from looking at
4513 * page->mem_cgroup of its source page while we change it.
4516 if (!trylock_page(page))
4520 if (page->mem_cgroup != from)
4523 anon = PageAnon(page);
4525 spin_lock_irqsave(&from->move_lock, flags);
4527 if (!anon && page_mapped(page)) {
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4535 * move_lock grabbed above and caller set from->moving_account, so
4536 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4537 * So mapping should be stable for dirty pages.
4539 if (!anon && PageDirty(page)) {
4540 struct address_space *mapping = page_mapping(page);
4542 if (mapping_cap_account_dirty(mapping)) {
4543 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4545 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4550 if (PageWriteback(page)) {
4551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4558 * It is safe to change page->mem_cgroup here because the page
4559 * is referenced, charged, and isolated - we can't race with
4560 * uncharging, charging, migration, or LRU putback.
4563 /* caller should have done css_get */
4564 page->mem_cgroup = to;
4565 spin_unlock_irqrestore(&from->move_lock, flags);
4569 local_irq_disable();
4570 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4571 memcg_check_events(to, page);
4572 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4573 memcg_check_events(from, page);
4582 * get_mctgt_type - get target type of moving charge
4583 * @vma: the vma the pte to be checked belongs
4584 * @addr: the address corresponding to the pte to be checked
4585 * @ptent: the pte to be checked
4586 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4589 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4590 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4591 * move charge. if @target is not NULL, the page is stored in target->page
4592 * with extra refcnt got(Callers should handle it).
4593 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4594 * target for charge migration. if @target is not NULL, the entry is stored
4597 * Called with pte lock held.
4600 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4601 unsigned long addr, pte_t ptent, union mc_target *target)
4603 struct page *page = NULL;
4604 enum mc_target_type ret = MC_TARGET_NONE;
4605 swp_entry_t ent = { .val = 0 };
4607 if (pte_present(ptent))
4608 page = mc_handle_present_pte(vma, addr, ptent);
4609 else if (is_swap_pte(ptent))
4610 page = mc_handle_swap_pte(vma, ptent, &ent);
4611 else if (pte_none(ptent))
4612 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4614 if (!page && !ent.val)
4618 * Do only loose check w/o serialization.
4619 * mem_cgroup_move_account() checks the page is valid or
4620 * not under LRU exclusion.
4622 if (page->mem_cgroup == mc.from) {
4623 ret = MC_TARGET_PAGE;
4625 target->page = page;
4627 if (!ret || !target)
4630 /* There is a swap entry and a page doesn't exist or isn't charged */
4631 if (ent.val && !ret &&
4632 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4633 ret = MC_TARGET_SWAP;
4640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642 * We don't consider swapping or file mapped pages because THP does not
4643 * support them for now.
4644 * Caller should make sure that pmd_trans_huge(pmd) is true.
4646 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647 unsigned long addr, pmd_t pmd, union mc_target *target)
4649 struct page *page = NULL;
4650 enum mc_target_type ret = MC_TARGET_NONE;
4652 page = pmd_page(pmd);
4653 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4654 if (!(mc.flags & MOVE_ANON))
4656 if (page->mem_cgroup == mc.from) {
4657 ret = MC_TARGET_PAGE;
4660 target->page = page;
4666 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4667 unsigned long addr, pmd_t pmd, union mc_target *target)
4669 return MC_TARGET_NONE;
4673 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4674 unsigned long addr, unsigned long end,
4675 struct mm_walk *walk)
4677 struct vm_area_struct *vma = walk->vma;
4681 ptl = pmd_trans_huge_lock(pmd, vma);
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
4689 if (pmd_trans_unstable(pmd))
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4701 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4703 unsigned long precharge;
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4709 down_read(&mm->mmap_sem);
4710 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4711 up_read(&mm->mmap_sem);
4713 precharge = mc.precharge;
4719 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721 unsigned long precharge = mem_cgroup_count_precharge(mm);
4723 VM_BUG_ON(mc.moving_task);
4724 mc.moving_task = current;
4725 return mem_cgroup_do_precharge(precharge);
4728 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4729 static void __mem_cgroup_clear_mc(void)
4731 struct mem_cgroup *from = mc.from;
4732 struct mem_cgroup *to = mc.to;
4734 /* we must uncharge all the leftover precharges from mc.to */
4736 cancel_charge(mc.to, mc.precharge);
4740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4741 * we must uncharge here.
