Merge tag 'v6.6-p4' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[platform/kernel/linux-rpi.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(memcg, nid);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(void)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657         atomic_set(&stats_flush_threshold, 0);
658         atomic_set(&stats_flush_ongoing, 0);
659 }
660
661 void mem_cgroup_flush_stats(void)
662 {
663         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664                 do_flush_stats();
665 }
666
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670                 mem_cgroup_flush_stats();
671 }
672
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675         /*
676          * Always flush here so that flushing in latency-sensitive paths is
677          * as cheap as possible.
678          */
679         do_flush_stats();
680         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685         PGPGIN,
686         PGPGOUT,
687         PGSCAN_KSWAPD,
688         PGSCAN_DIRECT,
689         PGSCAN_KHUGEPAGED,
690         PGSTEAL_KSWAPD,
691         PGSTEAL_DIRECT,
692         PGSTEAL_KHUGEPAGED,
693         PGFAULT,
694         PGMAJFAULT,
695         PGREFILL,
696         PGACTIVATE,
697         PGDEACTIVATE,
698         PGLAZYFREE,
699         PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701         ZSWPIN,
702         ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705         THP_FAULT_ALLOC,
706         THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713 static void init_memcg_events(void)
714 {
715         int i;
716
717         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723         return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727         /* Local (CPU and cgroup) page state & events */
728         long                    state[MEMCG_NR_STAT];
729         unsigned long           events[NR_MEMCG_EVENTS];
730
731         /* Delta calculation for lockless upward propagation */
732         long                    state_prev[MEMCG_NR_STAT];
733         unsigned long           events_prev[NR_MEMCG_EVENTS];
734
735         /* Cgroup1: threshold notifications & softlimit tree updates */
736         unsigned long           nr_page_events;
737         unsigned long           targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741         /* Aggregated (CPU and subtree) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Non-hierarchical (CPU aggregated) page state & events */
746         long                    state_local[MEMCG_NR_STAT];
747         unsigned long           events_local[NR_MEMCG_EVENTS];
748
749         /* Pending child counts during tree propagation */
750         long                    state_pending[MEMCG_NR_STAT];
751         unsigned long           events_pending[NR_MEMCG_EVENTS];
752 };
753
754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756         long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758         if (x < 0)
759                 x = 0;
760 #endif
761         return x;
762 }
763
764 /**
765  * __mod_memcg_state - update cgroup memory statistics
766  * @memcg: the memory cgroup
767  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768  * @val: delta to add to the counter, can be negative
769  */
770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772         if (mem_cgroup_disabled())
773                 return;
774
775         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776         memcg_rstat_updated(memcg, val);
777 }
778
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782         long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784 #ifdef CONFIG_SMP
785         if (x < 0)
786                 x = 0;
787 #endif
788         return x;
789 }
790
791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792                               int val)
793 {
794         struct mem_cgroup_per_node *pn;
795         struct mem_cgroup *memcg;
796
797         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798         memcg = pn->memcg;
799
800         /*
801          * The caller from rmap relay on disabled preemption becase they never
802          * update their counter from in-interrupt context. For these two
803          * counters we check that the update is never performed from an
804          * interrupt context while other caller need to have disabled interrupt.
805          */
806         __memcg_stats_lock();
807         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808                 switch (idx) {
809                 case NR_ANON_MAPPED:
810                 case NR_FILE_MAPPED:
811                 case NR_ANON_THPS:
812                 case NR_SHMEM_PMDMAPPED:
813                 case NR_FILE_PMDMAPPED:
814                         WARN_ON_ONCE(!in_task());
815                         break;
816                 default:
817                         VM_WARN_ON_IRQS_ENABLED();
818                 }
819         }
820
821         /* Update memcg */
822         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824         /* Update lruvec */
825         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827         memcg_rstat_updated(memcg, val);
828         memcg_stats_unlock();
829 }
830
831 /**
832  * __mod_lruvec_state - update lruvec memory statistics
833  * @lruvec: the lruvec
834  * @idx: the stat item
835  * @val: delta to add to the counter, can be negative
836  *
837  * The lruvec is the intersection of the NUMA node and a cgroup. This
838  * function updates the all three counters that are affected by a
839  * change of state at this level: per-node, per-cgroup, per-lruvec.
840  */
841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842                         int val)
843 {
844         /* Update node */
845         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847         /* Update memcg and lruvec */
848         if (!mem_cgroup_disabled())
849                 __mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851
852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853                              int val)
854 {
855         struct page *head = compound_head(page); /* rmap on tail pages */
856         struct mem_cgroup *memcg;
857         pg_data_t *pgdat = page_pgdat(page);
858         struct lruvec *lruvec;
859
860         rcu_read_lock();
861         memcg = page_memcg(head);
862         /* Untracked pages have no memcg, no lruvec. Update only the node */
863         if (!memcg) {
864                 rcu_read_unlock();
865                 __mod_node_page_state(pgdat, idx, val);
866                 return;
867         }
868
869         lruvec = mem_cgroup_lruvec(memcg, pgdat);
870         __mod_lruvec_state(lruvec, idx, val);
871         rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874
875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878         struct mem_cgroup *memcg;
879         struct lruvec *lruvec;
880
881         rcu_read_lock();
882         memcg = mem_cgroup_from_slab_obj(p);
883
884         /*
885          * Untracked pages have no memcg, no lruvec. Update only the
886          * node. If we reparent the slab objects to the root memcg,
887          * when we free the slab object, we need to update the per-memcg
888          * vmstats to keep it correct for the root memcg.
889          */
890         if (!memcg) {
891                 __mod_node_page_state(pgdat, idx, val);
892         } else {
893                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894                 __mod_lruvec_state(lruvec, idx, val);
895         }
896         rcu_read_unlock();
897 }
898
899 /**
900  * __count_memcg_events - account VM events in a cgroup
901  * @memcg: the memory cgroup
902  * @idx: the event item
903  * @count: the number of events that occurred
904  */
905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906                           unsigned long count)
907 {
908         int index = memcg_events_index(idx);
909
910         if (mem_cgroup_disabled() || index < 0)
911                 return;
912
913         memcg_stats_lock();
914         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915         memcg_rstat_updated(memcg, count);
916         memcg_stats_unlock();
917 }
918
919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921         int index = memcg_events_index(event);
922
923         if (index < 0)
924                 return 0;
925         return READ_ONCE(memcg->vmstats->events[index]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930         int index = memcg_events_index(event);
931
932         if (index < 0)
933                 return 0;
934
935         return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939                                          int nr_pages)
940 {
941         /* pagein of a big page is an event. So, ignore page size */
942         if (nr_pages > 0)
943                 __count_memcg_events(memcg, PGPGIN, 1);
944         else {
945                 __count_memcg_events(memcg, PGPGOUT, 1);
946                 nr_pages = -nr_pages; /* for event */
947         }
948
949         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953                                        enum mem_cgroup_events_target target)
954 {
955         unsigned long val, next;
956
957         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959         /* from time_after() in jiffies.h */
960         if ((long)(next - val) < 0) {
961                 switch (target) {
962                 case MEM_CGROUP_TARGET_THRESH:
963                         next = val + THRESHOLDS_EVENTS_TARGET;
964                         break;
965                 case MEM_CGROUP_TARGET_SOFTLIMIT:
966                         next = val + SOFTLIMIT_EVENTS_TARGET;
967                         break;
968                 default:
969                         break;
970                 }
971                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972                 return true;
973         }
974         return false;
975 }
976
977 /*
978  * Check events in order.
979  *
980  */
981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983         if (IS_ENABLED(CONFIG_PREEMPT_RT))
984                 return;
985
986         /* threshold event is triggered in finer grain than soft limit */
987         if (unlikely(mem_cgroup_event_ratelimit(memcg,
988                                                 MEM_CGROUP_TARGET_THRESH))) {
989                 bool do_softlimit;
990
991                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
993                 mem_cgroup_threshold(memcg);
994                 if (unlikely(do_softlimit))
995                         mem_cgroup_update_tree(memcg, nid);
996         }
997 }
998
999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001         /*
1002          * mm_update_next_owner() may clear mm->owner to NULL
1003          * if it races with swapoff, page migration, etc.
1004          * So this can be called with p == NULL.
1005          */
1006         if (unlikely(!p))
1007                 return NULL;
1008
1009         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012
1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015         if (!in_task())
1016                 return this_cpu_read(int_active_memcg);
1017         else
1018                 return current->active_memcg;
1019 }
1020
1021 /**
1022  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023  * @mm: mm from which memcg should be extracted. It can be NULL.
1024  *
1025  * Obtain a reference on mm->memcg and returns it if successful. If mm
1026  * is NULL, then the memcg is chosen as follows:
1027  * 1) The active memcg, if set.
1028  * 2) current->mm->memcg, if available
1029  * 3) root memcg
1030  * If mem_cgroup is disabled, NULL is returned.
1031  */
1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034         struct mem_cgroup *memcg;
1035
1036         if (mem_cgroup_disabled())
1037                 return NULL;
1038
1039         /*
1040          * Page cache insertions can happen without an
1041          * actual mm context, e.g. during disk probing
1042          * on boot, loopback IO, acct() writes etc.
1043          *
1044          * No need to css_get on root memcg as the reference
1045          * counting is disabled on the root level in the
1046          * cgroup core. See CSS_NO_REF.
1047          */
1048         if (unlikely(!mm)) {
1049                 memcg = active_memcg();
1050                 if (unlikely(memcg)) {
1051                         /* remote memcg must hold a ref */
1052                         css_get(&memcg->css);
1053                         return memcg;
1054                 }
1055                 mm = current->mm;
1056                 if (unlikely(!mm))
1057                         return root_mem_cgroup;
1058         }
1059
1060         rcu_read_lock();
1061         do {
1062                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063                 if (unlikely(!memcg))
1064                         memcg = root_mem_cgroup;
1065         } while (!css_tryget(&memcg->css));
1066         rcu_read_unlock();
1067         return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073         /* Allow remote memcg charging from any context. */
1074         if (unlikely(active_memcg()))
1075                 return false;
1076
1077         /* Memcg to charge can't be determined. */
1078         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079                 return true;
1080
1081         return false;
1082 }
1083
1084 /**
1085  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086  * @root: hierarchy root
1087  * @prev: previously returned memcg, NULL on first invocation
1088  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089  *
1090  * Returns references to children of the hierarchy below @root, or
1091  * @root itself, or %NULL after a full round-trip.
1092  *
1093  * Caller must pass the return value in @prev on subsequent
1094  * invocations for reference counting, or use mem_cgroup_iter_break()
1095  * to cancel a hierarchy walk before the round-trip is complete.
1096  *
1097  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098  * in the hierarchy among all concurrent reclaimers operating on the
1099  * same node.
1100  */
1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102                                    struct mem_cgroup *prev,
1103                                    struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105         struct mem_cgroup_reclaim_iter *iter;
1106         struct cgroup_subsys_state *css = NULL;
1107         struct mem_cgroup *memcg = NULL;
1108         struct mem_cgroup *pos = NULL;
1109
1110         if (mem_cgroup_disabled())
1111                 return NULL;
1112
1113         if (!root)
1114                 root = root_mem_cgroup;
1115
1116         rcu_read_lock();
1117
1118         if (reclaim) {
1119                 struct mem_cgroup_per_node *mz;
1120
1121                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122                 iter = &mz->iter;
1123
1124                 /*
1125                  * On start, join the current reclaim iteration cycle.
1126                  * Exit when a concurrent walker completes it.
1127                  */
1128                 if (!prev)
1129                         reclaim->generation = iter->generation;
1130                 else if (reclaim->generation != iter->generation)
1131                         goto out_unlock;
1132
1133                 while (1) {
1134                         pos = READ_ONCE(iter->position);
1135                         if (!pos || css_tryget(&pos->css))
1136                                 break;
1137                         /*
1138                          * css reference reached zero, so iter->position will
1139                          * be cleared by ->css_released. However, we should not
1140                          * rely on this happening soon, because ->css_released
1141                          * is called from a work queue, and by busy-waiting we
1142                          * might block it. So we clear iter->position right
1143                          * away.
