1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
88 #define do_swap_account 0
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event {
132 * memcg which the event belongs to.
134 struct mem_cgroup *memcg;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx *eventfd;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
210 /* for encoding cft->private value on file */
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311 struct workqueue_struct *memcg_kmem_cache_wq;
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
325 struct memcg_shrinker_map *new, *old;
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
358 if (mem_cgroup_is_root(memcg))
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
375 if (mem_cgroup_is_root(memcg))
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
383 memcg_free_shrinker_maps(memcg);
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
389 mutex_unlock(&memcg_shrinker_map_mutex);
394 int memcg_expand_shrinker_maps(int new_id)
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
413 mem_cgroup_iter_break(NULL, memcg);
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
451 struct mem_cgroup *memcg;
453 memcg = page->mem_cgroup;
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
474 ino_t page_cgroup_ino(struct page *page)
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
487 ino = cgroup_ino(memcg->css.cgroup);
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
495 int nid = page_to_nid(page);
497 return memcg->nodeinfo[nid];
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
503 return soft_limit_tree.rb_tree_per_node[nid];
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
509 int nid = page_to_nid(page);
511 return soft_limit_tree.rb_tree_per_node[nid];
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 mctz->rb_rightmost = &mz->tree_node;
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
563 rb_erase(&mz->tree_node, &mctz->rb_root);
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
595 mctz = soft_limit_tree_from_page(page);
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
609 if (excess || mz->on_tree) {
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
615 __mem_cgroup_remove_exceeded(mz, mctz);
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
636 mem_cgroup_remove_exceeded(mz, mctz);
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
643 struct mem_cgroup_per_node *mz;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget_online(&mz->memcg->css))
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
668 struct mem_cgroup_per_node *mz;
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
686 if (mem_cgroup_disabled())
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 struct mem_cgroup *parent;
710 parent = parent_mem_cgroup(pn->memcg);
713 return mem_cgroup_nodeinfo(parent, nid);
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
735 __mod_node_page_state(pgdat, idx, val);
737 if (mem_cgroup_disabled())
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
744 __mod_memcg_state(memcg, idx, val);
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
762 struct page *page = virt_to_head_page(p);
763 pg_data_t *pgdat = page_pgdat(page);
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
768 memcg = memcg_from_slab_page(page);
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg || memcg == root_mem_cgroup) {
772 __mod_node_page_state(pgdat, idx, val);
774 lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 __mod_lruvec_state(lruvec, idx, val);
781 * __count_memcg_events - account VM events in a cgroup
782 * @memcg: the memory cgroup
783 * @idx: the event item
784 * @count: the number of events that occured
786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
791 if (mem_cgroup_disabled())
794 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
795 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
796 struct mem_cgroup *mi;
799 * Batch local counters to keep them in sync with
800 * the hierarchical ones.
802 __this_cpu_add(memcg->vmstats_local->events[idx], x);
803 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
804 atomic_long_add(x, &mi->vmevents[idx]);
807 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
812 return atomic_long_read(&memcg->vmevents[event]);
815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
820 for_each_possible_cpu(cpu)
821 x += per_cpu(memcg->vmstats_local->events[event], cpu);
825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
827 bool compound, int nr_pages)
830 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
831 * counted as CACHE even if it's on ANON LRU.
834 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
836 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
837 if (PageSwapBacked(page))
838 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
842 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
843 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
846 /* pagein of a big page is an event. So, ignore page size */
848 __count_memcg_events(memcg, PGPGIN, 1);
850 __count_memcg_events(memcg, PGPGOUT, 1);
851 nr_pages = -nr_pages; /* for event */
854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_target target)
860 unsigned long val, next;
862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 /* from time_after() in jiffies.h */
865 if ((long)(next - val) < 0) {
867 case MEM_CGROUP_TARGET_THRESH:
868 next = val + THRESHOLDS_EVENTS_TARGET;
870 case MEM_CGROUP_TARGET_SOFTLIMIT:
871 next = val + SOFTLIMIT_EVENTS_TARGET;
876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
883 * Check events in order.
886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
888 /* threshold event is triggered in finer grain than soft limit */
889 if (unlikely(mem_cgroup_event_ratelimit(memcg,
890 MEM_CGROUP_TARGET_THRESH))) {
893 do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 MEM_CGROUP_TARGET_SOFTLIMIT);
895 mem_cgroup_threshold(memcg);
896 if (unlikely(do_softlimit))
897 mem_cgroup_update_tree(memcg, page);
901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
904 * mm_update_next_owner() may clear mm->owner to NULL
905 * if it races with swapoff, page migration, etc.
906 * So this can be called with p == NULL.
911 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
913 EXPORT_SYMBOL(mem_cgroup_from_task);
916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917 * @mm: mm from which memcg should be extracted. It can be NULL.
919 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
920 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
925 struct mem_cgroup *memcg;
927 if (mem_cgroup_disabled())
933 * Page cache insertions can happen withou an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
938 memcg = root_mem_cgroup;
940 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
941 if (unlikely(!memcg))
942 memcg = root_mem_cgroup;
944 } while (!css_tryget(&memcg->css));
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
951 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
952 * @page: page from which memcg should be extracted.
954 * Obtain a reference on page->memcg and returns it if successful. Otherwise
955 * root_mem_cgroup is returned.
957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
959 struct mem_cgroup *memcg = page->mem_cgroup;
961 if (mem_cgroup_disabled())
965 if (!memcg || !css_tryget_online(&memcg->css))
966 memcg = root_mem_cgroup;
970 EXPORT_SYMBOL(get_mem_cgroup_from_page);
973 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
977 if (unlikely(current->active_memcg)) {
978 struct mem_cgroup *memcg = root_mem_cgroup;
981 if (css_tryget_online(¤t->active_memcg->css))
982 memcg = current->active_memcg;
986 return get_mem_cgroup_from_mm(current->mm);
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1002 * Reclaimers can specify a node and a priority level in @reclaim to
1003 * divide up the memcgs in the hierarchy among all concurrent
1004 * reclaimers operating on the same node and priority.
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 struct mem_cgroup *prev,
1008 struct mem_cgroup_reclaim_cookie *reclaim)
1010 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1011 struct cgroup_subsys_state *css = NULL;
1012 struct mem_cgroup *memcg = NULL;
1013 struct mem_cgroup *pos = NULL;
1015 if (mem_cgroup_disabled())
1019 root = root_mem_cgroup;
1021 if (prev && !reclaim)
1024 if (!root->use_hierarchy && root != root_mem_cgroup) {
1033 struct mem_cgroup_per_node *mz;
1035 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1038 if (prev && reclaim->generation != iter->generation)
1042 pos = READ_ONCE(iter->position);
1043 if (!pos || css_tryget(&pos->css))
1046 * css reference reached zero, so iter->position will
1047 * be cleared by ->css_released. However, we should not
1048 * rely on this happening soon, because ->css_released
1049 * is called from a work queue, and by busy-waiting we
1050 * might block it. So we clear iter->position right
1053 (void)cmpxchg(&iter->position, pos, NULL);
1061 css = css_next_descendant_pre(css, &root->css);
1064 * Reclaimers share the hierarchy walk, and a
1065 * new one might jump in right at the end of
1066 * the hierarchy - make sure they see at least
1067 * one group and restart from the beginning.
1075 * Verify the css and acquire a reference. The root
1076 * is provided by the caller, so we know it's alive
1077 * and kicking, and don't take an extra reference.
1079 memcg = mem_cgroup_from_css(css);
1081 if (css == &root->css)
1084 if (css_tryget(css))
1092 * The position could have already been updated by a competing
1093 * thread, so check that the value hasn't changed since we read
1094 * it to avoid reclaiming from the same cgroup twice.
1096 (void)cmpxchg(&iter->position, pos, memcg);
1104 reclaim->generation = iter->generation;
1110 if (prev && prev != root)
1111 css_put(&prev->css);
1117 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1118 * @root: hierarchy root
1119 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1121 void mem_cgroup_iter_break(struct mem_cgroup *root,
1122 struct mem_cgroup *prev)
1125 root = root_mem_cgroup;
1126 if (prev && prev != root)
1127 css_put(&prev->css);
1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1131 struct mem_cgroup *dead_memcg)
1133 struct mem_cgroup_reclaim_iter *iter;
1134 struct mem_cgroup_per_node *mz;
1137 for_each_node(nid) {
1138 mz = mem_cgroup_nodeinfo(from, nid);
1140 cmpxchg(&iter->position, dead_memcg, NULL);
1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1146 struct mem_cgroup *memcg = dead_memcg;
1147 struct mem_cgroup *last;
1150 __invalidate_reclaim_iterators(memcg, dead_memcg);
1152 } while ((memcg = parent_mem_cgroup(memcg)));
1155 * When cgruop1 non-hierarchy mode is used,
1156 * parent_mem_cgroup() does not walk all the way up to the
1157 * cgroup root (root_mem_cgroup). So we have to handle
1158 * dead_memcg from cgroup root separately.
1160 if (last != root_mem_cgroup)
1161 __invalidate_reclaim_iterators(root_mem_cgroup,
1166 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1167 * @memcg: hierarchy root
1168 * @fn: function to call for each task
1169 * @arg: argument passed to @fn
1171 * This function iterates over tasks attached to @memcg or to any of its
1172 * descendants and calls @fn for each task. If @fn returns a non-zero
1173 * value, the function breaks the iteration loop and returns the value.
1174 * Otherwise, it will iterate over all tasks and return 0.
1176 * This function must not be called for the root memory cgroup.
1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1179 int (*fn)(struct task_struct *, void *), void *arg)
1181 struct mem_cgroup *iter;
1184 BUG_ON(memcg == root_mem_cgroup);
1186 for_each_mem_cgroup_tree(iter, memcg) {
1187 struct css_task_iter it;
1188 struct task_struct *task;
1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1191 while (!ret && (task = css_task_iter_next(&it)))
1192 ret = fn(task, arg);
1193 css_task_iter_end(&it);
1195 mem_cgroup_iter_break(memcg, iter);
1203 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1205 * @pgdat: pgdat of the page
1207 * This function is only safe when following the LRU page isolation
1208 * and putback protocol: the LRU lock must be held, and the page must
1209 * either be PageLRU() or the caller must have isolated/allocated it.
1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1213 struct mem_cgroup_per_node *mz;
1214 struct mem_cgroup *memcg;
1215 struct lruvec *lruvec;
1217 if (mem_cgroup_disabled()) {
1218 lruvec = &pgdat->__lruvec;
1222 memcg = page->mem_cgroup;
1224 * Swapcache readahead pages are added to the LRU - and
1225 * possibly migrated - before they are charged.
1228 memcg = root_mem_cgroup;
1230 mz = mem_cgroup_page_nodeinfo(memcg, page);
1231 lruvec = &mz->lruvec;
1234 * Since a node can be onlined after the mem_cgroup was created,
1235 * we have to be prepared to initialize lruvec->zone here;
1236 * and if offlined then reonlined, we need to reinitialize it.
1238 if (unlikely(lruvec->pgdat != pgdat))
1239 lruvec->pgdat = pgdat;
1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245 * @lruvec: mem_cgroup per zone lru vector
1246 * @lru: index of lru list the page is sitting on
1247 * @zid: zone id of the accounted pages
1248 * @nr_pages: positive when adding or negative when removing
1250 * This function must be called under lru_lock, just before a page is added
1251 * to or just after a page is removed from an lru list (that ordering being
1252 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1255 int zid, int nr_pages)
1257 struct mem_cgroup_per_node *mz;
1258 unsigned long *lru_size;
1261 if (mem_cgroup_disabled())
1264 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1265 lru_size = &mz->lru_zone_size[zid][lru];
1268 *lru_size += nr_pages;
1271 if (WARN_ONCE(size < 0,
1272 "%s(%p, %d, %d): lru_size %ld\n",
1273 __func__, lruvec, lru, nr_pages, size)) {
1279 *lru_size += nr_pages;
1283 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1284 * @memcg: the memory cgroup
1286 * Returns the maximum amount of memory @mem can be charged with, in
1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1291 unsigned long margin = 0;
1292 unsigned long count;
1293 unsigned long limit;
1295 count = page_counter_read(&memcg->memory);
1296 limit = READ_ONCE(memcg->memory.max);
1298 margin = limit - count;
1300 if (do_memsw_account()) {
1301 count = page_counter_read(&memcg->memsw);
1302 limit = READ_ONCE(memcg->memsw.max);
1304 margin = min(margin, limit - count);
1313 * A routine for checking "mem" is under move_account() or not.
1315 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1316 * moving cgroups. This is for waiting at high-memory pressure
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1321 struct mem_cgroup *from;
1322 struct mem_cgroup *to;
1325 * Unlike task_move routines, we access mc.to, mc.from not under
1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1328 spin_lock(&mc.lock);
1334 ret = mem_cgroup_is_descendant(from, memcg) ||
1335 mem_cgroup_is_descendant(to, memcg);
1337 spin_unlock(&mc.lock);
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1343 if (mc.moving_task && current != mc.moving_task) {
1344 if (mem_cgroup_under_move(memcg)) {
1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 /* moving charge context might have finished. */
1350 finish_wait(&mc.waitq, &wait);
1357 static char *memory_stat_format(struct mem_cgroup *memcg)
1362 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1367 * Provide statistics on the state of the memory subsystem as
1368 * well as cumulative event counters that show past behavior.
1370 * This list is ordered following a combination of these gradients:
1371 * 1) generic big picture -> specifics and details
1372 * 2) reflecting userspace activity -> reflecting kernel heuristics
1374 * Current memory state:
1377 seq_buf_printf(&s, "anon %llu\n",
1378 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1380 seq_buf_printf(&s, "file %llu\n",
1381 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1383 seq_buf_printf(&s, "kernel_stack %llu\n",
1384 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1386 seq_buf_printf(&s, "slab %llu\n",
1387 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1388 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1390 seq_buf_printf(&s, "sock %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1394 seq_buf_printf(&s, "shmem %llu\n",
1395 (u64)memcg_page_state(memcg, NR_SHMEM) *
1397 seq_buf_printf(&s, "file_mapped %llu\n",
1398 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1400 seq_buf_printf(&s, "file_dirty %llu\n",
1401 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1403 seq_buf_printf(&s, "file_writeback %llu\n",
1404 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1408 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1409 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1410 * arse because it requires migrating the work out of rmap to a place
1411 * where the page->mem_cgroup is set up and stable.
1413 seq_buf_printf(&s, "anon_thp %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1417 for (i = 0; i < NR_LRU_LISTS; i++)
1418 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1419 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1422 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1423 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1425 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1426 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1429 /* Accumulated memory events */
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1432 memcg_events(memcg, PGFAULT));
1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1434 memcg_events(memcg, PGMAJFAULT));
1436 seq_buf_printf(&s, "workingset_refault %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_REFAULT));
1438 seq_buf_printf(&s, "workingset_activate %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1440 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1441 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1444 memcg_events(memcg, PGREFILL));
1445 seq_buf_printf(&s, "pgscan %lu\n",
1446 memcg_events(memcg, PGSCAN_KSWAPD) +
1447 memcg_events(memcg, PGSCAN_DIRECT));
1448 seq_buf_printf(&s, "pgsteal %lu\n",
1449 memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 memcg_events(memcg, PGSTEAL_DIRECT));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 memcg_events(memcg, PGACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 memcg_events(memcg, PGDEACTIVATE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 memcg_events(memcg, PGLAZYFREED));
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462 memcg_events(memcg, THP_FAULT_ALLOC));
1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1491 pr_cont(",global_oom");
1493 pr_cont(",task_memcg=");
1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
1510 K((u64)memcg->memory.max), memcg->memory.failcnt);
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
1514 K((u64)memcg->swap.max), memcg->swap.failcnt);
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1527 buf = memory_stat_format(memcg);
1535 * Return the memory (and swap, if configured) limit for a memcg.
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1541 max = memcg->memory.max;
1542 if (mem_cgroup_swappiness(memcg)) {
1543 unsigned long memsw_max;
1544 unsigned long swap_max;
1546 memsw_max = memcg->memsw.max;
1547 swap_max = memcg->swap.max;
1548 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 max = min(max + swap_max, memsw_max);
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1556 return page_counter_read(&memcg->memory);
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1562 struct oom_control oc = {
1566 .gfp_mask = gfp_mask,
1571 if (mutex_lock_killable(&oom_lock))
1574 * A few threads which were not waiting at mutex_lock_killable() can
1575 * fail to bail out. Therefore, check again after holding oom_lock.
1577 ret = should_force_charge() || out_of_memory(&oc);
1578 mutex_unlock(&oom_lock);
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1585 unsigned long *total_scanned)
1587 struct mem_cgroup *victim = NULL;
1590 unsigned long excess;
1591 unsigned long nr_scanned;
1592 struct mem_cgroup_reclaim_cookie reclaim = {
1596 excess = soft_limit_excess(root_memcg);
1599 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1604 * If we have not been able to reclaim
1605 * anything, it might because there are
1606 * no reclaimable pages under this hierarchy
1611 * We want to do more targeted reclaim.