4743 if (mc.moved_charge) {
4744 cancel_charge(mc.from, mc.moved_charge);
4745 mc.moved_charge = 0;
4747 /* we must fixup refcnts and charges */
4748 if (mc.moved_swap) {
4749 /* uncharge swap account from the old cgroup */
4750 if (!mem_cgroup_is_root(mc.from))
4751 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4756 * we charged both to->memory and to->memsw, so we
4757 * should uncharge to->memory.
4759 if (!mem_cgroup_is_root(mc.to))
4760 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4763 css_put_many(&mc.to->css, mc.moved_swap);
4767 memcg_oom_recover(from);
4768 memcg_oom_recover(to);
4769 wake_up_all(&mc.waitq);
4772 static void mem_cgroup_clear_mc(void)
4774 struct mm_struct *mm = mc.mm;
4777 * we must clear moving_task before waking up waiters at the end of
4780 mc.moving_task = NULL;
4781 __mem_cgroup_clear_mc();
4782 spin_lock(&mc.lock);
4786 spin_unlock(&mc.lock);
4791 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793 struct cgroup_subsys_state *css;
4794 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4795 struct mem_cgroup *from;
4796 struct task_struct *leader, *p;
4797 struct mm_struct *mm;
4798 unsigned long move_flags;
4801 /* charge immigration isn't supported on the default hierarchy */
4802 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4806 * Multi-process migrations only happen on the default hierarchy
4807 * where charge immigration is not used. Perform charge
4808 * immigration if @tset contains a leader and whine if there are
4812 cgroup_taskset_for_each_leader(leader, css, tset) {
4815 memcg = mem_cgroup_from_css(css);
4821 * We are now commited to this value whatever it is. Changes in this
4822 * tunable will only affect upcoming migrations, not the current one.
4823 * So we need to save it, and keep it going.
4825 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4829 from = mem_cgroup_from_task(p);
4831 VM_BUG_ON(from == memcg);
4833 mm = get_task_mm(p);
4836 /* We move charges only when we move a owner of the mm */
4837 if (mm->owner == p) {
4840 VM_BUG_ON(mc.precharge);
4841 VM_BUG_ON(mc.moved_charge);
4842 VM_BUG_ON(mc.moved_swap);
4844 spin_lock(&mc.lock);
4848 mc.flags = move_flags;
4849 spin_unlock(&mc.lock);
4850 /* We set mc.moving_task later */
4852 ret = mem_cgroup_precharge_mc(mm);
4854 mem_cgroup_clear_mc();
4861 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4864 mem_cgroup_clear_mc();
4867 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4868 unsigned long addr, unsigned long end,
4869 struct mm_walk *walk)
4872 struct vm_area_struct *vma = walk->vma;
4875 enum mc_target_type target_type;
4876 union mc_target target;
4879 ptl = pmd_trans_huge_lock(pmd, vma);
4881 if (mc.precharge < HPAGE_PMD_NR) {
4885 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4886 if (target_type == MC_TARGET_PAGE) {
4888 if (!isolate_lru_page(page)) {
4889 if (!mem_cgroup_move_account(page, true,
4891 mc.precharge -= HPAGE_PMD_NR;
4892 mc.moved_charge += HPAGE_PMD_NR;
4894 putback_lru_page(page);
4902 if (pmd_trans_unstable(pmd))
4905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4906 for (; addr != end; addr += PAGE_SIZE) {
4907 pte_t ptent = *(pte++);
4913 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4914 case MC_TARGET_PAGE:
4917 * We can have a part of the split pmd here. Moving it
4918 * can be done but it would be too convoluted so simply
4919 * ignore such a partial THP and keep it in original
4920 * memcg. There should be somebody mapping the head.
4922 if (PageTransCompound(page))
4924 if (isolate_lru_page(page))
4926 if (!mem_cgroup_move_account(page, false,
4929 /* we uncharge from mc.from later. */
4932 putback_lru_page(page);
4933 put: /* get_mctgt_type() gets the page */
4936 case MC_TARGET_SWAP:
4938 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4940 /* we fixup refcnts and charges later. */
4948 pte_unmap_unlock(pte - 1, ptl);
4953 * We have consumed all precharges we got in can_attach().