1144                          */
1145                         (void)cmpxchg(&iter->position, pos, NULL);
1146                 }
1147         } else if (prev) {
1148                 pos = prev;
1149         }
1150
1151         if (pos)
1152                 css = &pos->css;
1153
1154         for (;;) {
1155                 css = css_next_descendant_pre(css, &root->css);
1156                 if (!css) {
1157                         /*
1158                          * Reclaimers share the hierarchy walk, and a
1159                          * new one might jump in right at the end of
1160                          * the hierarchy - make sure they see at least
1161                          * one group and restart from the beginning.
1162                          */
1163                         if (!prev)
1164                                 continue;
1165                         break;
1166                 }
1167
1168                 /*
1169                  * Verify the css and acquire a reference.  The root
1170                  * is provided by the caller, so we know it's alive
1171                  * and kicking, and don't take an extra reference.
1172                  */
1173                 if (css == &root->css || css_tryget(css)) {
1174                         memcg = mem_cgroup_from_css(css);
1175                         break;
1176                 }
1177         }
1178
1179         if (reclaim) {
1180                 /*
1181                  * The position could have already been updated by a competing
1182                  * thread, so check that the value hasn't changed since we read
1183                  * it to avoid reclaiming from the same cgroup twice.
1184                  */
1185                 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187                 if (pos)
1188                         css_put(&pos->css);
1189
1190                 if (!memcg)
1191                         iter->generation++;
1192         }
1193
1194 out_unlock:
1195         rcu_read_unlock();
1196         if (prev && prev != root)
1197                 css_put(&prev->css);
1198
1199         return memcg;
1200 }
1201
1202 /**
1203  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204  * @root: hierarchy root
1205  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206  */
1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208                            struct mem_cgroup *prev)
1209 {
1210         if (!root)
1211                 root = root_mem_cgroup;
1212         if (prev && prev != root)
1213                 css_put(&prev->css);
1214 }
1215
1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217                                         struct mem_cgroup *dead_memcg)
1218 {
1219         struct mem_cgroup_reclaim_iter *iter;
1220         struct mem_cgroup_per_node *mz;
1221         int nid;
1222
1223         for_each_node(nid) {
1224                 mz = from->nodeinfo[nid];
1225                 iter = &mz->iter;
1226                 cmpxchg(&iter->position, dead_memcg, NULL);
1227         }
1228 }
1229
1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232         struct mem_cgroup *memcg = dead_memcg;
1233         struct mem_cgroup *last;
1234
1235         do {
1236                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237                 last = memcg;
1238         } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240         /*
1241          * When cgroup1 non-hierarchy mode is used,
1242          * parent_mem_cgroup() does not walk all the way up to the
1243          * cgroup root (root_mem_cgroup). So we have to handle
1244          * dead_memcg from cgroup root separately.
1245          */
1246         if (!mem_cgroup_is_root(last))
1247                 __invalidate_reclaim_iterators(root_mem_cgroup,
1248                                                 dead_memcg);
1249 }
1250
1251 /**
1252  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253  * @memcg: hierarchy root
1254  * @fn: function to call for each task
1255  * @arg: argument passed to @fn
1256  *
1257  * This function iterates over tasks attached to @memcg or to any of its
1258  * descendants and calls @fn for each task. If @fn returns a non-zero
1259  * value, the function breaks the iteration loop. Otherwise, it will iterate
1260  * over all tasks and return 0.
1261  *
1262  * This function must not be called for the root memory cgroup.
1263  */
1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265                            int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267         struct mem_cgroup *iter;
1268         int ret = 0;
1269
1270         BUG_ON(mem_cgroup_is_root(memcg));
1271
1272         for_each_mem_cgroup_tree(iter, memcg) {
1273                 struct css_task_iter it;
1274                 struct task_struct *task;
1275
1276                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277                 while (!ret && (task = css_task_iter_next(&it)))
1278                         ret = fn(task, arg);
1279                 css_task_iter_end(&it);
1280                 if (ret) {
1281                         mem_cgroup_iter_break(memcg, iter);
1282                         break;
1283                 }
1284         }
1285 }
1286
1287 #ifdef CONFIG_DEBUG_VM
1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290         struct mem_cgroup *memcg;
1291
1292         if (mem_cgroup_disabled())
1293                 return;
1294
1295         memcg = folio_memcg(folio);
1296
1297         if (!memcg)
1298                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299         else
1300                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301 }
1302 #endif
1303
1304 /**
1305  * folio_lruvec_lock - Lock the lruvec for a folio.
1306  * @folio: Pointer to the folio.
1307  *
1308  * These functions are safe to use under any of the following conditions:
1309  * - folio locked
1310  * - folio_test_lru false
1311  * - folio_memcg_lock()
1312  * - folio frozen (refcount of 0)
1313  *
1314  * Return: The lruvec this folio is on with its lock held.
1315  */
1316 struct lruvec *folio_lruvec_lock(struct folio *folio)
1317 {
1318         struct lruvec *lruvec = folio_lruvec(folio);
1319
1320         spin_lock(&lruvec->lru_lock);
1321         lruvec_memcg_debug(lruvec, folio);
1322
1323         return lruvec;
1324 }
1325
1326 /**
1327  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328  * @folio: Pointer to the folio.
1329  *
1330  * These functions are safe to use under any of the following conditions:
1331  * - folio locked
1332  * - folio_test_lru false
1333  * - folio_memcg_lock()
1334  * - folio frozen (refcount of 0)
1335  *
1336  * Return: The lruvec this folio is on with its lock held and interrupts
1337  * disabled.
1338  */
1339 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340 {
1341         struct lruvec *lruvec = folio_lruvec(folio);
1342
1343         spin_lock_irq(&lruvec->lru_lock);
1344         lruvec_memcg_debug(lruvec, folio);
1345
1346         return lruvec;
1347 }
1348
1349 /**
1350  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351  * @folio: Pointer to the folio.
1352  * @flags: Pointer to irqsave flags.
1353  *
1354  * These functions are safe to use under any of the following conditions:
1355  * - folio locked
1356  * - folio_test_lru false
1357  * - folio_memcg_lock()
1358  * - folio frozen (refcount of 0)
1359  *
1360  * Return: The lruvec this folio is on with its lock held and interrupts
1361  * disabled.
1362  */
1363 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364                 unsigned long *flags)
1365 {
1366         struct lruvec *lruvec = folio_lruvec(folio);
1367
1368         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369         lruvec_memcg_debug(lruvec, folio);
1370
1371         return lruvec;
1372 }
1373
1374 /**
1375  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376  * @lruvec: mem_cgroup per zone lru vector
1377  * @lru: index of lru list the page is sitting on
1378  * @zid: zone id of the accounted pages
1379  * @nr_pages: positive when adding or negative when removing
1380  *
1381  * This function must be called under lru_lock, just before a page is added
1382  * to or just after a page is removed from an lru list.
1383  */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385                                 int zid, int nr_pages)
1386 {
1387         struct mem_cgroup_per_node *mz;
1388         unsigned long *lru_size;
1389         long size;
1390
1391         if (mem_cgroup_disabled())
1392                 return;
1393
1394         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395         lru_size = &mz->lru_zone_size[zid][lru];
1396
1397         if (nr_pages < 0)
1398                 *lru_size += nr_pages;
1399
1400         size = *lru_size;
1401         if (WARN_ONCE(size < 0,
1402                 "%s(%p, %d, %d): lru_size %ld\n",
1403                 __func__, lruvec, lru, nr_pages, size)) {
1404                 VM_BUG_ON(1);
1405                 *lru_size = 0;
1406         }
1407
1408         if (nr_pages > 0)
1409                 *lru_size += nr_pages;
1410 }
1411
1412 /**
1413  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414  * @memcg: the memory cgroup
1415  *
1416  * Returns the maximum amount of memory @mem can be charged with, in
1417  * pages.
1418  */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421         unsigned long margin = 0;
1422         unsigned long count;
1423         unsigned long limit;
1424
1425         count = page_counter_read(&memcg->memory);
1426         limit = READ_ONCE(memcg->memory.max);
1427         if (count < limit)
1428                 margin = limit - count;
1429
1430         if (do_memsw_account()) {
1431                 count = page_counter_read(&memcg->memsw);
1432                 limit = READ_ONCE(memcg->memsw.max);
1433                 if (count < limit)
1434                         margin = min(margin, limit - count);
1435                 else
1436                         margin = 0;
1437         }
1438
1439         return margin;
1440 }
1441
1442 /*
1443  * A routine for checking "mem" is under move_account() or not.
1444  *
1445  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446  * moving cgroups. This is for waiting at high-memory pressure
1447  * caused by "move".
1448  */
1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451         struct mem_cgroup *from;
1452         struct mem_cgroup *to;
1453         bool ret = false;
1454         /*
1455          * Unlike task_move routines, we access mc.to, mc.from not under
1456          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457          */
1458         spin_lock(&mc.lock);
1459         from = mc.from;
1460         to = mc.to;
1461         if (!from)
1462                 goto unlock;
1463
1464         ret = mem_cgroup_is_descendant(from, memcg) ||
1465                 mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467         spin_unlock(&mc.lock);
1468         return ret;
1469 }
1470
1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473         if (mc.moving_task && current != mc.moving_task) {
1474                 if (mem_cgroup_under_move(memcg)) {
1475                         DEFINE_WAIT(wait);
1476                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477                         /* moving charge context might have finished. */
1478                         if (mc.moving_task)
1479                                 schedule();
1480                         finish_wait(&mc.waitq, &wait);
1481                         return true;
1482                 }
1483         }
1484         return false;
1485 }
1486
1487 struct memory_stat {
1488         const char *name;
1489         unsigned int idx;
1490 };
1491
1492 static const struct memory_stat memory_stats[] = {
1493         { "anon",                       NR_ANON_MAPPED                  },
1494         { "file",                       NR_FILE_PAGES                   },
1495         { "kernel",                     MEMCG_KMEM                      },
1496         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1497         { "pagetables",                 NR_PAGETABLE                    },
1498         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1499         { "percpu",                     MEMCG_PERCPU_B                  },
1500         { "sock",                       MEMCG_SOCK                      },
1501         { "vmalloc",                    MEMCG_VMALLOC                   },
1502         { "shmem",                      NR_SHMEM                        },
1503 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504         { "zswap",                      MEMCG_ZSWAP_B                   },
1505         { "zswapped",                   MEMCG_ZSWAPPED                  },
1506 #endif
1507         { "file_mapped",                NR_FILE_MAPPED                  },
1508         { "file_dirty",                 NR_FILE_DIRTY                   },
1509         { "file_writeback",             NR_WRITEBACK                    },
1510 #ifdef CONFIG_SWAP
1511         { "swapcached",                 NR_SWAPCACHE                    },
1512 #endif
1513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514         { "anon_thp",                   NR_ANON_THPS                    },
1515         { "file_thp",                   NR_FILE_THPS                    },
1516         { "shmem_thp",                  NR_SHMEM_THPS                   },
1517 #endif
1518         { "inactive_anon",              NR_INACTIVE_ANON                },
1519         { "active_anon",                NR_ACTIVE_ANON                  },
1520         { "inactive_file",              NR_INACTIVE_FILE                },
1521         { "active_file",                NR_ACTIVE_FILE                  },
1522         { "unevictable",                NR_UNEVICTABLE                  },
1523         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1524         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1525
1526         /* The memory events */
1527         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1528         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1529         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1530         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1531         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1532         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1533         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1534 };
1535
1536 /* Translate stat items to the correct unit for memory.stat output */
1537 static int memcg_page_state_unit(int item)
1538 {
1539         switch (item) {
1540         case MEMCG_PERCPU_B:
1541         case MEMCG_ZSWAP_B:
1542         case NR_SLAB_RECLAIMABLE_B:
1543         case NR_SLAB_UNRECLAIMABLE_B:
1544         case WORKINGSET_REFAULT_ANON:
1545         case WORKINGSET_REFAULT_FILE:
1546         case WORKINGSET_ACTIVATE_ANON:
1547         case WORKINGSET_ACTIVATE_FILE:
1548         case WORKINGSET_RESTORE_ANON:
1549         case WORKINGSET_RESTORE_FILE:
1550         case WORKINGSET_NODERECLAIM:
1551                 return 1;
1552         case NR_KERNEL_STACK_KB:
1553                 return SZ_1K;
1554         default:
1555                 return PAGE_SIZE;
1556         }
1557 }
1558
1559 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560                                                     int item)
1561 {
1562         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563 }
1564
1565 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566 {
1567         int i;
1568
1569         /*
1570          * Provide statistics on the state of the memory subsystem as
1571          * well as cumulative event counters that show past behavior.