1612 * excess >> 2 is not to excessive so as to
1613 * reclaim too much, nor too less that we keep
1614 * coming back to reclaim from this cgroup
1616 if (total >= (excess >> 2) ||
1617 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1622 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1623 pgdat, &nr_scanned);
1624 *total_scanned += nr_scanned;
1625 if (!soft_limit_excess(root_memcg))
1628 mem_cgroup_iter_break(root_memcg, victim);
1632 #ifdef CONFIG_LOCKDEP
1633 static struct lockdep_map memcg_oom_lock_dep_map = {
1634 .name = "memcg_oom_lock",
1638 static DEFINE_SPINLOCK(memcg_oom_lock);
1641 * Check OOM-Killer is already running under our hierarchy.
1642 * If someone is running, return false.
1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1646 struct mem_cgroup *iter, *failed = NULL;
1648 spin_lock(&memcg_oom_lock);
1650 for_each_mem_cgroup_tree(iter, memcg) {
1651 if (iter->oom_lock) {
1653 * this subtree of our hierarchy is already locked
1654 * so we cannot give a lock.
1657 mem_cgroup_iter_break(memcg, iter);
1660 iter->oom_lock = true;
1665 * OK, we failed to lock the whole subtree so we have
1666 * to clean up what we set up to the failing subtree
1668 for_each_mem_cgroup_tree(iter, memcg) {
1669 if (iter == failed) {
1670 mem_cgroup_iter_break(memcg, iter);
1673 iter->oom_lock = false;
1676 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1678 spin_unlock(&memcg_oom_lock);
1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1685 struct mem_cgroup *iter;
1687 spin_lock(&memcg_oom_lock);
1688 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1689 for_each_mem_cgroup_tree(iter, memcg)
1690 iter->oom_lock = false;
1691 spin_unlock(&memcg_oom_lock);
1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1696 struct mem_cgroup *iter;
1698 spin_lock(&memcg_oom_lock);
1699 for_each_mem_cgroup_tree(iter, memcg)
1701 spin_unlock(&memcg_oom_lock);
1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1706 struct mem_cgroup *iter;
1709 * When a new child is created while the hierarchy is under oom,
1710 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1712 spin_lock(&memcg_oom_lock);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 if (iter->under_oom > 0)
1716 spin_unlock(&memcg_oom_lock);
1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1721 struct oom_wait_info {
1722 struct mem_cgroup *memcg;
1723 wait_queue_entry_t wait;
1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1727 unsigned mode, int sync, void *arg)
1729 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1730 struct mem_cgroup *oom_wait_memcg;
1731 struct oom_wait_info *oom_wait_info;
1733 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1734 oom_wait_memcg = oom_wait_info->memcg;
1736 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1737 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1739 return autoremove_wake_function(wait, mode, sync, arg);
1742 static void memcg_oom_recover(struct mem_cgroup *memcg)
1745 * For the following lockless ->under_oom test, the only required
1746 * guarantee is that it must see the state asserted by an OOM when
1747 * this function is called as a result of userland actions
1748 * triggered by the notification of the OOM. This is trivially
1749 * achieved by invoking mem_cgroup_mark_under_oom() before
1750 * triggering notification.
1752 if (memcg && memcg->under_oom)
1753 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1765 enum oom_status ret;
1768 if (order > PAGE_ALLOC_COSTLY_ORDER)
1771 memcg_memory_event(memcg, MEMCG_OOM);
1774 * We are in the middle of the charge context here, so we
1775 * don't want to block when potentially sitting on a callstack
1776 * that holds all kinds of filesystem and mm locks.
1778 * cgroup1 allows disabling the OOM killer and waiting for outside
1779 * handling until the charge can succeed; remember the context and put
1780 * the task to sleep at the end of the page fault when all locks are
1783 * On the other hand, in-kernel OOM killer allows for an async victim
1784 * memory reclaim (oom_reaper) and that means that we are not solely
1785 * relying on the oom victim to make a forward progress and we can
1786 * invoke the oom killer here.
1788 * Please note that mem_cgroup_out_of_memory might fail to find a
1789 * victim and then we have to bail out from the charge path.
1791 if (memcg->oom_kill_disable) {
1792 if (!current->in_user_fault)
1794 css_get(&memcg->css);
1795 current->memcg_in_oom = memcg;
1796 current->memcg_oom_gfp_mask = mask;
1797 current->memcg_oom_order = order;
1802 mem_cgroup_mark_under_oom(memcg);
1804 locked = mem_cgroup_oom_trylock(memcg);
1807 mem_cgroup_oom_notify(memcg);
1809 mem_cgroup_unmark_under_oom(memcg);
1810 if (mem_cgroup_out_of_memory(memcg, mask, order))
1816 mem_cgroup_oom_unlock(memcg);
1822 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1823 * @handle: actually kill/wait or just clean up the OOM state
1825 * This has to be called at the end of a page fault if the memcg OOM
1826 * handler was enabled.
1828 * Memcg supports userspace OOM handling where failed allocations must
1829 * sleep on a waitqueue until the userspace task resolves the
1830 * situation. Sleeping directly in the charge context with all kinds
1831 * of locks held is not a good idea, instead we remember an OOM state
1832 * in the task and mem_cgroup_oom_synchronize() has to be called at
1833 * the end of the page fault to complete the OOM handling.
1835 * Returns %true if an ongoing memcg OOM situation was detected and
1836 * completed, %false otherwise.
1838 bool mem_cgroup_oom_synchronize(bool handle)
1840 struct mem_cgroup *memcg = current->memcg_in_oom;
1841 struct oom_wait_info owait;
1844 /* OOM is global, do not handle */
1851 owait.memcg = memcg;
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.entry);
1857 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1858 mem_cgroup_mark_under_oom(memcg);
1860 locked = mem_cgroup_oom_trylock(memcg);
1863 mem_cgroup_oom_notify(memcg);
1865 if (locked && !memcg->oom_kill_disable) {
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
1868 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1869 current->memcg_oom_order);
1872 mem_cgroup_unmark_under_oom(memcg);
1873 finish_wait(&memcg_oom_waitq, &owait.wait);
1877 mem_cgroup_oom_unlock(memcg);
1879 * There is no guarantee that an OOM-lock contender
1880 * sees the wakeups triggered by the OOM kill
1881 * uncharges. Wake any sleepers explicitely.
1883 memcg_oom_recover(memcg);
1886 current->memcg_in_oom = NULL;
1887 css_put(&memcg->css);
1892 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1893 * @victim: task to be killed by the OOM killer
1894 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1896 * Returns a pointer to a memory cgroup, which has to be cleaned up
1897 * by killing all belonging OOM-killable tasks.
1899 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1902 struct mem_cgroup *oom_domain)
1904 struct mem_cgroup *oom_group = NULL;
1905 struct mem_cgroup *memcg;
1907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1911 oom_domain = root_mem_cgroup;
1915 memcg = mem_cgroup_from_task(victim);
1916 if (memcg == root_mem_cgroup)
1920 * Traverse the memory cgroup hierarchy from the victim task's
1921 * cgroup up to the OOMing cgroup (or root) to find the
1922 * highest-level memory cgroup with oom.group set.
1924 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1925 if (memcg->oom_group)
1928 if (memcg == oom_domain)
1933 css_get(&oom_group->css);
1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1942 pr_info("Tasks in ");
1943 pr_cont_cgroup_path(memcg->css.cgroup);
1944 pr_cont(" are going to be killed due to memory.oom.group set\n");
1948 * lock_page_memcg - lock a page->mem_cgroup binding
1951 * This function protects unlocked LRU pages from being moved to
1954 * It ensures lifetime of the returned memcg. Caller is responsible
1955 * for the lifetime of the page; __unlock_page_memcg() is available
1956 * when @page might get freed inside the locked section.
1958 struct mem_cgroup *lock_page_memcg(struct page *page)
1960 struct mem_cgroup *memcg;
1961 unsigned long flags;
1964 * The RCU lock is held throughout the transaction. The fast
1965 * path can get away without acquiring the memcg->move_lock
1966 * because page moving starts with an RCU grace period.
1968 * The RCU lock also protects the memcg from being freed when
1969 * the page state that is going to change is the only thing
1970 * preventing the page itself from being freed. E.g. writeback
1971 * doesn't hold a page reference and relies on PG_writeback to
1972 * keep off truncation, migration and so forth.
1976 if (mem_cgroup_disabled())
1979 memcg = page->mem_cgroup;
1980 if (unlikely(!memcg))
1983 if (atomic_read(&memcg->moving_account) <= 0)
1986 spin_lock_irqsave(&memcg->move_lock, flags);
1987 if (memcg != page->mem_cgroup) {
1988 spin_unlock_irqrestore(&memcg->move_lock, flags);
1993 * When charge migration first begins, we can have locked and
1994 * unlocked page stat updates happening concurrently. Track
1995 * the task who has the lock for unlock_page_memcg().
1997 memcg->move_lock_task = current;
1998 memcg->move_lock_flags = flags;
2002 EXPORT_SYMBOL(lock_page_memcg);
2005 * __unlock_page_memcg - unlock and unpin a memcg
2008 * Unlock and unpin a memcg returned by lock_page_memcg().
2010 void __unlock_page_memcg(struct mem_cgroup *memcg)
2012 if (memcg && memcg->move_lock_task == current) {
2013 unsigned long flags = memcg->move_lock_flags;
2015 memcg->move_lock_task = NULL;
2016 memcg->move_lock_flags = 0;
2018 spin_unlock_irqrestore(&memcg->move_lock, flags);
2025 * unlock_page_memcg - unlock a page->mem_cgroup binding
2028 void unlock_page_memcg(struct page *page)
2030 __unlock_page_memcg(page->mem_cgroup);
2032 EXPORT_SYMBOL(unlock_page_memcg);
2034 struct memcg_stock_pcp {
2035 struct mem_cgroup *cached; /* this never be root cgroup */
2036 unsigned int nr_pages;
2037 struct work_struct work;
2038 unsigned long flags;
2039 #define FLUSHING_CACHED_CHARGE 0
2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2042 static DEFINE_MUTEX(percpu_charge_mutex);
2045 * consume_stock: Try to consume stocked charge on this cpu.
2046 * @memcg: memcg to consume from.
2047 * @nr_pages: how many pages to charge.
2049 * The charges will only happen if @memcg matches the current cpu's memcg
2050 * stock, and at least @nr_pages are available in that stock. Failure to
2051 * service an allocation will refill the stock.
2053 * returns true if successful, false otherwise.
2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2057 struct memcg_stock_pcp *stock;
2058 unsigned long flags;
2061 if (nr_pages > MEMCG_CHARGE_BATCH)
2064 local_irq_save(flags);
2066 stock = this_cpu_ptr(&memcg_stock);
2067 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2068 stock->nr_pages -= nr_pages;
2072 local_irq_restore(flags);
2078 * Returns stocks cached in percpu and reset cached information.
2080 static void drain_stock(struct memcg_stock_pcp *stock)
2082 struct mem_cgroup *old = stock->cached;
2084 if (stock->nr_pages) {
2085 page_counter_uncharge(&old->memory, stock->nr_pages);
2086 if (do_memsw_account())
2087 page_counter_uncharge(&old->memsw, stock->nr_pages);
2088 css_put_many(&old->css, stock->nr_pages);
2089 stock->nr_pages = 0;
2091 stock->cached = NULL;
2094 static void drain_local_stock(struct work_struct *dummy)
2096 struct memcg_stock_pcp *stock;
2097 unsigned long flags;
2100 * The only protection from memory hotplug vs. drain_stock races is
2101 * that we always operate on local CPU stock here with IRQ disabled
2103 local_irq_save(flags);
2105 stock = this_cpu_ptr(&memcg_stock);
2107 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2109 local_irq_restore(flags);
2113 * Cache charges(val) to local per_cpu area.
2114 * This will be consumed by consume_stock() function, later.
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2121 local_irq_save(flags);
2123 stock = this_cpu_ptr(&memcg_stock);
2124 if (stock->cached != memcg) { /* reset if necessary */
2126 stock->cached = memcg;
2128 stock->nr_pages += nr_pages;
2130 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2133 local_irq_restore(flags);
2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138 * of the hierarchy under it.
2140 static void drain_all_stock(struct mem_cgroup *root_memcg)
2144 /* If someone's already draining, avoid adding running more workers. */
2145 if (!mutex_trylock(&percpu_charge_mutex))
2148 * Notify other cpus that system-wide "drain" is running
2149 * We do not care about races with the cpu hotplug because cpu down
2150 * as well as workers from this path always operate on the local
2151 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2154 for_each_online_cpu(cpu) {
2155 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2156 struct mem_cgroup *memcg;
2160 memcg = stock->cached;
2161 if (memcg && stock->nr_pages &&
2162 mem_cgroup_is_descendant(memcg, root_memcg))
2167 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2169 drain_local_stock(&stock->work);
2171 schedule_work_on(cpu, &stock->work);
2175 mutex_unlock(&percpu_charge_mutex);
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2180 struct memcg_stock_pcp *stock;
2181 struct mem_cgroup *memcg, *mi;
2183 stock = &per_cpu(memcg_stock, cpu);
2186 for_each_mem_cgroup(memcg) {
2189 for (i = 0; i < MEMCG_NR_STAT; i++) {
2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2195 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2196 atomic_long_add(x, &memcg->vmstats[i]);
2198 if (i >= NR_VM_NODE_STAT_ITEMS)
2201 for_each_node(nid) {
2202 struct mem_cgroup_per_node *pn;
2204 pn = mem_cgroup_nodeinfo(memcg, nid);
2205 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2208 atomic_long_add(x, &pn->lruvec_stat[i]);
2209 } while ((pn = parent_nodeinfo(pn, nid)));
2213 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2216 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2218 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2219 atomic_long_add(x, &memcg->vmevents[i]);
2226 static void reclaim_high(struct mem_cgroup *memcg,
2227 unsigned int nr_pages,
2231 if (page_counter_read(&memcg->memory) <= memcg->high)
2233 memcg_memory_event(memcg, MEMCG_HIGH);
2234 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2235 } while ((memcg = parent_mem_cgroup(memcg)));
2238 static void high_work_func(struct work_struct *work)
2240 struct mem_cgroup *memcg;
2242 memcg = container_of(work, struct mem_cgroup, high_work);
2243 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2247 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2248 * enough to still cause a significant slowdown in most cases, while still
2249 * allowing diagnostics and tracing to proceed without becoming stuck.
2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2254 * When calculating the delay, we use these either side of the exponentiation to
2255 * maintain precision and scale to a reasonable number of jiffies (see the table
2258 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2259 * overage ratio to a delay.
2260 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2261 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2262 * to produce a reasonable delay curve.
2264 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2265 * reasonable delay curve compared to precision-adjusted overage, not
2266 * penalising heavily at first, but still making sure that growth beyond the
2267 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2268 * example, with a high of 100 megabytes:
2270 * +-------+------------------------+
2271 * | usage | time to allocate in ms |
2272 * +-------+------------------------+
2294 * +-------+------------------------+
2296 #define MEMCG_DELAY_PRECISION_SHIFT 20
2297 #define MEMCG_DELAY_SCALING_SHIFT 14
2300 * Get the number of jiffies that we should penalise a mischievous cgroup which
2301 * is exceeding its memory.high by checking both it and its ancestors.
2303 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2304 unsigned int nr_pages)
2306 unsigned long penalty_jiffies;
2307 u64 max_overage = 0;
2310 unsigned long usage, high;
2313 usage = page_counter_read(&memcg->memory);
2314 high = READ_ONCE(memcg->high);
2317 * Prevent division by 0 in overage calculation by acting as if
2318 * it was a threshold of 1 page
2320 high = max(high, 1UL);
2322 overage = usage - high;
2323 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2324 overage = div64_u64(overage, high);
2326 if (overage > max_overage)
2327 max_overage = overage;
2328 } while ((memcg = parent_mem_cgroup(memcg)) &&
2329 !mem_cgroup_is_root(memcg));
2335 * We use overage compared to memory.high to calculate the number of
2336 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2337 * fairly lenient on small overages, and increasingly harsh when the
2338 * memcg in question makes it clear that it has no intention of stopping
2339 * its crazy behaviour, so we exponentially increase the delay based on
2342 penalty_jiffies = max_overage * max_overage * HZ;
2343 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2344 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2347 * Factor in the task's own contribution to the overage, such that four
2348 * N-sized allocations are throttled approximately the same as one
2349 * 4N-sized allocation.
2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 * larger the current charge patch is than that.
2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2357 * Clamp the max delay per usermode return so as to still keep the
2358 * application moving forwards and also permit diagnostics, albeit
2361 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2365 * Scheduled by try_charge() to be executed from the userland return path
2366 * and reclaims memory over the high limit.
2368 void mem_cgroup_handle_over_high(void)
2370 unsigned long penalty_jiffies;
2371 unsigned long pflags;
2372 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2373 struct mem_cgroup *memcg;
2375 if (likely(!nr_pages))
2378 memcg = get_mem_cgroup_from_mm(current->mm);
2379 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2380 current->memcg_nr_pages_over_high = 0;
2383 * memory.high is breached and reclaim is unable to keep up. Throttle
2384 * allocators proactively to slow down excessive growth.
2386 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2389 * Don't sleep if the amount of jiffies this memcg owes us is so low
2390 * that it's not even worth doing, in an attempt to be nice to those who
2391 * go only a small amount over their memory.high value and maybe haven't
2392 * been aggressively reclaimed enough yet.
