memcg: remove impossible conditional when committing
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         wait_queue_head_t waitq;                /* a waitq for other context */
296 } mc = {
297         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303         return test_bit(MOVE_CHARGE_TYPE_ANON,
304                                         &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309         return test_bit(MOVE_CHARGE_TYPE_FILE,
310                                         &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322         MEM_CGROUP_CHARGE_TYPE_MAPPED,
323         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
324         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
325         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
327         NR_CHARGE_TYPE,
328 };
329
330 /* for encoding cft->private value on file */
331 #define _MEM                    (0)
332 #define _MEMSWAP                (1)
333 #define _OOM_TYPE               (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL             (0)
339
340 /*
341  * Reclaim flags for mem_cgroup_hierarchical_reclaim
342  */
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
348 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
354
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357 {
358         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359 }
360
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362 {
363         return &mem->css;
364 }
365
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct page_cgroup *pc)
368 {
369         struct mem_cgroup *mem = pc->mem_cgroup;
370         int nid = page_cgroup_nid(pc);
371         int zid = page_cgroup_zid(pc);
372
373         if (!mem)
374                 return NULL;
375
376         return mem_cgroup_zoneinfo(mem, nid, zid);
377 }
378
379 static struct mem_cgroup_tree_per_zone *
380 soft_limit_tree_node_zone(int nid, int zid)
381 {
382         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 }
384
385 static struct mem_cgroup_tree_per_zone *
386 soft_limit_tree_from_page(struct page *page)
387 {
388         int nid = page_to_nid(page);
389         int zid = page_zonenum(page);
390
391         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 }
393
394 static void
395 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396                                 struct mem_cgroup_per_zone *mz,
397                                 struct mem_cgroup_tree_per_zone *mctz,
398                                 unsigned long long new_usage_in_excess)
399 {
400         struct rb_node **p = &mctz->rb_root.rb_node;
401         struct rb_node *parent = NULL;
402         struct mem_cgroup_per_zone *mz_node;
403
404         if (mz->on_tree)
405                 return;
406
407         mz->usage_in_excess = new_usage_in_excess;
408         if (!mz->usage_in_excess)
409                 return;
410         while (*p) {
411                 parent = *p;
412                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413                                         tree_node);
414                 if (mz->usage_in_excess < mz_node->usage_in_excess)
415                         p = &(*p)->rb_left;
416                 /*
417                  * We can't avoid mem cgroups that are over their soft
418                  * limit by the same amount
419                  */
420                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421                         p = &(*p)->rb_right;
422         }
423         rb_link_node(&mz->tree_node, parent, p);
424         rb_insert_color(&mz->tree_node, &mctz->rb_root);
425         mz->on_tree = true;
426 }
427
428 static void
429 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430                                 struct mem_cgroup_per_zone *mz,
431                                 struct mem_cgroup_tree_per_zone *mctz)
432 {
433         if (!mz->on_tree)
434                 return;
435         rb_erase(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = false;
437 }
438
439 static void
440 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441                                 struct mem_cgroup_per_zone *mz,
442                                 struct mem_cgroup_tree_per_zone *mctz)
443 {
444         spin_lock(&mctz->lock);
445         __mem_cgroup_remove_exceeded(mem, mz, mctz);
446         spin_unlock(&mctz->lock);
447 }
448
449
450 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
451 {
452         unsigned long long excess;
453         struct mem_cgroup_per_zone *mz;
454         struct mem_cgroup_tree_per_zone *mctz;
455         int nid = page_to_nid(page);
456         int zid = page_zonenum(page);
457         mctz = soft_limit_tree_from_page(page);
458
459         /*
460          * Necessary to update all ancestors when hierarchy is used.
461          * because their event counter is not touched.
462          */
463         for (; mem; mem = parent_mem_cgroup(mem)) {
464                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
465                 excess = res_counter_soft_limit_excess(&mem->res);
466                 /*
467                  * We have to update the tree if mz is on RB-tree or
468                  * mem is over its softlimit.
469                  */
470                 if (excess || mz->on_tree) {
471                         spin_lock(&mctz->lock);
472                         /* if on-tree, remove it */
473                         if (mz->on_tree)
474                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
475                         /*
476                          * Insert again. mz->usage_in_excess will be updated.
477                          * If excess is 0, no tree ops.
478                          */
479                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480                         spin_unlock(&mctz->lock);
481                 }
482         }
483 }
484
485 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
486 {
487         int node, zone;
488         struct mem_cgroup_per_zone *mz;
489         struct mem_cgroup_tree_per_zone *mctz;
490
491         for_each_node_state(node, N_POSSIBLE) {
492                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493                         mz = mem_cgroup_zoneinfo(mem, node, zone);
494                         mctz = soft_limit_tree_node_zone(node, zone);
495                         mem_cgroup_remove_exceeded(mem, mz, mctz);
496                 }
497         }
498 }
499
500 static struct mem_cgroup_per_zone *
501 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
502 {
503         struct rb_node *rightmost = NULL;
504         struct mem_cgroup_per_zone *mz;
505
506 retry:
507         mz = NULL;
508         rightmost = rb_last(&mctz->rb_root);
509         if (!rightmost)
510                 goto done;              /* Nothing to reclaim from */
511
512         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
513         /*
514          * Remove the node now but someone else can add it back,
515          * we will to add it back at the end of reclaim to its correct
516          * position in the tree.
517          */
518         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
519         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
520                 !css_tryget(&mz->mem->css))
521                 goto retry;
522 done:
523         return mz;
524 }
525
526 static struct mem_cgroup_per_zone *
527 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
528 {
529         struct mem_cgroup_per_zone *mz;
530
531         spin_lock(&mctz->lock);
532         mz = __mem_cgroup_largest_soft_limit_node(mctz);
533         spin_unlock(&mctz->lock);
534         return mz;
535 }
536
537 /*
538  * Implementation Note: reading percpu statistics for memcg.
539  *
540  * Both of vmstat[] and percpu_counter has threshold and do periodic
541  * synchronization to implement "quick" read. There are trade-off between
542  * reading cost and precision of value. Then, we may have a chance to implement
543  * a periodic synchronizion of counter in memcg's counter.
544  *
545  * But this _read() function is used for user interface now. The user accounts
546  * memory usage by memory cgroup and he _always_ requires exact value because
547  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
548  * have to visit all online cpus and make sum. So, for now, unnecessary
549  * synchronization is not implemented. (just implemented for cpu hotplug)
550  *
551  * If there are kernel internal actions which can make use of some not-exact
552  * value, and reading all cpu value can be performance bottleneck in some
553  * common workload, threashold and synchonization as vmstat[] should be
554  * implemented.
555  */
556 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
557                 enum mem_cgroup_stat_index idx)
558 {
559         int cpu;
560         s64 val = 0;
561
562         get_online_cpus();
563         for_each_online_cpu(cpu)
564                 val += per_cpu(mem->stat->count[idx], cpu);
565 #ifdef CONFIG_HOTPLUG_CPU
566         spin_lock(&mem->pcp_counter_lock);
567         val += mem->nocpu_base.count[idx];
568         spin_unlock(&mem->pcp_counter_lock);
569 #endif
570         put_online_cpus();
571         return val;
572 }
573
574 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
575 {
576         s64 ret;
577
578         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
579         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
580         return ret;
581 }
582
583 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584                                          bool charge)
585 {
586         int val = (charge) ? 1 : -1;
587         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 }
589
590 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
591                                          bool file, int nr_pages)
592 {
593         preempt_disable();
594
595         if (file)
596                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
597         else
598                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
599
600         /* pagein of a big page is an event. So, ignore page size */
601         if (nr_pages > 0)
602                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
603         else {
604                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
605                 nr_pages = -nr_pages; /* for event */
606         }
607
608         __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
609
610         preempt_enable();
611 }
612
613 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
614                                         enum lru_list idx)
615 {
616         int nid, zid;
617         struct mem_cgroup_per_zone *mz;
618         u64 total = 0;
619
620         for_each_online_node(nid)
621                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
622                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
623                         total += MEM_CGROUP_ZSTAT(mz, idx);
624                 }
625         return total;
626 }
627
628 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
629 {
630         s64 val;
631
632         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
633
634         return !(val & ((1 << event_mask_shift) - 1));
635 }
636
637 /*
638  * Check events in order.
639  *
640  */
641 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
642 {
643         /* threshold event is triggered in finer grain than soft limit */
644         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
645                 mem_cgroup_threshold(mem);
646                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
647                         mem_cgroup_update_tree(mem, page);
648         }
649 }
650
651 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
652 {
653         return container_of(cgroup_subsys_state(cont,
654                                 mem_cgroup_subsys_id), struct mem_cgroup,
655                                 css);
656 }
657
658 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
659 {
660         /*
661          * mm_update_next_owner() may clear mm->owner to NULL
662          * if it races with swapoff, page migration, etc.
663          * So this can be called with p == NULL.
664          */
665         if (unlikely(!p))
666                 return NULL;
667
668         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
669                                 struct mem_cgroup, css);
670 }
671
672 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
673 {
674         struct mem_cgroup *mem = NULL;
675
676         if (!mm)
677                 return NULL;
678         /*
679          * Because we have no locks, mm->owner's may be being moved to other
680          * cgroup. We use css_tryget() here even if this looks
681          * pessimistic (rather than adding locks here).
682          */
683         rcu_read_lock();
684         do {
685                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
686                 if (unlikely(!mem))
687                         break;
688         } while (!css_tryget(&mem->css));
689         rcu_read_unlock();
690         return mem;
691 }
692
693 /* The caller has to guarantee "mem" exists before calling this */
694 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
695 {
696         struct cgroup_subsys_state *css;
697         int found;
698
699         if (!mem) /* ROOT cgroup has the smallest ID */
700                 return root_mem_cgroup; /*css_put/get against root is ignored*/
701         if (!mem->use_hierarchy) {
702                 if (css_tryget(&mem->css))
703                         return mem;
704                 return NULL;
705         }
706         rcu_read_lock();
707         /*
708          * searching a memory cgroup which has the smallest ID under given
709          * ROOT cgroup. (ID >= 1)
710          */
711         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
712         if (css && css_tryget(css))
713                 mem = container_of(css, struct mem_cgroup, css);
714         else
715                 mem = NULL;
716         rcu_read_unlock();
717         return mem;
718 }
719
720 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
721                                         struct mem_cgroup *root,
722                                         bool cond)
723 {
724         int nextid = css_id(&iter->css) + 1;
725         int found;
726         int hierarchy_used;
727         struct cgroup_subsys_state *css;
728
729         hierarchy_used = iter->use_hierarchy;
730
731         css_put(&iter->css);
732         /* If no ROOT, walk all, ignore hierarchy */
733         if (!cond || (root && !hierarchy_used))
734                 return NULL;
735
736         if (!root)
737                 root = root_mem_cgroup;
738
739         do {
740                 iter = NULL;
741                 rcu_read_lock();
742
743                 css = css_get_next(&mem_cgroup_subsys, nextid,
744                                 &root->css, &found);
745                 if (css && css_tryget(css))
746                         iter = container_of(css, struct mem_cgroup, css);
747                 rcu_read_unlock();
748                 /* If css is NULL, no more cgroups will be found */
749                 nextid = found + 1;
750         } while (css && !iter);
751
752         return iter;
753 }
754 /*
755  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
756  * be careful that "break" loop is not allowed. We have reference count.
757  * Instead of that modify "cond" to be false and "continue" to exit the loop.
758  */
759 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
760         for (iter = mem_cgroup_start_loop(root);\
761              iter != NULL;\
762              iter = mem_cgroup_get_next(iter, root, cond))
763
764 #define for_each_mem_cgroup_tree(iter, root) \
765         for_each_mem_cgroup_tree_cond(iter, root, true)
766
767 #define for_each_mem_cgroup_all(iter) \
768         for_each_mem_cgroup_tree_cond(iter, NULL, true)
769
770
771 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
772 {
773         return (mem == root_mem_cgroup);
774 }
775
776 /*
777  * Following LRU functions are allowed to be used without PCG_LOCK.
778  * Operations are called by routine of global LRU independently from memcg.
779  * What we have to take care of here is validness of pc->mem_cgroup.
780  *
781  * Changes to pc->mem_cgroup happens when
782  * 1. charge
783  * 2. moving account
784  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
785  * It is added to LRU before charge.
786  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
787  * When moving account, the page is not on LRU. It's isolated.
788  */
789
790 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
791 {
792         struct page_cgroup *pc;
793         struct mem_cgroup_per_zone *mz;
794
795         if (mem_cgroup_disabled())
796                 return;
797         pc = lookup_page_cgroup(page);
798         /* can happen while we handle swapcache. */
799         if (!TestClearPageCgroupAcctLRU(pc))
800                 return;
801         VM_BUG_ON(!pc->mem_cgroup);
802         /*
803          * We don't check PCG_USED bit. It's cleared when the "page" is finally
804          * removed from global LRU.
805          */
806         mz = page_cgroup_zoneinfo(pc);
807         /* huge page split is done under lru_lock. so, we have no races. */
808         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
809         if (mem_cgroup_is_root(pc->mem_cgroup))
810                 return;
811         VM_BUG_ON(list_empty(&pc->lru));
812         list_del_init(&pc->lru);
813 }
814
815 void mem_cgroup_del_lru(struct page *page)
816 {
817         mem_cgroup_del_lru_list(page, page_lru(page));
818 }
819
820 /*
821  * Writeback is about to end against a page which has been marked for immediate
822  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
823  * inactive list.
824  */
825 void mem_cgroup_rotate_reclaimable_page(struct page *page)
826 {
827         struct mem_cgroup_per_zone *mz;
828         struct page_cgroup *pc;
829         enum lru_list lru = page_lru(page);
830
831         if (mem_cgroup_disabled())
832                 return;
833
834         pc = lookup_page_cgroup(page);
835         /* unused or root page is not rotated. */
836         if (!PageCgroupUsed(pc))
837                 return;
838         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
839         smp_rmb();
840         if (mem_cgroup_is_root(pc->mem_cgroup))
841                 return;
842         mz = page_cgroup_zoneinfo(pc);
843         list_move_tail(&pc->lru, &mz->lists[lru]);
844 }
845
846 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
847 {
848         struct mem_cgroup_per_zone *mz;
849         struct page_cgroup *pc;
850
851         if (mem_cgroup_disabled())
852                 return;
853
854         pc = lookup_page_cgroup(page);
855         /* unused or root page is not rotated. */
856         if (!PageCgroupUsed(pc))
857                 return;
858         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
859         smp_rmb();
860         if (mem_cgroup_is_root(pc->mem_cgroup))
861                 return;
862         mz = page_cgroup_zoneinfo(pc);
863         list_move(&pc->lru, &mz->lists[lru]);
864 }
865
866 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
867 {
868         struct page_cgroup *pc;
869         struct mem_cgroup_per_zone *mz;
870
871         if (mem_cgroup_disabled())
872                 return;
873         pc = lookup_page_cgroup(page);
874         VM_BUG_ON(PageCgroupAcctLRU(pc));
875         if (!PageCgroupUsed(pc))
876                 return;
877         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
878         smp_rmb();
879         mz = page_cgroup_zoneinfo(pc);
880         /* huge page split is done under lru_lock. so, we have no races. */
881         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
882         SetPageCgroupAcctLRU(pc);
883         if (mem_cgroup_is_root(pc->mem_cgroup))
884                 return;
885         list_add(&pc->lru, &mz->lists[lru]);
886 }
887
888 /*
889  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
890  * lru because the page may.be reused after it's fully uncharged (because of
891  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
892  * it again. This function is only used to charge SwapCache. It's done under
893  * lock_page and expected that zone->lru_lock is never held.
894  */
895 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
896 {
897         unsigned long flags;
898         struct zone *zone = page_zone(page);
899         struct page_cgroup *pc = lookup_page_cgroup(page);
900
901         spin_lock_irqsave(&zone->lru_lock, flags);
902         /*
903          * Forget old LRU when this page_cgroup is *not* used. This Used bit
904          * is guarded by lock_page() because the page is SwapCache.
905          */
906         if (!PageCgroupUsed(pc))
907                 mem_cgroup_del_lru_list(page, page_lru(page));
908         spin_unlock_irqrestore(&zone->lru_lock, flags);
909 }
910
911 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
912 {
913         unsigned long flags;
914         struct zone *zone = page_zone(page);
915         struct page_cgroup *pc = lookup_page_cgroup(page);
916
917         spin_lock_irqsave(&zone->lru_lock, flags);
918         /* link when the page is linked to LRU but page_cgroup isn't */
919         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
920                 mem_cgroup_add_lru_list(page, page_lru(page));
921         spin_unlock_irqrestore(&zone->lru_lock, flags);
922 }
923
924
925 void mem_cgroup_move_lists(struct page *page,
926                            enum lru_list from, enum lru_list to)
927 {
928         if (mem_cgroup_disabled())
929                 return;
930         mem_cgroup_del_lru_list(page, from);
931         mem_cgroup_add_lru_list(page, to);
932 }
933
934 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
935 {
936         int ret;
937         struct mem_cgroup *curr = NULL;
938         struct task_struct *p;
939
940         p = find_lock_task_mm(task);
941         if (!p)
942                 return 0;
943         curr = try_get_mem_cgroup_from_mm(p->mm);
944         task_unlock(p);
945         if (!curr)
946                 return 0;
947         /*
948          * We should check use_hierarchy of "mem" not "curr". Because checking
949          * use_hierarchy of "curr" here make this function true if hierarchy is
950          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
951          * hierarchy(even if use_hierarchy is disabled in "mem").