1572          *
1573          * This list is ordered following a combination of these gradients:
1574          * 1) generic big picture -> specifics and details
1575          * 2) reflecting userspace activity -> reflecting kernel heuristics
1576          *
1577          * Current memory state:
1578          */
1579         mem_cgroup_flush_stats();
1580
1581         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582                 u64 size;
1583
1584                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585                 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586
1587                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588                         size += memcg_page_state_output(memcg,
1589                                                         NR_SLAB_RECLAIMABLE_B);
1590                         seq_buf_printf(s, "slab %llu\n", size);
1591                 }
1592         }
1593
1594         /* Accumulated memory events */
1595         seq_buf_printf(s, "pgscan %lu\n",
1596                        memcg_events(memcg, PGSCAN_KSWAPD) +
1597                        memcg_events(memcg, PGSCAN_DIRECT) +
1598                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599         seq_buf_printf(s, "pgsteal %lu\n",
1600                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1601                        memcg_events(memcg, PGSTEAL_DIRECT) +
1602                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603
1604         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605                 if (memcg_vm_event_stat[i] == PGPGIN ||
1606                     memcg_vm_event_stat[i] == PGPGOUT)
1607                         continue;
1608
1609                 seq_buf_printf(s, "%s %lu\n",
1610                                vm_event_name(memcg_vm_event_stat[i]),
1611                                memcg_events(memcg, memcg_vm_event_stat[i]));
1612         }
1613
1614         /* The above should easily fit into one page */
1615         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616 }
1617
1618 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619
1620 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621 {
1622         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623                 memcg_stat_format(memcg, s);
1624         else
1625                 memcg1_stat_format(memcg, s);
1626         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627 }
1628
1629 /**
1630  * mem_cgroup_print_oom_context: Print OOM information relevant to
1631  * memory controller.
1632  * @memcg: The memory cgroup that went over limit
1633  * @p: Task that is going to be killed
1634  *
1635  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636  * enabled
1637  */
1638 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639 {
1640         rcu_read_lock();
1641
1642         if (memcg) {
1643                 pr_cont(",oom_memcg=");
1644                 pr_cont_cgroup_path(memcg->css.cgroup);
1645         } else
1646                 pr_cont(",global_oom");
1647         if (p) {
1648                 pr_cont(",task_memcg=");
1649                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650         }
1651         rcu_read_unlock();
1652 }
1653
1654 /**
1655  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656  * memory controller.
1657  * @memcg: The memory cgroup that went over limit
1658  */
1659 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660 {
1661         /* Use static buffer, for the caller is holding oom_lock. */
1662         static char buf[PAGE_SIZE];
1663         struct seq_buf s;
1664
1665         lockdep_assert_held(&oom_lock);
1666
1667         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668                 K((u64)page_counter_read(&memcg->memory)),
1669                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672                         K((u64)page_counter_read(&memcg->swap)),
1673                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674         else {
1675                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676                         K((u64)page_counter_read(&memcg->memsw)),
1677                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679                         K((u64)page_counter_read(&memcg->kmem)),
1680                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681         }
1682
1683         pr_info("Memory cgroup stats for ");
1684         pr_cont_cgroup_path(memcg->css.cgroup);
1685         pr_cont(":");
1686         seq_buf_init(&s, buf, sizeof(buf));
1687         memory_stat_format(memcg, &s);
1688         seq_buf_do_printk(&s, KERN_INFO);
1689 }
1690
1691 /*
1692  * Return the memory (and swap, if configured) limit for a memcg.
1693  */
1694 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695 {
1696         unsigned long max = READ_ONCE(memcg->memory.max);
1697
1698         if (do_memsw_account()) {
1699                 if (mem_cgroup_swappiness(memcg)) {
1700                         /* Calculate swap excess capacity from memsw limit */
1701                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703                         max += min(swap, (unsigned long)total_swap_pages);
1704                 }
1705         } else {
1706                 if (mem_cgroup_swappiness(memcg))
1707                         max += min(READ_ONCE(memcg->swap.max),
1708                                    (unsigned long)total_swap_pages);
1709         }
1710         return max;
1711 }
1712
1713 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714 {
1715         return page_counter_read(&memcg->memory);
1716 }
1717
1718 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719                                      int order)
1720 {
1721         struct oom_control oc = {
1722                 .zonelist = NULL,
1723                 .nodemask = NULL,
1724                 .memcg = memcg,
1725                 .gfp_mask = gfp_mask,
1726                 .order = order,
1727         };
1728         bool ret = true;
1729
1730         if (mutex_lock_killable(&oom_lock))
1731                 return true;
1732
1733         if (mem_cgroup_margin(memcg) >= (1 << order))
1734                 goto unlock;
1735
1736         /*
1737          * A few threads which were not waiting at mutex_lock_killable() can
1738          * fail to bail out. Therefore, check again after holding oom_lock.
1739          */
1740         ret = task_is_dying() || out_of_memory(&oc);
1741
1742 unlock:
1743         mutex_unlock(&oom_lock);
1744         return ret;
1745 }
1746
1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748                                    pg_data_t *pgdat,
1749                                    gfp_t gfp_mask,
1750                                    unsigned long *total_scanned)
1751 {
1752         struct mem_cgroup *victim = NULL;
1753         int total = 0;
1754         int loop = 0;
1755         unsigned long excess;
1756         unsigned long nr_scanned;
1757         struct mem_cgroup_reclaim_cookie reclaim = {
1758                 .pgdat = pgdat,
1759         };
1760
1761         excess = soft_limit_excess(root_memcg);
1762
1763         while (1) {
1764                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765                 if (!victim) {
1766                         loop++;
1767                         if (loop >= 2) {
1768                                 /*
1769                                  * If we have not been able to reclaim
1770                                  * anything, it might because there are
1771                                  * no reclaimable pages under this hierarchy
1772                                  */
1773                                 if (!total)
1774                                         break;
1775                                 /*
1776                                  * We want to do more targeted reclaim.
1777                                  * excess >> 2 is not to excessive so as to
1778                                  * reclaim too much, nor too less that we keep
1779                                  * coming back to reclaim from this cgroup
1780                                  */
1781                                 if (total >= (excess >> 2) ||
1782                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783                                         break;
1784                         }
1785                         continue;
1786                 }
1787                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788                                         pgdat, &nr_scanned);
1789                 *total_scanned += nr_scanned;
1790                 if (!soft_limit_excess(root_memcg))
1791                         break;
1792         }
1793         mem_cgroup_iter_break(root_memcg, victim);
1794         return total;
1795 }
1796
1797 #ifdef CONFIG_LOCKDEP
1798 static struct lockdep_map memcg_oom_lock_dep_map = {
1799         .name = "memcg_oom_lock",
1800 };
1801 #endif
1802
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804
1805 /*
1806  * Check OOM-Killer is already running under our hierarchy.
1807  * If someone is running, return false.
1808  */
1809 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810 {
1811         struct mem_cgroup *iter, *failed = NULL;
1812
1813         spin_lock(&memcg_oom_lock);
1814
1815         for_each_mem_cgroup_tree(iter, memcg) {
1816                 if (iter->oom_lock) {
1817                         /*
1818                          * this subtree of our hierarchy is already locked
1819                          * so we cannot give a lock.
1820                          */
1821                         failed = iter;
1822                         mem_cgroup_iter_break(memcg, iter);
1823                         break;
1824                 } else
1825                         iter->oom_lock = true;
1826         }
1827
1828         if (failed) {
1829                 /*
1830                  * OK, we failed to lock the whole subtree so we have
1831                  * to clean up what we set up to the failing subtree
1832                  */
1833                 for_each_mem_cgroup_tree(iter, memcg) {
1834                         if (iter == failed) {
1835                                 mem_cgroup_iter_break(memcg, iter);
1836                                 break;
1837                         }
1838                         iter->oom_lock = false;
1839                 }
1840         } else
1841                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842
1843         spin_unlock(&memcg_oom_lock);
1844
1845         return !failed;
1846 }
1847
1848 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849 {
1850         struct mem_cgroup *iter;
1851
1852         spin_lock(&memcg_oom_lock);
1853         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854         for_each_mem_cgroup_tree(iter, memcg)
1855                 iter->oom_lock = false;
1856         spin_unlock(&memcg_oom_lock);
1857 }
1858
1859 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860 {
1861         struct mem_cgroup *iter;
1862
1863         spin_lock(&memcg_oom_lock);
1864         for_each_mem_cgroup_tree(iter, memcg)
1865                 iter->under_oom++;
1866         spin_unlock(&memcg_oom_lock);
1867 }
1868
1869 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870 {
1871         struct mem_cgroup *iter;
1872
1873         /*
1874          * Be careful about under_oom underflows because a child memcg
1875          * could have been added after mem_cgroup_mark_under_oom.
1876          */
1877         spin_lock(&memcg_oom_lock);
1878         for_each_mem_cgroup_tree(iter, memcg)
1879                 if (iter->under_oom > 0)
1880                         iter->under_oom--;
1881         spin_unlock(&memcg_oom_lock);
1882 }
1883
1884 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885
1886 struct oom_wait_info {
1887         struct mem_cgroup *memcg;
1888         wait_queue_entry_t      wait;
1889 };
1890
1891 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892         unsigned mode, int sync, void *arg)
1893 {
1894         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895         struct mem_cgroup *oom_wait_memcg;
1896         struct oom_wait_info *oom_wait_info;
1897
1898         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899         oom_wait_memcg = oom_wait_info->memcg;
1900
1901         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903                 return 0;
1904         return autoremove_wake_function(wait, mode, sync, arg);
1905 }
1906
1907 static void memcg_oom_recover(struct mem_cgroup *memcg)
1908 {
1909         /*
1910          * For the following lockless ->under_oom test, the only required
1911          * guarantee is that it must see the state asserted by an OOM when
1912          * this function is called as a result of userland actions
1913          * triggered by the notification of the OOM.  This is trivially
1914          * achieved by invoking mem_cgroup_mark_under_oom() before
1915          * triggering notification.
1916          */
1917         if (memcg && memcg->under_oom)
1918                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919 }
1920
1921 /*
1922  * Returns true if successfully killed one or more processes. Though in some
1923  * corner cases it can return true even without killing any process.
1924  */
1925 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926 {
1927         bool locked, ret;
1928
1929         if (order > PAGE_ALLOC_COSTLY_ORDER)
1930                 return false;
1931
1932         memcg_memory_event(memcg, MEMCG_OOM);
1933
1934         /*
1935          * We are in the middle of the charge context here, so we
1936          * don't want to block when potentially sitting on a callstack
1937          * that holds all kinds of filesystem and mm locks.
1938          *
1939          * cgroup1 allows disabling the OOM killer and waiting for outside
1940          * handling until the charge can succeed; remember the context and put
1941          * the task to sleep at the end of the page fault when all locks are
1942          * released.
1943          *
1944          * On the other hand, in-kernel OOM killer allows for an async victim
1945          * memory reclaim (oom_reaper) and that means that we are not solely
1946          * relying on the oom victim to make a forward progress and we can
1947          * invoke the oom killer here.
1948          *
1949          * Please note that mem_cgroup_out_of_memory might fail to find a
1950          * victim and then we have to bail out from the charge path.