2394 if (penalty_jiffies <= HZ / 100)
2398 * If we exit early, we're guaranteed to die (since
2399 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2400 * need to account for any ill-begotten jiffies to pay them off later.
2402 psi_memstall_enter(&pflags);
2403 schedule_timeout_killable(penalty_jiffies);
2404 psi_memstall_leave(&pflags);
2407 css_put(&memcg->css);
2410 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2411 unsigned int nr_pages)
2413 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2414 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2415 struct mem_cgroup *mem_over_limit;
2416 struct page_counter *counter;
2417 unsigned long nr_reclaimed;
2418 bool may_swap = true;
2419 bool drained = false;
2420 enum oom_status oom_status;
2422 if (mem_cgroup_is_root(memcg))
2425 if (consume_stock(memcg, nr_pages))
2428 if (!do_memsw_account() ||
2429 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2430 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2432 if (do_memsw_account())
2433 page_counter_uncharge(&memcg->memsw, batch);
2434 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2436 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2440 if (batch > nr_pages) {
2446 * Memcg doesn't have a dedicated reserve for atomic
2447 * allocations. But like the global atomic pool, we need to
2448 * put the burden of reclaim on regular allocation requests
2449 * and let these go through as privileged allocations.
2451 if (gfp_mask & __GFP_ATOMIC)
2455 * Unlike in global OOM situations, memcg is not in a physical
2456 * memory shortage. Allow dying and OOM-killed tasks to
2457 * bypass the last charges so that they can exit quickly and
2458 * free their memory.
2460 if (unlikely(should_force_charge()))
2464 * Prevent unbounded recursion when reclaim operations need to
2465 * allocate memory. This might exceed the limits temporarily,
2466 * but we prefer facilitating memory reclaim and getting back
2467 * under the limit over triggering OOM kills in these cases.
2469 if (unlikely(current->flags & PF_MEMALLOC))
2472 if (unlikely(task_in_memcg_oom(current)))
2475 if (!gfpflags_allow_blocking(gfp_mask))
2478 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2480 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2481 gfp_mask, may_swap);
2483 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2487 drain_all_stock(mem_over_limit);
2492 if (gfp_mask & __GFP_NORETRY)
2495 * Even though the limit is exceeded at this point, reclaim
2496 * may have been able to free some pages. Retry the charge
2497 * before killing the task.
2499 * Only for regular pages, though: huge pages are rather
2500 * unlikely to succeed so close to the limit, and we fall back
2501 * to regular pages anyway in case of failure.
2503 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2506 * At task move, charge accounts can be doubly counted. So, it's
2507 * better to wait until the end of task_move if something is going on.
2509 if (mem_cgroup_wait_acct_move(mem_over_limit))
2515 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2518 if (gfp_mask & __GFP_NOFAIL)
2521 if (fatal_signal_pending(current))
2525 * keep retrying as long as the memcg oom killer is able to make
2526 * a forward progress or bypass the charge if the oom killer
2527 * couldn't make any progress.
2529 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2530 get_order(nr_pages * PAGE_SIZE));
2531 switch (oom_status) {
2533 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2541 if (!(gfp_mask & __GFP_NOFAIL))
2545 * The allocation either can't fail or will lead to more memory
2546 * being freed very soon. Allow memory usage go over the limit
2547 * temporarily by force charging it.
2549 page_counter_charge(&memcg->memory, nr_pages);
2550 if (do_memsw_account())
2551 page_counter_charge(&memcg->memsw, nr_pages);
2552 css_get_many(&memcg->css, nr_pages);
2557 css_get_many(&memcg->css, batch);
2558 if (batch > nr_pages)
2559 refill_stock(memcg, batch - nr_pages);
2562 * If the hierarchy is above the normal consumption range, schedule
2563 * reclaim on returning to userland. We can perform reclaim here
2564 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2565 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2566 * not recorded as it most likely matches current's and won't
2567 * change in the meantime. As high limit is checked again before
2568 * reclaim, the cost of mismatch is negligible.
2571 if (page_counter_read(&memcg->memory) > memcg->high) {
2572 /* Don't bother a random interrupted task */
2573 if (in_interrupt()) {
2574 schedule_work(&memcg->high_work);
2577 current->memcg_nr_pages_over_high += batch;
2578 set_notify_resume(current);
2581 } while ((memcg = parent_mem_cgroup(memcg)));
2586 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2588 if (mem_cgroup_is_root(memcg))
2591 page_counter_uncharge(&memcg->memory, nr_pages);
2592 if (do_memsw_account())
2593 page_counter_uncharge(&memcg->memsw, nr_pages);
2595 css_put_many(&memcg->css, nr_pages);
2598 static void lock_page_lru(struct page *page, int *isolated)
2600 pg_data_t *pgdat = page_pgdat(page);
2602 spin_lock_irq(&pgdat->lru_lock);
2603 if (PageLRU(page)) {
2604 struct lruvec *lruvec;
2606 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2608 del_page_from_lru_list(page, lruvec, page_lru(page));
2614 static void unlock_page_lru(struct page *page, int isolated)
2616 pg_data_t *pgdat = page_pgdat(page);
2619 struct lruvec *lruvec;
2621 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2622 VM_BUG_ON_PAGE(PageLRU(page), page);
2624 add_page_to_lru_list(page, lruvec, page_lru(page));
2626 spin_unlock_irq(&pgdat->lru_lock);
2629 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2634 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2637 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2638 * may already be on some other mem_cgroup's LRU. Take care of it.
2641 lock_page_lru(page, &isolated);
2644 * Nobody should be changing or seriously looking at
2645 * page->mem_cgroup at this point:
2647 * - the page is uncharged
2649 * - the page is off-LRU
2651 * - an anonymous fault has exclusive page access, except for
2652 * a locked page table
2654 * - a page cache insertion, a swapin fault, or a migration
2655 * have the page locked
2657 page->mem_cgroup = memcg;
2660 unlock_page_lru(page, isolated);
2663 #ifdef CONFIG_MEMCG_KMEM
2664 static int memcg_alloc_cache_id(void)
2669 id = ida_simple_get(&memcg_cache_ida,
2670 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2674 if (id < memcg_nr_cache_ids)
2678 * There's no space for the new id in memcg_caches arrays,
2679 * so we have to grow them.
2681 down_write(&memcg_cache_ids_sem);
2683 size = 2 * (id + 1);
2684 if (size < MEMCG_CACHES_MIN_SIZE)
2685 size = MEMCG_CACHES_MIN_SIZE;
2686 else if (size > MEMCG_CACHES_MAX_SIZE)
2687 size = MEMCG_CACHES_MAX_SIZE;
2689 err = memcg_update_all_caches(size);
2691 err = memcg_update_all_list_lrus(size);
2693 memcg_nr_cache_ids = size;
2695 up_write(&memcg_cache_ids_sem);
2698 ida_simple_remove(&memcg_cache_ida, id);
2704 static void memcg_free_cache_id(int id)
2706 ida_simple_remove(&memcg_cache_ida, id);
2709 struct memcg_kmem_cache_create_work {
2710 struct mem_cgroup *memcg;
2711 struct kmem_cache *cachep;
2712 struct work_struct work;
2715 static void memcg_kmem_cache_create_func(struct work_struct *w)
2717 struct memcg_kmem_cache_create_work *cw =
2718 container_of(w, struct memcg_kmem_cache_create_work, work);
2719 struct mem_cgroup *memcg = cw->memcg;
2720 struct kmem_cache *cachep = cw->cachep;
2722 memcg_create_kmem_cache(memcg, cachep);
2724 css_put(&memcg->css);
2729 * Enqueue the creation of a per-memcg kmem_cache.
2731 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2732 struct kmem_cache *cachep)
2734 struct memcg_kmem_cache_create_work *cw;
2736 if (!css_tryget_online(&memcg->css))
2739 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2744 cw->cachep = cachep;
2745 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2747 queue_work(memcg_kmem_cache_wq, &cw->work);
2750 static inline bool memcg_kmem_bypass(void)
2752 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2758 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2759 * @cachep: the original global kmem cache
2761 * Return the kmem_cache we're supposed to use for a slab allocation.
2762 * We try to use the current memcg's version of the cache.
2764 * If the cache does not exist yet, if we are the first user of it, we
2765 * create it asynchronously in a workqueue and let the current allocation
2766 * go through with the original cache.
2768 * This function takes a reference to the cache it returns to assure it
2769 * won't get destroyed while we are working with it. Once the caller is
2770 * done with it, memcg_kmem_put_cache() must be called to release the
2773 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2775 struct mem_cgroup *memcg;
2776 struct kmem_cache *memcg_cachep;
2777 struct memcg_cache_array *arr;
2780 VM_BUG_ON(!is_root_cache(cachep));
2782 if (memcg_kmem_bypass())
2787 if (unlikely(current->active_memcg))
2788 memcg = current->active_memcg;
2790 memcg = mem_cgroup_from_task(current);
2792 if (!memcg || memcg == root_mem_cgroup)
2795 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2799 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2802 * Make sure we will access the up-to-date value. The code updating
2803 * memcg_caches issues a write barrier to match the data dependency
2804 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2806 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2809 * If we are in a safe context (can wait, and not in interrupt
2810 * context), we could be be predictable and return right away.
2811 * This would guarantee that the allocation being performed
2812 * already belongs in the new cache.
2814 * However, there are some clashes that can arrive from locking.
2815 * For instance, because we acquire the slab_mutex while doing
2816 * memcg_create_kmem_cache, this means no further allocation
2817 * could happen with the slab_mutex held. So it's better to
2820 * If the memcg is dying or memcg_cache is about to be released,
2821 * don't bother creating new kmem_caches. Because memcg_cachep
2822 * is ZEROed as the fist step of kmem offlining, we don't need
2823 * percpu_ref_tryget_live() here. css_tryget_online() check in
2824 * memcg_schedule_kmem_cache_create() will prevent us from
2825 * creation of a new kmem_cache.
2827 if (unlikely(!memcg_cachep))
2828 memcg_schedule_kmem_cache_create(memcg, cachep);
2829 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2830 cachep = memcg_cachep;
2837 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2838 * @cachep: the cache returned by memcg_kmem_get_cache
2840 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2842 if (!is_root_cache(cachep))
2843 percpu_ref_put(&cachep->memcg_params.refcnt);
2847 * __memcg_kmem_charge_memcg: charge a kmem page
2848 * @page: page to charge
2849 * @gfp: reclaim mode
2850 * @order: allocation order
2851 * @memcg: memory cgroup to charge
2853 * Returns 0 on success, an error code on failure.
2855 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2856 struct mem_cgroup *memcg)
2858 unsigned int nr_pages = 1 << order;
2859 struct page_counter *counter;
2862 ret = try_charge(memcg, gfp, nr_pages);
2866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2867 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2870 * Enforce __GFP_NOFAIL allocation because callers are not
2871 * prepared to see failures and likely do not have any failure
2874 if (gfp & __GFP_NOFAIL) {
2875 page_counter_charge(&memcg->kmem, nr_pages);
2878 cancel_charge(memcg, nr_pages);
2885 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2886 * @page: page to charge
2887 * @gfp: reclaim mode
2888 * @order: allocation order
2890 * Returns 0 on success, an error code on failure.
2892 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2894 struct mem_cgroup *memcg;
2897 if (memcg_kmem_bypass())
2900 memcg = get_mem_cgroup_from_current();
2901 if (!mem_cgroup_is_root(memcg)) {
2902 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2904 page->mem_cgroup = memcg;
2905 __SetPageKmemcg(page);
2908 css_put(&memcg->css);
2913 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2914 * @memcg: memcg to uncharge
2915 * @nr_pages: number of pages to uncharge
2917 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2918 unsigned int nr_pages)
2920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2921 page_counter_uncharge(&memcg->kmem, nr_pages);
2923 page_counter_uncharge(&memcg->memory, nr_pages);
2924 if (do_memsw_account())
2925 page_counter_uncharge(&memcg->memsw, nr_pages);
2928 * __memcg_kmem_uncharge: uncharge a kmem page
2929 * @page: page to uncharge
2930 * @order: allocation order
2932 void __memcg_kmem_uncharge(struct page *page, int order)
2934 struct mem_cgroup *memcg = page->mem_cgroup;
2935 unsigned int nr_pages = 1 << order;
2940 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2941 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2942 page->mem_cgroup = NULL;
2944 /* slab pages do not have PageKmemcg flag set */
2945 if (PageKmemcg(page))
2946 __ClearPageKmemcg(page);
2948 css_put_many(&memcg->css, nr_pages);
2950 #endif /* CONFIG_MEMCG_KMEM */
2952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2955 * Because tail pages are not marked as "used", set it. We're under
2956 * pgdat->lru_lock and migration entries setup in all page mappings.
2958 void mem_cgroup_split_huge_fixup(struct page *head)
2962 if (mem_cgroup_disabled())
2965 for (i = 1; i < HPAGE_PMD_NR; i++)
2966 head[i].mem_cgroup = head->mem_cgroup;
2968 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2970 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2972 #ifdef CONFIG_MEMCG_SWAP
2974 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2975 * @entry: swap entry to be moved
2976 * @from: mem_cgroup which the entry is moved from
2977 * @to: mem_cgroup which the entry is moved to
2979 * It succeeds only when the swap_cgroup's record for this entry is the same
2980 * as the mem_cgroup's id of @from.
2982 * Returns 0 on success, -EINVAL on failure.
2984 * The caller must have charged to @to, IOW, called page_counter_charge() about
2985 * both res and memsw, and called css_get().
2987 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2988 struct mem_cgroup *from, struct mem_cgroup *to)
2990 unsigned short old_id, new_id;
2992 old_id = mem_cgroup_id(from);
2993 new_id = mem_cgroup_id(to);
2995 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2996 mod_memcg_state(from, MEMCG_SWAP, -1);
2997 mod_memcg_state(to, MEMCG_SWAP, 1);
3003 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3004 struct mem_cgroup *from, struct mem_cgroup *to)
3010 static DEFINE_MUTEX(memcg_max_mutex);
3012 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3013 unsigned long max, bool memsw)
3015 bool enlarge = false;
3016 bool drained = false;
3018 bool limits_invariant;
3019 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3022 if (signal_pending(current)) {
3027 mutex_lock(&memcg_max_mutex);
3029 * Make sure that the new limit (memsw or memory limit) doesn't
3030 * break our basic invariant rule memory.max <= memsw.max.
3032 limits_invariant = memsw ? max >= memcg->memory.max :
3033 max <= memcg->memsw.max;
3034 if (!limits_invariant) {
3035 mutex_unlock(&memcg_max_mutex);
3039 if (max > counter->max)
3041 ret = page_counter_set_max(counter, max);
3042 mutex_unlock(&memcg_max_mutex);
3048 drain_all_stock(memcg);
3053 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3054 GFP_KERNEL, !memsw)) {
3060 if (!ret && enlarge)
3061 memcg_oom_recover(memcg);
3066 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3068 unsigned long *total_scanned)
3070 unsigned long nr_reclaimed = 0;
3071 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3072 unsigned long reclaimed;
3074 struct mem_cgroup_tree_per_node *mctz;
3075 unsigned long excess;
3076 unsigned long nr_scanned;
3081 mctz = soft_limit_tree_node(pgdat->node_id);
3084 * Do not even bother to check the largest node if the root
3085 * is empty. Do it lockless to prevent lock bouncing. Races
3086 * are acceptable as soft limit is best effort anyway.
3088 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3092 * This loop can run a while, specially if mem_cgroup's continuously
3093 * keep exceeding their soft limit and putting the system under
3100 mz = mem_cgroup_largest_soft_limit_node(mctz);
3105 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3106 gfp_mask, &nr_scanned);
3107 nr_reclaimed += reclaimed;
3108 *total_scanned += nr_scanned;
3109 spin_lock_irq(&mctz->lock);
3110 __mem_cgroup_remove_exceeded(mz, mctz);
3113 * If we failed to reclaim anything from this memory cgroup
3114 * it is time to move on to the next cgroup
3118 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3120 excess = soft_limit_excess(mz->memcg);
3122 * One school of thought says that we should not add
3123 * back the node to the tree if reclaim returns 0.
3124 * But our reclaim could return 0, simply because due
3125 * to priority we are exposing a smaller subset of
3126 * memory to reclaim from. Consider this as a longer
3129 /* If excess == 0, no tree ops */
3130 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3131 spin_unlock_irq(&mctz->lock);
3132 css_put(&mz->memcg->css);
3135 * Could not reclaim anything and there are no more
3136 * mem cgroups to try or we seem to be looping without
3137 * reclaiming anything.
3139 if (!nr_reclaimed &&
3141 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3143 } while (!nr_reclaimed);
3145 css_put(&next_mz->memcg->css);
3146 return nr_reclaimed;
3150 * Test whether @memcg has children, dead or alive. Note that this
3151 * function doesn't care whether @memcg has use_hierarchy enabled and
3152 * returns %true if there are child csses according to the cgroup
3153 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3155 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3160 ret = css_next_child(NULL, &memcg->css);
3166 * Reclaims as many pages from the given memcg as possible.
3168 * Caller is responsible for holding css reference for memcg.