952          */
953         if (mem->use_hierarchy)
954                 ret = css_is_ancestor(&curr->css, &mem->css);
955         else
956                 ret = (curr == mem);
957         css_put(&curr->css);
958         return ret;
959 }
960
961 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
962 {
963         unsigned long active;
964         unsigned long inactive;
965         unsigned long gb;
966         unsigned long inactive_ratio;
967
968         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
969         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
970
971         gb = (inactive + active) >> (30 - PAGE_SHIFT);
972         if (gb)
973                 inactive_ratio = int_sqrt(10 * gb);
974         else
975                 inactive_ratio = 1;
976
977         if (present_pages) {
978                 present_pages[0] = inactive;
979                 present_pages[1] = active;
980         }
981
982         return inactive_ratio;
983 }
984
985 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
986 {
987         unsigned long active;
988         unsigned long inactive;
989         unsigned long present_pages[2];
990         unsigned long inactive_ratio;
991
992         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
993
994         inactive = present_pages[0];
995         active = present_pages[1];
996
997         if (inactive * inactive_ratio < active)
998                 return 1;
999
1000         return 0;
1001 }
1002
1003 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1004 {
1005         unsigned long active;
1006         unsigned long inactive;
1007
1008         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1009         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1010
1011         return (active > inactive);
1012 }
1013
1014 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1015                                        struct zone *zone,
1016                                        enum lru_list lru)
1017 {
1018         int nid = zone_to_nid(zone);
1019         int zid = zone_idx(zone);
1020         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022         return MEM_CGROUP_ZSTAT(mz, lru);
1023 }
1024
1025 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1026                                                       struct zone *zone)
1027 {
1028         int nid = zone_to_nid(zone);
1029         int zid = zone_idx(zone);
1030         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1031
1032         return &mz->reclaim_stat;
1033 }
1034
1035 struct zone_reclaim_stat *
1036 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1037 {
1038         struct page_cgroup *pc;
1039         struct mem_cgroup_per_zone *mz;
1040
1041         if (mem_cgroup_disabled())
1042                 return NULL;
1043
1044         pc = lookup_page_cgroup(page);
1045         if (!PageCgroupUsed(pc))
1046                 return NULL;
1047         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1048         smp_rmb();
1049         mz = page_cgroup_zoneinfo(pc);
1050         if (!mz)
1051                 return NULL;
1052
1053         return &mz->reclaim_stat;
1054 }
1055
1056 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1057                                         struct list_head *dst,
1058                                         unsigned long *scanned, int order,
1059                                         int mode, struct zone *z,
1060                                         struct mem_cgroup *mem_cont,
1061                                         int active, int file)
1062 {
1063         unsigned long nr_taken = 0;
1064         struct page *page;
1065         unsigned long scan;
1066         LIST_HEAD(pc_list);
1067         struct list_head *src;
1068         struct page_cgroup *pc, *tmp;
1069         int nid = zone_to_nid(z);
1070         int zid = zone_idx(z);
1071         struct mem_cgroup_per_zone *mz;
1072         int lru = LRU_FILE * file + active;
1073         int ret;
1074
1075         BUG_ON(!mem_cont);
1076         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1077         src = &mz->lists[lru];
1078
1079         scan = 0;
1080         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1081                 if (scan >= nr_to_scan)
1082                         break;
1083
1084                 page = pc->page;
1085                 if (unlikely(!PageCgroupUsed(pc)))
1086                         continue;
1087                 if (unlikely(!PageLRU(page)))
1088                         continue;
1089
1090                 scan++;
1091                 ret = __isolate_lru_page(page, mode, file);
1092                 switch (ret) {
1093                 case 0:
1094                         list_move(&page->lru, dst);
1095                         mem_cgroup_del_lru(page);
1096                         nr_taken += hpage_nr_pages(page);
1097                         break;
1098                 case -EBUSY:
1099                         /* we don't affect global LRU but rotate in our LRU */
1100                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1101                         break;
1102                 default:
1103                         break;
1104                 }
1105         }
1106
1107         *scanned = scan;
1108
1109         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1110                                       0, 0, 0, mode);
1111
1112         return nr_taken;
1113 }
1114
1115 #define mem_cgroup_from_res_counter(counter, member)    \
1116         container_of(counter, struct mem_cgroup, member)
1117
1118 /**
1119  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120  * @mem: the memory cgroup
1121  *
1122  * Returns the maximum amount of memory @mem can be charged with, in
1123  * bytes.
1124  */
1125 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1126 {
1127         unsigned long long margin;
1128
1129         margin = res_counter_margin(&mem->res);
1130         if (do_swap_account)
1131                 margin = min(margin, res_counter_margin(&mem->memsw));
1132         return margin;
1133 }
1134
1135 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1136 {
1137         struct cgroup *cgrp = memcg->css.cgroup;
1138         unsigned int swappiness;
1139
1140         /* root ? */
1141         if (cgrp->parent == NULL)
1142                 return vm_swappiness;
1143
1144         spin_lock(&memcg->reclaim_param_lock);
1145         swappiness = memcg->swappiness;
1146         spin_unlock(&memcg->reclaim_param_lock);
1147
1148         return swappiness;
1149 }
1150
1151 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1152 {
1153         int cpu;
1154
1155         get_online_cpus();
1156         spin_lock(&mem->pcp_counter_lock);
1157         for_each_online_cpu(cpu)
1158                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1159         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1160         spin_unlock(&mem->pcp_counter_lock);
1161         put_online_cpus();
1162
1163         synchronize_rcu();
1164 }
1165
1166 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1167 {
1168         int cpu;
1169
1170         if (!mem)
1171                 return;
1172         get_online_cpus();
1173         spin_lock(&mem->pcp_counter_lock);
1174         for_each_online_cpu(cpu)
1175                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1176         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1177         spin_unlock(&mem->pcp_counter_lock);
1178         put_online_cpus();
1179 }
1180 /*
1181  * 2 routines for checking "mem" is under move_account() or not.
1182  *
1183  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1184  *                        for avoiding race in accounting. If true,
1185  *                        pc->mem_cgroup may be overwritten.
1186  *
1187  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1188  *                        under hierarchy of moving cgroups. This is for
1189  *                        waiting at hith-memory prressure caused by "move".
1190  */
1191
1192 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1193 {
1194         VM_BUG_ON(!rcu_read_lock_held());
1195         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1196 }
1197
1198 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1199 {
1200         struct mem_cgroup *from;
1201         struct mem_cgroup *to;
1202         bool ret = false;
1203         /*
1204          * Unlike task_move routines, we access mc.to, mc.from not under
1205          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1206          */
1207         spin_lock(&mc.lock);
1208         from = mc.from;
1209         to = mc.to;
1210         if (!from)
1211                 goto unlock;
1212         if (from == mem || to == mem
1213             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1214             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1215                 ret = true;
1216 unlock:
1217         spin_unlock(&mc.lock);
1218         return ret;
1219 }
1220
1221 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1222 {
1223         if (mc.moving_task && current != mc.moving_task) {
1224                 if (mem_cgroup_under_move(mem)) {
1225                         DEFINE_WAIT(wait);
1226                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1227                         /* moving charge context might have finished. */
1228                         if (mc.moving_task)
1229                                 schedule();
1230                         finish_wait(&mc.waitq, &wait);
1231                         return true;
1232                 }
1233         }
1234         return false;
1235 }
1236
1237 /**
1238  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1239  * @memcg: The memory cgroup that went over limit
1240  * @p: Task that is going to be killed
1241  *
1242  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1243  * enabled
1244  */
1245 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1246 {
1247         struct cgroup *task_cgrp;
1248         struct cgroup *mem_cgrp;
1249         /*
1250          * Need a buffer in BSS, can't rely on allocations. The code relies
1251          * on the assumption that OOM is serialized for memory controller.
1252          * If this assumption is broken, revisit this code.
1253          */
1254         static char memcg_name[PATH_MAX];
1255         int ret;
1256
1257         if (!memcg || !p)
1258                 return;
1259
1260
1261         rcu_read_lock();
1262
1263         mem_cgrp = memcg->css.cgroup;
1264         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1265
1266         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1267         if (ret < 0) {
1268                 /*
1269                  * Unfortunately, we are unable to convert to a useful name
1270                  * But we'll still print out the usage information
1271                  */
1272                 rcu_read_unlock();
1273                 goto done;
1274         }
1275         rcu_read_unlock();
1276
1277         printk(KERN_INFO "Task in %s killed", memcg_name);
1278
1279         rcu_read_lock();
1280         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1281         if (ret < 0) {
1282                 rcu_read_unlock();
1283                 goto done;
1284         }
1285         rcu_read_unlock();
1286
1287         /*
1288          * Continues from above, so we don't need an KERN_ level
1289          */
1290         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1291 done:
1292
1293         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1294                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1295                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1296                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1297         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1298                 "failcnt %llu\n",
1299                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1300                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1301                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1302 }
1303
1304 /*
1305  * This function returns the number of memcg under hierarchy tree. Returns
1306  * 1(self count) if no children.
1307  */
1308 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1309 {
1310         int num = 0;
1311         struct mem_cgroup *iter;
1312
1313         for_each_mem_cgroup_tree(iter, mem)
1314                 num++;
1315         return num;
1316 }
1317
1318 /*
1319  * Return the memory (and swap, if configured) limit for a memcg.
1320  */
1321 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1322 {
1323         u64 limit;
1324         u64 memsw;
1325
1326         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1327         limit += total_swap_pages << PAGE_SHIFT;
1328
1329         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1330         /*
1331          * If memsw is finite and limits the amount of swap space available
1332          * to this memcg, return that limit.
1333          */
1334         return min(limit, memsw);
1335 }
1336
1337 /*
1338  * Visit the first child (need not be the first child as per the ordering
1339  * of the cgroup list, since we track last_scanned_child) of @mem and use
1340  * that to reclaim free pages from.
1341  */
1342 static struct mem_cgroup *
1343 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1344 {
1345         struct mem_cgroup *ret = NULL;
1346         struct cgroup_subsys_state *css;
1347         int nextid, found;
1348
1349         if (!root_mem->use_hierarchy) {
1350                 css_get(&root_mem->css);
1351                 ret = root_mem;
1352         }
1353
1354         while (!ret) {
1355                 rcu_read_lock();
1356                 nextid = root_mem->last_scanned_child + 1;
1357                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1358                                    &found);
1359                 if (css && css_tryget(css))
1360                         ret = container_of(css, struct mem_cgroup, css);
1361
1362                 rcu_read_unlock();
1363                 /* Updates scanning parameter */
1364                 spin_lock(&root_mem->reclaim_param_lock);
1365                 if (!css) {
1366                         /* this means start scan from ID:1 */
1367                         root_mem->last_scanned_child = 0;
1368                 } else
1369                         root_mem->last_scanned_child = found;
1370                 spin_unlock(&root_mem->reclaim_param_lock);
1371         }
1372
1373         return ret;
1374 }
1375
1376 /*
1377  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1378  * we reclaimed from, so that we don't end up penalizing one child extensively
1379  * based on its position in the children list.
1380  *
1381  * root_mem is the original ancestor that we've been reclaim from.
1382  *
1383  * We give up and return to the caller when we visit root_mem twice.
1384  * (other groups can be removed while we're walking....)
1385  *
1386  * If shrink==true, for avoiding to free too much, this returns immedieately.
1387  */
1388 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1389                                                 struct zone *zone,
1390                                                 gfp_t gfp_mask,
1391                                                 unsigned long reclaim_options)
1392 {
1393         struct mem_cgroup *victim;
1394         int ret, total = 0;
1395         int loop = 0;
1396         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1397         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1398         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1399         unsigned long excess;
1400
1401         excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1402
1403         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1404         if (root_mem->memsw_is_minimum)
1405                 noswap = true;
1406
1407         while (1) {
1408                 victim = mem_cgroup_select_victim(root_mem);
1409                 if (victim == root_mem) {
1410                         loop++;
1411                         if (loop >= 1)
1412                                 drain_all_stock_async();
1413                         if (loop >= 2) {
1414                                 /*
1415                                  * If we have not been able to reclaim
1416                                  * anything, it might because there are
1417                                  * no reclaimable pages under this hierarchy
1418                                  */
1419                                 if (!check_soft || !total) {
1420                                         css_put(&victim->css);
1421                                         break;
1422                                 }
1423                                 /*
1424                                  * We want to do more targetted reclaim.
1425                                  * excess >> 2 is not to excessive so as to
1426                                  * reclaim too much, nor too less that we keep
1427                                  * coming back to reclaim from this cgroup
1428                                  */
1429                                 if (total >= (excess >> 2) ||
1430                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1431                                         css_put(&victim->css);
1432                                         break;
1433                                 }
1434                         }
1435                 }
1436                 if (!mem_cgroup_local_usage(victim)) {
1437                         /* this cgroup's local usage == 0 */
1438                         css_put(&victim->css);
1439                         continue;
1440                 }
1441                 /* we use swappiness of local cgroup */
1442                 if (check_soft)
1443                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1444                                 noswap, get_swappiness(victim), zone);
1445                 else
1446                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1447                                                 noswap, get_swappiness(victim));
1448                 css_put(&victim->css);
1449                 /*
1450                  * At shrinking usage, we can't check we should stop here or
1451                  * reclaim more. It's depends on callers. last_scanned_child
1452                  * will work enough for keeping fairness under tree.
1453                  */
1454                 if (shrink)
1455                         return ret;
1456                 total += ret;
1457                 if (check_soft) {
1458                         if (!res_counter_soft_limit_excess(&root_mem->res))
1459                                 return total;
1460                 } else if (mem_cgroup_margin(root_mem))
1461                         return 1 + total;
1462         }
1463         return total;
1464 }
1465
1466 /*
1467  * Check OOM-Killer is already running under our hierarchy.
1468  * If someone is running, return false.
1469  */
1470 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1471 {
1472         int x, lock_count = 0;
1473         struct mem_cgroup *iter;
1474
1475         for_each_mem_cgroup_tree(iter, mem) {
1476                 x = atomic_inc_return(&iter->oom_lock);
1477                 lock_count = max(x, lock_count);
1478         }
1479
1480         if (lock_count == 1)
1481                 return true;
1482         return false;
1483 }
1484
1485 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1486 {
1487         struct mem_cgroup *iter;
1488
1489         /*
1490          * When a new child is created while the hierarchy is under oom,
1491          * mem_cgroup_oom_lock() may not be called. We have to use
1492          * atomic_add_unless() here.
1493          */
1494         for_each_mem_cgroup_tree(iter, mem)
1495                 atomic_add_unless(&iter->oom_lock, -1, 0);
1496         return 0;
1497 }
1498
1499
1500 static DEFINE_MUTEX(memcg_oom_mutex);
1501 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1502
1503 struct oom_wait_info {
1504         struct mem_cgroup *mem;
1505         wait_queue_t    wait;
1506 };
1507
1508 static int memcg_oom_wake_function(wait_queue_t *wait,
1509         unsigned mode, int sync, void *arg)
1510 {
1511         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1512         struct oom_wait_info *oom_wait_info;
1513
1514         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1515
1516         if (oom_wait_info->mem == wake_mem)
1517                 goto wakeup;
1518         /* if no hierarchy, no match */
1519         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1520                 return 0;
1521         /*
1522          * Both of oom_wait_info->mem and wake_mem are stable under us.
1523          * Then we can use css_is_ancestor without taking care of RCU.
1524          */
1525         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1526             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1527                 return 0;
1528
1529 wakeup:
1530         return autoremove_wake_function(wait, mode, sync, arg);
1531 }
1532
1533 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1534 {
1535         /* for filtering, pass "mem" as argument. */
1536         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1537 }
1538
1539 static void memcg_oom_recover(struct mem_cgroup *mem)
1540 {
1541         if (mem && atomic_read(&mem->oom_lock))
1542                 memcg_wakeup_oom(mem);
1543 }
1544
1545 /*
1546  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1547  */
1548 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1549 {
1550         struct oom_wait_info owait;
1551         bool locked, need_to_kill;
1552
1553         owait.mem = mem;
1554         owait.wait.flags = 0;
1555         owait.wait.func = memcg_oom_wake_function;
1556         owait.wait.private = current;
1557         INIT_LIST_HEAD(&owait.wait.task_list);
1558         need_to_kill = true;
1559         /* At first, try to OOM lock hierarchy under mem.*/
1560         mutex_lock(&memcg_oom_mutex);
1561         locked = mem_cgroup_oom_lock(mem);
1562         /*
1563          * Even if signal_pending(), we can't quit charge() loop without
1564          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1565          * under OOM is always welcomed, use TASK_KILLABLE here.
1566          */
1567         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1568         if (!locked || mem->oom_kill_disable)
1569                 need_to_kill = false;
1570         if (locked)
1571                 mem_cgroup_oom_notify(mem);
1572         mutex_unlock(&memcg_oom_mutex);
1573
1574         if (need_to_kill) {
1575                 finish_wait(&memcg_oom_waitq, &owait.wait);
1576                 mem_cgroup_out_of_memory(mem, mask);
1577         } else {
1578                 schedule();
1579                 finish_wait(&memcg_oom_waitq, &owait.wait);
1580         }
1581         mutex_lock(&memcg_oom_mutex);
1582         mem_cgroup_oom_unlock(mem);
1583         memcg_wakeup_oom(mem);
1584         mutex_unlock(&memcg_oom_mutex);
1585
1586         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1587                 return false;
1588         /* Give chance to dying process */
1589         schedule_timeout(1);
1590         return true;
1591 }
1592
1593 /*
1594  * Currently used to update mapped file statistics, but the routine can be
1595  * generalized to update other statistics as well.
1596  *
1597  * Notes: Race condition
1598  *
1599  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1600  * it tends to be costly. But considering some conditions, we doesn't need
1601  * to do so _always_.