4954 * We try charge one by one, but don't do any additional
4955 * charges to mc.to if we have failed in charge once in attach()
4958 ret = mem_cgroup_do_precharge(1);
4966 static void mem_cgroup_move_charge(void)
4968 struct mm_walk mem_cgroup_move_charge_walk = {
4969 .pmd_entry = mem_cgroup_move_charge_pte_range,
4973 lru_add_drain_all();
4975 * Signal lock_page_memcg() to take the memcg's move_lock
4976 * while we're moving its pages to another memcg. Then wait
4977 * for already started RCU-only updates to finish.
4979 atomic_inc(&mc.from->moving_account);
4982 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4984 * Someone who are holding the mmap_sem might be waiting in
4985 * waitq. So we cancel all extra charges, wake up all waiters,
4986 * and retry. Because we cancel precharges, we might not be able
4987 * to move enough charges, but moving charge is a best-effort
4988 * feature anyway, so it wouldn't be a big problem.
4990 __mem_cgroup_clear_mc();
4995 * When we have consumed all precharges and failed in doing
4996 * additional charge, the page walk just aborts.
4998 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4999 up_read(&mc.mm->mmap_sem);
5000 atomic_dec(&mc.from->moving_account);
5003 static void mem_cgroup_move_task(void)
5006 mem_cgroup_move_charge();
5007 mem_cgroup_clear_mc();
5010 #else /* !CONFIG_MMU */
5011 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5018 static void mem_cgroup_move_task(void)
5024 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5025 * to verify whether we're attached to the default hierarchy on each mount
5028 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5031 * use_hierarchy is forced on the default hierarchy. cgroup core
5032 * guarantees that @root doesn't have any children, so turning it
5033 * on for the root memcg is enough.
5035 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5036 root_mem_cgroup->use_hierarchy = true;
5038 root_mem_cgroup->use_hierarchy = false;
5041 static u64 memory_current_read(struct cgroup_subsys_state *css,
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5046 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5049 static int memory_low_show(struct seq_file *m, void *v)
5051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5052 unsigned long low = READ_ONCE(memcg->low);
5054 if (low == PAGE_COUNTER_MAX)
5055 seq_puts(m, "max\n");
5057 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5062 static ssize_t memory_low_write(struct kernfs_open_file *of,
5063 char *buf, size_t nbytes, loff_t off)
5065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5069 buf = strstrip(buf);
5070 err = page_counter_memparse(buf, "max", &low);
5079 static int memory_high_show(struct seq_file *m, void *v)
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5082 unsigned long high = READ_ONCE(memcg->high);
5084 if (high == PAGE_COUNTER_MAX)
5085 seq_puts(m, "max\n");
5087 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5092 static ssize_t memory_high_write(struct kernfs_open_file *of,
5093 char *buf, size_t nbytes, loff_t off)
5095 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5096 unsigned long nr_pages;
5100 buf = strstrip(buf);
5101 err = page_counter_memparse(buf, "max", &high);
5107 nr_pages = page_counter_read(&memcg->memory);
5108 if (nr_pages > high)
5109 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5112 memcg_wb_domain_size_changed(memcg);
5116 static int memory_max_show(struct seq_file *m, void *v)
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5119 unsigned long max = READ_ONCE(memcg->memory.limit);
5121 if (max == PAGE_COUNTER_MAX)
5122 seq_puts(m, "max\n");
5124 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5129 static ssize_t memory_max_write(struct kernfs_open_file *of,
5130 char *buf, size_t nbytes, loff_t off)
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5133 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5134 bool drained = false;
5138 buf = strstrip(buf);
5139 err = page_counter_memparse(buf, "max", &max);
5143 xchg(&memcg->memory.limit, max);
5146 unsigned long nr_pages = page_counter_read(&memcg->memory);
5148 if (nr_pages <= max)
5151 if (signal_pending(current)) {
5157 drain_all_stock(memcg);
5163 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5169 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5170 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5174 memcg_wb_domain_size_changed(memcg);
5178 static int memory_events_show(struct seq_file *m, void *v)
5180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5182 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5183 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5184 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5185 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5190 static int memory_stat_show(struct seq_file *m, void *v)
5192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5193 unsigned long stat[MEMCG_NR_STAT];
5194 unsigned long events[MEMCG_NR_EVENTS];
5198 * Provide statistics on the state of the memory subsystem as
5199 * well as cumulative event counters that show past behavior.