1951          */
1952         if (READ_ONCE(memcg->oom_kill_disable)) {
1953                 if (current->in_user_fault) {
1954                         css_get(&memcg->css);
1955                         current->memcg_in_oom = memcg;
1956                         current->memcg_oom_gfp_mask = mask;
1957                         current->memcg_oom_order = order;
1958                 }
1959                 return false;
1960         }
1961
1962         mem_cgroup_mark_under_oom(memcg);
1963
1964         locked = mem_cgroup_oom_trylock(memcg);
1965
1966         if (locked)
1967                 mem_cgroup_oom_notify(memcg);
1968
1969         mem_cgroup_unmark_under_oom(memcg);
1970         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971
1972         if (locked)
1973                 mem_cgroup_oom_unlock(memcg);
1974
1975         return ret;
1976 }
1977
1978 /**
1979  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980  * @handle: actually kill/wait or just clean up the OOM state
1981  *
1982  * This has to be called at the end of a page fault if the memcg OOM
1983  * handler was enabled.
1984  *
1985  * Memcg supports userspace OOM handling where failed allocations must
1986  * sleep on a waitqueue until the userspace task resolves the
1987  * situation.  Sleeping directly in the charge context with all kinds
1988  * of locks held is not a good idea, instead we remember an OOM state
1989  * in the task and mem_cgroup_oom_synchronize() has to be called at
1990  * the end of the page fault to complete the OOM handling.
1991  *
1992  * Returns %true if an ongoing memcg OOM situation was detected and
1993  * completed, %false otherwise.
1994  */
1995 bool mem_cgroup_oom_synchronize(bool handle)
1996 {
1997         struct mem_cgroup *memcg = current->memcg_in_oom;
1998         struct oom_wait_info owait;
1999         bool locked;
2000
2001         /* OOM is global, do not handle */
2002         if (!memcg)
2003                 return false;
2004
2005         if (!handle)
2006                 goto cleanup;
2007
2008         owait.memcg = memcg;
2009         owait.wait.flags = 0;
2010         owait.wait.func = memcg_oom_wake_function;
2011         owait.wait.private = current;
2012         INIT_LIST_HEAD(&owait.wait.entry);
2013
2014         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015         mem_cgroup_mark_under_oom(memcg);
2016
2017         locked = mem_cgroup_oom_trylock(memcg);
2018
2019         if (locked)
2020                 mem_cgroup_oom_notify(memcg);
2021
2022         schedule();
2023         mem_cgroup_unmark_under_oom(memcg);
2024         finish_wait(&memcg_oom_waitq, &owait.wait);
2025
2026         if (locked)
2027                 mem_cgroup_oom_unlock(memcg);
2028 cleanup:
2029         current->memcg_in_oom = NULL;
2030         css_put(&memcg->css);
2031         return true;
2032 }
2033
2034 /**
2035  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036  * @victim: task to be killed by the OOM killer
2037  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038  *
2039  * Returns a pointer to a memory cgroup, which has to be cleaned up
2040  * by killing all belonging OOM-killable tasks.
2041  *
2042  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043  */
2044 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045                                             struct mem_cgroup *oom_domain)
2046 {
2047         struct mem_cgroup *oom_group = NULL;
2048         struct mem_cgroup *memcg;
2049
2050         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051                 return NULL;
2052
2053         if (!oom_domain)
2054                 oom_domain = root_mem_cgroup;
2055
2056         rcu_read_lock();
2057
2058         memcg = mem_cgroup_from_task(victim);
2059         if (mem_cgroup_is_root(memcg))
2060                 goto out;
2061
2062         /*
2063          * If the victim task has been asynchronously moved to a different
2064          * memory cgroup, we might end up killing tasks outside oom_domain.
2065          * In this case it's better to ignore memory.group.oom.
2066          */
2067         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068                 goto out;
2069
2070         /*
2071          * Traverse the memory cgroup hierarchy from the victim task's
2072          * cgroup up to the OOMing cgroup (or root) to find the
2073          * highest-level memory cgroup with oom.group set.
2074          */
2075         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076                 if (READ_ONCE(memcg->oom_group))
2077                         oom_group = memcg;
2078
2079                 if (memcg == oom_domain)
2080                         break;
2081         }
2082
2083         if (oom_group)
2084                 css_get(&oom_group->css);
2085 out:
2086         rcu_read_unlock();
2087
2088         return oom_group;
2089 }
2090
2091 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092 {
2093         pr_info("Tasks in ");
2094         pr_cont_cgroup_path(memcg->css.cgroup);
2095         pr_cont(" are going to be killed due to memory.oom.group set\n");
2096 }
2097
2098 /**
2099  * folio_memcg_lock - Bind a folio to its memcg.
2100  * @folio: The folio.
2101  *
2102  * This function prevents unlocked LRU folios from being moved to
2103  * another cgroup.
2104  *
2105  * It ensures lifetime of the bound memcg.  The caller is responsible
2106  * for the lifetime of the folio.
2107  */
2108 void folio_memcg_lock(struct folio *folio)
2109 {
2110         struct mem_cgroup *memcg;
2111         unsigned long flags;
2112
2113         /*
2114          * The RCU lock is held throughout the transaction.  The fast
2115          * path can get away without acquiring the memcg->move_lock
2116          * because page moving starts with an RCU grace period.
2117          */
2118         rcu_read_lock();
2119
2120         if (mem_cgroup_disabled())
2121                 return;
2122 again:
2123         memcg = folio_memcg(folio);
2124         if (unlikely(!memcg))
2125                 return;
2126
2127 #ifdef CONFIG_PROVE_LOCKING
2128         local_irq_save(flags);
2129         might_lock(&memcg->move_lock);
2130         local_irq_restore(flags);
2131 #endif
2132
2133         if (atomic_read(&memcg->moving_account) <= 0)
2134                 return;
2135
2136         spin_lock_irqsave(&memcg->move_lock, flags);
2137         if (memcg != folio_memcg(folio)) {
2138                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139                 goto again;
2140         }
2141
2142         /*
2143          * When charge migration first begins, we can have multiple
2144          * critical sections holding the fast-path RCU lock and one
2145          * holding the slowpath move_lock. Track the task who has the
2146          * move_lock for folio_memcg_unlock().
2147          */
2148         memcg->move_lock_task = current;
2149         memcg->move_lock_flags = flags;
2150 }
2151
2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153 {
2154         if (memcg && memcg->move_lock_task == current) {
2155                 unsigned long flags = memcg->move_lock_flags;
2156
2157                 memcg->move_lock_task = NULL;
2158                 memcg->move_lock_flags = 0;
2159
2160                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2161         }
2162
2163         rcu_read_unlock();
2164 }
2165
2166 /**
2167  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168  * @folio: The folio.
2169  *
2170  * This releases the binding created by folio_memcg_lock().  This does
2171  * not change the accounting of this folio to its memcg, but it does
2172  * permit others to change it.
2173  */
2174 void folio_memcg_unlock(struct folio *folio)
2175 {
2176         __folio_memcg_unlock(folio_memcg(folio));
2177 }
2178
2179 struct memcg_stock_pcp {
2180         local_lock_t stock_lock;
2181         struct mem_cgroup *cached; /* this never be root cgroup */
2182         unsigned int nr_pages;
2183
2184 #ifdef CONFIG_MEMCG_KMEM
2185         struct obj_cgroup *cached_objcg;
2186         struct pglist_data *cached_pgdat;
2187         unsigned int nr_bytes;
2188         int nr_slab_reclaimable_b;
2189         int nr_slab_unreclaimable_b;
2190 #endif
2191
2192         struct work_struct work;
2193         unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE  0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204                                      struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206
2207 #else
2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210         return NULL;
2211 }
2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213                                      struct mem_cgroup *root_memcg)
2214 {
2215         return false;
2216 }
2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221
2222 /**
2223  * consume_stock: Try to consume stocked charge on this cpu.
2224  * @memcg: memcg to consume from.
2225  * @nr_pages: how many pages to charge.
2226  *
2227  * The charges will only happen if @memcg matches the current cpu's memcg
2228  * stock, and at least @nr_pages are available in that stock.  Failure to
2229  * service an allocation will refill the stock.
2230  *
2231  * returns true if successful, false otherwise.
2232  */
2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235         struct memcg_stock_pcp *stock;
2236         unsigned long flags;
2237         bool ret = false;
2238
2239         if (nr_pages > MEMCG_CHARGE_BATCH)
2240                 return ret;
2241
2242         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243
2244         stock = this_cpu_ptr(&memcg_stock);
2245         if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246                 stock->nr_pages -= nr_pages;
2247                 ret = true;
2248         }
2249
2250         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251
2252         return ret;
2253 }
2254
2255 /*
2256  * Returns stocks cached in percpu and reset cached information.
2257  */
2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260         struct mem_cgroup *old = READ_ONCE(stock->cached);
2261
2262         if (!old)
2263                 return;
2264
2265         if (stock->nr_pages) {
2266                 page_counter_uncharge(&old->memory, stock->nr_pages);
2267                 if (do_memsw_account())
2268                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2269                 stock->nr_pages = 0;
2270         }
2271
2272         css_put(&old->css);
2273         WRITE_ONCE(stock->cached, NULL);
2274 }
2275
2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278         struct memcg_stock_pcp *stock;
2279         struct obj_cgroup *old = NULL;
2280         unsigned long flags;
2281
2282         /*
2283          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284          * drain_stock races is that we always operate on local CPU stock
2285          * here with IRQ disabled
2286          */
2287         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288
2289         stock = this_cpu_ptr(&memcg_stock);
2290         old = drain_obj_stock(stock);
2291         drain_stock(stock);
2292         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293
2294         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295         if (old)
2296                 obj_cgroup_put(old);
2297 }
2298
2299 /*
2300  * Cache charges(val) to local per_cpu area.
2301  * This will be consumed by consume_stock() function, later.
2302  */
2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305         struct memcg_stock_pcp *stock;
2306
2307         stock = this_cpu_ptr(&memcg_stock);
2308         if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309                 drain_stock(stock);
2310                 css_get(&memcg->css);
2311                 WRITE_ONCE(stock->cached, memcg);
2312         }
2313         stock->nr_pages += nr_pages;
2314
2315         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316                 drain_stock(stock);
2317 }
2318
2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321         unsigned long flags;
2322
2323         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324         __refill_stock(memcg, nr_pages);
2325         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327
2328 /*
2329  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330  * of the hierarchy under it.
2331  */
2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334         int cpu, curcpu;
2335
2336         /* If someone's already draining, avoid adding running more workers. */
2337         if (!mutex_trylock(&percpu_charge_mutex))
2338                 return;
2339         /*
2340          * Notify other cpus that system-wide "drain" is running
2341          * We do not care about races with the cpu hotplug because cpu down
2342          * as well as workers from this path always operate on the local
2343          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344          */
2345         migrate_disable();
2346         curcpu = smp_processor_id();
2347         for_each_online_cpu(cpu) {
2348                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349                 struct mem_cgroup *memcg;
2350                 bool flush = false;
2351
2352                 rcu_read_lock();
2353                 memcg = READ_ONCE(stock->cached);
2354                 if (memcg && stock->nr_pages &&
2355                     mem_cgroup_is_descendant(memcg, root_memcg))
2356                         flush = true;
2357                 else if (obj_stock_flush_required(stock, root_memcg))
2358                         flush = true;
2359                 rcu_read_unlock();
2360
2361                 if (flush &&
2362                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363                         if (cpu == curcpu)
2364                                 drain_local_stock(&stock->work);
2365                         else if (!cpu_is_isolated(cpu))
2366                                 schedule_work_on(cpu, &stock->work);
2367                 }
2368         }
2369         migrate_enable();
2370         mutex_unlock(&percpu_charge_mutex);
2371 }
2372
2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375         struct memcg_stock_pcp *stock;
2376
2377         stock = &per_cpu(memcg_stock, cpu);
2378         drain_stock(stock);
2379
2380         return 0;
2381 }
2382
2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384                                   unsigned int nr_pages,
2385                                   gfp_t gfp_mask)
2386 {
2387         unsigned long nr_reclaimed = 0;
2388
2389         do {
2390                 unsigned long pflags;
2391
2392                 if (page_counter_read(&memcg->memory) <=
2393                     READ_ONCE(memcg->memory.high))
2394                         continue;
2395
2396                 memcg_memory_event(memcg, MEMCG_HIGH);
2397
2398                 psi_memstall_enter(&pflags);
2399                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400                                                         gfp_mask,
2401                                                         MEMCG_RECLAIM_MAY_SWAP);
2402                 psi_memstall_leave(&pflags);
2403         } while ((memcg = parent_mem_cgroup(memcg)) &&
2404                  !mem_cgroup_is_root(memcg));
2405
2406         return nr_reclaimed;
2407 }
2408
2409 static void high_work_func(struct work_struct *work)
2410 {
2411         struct mem_cgroup *memcg;
2412
2413         memcg = container_of(work, struct mem_cgroup, high_work);
2414         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416
2417 /*
2418  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419  * enough to still cause a significant slowdown in most cases, while still
2420  * allowing diagnostics and tracing to proceed without becoming stuck.