3170 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3172 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3174 /* we call try-to-free pages for make this cgroup empty */
3175 lru_add_drain_all();
3177 drain_all_stock(memcg);
3179 /* try to free all pages in this cgroup */
3180 while (nr_retries && page_counter_read(&memcg->memory)) {
3183 if (signal_pending(current))
3186 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3190 /* maybe some writeback is necessary */
3191 congestion_wait(BLK_RW_ASYNC, HZ/10);
3199 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3200 char *buf, size_t nbytes,
3203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3205 if (mem_cgroup_is_root(memcg))
3207 return mem_cgroup_force_empty(memcg) ?: nbytes;
3210 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3213 return mem_cgroup_from_css(css)->use_hierarchy;
3216 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3217 struct cftype *cft, u64 val)
3220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3221 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3223 if (memcg->use_hierarchy == val)
3227 * If parent's use_hierarchy is set, we can't make any modifications
3228 * in the child subtrees. If it is unset, then the change can
3229 * occur, provided the current cgroup has no children.
3231 * For the root cgroup, parent_mem is NULL, we allow value to be
3232 * set if there are no children.
3234 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3235 (val == 1 || val == 0)) {
3236 if (!memcg_has_children(memcg))
3237 memcg->use_hierarchy = val;
3246 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3250 if (mem_cgroup_is_root(memcg)) {
3251 val = memcg_page_state(memcg, MEMCG_CACHE) +
3252 memcg_page_state(memcg, MEMCG_RSS);
3254 val += memcg_page_state(memcg, MEMCG_SWAP);
3257 val = page_counter_read(&memcg->memory);
3259 val = page_counter_read(&memcg->memsw);
3272 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3276 struct page_counter *counter;
3278 switch (MEMFILE_TYPE(cft->private)) {
3280 counter = &memcg->memory;
3283 counter = &memcg->memsw;
3286 counter = &memcg->kmem;
3289 counter = &memcg->tcpmem;
3295 switch (MEMFILE_ATTR(cft->private)) {
3297 if (counter == &memcg->memory)
3298 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3299 if (counter == &memcg->memsw)
3300 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3301 return (u64)page_counter_read(counter) * PAGE_SIZE;
3303 return (u64)counter->max * PAGE_SIZE;
3305 return (u64)counter->watermark * PAGE_SIZE;
3307 return counter->failcnt;
3308 case RES_SOFT_LIMIT:
3309 return (u64)memcg->soft_limit * PAGE_SIZE;
3315 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3317 unsigned long stat[MEMCG_NR_STAT] = {0};
3318 struct mem_cgroup *mi;
3321 for_each_online_cpu(cpu)
3322 for (i = 0; i < MEMCG_NR_STAT; i++)
3323 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3325 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3326 for (i = 0; i < MEMCG_NR_STAT; i++)
3327 atomic_long_add(stat[i], &mi->vmstats[i]);
3329 for_each_node(node) {
3330 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3331 struct mem_cgroup_per_node *pi;
3333 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3336 for_each_online_cpu(cpu)
3337 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3339 pn->lruvec_stat_cpu->count[i], cpu);
3341 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3342 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3343 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3347 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3349 unsigned long events[NR_VM_EVENT_ITEMS];
3350 struct mem_cgroup *mi;
3353 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3356 for_each_online_cpu(cpu)
3357 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3358 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3361 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3362 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3363 atomic_long_add(events[i], &mi->vmevents[i]);
3366 #ifdef CONFIG_MEMCG_KMEM
3367 static int memcg_online_kmem(struct mem_cgroup *memcg)
3371 if (cgroup_memory_nokmem)
3374 BUG_ON(memcg->kmemcg_id >= 0);
3375 BUG_ON(memcg->kmem_state);
3377 memcg_id = memcg_alloc_cache_id();
3381 static_branch_inc(&memcg_kmem_enabled_key);
3383 * A memory cgroup is considered kmem-online as soon as it gets
3384 * kmemcg_id. Setting the id after enabling static branching will
3385 * guarantee no one starts accounting before all call sites are
3388 memcg->kmemcg_id = memcg_id;
3389 memcg->kmem_state = KMEM_ONLINE;
3390 INIT_LIST_HEAD(&memcg->kmem_caches);
3395 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3397 struct cgroup_subsys_state *css;
3398 struct mem_cgroup *parent, *child;
3401 if (memcg->kmem_state != KMEM_ONLINE)
3404 * Clear the online state before clearing memcg_caches array
3405 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3406 * guarantees that no cache will be created for this cgroup
3407 * after we are done (see memcg_create_kmem_cache()).
3409 memcg->kmem_state = KMEM_ALLOCATED;
3411 parent = parent_mem_cgroup(memcg);
3413 parent = root_mem_cgroup;
3416 * Deactivate and reparent kmem_caches.
3418 memcg_deactivate_kmem_caches(memcg, parent);
3420 kmemcg_id = memcg->kmemcg_id;
3421 BUG_ON(kmemcg_id < 0);
3424 * Change kmemcg_id of this cgroup and all its descendants to the
3425 * parent's id, and then move all entries from this cgroup's list_lrus
3426 * to ones of the parent. After we have finished, all list_lrus
3427 * corresponding to this cgroup are guaranteed to remain empty. The
3428 * ordering is imposed by list_lru_node->lock taken by
3429 * memcg_drain_all_list_lrus().
3431 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3432 css_for_each_descendant_pre(css, &memcg->css) {
3433 child = mem_cgroup_from_css(css);
3434 BUG_ON(child->kmemcg_id != kmemcg_id);
3435 child->kmemcg_id = parent->kmemcg_id;
3436 if (!memcg->use_hierarchy)
3441 memcg_drain_all_list_lrus(kmemcg_id, parent);
3443 memcg_free_cache_id(kmemcg_id);
3446 static void memcg_free_kmem(struct mem_cgroup *memcg)
3448 /* css_alloc() failed, offlining didn't happen */
3449 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3450 memcg_offline_kmem(memcg);
3452 if (memcg->kmem_state == KMEM_ALLOCATED) {
3453 WARN_ON(!list_empty(&memcg->kmem_caches));
3454 static_branch_dec(&memcg_kmem_enabled_key);
3458 static int memcg_online_kmem(struct mem_cgroup *memcg)
3462 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3465 static void memcg_free_kmem(struct mem_cgroup *memcg)
3468 #endif /* CONFIG_MEMCG_KMEM */
3470 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3475 mutex_lock(&memcg_max_mutex);
3476 ret = page_counter_set_max(&memcg->kmem, max);
3477 mutex_unlock(&memcg_max_mutex);
3481 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3485 mutex_lock(&memcg_max_mutex);
3487 ret = page_counter_set_max(&memcg->tcpmem, max);
3491 if (!memcg->tcpmem_active) {
3493 * The active flag needs to be written after the static_key
3494 * update. This is what guarantees that the socket activation
3495 * function is the last one to run. See mem_cgroup_sk_alloc()
3496 * for details, and note that we don't mark any socket as
3497 * belonging to this memcg until that flag is up.
3499 * We need to do this, because static_keys will span multiple
3500 * sites, but we can't control their order. If we mark a socket
3501 * as accounted, but the accounting functions are not patched in
3502 * yet, we'll lose accounting.
3504 * We never race with the readers in mem_cgroup_sk_alloc(),
3505 * because when this value change, the code to process it is not
3508 static_branch_inc(&memcg_sockets_enabled_key);
3509 memcg->tcpmem_active = true;
3512 mutex_unlock(&memcg_max_mutex);
3517 * The user of this function is...
3520 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3521 char *buf, size_t nbytes, loff_t off)
3523 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3524 unsigned long nr_pages;
3527 buf = strstrip(buf);
3528 ret = page_counter_memparse(buf, "-1", &nr_pages);
3532 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3534 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3538 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3540 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3543 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3546 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3547 "Please report your usecase to linux-mm@kvack.org if you "
3548 "depend on this functionality.\n");
3549 ret = memcg_update_kmem_max(memcg, nr_pages);
3552 ret = memcg_update_tcp_max(memcg, nr_pages);
3556 case RES_SOFT_LIMIT:
3557 memcg->soft_limit = nr_pages;
3561 return ret ?: nbytes;
3564 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3565 size_t nbytes, loff_t off)
3567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3568 struct page_counter *counter;
3570 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3572 counter = &memcg->memory;
3575 counter = &memcg->memsw;
3578 counter = &memcg->kmem;
3581 counter = &memcg->tcpmem;
3587 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3589 page_counter_reset_watermark(counter);
3592 counter->failcnt = 0;
3601 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3604 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3608 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3609 struct cftype *cft, u64 val)
3611 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3613 if (val & ~MOVE_MASK)
3617 * No kind of locking is needed in here, because ->can_attach() will
3618 * check this value once in the beginning of the process, and then carry
3619 * on with stale data. This means that changes to this value will only
3620 * affect task migrations starting after the change.
3622 memcg->move_charge_at_immigrate = val;
3626 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3627 struct cftype *cft, u64 val)
3635 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3636 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3637 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3639 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3640 int nid, unsigned int lru_mask)
3642 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3643 unsigned long nr = 0;
3646 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3649 if (!(BIT(lru) & lru_mask))
3651 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3656 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3657 unsigned int lru_mask)
3659 unsigned long nr = 0;
3663 if (!(BIT(lru) & lru_mask))
3665 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3670 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3674 unsigned int lru_mask;
3677 static const struct numa_stat stats[] = {
3678 { "total", LRU_ALL },
3679 { "file", LRU_ALL_FILE },
3680 { "anon", LRU_ALL_ANON },
3681 { "unevictable", BIT(LRU_UNEVICTABLE) },
3683 const struct numa_stat *stat;
3686 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3688 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3689 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3690 seq_printf(m, "%s=%lu", stat->name, nr);
3691 for_each_node_state(nid, N_MEMORY) {
3692 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3694 seq_printf(m, " N%d=%lu", nid, nr);
3699 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3700 struct mem_cgroup *iter;
3703 for_each_mem_cgroup_tree(iter, memcg)
3704 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3705 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3706 for_each_node_state(nid, N_MEMORY) {
3708 for_each_mem_cgroup_tree(iter, memcg)
3709 nr += mem_cgroup_node_nr_lru_pages(
3710 iter, nid, stat->lru_mask);
3711 seq_printf(m, " N%d=%lu", nid, nr);
3718 #endif /* CONFIG_NUMA */
3720 static const unsigned int memcg1_stats[] = {
3731 static const char *const memcg1_stat_names[] = {
3742 /* Universal VM events cgroup1 shows, original sort order */
3743 static const unsigned int memcg1_events[] = {
3750 static int memcg_stat_show(struct seq_file *m, void *v)
3752 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3753 unsigned long memory, memsw;
3754 struct mem_cgroup *mi;
3757 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3759 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3760 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3762 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3763 memcg_page_state_local(memcg, memcg1_stats[i]) *
3767 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3768 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3769 memcg_events_local(memcg, memcg1_events[i]));
3771 for (i = 0; i < NR_LRU_LISTS; i++)
3772 seq_printf(m, "%s %lu\n", lru_list_name(i),
3773 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3776 /* Hierarchical information */
3777 memory = memsw = PAGE_COUNTER_MAX;
3778 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3779 memory = min(memory, mi->memory.max);
3780 memsw = min(memsw, mi->memsw.max);
3782 seq_printf(m, "hierarchical_memory_limit %llu\n",
3783 (u64)memory * PAGE_SIZE);
3784 if (do_memsw_account())
3785 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3786 (u64)memsw * PAGE_SIZE);
3788 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3789 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3791 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3792 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3796 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3797 seq_printf(m, "total_%s %llu\n",
3798 vm_event_name(memcg1_events[i]),
3799 (u64)memcg_events(memcg, memcg1_events[i]));
3801 for (i = 0; i < NR_LRU_LISTS; i++)
3802 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3803 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3806 #ifdef CONFIG_DEBUG_VM
3809 struct mem_cgroup_per_node *mz;
3810 struct zone_reclaim_stat *rstat;
3811 unsigned long recent_rotated[2] = {0, 0};
3812 unsigned long recent_scanned[2] = {0, 0};
3814 for_each_online_pgdat(pgdat) {
3815 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3816 rstat = &mz->lruvec.reclaim_stat;
3818 recent_rotated[0] += rstat->recent_rotated[0];
3819 recent_rotated[1] += rstat->recent_rotated[1];
3820 recent_scanned[0] += rstat->recent_scanned[0];
3821 recent_scanned[1] += rstat->recent_scanned[1];
3823 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3824 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3825 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3826 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3833 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3838 return mem_cgroup_swappiness(memcg);
3841 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3842 struct cftype *cft, u64 val)
3844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3850 memcg->swappiness = val;
3852 vm_swappiness = val;
3857 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3859 struct mem_cgroup_threshold_ary *t;
3860 unsigned long usage;
3865 t = rcu_dereference(memcg->thresholds.primary);
3867 t = rcu_dereference(memcg->memsw_thresholds.primary);
3872 usage = mem_cgroup_usage(memcg, swap);
3875 * current_threshold points to threshold just below or equal to usage.
3876 * If it's not true, a threshold was crossed after last
3877 * call of __mem_cgroup_threshold().
3879 i = t->current_threshold;
3882 * Iterate backward over array of thresholds starting from
3883 * current_threshold and check if a threshold is crossed.
3884 * If none of thresholds below usage is crossed, we read
3885 * only one element of the array here.
3887 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3888 eventfd_signal(t->entries[i].eventfd, 1);
3890 /* i = current_threshold + 1 */
3894 * Iterate forward over array of thresholds starting from
3895 * current_threshold+1 and check if a threshold is crossed.
3896 * If none of thresholds above usage is crossed, we read
3897 * only one element of the array here.
3899 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3900 eventfd_signal(t->entries[i].eventfd, 1);
3902 /* Update current_threshold */
3903 t->current_threshold = i - 1;
3908 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3911 __mem_cgroup_threshold(memcg, false);
3912 if (do_memsw_account())
3913 __mem_cgroup_threshold(memcg, true);
3915 memcg = parent_mem_cgroup(memcg);
3919 static int compare_thresholds(const void *a, const void *b)
3921 const struct mem_cgroup_threshold *_a = a;
3922 const struct mem_cgroup_threshold *_b = b;
3924 if (_a->threshold > _b->threshold)
3927 if (_a->threshold < _b->threshold)
3933 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3935 struct mem_cgroup_eventfd_list *ev;
3937 spin_lock(&memcg_oom_lock);
3939 list_for_each_entry(ev, &memcg->oom_notify, list)
3940 eventfd_signal(ev->eventfd, 1);
3942 spin_unlock(&memcg_oom_lock);
3946 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3948 struct mem_cgroup *iter;
3950 for_each_mem_cgroup_tree(iter, memcg)
3951 mem_cgroup_oom_notify_cb(iter);
3954 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3955 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3957 struct mem_cgroup_thresholds *thresholds;
3958 struct mem_cgroup_threshold_ary *new;
3959 unsigned long threshold;
3960 unsigned long usage;
3963 ret = page_counter_memparse(args, "-1", &threshold);
3967 mutex_lock(&memcg->thresholds_lock);
3970 thresholds = &memcg->thresholds;
3971 usage = mem_cgroup_usage(memcg, false);
3972 } else if (type == _MEMSWAP) {
3973 thresholds = &memcg->memsw_thresholds;
3974 usage = mem_cgroup_usage(memcg, true);
3978 /* Check if a threshold crossed before adding a new one */
3979 if (thresholds->primary)
3980 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3982 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3984 /* Allocate memory for new array of thresholds */
3985 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3992 /* Copy thresholds (if any) to new array */
3993 if (thresholds->primary) {
3994 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3995 sizeof(struct mem_cgroup_threshold));
3998 /* Add new threshold */
3999 new->entries[size - 1].eventfd = eventfd;
4000 new->entries[size - 1].threshold = threshold;
4002 /* Sort thresholds. Registering of new threshold isn't time-critical */
4003 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4004 compare_thresholds, NULL);
4006 /* Find current threshold */
4007 new->current_threshold = -1;
4008 for (i = 0; i < size; i++) {
4009 if (new->entries[i].threshold <= usage) {
4011 * new->current_threshold will not be used until
4012 * rcu_assign_pointer(), so it's safe to increment
4015 ++new->current_threshold;
4020 /* Free old spare buffer and save old primary buffer as spare */
4021 kfree(thresholds->spare);
4022 thresholds->spare = thresholds->primary;
4024 rcu_assign_pointer(thresholds->primary, new);
4026 /* To be sure that nobody uses thresholds */
4030 mutex_unlock(&memcg->thresholds_lock);
4035 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4036 struct eventfd_ctx *eventfd, const char *args)
4038 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4041 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4042 struct eventfd_ctx *eventfd, const char *args)
4044 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4047 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4048 struct eventfd_ctx *eventfd, enum res_type type)
4050 struct mem_cgroup_thresholds *thresholds;
4051 struct mem_cgroup_threshold_ary *new;
4052 unsigned long usage;
4053 int i, j, size, entries;
4055 mutex_lock(&memcg->thresholds_lock);
4058 thresholds = &memcg->thresholds;
4059 usage = mem_cgroup_usage(memcg, false);
4060 } else if (type == _MEMSWAP) {
4061 thresholds = &memcg->memsw_thresholds;
4062 usage = mem_cgroup_usage(memcg, true);
4066 if (!thresholds->primary)
4069 /* Check if a threshold crossed before removing */
4070 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4072 /* Calculate new number of threshold */
4074 for (i = 0; i < thresholds->primary->size; i++) {
4075 if (thresholds->primary->entries[i].eventfd != eventfd)
4081 new = thresholds->spare;
4083 /* If no items related to eventfd have been cleared, nothing to do */
4087 /* Set thresholds array to NULL if we don't have thresholds */
4096 /* Copy thresholds and find current threshold */
4097 new->current_threshold = -1;
4098 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4099 if (thresholds->primary->entries[i].eventfd == eventfd)
4102 new->entries[j] = thresholds->primary->entries[i];
4103 if (new->entries[j].threshold <= usage) {
4105 * new->current_threshold will not be used
4106 * until rcu_assign_pointer(), so it's safe to increment
4109 ++new->current_threshold;
4115 /* Swap primary and spare array */
4116 thresholds->spare = thresholds->primary;
4118 rcu_assign_pointer(thresholds->primary, new);
4120 /* To be sure that nobody uses thresholds */
4123 /* If all events are unregistered, free the spare array */
4125 kfree(thresholds->spare);
4126 thresholds->spare = NULL;
4129 mutex_unlock(&memcg->thresholds_lock);
4132 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4133 struct eventfd_ctx *eventfd)
4135 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4138 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4139 struct eventfd_ctx *eventfd)
4141 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4144 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4145 struct eventfd_ctx *eventfd, const char *args)
4147 struct mem_cgroup_eventfd_list *event;
4149 event = kmalloc(sizeof(*event), GFP_KERNEL);
4153 spin_lock(&memcg_oom_lock);
4155 event->eventfd = eventfd;
4156 list_add(&event->list, &memcg->oom_notify);
4158 /* already in OOM ? */
4159 if (memcg->under_oom)
4160 eventfd_signal(eventfd, 1);
4161 spin_unlock(&memcg_oom_lock);
4166 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4167 struct eventfd_ctx *eventfd)
4169 struct mem_cgroup_eventfd_list *ev, *tmp;
4171 spin_lock(&memcg_oom_lock);
4173 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4174 if (ev->eventfd == eventfd) {
4175 list_del(&ev->list);
4180 spin_unlock(&memcg_oom_lock);
4183 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4185 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4187 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4188 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4189 seq_printf(sf, "oom_kill %lu\n",
4190 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4194 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4195 struct cftype *cft, u64 val)
4197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 /* cannot set to root cgroup and only 0 and 1 are allowed */
4200 if (!css->parent || !((val == 0) || (val == 1)))
4203 memcg->oom_kill_disable = val;
4205 memcg_oom_recover(memcg);
4210 #ifdef CONFIG_CGROUP_WRITEBACK
4212 #include <trace/events/writeback.h>
4214 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4216 return wb_domain_init(&memcg->cgwb_domain, gfp);
4219 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4221 wb_domain_exit(&memcg->cgwb_domain);
4224 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4226 wb_domain_size_changed(&memcg->cgwb_domain);
4229 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4231 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4233 if (!memcg->css.parent)
4236 return &memcg->cgwb_domain;
4240 * idx can be of type enum memcg_stat_item or node_stat_item.