5201 * This list is ordered following a combination of these gradients:
5202 * 1) generic big picture -> specifics and details
5203 * 2) reflecting userspace activity -> reflecting kernel heuristics
5205 * Current memory state:
5208 tree_stat(memcg, stat);
5209 tree_events(memcg, events);
5211 seq_printf(m, "anon %llu\n",
5212 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5213 seq_printf(m, "file %llu\n",
5214 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5215 seq_printf(m, "kernel_stack %llu\n",
5216 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5217 seq_printf(m, "slab %llu\n",
5218 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5219 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5220 seq_printf(m, "sock %llu\n",
5221 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5223 seq_printf(m, "file_mapped %llu\n",
5224 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5225 seq_printf(m, "file_dirty %llu\n",
5226 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5227 seq_printf(m, "file_writeback %llu\n",
5228 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5230 for (i = 0; i < NR_LRU_LISTS; i++) {
5231 struct mem_cgroup *mi;
5232 unsigned long val = 0;
5234 for_each_mem_cgroup_tree(mi, memcg)
5235 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5236 seq_printf(m, "%s %llu\n",
5237 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5240 seq_printf(m, "slab_reclaimable %llu\n",
5241 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5242 seq_printf(m, "slab_unreclaimable %llu\n",
5243 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5245 /* Accumulated memory events */
5247 seq_printf(m, "pgfault %lu\n",
5248 events[MEM_CGROUP_EVENTS_PGFAULT]);
5249 seq_printf(m, "pgmajfault %lu\n",
5250 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5255 static struct cftype memory_files[] = {
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .read_u64 = memory_current_read,
5263 .flags = CFTYPE_NOT_ON_ROOT,
5264 .seq_show = memory_low_show,
5265 .write = memory_low_write,
5269 .flags = CFTYPE_NOT_ON_ROOT,
5270 .seq_show = memory_high_show,
5271 .write = memory_high_write,
5275 .flags = CFTYPE_NOT_ON_ROOT,
5276 .seq_show = memory_max_show,
5277 .write = memory_max_write,
5281 .flags = CFTYPE_NOT_ON_ROOT,
5282 .file_offset = offsetof(struct mem_cgroup, events_file),
5283 .seq_show = memory_events_show,
5287 .flags = CFTYPE_NOT_ON_ROOT,
5288 .seq_show = memory_stat_show,
5293 struct cgroup_subsys memory_cgrp_subsys = {
5294 .css_alloc = mem_cgroup_css_alloc,
5295 .css_online = mem_cgroup_css_online,
5296 .css_offline = mem_cgroup_css_offline,
5297 .css_released = mem_cgroup_css_released,
5298 .css_free = mem_cgroup_css_free,
5299 .css_reset = mem_cgroup_css_reset,
5300 .can_attach = mem_cgroup_can_attach,
5301 .cancel_attach = mem_cgroup_cancel_attach,
5302 .post_attach = mem_cgroup_move_task,
5303 .bind = mem_cgroup_bind,
5304 .dfl_cftypes = memory_files,
5305 .legacy_cftypes = mem_cgroup_legacy_files,
5310 * mem_cgroup_low - check if memory consumption is below the normal range
5311 * @root: the highest ancestor to consider
5312 * @memcg: the memory cgroup to check
5314 * Returns %true if memory consumption of @memcg, and that of all
5315 * configurable ancestors up to @root, is below the normal range.
5317 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5319 if (mem_cgroup_disabled())
5323 * The toplevel group doesn't have a configurable range, so
5324 * it's never low when looked at directly, and it is not
5325 * considered an ancestor when assessing the hierarchy.
5328 if (memcg == root_mem_cgroup)
5331 if (page_counter_read(&memcg->memory) >= memcg->low)
5334 while (memcg != root) {
5335 memcg = parent_mem_cgroup(memcg);
5337 if (memcg == root_mem_cgroup)
5340 if (page_counter_read(&memcg->memory) >= memcg->low)
5347 * mem_cgroup_try_charge - try charging a page
5348 * @page: page to charge
5349 * @mm: mm context of the victim
5350 * @gfp_mask: reclaim mode
5351 * @memcgp: charged memcg return
5352 * @compound: charge the page as compound or small page
5354 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5355 * pages according to @gfp_mask if necessary.
5357 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5358 * Otherwise, an error code is returned.