2421  */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423
2424 /*
2425  * When calculating the delay, we use these either side of the exponentiation to
2426  * maintain precision and scale to a reasonable number of jiffies (see the table
2427  * below.
2428  *
2429  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430  *   overage ratio to a delay.
2431  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2433  *   to produce a reasonable delay curve.
2434  *
2435  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436  * reasonable delay curve compared to precision-adjusted overage, not
2437  * penalising heavily at first, but still making sure that growth beyond the
2438  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439  * example, with a high of 100 megabytes:
2440  *
2441  *  +-------+------------------------+
2442  *  | usage | time to allocate in ms |
2443  *  +-------+------------------------+
2444  *  | 100M  |                      0 |
2445  *  | 101M  |                      6 |
2446  *  | 102M  |                     25 |
2447  *  | 103M  |                     57 |
2448  *  | 104M  |                    102 |
2449  *  | 105M  |                    159 |
2450  *  | 106M  |                    230 |
2451  *  | 107M  |                    313 |
2452  *  | 108M  |                    409 |
2453  *  | 109M  |                    518 |
2454  *  | 110M  |                    639 |
2455  *  | 111M  |                    774 |
2456  *  | 112M  |                    921 |
2457  *  | 113M  |                   1081 |
2458  *  | 114M  |                   1254 |
2459  *  | 115M  |                   1439 |
2460  *  | 116M  |                   1638 |
2461  *  | 117M  |                   1849 |
2462  *  | 118M  |                   2000 |
2463  *  | 119M  |                   2000 |
2464  *  | 120M  |                   2000 |
2465  *  +-------+------------------------+
2466  */
2467  #define MEMCG_DELAY_PRECISION_SHIFT 20
2468  #define MEMCG_DELAY_SCALING_SHIFT 14
2469
2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472         u64 overage;
2473
2474         if (usage <= high)
2475                 return 0;
2476
2477         /*
2478          * Prevent division by 0 in overage calculation by acting as if
2479          * it was a threshold of 1 page
2480          */
2481         high = max(high, 1UL);
2482
2483         overage = usage - high;
2484         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485         return div64_u64(overage, high);
2486 }
2487
2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490         u64 overage, max_overage = 0;
2491
2492         do {
2493                 overage = calculate_overage(page_counter_read(&memcg->memory),
2494                                             READ_ONCE(memcg->memory.high));
2495                 max_overage = max(overage, max_overage);
2496         } while ((memcg = parent_mem_cgroup(memcg)) &&
2497                  !mem_cgroup_is_root(memcg));
2498
2499         return max_overage;
2500 }
2501
2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504         u64 overage, max_overage = 0;
2505
2506         do {
2507                 overage = calculate_overage(page_counter_read(&memcg->swap),
2508                                             READ_ONCE(memcg->swap.high));
2509                 if (overage)
2510                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511                 max_overage = max(overage, max_overage);
2512         } while ((memcg = parent_mem_cgroup(memcg)) &&
2513                  !mem_cgroup_is_root(memcg));
2514
2515         return max_overage;
2516 }
2517
2518 /*
2519  * Get the number of jiffies that we should penalise a mischievous cgroup which
2520  * is exceeding its memory.high by checking both it and its ancestors.
2521  */
2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523                                           unsigned int nr_pages,
2524                                           u64 max_overage)
2525 {
2526         unsigned long penalty_jiffies;
2527
2528         if (!max_overage)
2529                 return 0;
2530
2531         /*
2532          * We use overage compared to memory.high to calculate the number of
2533          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534          * fairly lenient on small overages, and increasingly harsh when the
2535          * memcg in question makes it clear that it has no intention of stopping
2536          * its crazy behaviour, so we exponentially increase the delay based on
2537          * overage amount.
2538          */
2539         penalty_jiffies = max_overage * max_overage * HZ;
2540         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542
2543         /*
2544          * Factor in the task's own contribution to the overage, such that four
2545          * N-sized allocations are throttled approximately the same as one
2546          * 4N-sized allocation.
2547          *
2548          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549          * larger the current charge patch is than that.
2550          */
2551         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553
2554 /*
2555  * Scheduled by try_charge() to be executed from the userland return path
2556  * and reclaims memory over the high limit.
2557  */
2558 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2559 {
2560         unsigned long penalty_jiffies;
2561         unsigned long pflags;
2562         unsigned long nr_reclaimed;
2563         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564         int nr_retries = MAX_RECLAIM_RETRIES;
2565         struct mem_cgroup *memcg;
2566         bool in_retry = false;
2567
2568         if (likely(!nr_pages))
2569                 return;
2570
2571         memcg = get_mem_cgroup_from_mm(current->mm);
2572         current->memcg_nr_pages_over_high = 0;
2573
2574 retry_reclaim:
2575         /*
2576          * The allocating task should reclaim at least the batch size, but for
2577          * subsequent retries we only want to do what's necessary to prevent oom
2578          * or breaching resource isolation.
2579          *
2580          * This is distinct from memory.max or page allocator behaviour because
2581          * memory.high is currently batched, whereas memory.max and the page
2582          * allocator run every time an allocation is made.
2583          */
2584         nr_reclaimed = reclaim_high(memcg,
2585                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586                                     gfp_mask);
2587
2588         /*
2589          * memory.high is breached and reclaim is unable to keep up. Throttle
2590          * allocators proactively to slow down excessive growth.
2591          */
2592         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593                                                mem_find_max_overage(memcg));
2594
2595         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596                                                 swap_find_max_overage(memcg));
2597
2598         /*
2599          * Clamp the max delay per usermode return so as to still keep the
2600          * application moving forwards and also permit diagnostics, albeit
2601          * extremely slowly.
2602          */
2603         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604
2605         /*
2606          * Don't sleep if the amount of jiffies this memcg owes us is so low
2607          * that it's not even worth doing, in an attempt to be nice to those who
2608          * go only a small amount over their memory.high value and maybe haven't
2609          * been aggressively reclaimed enough yet.
2610          */
2611         if (penalty_jiffies <= HZ / 100)
2612                 goto out;
2613
2614         /*
2615          * If reclaim is making forward progress but we're still over
2616          * memory.high, we want to encourage that rather than doing allocator
2617          * throttling.
2618          */
2619         if (nr_reclaimed || nr_retries--) {
2620                 in_retry = true;
2621                 goto retry_reclaim;
2622         }
2623
2624         /*
2625          * If we exit early, we're guaranteed to die (since
2626          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627          * need to account for any ill-begotten jiffies to pay them off later.
2628          */
2629         psi_memstall_enter(&pflags);
2630         schedule_timeout_killable(penalty_jiffies);
2631         psi_memstall_leave(&pflags);
2632
2633 out:
2634         css_put(&memcg->css);
2635 }
2636
2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638                         unsigned int nr_pages)
2639 {
2640         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641         int nr_retries = MAX_RECLAIM_RETRIES;
2642         struct mem_cgroup *mem_over_limit;
2643         struct page_counter *counter;
2644         unsigned long nr_reclaimed;
2645         bool passed_oom = false;
2646         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647         bool drained = false;
2648         bool raised_max_event = false;
2649         unsigned long pflags;
2650
2651 retry:
2652         if (consume_stock(memcg, nr_pages))
2653                 return 0;
2654
2655         if (!do_memsw_account() ||
2656             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658                         goto done_restock;
2659                 if (do_memsw_account())
2660                         page_counter_uncharge(&memcg->memsw, batch);
2661                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662         } else {
2663                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665         }
2666
2667         if (batch > nr_pages) {
2668                 batch = nr_pages;
2669                 goto retry;
2670         }
2671
2672         /*
2673          * Prevent unbounded recursion when reclaim operations need to
2674          * allocate memory. This might exceed the limits temporarily,
2675          * but we prefer facilitating memory reclaim and getting back
2676          * under the limit over triggering OOM kills in these cases.
2677          */
2678         if (unlikely(current->flags & PF_MEMALLOC))
2679                 goto force;
2680
2681         if (unlikely(task_in_memcg_oom(current)))
2682                 goto nomem;
2683
2684         if (!gfpflags_allow_blocking(gfp_mask))
2685                 goto nomem;
2686
2687         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688         raised_max_event = true;
2689
2690         psi_memstall_enter(&pflags);
2691         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692                                                     gfp_mask, reclaim_options);
2693         psi_memstall_leave(&pflags);
2694
2695         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696                 goto retry;
2697
2698         if (!drained) {
2699                 drain_all_stock(mem_over_limit);
2700                 drained = true;
2701                 goto retry;
2702         }
2703
2704         if (gfp_mask & __GFP_NORETRY)
2705                 goto nomem;
2706         /*
2707          * Even though the limit is exceeded at this point, reclaim
2708          * may have been able to free some pages.  Retry the charge
2709          * before killing the task.
2710          *
2711          * Only for regular pages, though: huge pages are rather
2712          * unlikely to succeed so close to the limit, and we fall back
2713          * to regular pages anyway in case of failure.
2714          */
2715         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716                 goto retry;
2717         /*
2718          * At task move, charge accounts can be doubly counted. So, it's
2719          * better to wait until the end of task_move if something is going on.
2720          */
2721         if (mem_cgroup_wait_acct_move(mem_over_limit))
2722                 goto retry;
2723
2724         if (nr_retries--)
2725                 goto retry;
2726
2727         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728                 goto nomem;
2729
2730         /* Avoid endless loop for tasks bypassed by the oom killer */
2731         if (passed_oom && task_is_dying())
2732                 goto nomem;
2733
2734         /*
2735          * keep retrying as long as the memcg oom killer is able to make
2736          * a forward progress or bypass the charge if the oom killer
2737          * couldn't make any progress.
2738          */
2739         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740                            get_order(nr_pages * PAGE_SIZE))) {
2741                 passed_oom = true;
2742                 nr_retries = MAX_RECLAIM_RETRIES;
2743                 goto retry;
2744         }
2745 nomem:
2746         /*
2747          * Memcg doesn't have a dedicated reserve for atomic
2748          * allocations. But like the global atomic pool, we need to
2749          * put the burden of reclaim on regular allocation requests
2750          * and let these go through as privileged allocations.
2751          */
2752         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753                 return -ENOMEM;
2754 force:
2755         /*
2756          * If the allocation has to be enforced, don't forget to raise
2757          * a MEMCG_MAX event.
2758          */
2759         if (!raised_max_event)
2760                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761
2762         /*
2763          * The allocation either can't fail or will lead to more memory
2764          * being freed very soon.  Allow memory usage go over the limit
2765          * temporarily by force charging it.
2766          */
2767         page_counter_charge(&memcg->memory, nr_pages);
2768         if (do_memsw_account())
2769                 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771         return 0;
2772
2773 done_restock:
2774         if (batch > nr_pages)
2775                 refill_stock(memcg, batch - nr_pages);
2776
2777         /*
2778          * If the hierarchy is above the normal consumption range, schedule
2779          * reclaim on returning to userland.  We can perform reclaim here
2780          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2782          * not recorded as it most likely matches current's and won't
2783          * change in the meantime.  As high limit is checked again before
2784          * reclaim, the cost of mismatch is negligible.