4241 * Keep in sync with memcg_exact_page().
4243 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4245 long x = atomic_long_read(&memcg->vmstats[idx]);
4248 for_each_online_cpu(cpu)
4249 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4256 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4257 * @wb: bdi_writeback in question
4258 * @pfilepages: out parameter for number of file pages
4259 * @pheadroom: out parameter for number of allocatable pages according to memcg
4260 * @pdirty: out parameter for number of dirty pages
4261 * @pwriteback: out parameter for number of pages under writeback
4263 * Determine the numbers of file, headroom, dirty, and writeback pages in
4264 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4265 * is a bit more involved.
4267 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4268 * headroom is calculated as the lowest headroom of itself and the
4269 * ancestors. Note that this doesn't consider the actual amount of
4270 * available memory in the system. The caller should further cap
4271 * *@pheadroom accordingly.
4273 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4274 unsigned long *pheadroom, unsigned long *pdirty,
4275 unsigned long *pwriteback)
4277 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4278 struct mem_cgroup *parent;
4280 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4282 /* this should eventually include NR_UNSTABLE_NFS */
4283 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4284 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4285 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4286 *pheadroom = PAGE_COUNTER_MAX;
4288 while ((parent = parent_mem_cgroup(memcg))) {
4289 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4290 unsigned long used = page_counter_read(&memcg->memory);
4292 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4298 * Foreign dirty flushing
4300 * There's an inherent mismatch between memcg and writeback. The former
4301 * trackes ownership per-page while the latter per-inode. This was a
4302 * deliberate design decision because honoring per-page ownership in the
4303 * writeback path is complicated, may lead to higher CPU and IO overheads
4304 * and deemed unnecessary given that write-sharing an inode across
4305 * different cgroups isn't a common use-case.
4307 * Combined with inode majority-writer ownership switching, this works well
4308 * enough in most cases but there are some pathological cases. For
4309 * example, let's say there are two cgroups A and B which keep writing to
4310 * different but confined parts of the same inode. B owns the inode and
4311 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4312 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4313 * triggering background writeback. A will be slowed down without a way to
4314 * make writeback of the dirty pages happen.
4316 * Conditions like the above can lead to a cgroup getting repatedly and
4317 * severely throttled after making some progress after each
4318 * dirty_expire_interval while the underyling IO device is almost
4321 * Solving this problem completely requires matching the ownership tracking
4322 * granularities between memcg and writeback in either direction. However,
4323 * the more egregious behaviors can be avoided by simply remembering the
4324 * most recent foreign dirtying events and initiating remote flushes on
4325 * them when local writeback isn't enough to keep the memory clean enough.
4327 * The following two functions implement such mechanism. When a foreign
4328 * page - a page whose memcg and writeback ownerships don't match - is
4329 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4330 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4331 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4332 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4333 * foreign bdi_writebacks which haven't expired. Both the numbers of
4334 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4335 * limited to MEMCG_CGWB_FRN_CNT.
4337 * The mechanism only remembers IDs and doesn't hold any object references.
4338 * As being wrong occasionally doesn't matter, updates and accesses to the
4339 * records are lockless and racy.
4341 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4342 struct bdi_writeback *wb)
4344 struct mem_cgroup *memcg = page->mem_cgroup;
4345 struct memcg_cgwb_frn *frn;
4346 u64 now = get_jiffies_64();
4347 u64 oldest_at = now;
4351 trace_track_foreign_dirty(page, wb);
4354 * Pick the slot to use. If there is already a slot for @wb, keep
4355 * using it. If not replace the oldest one which isn't being
4358 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4359 frn = &memcg->cgwb_frn[i];
4360 if (frn->bdi_id == wb->bdi->id &&
4361 frn->memcg_id == wb->memcg_css->id)
4363 if (time_before64(frn->at, oldest_at) &&
4364 atomic_read(&frn->done.cnt) == 1) {
4366 oldest_at = frn->at;
4370 if (i < MEMCG_CGWB_FRN_CNT) {
4372 * Re-using an existing one. Update timestamp lazily to
4373 * avoid making the cacheline hot. We want them to be
4374 * reasonably up-to-date and significantly shorter than
4375 * dirty_expire_interval as that's what expires the record.
4376 * Use the shorter of 1s and dirty_expire_interval / 8.
4378 unsigned long update_intv =
4379 min_t(unsigned long, HZ,
4380 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4382 if (time_before64(frn->at, now - update_intv))
4384 } else if (oldest >= 0) {
4385 /* replace the oldest free one */
4386 frn = &memcg->cgwb_frn[oldest];
4387 frn->bdi_id = wb->bdi->id;
4388 frn->memcg_id = wb->memcg_css->id;
4393 /* issue foreign writeback flushes for recorded foreign dirtying events */
4394 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4396 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4397 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4398 u64 now = jiffies_64;
4401 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4402 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4405 * If the record is older than dirty_expire_interval,
4406 * writeback on it has already started. No need to kick it
4407 * off again. Also, don't start a new one if there's
4408 * already one in flight.
4410 if (time_after64(frn->at, now - intv) &&
4411 atomic_read(&frn->done.cnt) == 1) {
4413 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4414 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4415 WB_REASON_FOREIGN_FLUSH,
4421 #else /* CONFIG_CGROUP_WRITEBACK */
4423 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4428 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4432 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4436 #endif /* CONFIG_CGROUP_WRITEBACK */
4439 * DO NOT USE IN NEW FILES.
4441 * "cgroup.event_control" implementation.
4443 * This is way over-engineered. It tries to support fully configurable
4444 * events for each user. Such level of flexibility is completely
4445 * unnecessary especially in the light of the planned unified hierarchy.
4447 * Please deprecate this and replace with something simpler if at all
4452 * Unregister event and free resources.
4454 * Gets called from workqueue.
4456 static void memcg_event_remove(struct work_struct *work)
4458 struct mem_cgroup_event *event =
4459 container_of(work, struct mem_cgroup_event, remove);
4460 struct mem_cgroup *memcg = event->memcg;
4462 remove_wait_queue(event->wqh, &event->wait);
4464 event->unregister_event(memcg, event->eventfd);
4466 /* Notify userspace the event is going away. */
4467 eventfd_signal(event->eventfd, 1);
4469 eventfd_ctx_put(event->eventfd);
4471 css_put(&memcg->css);
4475 * Gets called on EPOLLHUP on eventfd when user closes it.
4477 * Called with wqh->lock held and interrupts disabled.
4479 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4480 int sync, void *key)
4482 struct mem_cgroup_event *event =
4483 container_of(wait, struct mem_cgroup_event, wait);
4484 struct mem_cgroup *memcg = event->memcg;
4485 __poll_t flags = key_to_poll(key);
4487 if (flags & EPOLLHUP) {
4489 * If the event has been detached at cgroup removal, we
4490 * can simply return knowing the other side will cleanup
4493 * We can't race against event freeing since the other
4494 * side will require wqh->lock via remove_wait_queue(),
4497 spin_lock(&memcg->event_list_lock);
4498 if (!list_empty(&event->list)) {
4499 list_del_init(&event->list);
4501 * We are in atomic context, but cgroup_event_remove()
4502 * may sleep, so we have to call it in workqueue.
4504 schedule_work(&event->remove);
4506 spin_unlock(&memcg->event_list_lock);
4512 static void memcg_event_ptable_queue_proc(struct file *file,
4513 wait_queue_head_t *wqh, poll_table *pt)
4515 struct mem_cgroup_event *event =
4516 container_of(pt, struct mem_cgroup_event, pt);
4519 add_wait_queue(wqh, &event->wait);
4523 * DO NOT USE IN NEW FILES.
4525 * Parse input and register new cgroup event handler.
4527 * Input must be in format '<event_fd> <control_fd> <args>'.
4528 * Interpretation of args is defined by control file implementation.
4530 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4531 char *buf, size_t nbytes, loff_t off)
4533 struct cgroup_subsys_state *css = of_css(of);
4534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4535 struct mem_cgroup_event *event;
4536 struct cgroup_subsys_state *cfile_css;
4537 unsigned int efd, cfd;
4544 buf = strstrip(buf);
4546 efd = simple_strtoul(buf, &endp, 10);
4551 cfd = simple_strtoul(buf, &endp, 10);
4552 if ((*endp != ' ') && (*endp != '\0'))
4556 event = kzalloc(sizeof(*event), GFP_KERNEL);
4560 event->memcg = memcg;
4561 INIT_LIST_HEAD(&event->list);
4562 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4563 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4564 INIT_WORK(&event->remove, memcg_event_remove);
4572 event->eventfd = eventfd_ctx_fileget(efile.file);
4573 if (IS_ERR(event->eventfd)) {
4574 ret = PTR_ERR(event->eventfd);
4581 goto out_put_eventfd;
4584 /* the process need read permission on control file */
4585 /* AV: shouldn't we check that it's been opened for read instead? */
4586 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4591 * Determine the event callbacks and set them in @event. This used
4592 * to be done via struct cftype but cgroup core no longer knows
4593 * about these events. The following is crude but the whole thing
4594 * is for compatibility anyway.
4596 * DO NOT ADD NEW FILES.
4598 name = cfile.file->f_path.dentry->d_name.name;
4600 if (!strcmp(name, "memory.usage_in_bytes")) {
4601 event->register_event = mem_cgroup_usage_register_event;
4602 event->unregister_event = mem_cgroup_usage_unregister_event;
4603 } else if (!strcmp(name, "memory.oom_control")) {
4604 event->register_event = mem_cgroup_oom_register_event;
4605 event->unregister_event = mem_cgroup_oom_unregister_event;
4606 } else if (!strcmp(name, "memory.pressure_level")) {
4607 event->register_event = vmpressure_register_event;
4608 event->unregister_event = vmpressure_unregister_event;
4609 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4610 event->register_event = memsw_cgroup_usage_register_event;
4611 event->unregister_event = memsw_cgroup_usage_unregister_event;
4618 * Verify @cfile should belong to @css. Also, remaining events are
4619 * automatically removed on cgroup destruction but the removal is
4620 * asynchronous, so take an extra ref on @css.
4622 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4623 &memory_cgrp_subsys);
4625 if (IS_ERR(cfile_css))
4627 if (cfile_css != css) {
4632 ret = event->register_event(memcg, event->eventfd, buf);
4636 vfs_poll(efile.file, &event->pt);
4638 spin_lock(&memcg->event_list_lock);
4639 list_add(&event->list, &memcg->event_list);
4640 spin_unlock(&memcg->event_list_lock);
4652 eventfd_ctx_put(event->eventfd);
4661 static struct cftype mem_cgroup_legacy_files[] = {
4663 .name = "usage_in_bytes",
4664 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4665 .read_u64 = mem_cgroup_read_u64,
4668 .name = "max_usage_in_bytes",
4669 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4670 .write = mem_cgroup_reset,
4671 .read_u64 = mem_cgroup_read_u64,
4674 .name = "limit_in_bytes",
4675 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4676 .write = mem_cgroup_write,
4677 .read_u64 = mem_cgroup_read_u64,
4680 .name = "soft_limit_in_bytes",
4681 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4682 .write = mem_cgroup_write,
4683 .read_u64 = mem_cgroup_read_u64,
4687 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4688 .write = mem_cgroup_reset,
4689 .read_u64 = mem_cgroup_read_u64,
4693 .seq_show = memcg_stat_show,
4696 .name = "force_empty",
4697 .write = mem_cgroup_force_empty_write,
4700 .name = "use_hierarchy",
4701 .write_u64 = mem_cgroup_hierarchy_write,
4702 .read_u64 = mem_cgroup_hierarchy_read,
4705 .name = "cgroup.event_control", /* XXX: for compat */
4706 .write = memcg_write_event_control,
4707 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4710 .name = "swappiness",
4711 .read_u64 = mem_cgroup_swappiness_read,
4712 .write_u64 = mem_cgroup_swappiness_write,
4715 .name = "move_charge_at_immigrate",
4716 .read_u64 = mem_cgroup_move_charge_read,
4717 .write_u64 = mem_cgroup_move_charge_write,
4720 .name = "oom_control",
4721 .seq_show = mem_cgroup_oom_control_read,
4722 .write_u64 = mem_cgroup_oom_control_write,
4723 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4726 .name = "pressure_level",
4730 .name = "numa_stat",
4731 .seq_show = memcg_numa_stat_show,
4735 .name = "kmem.limit_in_bytes",
4736 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4737 .write = mem_cgroup_write,
4738 .read_u64 = mem_cgroup_read_u64,
4741 .name = "kmem.usage_in_bytes",
4742 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4743 .read_u64 = mem_cgroup_read_u64,
4746 .name = "kmem.failcnt",
4747 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4748 .write = mem_cgroup_reset,
4749 .read_u64 = mem_cgroup_read_u64,
4752 .name = "kmem.max_usage_in_bytes",
4753 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4754 .write = mem_cgroup_reset,
4755 .read_u64 = mem_cgroup_read_u64,
4757 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4759 .name = "kmem.slabinfo",
4760 .seq_start = memcg_slab_start,
4761 .seq_next = memcg_slab_next,
4762 .seq_stop = memcg_slab_stop,
4763 .seq_show = memcg_slab_show,
4767 .name = "kmem.tcp.limit_in_bytes",
4768 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4769 .write = mem_cgroup_write,
4770 .read_u64 = mem_cgroup_read_u64,
4773 .name = "kmem.tcp.usage_in_bytes",
4774 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4775 .read_u64 = mem_cgroup_read_u64,
4778 .name = "kmem.tcp.failcnt",
4779 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4780 .write = mem_cgroup_reset,
4781 .read_u64 = mem_cgroup_read_u64,
4784 .name = "kmem.tcp.max_usage_in_bytes",
4785 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4786 .write = mem_cgroup_reset,
4787 .read_u64 = mem_cgroup_read_u64,
4789 { }, /* terminate */
4793 * Private memory cgroup IDR
4795 * Swap-out records and page cache shadow entries need to store memcg
4796 * references in constrained space, so we maintain an ID space that is
4797 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4798 * memory-controlled cgroups to 64k.