5360 * After page->mapping has been set up, the caller must finalize the
5361 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5362 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5364 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5365 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5368 struct mem_cgroup *memcg = NULL;
5369 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5372 if (mem_cgroup_disabled())
5375 if (PageSwapCache(page)) {
5377 * Every swap fault against a single page tries to charge the
5378 * page, bail as early as possible. shmem_unuse() encounters
5379 * already charged pages, too. The USED bit is protected by
5380 * the page lock, which serializes swap cache removal, which
5381 * in turn serializes uncharging.
5383 VM_BUG_ON_PAGE(!PageLocked(page), page);
5384 if (page->mem_cgroup)
5387 if (do_swap_account) {
5388 swp_entry_t ent = { .val = page_private(page), };
5389 unsigned short id = lookup_swap_cgroup_id(ent);
5392 memcg = mem_cgroup_from_id(id);
5393 if (memcg && !css_tryget_online(&memcg->css))
5400 memcg = get_mem_cgroup_from_mm(mm);
5402 ret = try_charge(memcg, gfp_mask, nr_pages);
5404 css_put(&memcg->css);
5411 * mem_cgroup_commit_charge - commit a page charge
5412 * @page: page to charge
5413 * @memcg: memcg to charge the page to
5414 * @lrucare: page might be on LRU already
5415 * @compound: charge the page as compound or small page
5417 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5418 * after page->mapping has been set up. This must happen atomically
5419 * as part of the page instantiation, i.e. under the page table lock
5420 * for anonymous pages, under the page lock for page and swap cache.
5422 * In addition, the page must not be on the LRU during the commit, to
5423 * prevent racing with task migration. If it might be, use @lrucare.
5425 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5427 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5428 bool lrucare, bool compound)
5430 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5432 VM_BUG_ON_PAGE(!page->mapping, page);
5433 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5435 if (mem_cgroup_disabled())
5438 * Swap faults will attempt to charge the same page multiple
5439 * times. But reuse_swap_page() might have removed the page
5440 * from swapcache already, so we can't check PageSwapCache().
5445 commit_charge(page, memcg, lrucare);
5447 local_irq_disable();
5448 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5449 memcg_check_events(memcg, page);
5452 if (do_memsw_account() && PageSwapCache(page)) {
5453 swp_entry_t entry = { .val = page_private(page) };
5455 * The swap entry might not get freed for a long time,
5456 * let's not wait for it. The page already received a
5457 * memory+swap charge, drop the swap entry duplicate.
5459 mem_cgroup_uncharge_swap(entry);
5464 * mem_cgroup_cancel_charge - cancel a page charge
5465 * @page: page to charge
5466 * @memcg: memcg to charge the page to
5467 * @compound: charge the page as compound or small page
5469 * Cancel a charge transaction started by mem_cgroup_try_charge().
5471 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5474 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5476 if (mem_cgroup_disabled())
5479 * Swap faults will attempt to charge the same page multiple
5480 * times. But reuse_swap_page() might have removed the page
5481 * from swapcache already, so we can't check PageSwapCache().
5486 cancel_charge(memcg, nr_pages);
5489 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5490 unsigned long nr_anon, unsigned long nr_file,
5491 unsigned long nr_huge, unsigned long nr_kmem,
5492 struct page *dummy_page)
5494 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5495 unsigned long flags;
5497 if (!mem_cgroup_is_root(memcg)) {
5498 page_counter_uncharge(&memcg->memory, nr_pages);
5499 if (do_memsw_account())
5500 page_counter_uncharge(&memcg->memsw, nr_pages);
5501 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5502 page_counter_uncharge(&memcg->kmem, nr_kmem);
5503 memcg_oom_recover(memcg);
5506 local_irq_save(flags);
5507 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5508 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5509 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5510 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5511 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5512 memcg_check_events(memcg, dummy_page);
5513 local_irq_restore(flags);
5515 if (!mem_cgroup_is_root(memcg))
5516 css_put_many(&memcg->css, nr_pages);
5519 static void uncharge_list(struct list_head *page_list)
5521 struct mem_cgroup *memcg = NULL;
5522 unsigned long nr_anon = 0;
5523 unsigned long nr_file = 0;
5524 unsigned long nr_huge = 0;
5525 unsigned long nr_kmem = 0;
5526 unsigned long pgpgout = 0;
5527 struct list_head *next;
5531 * Note that the list can be a single page->lru; hence the
5532 * do-while loop instead of a simple list_for_each_entry().