2785          */
2786         do {
2787                 bool mem_high, swap_high;
2788
2789                 mem_high = page_counter_read(&memcg->memory) >
2790                         READ_ONCE(memcg->memory.high);
2791                 swap_high = page_counter_read(&memcg->swap) >
2792                         READ_ONCE(memcg->swap.high);
2793
2794                 /* Don't bother a random interrupted task */
2795                 if (!in_task()) {
2796                         if (mem_high) {
2797                                 schedule_work(&memcg->high_work);
2798                                 break;
2799                         }
2800                         continue;
2801                 }
2802
2803                 if (mem_high || swap_high) {
2804                         /*
2805                          * The allocating tasks in this cgroup will need to do
2806                          * reclaim or be throttled to prevent further growth
2807                          * of the memory or swap footprints.
2808                          *
2809                          * Target some best-effort fairness between the tasks,
2810                          * and distribute reclaim work and delay penalties
2811                          * based on how much each task is actually allocating.
2812                          */
2813                         current->memcg_nr_pages_over_high += batch;
2814                         set_notify_resume(current);
2815                         break;
2816                 }
2817         } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820             !(current->flags & PF_MEMALLOC) &&
2821             gfpflags_allow_blocking(gfp_mask)) {
2822                 mem_cgroup_handle_over_high(gfp_mask);
2823         }
2824         return 0;
2825 }
2826
2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828                              unsigned int nr_pages)
2829 {
2830         if (mem_cgroup_is_root(memcg))
2831                 return 0;
2832
2833         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835
2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838         if (mem_cgroup_is_root(memcg))
2839                 return;
2840
2841         page_counter_uncharge(&memcg->memory, nr_pages);
2842         if (do_memsw_account())
2843                 page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845
2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849         /*
2850          * Any of the following ensures page's memcg stability:
2851          *
2852          * - the page lock
2853          * - LRU isolation
2854          * - folio_memcg_lock()
2855          * - exclusive reference
2856          * - mem_cgroup_trylock_pages()
2857          */
2858         folio->memcg_data = (unsigned long)memcg;
2859 }
2860
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863  * The allocated objcg pointers array is not accounted directly.
2864  * Moreover, it should not come from DMA buffer and is not readily
2865  * reclaimable. So those GFP bits should be masked off.
2866  */
2867 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2868
2869 /*
2870  * mod_objcg_mlstate() may be called with irq enabled, so
2871  * mod_memcg_lruvec_state() should be used.
2872  */
2873 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2874                                      struct pglist_data *pgdat,
2875                                      enum node_stat_item idx, int nr)
2876 {
2877         struct mem_cgroup *memcg;
2878         struct lruvec *lruvec;
2879
2880         rcu_read_lock();
2881         memcg = obj_cgroup_memcg(objcg);
2882         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2883         mod_memcg_lruvec_state(lruvec, idx, nr);
2884         rcu_read_unlock();
2885 }
2886
2887 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2888                                  gfp_t gfp, bool new_slab)
2889 {
2890         unsigned int objects = objs_per_slab(s, slab);
2891         unsigned long memcg_data;
2892         void *vec;
2893
2894         gfp &= ~OBJCGS_CLEAR_MASK;
2895         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2896                            slab_nid(slab));
2897         if (!vec)
2898                 return -ENOMEM;
2899
2900         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2901         if (new_slab) {
2902                 /*
2903                  * If the slab is brand new and nobody can yet access its
2904                  * memcg_data, no synchronization is required and memcg_data can
2905                  * be simply assigned.
2906                  */
2907                 slab->memcg_data = memcg_data;
2908         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2909                 /*
2910                  * If the slab is already in use, somebody can allocate and
2911                  * assign obj_cgroups in parallel. In this case the existing
2912                  * objcg vector should be reused.
2913                  */
2914                 kfree(vec);
2915                 return 0;
2916         }
2917
2918         kmemleak_not_leak(vec);
2919         return 0;
2920 }
2921
2922 static __always_inline
2923 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2924 {
2925         /*
2926          * Slab objects are accounted individually, not per-page.
2927          * Memcg membership data for each individual object is saved in
2928          * slab->memcg_data.
2929          */
2930         if (folio_test_slab(folio)) {
2931                 struct obj_cgroup **objcgs;
2932                 struct slab *slab;
2933                 unsigned int off;
2934
2935                 slab = folio_slab(folio);
2936                 objcgs = slab_objcgs(slab);
2937                 if (!objcgs)
2938                         return NULL;
2939
2940                 off = obj_to_index(slab->slab_cache, slab, p);
2941                 if (objcgs[off])
2942                         return obj_cgroup_memcg(objcgs[off]);
2943
2944                 return NULL;
2945         }
2946
2947         /*
2948          * folio_memcg_check() is used here, because in theory we can encounter
2949          * a folio where the slab flag has been cleared already, but
2950          * slab->memcg_data has not been freed yet
2951          * folio_memcg_check() will guarantee that a proper memory
2952          * cgroup pointer or NULL will be returned.
2953          */
2954         return folio_memcg_check(folio);
2955 }
2956
2957 /*
2958  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2959  *
2960  * A passed kernel object can be a slab object, vmalloc object or a generic
2961  * kernel page, so different mechanisms for getting the memory cgroup pointer
2962  * should be used.
2963  *
2964  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2965  * can not know for sure how the kernel object is implemented.
2966  * mem_cgroup_from_obj() can be safely used in such cases.
2967  *
2968  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2969  * cgroup_mutex, etc.
2970  */
2971 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2972 {
2973         struct folio *folio;
2974
2975         if (mem_cgroup_disabled())
2976                 return NULL;
2977
2978         if (unlikely(is_vmalloc_addr(p)))
2979                 folio = page_folio(vmalloc_to_page(p));
2980         else
2981                 folio = virt_to_folio(p);
2982
2983         return mem_cgroup_from_obj_folio(folio, p);
2984 }
2985
2986 /*
2987  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2988  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2989  * allocated using vmalloc().
2990  *
2991  * A passed kernel object must be a slab object or a generic kernel page.
2992  *
2993  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2994  * cgroup_mutex, etc.
2995  */
2996 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2997 {
2998         if (mem_cgroup_disabled())
2999                 return NULL;
3000
3001         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3002 }
3003
3004 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3005 {
3006         struct obj_cgroup *objcg = NULL;
3007
3008         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3009                 objcg = rcu_dereference(memcg->objcg);
3010                 if (objcg && obj_cgroup_tryget(objcg))
3011                         break;
3012                 objcg = NULL;
3013         }
3014         return objcg;
3015 }
3016
3017 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3018 {
3019         struct obj_cgroup *objcg = NULL;
3020         struct mem_cgroup *memcg;
3021
3022         if (memcg_kmem_bypass())
3023                 return NULL;
3024
3025         rcu_read_lock();
3026         if (unlikely(active_memcg()))
3027                 memcg = active_memcg();
3028         else
3029                 memcg = mem_cgroup_from_task(current);
3030         objcg = __get_obj_cgroup_from_memcg(memcg);
3031         rcu_read_unlock();
3032         return objcg;
3033 }
3034
3035 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3036 {
3037         struct obj_cgroup *objcg;
3038
3039         if (!memcg_kmem_online())
3040                 return NULL;
3041
3042         if (folio_memcg_kmem(folio)) {
3043                 objcg = __folio_objcg(folio);
3044                 obj_cgroup_get(objcg);
3045         } else {
3046                 struct mem_cgroup *memcg;
3047
3048                 rcu_read_lock();
3049                 memcg = __folio_memcg(folio);
3050                 if (memcg)
3051                         objcg = __get_obj_cgroup_from_memcg(memcg);
3052                 else
3053                         objcg = NULL;
3054                 rcu_read_unlock();
3055         }
3056         return objcg;
3057 }
3058
3059 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3060 {
3061         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3062         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3063                 if (nr_pages > 0)
3064                         page_counter_charge(&memcg->kmem, nr_pages);
3065                 else
3066                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3067         }
3068 }
3069
3070
3071 /*
3072  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3073  * @objcg: object cgroup to uncharge
3074  * @nr_pages: number of pages to uncharge
3075  */
3076 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3077                                       unsigned int nr_pages)
3078 {
3079         struct mem_cgroup *memcg;
3080
3081         memcg = get_mem_cgroup_from_objcg(objcg);
3082
3083         memcg_account_kmem(memcg, -nr_pages);
3084         refill_stock(memcg, nr_pages);
3085
3086         css_put(&memcg->css);
3087 }
3088
3089 /*
3090  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3091  * @objcg: object cgroup to charge
3092  * @gfp: reclaim mode
3093  * @nr_pages: number of pages to charge
3094  *
3095  * Returns 0 on success, an error code on failure.
3096  */
3097 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3098                                    unsigned int nr_pages)
3099 {
3100         struct mem_cgroup *memcg;
3101         int ret;
3102
3103         memcg = get_mem_cgroup_from_objcg(objcg);
3104
3105         ret = try_charge_memcg(memcg, gfp, nr_pages);
3106         if (ret)
3107                 goto out;
3108
3109         memcg_account_kmem(memcg, nr_pages);
3110 out:
3111         css_put(&memcg->css);
3112
3113         return ret;
3114 }
3115
3116 /**
3117  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3118  * @page: page to charge
3119  * @gfp: reclaim mode
3120  * @order: allocation order
3121  *
3122  * Returns 0 on success, an error code on failure.
3123  */
3124 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3125 {
3126         struct obj_cgroup *objcg;
3127         int ret = 0;
3128
3129         objcg = get_obj_cgroup_from_current();
3130         if (objcg) {
3131                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3132                 if (!ret) {
3133                         page->memcg_data = (unsigned long)objcg |
3134                                 MEMCG_DATA_KMEM;
3135                         return 0;
3136                 }
3137                 obj_cgroup_put(objcg);
3138         }
3139         return ret;
3140 }
3141
3142 /**
3143  * __memcg_kmem_uncharge_page: uncharge a kmem page
3144  * @page: page to uncharge
3145  * @order: allocation order
3146  */
3147 void __memcg_kmem_uncharge_page(struct page *page, int order)
3148 {
3149         struct folio *folio = page_folio(page);
3150         struct obj_cgroup *objcg;
3151         unsigned int nr_pages = 1 << order;
3152
3153         if (!folio_memcg_kmem(folio))
3154                 return;
3155
3156         objcg = __folio_objcg(folio);
3157         obj_cgroup_uncharge_pages(objcg, nr_pages);
3158         folio->memcg_data = 0;
3159         obj_cgroup_put(objcg);
3160 }
3161
3162 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3163                      enum node_stat_item idx, int nr)
3164 {
3165         struct memcg_stock_pcp *stock;
3166         struct obj_cgroup *old = NULL;
3167         unsigned long flags;
3168         int *bytes;
3169
3170         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3171         stock = this_cpu_ptr(&memcg_stock);
3172
3173         /*
3174          * Save vmstat data in stock and skip vmstat array update unless
3175          * accumulating over a page of vmstat data or when pgdat or idx
3176          * changes.
3177          */
3178         if (READ_ONCE(stock->cached_objcg) != objcg) {
3179                 old = drain_obj_stock(stock);
3180                 obj_cgroup_get(objcg);
3181                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3182                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3183                 WRITE_ONCE(stock->cached_objcg, objcg);
3184                 stock->cached_pgdat = pgdat;
3185         } else if (stock->cached_pgdat != pgdat) {
3186                 /* Flush the existing cached vmstat data */
3187                 struct pglist_data *oldpg = stock->cached_pgdat;
3188
3189                 if (stock->nr_slab_reclaimable_b) {
3190                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3191                                           stock->nr_slab_reclaimable_b);
3192                         stock->nr_slab_reclaimable_b = 0;
3193                 }
3194                 if (stock->nr_slab_unreclaimable_b) {
3195                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3196                                           stock->nr_slab_unreclaimable_b);
3197                         stock->nr_slab_unreclaimable_b = 0;
3198                 }
3199                 stock->cached_pgdat = pgdat;
3200         }
3201
3202         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3203                                                : &stock->nr_slab_unreclaimable_b;
3204         /*
3205          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3206          * cached locally at least once before pushing it out.