4800 * However, there usually are many references to the oflline CSS after
4801 * the cgroup has been destroyed, such as page cache or reclaimable
4802 * slab objects, that don't need to hang on to the ID. We want to keep
4803 * those dead CSS from occupying IDs, or we might quickly exhaust the
4804 * relatively small ID space and prevent the creation of new cgroups
4805 * even when there are much fewer than 64k cgroups - possibly none.
4807 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4808 * be freed and recycled when it's no longer needed, which is usually
4809 * when the CSS is offlined.
4811 * The only exception to that are records of swapped out tmpfs/shmem
4812 * pages that need to be attributed to live ancestors on swapin. But
4813 * those references are manageable from userspace.
4816 static DEFINE_IDR(mem_cgroup_idr);
4818 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4820 if (memcg->id.id > 0) {
4821 idr_remove(&mem_cgroup_idr, memcg->id.id);
4826 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4828 refcount_add(n, &memcg->id.ref);
4831 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4833 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4834 mem_cgroup_id_remove(memcg);
4836 /* Memcg ID pins CSS */
4837 css_put(&memcg->css);
4841 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4843 mem_cgroup_id_put_many(memcg, 1);
4847 * mem_cgroup_from_id - look up a memcg from a memcg id
4848 * @id: the memcg id to look up
4850 * Caller must hold rcu_read_lock().
4852 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4854 WARN_ON_ONCE(!rcu_read_lock_held());
4855 return idr_find(&mem_cgroup_idr, id);
4858 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4860 struct mem_cgroup_per_node *pn;
4863 * This routine is called against possible nodes.
4864 * But it's BUG to call kmalloc() against offline node.
4866 * TODO: this routine can waste much memory for nodes which will
4867 * never be onlined. It's better to use memory hotplug callback
4870 if (!node_state(node, N_NORMAL_MEMORY))
4872 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4876 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4877 if (!pn->lruvec_stat_local) {
4882 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4883 if (!pn->lruvec_stat_cpu) {
4884 free_percpu(pn->lruvec_stat_local);
4889 lruvec_init(&pn->lruvec);
4890 pn->usage_in_excess = 0;
4891 pn->on_tree = false;
4894 memcg->nodeinfo[node] = pn;
4898 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4900 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4905 free_percpu(pn->lruvec_stat_cpu);
4906 free_percpu(pn->lruvec_stat_local);
4910 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4915 free_mem_cgroup_per_node_info(memcg, node);
4916 free_percpu(memcg->vmstats_percpu);
4917 free_percpu(memcg->vmstats_local);
4921 static void mem_cgroup_free(struct mem_cgroup *memcg)
4923 memcg_wb_domain_exit(memcg);
4925 * Flush percpu vmstats and vmevents to guarantee the value correctness
4926 * on parent's and all ancestor levels.
4928 memcg_flush_percpu_vmstats(memcg);
4929 memcg_flush_percpu_vmevents(memcg);
4930 __mem_cgroup_free(memcg);
4933 static struct mem_cgroup *mem_cgroup_alloc(void)
4935 struct mem_cgroup *memcg;
4938 int __maybe_unused i;
4940 size = sizeof(struct mem_cgroup);
4941 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4943 memcg = kzalloc(size, GFP_KERNEL);
4947 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4948 1, MEM_CGROUP_ID_MAX,
4950 if (memcg->id.id < 0)
4953 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4954 if (!memcg->vmstats_local)
4957 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4958 if (!memcg->vmstats_percpu)
4962 if (alloc_mem_cgroup_per_node_info(memcg, node))
4965 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4968 INIT_WORK(&memcg->high_work, high_work_func);
4969 INIT_LIST_HEAD(&memcg->oom_notify);
4970 mutex_init(&memcg->thresholds_lock);
4971 spin_lock_init(&memcg->move_lock);
4972 vmpressure_init(&memcg->vmpressure);
4973 INIT_LIST_HEAD(&memcg->event_list);
4974 spin_lock_init(&memcg->event_list_lock);
4975 memcg->socket_pressure = jiffies;
4976 #ifdef CONFIG_MEMCG_KMEM
4977 memcg->kmemcg_id = -1;
4979 #ifdef CONFIG_CGROUP_WRITEBACK
4980 INIT_LIST_HEAD(&memcg->cgwb_list);
4981 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4982 memcg->cgwb_frn[i].done =
4983 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4986 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4987 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4988 memcg->deferred_split_queue.split_queue_len = 0;
4990 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4993 mem_cgroup_id_remove(memcg);
4994 __mem_cgroup_free(memcg);
4998 static struct cgroup_subsys_state * __ref
4999 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5001 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5002 struct mem_cgroup *memcg;
5003 long error = -ENOMEM;
5005 memcg = mem_cgroup_alloc();
5007 return ERR_PTR(error);
5009 memcg->high = PAGE_COUNTER_MAX;
5010 memcg->soft_limit = PAGE_COUNTER_MAX;
5012 memcg->swappiness = mem_cgroup_swappiness(parent);
5013 memcg->oom_kill_disable = parent->oom_kill_disable;
5015 if (parent && parent->use_hierarchy) {
5016 memcg->use_hierarchy = true;
5017 page_counter_init(&memcg->memory, &parent->memory);
5018 page_counter_init(&memcg->swap, &parent->swap);
5019 page_counter_init(&memcg->memsw, &parent->memsw);
5020 page_counter_init(&memcg->kmem, &parent->kmem);
5021 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5023 page_counter_init(&memcg->memory, NULL);
5024 page_counter_init(&memcg->swap, NULL);
5025 page_counter_init(&memcg->memsw, NULL);
5026 page_counter_init(&memcg->kmem, NULL);
5027 page_counter_init(&memcg->tcpmem, NULL);
5029 * Deeper hierachy with use_hierarchy == false doesn't make
5030 * much sense so let cgroup subsystem know about this
5031 * unfortunate state in our controller.
5033 if (parent != root_mem_cgroup)
5034 memory_cgrp_subsys.broken_hierarchy = true;
5037 /* The following stuff does not apply to the root */
5039 #ifdef CONFIG_MEMCG_KMEM
5040 INIT_LIST_HEAD(&memcg->kmem_caches);
5042 root_mem_cgroup = memcg;
5046 error = memcg_online_kmem(memcg);
5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5051 static_branch_inc(&memcg_sockets_enabled_key);
5055 mem_cgroup_id_remove(memcg);
5056 mem_cgroup_free(memcg);
5057 return ERR_PTR(-ENOMEM);
5060 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5065 * A memcg must be visible for memcg_expand_shrinker_maps()
5066 * by the time the maps are allocated. So, we allocate maps
5067 * here, when for_each_mem_cgroup() can't skip it.
5069 if (memcg_alloc_shrinker_maps(memcg)) {
5070 mem_cgroup_id_remove(memcg);
5074 /* Online state pins memcg ID, memcg ID pins CSS */
5075 refcount_set(&memcg->id.ref, 1);
5080 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5083 struct mem_cgroup_event *event, *tmp;
5086 * Unregister events and notify userspace.
5087 * Notify userspace about cgroup removing only after rmdir of cgroup
5088 * directory to avoid race between userspace and kernelspace.
5090 spin_lock(&memcg->event_list_lock);
5091 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5092 list_del_init(&event->list);
5093 schedule_work(&event->remove);
5095 spin_unlock(&memcg->event_list_lock);
5097 page_counter_set_min(&memcg->memory, 0);
5098 page_counter_set_low(&memcg->memory, 0);
5100 memcg_offline_kmem(memcg);
5101 wb_memcg_offline(memcg);
5103 drain_all_stock(memcg);
5105 mem_cgroup_id_put(memcg);
5108 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5112 invalidate_reclaim_iterators(memcg);
5115 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5118 int __maybe_unused i;
5120 #ifdef CONFIG_CGROUP_WRITEBACK
5121 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5122 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5124 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5125 static_branch_dec(&memcg_sockets_enabled_key);
5127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5128 static_branch_dec(&memcg_sockets_enabled_key);
5130 vmpressure_cleanup(&memcg->vmpressure);
5131 cancel_work_sync(&memcg->high_work);
5132 mem_cgroup_remove_from_trees(memcg);
5133 memcg_free_shrinker_maps(memcg);
5134 memcg_free_kmem(memcg);
5135 mem_cgroup_free(memcg);
5139 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5140 * @css: the target css
5142 * Reset the states of the mem_cgroup associated with @css. This is
5143 * invoked when the userland requests disabling on the default hierarchy
5144 * but the memcg is pinned through dependency. The memcg should stop
5145 * applying policies and should revert to the vanilla state as it may be
5146 * made visible again.
5148 * The current implementation only resets the essential configurations.
5149 * This needs to be expanded to cover all the visible parts.
5151 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5155 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5156 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5157 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5158 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5159 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5160 page_counter_set_min(&memcg->memory, 0);
5161 page_counter_set_low(&memcg->memory, 0);
5162 memcg->high = PAGE_COUNTER_MAX;
5163 memcg->soft_limit = PAGE_COUNTER_MAX;
5164 memcg_wb_domain_size_changed(memcg);
5168 /* Handlers for move charge at task migration. */
5169 static int mem_cgroup_do_precharge(unsigned long count)
5173 /* Try a single bulk charge without reclaim first, kswapd may wake */
5174 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5176 mc.precharge += count;
5180 /* Try charges one by one with reclaim, but do not retry */
5182 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5196 enum mc_target_type {
5203 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5204 unsigned long addr, pte_t ptent)
5206 struct page *page = vm_normal_page(vma, addr, ptent);
5208 if (!page || !page_mapped(page))
5210 if (PageAnon(page)) {
5211 if (!(mc.flags & MOVE_ANON))
5214 if (!(mc.flags & MOVE_FILE))
5217 if (!get_page_unless_zero(page))
5223 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5224 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225 pte_t ptent, swp_entry_t *entry)
5227 struct page *page = NULL;
5228 swp_entry_t ent = pte_to_swp_entry(ptent);
5230 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5234 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5235 * a device and because they are not accessible by CPU they are store
5236 * as special swap entry in the CPU page table.
5238 if (is_device_private_entry(ent)) {
5239 page = device_private_entry_to_page(ent);
5241 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5242 * a refcount of 1 when free (unlike normal page)
5244 if (!page_ref_add_unless(page, 1, 1))
5250 * Because lookup_swap_cache() updates some statistics counter,
5251 * we call find_get_page() with swapper_space directly.
5253 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5254 if (do_memsw_account())
5255 entry->val = ent.val;
5260 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5261 pte_t ptent, swp_entry_t *entry)
5267 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5268 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5270 struct page *page = NULL;
5271 struct address_space *mapping;
5274 if (!vma->vm_file) /* anonymous vma */
5276 if (!(mc.flags & MOVE_FILE))
5279 mapping = vma->vm_file->f_mapping;
5280 pgoff = linear_page_index(vma, addr);
5282 /* page is moved even if it's not RSS of this task(page-faulted). */
5284 /* shmem/tmpfs may report page out on swap: account for that too. */
5285 if (shmem_mapping(mapping)) {
5286 page = find_get_entry(mapping, pgoff);
5287 if (xa_is_value(page)) {
5288 swp_entry_t swp = radix_to_swp_entry(page);
5289 if (do_memsw_account())
5291 page = find_get_page(swap_address_space(swp),
5295 page = find_get_page(mapping, pgoff);
5297 page = find_get_page(mapping, pgoff);
5303 * mem_cgroup_move_account - move account of the page
5305 * @compound: charge the page as compound or small page
5306 * @from: mem_cgroup which the page is moved from.
5307 * @to: mem_cgroup which the page is moved to. @from != @to.
5309 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5311 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5314 static int mem_cgroup_move_account(struct page *page,
5316 struct mem_cgroup *from,
5317 struct mem_cgroup *to)
5319 struct lruvec *from_vec, *to_vec;
5320 struct pglist_data *pgdat;
5321 unsigned long flags;
5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326 VM_BUG_ON(from == to);
5327 VM_BUG_ON_PAGE(PageLRU(page), page);
5328 VM_BUG_ON(compound && !PageTransHuge(page));
5331 * Prevent mem_cgroup_migrate() from looking at
5332 * page->mem_cgroup of its source page while we change it.
5335 if (!trylock_page(page))
5339 if (page->mem_cgroup != from)
5342 anon = PageAnon(page);
5344 pgdat = page_pgdat(page);
5345 from_vec = mem_cgroup_lruvec(from, pgdat);
5346 to_vec = mem_cgroup_lruvec(to, pgdat);
5348 spin_lock_irqsave(&from->move_lock, flags);
5350 if (!anon && page_mapped(page)) {
5351 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5352 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5356 * move_lock grabbed above and caller set from->moving_account, so
5357 * mod_memcg_page_state will serialize updates to PageDirty.
5358 * So mapping should be stable for dirty pages.
5360 if (!anon && PageDirty(page)) {
5361 struct address_space *mapping = page_mapping(page);
5363 if (mapping_cap_account_dirty(mapping)) {
5364 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5365 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5369 if (PageWriteback(page)) {
5370 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5371 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5375 * It is safe to change page->mem_cgroup here because the page
5376 * is referenced, charged, and isolated - we can't race with
5377 * uncharging, charging, migration, or LRU putback.
5380 /* caller should have done css_get */
5381 page->mem_cgroup = to;
5383 spin_unlock_irqrestore(&from->move_lock, flags);
5387 local_irq_disable();
5388 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5389 memcg_check_events(to, page);
5390 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5391 memcg_check_events(from, page);
5400 * get_mctgt_type - get target type of moving charge
5401 * @vma: the vma the pte to be checked belongs
5402 * @addr: the address corresponding to the pte to be checked
5403 * @ptent: the pte to be checked
5404 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5407 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5408 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5409 * move charge. if @target is not NULL, the page is stored in target->page
5410 * with extra refcnt got(Callers should handle it).
5411 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5412 * target for charge migration. if @target is not NULL, the entry is stored
5414 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5415 * (so ZONE_DEVICE page and thus not on the lru).
5416 * For now we such page is charge like a regular page would be as for all
5417 * intent and purposes it is just special memory taking the place of a
5420 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5422 * Called with pte lock held.
5425 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5426 unsigned long addr, pte_t ptent, union mc_target *target)
5428 struct page *page = NULL;
5429 enum mc_target_type ret = MC_TARGET_NONE;
5430 swp_entry_t ent = { .val = 0 };
5432 if (pte_present(ptent))
5433 page = mc_handle_present_pte(vma, addr, ptent);
5434 else if (is_swap_pte(ptent))
5435 page = mc_handle_swap_pte(vma, ptent, &ent);
5436 else if (pte_none(ptent))
5437 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5439 if (!page && !ent.val)
5443 * Do only loose check w/o serialization.
5444 * mem_cgroup_move_account() checks the page is valid or
5445 * not under LRU exclusion.
5447 if (page->mem_cgroup == mc.from) {
5448 ret = MC_TARGET_PAGE;
5449 if (is_device_private_page(page))
5450 ret = MC_TARGET_DEVICE;
5452 target->page = page;
5454 if (!ret || !target)
5458 * There is a swap entry and a page doesn't exist or isn't charged.
5459 * But we cannot move a tail-page in a THP.
5461 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5462 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5463 ret = MC_TARGET_SWAP;
5470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5472 * We don't consider PMD mapped swapping or file mapped pages because THP does
5473 * not support them for now.
5474 * Caller should make sure that pmd_trans_huge(pmd) is true.
5476 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5477 unsigned long addr, pmd_t pmd, union mc_target *target)
5479 struct page *page = NULL;
5480 enum mc_target_type ret = MC_TARGET_NONE;
5482 if (unlikely(is_swap_pmd(pmd))) {
5483 VM_BUG_ON(thp_migration_supported() &&
5484 !is_pmd_migration_entry(pmd));
5487 page = pmd_page(pmd);
5488 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5489 if (!(mc.flags & MOVE_ANON))
5491 if (page->mem_cgroup == mc.from) {
5492 ret = MC_TARGET_PAGE;
5495 target->page = page;
5501 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5502 unsigned long addr, pmd_t pmd, union mc_target *target)
5504 return MC_TARGET_NONE;
5508 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5509 unsigned long addr, unsigned long end,
5510 struct mm_walk *walk)
5512 struct vm_area_struct *vma = walk->vma;
5516 ptl = pmd_trans_huge_lock(pmd, vma);
5519 * Note their can not be MC_TARGET_DEVICE for now as we do not
5520 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5521 * this might change.
5523 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5524 mc.precharge += HPAGE_PMD_NR;
5529 if (pmd_trans_unstable(pmd))
5531 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5532 for (; addr != end; pte++, addr += PAGE_SIZE)
5533 if (get_mctgt_type(vma, addr, *pte, NULL))
5534 mc.precharge++; /* increment precharge temporarily */
5535 pte_unmap_unlock(pte - 1, ptl);
5541 static const struct mm_walk_ops precharge_walk_ops = {
5542 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5545 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5547 unsigned long precharge;
5549 down_read(&mm->mmap_sem);
5550 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5551 up_read(&mm->mmap_sem);
5553 precharge = mc.precharge;
5559 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5561 unsigned long precharge = mem_cgroup_count_precharge(mm);
5563 VM_BUG_ON(mc.moving_task);
5564 mc.moving_task = current;
5565 return mem_cgroup_do_precharge(precharge);
5568 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5569 static void __mem_cgroup_clear_mc(void)
5571 struct mem_cgroup *from = mc.from;
5572 struct mem_cgroup *to = mc.to;
5574 /* we must uncharge all the leftover precharges from mc.to */
5576 cancel_charge(mc.to, mc.precharge);
5580 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5581 * we must uncharge here.