5534 next = page_list->next;
5536 page = list_entry(next, struct page, lru);
5537 next = page->lru.next;
5539 VM_BUG_ON_PAGE(PageLRU(page), page);
5540 VM_BUG_ON_PAGE(page_count(page), page);
5542 if (!page->mem_cgroup)
5546 * Nobody should be changing or seriously looking at
5547 * page->mem_cgroup at this point, we have fully
5548 * exclusive access to the page.
5551 if (memcg != page->mem_cgroup) {
5553 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5554 nr_huge, nr_kmem, page);
5555 pgpgout = nr_anon = nr_file =
5556 nr_huge = nr_kmem = 0;
5558 memcg = page->mem_cgroup;
5561 if (!PageKmemcg(page)) {
5562 unsigned int nr_pages = 1;
5564 if (PageTransHuge(page)) {
5565 nr_pages <<= compound_order(page);
5566 nr_huge += nr_pages;
5569 nr_anon += nr_pages;
5571 nr_file += nr_pages;
5574 nr_kmem += 1 << compound_order(page);
5575 __ClearPageKmemcg(page);
5578 page->mem_cgroup = NULL;
5579 } while (next != page_list);
5582 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5583 nr_huge, nr_kmem, page);
5587 * mem_cgroup_uncharge - uncharge a page
5588 * @page: page to uncharge
5590 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5591 * mem_cgroup_commit_charge().
5593 void mem_cgroup_uncharge(struct page *page)
5595 if (mem_cgroup_disabled())
5598 /* Don't touch page->lru of any random page, pre-check: */
5599 if (!page->mem_cgroup)
5602 INIT_LIST_HEAD(&page->lru);
5603 uncharge_list(&page->lru);
5607 * mem_cgroup_uncharge_list - uncharge a list of page
5608 * @page_list: list of pages to uncharge
5610 * Uncharge a list of pages previously charged with
5611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5613 void mem_cgroup_uncharge_list(struct list_head *page_list)
5615 if (mem_cgroup_disabled())
5618 if (!list_empty(page_list))
5619 uncharge_list(page_list);
5623 * mem_cgroup_migrate - charge a page's replacement
5624 * @oldpage: currently circulating page
5625 * @newpage: replacement page
5627 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5628 * be uncharged upon free.
5630 * Both pages must be locked, @newpage->mapping must be set up.
5632 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5634 struct mem_cgroup *memcg;
5635 unsigned int nr_pages;
5637 unsigned long flags;
5639 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5640 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5641 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5642 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5645 if (mem_cgroup_disabled())
5648 /* Page cache replacement: new page already charged? */
5649 if (newpage->mem_cgroup)
5652 /* Swapcache readahead pages can get replaced before being charged */
5653 memcg = oldpage->mem_cgroup;
5657 /* Force-charge the new page. The old one will be freed soon */
5658 compound = PageTransHuge(newpage);
5659 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5661 page_counter_charge(&memcg->memory, nr_pages);
5662 if (do_memsw_account())
5663 page_counter_charge(&memcg->memsw, nr_pages);
5664 css_get_many(&memcg->css, nr_pages);
5666 commit_charge(newpage, memcg, false);
5668 local_irq_save(flags);
5669 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5670 memcg_check_events(memcg, newpage);
5671 local_irq_restore(flags);
5674 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5675 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5677 void sock_update_memcg(struct sock *sk)
5679 struct mem_cgroup *memcg;
5681 /* Socket cloning can throw us here with sk_cgrp already
5682 * filled. It won't however, necessarily happen from
5683 * process context. So the test for root memcg given
5684 * the current task's memcg won't help us in this case.
5686 * Respecting the original socket's memcg is a better
5687 * decision in this case.
5690 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5691 css_get(&sk->sk_memcg->css);
5696 memcg = mem_cgroup_from_task(current);
5697 if (memcg == root_mem_cgroup)
5699 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5701 if (css_tryget_online(&memcg->css))
5702 sk->sk_memcg = memcg;
5706 EXPORT_SYMBOL(sock_update_memcg);
5708 void sock_release_memcg(struct sock *sk)
5710 WARN_ON(!sk->sk_memcg);
5711 css_put(&sk->sk_memcg->css);
5715 * mem_cgroup_charge_skmem - charge socket memory
5716 * @memcg: memcg to charge
5717 * @nr_pages: number of pages to charge
5719 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5720 * @memcg's configured limit, %false if the charge had to be forced.