1602  *
1603  * Considering "charge", lock_page_cgroup() is not required because all
1604  * file-stat operations happen after a page is attached to radix-tree. There
1605  * are no race with "charge".
1606  *
1607  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1608  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1609  * if there are race with "uncharge". Statistics itself is properly handled
1610  * by flags.
1611  *
1612  * Considering "move", this is an only case we see a race. To make the race
1613  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1614  * possibility of race condition. If there is, we take a lock.
1615  */
1616
1617 void mem_cgroup_update_page_stat(struct page *page,
1618                                  enum mem_cgroup_page_stat_item idx, int val)
1619 {
1620         struct mem_cgroup *mem;
1621         struct page_cgroup *pc = lookup_page_cgroup(page);
1622         bool need_unlock = false;
1623         unsigned long uninitialized_var(flags);
1624
1625         if (unlikely(!pc))
1626                 return;
1627
1628         rcu_read_lock();
1629         mem = pc->mem_cgroup;
1630         if (unlikely(!mem || !PageCgroupUsed(pc)))
1631                 goto out;
1632         /* pc->mem_cgroup is unstable ? */
1633         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1634                 /* take a lock against to access pc->mem_cgroup */
1635                 move_lock_page_cgroup(pc, &flags);
1636                 need_unlock = true;
1637                 mem = pc->mem_cgroup;
1638                 if (!mem || !PageCgroupUsed(pc))
1639                         goto out;
1640         }
1641
1642         switch (idx) {
1643         case MEMCG_NR_FILE_MAPPED:
1644                 if (val > 0)
1645                         SetPageCgroupFileMapped(pc);
1646                 else if (!page_mapped(page))
1647                         ClearPageCgroupFileMapped(pc);
1648                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1649                 break;
1650         default:
1651                 BUG();
1652         }
1653
1654         this_cpu_add(mem->stat->count[idx], val);
1655
1656 out:
1657         if (unlikely(need_unlock))
1658                 move_unlock_page_cgroup(pc, &flags);
1659         rcu_read_unlock();
1660         return;
1661 }
1662 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1663
1664 /*
1665  * size of first charge trial. "32" comes from vmscan.c's magic value.
1666  * TODO: maybe necessary to use big numbers in big irons.
1667  */
1668 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1669 struct memcg_stock_pcp {
1670         struct mem_cgroup *cached; /* this never be root cgroup */
1671         int charge;
1672         struct work_struct work;
1673 };
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static atomic_t memcg_drain_count;
1676
1677 /*
1678  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1679  * from local stock and true is returned. If the stock is 0 or charges from a
1680  * cgroup which is not current target, returns false. This stock will be
1681  * refilled.
1682  */
1683 static bool consume_stock(struct mem_cgroup *mem)
1684 {
1685         struct memcg_stock_pcp *stock;
1686         bool ret = true;
1687
1688         stock = &get_cpu_var(memcg_stock);
1689         if (mem == stock->cached && stock->charge)
1690                 stock->charge -= PAGE_SIZE;
1691         else /* need to call res_counter_charge */
1692                 ret = false;
1693         put_cpu_var(memcg_stock);
1694         return ret;
1695 }
1696
1697 /*
1698  * Returns stocks cached in percpu to res_counter and reset cached information.
1699  */
1700 static void drain_stock(struct memcg_stock_pcp *stock)
1701 {
1702         struct mem_cgroup *old = stock->cached;
1703
1704         if (stock->charge) {
1705                 res_counter_uncharge(&old->res, stock->charge);
1706                 if (do_swap_account)
1707                         res_counter_uncharge(&old->memsw, stock->charge);
1708         }
1709         stock->cached = NULL;
1710         stock->charge = 0;
1711 }
1712
1713 /*
1714  * This must be called under preempt disabled or must be called by
1715  * a thread which is pinned to local cpu.
1716  */
1717 static void drain_local_stock(struct work_struct *dummy)
1718 {
1719         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1720         drain_stock(stock);
1721 }
1722
1723 /*
1724  * Cache charges(val) which is from res_counter, to local per_cpu area.
1725  * This will be consumed by consume_stock() function, later.
1726  */
1727 static void refill_stock(struct mem_cgroup *mem, int val)
1728 {
1729         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1730
1731         if (stock->cached != mem) { /* reset if necessary */
1732                 drain_stock(stock);
1733                 stock->cached = mem;
1734         }
1735         stock->charge += val;
1736         put_cpu_var(memcg_stock);
1737 }
1738
1739 /*
1740  * Tries to drain stocked charges in other cpus. This function is asynchronous
1741  * and just put a work per cpu for draining localy on each cpu. Caller can
1742  * expects some charges will be back to res_counter later but cannot wait for
1743  * it.
1744  */
1745 static void drain_all_stock_async(void)
1746 {
1747         int cpu;
1748         /* This function is for scheduling "drain" in asynchronous way.
1749          * The result of "drain" is not directly handled by callers. Then,
1750          * if someone is calling drain, we don't have to call drain more.
1751          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1752          * there is a race. We just do loose check here.
1753          */
1754         if (atomic_read(&memcg_drain_count))
1755                 return;
1756         /* Notify other cpus that system-wide "drain" is running */
1757         atomic_inc(&memcg_drain_count);
1758         get_online_cpus();
1759         for_each_online_cpu(cpu) {
1760                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1761                 schedule_work_on(cpu, &stock->work);
1762         }
1763         put_online_cpus();
1764         atomic_dec(&memcg_drain_count);
1765         /* We don't wait for flush_work */
1766 }
1767
1768 /* This is a synchronous drain interface. */
1769 static void drain_all_stock_sync(void)
1770 {
1771         /* called when force_empty is called */
1772         atomic_inc(&memcg_drain_count);
1773         schedule_on_each_cpu(drain_local_stock);
1774         atomic_dec(&memcg_drain_count);
1775 }
1776
1777 /*
1778  * This function drains percpu counter value from DEAD cpu and
1779  * move it to local cpu. Note that this function can be preempted.
1780  */
1781 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1782 {
1783         int i;
1784
1785         spin_lock(&mem->pcp_counter_lock);
1786         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1787                 s64 x = per_cpu(mem->stat->count[i], cpu);
1788
1789                 per_cpu(mem->stat->count[i], cpu) = 0;
1790                 mem->nocpu_base.count[i] += x;
1791         }
1792         /* need to clear ON_MOVE value, works as a kind of lock. */
1793         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1794         spin_unlock(&mem->pcp_counter_lock);
1795 }
1796
1797 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1798 {
1799         int idx = MEM_CGROUP_ON_MOVE;
1800
1801         spin_lock(&mem->pcp_counter_lock);
1802         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1803         spin_unlock(&mem->pcp_counter_lock);
1804 }
1805
1806 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1807                                         unsigned long action,
1808                                         void *hcpu)
1809 {
1810         int cpu = (unsigned long)hcpu;
1811         struct memcg_stock_pcp *stock;
1812         struct mem_cgroup *iter;
1813
1814         if ((action == CPU_ONLINE)) {
1815                 for_each_mem_cgroup_all(iter)
1816                         synchronize_mem_cgroup_on_move(iter, cpu);
1817                 return NOTIFY_OK;
1818         }
1819
1820         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1821                 return NOTIFY_OK;
1822
1823         for_each_mem_cgroup_all(iter)
1824                 mem_cgroup_drain_pcp_counter(iter, cpu);
1825
1826         stock = &per_cpu(memcg_stock, cpu);
1827         drain_stock(stock);
1828         return NOTIFY_OK;
1829 }
1830
1831
1832 /* See __mem_cgroup_try_charge() for details */
1833 enum {
1834         CHARGE_OK,              /* success */
1835         CHARGE_RETRY,           /* need to retry but retry is not bad */
1836         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1837         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1838         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1839 };
1840
1841 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1842                                 int csize, bool oom_check)
1843 {
1844         struct mem_cgroup *mem_over_limit;
1845         struct res_counter *fail_res;
1846         unsigned long flags = 0;
1847         int ret;
1848
1849         ret = res_counter_charge(&mem->res, csize, &fail_res);
1850
1851         if (likely(!ret)) {
1852                 if (!do_swap_account)
1853                         return CHARGE_OK;
1854                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1855                 if (likely(!ret))
1856                         return CHARGE_OK;
1857
1858                 res_counter_uncharge(&mem->res, csize);
1859                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1860                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1861         } else
1862                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1863         /*
1864          * csize can be either a huge page (HPAGE_SIZE), a batch of
1865          * regular pages (CHARGE_SIZE), or a single regular page
1866          * (PAGE_SIZE).
1867          *
1868          * Never reclaim on behalf of optional batching, retry with a
1869          * single page instead.
1870          */
1871         if (csize == CHARGE_SIZE)
1872                 return CHARGE_RETRY;
1873
1874         if (!(gfp_mask & __GFP_WAIT))
1875                 return CHARGE_WOULDBLOCK;
1876
1877         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1878                                               gfp_mask, flags);
1879         if (mem_cgroup_margin(mem_over_limit) >= csize)
1880                 return CHARGE_RETRY;
1881         /*
1882          * Even though the limit is exceeded at this point, reclaim
1883          * may have been able to free some pages.  Retry the charge
1884          * before killing the task.
1885          *
1886          * Only for regular pages, though: huge pages are rather
1887          * unlikely to succeed so close to the limit, and we fall back
1888          * to regular pages anyway in case of failure.
1889          */
1890         if (csize == PAGE_SIZE && ret)
1891                 return CHARGE_RETRY;
1892
1893         /*
1894          * At task move, charge accounts can be doubly counted. So, it's
1895          * better to wait until the end of task_move if something is going on.
1896          */
1897         if (mem_cgroup_wait_acct_move(mem_over_limit))
1898                 return CHARGE_RETRY;
1899
1900         /* If we don't need to call oom-killer at el, return immediately */
1901         if (!oom_check)
1902                 return CHARGE_NOMEM;
1903         /* check OOM */
1904         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1905                 return CHARGE_OOM_DIE;
1906
1907         return CHARGE_RETRY;
1908 }
1909
1910 /*
1911  * Unlike exported interface, "oom" parameter is added. if oom==true,
1912  * oom-killer can be invoked.
1913  */
1914 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1915                                    gfp_t gfp_mask,
1916                                    struct mem_cgroup **memcg, bool oom,
1917                                    int page_size)
1918 {
1919         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1920         struct mem_cgroup *mem = NULL;
1921         int ret;
1922         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1923
1924         /*
1925          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1926          * in system level. So, allow to go ahead dying process in addition to
1927          * MEMDIE process.
1928          */
1929         if (unlikely(test_thread_flag(TIF_MEMDIE)
1930                      || fatal_signal_pending(current)))
1931                 goto bypass;
1932
1933         /*
1934          * We always charge the cgroup the mm_struct belongs to.
1935          * The mm_struct's mem_cgroup changes on task migration if the
1936          * thread group leader migrates. It's possible that mm is not
1937          * set, if so charge the init_mm (happens for pagecache usage).
1938          */
1939         if (!*memcg && !mm)
1940                 goto bypass;
1941 again:
1942         if (*memcg) { /* css should be a valid one */
1943                 mem = *memcg;
1944                 VM_BUG_ON(css_is_removed(&mem->css));
1945                 if (mem_cgroup_is_root(mem))
1946                         goto done;
1947                 if (page_size == PAGE_SIZE && consume_stock(mem))
1948                         goto done;
1949                 css_get(&mem->css);
1950         } else {
1951                 struct task_struct *p;
1952
1953                 rcu_read_lock();
1954                 p = rcu_dereference(mm->owner);
1955                 /*
1956                  * Because we don't have task_lock(), "p" can exit.
1957                  * In that case, "mem" can point to root or p can be NULL with
1958                  * race with swapoff. Then, we have small risk of mis-accouning.
1959                  * But such kind of mis-account by race always happens because
1960                  * we don't have cgroup_mutex(). It's overkill and we allo that
1961                  * small race, here.
1962                  * (*) swapoff at el will charge against mm-struct not against
1963                  * task-struct. So, mm->owner can be NULL.
1964                  */
1965                 mem = mem_cgroup_from_task(p);
1966                 if (!mem || mem_cgroup_is_root(mem)) {
1967                         rcu_read_unlock();
1968                         goto done;
1969                 }
1970                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1971                         /*
1972                          * It seems dagerous to access memcg without css_get().
1973                          * But considering how consume_stok works, it's not
1974                          * necessary. If consume_stock success, some charges
1975                          * from this memcg are cached on this cpu. So, we
1976                          * don't need to call css_get()/css_tryget() before
1977                          * calling consume_stock().
1978                          */
1979                         rcu_read_unlock();
1980                         goto done;
1981                 }
1982                 /* after here, we may be blocked. we need to get refcnt */
1983                 if (!css_tryget(&mem->css)) {
1984                         rcu_read_unlock();
1985                         goto again;
1986                 }
1987                 rcu_read_unlock();
1988         }
1989
1990         do {
1991                 bool oom_check;
1992
1993                 /* If killed, bypass charge */
1994                 if (fatal_signal_pending(current)) {
1995                         css_put(&mem->css);
1996                         goto bypass;
1997                 }
1998
1999                 oom_check = false;
2000                 if (oom && !nr_oom_retries) {
2001                         oom_check = true;
2002                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2003                 }
2004
2005                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2006
2007                 switch (ret) {
2008                 case CHARGE_OK:
2009                         break;
2010                 case CHARGE_RETRY: /* not in OOM situation but retry */
2011                         csize = page_size;
2012                         css_put(&mem->css);
2013                         mem = NULL;
2014                         goto again;
2015                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2016                         css_put(&mem->css);
2017                         goto nomem;
2018                 case CHARGE_NOMEM: /* OOM routine works */
2019                         if (!oom) {
2020                                 css_put(&mem->css);
2021                                 goto nomem;
2022                         }
2023                         /* If oom, we never return -ENOMEM */
2024                         nr_oom_retries--;
2025                         break;
2026                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2027                         css_put(&mem->css);
2028                         goto bypass;
2029                 }
2030         } while (ret != CHARGE_OK);
2031
2032         if (csize > page_size)
2033                 refill_stock(mem, csize - page_size);
2034         css_put(&mem->css);
2035 done:
2036         *memcg = mem;
2037         return 0;
2038 nomem:
2039         *memcg = NULL;
2040         return -ENOMEM;
2041 bypass:
2042         *memcg = NULL;
2043         return 0;
2044 }
2045
2046 /*
2047  * Somemtimes we have to undo a charge we got by try_charge().
2048  * This function is for that and do uncharge, put css's refcnt.
2049  * gotten by try_charge().
2050  */
2051 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2052                                                         unsigned long count)
2053 {
2054         if (!mem_cgroup_is_root(mem)) {
2055                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2056                 if (do_swap_account)
2057                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2058         }
2059 }
2060
2061 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2062                                      int page_size)
2063 {
2064         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2065 }
2066
2067 /*
2068  * A helper function to get mem_cgroup from ID. must be called under
2069  * rcu_read_lock(). The caller must check css_is_removed() or some if
2070  * it's concern. (dropping refcnt from swap can be called against removed
2071  * memcg.)
2072  */
2073 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2074 {
2075         struct cgroup_subsys_state *css;
2076
2077         /* ID 0 is unused ID */
2078         if (!id)
2079                 return NULL;
2080         css = css_lookup(&mem_cgroup_subsys, id);
2081         if (!css)
2082                 return NULL;
2083         return container_of(css, struct mem_cgroup, css);
2084 }
2085
2086 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2087 {
2088         struct mem_cgroup *mem = NULL;
2089         struct page_cgroup *pc;
2090         unsigned short id;
2091         swp_entry_t ent;
2092
2093         VM_BUG_ON(!PageLocked(page));
2094
2095         pc = lookup_page_cgroup(page);
2096         lock_page_cgroup(pc);
2097         if (PageCgroupUsed(pc)) {
2098                 mem = pc->mem_cgroup;
2099                 if (mem && !css_tryget(&mem->css))
2100                         mem = NULL;
2101         } else if (PageSwapCache(page)) {
2102                 ent.val = page_private(page);
2103                 id = lookup_swap_cgroup(ent);
2104                 rcu_read_lock();
2105                 mem = mem_cgroup_lookup(id);
2106                 if (mem && !css_tryget(&mem->css))
2107                         mem = NULL;
2108                 rcu_read_unlock();
2109         }
2110         unlock_page_cgroup(pc);
2111         return mem;
2112 }
2113
2114 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2115                                        struct page_cgroup *pc,
2116                                        enum charge_type ctype,
2117                                        int page_size)
2118 {
2119         int nr_pages = page_size >> PAGE_SHIFT;
2120
2121         lock_page_cgroup(pc);
2122         if (unlikely(PageCgroupUsed(pc))) {
2123                 unlock_page_cgroup(pc);
2124                 mem_cgroup_cancel_charge(mem, page_size);
2125                 return;
2126         }
2127         /*
2128          * we don't need page_cgroup_lock about tail pages, becase they are not
2129          * accessed by any other context at this point.
2130          */
2131         pc->mem_cgroup = mem;
2132         /*
2133          * We access a page_cgroup asynchronously without lock_page_cgroup().
2134          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2135          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2136          * before USED bit, we need memory barrier here.
2137          * See mem_cgroup_add_lru_list(), etc.
2138          */
2139         smp_wmb();
2140         switch (ctype) {
2141         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2142         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2143                 SetPageCgroupCache(pc);
2144                 SetPageCgroupUsed(pc);
2145                 break;
2146         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2147                 ClearPageCgroupCache(pc);
2148                 SetPageCgroupUsed(pc);
2149                 break;
2150         default:
2151                 break;
2152         }
2153
2154         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155         unlock_page_cgroup(pc);
2156         /*
2157          * "charge_statistics" updated event counter. Then, check it.