5583 if (mc.moved_charge) {
5584 cancel_charge(mc.from, mc.moved_charge);
5585 mc.moved_charge = 0;
5587 /* we must fixup refcnts and charges */
5588 if (mc.moved_swap) {
5589 /* uncharge swap account from the old cgroup */
5590 if (!mem_cgroup_is_root(mc.from))
5591 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5593 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5596 * we charged both to->memory and to->memsw, so we
5597 * should uncharge to->memory.
5599 if (!mem_cgroup_is_root(mc.to))
5600 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5602 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5603 css_put_many(&mc.to->css, mc.moved_swap);
5607 memcg_oom_recover(from);
5608 memcg_oom_recover(to);
5609 wake_up_all(&mc.waitq);
5612 static void mem_cgroup_clear_mc(void)
5614 struct mm_struct *mm = mc.mm;
5617 * we must clear moving_task before waking up waiters at the end of
5620 mc.moving_task = NULL;
5621 __mem_cgroup_clear_mc();
5622 spin_lock(&mc.lock);
5626 spin_unlock(&mc.lock);
5631 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5633 struct cgroup_subsys_state *css;
5634 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5635 struct mem_cgroup *from;
5636 struct task_struct *leader, *p;
5637 struct mm_struct *mm;
5638 unsigned long move_flags;
5641 /* charge immigration isn't supported on the default hierarchy */
5642 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5646 * Multi-process migrations only happen on the default hierarchy
5647 * where charge immigration is not used. Perform charge
5648 * immigration if @tset contains a leader and whine if there are
5652 cgroup_taskset_for_each_leader(leader, css, tset) {
5655 memcg = mem_cgroup_from_css(css);
5661 * We are now commited to this value whatever it is. Changes in this
5662 * tunable will only affect upcoming migrations, not the current one.
5663 * So we need to save it, and keep it going.
5665 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5669 from = mem_cgroup_from_task(p);
5671 VM_BUG_ON(from == memcg);
5673 mm = get_task_mm(p);
5676 /* We move charges only when we move a owner of the mm */
5677 if (mm->owner == p) {
5680 VM_BUG_ON(mc.precharge);
5681 VM_BUG_ON(mc.moved_charge);
5682 VM_BUG_ON(mc.moved_swap);
5684 spin_lock(&mc.lock);
5688 mc.flags = move_flags;
5689 spin_unlock(&mc.lock);
5690 /* We set mc.moving_task later */
5692 ret = mem_cgroup_precharge_mc(mm);
5694 mem_cgroup_clear_mc();
5701 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5704 mem_cgroup_clear_mc();
5707 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5708 unsigned long addr, unsigned long end,
5709 struct mm_walk *walk)
5712 struct vm_area_struct *vma = walk->vma;
5715 enum mc_target_type target_type;
5716 union mc_target target;
5719 ptl = pmd_trans_huge_lock(pmd, vma);
5721 if (mc.precharge < HPAGE_PMD_NR) {
5725 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5726 if (target_type == MC_TARGET_PAGE) {
5728 if (!isolate_lru_page(page)) {
5729 if (!mem_cgroup_move_account(page, true,
5731 mc.precharge -= HPAGE_PMD_NR;
5732 mc.moved_charge += HPAGE_PMD_NR;
5734 putback_lru_page(page);
5737 } else if (target_type == MC_TARGET_DEVICE) {
5739 if (!mem_cgroup_move_account(page, true,
5741 mc.precharge -= HPAGE_PMD_NR;
5742 mc.moved_charge += HPAGE_PMD_NR;
5750 if (pmd_trans_unstable(pmd))
5753 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5754 for (; addr != end; addr += PAGE_SIZE) {
5755 pte_t ptent = *(pte++);
5756 bool device = false;
5762 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5763 case MC_TARGET_DEVICE:
5766 case MC_TARGET_PAGE:
5769 * We can have a part of the split pmd here. Moving it
5770 * can be done but it would be too convoluted so simply
5771 * ignore such a partial THP and keep it in original
5772 * memcg. There should be somebody mapping the head.
5774 if (PageTransCompound(page))
5776 if (!device && isolate_lru_page(page))
5778 if (!mem_cgroup_move_account(page, false,
5781 /* we uncharge from mc.from later. */
5785 putback_lru_page(page);
5786 put: /* get_mctgt_type() gets the page */
5789 case MC_TARGET_SWAP:
5791 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5793 /* we fixup refcnts and charges later. */
5801 pte_unmap_unlock(pte - 1, ptl);
5806 * We have consumed all precharges we got in can_attach().
5807 * We try charge one by one, but don't do any additional
5808 * charges to mc.to if we have failed in charge once in attach()
5811 ret = mem_cgroup_do_precharge(1);
5819 static const struct mm_walk_ops charge_walk_ops = {
5820 .pmd_entry = mem_cgroup_move_charge_pte_range,
5823 static void mem_cgroup_move_charge(void)
5825 lru_add_drain_all();
5827 * Signal lock_page_memcg() to take the memcg's move_lock
5828 * while we're moving its pages to another memcg. Then wait
5829 * for already started RCU-only updates to finish.
5831 atomic_inc(&mc.from->moving_account);
5834 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5836 * Someone who are holding the mmap_sem might be waiting in
5837 * waitq. So we cancel all extra charges, wake up all waiters,
5838 * and retry. Because we cancel precharges, we might not be able
5839 * to move enough charges, but moving charge is a best-effort
5840 * feature anyway, so it wouldn't be a big problem.
5842 __mem_cgroup_clear_mc();
5847 * When we have consumed all precharges and failed in doing
5848 * additional charge, the page walk just aborts.
5850 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5853 up_read(&mc.mm->mmap_sem);
5854 atomic_dec(&mc.from->moving_account);
5857 static void mem_cgroup_move_task(void)
5860 mem_cgroup_move_charge();
5861 mem_cgroup_clear_mc();
5864 #else /* !CONFIG_MMU */
5865 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5869 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5872 static void mem_cgroup_move_task(void)
5878 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5879 * to verify whether we're attached to the default hierarchy on each mount
5882 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5885 * use_hierarchy is forced on the default hierarchy. cgroup core
5886 * guarantees that @root doesn't have any children, so turning it
5887 * on for the root memcg is enough.
5889 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5890 root_mem_cgroup->use_hierarchy = true;
5892 root_mem_cgroup->use_hierarchy = false;
5895 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5897 if (value == PAGE_COUNTER_MAX)
5898 seq_puts(m, "max\n");
5900 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5905 static u64 memory_current_read(struct cgroup_subsys_state *css,
5908 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5910 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5913 static int memory_min_show(struct seq_file *m, void *v)
5915 return seq_puts_memcg_tunable(m,
5916 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5919 static ssize_t memory_min_write(struct kernfs_open_file *of,
5920 char *buf, size_t nbytes, loff_t off)
5922 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5926 buf = strstrip(buf);
5927 err = page_counter_memparse(buf, "max", &min);
5931 page_counter_set_min(&memcg->memory, min);
5936 static int memory_low_show(struct seq_file *m, void *v)
5938 return seq_puts_memcg_tunable(m,
5939 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5942 static ssize_t memory_low_write(struct kernfs_open_file *of,
5943 char *buf, size_t nbytes, loff_t off)
5945 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5949 buf = strstrip(buf);
5950 err = page_counter_memparse(buf, "max", &low);
5954 page_counter_set_low(&memcg->memory, low);
5959 static int memory_high_show(struct seq_file *m, void *v)
5961 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5964 static ssize_t memory_high_write(struct kernfs_open_file *of,
5965 char *buf, size_t nbytes, loff_t off)
5967 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5968 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5969 bool drained = false;
5973 buf = strstrip(buf);
5974 err = page_counter_memparse(buf, "max", &high);
5981 unsigned long nr_pages = page_counter_read(&memcg->memory);
5982 unsigned long reclaimed;
5984 if (nr_pages <= high)
5987 if (signal_pending(current))
5991 drain_all_stock(memcg);
5996 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5999 if (!reclaimed && !nr_retries--)
6006 static int memory_max_show(struct seq_file *m, void *v)
6008 return seq_puts_memcg_tunable(m,
6009 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6012 static ssize_t memory_max_write(struct kernfs_open_file *of,
6013 char *buf, size_t nbytes, loff_t off)
6015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6016 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6017 bool drained = false;
6021 buf = strstrip(buf);
6022 err = page_counter_memparse(buf, "max", &max);
6026 xchg(&memcg->memory.max, max);
6029 unsigned long nr_pages = page_counter_read(&memcg->memory);
6031 if (nr_pages <= max)
6034 if (signal_pending(current))
6038 drain_all_stock(memcg);
6044 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6050 memcg_memory_event(memcg, MEMCG_OOM);
6051 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6055 memcg_wb_domain_size_changed(memcg);
6059 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6061 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6062 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6063 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6064 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6065 seq_printf(m, "oom_kill %lu\n",
6066 atomic_long_read(&events[MEMCG_OOM_KILL]));
6069 static int memory_events_show(struct seq_file *m, void *v)
6071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6073 __memory_events_show(m, memcg->memory_events);
6077 static int memory_events_local_show(struct seq_file *m, void *v)
6079 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6081 __memory_events_show(m, memcg->memory_events_local);
6085 static int memory_stat_show(struct seq_file *m, void *v)
6087 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6090 buf = memory_stat_format(memcg);
6098 static int memory_oom_group_show(struct seq_file *m, void *v)
6100 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6102 seq_printf(m, "%d\n", memcg->oom_group);
6107 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6108 char *buf, size_t nbytes, loff_t off)
6110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6113 buf = strstrip(buf);
6117 ret = kstrtoint(buf, 0, &oom_group);
6121 if (oom_group != 0 && oom_group != 1)
6124 memcg->oom_group = oom_group;
6129 static struct cftype memory_files[] = {
6132 .flags = CFTYPE_NOT_ON_ROOT,
6133 .read_u64 = memory_current_read,
6137 .flags = CFTYPE_NOT_ON_ROOT,
6138 .seq_show = memory_min_show,
6139 .write = memory_min_write,
6143 .flags = CFTYPE_NOT_ON_ROOT,
6144 .seq_show = memory_low_show,
6145 .write = memory_low_write,
6149 .flags = CFTYPE_NOT_ON_ROOT,
6150 .seq_show = memory_high_show,
6151 .write = memory_high_write,
6155 .flags = CFTYPE_NOT_ON_ROOT,
6156 .seq_show = memory_max_show,
6157 .write = memory_max_write,
6161 .flags = CFTYPE_NOT_ON_ROOT,
6162 .file_offset = offsetof(struct mem_cgroup, events_file),
6163 .seq_show = memory_events_show,
6166 .name = "events.local",
6167 .flags = CFTYPE_NOT_ON_ROOT,
6168 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6169 .seq_show = memory_events_local_show,
6173 .flags = CFTYPE_NOT_ON_ROOT,
6174 .seq_show = memory_stat_show,
6177 .name = "oom.group",
6178 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6179 .seq_show = memory_oom_group_show,
6180 .write = memory_oom_group_write,
6185 struct cgroup_subsys memory_cgrp_subsys = {
6186 .css_alloc = mem_cgroup_css_alloc,
6187 .css_online = mem_cgroup_css_online,
6188 .css_offline = mem_cgroup_css_offline,
6189 .css_released = mem_cgroup_css_released,
6190 .css_free = mem_cgroup_css_free,
6191 .css_reset = mem_cgroup_css_reset,
6192 .can_attach = mem_cgroup_can_attach,
6193 .cancel_attach = mem_cgroup_cancel_attach,
6194 .post_attach = mem_cgroup_move_task,
6195 .bind = mem_cgroup_bind,
6196 .dfl_cftypes = memory_files,
6197 .legacy_cftypes = mem_cgroup_legacy_files,
6202 * mem_cgroup_protected - check if memory consumption is in the normal range
6203 * @root: the top ancestor of the sub-tree being checked
6204 * @memcg: the memory cgroup to check
6206 * WARNING: This function is not stateless! It can only be used as part
6207 * of a top-down tree iteration, not for isolated queries.
6209 * Returns one of the following:
6210 * MEMCG_PROT_NONE: cgroup memory is not protected
6211 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6212 * an unprotected supply of reclaimable memory from other cgroups.
6213 * MEMCG_PROT_MIN: cgroup memory is protected
6215 * @root is exclusive; it is never protected when looked at directly
6217 * To provide a proper hierarchical behavior, effective memory.min/low values
6218 * are used. Below is the description of how effective memory.low is calculated.
6219 * Effective memory.min values is calculated in the same way.
6221 * Effective memory.low is always equal or less than the original memory.low.
6222 * If there is no memory.low overcommittment (which is always true for
6223 * top-level memory cgroups), these two values are equal.
6224 * Otherwise, it's a part of parent's effective memory.low,
6225 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6226 * memory.low usages, where memory.low usage is the size of actually
6230 * elow = min( memory.low, parent->elow * ------------------ ),
6231 * siblings_low_usage
6233 * | memory.current, if memory.current < memory.low
6238 * Such definition of the effective memory.low provides the expected
6239 * hierarchical behavior: parent's memory.low value is limiting
6240 * children, unprotected memory is reclaimed first and cgroups,
6241 * which are not using their guarantee do not affect actual memory
6244 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6246 * A A/memory.low = 2G, A/memory.current = 6G
6248 * BC DE B/memory.low = 3G B/memory.current = 2G
6249 * C/memory.low = 1G C/memory.current = 2G
6250 * D/memory.low = 0 D/memory.current = 2G
6251 * E/memory.low = 10G E/memory.current = 0
6253 * and the memory pressure is applied, the following memory distribution
6254 * is expected (approximately):
6256 * A/memory.current = 2G
6258 * B/memory.current = 1.3G
6259 * C/memory.current = 0.6G
6260 * D/memory.current = 0
6261 * E/memory.current = 0
6263 * These calculations require constant tracking of the actual low usages
6264 * (see propagate_protected_usage()), as well as recursive calculation of
6265 * effective memory.low values. But as we do call mem_cgroup_protected()
6266 * path for each memory cgroup top-down from the reclaim,
6267 * it's possible to optimize this part, and save calculated elow
6268 * for next usage. This part is intentionally racy, but it's ok,
6269 * as memory.low is a best-effort mechanism.
6271 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6272 struct mem_cgroup *memcg)
6274 struct mem_cgroup *parent;
6275 unsigned long emin, parent_emin;
6276 unsigned long elow, parent_elow;
6277 unsigned long usage;
6279 if (mem_cgroup_disabled())
6280 return MEMCG_PROT_NONE;
6283 root = root_mem_cgroup;
6285 return MEMCG_PROT_NONE;
6287 usage = page_counter_read(&memcg->memory);
6289 return MEMCG_PROT_NONE;
6291 emin = memcg->memory.min;
6292 elow = memcg->memory.low;
6294 parent = parent_mem_cgroup(memcg);
6295 /* No parent means a non-hierarchical mode on v1 memcg */
6297 return MEMCG_PROT_NONE;
6302 parent_emin = READ_ONCE(parent->memory.emin);
6303 emin = min(emin, parent_emin);
6304 if (emin && parent_emin) {
6305 unsigned long min_usage, siblings_min_usage;
6307 min_usage = min(usage, memcg->memory.min);
6308 siblings_min_usage = atomic_long_read(
6309 &parent->memory.children_min_usage);
6311 if (min_usage && siblings_min_usage)
6312 emin = min(emin, parent_emin * min_usage /
6313 siblings_min_usage);
6316 parent_elow = READ_ONCE(parent->memory.elow);
6317 elow = min(elow, parent_elow);
6318 if (elow && parent_elow) {
6319 unsigned long low_usage, siblings_low_usage;
6321 low_usage = min(usage, memcg->memory.low);
6322 siblings_low_usage = atomic_long_read(
6323 &parent->memory.children_low_usage);
6325 if (low_usage && siblings_low_usage)
6326 elow = min(elow, parent_elow * low_usage /
6327 siblings_low_usage);
6331 memcg->memory.emin = emin;
6332 memcg->memory.elow = elow;
6335 return MEMCG_PROT_MIN;
6336 else if (usage <= elow)
6337 return MEMCG_PROT_LOW;
6339 return MEMCG_PROT_NONE;
6343 * mem_cgroup_try_charge - try charging a page
6344 * @page: page to charge
6345 * @mm: mm context of the victim
6346 * @gfp_mask: reclaim mode
6347 * @memcgp: charged memcg return
6348 * @compound: charge the page as compound or small page
6350 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6351 * pages according to @gfp_mask if necessary.
6353 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6354 * Otherwise, an error code is returned.
6356 * After page->mapping has been set up, the caller must finalize the
6357 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6358 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6360 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6361 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6364 struct mem_cgroup *memcg = NULL;
6365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6368 if (mem_cgroup_disabled())
6371 if (PageSwapCache(page)) {
6373 * Every swap fault against a single page tries to charge the
6374 * page, bail as early as possible. shmem_unuse() encounters
6375 * already charged pages, too. The USED bit is protected by
6376 * the page lock, which serializes swap cache removal, which
6377 * in turn serializes uncharging.