5722 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5724 gfp_t gfp_mask = GFP_KERNEL;
5726 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5727 struct page_counter *fail;
5729 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5730 memcg->tcpmem_pressure = 0;
5733 page_counter_charge(&memcg->tcpmem, nr_pages);
5734 memcg->tcpmem_pressure = 1;
5738 /* Don't block in the packet receive path */
5740 gfp_mask = GFP_NOWAIT;
5742 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5744 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5747 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5752 * mem_cgroup_uncharge_skmem - uncharge socket memory
5753 * @memcg - memcg to uncharge
5754 * @nr_pages - number of pages to uncharge
5756 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5759 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5763 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5765 page_counter_uncharge(&memcg->memory, nr_pages);
5766 css_put_many(&memcg->css, nr_pages);
5769 static int __init cgroup_memory(char *s)
5773 while ((token = strsep(&s, ",")) != NULL) {
5776 if (!strcmp(token, "nosocket"))
5777 cgroup_memory_nosocket = true;
5778 if (!strcmp(token, "nokmem"))
5779 cgroup_memory_nokmem = true;
5783 __setup("cgroup.memory=", cgroup_memory);
5786 * subsys_initcall() for memory controller.
5788 * Some parts like hotcpu_notifier() have to be initialized from this context
5789 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5790 * everything that doesn't depend on a specific mem_cgroup structure should
5791 * be initialized from here.
5793 static int __init mem_cgroup_init(void)
5797 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5799 for_each_possible_cpu(cpu)
5800 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5803 for_each_node(node) {
5804 struct mem_cgroup_tree_per_node *rtpn;
5806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5807 node_online(node) ? node : NUMA_NO_NODE);
5809 rtpn->rb_root = RB_ROOT;
5810 spin_lock_init(&rtpn->lock);
5811 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5816 subsys_initcall(mem_cgroup_init);
5818 #ifdef CONFIG_MEMCG_SWAP
5819 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5821 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5823 * The root cgroup cannot be destroyed, so it's refcount must
5826 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5830 memcg = parent_mem_cgroup(memcg);
5832 memcg = root_mem_cgroup;
5838 * mem_cgroup_swapout - transfer a memsw charge to swap
5839 * @page: page whose memsw charge to transfer
5840 * @entry: swap entry to move the charge to
5842 * Transfer the memsw charge of @page to @entry.
5844 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5846 struct mem_cgroup *memcg, *swap_memcg;
5847 unsigned short oldid;
5849 VM_BUG_ON_PAGE(PageLRU(page), page);
5850 VM_BUG_ON_PAGE(page_count(page), page);
5852 if (!do_memsw_account())
5855 memcg = page->mem_cgroup;
5857 /* Readahead page, never charged */
5862 * In case the memcg owning these pages has been offlined and doesn't
5863 * have an ID allocated to it anymore, charge the closest online
5864 * ancestor for the swap instead and transfer the memory+swap charge.
5866 swap_memcg = mem_cgroup_id_get_online(memcg);
5867 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5868 VM_BUG_ON_PAGE(oldid, page);
5869 mem_cgroup_swap_statistics(swap_memcg, true);
5871 page->mem_cgroup = NULL;
5873 if (!mem_cgroup_is_root(memcg))
5874 page_counter_uncharge(&memcg->memory, 1);
5876 if (memcg != swap_memcg) {
5877 if (!mem_cgroup_is_root(swap_memcg))
5878 page_counter_charge(&swap_memcg->memsw, 1);
5879 page_counter_uncharge(&memcg->memsw, 1);
5883 * Interrupts should be disabled here because the caller holds the
5884 * mapping->tree_lock lock which is taken with interrupts-off. It is
5885 * important here to have the interrupts disabled because it is the
5886 * only synchronisation we have for udpating the per-CPU variables.
5888 VM_BUG_ON(!irqs_disabled());
5889 mem_cgroup_charge_statistics(memcg, page, false, -1);
5890 memcg_check_events(memcg, page);
5892 if (!mem_cgroup_is_root(memcg))
5893 css_put(&memcg->css);
5897 * mem_cgroup_try_charge_swap - try charging a swap entry
5898 * @page: page being added to swap
5899 * @entry: swap entry to charge
5901 * Try to charge @entry to the memcg that @page belongs to.