2158          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2159          * if they exceeds softlimit.
2160          */
2161         memcg_check_events(mem, pc->page);
2162 }
2163
2164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2165
2166 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2167                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2168 /*
2169  * Because tail pages are not marked as "used", set it. We're under
2170  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2171  */
2172 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2173 {
2174         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2175         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2176         unsigned long flags;
2177
2178         if (mem_cgroup_disabled())
2179                 return;
2180         /*
2181          * We have no races with charge/uncharge but will have races with
2182          * page state accounting.
2183          */
2184         move_lock_page_cgroup(head_pc, &flags);
2185
2186         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2187         smp_wmb(); /* see __commit_charge() */
2188         if (PageCgroupAcctLRU(head_pc)) {
2189                 enum lru_list lru;
2190                 struct mem_cgroup_per_zone *mz;
2191
2192                 /*
2193                  * LRU flags cannot be copied because we need to add tail
2194                  *.page to LRU by generic call and our hook will be called.
2195                  * We hold lru_lock, then, reduce counter directly.
2196                  */
2197                 lru = page_lru(head);
2198                 mz = page_cgroup_zoneinfo(head_pc);
2199                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2200         }
2201         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2202         move_unlock_page_cgroup(head_pc, &flags);
2203 }
2204 #endif
2205
2206 /**
2207  * __mem_cgroup_move_account - move account of the page
2208  * @pc: page_cgroup of the page.
2209  * @from: mem_cgroup which the page is moved from.
2210  * @to: mem_cgroup which the page is moved to. @from != @to.
2211  * @uncharge: whether we should call uncharge and css_put against @from.
2212  *
2213  * The caller must confirm following.
2214  * - page is not on LRU (isolate_page() is useful.)
2215  * - the pc is locked, used, and ->mem_cgroup points to @from.
2216  *
2217  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2218  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2219  * true, this function does "uncharge" from old cgroup, but it doesn't if
2220  * @uncharge is false, so a caller should do "uncharge".
2221  */
2222
2223 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2225         int charge_size)
2226 {
2227         int nr_pages = charge_size >> PAGE_SHIFT;
2228
2229         VM_BUG_ON(from == to);
2230         VM_BUG_ON(PageLRU(pc->page));
2231         VM_BUG_ON(!page_is_cgroup_locked(pc));
2232         VM_BUG_ON(!PageCgroupUsed(pc));
2233         VM_BUG_ON(pc->mem_cgroup != from);
2234
2235         if (PageCgroupFileMapped(pc)) {
2236                 /* Update mapped_file data for mem_cgroup */
2237                 preempt_disable();
2238                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240                 preempt_enable();
2241         }
2242         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243         if (uncharge)
2244                 /* This is not "cancel", but cancel_charge does all we need. */
2245                 mem_cgroup_cancel_charge(from, charge_size);
2246
2247         /* caller should have done css_get */
2248         pc->mem_cgroup = to;
2249         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250         /*
2251          * We charges against "to" which may not have any tasks. Then, "to"
2252          * can be under rmdir(). But in current implementation, caller of
2253          * this function is just force_empty() and move charge, so it's
2254          * garanteed that "to" is never removed. So, we don't check rmdir
2255          * status here.
2256          */
2257 }
2258
2259 /*
2260  * check whether the @pc is valid for moving account and call
2261  * __mem_cgroup_move_account()
2262  */
2263 static int mem_cgroup_move_account(struct page_cgroup *pc,
2264                 struct mem_cgroup *from, struct mem_cgroup *to,
2265                 bool uncharge, int charge_size)
2266 {
2267         int ret = -EINVAL;
2268         unsigned long flags;
2269         /*
2270          * The page is isolated from LRU. So, collapse function
2271          * will not handle this page. But page splitting can happen.
2272          * Do this check under compound_page_lock(). The caller should
2273          * hold it.
2274          */
2275         if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2276                 return -EBUSY;
2277
2278         lock_page_cgroup(pc);
2279         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280                 move_lock_page_cgroup(pc, &flags);
2281                 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282                 move_unlock_page_cgroup(pc, &flags);
2283                 ret = 0;
2284         }
2285         unlock_page_cgroup(pc);
2286         /*
2287          * check events
2288          */
2289         memcg_check_events(to, pc->page);
2290         memcg_check_events(from, pc->page);
2291         return ret;
2292 }
2293
2294 /*
2295  * move charges to its parent.
2296  */
2297
2298 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2299                                   struct mem_cgroup *child,
2300                                   gfp_t gfp_mask)
2301 {
2302         struct page *page = pc->page;
2303         struct cgroup *cg = child->css.cgroup;
2304         struct cgroup *pcg = cg->parent;
2305         struct mem_cgroup *parent;
2306         int page_size = PAGE_SIZE;
2307         unsigned long flags;
2308         int ret;
2309
2310         /* Is ROOT ? */
2311         if (!pcg)
2312                 return -EINVAL;
2313
2314         ret = -EBUSY;
2315         if (!get_page_unless_zero(page))
2316                 goto out;
2317         if (isolate_lru_page(page))
2318                 goto put;
2319
2320         if (PageTransHuge(page))
2321                 page_size = HPAGE_SIZE;
2322
2323         parent = mem_cgroup_from_cont(pcg);
2324         ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2325                                 &parent, false, page_size);
2326         if (ret || !parent)
2327                 goto put_back;
2328
2329         if (page_size > PAGE_SIZE)
2330                 flags = compound_lock_irqsave(page);
2331
2332         ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333         if (ret)
2334                 mem_cgroup_cancel_charge(parent, page_size);
2335
2336         if (page_size > PAGE_SIZE)
2337                 compound_unlock_irqrestore(page, flags);
2338 put_back:
2339         putback_lru_page(page);
2340 put:
2341         put_page(page);
2342 out:
2343         return ret;
2344 }
2345
2346 /*
2347  * Charge the memory controller for page usage.
2348  * Return
2349  * 0 if the charge was successful
2350  * < 0 if the cgroup is over its limit
2351  */
2352 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353                                 gfp_t gfp_mask, enum charge_type ctype)
2354 {
2355         struct mem_cgroup *mem = NULL;
2356         int page_size = PAGE_SIZE;
2357         struct page_cgroup *pc;
2358         bool oom = true;
2359         int ret;
2360
2361         if (PageTransHuge(page)) {
2362                 page_size <<= compound_order(page);
2363                 VM_BUG_ON(!PageTransHuge(page));
2364                 /*
2365                  * Never OOM-kill a process for a huge page.  The
2366                  * fault handler will fall back to regular pages.
2367                  */
2368                 oom = false;
2369         }
2370
2371         pc = lookup_page_cgroup(page);
2372         /* can happen at boot */
2373         if (unlikely(!pc))
2374                 return 0;
2375         prefetchw(pc);
2376
2377         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2378         if (ret || !mem)
2379                 return ret;
2380
2381         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2382         return 0;
2383 }
2384
2385 int mem_cgroup_newpage_charge(struct page *page,
2386                               struct mm_struct *mm, gfp_t gfp_mask)
2387 {
2388         if (mem_cgroup_disabled())
2389                 return 0;
2390         /*
2391          * If already mapped, we don't have to account.
2392          * If page cache, page->mapping has address_space.
2393          * But page->mapping may have out-of-use anon_vma pointer,
2394          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2395          * is NULL.
2396          */
2397         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2398                 return 0;
2399         if (unlikely(!mm))
2400                 mm = &init_mm;
2401         return mem_cgroup_charge_common(page, mm, gfp_mask,
2402                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2403 }
2404
2405 static void
2406 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2407                                         enum charge_type ctype);
2408
2409 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2410                                 gfp_t gfp_mask)
2411 {
2412         int ret;
2413
2414         if (mem_cgroup_disabled())
2415                 return 0;
2416         if (PageCompound(page))
2417                 return 0;
2418         /*
2419          * Corner case handling. This is called from add_to_page_cache()
2420          * in usual. But some FS (shmem) precharges this page before calling it
2421          * and call add_to_page_cache() with GFP_NOWAIT.
2422          *
2423          * For GFP_NOWAIT case, the page may be pre-charged before calling
2424          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2425          * charge twice. (It works but has to pay a bit larger cost.)
2426          * And when the page is SwapCache, it should take swap information
2427          * into account. This is under lock_page() now.
2428          */
2429         if (!(gfp_mask & __GFP_WAIT)) {
2430                 struct page_cgroup *pc;
2431
2432                 pc = lookup_page_cgroup(page);
2433                 if (!pc)
2434                         return 0;
2435                 lock_page_cgroup(pc);
2436                 if (PageCgroupUsed(pc)) {
2437                         unlock_page_cgroup(pc);
2438                         return 0;
2439                 }
2440                 unlock_page_cgroup(pc);
2441         }
2442
2443         if (unlikely(!mm))
2444                 mm = &init_mm;
2445
2446         if (page_is_file_cache(page))
2447                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2448                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2449
2450         /* shmem */
2451         if (PageSwapCache(page)) {
2452                 struct mem_cgroup *mem;
2453
2454                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2455                 if (!ret)
2456                         __mem_cgroup_commit_charge_swapin(page, mem,
2457                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2458         } else
2459                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2460                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2461
2462         return ret;
2463 }
2464
2465 /*
2466  * While swap-in, try_charge -> commit or cancel, the page is locked.
2467  * And when try_charge() successfully returns, one refcnt to memcg without
2468  * struct page_cgroup is acquired. This refcnt will be consumed by
2469  * "commit()" or removed by "cancel()"
2470  */
2471 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2472                                  struct page *page,
2473                                  gfp_t mask, struct mem_cgroup **ptr)
2474 {
2475         struct mem_cgroup *mem;
2476         int ret;
2477
2478         *ptr = NULL;
2479
2480         if (mem_cgroup_disabled())
2481                 return 0;
2482
2483         if (!do_swap_account)
2484                 goto charge_cur_mm;
2485         /*
2486          * A racing thread's fault, or swapoff, may have already updated
2487          * the pte, and even removed page from swap cache: in those cases
2488          * do_swap_page()'s pte_same() test will fail; but there's also a
2489          * KSM case which does need to charge the page.
2490          */
2491         if (!PageSwapCache(page))
2492                 goto charge_cur_mm;
2493         mem = try_get_mem_cgroup_from_page(page);
2494         if (!mem)
2495                 goto charge_cur_mm;
2496         *ptr = mem;
2497         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2498         css_put(&mem->css);
2499         return ret;
2500 charge_cur_mm:
2501         if (unlikely(!mm))
2502                 mm = &init_mm;
2503         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2504 }
2505
2506 static void
2507 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2508                                         enum charge_type ctype)
2509 {
2510         struct page_cgroup *pc;
2511
2512         if (mem_cgroup_disabled())
2513                 return;
2514         if (!ptr)
2515                 return;
2516         cgroup_exclude_rmdir(&ptr->css);
2517         pc = lookup_page_cgroup(page);
2518         mem_cgroup_lru_del_before_commit_swapcache(page);
2519         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2520         mem_cgroup_lru_add_after_commit_swapcache(page);
2521         /*
2522          * Now swap is on-memory. This means this page may be
2523          * counted both as mem and swap....double count.
2524          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2525          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2526          * may call delete_from_swap_cache() before reach here.
2527          */
2528         if (do_swap_account && PageSwapCache(page)) {
2529                 swp_entry_t ent = {.val = page_private(page)};
2530                 unsigned short id;
2531                 struct mem_cgroup *memcg;
2532
2533                 id = swap_cgroup_record(ent, 0);
2534                 rcu_read_lock();
2535                 memcg = mem_cgroup_lookup(id);
2536                 if (memcg) {
2537                         /*
2538                          * This recorded memcg can be obsolete one. So, avoid
2539                          * calling css_tryget
2540                          */
2541                         if (!mem_cgroup_is_root(memcg))
2542                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2543                         mem_cgroup_swap_statistics(memcg, false);
2544                         mem_cgroup_put(memcg);
2545                 }
2546                 rcu_read_unlock();
2547         }
2548         /*
2549          * At swapin, we may charge account against cgroup which has no tasks.
2550          * So, rmdir()->pre_destroy() can be called while we do this charge.
2551          * In that case, we need to call pre_destroy() again. check it here.
2552          */
2553         cgroup_release_and_wakeup_rmdir(&ptr->css);
2554 }
2555
2556 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2557 {
2558         __mem_cgroup_commit_charge_swapin(page, ptr,
2559                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2560 }
2561
2562 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2563 {
2564         if (mem_cgroup_disabled())
2565                 return;
2566         if (!mem)
2567                 return;
2568         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2569 }
2570
2571 static void
2572 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2573               int page_size)
2574 {
2575         struct memcg_batch_info *batch = NULL;
2576         bool uncharge_memsw = true;
2577         /* If swapout, usage of swap doesn't decrease */
2578         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2579                 uncharge_memsw = false;
2580
2581         batch = &current->memcg_batch;
2582         /*
2583          * In usual, we do css_get() when we remember memcg pointer.
2584          * But in this case, we keep res->usage until end of a series of
2585          * uncharges. Then, it's ok to ignore memcg's refcnt.
2586          */
2587         if (!batch->memcg)
2588                 batch->memcg = mem;
2589         /*
2590          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2591          * In those cases, all pages freed continously can be expected to be in
2592          * the same cgroup and we have chance to coalesce uncharges.
2593          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2594          * because we want to do uncharge as soon as possible.
2595          */
2596
2597         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2598                 goto direct_uncharge;
2599
2600         if (page_size != PAGE_SIZE)
2601                 goto direct_uncharge;
2602
2603         /*
2604          * In typical case, batch->memcg == mem. This means we can
2605          * merge a series of uncharges to an uncharge of res_counter.
2606          * If not, we uncharge res_counter ony by one.
2607          */
2608         if (batch->memcg != mem)
2609                 goto direct_uncharge;
2610         /* remember freed charge and uncharge it later */
2611         batch->bytes += PAGE_SIZE;
2612         if (uncharge_memsw)
2613                 batch->memsw_bytes += PAGE_SIZE;
2614         return;
2615 direct_uncharge:
2616         res_counter_uncharge(&mem->res, page_size);
2617         if (uncharge_memsw)
2618                 res_counter_uncharge(&mem->memsw, page_size);
2619         if (unlikely(batch->memcg != mem))
2620                 memcg_oom_recover(mem);
2621         return;
2622 }
2623
2624 /*
2625  * uncharge if !page_mapped(page)
2626  */
2627 static struct mem_cgroup *
2628 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2629 {
2630         int count;
2631         struct page_cgroup *pc;
2632         struct mem_cgroup *mem = NULL;
2633         int page_size = PAGE_SIZE;
2634
2635         if (mem_cgroup_disabled())
2636                 return NULL;
2637
2638         if (PageSwapCache(page))
2639                 return NULL;
2640
2641         if (PageTransHuge(page)) {
2642                 page_size <<= compound_order(page);
2643                 VM_BUG_ON(!PageTransHuge(page));
2644         }
2645
2646         count = page_size >> PAGE_SHIFT;
2647         /*
2648          * Check if our page_cgroup is valid
2649          */
2650         pc = lookup_page_cgroup(page);
2651         if (unlikely(!pc || !PageCgroupUsed(pc)))
2652                 return NULL;
2653
2654         lock_page_cgroup(pc);
2655
2656         mem = pc->mem_cgroup;
2657
2658         if (!PageCgroupUsed(pc))
2659                 goto unlock_out;
2660
2661         switch (ctype) {
2662         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2663         case MEM_CGROUP_CHARGE_TYPE_DROP:
2664                 /* See mem_cgroup_prepare_migration() */
2665                 if (page_mapped(page) || PageCgroupMigration(pc))
2666                         goto unlock_out;
2667                 break;
2668         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2669                 if (!PageAnon(page)) {  /* Shared memory */
2670                         if (page->mapping && !page_is_file_cache(page))
2671                                 goto unlock_out;
2672                 } else if (page_mapped(page)) /* Anon */
2673                                 goto unlock_out;
2674                 break;
2675         default:
2676                 break;
2677         }
2678
2679         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2680
2681         ClearPageCgroupUsed(pc);
2682         /*
2683          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2684          * freed from LRU. This is safe because uncharged page is expected not
2685          * to be reused (freed soon). Exception is SwapCache, it's handled by
2686          * special functions.
2687          */
2688
2689         unlock_page_cgroup(pc);
2690         /*
2691          * even after unlock, we have mem->res.usage here and this memcg
2692          * will never be freed.
2693          */
2694         memcg_check_events(mem, page);
2695         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2696                 mem_cgroup_swap_statistics(mem, true);
2697                 mem_cgroup_get(mem);
2698         }
2699         if (!mem_cgroup_is_root(mem))
2700                 __do_uncharge(mem, ctype, page_size);
2701
2702         return mem;
2703
2704 unlock_out:
2705         unlock_page_cgroup(pc);
2706         return NULL;
2707 }
2708
2709 void mem_cgroup_uncharge_page(struct page *page)
2710 {
2711         /* early check. */
2712         if (page_mapped(page))
2713                 return;
2714         if (page->mapping && !PageAnon(page))
2715                 return;
2716         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2717 }
2718
2719 void mem_cgroup_uncharge_cache_page(struct page *page)
2720 {
2721         VM_BUG_ON(page_mapped(page));
2722         VM_BUG_ON(page->mapping);
2723         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2724 }
2725
2726 /*
2727  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2728  * In that cases, pages are freed continuously and we can expect pages
2729  * are in the same memcg. All these calls itself limits the number of
2730  * pages freed at once, then uncharge_start/end() is called properly.