3207          */
3208         if (!*bytes) {
3209                 *bytes = nr;
3210                 nr = 0;
3211         } else {
3212                 *bytes += nr;
3213                 if (abs(*bytes) > PAGE_SIZE) {
3214                         nr = *bytes;
3215                         *bytes = 0;
3216                 } else {
3217                         nr = 0;
3218                 }
3219         }
3220         if (nr)
3221                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3222
3223         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3224         if (old)
3225                 obj_cgroup_put(old);
3226 }
3227
3228 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3229 {
3230         struct memcg_stock_pcp *stock;
3231         unsigned long flags;
3232         bool ret = false;
3233
3234         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3235
3236         stock = this_cpu_ptr(&memcg_stock);
3237         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3238                 stock->nr_bytes -= nr_bytes;
3239                 ret = true;
3240         }
3241
3242         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3243
3244         return ret;
3245 }
3246
3247 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3248 {
3249         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3250
3251         if (!old)
3252                 return NULL;
3253
3254         if (stock->nr_bytes) {
3255                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3256                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3257
3258                 if (nr_pages) {
3259                         struct mem_cgroup *memcg;
3260
3261                         memcg = get_mem_cgroup_from_objcg(old);
3262
3263                         memcg_account_kmem(memcg, -nr_pages);
3264                         __refill_stock(memcg, nr_pages);
3265
3266                         css_put(&memcg->css);
3267                 }
3268
3269                 /*
3270                  * The leftover is flushed to the centralized per-memcg value.
3271                  * On the next attempt to refill obj stock it will be moved
3272                  * to a per-cpu stock (probably, on an other CPU), see
3273                  * refill_obj_stock().
3274                  *
3275                  * How often it's flushed is a trade-off between the memory
3276                  * limit enforcement accuracy and potential CPU contention,
3277                  * so it might be changed in the future.
3278                  */
3279                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3280                 stock->nr_bytes = 0;
3281         }
3282
3283         /*
3284          * Flush the vmstat data in current stock
3285          */
3286         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3287                 if (stock->nr_slab_reclaimable_b) {
3288                         mod_objcg_mlstate(old, stock->cached_pgdat,
3289                                           NR_SLAB_RECLAIMABLE_B,
3290                                           stock->nr_slab_reclaimable_b);
3291                         stock->nr_slab_reclaimable_b = 0;
3292                 }
3293                 if (stock->nr_slab_unreclaimable_b) {
3294                         mod_objcg_mlstate(old, stock->cached_pgdat,
3295                                           NR_SLAB_UNRECLAIMABLE_B,
3296                                           stock->nr_slab_unreclaimable_b);
3297                         stock->nr_slab_unreclaimable_b = 0;
3298                 }
3299                 stock->cached_pgdat = NULL;
3300         }
3301
3302         WRITE_ONCE(stock->cached_objcg, NULL);
3303         /*
3304          * The `old' objects needs to be released by the caller via
3305          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3306          */
3307         return old;
3308 }
3309
3310 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3311                                      struct mem_cgroup *root_memcg)
3312 {
3313         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3314         struct mem_cgroup *memcg;
3315
3316         if (objcg) {
3317                 memcg = obj_cgroup_memcg(objcg);
3318                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3319                         return true;
3320         }
3321
3322         return false;
3323 }
3324
3325 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3326                              bool allow_uncharge)
3327 {
3328         struct memcg_stock_pcp *stock;
3329         struct obj_cgroup *old = NULL;
3330         unsigned long flags;
3331         unsigned int nr_pages = 0;
3332
3333         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3334
3335         stock = this_cpu_ptr(&memcg_stock);
3336         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3337                 old = drain_obj_stock(stock);
3338                 obj_cgroup_get(objcg);
3339                 WRITE_ONCE(stock->cached_objcg, objcg);
3340                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3341                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3342                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3343         }
3344         stock->nr_bytes += nr_bytes;
3345
3346         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3347                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3348                 stock->nr_bytes &= (PAGE_SIZE - 1);
3349         }
3350
3351         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3352         if (old)
3353                 obj_cgroup_put(old);
3354
3355         if (nr_pages)
3356                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3357 }
3358
3359 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3360 {
3361         unsigned int nr_pages, nr_bytes;
3362         int ret;
3363
3364         if (consume_obj_stock(objcg, size))
3365                 return 0;
3366
3367         /*
3368          * In theory, objcg->nr_charged_bytes can have enough
3369          * pre-charged bytes to satisfy the allocation. However,
3370          * flushing objcg->nr_charged_bytes requires two atomic
3371          * operations, and objcg->nr_charged_bytes can't be big.
3372          * The shared objcg->nr_charged_bytes can also become a
3373          * performance bottleneck if all tasks of the same memcg are
3374          * trying to update it. So it's better to ignore it and try
3375          * grab some new pages. The stock's nr_bytes will be flushed to
3376          * objcg->nr_charged_bytes later on when objcg changes.
3377          *
3378          * The stock's nr_bytes may contain enough pre-charged bytes
3379          * to allow one less page from being charged, but we can't rely
3380          * on the pre-charged bytes not being changed outside of
3381          * consume_obj_stock() or refill_obj_stock(). So ignore those
3382          * pre-charged bytes as well when charging pages. To avoid a
3383          * page uncharge right after a page charge, we set the
3384          * allow_uncharge flag to false when calling refill_obj_stock()
3385          * to temporarily allow the pre-charged bytes to exceed the page
3386          * size limit. The maximum reachable value of the pre-charged
3387          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3388          * race.
3389          */
3390         nr_pages = size >> PAGE_SHIFT;
3391         nr_bytes = size & (PAGE_SIZE - 1);
3392
3393         if (nr_bytes)
3394                 nr_pages += 1;
3395
3396         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3397         if (!ret && nr_bytes)
3398                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3399
3400         return ret;
3401 }
3402
3403 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3404 {
3405         refill_obj_stock(objcg, size, true);
3406 }
3407
3408 #endif /* CONFIG_MEMCG_KMEM */
3409
3410 /*
3411  * Because page_memcg(head) is not set on tails, set it now.
3412  */
3413 void split_page_memcg(struct page *head, unsigned int nr)
3414 {
3415         struct folio *folio = page_folio(head);
3416         struct mem_cgroup *memcg = folio_memcg(folio);
3417         int i;
3418
3419         if (mem_cgroup_disabled() || !memcg)
3420                 return;
3421
3422         for (i = 1; i < nr; i++)
3423                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3424
3425         if (folio_memcg_kmem(folio))
3426                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3427         else
3428                 css_get_many(&memcg->css, nr - 1);
3429 }
3430
3431 #ifdef CONFIG_SWAP
3432 /**
3433  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3434  * @entry: swap entry to be moved
3435  * @from:  mem_cgroup which the entry is moved from
3436  * @to:  mem_cgroup which the entry is moved to
3437  *
3438  * It succeeds only when the swap_cgroup's record for this entry is the same
3439  * as the mem_cgroup's id of @from.
3440  *
3441  * Returns 0 on success, -EINVAL on failure.
3442  *
3443  * The caller must have charged to @to, IOW, called page_counter_charge() about
3444  * both res and memsw, and called css_get().
3445  */
3446 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3447                                 struct mem_cgroup *from, struct mem_cgroup *to)
3448 {
3449         unsigned short old_id, new_id;
3450
3451         old_id = mem_cgroup_id(from);
3452         new_id = mem_cgroup_id(to);
3453
3454         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3455                 mod_memcg_state(from, MEMCG_SWAP, -1);
3456                 mod_memcg_state(to, MEMCG_SWAP, 1);
3457                 return 0;
3458         }
3459         return -EINVAL;
3460 }
3461 #else
3462 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3463                                 struct mem_cgroup *from, struct mem_cgroup *to)
3464 {
3465         return -EINVAL;
3466 }
3467 #endif
3468
3469 static DEFINE_MUTEX(memcg_max_mutex);
3470
3471 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3472                                  unsigned long max, bool memsw)
3473 {
3474         bool enlarge = false;
3475         bool drained = false;
3476         int ret;
3477         bool limits_invariant;
3478         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3479
3480         do {
3481                 if (signal_pending(current)) {
3482                         ret = -EINTR;
3483                         break;
3484                 }
3485
3486                 mutex_lock(&memcg_max_mutex);
3487                 /*
3488                  * Make sure that the new limit (memsw or memory limit) doesn't
3489                  * break our basic invariant rule memory.max <= memsw.max.
3490                  */
3491                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3492                                            max <= memcg->memsw.max;
3493                 if (!limits_invariant) {
3494                         mutex_unlock(&memcg_max_mutex);
3495                         ret = -EINVAL;
3496                         break;
3497                 }
3498                 if (max > counter->max)
3499                         enlarge = true;
3500                 ret = page_counter_set_max(counter, max);
3501                 mutex_unlock(&memcg_max_mutex);
3502
3503                 if (!ret)
3504                         break;
3505
3506                 if (!drained) {
3507                         drain_all_stock(memcg);
3508                         drained = true;
3509                         continue;
3510                 }
3511
3512                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3513                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3514                         ret = -EBUSY;
3515                         break;
3516                 }
3517         } while (true);
3518
3519         if (!ret && enlarge)
3520                 memcg_oom_recover(memcg);
3521
3522         return ret;
3523 }
3524
3525 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3526                                             gfp_t gfp_mask,
3527                                             unsigned long *total_scanned)
3528 {
3529         unsigned long nr_reclaimed = 0;
3530         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3531         unsigned long reclaimed;
3532         int loop = 0;
3533         struct mem_cgroup_tree_per_node *mctz;
3534         unsigned long excess;
3535
3536         if (lru_gen_enabled())
3537                 return 0;
3538
3539         if (order > 0)
3540                 return 0;
3541
3542         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3543
3544         /*
3545          * Do not even bother to check the largest node if the root
3546          * is empty. Do it lockless to prevent lock bouncing. Races
3547          * are acceptable as soft limit is best effort anyway.
3548          */
3549         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3550                 return 0;
3551
3552         /*
3553          * This loop can run a while, specially if mem_cgroup's continuously
3554          * keep exceeding their soft limit and putting the system under
3555          * pressure
3556          */
3557         do {
3558                 if (next_mz)
3559                         mz = next_mz;
3560                 else
3561                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3562                 if (!mz)
3563                         break;
3564
3565                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3566                                                     gfp_mask, total_scanned);
3567                 nr_reclaimed += reclaimed;
3568                 spin_lock_irq(&mctz->lock);
3569
3570                 /*
3571                  * If we failed to reclaim anything from this memory cgroup
3572                  * it is time to move on to the next cgroup
3573                  */
3574                 next_mz = NULL;
3575                 if (!reclaimed)
3576                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3577
3578                 excess = soft_limit_excess(mz->memcg);
3579                 /*
3580                  * One school of thought says that we should not add
3581                  * back the node to the tree if reclaim returns 0.
3582                  * But our reclaim could return 0, simply because due
3583                  * to priority we are exposing a smaller subset of
3584                  * memory to reclaim from. Consider this as a longer
3585                  * term TODO.
3586                  */
3587                 /* If excess == 0, no tree ops */
3588                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3589                 spin_unlock_irq(&mctz->lock);
3590                 css_put(&mz->memcg->css);
3591                 loop++;
3592                 /*
3593                  * Could not reclaim anything and there are no more
3594                  * mem cgroups to try or we seem to be looping without
3595                  * reclaiming anything.
3596                  */
3597                 if (!nr_reclaimed &&
3598                         (next_mz == NULL ||
3599                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3600                         break;
3601         } while (!nr_reclaimed);
3602         if (next_mz)
3603                 css_put(&next_mz->memcg->css);
3604         return nr_reclaimed;
3605 }
3606
3607 /*
3608  * Reclaims as many pages from the given memcg as possible.
3609  *
3610  * Caller is responsible for holding css reference for memcg.