5903 * Returns 0 on success, -ENOMEM on failure.
5905 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5907 struct mem_cgroup *memcg;
5908 struct page_counter *counter;
5909 unsigned short oldid;
5911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5914 memcg = page->mem_cgroup;
5916 /* Readahead page, never charged */
5920 memcg = mem_cgroup_id_get_online(memcg);
5922 if (!mem_cgroup_is_root(memcg) &&
5923 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5924 mem_cgroup_id_put(memcg);
5928 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5929 VM_BUG_ON_PAGE(oldid, page);
5930 mem_cgroup_swap_statistics(memcg, true);
5936 * mem_cgroup_uncharge_swap - uncharge a swap entry
5937 * @entry: swap entry to uncharge
5939 * Drop the swap charge associated with @entry.
5941 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5943 struct mem_cgroup *memcg;
5946 if (!do_swap_account)
5949 id = swap_cgroup_record(entry, 0);
5951 memcg = mem_cgroup_from_id(id);
5953 if (!mem_cgroup_is_root(memcg)) {
5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 page_counter_uncharge(&memcg->swap, 1);
5957 page_counter_uncharge(&memcg->memsw, 1);
5959 mem_cgroup_swap_statistics(memcg, false);
5960 mem_cgroup_id_put(memcg);
5965 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5967 long nr_swap_pages = get_nr_swap_pages();
5969 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 return nr_swap_pages;
5971 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5972 nr_swap_pages = min_t(long, nr_swap_pages,
5973 READ_ONCE(memcg->swap.limit) -
5974 page_counter_read(&memcg->swap));
5975 return nr_swap_pages;
5978 bool mem_cgroup_swap_full(struct page *page)
5980 struct mem_cgroup *memcg;
5982 VM_BUG_ON_PAGE(!PageLocked(page), page);
5986 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5989 memcg = page->mem_cgroup;
5993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5994 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6000 /* for remember boot option*/
6001 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6002 static int really_do_swap_account __initdata = 1;
6004 static int really_do_swap_account __initdata;
6007 static int __init enable_swap_account(char *s)
6009 if (!strcmp(s, "1"))
6010 really_do_swap_account = 1;
6011 else if (!strcmp(s, "0"))
6012 really_do_swap_account = 0;
6015 __setup("swapaccount=", enable_swap_account);
6017 static u64 swap_current_read(struct cgroup_subsys_state *css,
6020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6022 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6025 static int swap_max_show(struct seq_file *m, void *v)
6027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6028 unsigned long max = READ_ONCE(memcg->swap.limit);
6030 if (max == PAGE_COUNTER_MAX)
6031 seq_puts(m, "max\n");
6033 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6038 static ssize_t swap_max_write(struct kernfs_open_file *of,
6039 char *buf, size_t nbytes, loff_t off)
6041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045 buf = strstrip(buf);
6046 err = page_counter_memparse(buf, "max", &max);
6050 mutex_lock(&memcg_limit_mutex);
6051 err = page_counter_limit(&memcg->swap, max);
6052 mutex_unlock(&memcg_limit_mutex);
6059 static struct cftype swap_files[] = {
6061 .name = "swap.current",
6062 .flags = CFTYPE_NOT_ON_ROOT,
6063 .read_u64 = swap_current_read,
6067 .flags = CFTYPE_NOT_ON_ROOT,
6068 .seq_show = swap_max_show,
6069 .write = swap_max_write,
6074 static struct cftype memsw_cgroup_files[] = {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 .read_u64 = mem_cgroup_read_u64,
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .write = mem_cgroup_reset,
6084 .read_u64 = mem_cgroup_read_u64,
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write = mem_cgroup_write,
6090 .read_u64 = mem_cgroup_read_u64,
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .write = mem_cgroup_reset,
6096 .read_u64 = mem_cgroup_read_u64,
6098 { }, /* terminate */
6101 static int __init mem_cgroup_swap_init(void)
6103 if (!mem_cgroup_disabled() && really_do_swap_account) {
6104 do_swap_account = 1;
6105 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6107 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6108 memsw_cgroup_files));
6112 subsys_initcall(mem_cgroup_swap_init);
6114 #endif /* CONFIG_MEMCG_SWAP */