2731  * This may be called prural(2) times in a context,
2732  */
2733
2734 void mem_cgroup_uncharge_start(void)
2735 {
2736         current->memcg_batch.do_batch++;
2737         /* We can do nest. */
2738         if (current->memcg_batch.do_batch == 1) {
2739                 current->memcg_batch.memcg = NULL;
2740                 current->memcg_batch.bytes = 0;
2741                 current->memcg_batch.memsw_bytes = 0;
2742         }
2743 }
2744
2745 void mem_cgroup_uncharge_end(void)
2746 {
2747         struct memcg_batch_info *batch = &current->memcg_batch;
2748
2749         if (!batch->do_batch)
2750                 return;
2751
2752         batch->do_batch--;
2753         if (batch->do_batch) /* If stacked, do nothing. */
2754                 return;
2755
2756         if (!batch->memcg)
2757                 return;
2758         /*
2759          * This "batch->memcg" is valid without any css_get/put etc...
2760          * bacause we hide charges behind us.
2761          */
2762         if (batch->bytes)
2763                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2764         if (batch->memsw_bytes)
2765                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2766         memcg_oom_recover(batch->memcg);
2767         /* forget this pointer (for sanity check) */
2768         batch->memcg = NULL;
2769 }
2770
2771 #ifdef CONFIG_SWAP
2772 /*
2773  * called after __delete_from_swap_cache() and drop "page" account.
2774  * memcg information is recorded to swap_cgroup of "ent"
2775  */
2776 void
2777 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2778 {
2779         struct mem_cgroup *memcg;
2780         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2781
2782         if (!swapout) /* this was a swap cache but the swap is unused ! */
2783                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2784
2785         memcg = __mem_cgroup_uncharge_common(page, ctype);
2786
2787         /*
2788          * record memcg information,  if swapout && memcg != NULL,
2789          * mem_cgroup_get() was called in uncharge().
2790          */
2791         if (do_swap_account && swapout && memcg)
2792                 swap_cgroup_record(ent, css_id(&memcg->css));
2793 }
2794 #endif
2795
2796 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2797 /*
2798  * called from swap_entry_free(). remove record in swap_cgroup and
2799  * uncharge "memsw" account.
2800  */
2801 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2802 {
2803         struct mem_cgroup *memcg;
2804         unsigned short id;
2805
2806         if (!do_swap_account)
2807                 return;
2808
2809         id = swap_cgroup_record(ent, 0);
2810         rcu_read_lock();
2811         memcg = mem_cgroup_lookup(id);
2812         if (memcg) {
2813                 /*
2814                  * We uncharge this because swap is freed.
2815                  * This memcg can be obsolete one. We avoid calling css_tryget
2816                  */
2817                 if (!mem_cgroup_is_root(memcg))
2818                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2819                 mem_cgroup_swap_statistics(memcg, false);
2820                 mem_cgroup_put(memcg);
2821         }
2822         rcu_read_unlock();
2823 }
2824
2825 /**
2826  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2827  * @entry: swap entry to be moved
2828  * @from:  mem_cgroup which the entry is moved from
2829  * @to:  mem_cgroup which the entry is moved to
2830  * @need_fixup: whether we should fixup res_counters and refcounts.
2831  *
2832  * It succeeds only when the swap_cgroup's record for this entry is the same
2833  * as the mem_cgroup's id of @from.
2834  *
2835  * Returns 0 on success, -EINVAL on failure.
2836  *
2837  * The caller must have charged to @to, IOW, called res_counter_charge() about
2838  * both res and memsw, and called css_get().
2839  */
2840 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2841                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2842 {
2843         unsigned short old_id, new_id;
2844
2845         old_id = css_id(&from->css);
2846         new_id = css_id(&to->css);
2847
2848         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2849                 mem_cgroup_swap_statistics(from, false);
2850                 mem_cgroup_swap_statistics(to, true);
2851                 /*
2852                  * This function is only called from task migration context now.
2853                  * It postpones res_counter and refcount handling till the end
2854                  * of task migration(mem_cgroup_clear_mc()) for performance
2855                  * improvement. But we cannot postpone mem_cgroup_get(to)
2856                  * because if the process that has been moved to @to does
2857                  * swap-in, the refcount of @to might be decreased to 0.
2858                  */
2859                 mem_cgroup_get(to);
2860                 if (need_fixup) {
2861                         if (!mem_cgroup_is_root(from))
2862                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2863                         mem_cgroup_put(from);
2864                         /*
2865                          * we charged both to->res and to->memsw, so we should
2866                          * uncharge to->res.
2867                          */
2868                         if (!mem_cgroup_is_root(to))
2869                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2870                 }
2871                 return 0;
2872         }
2873         return -EINVAL;
2874 }
2875 #else
2876 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2877                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2878 {
2879         return -EINVAL;
2880 }
2881 #endif
2882
2883 /*
2884  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2885  * page belongs to.
2886  */
2887 int mem_cgroup_prepare_migration(struct page *page,
2888         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2889 {
2890         struct page_cgroup *pc;
2891         struct mem_cgroup *mem = NULL;
2892         enum charge_type ctype;
2893         int ret = 0;
2894
2895         *ptr = NULL;
2896
2897         VM_BUG_ON(PageTransHuge(page));
2898         if (mem_cgroup_disabled())
2899                 return 0;
2900
2901         pc = lookup_page_cgroup(page);
2902         lock_page_cgroup(pc);
2903         if (PageCgroupUsed(pc)) {
2904                 mem = pc->mem_cgroup;
2905                 css_get(&mem->css);
2906                 /*
2907                  * At migrating an anonymous page, its mapcount goes down
2908                  * to 0 and uncharge() will be called. But, even if it's fully
2909                  * unmapped, migration may fail and this page has to be
2910                  * charged again. We set MIGRATION flag here and delay uncharge
2911                  * until end_migration() is called
2912                  *
2913                  * Corner Case Thinking
2914                  * A)
2915                  * When the old page was mapped as Anon and it's unmap-and-freed
2916                  * while migration was ongoing.
2917                  * If unmap finds the old page, uncharge() of it will be delayed
2918                  * until end_migration(). If unmap finds a new page, it's
2919                  * uncharged when it make mapcount to be 1->0. If unmap code
2920                  * finds swap_migration_entry, the new page will not be mapped
2921                  * and end_migration() will find it(mapcount==0).
2922                  *
2923                  * B)
2924                  * When the old page was mapped but migraion fails, the kernel
2925                  * remaps it. A charge for it is kept by MIGRATION flag even
2926                  * if mapcount goes down to 0. We can do remap successfully
2927                  * without charging it again.
2928                  *
2929                  * C)
2930                  * The "old" page is under lock_page() until the end of
2931                  * migration, so, the old page itself will not be swapped-out.
2932                  * If the new page is swapped out before end_migraton, our
2933                  * hook to usual swap-out path will catch the event.
2934                  */
2935                 if (PageAnon(page))
2936                         SetPageCgroupMigration(pc);
2937         }
2938         unlock_page_cgroup(pc);
2939         /*
2940          * If the page is not charged at this point,
2941          * we return here.
2942          */
2943         if (!mem)
2944                 return 0;
2945
2946         *ptr = mem;
2947         ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2948         css_put(&mem->css);/* drop extra refcnt */
2949         if (ret || *ptr == NULL) {
2950                 if (PageAnon(page)) {
2951                         lock_page_cgroup(pc);
2952                         ClearPageCgroupMigration(pc);
2953                         unlock_page_cgroup(pc);
2954                         /*
2955                          * The old page may be fully unmapped while we kept it.
2956                          */
2957                         mem_cgroup_uncharge_page(page);
2958                 }
2959                 return -ENOMEM;
2960         }
2961         /*
2962          * We charge new page before it's used/mapped. So, even if unlock_page()
2963          * is called before end_migration, we can catch all events on this new
2964          * page. In the case new page is migrated but not remapped, new page's
2965          * mapcount will be finally 0 and we call uncharge in end_migration().
2966          */
2967         pc = lookup_page_cgroup(newpage);
2968         if (PageAnon(page))
2969                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2970         else if (page_is_file_cache(page))
2971                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2972         else
2973                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2974         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2975         return ret;
2976 }
2977
2978 /* remove redundant charge if migration failed*/
2979 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2980         struct page *oldpage, struct page *newpage, bool migration_ok)
2981 {
2982         struct page *used, *unused;
2983         struct page_cgroup *pc;
2984
2985         if (!mem)
2986                 return;
2987         /* blocks rmdir() */
2988         cgroup_exclude_rmdir(&mem->css);
2989         if (!migration_ok) {
2990                 used = oldpage;
2991                 unused = newpage;
2992         } else {
2993                 used = newpage;
2994                 unused = oldpage;
2995         }
2996         /*
2997          * We disallowed uncharge of pages under migration because mapcount
2998          * of the page goes down to zero, temporarly.
2999          * Clear the flag and check the page should be charged.
3000          */
3001         pc = lookup_page_cgroup(oldpage);
3002         lock_page_cgroup(pc);
3003         ClearPageCgroupMigration(pc);
3004         unlock_page_cgroup(pc);
3005
3006         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3007
3008         /*
3009          * If a page is a file cache, radix-tree replacement is very atomic
3010          * and we can skip this check. When it was an Anon page, its mapcount
3011          * goes down to 0. But because we added MIGRATION flage, it's not
3012          * uncharged yet. There are several case but page->mapcount check
3013          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3014          * check. (see prepare_charge() also)
3015          */
3016         if (PageAnon(used))
3017                 mem_cgroup_uncharge_page(used);
3018         /*
3019          * At migration, we may charge account against cgroup which has no
3020          * tasks.
3021          * So, rmdir()->pre_destroy() can be called while we do this charge.
3022          * In that case, we need to call pre_destroy() again. check it here.
3023          */
3024         cgroup_release_and_wakeup_rmdir(&mem->css);
3025 }
3026
3027 /*
3028  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3029  * Calling hierarchical_reclaim is not enough because we should update
3030  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3031  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3032  * not from the memcg which this page would be charged to.
3033  * try_charge_swapin does all of these works properly.
3034  */
3035 int mem_cgroup_shmem_charge_fallback(struct page *page,
3036                             struct mm_struct *mm,
3037                             gfp_t gfp_mask)
3038 {
3039         struct mem_cgroup *mem;
3040         int ret;
3041
3042         if (mem_cgroup_disabled())
3043                 return 0;
3044
3045         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3046         if (!ret)
3047                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3048
3049         return ret;
3050 }
3051
3052 static DEFINE_MUTEX(set_limit_mutex);
3053
3054 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3055                                 unsigned long long val)
3056 {
3057         int retry_count;
3058         u64 memswlimit, memlimit;
3059         int ret = 0;
3060         int children = mem_cgroup_count_children(memcg);
3061         u64 curusage, oldusage;
3062         int enlarge;
3063
3064         /*
3065          * For keeping hierarchical_reclaim simple, how long we should retry
3066          * is depends on callers. We set our retry-count to be function
3067          * of # of children which we should visit in this loop.
3068          */
3069         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3070
3071         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3072
3073         enlarge = 0;
3074         while (retry_count) {
3075                 if (signal_pending(current)) {
3076                         ret = -EINTR;
3077                         break;
3078                 }
3079                 /*
3080                  * Rather than hide all in some function, I do this in
3081                  * open coded manner. You see what this really does.
3082                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3083                  */
3084                 mutex_lock(&set_limit_mutex);
3085                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3086                 if (memswlimit < val) {
3087                         ret = -EINVAL;
3088                         mutex_unlock(&set_limit_mutex);
3089                         break;
3090                 }
3091
3092                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3093                 if (memlimit < val)
3094                         enlarge = 1;
3095
3096                 ret = res_counter_set_limit(&memcg->res, val);
3097                 if (!ret) {
3098                         if (memswlimit == val)
3099                                 memcg->memsw_is_minimum = true;
3100                         else
3101                                 memcg->memsw_is_minimum = false;
3102                 }
3103                 mutex_unlock(&set_limit_mutex);
3104
3105                 if (!ret)
3106                         break;
3107
3108                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3109                                                 MEM_CGROUP_RECLAIM_SHRINK);
3110                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3111                 /* Usage is reduced ? */
3112                 if (curusage >= oldusage)
3113                         retry_count--;
3114                 else
3115                         oldusage = curusage;
3116         }
3117         if (!ret && enlarge)
3118                 memcg_oom_recover(memcg);
3119
3120         return ret;
3121 }
3122
3123 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3124                                         unsigned long long val)
3125 {
3126         int retry_count;
3127         u64 memlimit, memswlimit, oldusage, curusage;
3128         int children = mem_cgroup_count_children(memcg);
3129         int ret = -EBUSY;
3130         int enlarge = 0;
3131
3132         /* see mem_cgroup_resize_res_limit */
3133         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3134         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3135         while (retry_count) {
3136                 if (signal_pending(current)) {
3137                         ret = -EINTR;
3138                         break;
3139                 }
3140                 /*
3141                  * Rather than hide all in some function, I do this in
3142                  * open coded manner. You see what this really does.
3143                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3144                  */
3145                 mutex_lock(&set_limit_mutex);
3146                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3147                 if (memlimit > val) {
3148                         ret = -EINVAL;
3149                         mutex_unlock(&set_limit_mutex);
3150                         break;
3151                 }
3152                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3153                 if (memswlimit < val)
3154                         enlarge = 1;
3155                 ret = res_counter_set_limit(&memcg->memsw, val);
3156                 if (!ret) {
3157                         if (memlimit == val)
3158                                 memcg->memsw_is_minimum = true;
3159                         else
3160                                 memcg->memsw_is_minimum = false;
3161                 }
3162                 mutex_unlock(&set_limit_mutex);
3163
3164                 if (!ret)
3165                         break;
3166
3167                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3168                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3169                                                 MEM_CGROUP_RECLAIM_SHRINK);
3170                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3171                 /* Usage is reduced ? */
3172                 if (curusage >= oldusage)
3173                         retry_count--;
3174                 else
3175                         oldusage = curusage;
3176         }
3177         if (!ret && enlarge)
3178                 memcg_oom_recover(memcg);
3179         return ret;
3180 }
3181
3182 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3183                                             gfp_t gfp_mask)
3184 {
3185         unsigned long nr_reclaimed = 0;
3186         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3187         unsigned long reclaimed;
3188         int loop = 0;
3189         struct mem_cgroup_tree_per_zone *mctz;
3190         unsigned long long excess;
3191
3192         if (order > 0)
3193                 return 0;
3194
3195         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3196         /*
3197          * This loop can run a while, specially if mem_cgroup's continuously
3198          * keep exceeding their soft limit and putting the system under
3199          * pressure
3200          */
3201         do {
3202                 if (next_mz)
3203                         mz = next_mz;
3204                 else
3205                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3206                 if (!mz)
3207                         break;
3208
3209                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3210                                                 gfp_mask,
3211                                                 MEM_CGROUP_RECLAIM_SOFT);
3212                 nr_reclaimed += reclaimed;
3213                 spin_lock(&mctz->lock);
3214
3215                 /*
3216                  * If we failed to reclaim anything from this memory cgroup
3217                  * it is time to move on to the next cgroup
3218                  */
3219                 next_mz = NULL;
3220                 if (!reclaimed) {
3221                         do {
3222                                 /*
3223                                  * Loop until we find yet another one.
3224                                  *
3225                                  * By the time we get the soft_limit lock
3226                                  * again, someone might have aded the
3227                                  * group back on the RB tree. Iterate to
3228                                  * make sure we get a different mem.
3229                                  * mem_cgroup_largest_soft_limit_node returns
3230                                  * NULL if no other cgroup is present on
3231                                  * the tree
3232                                  */
3233                                 next_mz =
3234                                 __mem_cgroup_largest_soft_limit_node(mctz);
3235                                 if (next_mz == mz) {
3236                                         css_put(&next_mz->mem->css);
3237                                         next_mz = NULL;
3238                                 } else /* next_mz == NULL or other memcg */
3239                                         break;
3240                         } while (1);
3241                 }
3242                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3243                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3244                 /*
3245                  * One school of thought says that we should not add
3246                  * back the node to the tree if reclaim returns 0.
3247                  * But our reclaim could return 0, simply because due
3248                  * to priority we are exposing a smaller subset of
3249                  * memory to reclaim from. Consider this as a longer
3250                  * term TODO.
3251                  */
3252                 /* If excess == 0, no tree ops */
3253                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3254                 spin_unlock(&mctz->lock);
3255                 css_put(&mz->mem->css);
3256                 loop++;
3257                 /*
3258                  * Could not reclaim anything and there are no more
3259                  * mem cgroups to try or we seem to be looping without
3260                  * reclaiming anything.
3261                  */
3262                 if (!nr_reclaimed &&
3263                         (next_mz == NULL ||
3264                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3265                         break;
3266         } while (!nr_reclaimed);
3267         if (next_mz)
3268                 css_put(&next_mz->mem->css);
3269         return nr_reclaimed;
3270 }
3271
3272 /*
3273  * This routine traverse page_cgroup in given list and drop them all.