6379 VM_BUG_ON_PAGE(!PageLocked(page), page);
6380 if (compound_head(page)->mem_cgroup)
6383 if (do_swap_account) {
6384 swp_entry_t ent = { .val = page_private(page), };
6385 unsigned short id = lookup_swap_cgroup_id(ent);
6388 memcg = mem_cgroup_from_id(id);
6389 if (memcg && !css_tryget_online(&memcg->css))
6396 memcg = get_mem_cgroup_from_mm(mm);
6398 ret = try_charge(memcg, gfp_mask, nr_pages);
6400 css_put(&memcg->css);
6406 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6407 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6410 struct mem_cgroup *memcg;
6413 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6415 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6420 * mem_cgroup_commit_charge - commit a page charge
6421 * @page: page to charge
6422 * @memcg: memcg to charge the page to
6423 * @lrucare: page might be on LRU already
6424 * @compound: charge the page as compound or small page
6426 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6427 * after page->mapping has been set up. This must happen atomically
6428 * as part of the page instantiation, i.e. under the page table lock
6429 * for anonymous pages, under the page lock for page and swap cache.
6431 * In addition, the page must not be on the LRU during the commit, to
6432 * prevent racing with task migration. If it might be, use @lrucare.
6434 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6436 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6437 bool lrucare, bool compound)
6439 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6441 VM_BUG_ON_PAGE(!page->mapping, page);
6442 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6444 if (mem_cgroup_disabled())
6447 * Swap faults will attempt to charge the same page multiple
6448 * times. But reuse_swap_page() might have removed the page
6449 * from swapcache already, so we can't check PageSwapCache().
6454 commit_charge(page, memcg, lrucare);
6456 local_irq_disable();
6457 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6458 memcg_check_events(memcg, page);
6461 if (do_memsw_account() && PageSwapCache(page)) {
6462 swp_entry_t entry = { .val = page_private(page) };
6464 * The swap entry might not get freed for a long time,
6465 * let's not wait for it. The page already received a
6466 * memory+swap charge, drop the swap entry duplicate.
6468 mem_cgroup_uncharge_swap(entry, nr_pages);
6473 * mem_cgroup_cancel_charge - cancel a page charge
6474 * @page: page to charge
6475 * @memcg: memcg to charge the page to
6476 * @compound: charge the page as compound or small page
6478 * Cancel a charge transaction started by mem_cgroup_try_charge().
6480 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6483 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6485 if (mem_cgroup_disabled())
6488 * Swap faults will attempt to charge the same page multiple
6489 * times. But reuse_swap_page() might have removed the page
6490 * from swapcache already, so we can't check PageSwapCache().
6495 cancel_charge(memcg, nr_pages);
6498 struct uncharge_gather {
6499 struct mem_cgroup *memcg;
6500 unsigned long pgpgout;
6501 unsigned long nr_anon;
6502 unsigned long nr_file;
6503 unsigned long nr_kmem;
6504 unsigned long nr_huge;
6505 unsigned long nr_shmem;
6506 struct page *dummy_page;
6509 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6511 memset(ug, 0, sizeof(*ug));
6514 static void uncharge_batch(const struct uncharge_gather *ug)
6516 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6517 unsigned long flags;
6519 if (!mem_cgroup_is_root(ug->memcg)) {
6520 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6521 if (do_memsw_account())
6522 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6523 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6524 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6525 memcg_oom_recover(ug->memcg);
6528 local_irq_save(flags);
6529 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6530 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6531 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6532 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6533 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6534 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6535 memcg_check_events(ug->memcg, ug->dummy_page);
6536 local_irq_restore(flags);
6538 if (!mem_cgroup_is_root(ug->memcg))
6539 css_put_many(&ug->memcg->css, nr_pages);
6542 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6544 VM_BUG_ON_PAGE(PageLRU(page), page);
6545 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6546 !PageHWPoison(page) , page);
6548 if (!page->mem_cgroup)
6552 * Nobody should be changing or seriously looking at
6553 * page->mem_cgroup at this point, we have fully
6554 * exclusive access to the page.
6557 if (ug->memcg != page->mem_cgroup) {
6560 uncharge_gather_clear(ug);
6562 ug->memcg = page->mem_cgroup;
6565 if (!PageKmemcg(page)) {
6566 unsigned int nr_pages = 1;
6568 if (PageTransHuge(page)) {
6569 nr_pages = compound_nr(page);
6570 ug->nr_huge += nr_pages;
6573 ug->nr_anon += nr_pages;
6575 ug->nr_file += nr_pages;
6576 if (PageSwapBacked(page))
6577 ug->nr_shmem += nr_pages;
6581 ug->nr_kmem += compound_nr(page);
6582 __ClearPageKmemcg(page);
6585 ug->dummy_page = page;
6586 page->mem_cgroup = NULL;
6589 static void uncharge_list(struct list_head *page_list)
6591 struct uncharge_gather ug;
6592 struct list_head *next;
6594 uncharge_gather_clear(&ug);
6597 * Note that the list can be a single page->lru; hence the
6598 * do-while loop instead of a simple list_for_each_entry().
6600 next = page_list->next;
6604 page = list_entry(next, struct page, lru);
6605 next = page->lru.next;
6607 uncharge_page(page, &ug);
6608 } while (next != page_list);
6611 uncharge_batch(&ug);
6615 * mem_cgroup_uncharge - uncharge a page
6616 * @page: page to uncharge
6618 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6619 * mem_cgroup_commit_charge().
6621 void mem_cgroup_uncharge(struct page *page)
6623 struct uncharge_gather ug;
6625 if (mem_cgroup_disabled())
6628 /* Don't touch page->lru of any random page, pre-check: */
6629 if (!page->mem_cgroup)
6632 uncharge_gather_clear(&ug);
6633 uncharge_page(page, &ug);
6634 uncharge_batch(&ug);
6638 * mem_cgroup_uncharge_list - uncharge a list of page
6639 * @page_list: list of pages to uncharge
6641 * Uncharge a list of pages previously charged with
6642 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6644 void mem_cgroup_uncharge_list(struct list_head *page_list)
6646 if (mem_cgroup_disabled())
6649 if (!list_empty(page_list))
6650 uncharge_list(page_list);
6654 * mem_cgroup_migrate - charge a page's replacement
6655 * @oldpage: currently circulating page
6656 * @newpage: replacement page
6658 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6659 * be uncharged upon free.
6661 * Both pages must be locked, @newpage->mapping must be set up.
6663 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6665 struct mem_cgroup *memcg;
6666 unsigned int nr_pages;
6667 unsigned long flags;
6669 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6670 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6671 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6672 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6675 if (mem_cgroup_disabled())
6678 /* Page cache replacement: new page already charged? */
6679 if (newpage->mem_cgroup)
6682 /* Swapcache readahead pages can get replaced before being charged */
6683 memcg = oldpage->mem_cgroup;
6687 /* Force-charge the new page. The old one will be freed soon */
6688 nr_pages = hpage_nr_pages(newpage);
6690 page_counter_charge(&memcg->memory, nr_pages);
6691 if (do_memsw_account())
6692 page_counter_charge(&memcg->memsw, nr_pages);
6693 css_get_many(&memcg->css, nr_pages);
6695 commit_charge(newpage, memcg, false);
6697 local_irq_save(flags);
6698 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6700 memcg_check_events(memcg, newpage);
6701 local_irq_restore(flags);
6704 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6705 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6707 void mem_cgroup_sk_alloc(struct sock *sk)
6709 struct mem_cgroup *memcg;
6711 if (!mem_cgroup_sockets_enabled)
6714 /* Do not associate the sock with unrelated interrupted task's memcg. */
6719 memcg = mem_cgroup_from_task(current);
6720 if (memcg == root_mem_cgroup)
6722 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6724 if (css_tryget_online(&memcg->css))
6725 sk->sk_memcg = memcg;
6730 void mem_cgroup_sk_free(struct sock *sk)
6733 css_put(&sk->sk_memcg->css);
6737 * mem_cgroup_charge_skmem - charge socket memory
6738 * @memcg: memcg to charge
6739 * @nr_pages: number of pages to charge
6741 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6742 * @memcg's configured limit, %false if the charge had to be forced.
6744 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6746 gfp_t gfp_mask = GFP_KERNEL;
6748 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6749 struct page_counter *fail;
6751 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6752 memcg->tcpmem_pressure = 0;
6755 page_counter_charge(&memcg->tcpmem, nr_pages);
6756 memcg->tcpmem_pressure = 1;
6760 /* Don't block in the packet receive path */
6762 gfp_mask = GFP_NOWAIT;
6764 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6766 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6769 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6774 * mem_cgroup_uncharge_skmem - uncharge socket memory
6775 * @memcg: memcg to uncharge
6776 * @nr_pages: number of pages to uncharge
6778 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6780 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6781 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6785 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6787 refill_stock(memcg, nr_pages);
6790 static int __init cgroup_memory(char *s)
6794 while ((token = strsep(&s, ",")) != NULL) {
6797 if (!strcmp(token, "nosocket"))
6798 cgroup_memory_nosocket = true;
6799 if (!strcmp(token, "nokmem"))
6800 cgroup_memory_nokmem = true;
6804 __setup("cgroup.memory=", cgroup_memory);
6807 * subsys_initcall() for memory controller.
6809 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6810 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6811 * basically everything that doesn't depend on a specific mem_cgroup structure
6812 * should be initialized from here.
6814 static int __init mem_cgroup_init(void)
6818 #ifdef CONFIG_MEMCG_KMEM
6820 * Kmem cache creation is mostly done with the slab_mutex held,
6821 * so use a workqueue with limited concurrency to avoid stalling
6822 * all worker threads in case lots of cgroups are created and
6823 * destroyed simultaneously.
6825 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6826 BUG_ON(!memcg_kmem_cache_wq);
6829 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6830 memcg_hotplug_cpu_dead);
6832 for_each_possible_cpu(cpu)
6833 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6836 for_each_node(node) {
6837 struct mem_cgroup_tree_per_node *rtpn;
6839 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6840 node_online(node) ? node : NUMA_NO_NODE);
6842 rtpn->rb_root = RB_ROOT;
6843 rtpn->rb_rightmost = NULL;
6844 spin_lock_init(&rtpn->lock);
6845 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6850 subsys_initcall(mem_cgroup_init);
6852 #ifdef CONFIG_MEMCG_SWAP
6853 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6855 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6857 * The root cgroup cannot be destroyed, so it's refcount must
6860 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6864 memcg = parent_mem_cgroup(memcg);
6866 memcg = root_mem_cgroup;
6872 * mem_cgroup_swapout - transfer a memsw charge to swap
6873 * @page: page whose memsw charge to transfer
6874 * @entry: swap entry to move the charge to
6876 * Transfer the memsw charge of @page to @entry.
6878 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6880 struct mem_cgroup *memcg, *swap_memcg;
6881 unsigned int nr_entries;
6882 unsigned short oldid;
6884 VM_BUG_ON_PAGE(PageLRU(page), page);
6885 VM_BUG_ON_PAGE(page_count(page), page);
6887 if (!do_memsw_account())
6890 memcg = page->mem_cgroup;
6892 /* Readahead page, never charged */
6897 * In case the memcg owning these pages has been offlined and doesn't
6898 * have an ID allocated to it anymore, charge the closest online
6899 * ancestor for the swap instead and transfer the memory+swap charge.
6901 swap_memcg = mem_cgroup_id_get_online(memcg);
6902 nr_entries = hpage_nr_pages(page);
6903 /* Get references for the tail pages, too */
6905 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6906 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6908 VM_BUG_ON_PAGE(oldid, page);
6909 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6911 page->mem_cgroup = NULL;
6913 if (!mem_cgroup_is_root(memcg))
6914 page_counter_uncharge(&memcg->memory, nr_entries);
6916 if (memcg != swap_memcg) {
6917 if (!mem_cgroup_is_root(swap_memcg))
6918 page_counter_charge(&swap_memcg->memsw, nr_entries);
6919 page_counter_uncharge(&memcg->memsw, nr_entries);
6923 * Interrupts should be disabled here because the caller holds the
6924 * i_pages lock which is taken with interrupts-off. It is
6925 * important here to have the interrupts disabled because it is the
6926 * only synchronisation we have for updating the per-CPU variables.
6928 VM_BUG_ON(!irqs_disabled());
6929 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6931 memcg_check_events(memcg, page);
6933 if (!mem_cgroup_is_root(memcg))
6934 css_put_many(&memcg->css, nr_entries);
6938 * mem_cgroup_try_charge_swap - try charging swap space for a page
6939 * @page: page being added to swap
6940 * @entry: swap entry to charge
6942 * Try to charge @page's memcg for the swap space at @entry.
6944 * Returns 0 on success, -ENOMEM on failure.
6946 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6948 unsigned int nr_pages = hpage_nr_pages(page);
6949 struct page_counter *counter;
6950 struct mem_cgroup *memcg;
6951 unsigned short oldid;
6953 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6956 memcg = page->mem_cgroup;
6958 /* Readahead page, never charged */
6963 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6967 memcg = mem_cgroup_id_get_online(memcg);
6969 if (!mem_cgroup_is_root(memcg) &&
6970 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6971 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6972 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6973 mem_cgroup_id_put(memcg);
6977 /* Get references for the tail pages, too */
6979 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6980 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6981 VM_BUG_ON_PAGE(oldid, page);
6982 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6988 * mem_cgroup_uncharge_swap - uncharge swap space
6989 * @entry: swap entry to uncharge
6990 * @nr_pages: the amount of swap space to uncharge
6992 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6994 struct mem_cgroup *memcg;
6997 if (!do_swap_account)
7000 id = swap_cgroup_record(entry, 0, nr_pages);
7002 memcg = mem_cgroup_from_id(id);
7004 if (!mem_cgroup_is_root(memcg)) {
7005 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7006 page_counter_uncharge(&memcg->swap, nr_pages);
7008 page_counter_uncharge(&memcg->memsw, nr_pages);
7010 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7011 mem_cgroup_id_put_many(memcg, nr_pages);
7016 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7018 long nr_swap_pages = get_nr_swap_pages();
7020 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7021 return nr_swap_pages;
7022 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7023 nr_swap_pages = min_t(long, nr_swap_pages,
7024 READ_ONCE(memcg->swap.max) -
7025 page_counter_read(&memcg->swap));
7026 return nr_swap_pages;
7029 bool mem_cgroup_swap_full(struct page *page)
7031 struct mem_cgroup *memcg;
7033 VM_BUG_ON_PAGE(!PageLocked(page), page);
7037 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7040 memcg = page->mem_cgroup;
7044 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7045 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7051 /* for remember boot option*/
7052 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7053 static int really_do_swap_account __initdata = 1;
7055 static int really_do_swap_account __initdata;
7058 static int __init enable_swap_account(char *s)
7060 if (!strcmp(s, "1"))
7061 really_do_swap_account = 1;
7062 else if (!strcmp(s, "0"))
7063 really_do_swap_account = 0;
7066 __setup("swapaccount=", enable_swap_account);
7068 static u64 swap_current_read(struct cgroup_subsys_state *css,
7071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7073 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7076 static int swap_max_show(struct seq_file *m, void *v)
7078 return seq_puts_memcg_tunable(m,
7079 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7082 static ssize_t swap_max_write(struct kernfs_open_file *of,
7083 char *buf, size_t nbytes, loff_t off)
7085 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7089 buf = strstrip(buf);
7090 err = page_counter_memparse(buf, "max", &max);
7094 xchg(&memcg->swap.max, max);
7099 static int swap_events_show(struct seq_file *m, void *v)
7101 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7103 seq_printf(m, "max %lu\n",
7104 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7105 seq_printf(m, "fail %lu\n",
7106 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7111 static struct cftype swap_files[] = {
7113 .name = "swap.current",
7114 .flags = CFTYPE_NOT_ON_ROOT,
7115 .read_u64 = swap_current_read,
7119 .flags = CFTYPE_NOT_ON_ROOT,
7120 .seq_show = swap_max_show,
7121 .write = swap_max_write,
7124 .name = "swap.events",
7125 .flags = CFTYPE_NOT_ON_ROOT,
7126 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7127 .seq_show = swap_events_show,
7132 static struct cftype memsw_cgroup_files[] = {
7134 .name = "memsw.usage_in_bytes",
7135 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7136 .read_u64 = mem_cgroup_read_u64,
7139 .name = "memsw.max_usage_in_bytes",
7140 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7141 .write = mem_cgroup_reset,
7142 .read_u64 = mem_cgroup_read_u64,
7145 .name = "memsw.limit_in_bytes",
7146 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7147 .write = mem_cgroup_write,
7148 .read_u64 = mem_cgroup_read_u64,
7151 .name = "memsw.failcnt",
7152 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7153 .write = mem_cgroup_reset,
7154 .read_u64 = mem_cgroup_read_u64,
7156 { }, /* terminate */
7159 static int __init mem_cgroup_swap_init(void)
7161 if (!mem_cgroup_disabled() && really_do_swap_account) {
7162 do_swap_account = 1;
7163 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7165 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7166 memsw_cgroup_files));
7170 subsys_initcall(mem_cgroup_swap_init);
7172 #endif /* CONFIG_MEMCG_SWAP */