3274  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3275  */
3276 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3277                                 int node, int zid, enum lru_list lru)
3278 {
3279         struct zone *zone;
3280         struct mem_cgroup_per_zone *mz;
3281         struct page_cgroup *pc, *busy;
3282         unsigned long flags, loop;
3283         struct list_head *list;
3284         int ret = 0;
3285
3286         zone = &NODE_DATA(node)->node_zones[zid];
3287         mz = mem_cgroup_zoneinfo(mem, node, zid);
3288         list = &mz->lists[lru];
3289
3290         loop = MEM_CGROUP_ZSTAT(mz, lru);
3291         /* give some margin against EBUSY etc...*/
3292         loop += 256;
3293         busy = NULL;
3294         while (loop--) {
3295                 ret = 0;
3296                 spin_lock_irqsave(&zone->lru_lock, flags);
3297                 if (list_empty(list)) {
3298                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3299                         break;
3300                 }
3301                 pc = list_entry(list->prev, struct page_cgroup, lru);
3302                 if (busy == pc) {
3303                         list_move(&pc->lru, list);
3304                         busy = NULL;
3305                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3306                         continue;
3307                 }
3308                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3309
3310                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3311                 if (ret == -ENOMEM)
3312                         break;
3313
3314                 if (ret == -EBUSY || ret == -EINVAL) {
3315                         /* found lock contention or "pc" is obsolete. */
3316                         busy = pc;
3317                         cond_resched();
3318                 } else
3319                         busy = NULL;
3320         }
3321
3322         if (!ret && !list_empty(list))
3323                 return -EBUSY;
3324         return ret;
3325 }
3326
3327 /*
3328  * make mem_cgroup's charge to be 0 if there is no task.
3329  * This enables deleting this mem_cgroup.
3330  */
3331 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3332 {
3333         int ret;
3334         int node, zid, shrink;
3335         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3336         struct cgroup *cgrp = mem->css.cgroup;
3337
3338         css_get(&mem->css);
3339
3340         shrink = 0;
3341         /* should free all ? */
3342         if (free_all)
3343                 goto try_to_free;
3344 move_account:
3345         do {
3346                 ret = -EBUSY;
3347                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3348                         goto out;
3349                 ret = -EINTR;
3350                 if (signal_pending(current))
3351                         goto out;
3352                 /* This is for making all *used* pages to be on LRU. */
3353                 lru_add_drain_all();
3354                 drain_all_stock_sync();
3355                 ret = 0;
3356                 mem_cgroup_start_move(mem);
3357                 for_each_node_state(node, N_HIGH_MEMORY) {
3358                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3359                                 enum lru_list l;
3360                                 for_each_lru(l) {
3361                                         ret = mem_cgroup_force_empty_list(mem,
3362                                                         node, zid, l);
3363                                         if (ret)
3364                                                 break;
3365                                 }
3366                         }
3367                         if (ret)
3368                                 break;
3369                 }
3370                 mem_cgroup_end_move(mem);
3371                 memcg_oom_recover(mem);
3372                 /* it seems parent cgroup doesn't have enough mem */
3373                 if (ret == -ENOMEM)
3374                         goto try_to_free;
3375                 cond_resched();
3376         /* "ret" should also be checked to ensure all lists are empty. */
3377         } while (mem->res.usage > 0 || ret);
3378 out:
3379         css_put(&mem->css);
3380         return ret;
3381
3382 try_to_free:
3383         /* returns EBUSY if there is a task or if we come here twice. */
3384         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3385                 ret = -EBUSY;
3386                 goto out;
3387         }
3388         /* we call try-to-free pages for make this cgroup empty */
3389         lru_add_drain_all();
3390         /* try to free all pages in this cgroup */
3391         shrink = 1;
3392         while (nr_retries && mem->res.usage > 0) {
3393                 int progress;
3394
3395                 if (signal_pending(current)) {
3396                         ret = -EINTR;
3397                         goto out;
3398                 }
3399                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3400                                                 false, get_swappiness(mem));
3401                 if (!progress) {
3402                         nr_retries--;
3403                         /* maybe some writeback is necessary */
3404                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3405                 }
3406
3407         }
3408         lru_add_drain();
3409         /* try move_account...there may be some *locked* pages. */
3410         goto move_account;
3411 }
3412
3413 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3414 {
3415         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3416 }
3417
3418
3419 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3420 {
3421         return mem_cgroup_from_cont(cont)->use_hierarchy;
3422 }
3423
3424 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3425                                         u64 val)
3426 {
3427         int retval = 0;
3428         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3429         struct cgroup *parent = cont->parent;
3430         struct mem_cgroup *parent_mem = NULL;
3431
3432         if (parent)
3433                 parent_mem = mem_cgroup_from_cont(parent);
3434
3435         cgroup_lock();
3436         /*
3437          * If parent's use_hierarchy is set, we can't make any modifications
3438          * in the child subtrees. If it is unset, then the change can
3439          * occur, provided the current cgroup has no children.
3440          *
3441          * For the root cgroup, parent_mem is NULL, we allow value to be
3442          * set if there are no children.
3443          */
3444         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3445                                 (val == 1 || val == 0)) {
3446                 if (list_empty(&cont->children))
3447                         mem->use_hierarchy = val;
3448                 else
3449                         retval = -EBUSY;
3450         } else
3451                 retval = -EINVAL;
3452         cgroup_unlock();
3453
3454         return retval;
3455 }
3456
3457
3458 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3459                                 enum mem_cgroup_stat_index idx)
3460 {
3461         struct mem_cgroup *iter;
3462         s64 val = 0;
3463
3464         /* each per cpu's value can be minus.Then, use s64 */
3465         for_each_mem_cgroup_tree(iter, mem)
3466                 val += mem_cgroup_read_stat(iter, idx);
3467
3468         if (val < 0) /* race ? */
3469                 val = 0;
3470         return val;
3471 }
3472
3473 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3474 {
3475         u64 val;
3476
3477         if (!mem_cgroup_is_root(mem)) {
3478                 if (!swap)
3479                         return res_counter_read_u64(&mem->res, RES_USAGE);
3480                 else
3481                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3482         }
3483
3484         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3485         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3486
3487         if (swap)
3488                 val += mem_cgroup_get_recursive_idx_stat(mem,
3489                                 MEM_CGROUP_STAT_SWAPOUT);
3490
3491         return val << PAGE_SHIFT;
3492 }
3493
3494 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3495 {
3496         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3497         u64 val;
3498         int type, name;
3499
3500         type = MEMFILE_TYPE(cft->private);
3501         name = MEMFILE_ATTR(cft->private);
3502         switch (type) {
3503         case _MEM:
3504                 if (name == RES_USAGE)
3505                         val = mem_cgroup_usage(mem, false);
3506                 else
3507                         val = res_counter_read_u64(&mem->res, name);
3508                 break;
3509         case _MEMSWAP:
3510                 if (name == RES_USAGE)
3511                         val = mem_cgroup_usage(mem, true);
3512                 else
3513                         val = res_counter_read_u64(&mem->memsw, name);
3514                 break;
3515         default:
3516                 BUG();
3517                 break;
3518         }
3519         return val;
3520 }
3521 /*
3522  * The user of this function is...
3523  * RES_LIMIT.
3524  */
3525 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3526                             const char *buffer)
3527 {
3528         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3529         int type, name;
3530         unsigned long long val;
3531         int ret;
3532
3533         type = MEMFILE_TYPE(cft->private);
3534         name = MEMFILE_ATTR(cft->private);
3535         switch (name) {
3536         case RES_LIMIT:
3537                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3538                         ret = -EINVAL;
3539                         break;
3540                 }
3541                 /* This function does all necessary parse...reuse it */
3542                 ret = res_counter_memparse_write_strategy(buffer, &val);
3543                 if (ret)
3544                         break;
3545                 if (type == _MEM)
3546                         ret = mem_cgroup_resize_limit(memcg, val);
3547                 else
3548                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3549                 break;
3550         case RES_SOFT_LIMIT:
3551                 ret = res_counter_memparse_write_strategy(buffer, &val);
3552                 if (ret)
3553                         break;
3554                 /*
3555                  * For memsw, soft limits are hard to implement in terms
3556                  * of semantics, for now, we support soft limits for
3557                  * control without swap
3558                  */
3559                 if (type == _MEM)
3560                         ret = res_counter_set_soft_limit(&memcg->res, val);
3561                 else
3562                         ret = -EINVAL;
3563                 break;
3564         default:
3565                 ret = -EINVAL; /* should be BUG() ? */
3566                 break;
3567         }
3568         return ret;
3569 }
3570
3571 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3572                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3573 {
3574         struct cgroup *cgroup;
3575         unsigned long long min_limit, min_memsw_limit, tmp;
3576
3577         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3578         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3579         cgroup = memcg->css.cgroup;
3580         if (!memcg->use_hierarchy)
3581                 goto out;
3582
3583         while (cgroup->parent) {
3584                 cgroup = cgroup->parent;
3585                 memcg = mem_cgroup_from_cont(cgroup);
3586                 if (!memcg->use_hierarchy)
3587                         break;
3588                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3589                 min_limit = min(min_limit, tmp);
3590                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3591                 min_memsw_limit = min(min_memsw_limit, tmp);
3592         }
3593 out:
3594         *mem_limit = min_limit;
3595         *memsw_limit = min_memsw_limit;
3596         return;
3597 }
3598
3599 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3600 {
3601         struct mem_cgroup *mem;
3602         int type, name;
3603
3604         mem = mem_cgroup_from_cont(cont);
3605         type = MEMFILE_TYPE(event);
3606         name = MEMFILE_ATTR(event);
3607         switch (name) {
3608         case RES_MAX_USAGE:
3609                 if (type == _MEM)
3610                         res_counter_reset_max(&mem->res);
3611                 else
3612                         res_counter_reset_max(&mem->memsw);
3613                 break;
3614         case RES_FAILCNT:
3615                 if (type == _MEM)
3616                         res_counter_reset_failcnt(&mem->res);
3617                 else
3618                         res_counter_reset_failcnt(&mem->memsw);
3619                 break;
3620         }
3621
3622         return 0;
3623 }
3624
3625 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3626                                         struct cftype *cft)
3627 {
3628         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3629 }
3630
3631 #ifdef CONFIG_MMU
3632 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3633                                         struct cftype *cft, u64 val)
3634 {
3635         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3636
3637         if (val >= (1 << NR_MOVE_TYPE))
3638                 return -EINVAL;
3639         /*
3640          * We check this value several times in both in can_attach() and
3641          * attach(), so we need cgroup lock to prevent this value from being
3642          * inconsistent.
3643          */
3644         cgroup_lock();
3645         mem->move_charge_at_immigrate = val;
3646         cgroup_unlock();
3647
3648         return 0;
3649 }
3650 #else
3651 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3652                                         struct cftype *cft, u64 val)
3653 {
3654         return -ENOSYS;
3655 }
3656 #endif
3657
3658
3659 /* For read statistics */
3660 enum {
3661         MCS_CACHE,
3662         MCS_RSS,
3663         MCS_FILE_MAPPED,
3664         MCS_PGPGIN,
3665         MCS_PGPGOUT,
3666         MCS_SWAP,
3667         MCS_INACTIVE_ANON,
3668         MCS_ACTIVE_ANON,
3669         MCS_INACTIVE_FILE,
3670         MCS_ACTIVE_FILE,
3671         MCS_UNEVICTABLE,
3672         NR_MCS_STAT,
3673 };
3674
3675 struct mcs_total_stat {
3676         s64 stat[NR_MCS_STAT];
3677 };
3678
3679 struct {
3680         char *local_name;
3681         char *total_name;
3682 } memcg_stat_strings[NR_MCS_STAT] = {
3683         {"cache", "total_cache"},
3684         {"rss", "total_rss"},
3685         {"mapped_file", "total_mapped_file"},
3686         {"pgpgin", "total_pgpgin"},
3687         {"pgpgout", "total_pgpgout"},
3688         {"swap", "total_swap"},
3689         {"inactive_anon", "total_inactive_anon"},
3690         {"active_anon", "total_active_anon"},
3691         {"inactive_file", "total_inactive_file"},
3692         {"active_file", "total_active_file"},
3693         {"unevictable", "total_unevictable"}
3694 };
3695
3696
3697 static void
3698 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3699 {
3700         s64 val;
3701
3702         /* per cpu stat */
3703         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3704         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3705         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3706         s->stat[MCS_RSS] += val * PAGE_SIZE;
3707         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3708         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3709         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3710         s->stat[MCS_PGPGIN] += val;
3711         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3712         s->stat[MCS_PGPGOUT] += val;
3713         if (do_swap_account) {
3714                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3715                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3716         }
3717
3718         /* per zone stat */
3719         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3720         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3721         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3722         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3723         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3724         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3725         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3726         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3727         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3728         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3729 }
3730
3731 static void
3732 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3733 {
3734         struct mem_cgroup *iter;
3735
3736         for_each_mem_cgroup_tree(iter, mem)
3737                 mem_cgroup_get_local_stat(iter, s);
3738 }
3739
3740 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3741                                  struct cgroup_map_cb *cb)
3742 {
3743         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3744         struct mcs_total_stat mystat;
3745         int i;
3746
3747         memset(&mystat, 0, sizeof(mystat));
3748         mem_cgroup_get_local_stat(mem_cont, &mystat);
3749
3750         for (i = 0; i < NR_MCS_STAT; i++) {
3751                 if (i == MCS_SWAP && !do_swap_account)
3752                         continue;
3753                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3754         }
3755
3756         /* Hierarchical information */
3757         {
3758                 unsigned long long limit, memsw_limit;
3759                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3760                 cb->fill(cb, "hierarchical_memory_limit", limit);
3761                 if (do_swap_account)
3762                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3763         }
3764
3765         memset(&mystat, 0, sizeof(mystat));
3766         mem_cgroup_get_total_stat(mem_cont, &mystat);
3767         for (i = 0; i < NR_MCS_STAT; i++) {
3768                 if (i == MCS_SWAP && !do_swap_account)
3769                         continue;
3770                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3771         }
3772
3773 #ifdef CONFIG_DEBUG_VM
3774         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3775
3776         {
3777                 int nid, zid;
3778                 struct mem_cgroup_per_zone *mz;
3779                 unsigned long recent_rotated[2] = {0, 0};
3780                 unsigned long recent_scanned[2] = {0, 0};
3781
3782                 for_each_online_node(nid)
3783                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3784                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3785
3786                                 recent_rotated[0] +=
3787                                         mz->reclaim_stat.recent_rotated[0];
3788                                 recent_rotated[1] +=
3789                                         mz->reclaim_stat.recent_rotated[1];
3790                                 recent_scanned[0] +=
3791                                         mz->reclaim_stat.recent_scanned[0];
3792                                 recent_scanned[1] +=
3793                                         mz->reclaim_stat.recent_scanned[1];
3794                         }
3795                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3796                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3797                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3798                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3799         }
3800 #endif
3801
3802         return 0;
3803 }
3804
3805 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3806 {
3807         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3808
3809         return get_swappiness(memcg);
3810 }
3811
3812 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3813                                        u64 val)
3814 {
3815         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3816         struct mem_cgroup *parent;
3817
3818         if (val > 100)
3819                 return -EINVAL;
3820
3821         if (cgrp->parent == NULL)
3822                 return -EINVAL;
3823
3824         parent = mem_cgroup_from_cont(cgrp->parent);
3825
3826         cgroup_lock();
3827
3828         /* If under hierarchy, only empty-root can set this value */
3829         if ((parent->use_hierarchy) ||
3830             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3831                 cgroup_unlock();
3832                 return -EINVAL;
3833         }
3834
3835         spin_lock(&memcg->reclaim_param_lock);
3836         memcg->swappiness = val;
3837         spin_unlock(&memcg->reclaim_param_lock);
3838
3839         cgroup_unlock();
3840
3841         return 0;
3842 }
3843
3844 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3845 {
3846         struct mem_cgroup_threshold_ary *t;
3847         u64 usage;
3848         int i;
3849
3850         rcu_read_lock();
3851         if (!swap)
3852                 t = rcu_dereference(memcg->thresholds.primary);
3853         else
3854                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3855
3856         if (!t)
3857                 goto unlock;
3858
3859         usage = mem_cgroup_usage(memcg, swap);
3860
3861         /*
3862          * current_threshold points to threshold just below usage.
3863          * If it's not true, a threshold was crossed after last
3864          * call of __mem_cgroup_threshold().
3865          */
3866         i = t->current_threshold;
3867
3868         /*
3869          * Iterate backward over array of thresholds starting from
3870          * current_threshold and check if a threshold is crossed.
3871          * If none of thresholds below usage is crossed, we read
3872          * only one element of the array here.
3873          */
3874         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3875                 eventfd_signal(t->entries[i].eventfd, 1);
3876
3877         /* i = current_threshold + 1 */
3878         i++;
3879
3880         /*
3881          * Iterate forward over array of thresholds starting from
3882          * current_threshold+1 and check if a threshold is crossed.
3883          * If none of thresholds above usage is crossed, we read
3884          * only one element of the array here.
3885          */
3886         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3887                 eventfd_signal(t->entries[i].eventfd, 1);
3888
3889         /* Update current_threshold */
3890         t->current_threshold = i - 1;
3891 unlock:
3892         rcu_read_unlock();
3893 }
3894
3895 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3896 {
3897         while (memcg) {
3898                 __mem_cgroup_threshold(memcg, false);
3899                 if (do_swap_account)
3900                         __mem_cgroup_threshold(memcg, true);
3901
3902                 memcg = parent_mem_cgroup(memcg);
3903         }
3904 }
3905
3906 static int compare_thresholds(const void *a, const void *b)
3907 {
3908         const struct mem_cgroup_threshold *_a = a;
3909         const struct mem_cgroup_threshold *_b = b;
3910
3911         return _a->threshold - _b->threshold;
3912 }
3913
3914 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3915 {
3916         struct mem_cgroup_eventfd_list *ev;
3917
3918         list_for_each_entry(ev, &mem->oom_notify, list)
3919                 eventfd_signal(ev->eventfd, 1);
3920         return 0;
3921 }
3922
3923 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3924 {
3925         struct mem_cgroup *iter;
3926
3927         for_each_mem_cgroup_tree(iter, mem)
3928                 mem_cgroup_oom_notify_cb(iter);
3929 }
3930
3931 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3932         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3933 {
3934         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3935         struct mem_cgroup_thresholds *thresholds;
3936         struct mem_cgroup_threshold_ary *new;
3937         int type = MEMFILE_TYPE(cft->private);
3938         u64 threshold, usage;
3939         int i, size, ret;
3940
3941         ret = res_counter_memparse_write_strategy(args, &threshold);
3942         if (ret)
3943                 return ret;
3944
3945         mutex_lock(&memcg->thresholds_lock);
3946
3947         if (type == _MEM)
3948                 thresholds = &memcg->thresholds;
3949         else if (type == _MEMSWAP)
3950                 thresholds = &memcg->memsw_thresholds;
3951         else
3952                 BUG();
3953
3954         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3955
3956         /* Check if a threshold crossed before adding a new one */
3957         if (thresholds->primary)
3958                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3959
3960         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3961
3962         /* Allocate memory for new array of thresholds */
3963         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3964                         GFP_KERNEL);
3965         if (!new) {
3966                 ret = -ENOMEM;
3967                 goto unlock;
3968         }
3969         new->size = size;
3970
3971         /* Copy thresholds (if any) to new array */
3972         if (thresholds->primary) {
3973                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3974                                 sizeof(struct mem_cgroup_threshold));
3975         }
3976
3977         /* Add new threshold */
3978         new->entries[size - 1].eventfd = eventfd;
3979         new->entries[size - 1].threshold = threshold;
3980
3981         /* Sort thresholds. Registering of new threshold isn't time-critical */
3982         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3983                         compare_thresholds, NULL);
3984
3985         /* Find current threshold */
3986         new->current_threshold = -1;
3987         for (i = 0; i < size; i++) {
3988                 if (new->entries[i].threshold < usage) {
3989                         /*
3990                          * new->current_threshold will not be used until
3991                          * rcu_assign_pointer(), so it's safe to increment
3992                          * it here.
3993                          */
3994                         ++new->current_threshold;
3995                 }
3996         }
3997
3998         /* Free old spare buffer and save old primary buffer as spare */
3999         kfree(thresholds->spare);
4000         thresholds->spare = thresholds->primary;
4001
4002         rcu_assign_pointer(thresholds->primary, new);
4003
4004         /* To be sure that nobody uses thresholds */
4005         synchronize_rcu();
4006
4007 unlock:
4008         mutex_unlock(&memcg->thresholds_lock);
4009
4010         return ret;
4011 }
4012
4013 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4014         struct cftype *cft, struct eventfd_ctx *eventfd)
4015 {
4016         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4017         struct mem_cgroup_thresholds *thresholds;
4018         struct mem_cgroup_threshold_ary *new;
4019         int type = MEMFILE_TYPE(cft->private);
4020         u64 usage;
4021         int i, j, size;
4022
4023         mutex_lock(&memcg->thresholds_lock);
4024         if (type == _MEM)
4025                 thresholds = &memcg->thresholds;
4026         else if (type == _MEMSWAP)
4027                 thresholds = &memcg->memsw_thresholds;
4028         else
4029                 BUG();
4030
4031         /*
4032          * Something went wrong if we trying to unregister a threshold
4033          * if we don't have thresholds
4034          */
4035         BUG_ON(!thresholds);
4036
4037         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4038
4039         /* Check if a threshold crossed before removing */
4040         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4041
4042         /* Calculate new number of threshold */
4043         size = 0;
4044         for (i = 0; i < thresholds->primary->size; i++) {
4045                 if (thresholds->primary->entries[i].eventfd != eventfd)
4046                         size++;
4047         }
4048
4049         new = thresholds->spare;
4050
4051         /* Set thresholds array to NULL if we don't have thresholds */
4052         if (!size) {
4053                 kfree(new);
4054                 new = NULL;
4055                 goto swap_buffers;
4056         }
4057
4058         new->size = size;
4059
4060         /* Copy thresholds and find current threshold */
4061         new->current_threshold = -1;
4062         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4063                 if (thresholds->primary->entries[i].eventfd == eventfd)
4064                         continue;
4065
4066                 new->entries[j] = thresholds->primary->entries[i];
4067                 if (new->entries[j].threshold < usage) {
4068                         /*
4069                          * new->current_threshold will not be used
4070                          * until rcu_assign_pointer(), so it's safe to increment
4071                          * it here.
4072                          */
4073                         ++new->current_threshold;
4074                 }
4075                 j++;
4076         }
4077
4078 swap_buffers:
4079         /* Swap primary and spare array */
4080         thresholds->spare = thresholds->primary;
4081         rcu_assign_pointer(thresholds->primary, new);
4082
4083         /* To be sure that nobody uses thresholds */
4084         synchronize_rcu();
4085
4086         mutex_unlock(&memcg->thresholds_lock);
4087 }
4088
4089 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4090         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4091 {
4092         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4093         struct mem_cgroup_eventfd_list *event;
4094         int type = MEMFILE_TYPE(cft->private);
4095
4096         BUG_ON(type != _OOM_TYPE);
4097         event = kmalloc(sizeof(*event), GFP_KERNEL);
4098         if (!event)
4099                 return -ENOMEM;
4100
4101         mutex_lock(&memcg_oom_mutex);
4102
4103         event->eventfd = eventfd;
4104         list_add(&event->list, &memcg->oom_notify);
4105
4106         /* already in OOM ? */
4107         if (atomic_read(&memcg->oom_lock))
4108                 eventfd_signal(eventfd, 1);
4109         mutex_unlock(&memcg_oom_mutex);
4110
4111         return 0;
4112 }
4113
4114 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4115         struct cftype *cft, struct eventfd_ctx *eventfd)
4116 {
4117         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4118         struct mem_cgroup_eventfd_list *ev, *tmp;
4119         int type = MEMFILE_TYPE(cft->private);
4120
4121         BUG_ON(type != _OOM_TYPE);
4122
4123         mutex_lock(&memcg_oom_mutex);
4124
4125         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4126                 if (ev->eventfd == eventfd) {
4127                         list_del(&ev->list);
4128                         kfree(ev);
4129                 }
4130         }
4131
4132         mutex_unlock(&memcg_oom_mutex);
4133 }
4134
4135 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4136         struct cftype *cft,  struct cgroup_map_cb *cb)
4137 {
4138         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4139
4140         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4141
4142         if (atomic_read(&mem->oom_lock))
4143                 cb->fill(cb, "under_oom", 1);
4144         else
4145                 cb->fill(cb, "under_oom", 0);
4146         return 0;
4147 }
4148
4149 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4150         struct cftype *cft, u64 val)
4151 {
4152         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4153         struct mem_cgroup *parent;
4154
4155         /* cannot set to root cgroup and only 0 and 1 are allowed */
4156         if (!cgrp->parent || !((val == 0) || (val == 1)))
4157                 return -EINVAL;
4158
4159         parent = mem_cgroup_from_cont(cgrp->parent);
4160
4161         cgroup_lock();
4162         /* oom-kill-disable is a flag for subhierarchy. */
4163         if ((parent->use_hierarchy) ||
4164             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4165                 cgroup_unlock();
4166                 return -EINVAL;
4167         }
4168         mem->oom_kill_disable = val;
4169         if (!val)
4170                 memcg_oom_recover(mem);
4171         cgroup_unlock();
4172         return 0;
4173 }
4174
4175 static struct cftype mem_cgroup_files[] = {
4176         {
4177                 .name = "usage_in_bytes",
4178                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4179                 .read_u64 = mem_cgroup_read,
4180                 .register_event = mem_cgroup_usage_register_event,
4181                 .unregister_event = mem_cgroup_usage_unregister_event,
4182         },
4183         {
4184                 .name = "max_usage_in_bytes",
4185                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4186                 .trigger = mem_cgroup_reset,
4187                 .read_u64 = mem_cgroup_read,
4188         },
4189         {
4190                 .name = "limit_in_bytes",
4191                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4192                 .write_string = mem_cgroup_write,
4193                 .read_u64 = mem_cgroup_read,
4194         },
4195         {
4196                 .name = "soft_limit_in_bytes",
4197                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4198                 .write_string = mem_cgroup_write,
4199                 .read_u64 = mem_cgroup_read,
4200         },
4201         {
4202                 .name = "failcnt",
4203                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4204                 .trigger = mem_cgroup_reset,
4205                 .read_u64 = mem_cgroup_read,
4206         },
4207         {
4208                 .name = "stat",
4209                 .read_map = mem_control_stat_show,
4210         },
4211         {
4212                 .name = "force_empty",
4213                 .trigger = mem_cgroup_force_empty_write,
4214         },
4215         {
4216                 .name = "use_hierarchy",
4217                 .write_u64 = mem_cgroup_hierarchy_write,
4218                 .read_u64 = mem_cgroup_hierarchy_read,
4219         },
4220         {
4221                 .name = "swappiness",
4222                 .read_u64 = mem_cgroup_swappiness_read,
4223                 .write_u64 = mem_cgroup_swappiness_write,
4224         },
4225         {
4226                 .name = "move_charge_at_immigrate",
4227                 .read_u64 = mem_cgroup_move_charge_read,
4228                 .write_u64 = mem_cgroup_move_charge_write,
4229         },
4230         {
4231                 .name = "oom_control",
4232                 .read_map = mem_cgroup_oom_control_read,
4233                 .write_u64 = mem_cgroup_oom_control_write,
4234                 .register_event = mem_cgroup_oom_register_event,
4235                 .unregister_event = mem_cgroup_oom_unregister_event,
4236                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4237         },
4238 };
4239
4240 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4241 static struct cftype memsw_cgroup_files[] = {
4242         {
4243                 .name = "memsw.usage_in_bytes",
4244                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4245                 .read_u64 = mem_cgroup_read,
4246                 .register_event = mem_cgroup_usage_register_event,
4247                 .unregister_event = mem_cgroup_usage_unregister_event,
4248         },
4249         {
4250                 .name = "memsw.max_usage_in_bytes",
4251                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4252                 .trigger = mem_cgroup_reset,
4253                 .read_u64 = mem_cgroup_read,
4254         },
4255         {
4256                 .name = "memsw.limit_in_bytes",
4257                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4258                 .write_string = mem_cgroup_write,
4259                 .read_u64 = mem_cgroup_read,
4260         },
4261         {
4262                 .name = "memsw.failcnt",
4263                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4264                 .trigger = mem_cgroup_reset,
4265                 .read_u64 = mem_cgroup_read,
4266         },
4267 };
4268
4269 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4270 {
4271         if (!do_swap_account)
4272                 return 0;
4273         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4274                                 ARRAY_SIZE(memsw_cgroup_files));
4275 };
4276 #else
4277 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4278 {
4279         return 0;
4280 }
4281 #endif
4282
4283 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4284 {
4285         struct mem_cgroup_per_node *pn;
4286         struct mem_cgroup_per_zone *mz;
4287         enum lru_list l;
4288         int zone, tmp = node;
4289         /*
4290          * This routine is called against possible nodes.
4291          * But it's BUG to call kmalloc() against offline node.
4292          *
4293          * TODO: this routine can waste much memory for nodes which will
4294          *       never be onlined. It's better to use memory hotplug callback
4295          *       function.
4296          */
4297         if (!node_state(node, N_NORMAL_MEMORY))
4298                 tmp = -1;
4299         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4300         if (!pn)
4301                 return 1;
4302
4303         mem->info.nodeinfo[node] = pn;
4304         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4305                 mz = &pn->zoneinfo[zone];
4306                 for_each_lru(l)
4307                         INIT_LIST_HEAD(&mz->lists[l]);
4308                 mz->usage_in_excess = 0;
4309                 mz->on_tree = false;
4310                 mz->mem = mem;
4311         }
4312         return 0;
4313 }
4314
4315 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4316 {
4317         kfree(mem->info.nodeinfo[node]);
4318 }
4319
4320 static struct mem_cgroup *mem_cgroup_alloc(void)
4321 {
4322         struct mem_cgroup *mem;
4323         int size = sizeof(struct mem_cgroup);
4324
4325         /* Can be very big if MAX_NUMNODES is very big */
4326         if (size < PAGE_SIZE)
4327                 mem = kzalloc(size, GFP_KERNEL);
4328         else
4329                 mem = vzalloc(size);
4330
4331         if (!mem)
4332                 return NULL;
4333
4334         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4335         if (!mem->stat)
4336                 goto out_free;
4337         spin_lock_init(&mem->pcp_counter_lock);
4338         return mem;
4339
4340 out_free:
4341         if (size < PAGE_SIZE)
4342                 kfree(mem);
4343         else
4344                 vfree(mem);
4345         return NULL;
4346 }
4347
4348 /*
4349  * At destroying mem_cgroup, references from swap_cgroup can remain.
4350  * (scanning all at force_empty is too costly...)
4351  *
4352  * Instead of clearing all references at force_empty, we remember
4353  * the number of reference from swap_cgroup and free mem_cgroup when
4354  * it goes down to 0.
4355  *
4356  * Removal of cgroup itself succeeds regardless of refs from swap.
4357  */
4358
4359 static void __mem_cgroup_free(struct mem_cgroup *mem)
4360 {
4361         int node;
4362
4363         mem_cgroup_remove_from_trees(mem);
4364         free_css_id(&mem_cgroup_subsys, &mem->css);
4365
4366         for_each_node_state(node, N_POSSIBLE)
4367                 free_mem_cgroup_per_zone_info(mem, node);
4368
4369         free_percpu(mem->stat);
4370         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4371                 kfree(mem);
4372         else
4373                 vfree(mem);
4374 }
4375
4376 static void mem_cgroup_get(struct mem_cgroup *mem)
4377 {
4378         atomic_inc(&mem->refcnt);
4379 }
4380
4381 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4382 {
4383         if (atomic_sub_and_test(count, &mem->refcnt)) {
4384                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4385                 __mem_cgroup_free(mem);
4386                 if (parent)
4387                         mem_cgroup_put(parent);
4388         }
4389 }
4390
4391 static void mem_cgroup_put(struct mem_cgroup *mem)
4392 {
4393         __mem_cgroup_put(mem, 1);
4394 }
4395
4396 /*
4397  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4398  */
4399 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4400 {
4401         if (!mem->res.parent)
4402                 return NULL;
4403         return mem_cgroup_from_res_counter(mem->res.parent, res);
4404 }
4405
4406 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4407 static void __init enable_swap_cgroup(void)
4408 {
4409         if (!mem_cgroup_disabled() && really_do_swap_account)
4410                 do_swap_account = 1;
4411 }
4412 #else
4413 static void __init enable_swap_cgroup(void)
4414 {
4415 }
4416 #endif
4417
4418 static int mem_cgroup_soft_limit_tree_init(void)
4419 {
4420         struct mem_cgroup_tree_per_node *rtpn;
4421         struct mem_cgroup_tree_per_zone *rtpz;
4422         int tmp, node, zone;
4423
4424         for_each_node_state(node, N_POSSIBLE) {
4425                 tmp = node;
4426                 if (!node_state(node, N_NORMAL_MEMORY))
4427                         tmp = -1;
4428                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4429                 if (!rtpn)
4430                         return 1;
4431
4432                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4433
4434                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4435                         rtpz = &rtpn->rb_tree_per_zone[zone];
4436                         rtpz->rb_root = RB_ROOT;
4437                         spin_lock_init(&rtpz->lock);
4438                 }
4439         }
4440         return 0;
4441 }
4442
4443 static struct cgroup_subsys_state * __ref
4444 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4445 {
4446         struct mem_cgroup *mem, *parent;
4447         long error = -ENOMEM;
4448         int node;
4449
4450         mem = mem_cgroup_alloc();
4451         if (!mem)
4452                 return ERR_PTR(error);
4453
4454         for_each_node_state(node, N_POSSIBLE)
4455                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4456                         goto free_out;
4457
4458         /* root ? */
4459         if (cont->parent == NULL) {
4460                 int cpu;
4461                 enable_swap_cgroup();
4462                 parent = NULL;
4463                 root_mem_cgroup = mem;
4464                 if (mem_cgroup_soft_limit_tree_init())
4465                         goto free_out;
4466                 for_each_possible_cpu(cpu) {
4467                         struct memcg_stock_pcp *stock =
4468                                                 &per_cpu(memcg_stock, cpu);
4469                         INIT_WORK(&stock->work, drain_local_stock);
4470                 }
4471                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4472         } else {
4473                 parent = mem_cgroup_from_cont(cont->parent);
4474                 mem->use_hierarchy = parent->use_hierarchy;
4475                 mem->oom_kill_disable = parent->oom_kill_disable;
4476         }
4477
4478         if (parent && parent->use_hierarchy) {
4479                 res_counter_init(&mem->res, &parent->res);
4480                 res_counter_init(&mem->memsw, &parent->memsw);
4481                 /*
4482                  * We increment refcnt of the parent to ensure that we can
4483                  * safely access it on res_counter_charge/uncharge.
4484                  * This refcnt will be decremented when freeing this
4485                  * mem_cgroup(see mem_cgroup_put).
4486                  */
4487                 mem_cgroup_get(parent);
4488         } else {
4489                 res_counter_init(&mem->res, NULL);
4490                 res_counter_init(&mem->memsw, NULL);
4491         }
4492         mem->last_scanned_child = 0;
4493         spin_lock_init(&mem->reclaim_param_lock);
4494         INIT_LIST_HEAD(&mem->oom_notify);
4495
4496         if (parent)
4497                 mem->swappiness = get_swappiness(parent);
4498         atomic_set(&mem->refcnt, 1);
4499         mem->move_charge_at_immigrate = 0;
4500         mutex_init(&mem->thresholds_lock);
4501         return &mem->css;
4502 free_out:
4503         __mem_cgroup_free(mem);
4504         root_mem_cgroup = NULL;
4505         return ERR_PTR(error);
4506 }
4507
4508 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4509                                         struct cgroup *cont)
4510 {
4511         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4512
4513         return mem_cgroup_force_empty(mem, false);
4514 }
4515
4516 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4517                                 struct cgroup *cont)
4518 {
4519         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4520
4521         mem_cgroup_put(mem);
4522 }
4523
4524 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4525                                 struct cgroup *cont)
4526 {
4527         int ret;
4528
4529         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4530                                 ARRAY_SIZE(mem_cgroup_files));
4531
4532         if (!ret)
4533                 ret = register_memsw_files(cont, ss);
4534         return ret;
4535 }
4536
4537 #ifdef CONFIG_MMU
4538 /* Handlers for move charge at task migration. */
4539 #define PRECHARGE_COUNT_AT_ONCE 256
4540 static int mem_cgroup_do_precharge(unsigned long count)
4541 {
4542         int ret = 0;
4543         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4544         struct mem_cgroup *mem = mc.to;
4545
4546         if (mem_cgroup_is_root(mem)) {
4547                 mc.precharge += count;
4548                 /* we don't need css_get for root */
4549                 return ret;
4550         }
4551         /* try to charge at once */
4552         if (count > 1) {
4553                 struct res_counter *dummy;
4554                 /*
4555                  * "mem" cannot be under rmdir() because we've already checked
4556                  * by cgroup_lock_live_cgroup() that it is not removed and we
4557                  * are still under the same cgroup_mutex. So we can postpone
4558                  * css_get().
4559                  */
4560                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4561                         goto one_by_one;
4562                 if (do_swap_account && res_counter_charge(&mem->memsw,
4563                                                 PAGE_SIZE * count, &dummy)) {
4564                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4565                         goto one_by_one;
4566                 }
4567                 mc.precharge += count;
4568                 return ret;
4569         }
4570 one_by_one:
4571         /* fall back to one by one charge */
4572         while (count--) {
4573                 if (signal_pending(current)) {
4574                         ret = -EINTR;
4575                         break;
4576                 }
4577                 if (!batch_count--) {
4578                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4579                         cond_resched();
4580                 }
4581                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4582                                               PAGE_SIZE);
4583                 if (ret || !mem)
4584                         /* mem_cgroup_clear_mc() will do uncharge later */
4585                         return -ENOMEM;
4586                 mc.precharge++;
4587         }
4588         return ret;
4589 }
4590
4591 /**
4592  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4593  * @vma: the vma the pte to be checked belongs
4594  * @addr: the address corresponding to the pte to be checked
4595  * @ptent: the pte to be checked
4596  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4597  *
4598  * Returns
4599  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4600  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4601  *     move charge. if @target is not NULL, the page is stored in target->page
4602  *     with extra refcnt got(Callers should handle it).
4603  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4604  *     target for charge migration. if @target is not NULL, the entry is stored
4605  *     in target->ent.
4606  *
4607  * Called with pte lock held.
4608  */
4609 union mc_target {
4610         struct page     *page;
4611         swp_entry_t     ent;
4612 };
4613
4614 enum mc_target_type {
4615         MC_TARGET_NONE, /* not used */
4616         MC_TARGET_PAGE,
4617         MC_TARGET_SWAP,
4618 };
4619
4620 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4621                                                 unsigned long addr, pte_t ptent)
4622 {
4623         struct page *page = vm_normal_page(vma, addr, ptent);
4624
4625         if (!page || !page_mapped(page))
4626                 return NULL;
4627         if (PageAnon(page)) {
4628                 /* we don't move shared anon */
4629                 if (!move_anon() || page_mapcount(page) > 2)
4630                         return NULL;
4631         } else if (!move_file())
4632                 /* we ignore mapcount for file pages */
4633                 return NULL;
4634         if (!get_page_unless_zero(page))
4635                 return NULL;
4636
4637         return page;
4638 }
4639
4640 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4641                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4642 {
4643         int usage_count;
4644         struct page *page = NULL;
4645         swp_entry_t ent = pte_to_swp_entry(ptent);
4646
4647         if (!move_anon() || non_swap_entry(ent))
4648                 return NULL;
4649         usage_count = mem_cgroup_count_swap_user(ent, &page);
4650         if (usage_count > 1) { /* we don't move shared anon */
4651                 if (page)
4652                         put_page(page);
4653                 return NULL;
4654         }
4655         if (do_swap_account)
4656                 entry->val = ent.val;
4657
4658         return page;
4659 }
4660
4661 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4662                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4663 {
4664         struct page *page = NULL;
4665         struct inode *inode;
4666         struct address_space *mapping;
4667         pgoff_t pgoff;
4668
4669         if (!vma->vm_file) /* anonymous vma */
4670                 return NULL;
4671         if (!move_file())
4672                 return NULL;
4673
4674         inode = vma->vm_file->f_path.dentry->d_inode;
4675         mapping = vma->vm_file->f_mapping;
4676         if (pte_none(ptent))
4677                 pgoff = linear_page_index(vma, addr);
4678         else /* pte_file(ptent) is true */
4679                 pgoff = pte_to_pgoff(ptent);
4680
4681         /* page is moved even if it's not RSS of this task(page-faulted). */
4682         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4683                 page = find_get_page(mapping, pgoff);
4684         } else { /* shmem/tmpfs file. we should take account of swap too. */
4685                 swp_entry_t ent;
4686                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4687                 if (do_swap_account)
4688                         entry->val = ent.val;
4689         }
4690
4691         return page;
4692 }
4693
4694 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4695                 unsigned long addr, pte_t ptent, union mc_target *target)
4696 {
4697         struct page *page = NULL;
4698         struct page_cgroup *pc;
4699         int ret = 0;
4700         swp_entry_t ent = { .val = 0 };
4701
4702         if (pte_present(ptent))
4703                 page = mc_handle_present_pte(vma, addr, ptent);
4704         else if (is_swap_pte(ptent))
4705                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4706         else if (pte_none(ptent) || pte_file(ptent))
4707                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4708
4709         if (!page && !ent.val)
4710                 return 0;
4711         if (page) {
4712                 pc = lookup_page_cgroup(page);
4713                 /*
4714                  * Do only loose check w/o page_cgroup lock.
4715                  * mem_cgroup_move_account() checks the pc is valid or not under
4716                  * the lock.
4717                  */
4718                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4719                         ret = MC_TARGET_PAGE;
4720                         if (target)
4721                                 target->page = page;
4722                 }
4723                 if (!ret || !target)
4724                         put_page(page);
4725         }
4726         /* There is a swap entry and a page doesn't exist or isn't charged */
4727         if (ent.val && !ret &&
4728                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4729                 ret = MC_TARGET_SWAP;
4730                 if (target)
4731                         target->ent = ent;
4732         }
4733         return ret;
4734 }
4735
4736 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4737                                         unsigned long addr, unsigned long end,
4738                                         struct mm_walk *walk)
4739 {
4740         struct vm_area_struct *vma = walk->private;
4741         pte_t *pte;
4742         spinlock_t *ptl;
4743
4744         split_huge_page_pmd(walk->mm, pmd);
4745
4746         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4747         for (; addr != end; pte++, addr += PAGE_SIZE)
4748                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4749                         mc.precharge++; /* increment precharge temporarily */
4750         pte_unmap_unlock(pte - 1, ptl);
4751         cond_resched();
4752
4753         return 0;
4754 }
4755
4756 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4757 {
4758         unsigned long precharge;
4759         struct vm_area_struct *vma;
4760
4761         down_read(&mm->mmap_sem);
4762         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4763                 struct mm_walk mem_cgroup_count_precharge_walk = {
4764                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4765                         .mm = mm,
4766                         .private = vma,
4767                 };
4768                 if (is_vm_hugetlb_page(vma))
4769                         continue;
4770                 walk_page_range(vma->vm_start, vma->vm_end,
4771                                         &mem_cgroup_count_precharge_walk);
4772         }
4773         up_read(&mm->mmap_sem);
4774
4775         precharge = mc.precharge;
4776         mc.precharge = 0;
4777
4778         return precharge;
4779 }
4780
4781 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4782 {
4783         unsigned long precharge = mem_cgroup_count_precharge(mm);
4784
4785         VM_BUG_ON(mc.moving_task);
4786         mc.moving_task = current;
4787         return mem_cgroup_do_precharge(precharge);
4788 }
4789
4790 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4791 static void __mem_cgroup_clear_mc(void)
4792 {
4793         struct mem_cgroup *from = mc.from;
4794         struct mem_cgroup *to = mc.to;
4795
4796         /* we must uncharge all the leftover precharges from mc.to */
4797         if (mc.precharge) {
4798                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4799                 mc.precharge = 0;
4800         }
4801         /*
4802          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4803          * we must uncharge here.
4804          */
4805         if (mc.moved_charge) {
4806                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4807                 mc.moved_charge = 0;
4808         }
4809         /* we must fixup refcnts and charges */
4810         if (mc.moved_swap) {
4811                 /* uncharge swap account from the old cgroup */
4812                 if (!mem_cgroup_is_root(mc.from))
4813                         res_counter_uncharge(&mc.from->memsw,
4814                                                 PAGE_SIZE * mc.moved_swap);
4815                 __mem_cgroup_put(mc.from, mc.moved_swap);
4816
4817                 if (!mem_cgroup_is_root(mc.to)) {
4818                         /*
4819                          * we charged both to->res and to->memsw, so we should
4820                          * uncharge to->res.
4821                          */
4822                         res_counter_uncharge(&mc.to->res,
4823                                                 PAGE_SIZE * mc.moved_swap);
4824                 }
4825                 /* we've already done mem_cgroup_get(mc.to) */
4826                 mc.moved_swap = 0;
4827         }
4828         memcg_oom_recover(from);
4829         memcg_oom_recover(to);
4830         wake_up_all(&mc.waitq);
4831 }
4832
4833 static void mem_cgroup_clear_mc(void)
4834 {
4835         struct mem_cgroup *from = mc.from;
4836
4837         /*
4838          * we must clear moving_task before waking up waiters at the end of
4839          * task migration.
4840          */
4841         mc.moving_task = NULL;
4842         __mem_cgroup_clear_mc();
4843         spin_lock(&mc.lock);
4844         mc.from = NULL;
4845         mc.to = NULL;
4846         spin_unlock(&mc.lock);
4847         mem_cgroup_end_move(from);
4848 }
4849
4850 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4851                                 struct cgroup *cgroup,
4852                                 struct task_struct *p,
4853                                 bool threadgroup)
4854 {
4855         int ret = 0;
4856         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4857
4858         if (mem->move_charge_at_immigrate) {
4859                 struct mm_struct *mm;
4860                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4861
4862                 VM_BUG_ON(from == mem);
4863
4864                 mm = get_task_mm(p);
4865                 if (!mm)
4866                         return 0;
4867                 /* We move charges only when we move a owner of the mm */
4868                 if (mm->owner == p) {
4869                         VM_BUG_ON(mc.from);
4870                         VM_BUG_ON(mc.to);
4871                         VM_BUG_ON(mc.precharge);
4872                         VM_BUG_ON(mc.moved_charge);
4873                         VM_BUG_ON(mc.moved_swap);
4874                         mem_cgroup_start_move(from);
4875                         spin_lock(&mc.lock);
4876                         mc.from = from;
4877                         mc.to = mem;
4878                         spin_unlock(&mc.lock);
4879                         /* We set mc.moving_task later */
4880
4881                         ret = mem_cgroup_precharge_mc(mm);
4882                         if (ret)
4883                                 mem_cgroup_clear_mc();
4884                 }
4885                 mmput(mm);
4886         }
4887         return ret;
4888 }
4889
4890 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4891                                 struct cgroup *cgroup,
4892                                 struct task_struct *p,
4893                                 bool threadgroup)
4894 {
4895         mem_cgroup_clear_mc();
4896 }
4897
4898 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4899                                 unsigned long addr, unsigned long end,
4900                                 struct mm_walk *walk)
4901 {
4902         int ret = 0;
4903         struct vm_area_struct *vma = walk->private;
4904         pte_t *pte;
4905         spinlock_t *ptl;
4906
4907         split_huge_page_pmd(walk->mm, pmd);
4908 retry:
4909         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910         for (; addr != end; addr += PAGE_SIZE) {
4911                 pte_t ptent = *(pte++);
4912                 union mc_target target;
4913                 int type;
4914                 struct page *page;
4915                 struct page_cgroup *pc;
4916                 swp_entry_t ent;
4917
4918                 if (!mc.precharge)
4919                         break;
4920
4921                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4922                 switch (type) {
4923                 case MC_TARGET_PAGE:
4924                         page = target.page;
4925                         if (isolate_lru_page(page))
4926                                 goto put;
4927                         pc = lookup_page_cgroup(page);
4928                         if (!mem_cgroup_move_account(pc,
4929                                         mc.from, mc.to, false, PAGE_SIZE)) {
4930                                 mc.precharge--;
4931                                 /* we uncharge from mc.from later. */
4932                                 mc.moved_charge++;
4933                         }
4934                         putback_lru_page(page);
4935 put:                    /* is_target_pte_for_mc() gets the page */
4936                         put_page(page);
4937                         break;
4938                 case MC_TARGET_SWAP:
4939                         ent = target.ent;
4940                         if (!mem_cgroup_move_swap_account(ent,
4941                                                 mc.from, mc.to, false)) {
4942                                 mc.precharge--;
4943                                 /* we fixup refcnts and charges later. */
4944                                 mc.moved_swap++;
4945                         }
4946                         break;
4947                 default:
4948                         break;
4949                 }
4950         }
4951         pte_unmap_unlock(pte - 1, ptl);
4952         cond_resched();
4953
4954         if (addr != end) {
4955                 /*
4956                  * We have consumed all precharges we got in can_attach().
4957                  * We try charge one by one, but don't do any additional
4958                  * charges to mc.to if we have failed in charge once in attach()
4959                  * phase.
4960                  */
4961                 ret = mem_cgroup_do_precharge(1);
4962                 if (!ret)
4963                         goto retry;
4964         }
4965
4966         return ret;
4967 }
4968
4969 static void mem_cgroup_move_charge(struct mm_struct *mm)
4970 {
4971         struct vm_area_struct *vma;
4972
4973         lru_add_drain_all();
4974 retry:
4975         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4976                 /*
4977                  * Someone who are holding the mmap_sem might be waiting in
4978                  * waitq. So we cancel all extra charges, wake up all waiters,
4979                  * and retry. Because we cancel precharges, we might not be able
4980                  * to move enough charges, but moving charge is a best-effort
4981                  * feature anyway, so it wouldn't be a big problem.
4982                  */
4983                 __mem_cgroup_clear_mc();
4984                 cond_resched();
4985                 goto retry;
4986         }
4987         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4988                 int ret;
4989                 struct mm_walk mem_cgroup_move_charge_walk = {
4990                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4991                         .mm = mm,
4992                         .private = vma,
4993                 };
4994                 if (is_vm_hugetlb_page(vma))
4995                         continue;
4996                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4997                                                 &mem_cgroup_move_charge_walk);
4998                 if (ret)
4999                         /*
5000                          * means we have consumed all precharges and failed in
5001                          * doing additional charge. Just abandon here.
5002                          */
5003                         break;
5004         }
5005         up_read(&mm->mmap_sem);
5006 }
5007
5008 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5009                                 struct cgroup *cont,
5010                                 struct cgroup *old_cont,
5011                                 struct task_struct *p,
5012                                 bool threadgroup)
5013 {
5014         struct mm_struct *mm;
5015
5016         if (!mc.to)
5017                 /* no need to move charge */
5018                 return;
5019
5020         mm = get_task_mm(p);
5021         if (mm) {
5022                 mem_cgroup_move_charge(mm);
5023                 mmput(mm);
5024         }
5025         mem_cgroup_clear_mc();
5026 }
5027 #else   /* !CONFIG_MMU */
5028 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5029                                 struct cgroup *cgroup,
5030                                 struct task_struct *p,
5031                                 bool threadgroup)
5032 {
5033         return 0;
5034 }
5035 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5036                                 struct cgroup *cgroup,
5037                                 struct task_struct *p,
5038                                 bool threadgroup)
5039 {
5040 }
5041 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5042                                 struct cgroup *cont,
5043                                 struct cgroup *old_cont,
5044                                 struct task_struct *p,
5045                                 bool threadgroup)
5046 {
5047 }
5048 #endif
5049
5050 struct cgroup_subsys mem_cgroup_subsys = {
5051         .name = "memory",
5052         .subsys_id = mem_cgroup_subsys_id,
5053         .create = mem_cgroup_create,
5054         .pre_destroy = mem_cgroup_pre_destroy,
5055         .destroy = mem_cgroup_destroy,
5056         .populate = mem_cgroup_populate,
5057         .can_attach = mem_cgroup_can_attach,
5058         .cancel_attach = mem_cgroup_cancel_attach,
5059         .attach = mem_cgroup_move_task,
5060         .early_init = 0,
5061         .use_id = 1,
5062 };
5063
5064 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5065 static int __init enable_swap_account(char *s)
5066 {
5067         /* consider enabled if no parameter or 1 is given */
5068         if (!(*s) || !strcmp(s, "=1"))
5069                 really_do_swap_account = 1;
5070         else if (!strcmp(s, "=0"))
5071                 really_do_swap_account = 0;
5072         return 1;
5073 }
5074 __setup("swapaccount", enable_swap_account);
5075
5076 static int __init disable_swap_account(char *s)
5077 {
5078         printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5079         enable_swap_account("=0");
5080         return 1;
5081 }
5082 __setup("noswapaccount", disable_swap_account);
5083 #endif