3611  */
3612 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3613 {
3614         int nr_retries = MAX_RECLAIM_RETRIES;
3615
3616         /* we call try-to-free pages for make this cgroup empty */
3617         lru_add_drain_all();
3618
3619         drain_all_stock(memcg);
3620
3621         /* try to free all pages in this cgroup */
3622         while (nr_retries && page_counter_read(&memcg->memory)) {
3623                 if (signal_pending(current))
3624                         return -EINTR;
3625
3626                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3627                                                   MEMCG_RECLAIM_MAY_SWAP))
3628                         nr_retries--;
3629         }
3630
3631         return 0;
3632 }
3633
3634 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3635                                             char *buf, size_t nbytes,
3636                                             loff_t off)
3637 {
3638         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3639
3640         if (mem_cgroup_is_root(memcg))
3641                 return -EINVAL;
3642         return mem_cgroup_force_empty(memcg) ?: nbytes;
3643 }
3644
3645 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3646                                      struct cftype *cft)
3647 {
3648         return 1;
3649 }
3650
3651 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3652                                       struct cftype *cft, u64 val)
3653 {
3654         if (val == 1)
3655                 return 0;
3656
3657         pr_warn_once("Non-hierarchical mode is deprecated. "
3658                      "Please report your usecase to linux-mm@kvack.org if you "
3659                      "depend on this functionality.\n");
3660
3661         return -EINVAL;
3662 }
3663
3664 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3665 {
3666         unsigned long val;
3667
3668         if (mem_cgroup_is_root(memcg)) {
3669                 /*
3670                  * Approximate root's usage from global state. This isn't
3671                  * perfect, but the root usage was always an approximation.
3672                  */
3673                 val = global_node_page_state(NR_FILE_PAGES) +
3674                         global_node_page_state(NR_ANON_MAPPED);
3675                 if (swap)
3676                         val += total_swap_pages - get_nr_swap_pages();
3677         } else {
3678                 if (!swap)
3679                         val = page_counter_read(&memcg->memory);
3680                 else
3681                         val = page_counter_read(&memcg->memsw);
3682         }
3683         return val;
3684 }
3685
3686 enum {
3687         RES_USAGE,
3688         RES_LIMIT,
3689         RES_MAX_USAGE,
3690         RES_FAILCNT,
3691         RES_SOFT_LIMIT,
3692 };
3693
3694 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3695                                struct cftype *cft)
3696 {
3697         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698         struct page_counter *counter;
3699
3700         switch (MEMFILE_TYPE(cft->private)) {
3701         case _MEM:
3702                 counter = &memcg->memory;
3703                 break;
3704         case _MEMSWAP:
3705                 counter = &memcg->memsw;
3706                 break;
3707         case _KMEM:
3708                 counter = &memcg->kmem;
3709                 break;
3710         case _TCP:
3711                 counter = &memcg->tcpmem;
3712                 break;
3713         default:
3714                 BUG();
3715         }
3716
3717         switch (MEMFILE_ATTR(cft->private)) {
3718         case RES_USAGE:
3719                 if (counter == &memcg->memory)
3720                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3721                 if (counter == &memcg->memsw)
3722                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3723                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3724         case RES_LIMIT:
3725                 return (u64)counter->max * PAGE_SIZE;
3726         case RES_MAX_USAGE:
3727                 return (u64)counter->watermark * PAGE_SIZE;
3728         case RES_FAILCNT:
3729                 return counter->failcnt;
3730         case RES_SOFT_LIMIT:
3731                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3732         default:
3733                 BUG();
3734         }
3735 }
3736
3737 /*
3738  * This function doesn't do anything useful. Its only job is to provide a read
3739  * handler for a file so that cgroup_file_mode() will add read permissions.
3740  */
3741 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3742                                      __always_unused void *v)
3743 {
3744         return -EINVAL;
3745 }
3746
3747 #ifdef CONFIG_MEMCG_KMEM
3748 static int memcg_online_kmem(struct mem_cgroup *memcg)
3749 {
3750         struct obj_cgroup *objcg;
3751
3752         if (mem_cgroup_kmem_disabled())
3753                 return 0;
3754
3755         if (unlikely(mem_cgroup_is_root(memcg)))
3756                 return 0;
3757
3758         objcg = obj_cgroup_alloc();
3759         if (!objcg)
3760                 return -ENOMEM;
3761
3762         objcg->memcg = memcg;
3763         rcu_assign_pointer(memcg->objcg, objcg);
3764
3765         static_branch_enable(&memcg_kmem_online_key);
3766
3767         memcg->kmemcg_id = memcg->id.id;
3768
3769         return 0;
3770 }
3771
3772 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3773 {
3774         struct mem_cgroup *parent;
3775
3776         if (mem_cgroup_kmem_disabled())
3777                 return;
3778
3779         if (unlikely(mem_cgroup_is_root(memcg)))
3780                 return;
3781
3782         parent = parent_mem_cgroup(memcg);
3783         if (!parent)
3784                 parent = root_mem_cgroup;
3785
3786         memcg_reparent_objcgs(memcg, parent);
3787
3788         /*
3789          * After we have finished memcg_reparent_objcgs(), all list_lrus
3790          * corresponding to this cgroup are guaranteed to remain empty.
3791          * The ordering is imposed by list_lru_node->lock taken by
3792          * memcg_reparent_list_lrus().
3793          */
3794         memcg_reparent_list_lrus(memcg, parent);
3795 }
3796 #else
3797 static int memcg_online_kmem(struct mem_cgroup *memcg)
3798 {
3799         return 0;
3800 }
3801 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3802 {
3803 }
3804 #endif /* CONFIG_MEMCG_KMEM */
3805
3806 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3807 {
3808         int ret;
3809
3810         mutex_lock(&memcg_max_mutex);
3811
3812         ret = page_counter_set_max(&memcg->tcpmem, max);
3813         if (ret)
3814                 goto out;
3815
3816         if (!memcg->tcpmem_active) {
3817                 /*
3818                  * The active flag needs to be written after the static_key
3819                  * update. This is what guarantees that the socket activation
3820                  * function is the last one to run. See mem_cgroup_sk_alloc()
3821                  * for details, and note that we don't mark any socket as
3822                  * belonging to this memcg until that flag is up.
3823                  *
3824                  * We need to do this, because static_keys will span multiple
3825                  * sites, but we can't control their order. If we mark a socket
3826                  * as accounted, but the accounting functions are not patched in
3827                  * yet, we'll lose accounting.
3828                  *
3829                  * We never race with the readers in mem_cgroup_sk_alloc(),
3830                  * because when this value change, the code to process it is not
3831                  * patched in yet.
3832                  */
3833                 static_branch_inc(&memcg_sockets_enabled_key);
3834                 memcg->tcpmem_active = true;
3835         }
3836 out:
3837         mutex_unlock(&memcg_max_mutex);
3838         return ret;
3839 }
3840
3841 /*
3842  * The user of this function is...
3843  * RES_LIMIT.
3844  */
3845 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3846                                 char *buf, size_t nbytes, loff_t off)
3847 {
3848         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3849         unsigned long nr_pages;
3850         int ret;
3851
3852         buf = strstrip(buf);
3853         ret = page_counter_memparse(buf, "-1", &nr_pages);
3854         if (ret)
3855                 return ret;
3856
3857         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3858         case RES_LIMIT:
3859                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3860                         ret = -EINVAL;
3861                         break;
3862                 }
3863                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3864                 case _MEM:
3865                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3866                         break;
3867                 case _MEMSWAP:
3868                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3869                         break;
3870                 case _KMEM:
3871                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3872                                      "Writing any value to this file has no effect. "
3873                                      "Please report your usecase to linux-mm@kvack.org if you "
3874                                      "depend on this functionality.\n");
3875                         ret = 0;
3876                         break;
3877                 case _TCP:
3878                         ret = memcg_update_tcp_max(memcg, nr_pages);
3879                         break;
3880                 }
3881                 break;
3882         case RES_SOFT_LIMIT:
3883                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3884                         ret = -EOPNOTSUPP;
3885                 } else {
3886                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3887                         ret = 0;
3888                 }
3889                 break;
3890         }
3891         return ret ?: nbytes;
3892 }
3893
3894 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3895                                 size_t nbytes, loff_t off)
3896 {
3897         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3898         struct page_counter *counter;
3899
3900         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3901         case _MEM:
3902                 counter = &memcg->memory;
3903                 break;
3904         case _MEMSWAP:
3905                 counter = &memcg->memsw;
3906                 break;
3907         case _KMEM:
3908                 counter = &memcg->kmem;
3909                 break;
3910         case _TCP:
3911                 counter = &memcg->tcpmem;
3912                 break;
3913         default:
3914                 BUG();
3915         }
3916
3917         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3918         case RES_MAX_USAGE:
3919                 page_counter_reset_watermark(counter);
3920                 break;
3921         case RES_FAILCNT:
3922                 counter->failcnt = 0;
3923                 break;
3924         default:
3925                 BUG();
3926         }
3927
3928         return nbytes;
3929 }
3930
3931 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3932                                         struct cftype *cft)
3933 {
3934         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3935 }
3936
3937 #ifdef CONFIG_MMU
3938 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3939                                         struct cftype *cft, u64 val)
3940 {
3941         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3942
3943         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3944                      "Please report your usecase to linux-mm@kvack.org if you "
3945                      "depend on this functionality.\n");
3946
3947         if (val & ~MOVE_MASK)
3948                 return -EINVAL;
3949
3950         /*
3951          * No kind of locking is needed in here, because ->can_attach() will
3952          * check this value once in the beginning of the process, and then carry
3953          * on with stale data. This means that changes to this value will only
3954          * affect task migrations starting after the change.
3955          */
3956         memcg->move_charge_at_immigrate = val;
3957         return 0;
3958 }
3959 #else
3960 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3961                                         struct cftype *cft, u64 val)
3962 {
3963         return -ENOSYS;
3964 }
3965 #endif
3966
3967 #ifdef CONFIG_NUMA
3968
3969 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3970 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3971 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3972
3973 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3974                                 int nid, unsigned int lru_mask, bool tree)
3975 {
3976         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3977         unsigned long nr = 0;
3978         enum lru_list lru;
3979
3980         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3981
3982         for_each_lru(lru) {
3983                 if (!(BIT(lru) & lru_mask))
3984                         continue;
3985                 if (tree)
3986                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3987                 else
3988                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3989         }
3990         return nr;
3991 }
3992
3993 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3994                                              unsigned int lru_mask,
3995                                              bool tree)
3996 {
3997         unsigned long nr = 0;
3998         enum lru_list lru;
3999
4000         for_each_lru(lru) {
4001                 if (!(BIT(lru) & lru_mask))
4002                         continue;
4003                 if (tree)
4004                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4005                 else
4006                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4007         }
4008         return nr;
4009 }
4010
4011 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4012 {
4013         struct numa_stat {
4014                 const char *name;
4015                 unsigned int lru_mask;
4016         };
4017
4018         static const struct numa_stat stats[] = {
4019                 { "total", LRU_ALL },
4020                 { "file", LRU_ALL_FILE },
4021                 { "anon", LRU_ALL_ANON },
4022                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4023         };
4024         const struct numa_stat *stat;
4025         int nid;
4026         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027
4028         mem_cgroup_flush_stats();
4029
4030         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4031                 seq_printf(m, "%s=%lu", stat->name,
4032                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4033                                                    false));
4034                 for_each_node_state(nid, N_MEMORY)
4035                         seq_printf(m, " N%d=%lu", nid,
4036                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4037                                                         stat->lru_mask, false));
4038                 seq_putc(m, '\n');
4039         }
4040
4041         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4042
4043                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4044                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4045                                                    true));
4046                 for_each_node_state(nid, N_MEMORY)
4047                         seq_printf(m, " N%d=%lu", nid,
4048                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4049                                                         stat->lru_mask, true));
4050                 seq_putc(m, '\n');
4051         }
4052
4053         return 0;
4054 }
4055 #endif /* CONFIG_NUMA */
4056
4057 static const unsigned int memcg1_stats[] = {
4058         NR_FILE_PAGES,
4059         NR_ANON_MAPPED,
4060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4061         NR_ANON_THPS,
4062 #endif
4063         NR_SHMEM,
4064         NR_FILE_MAPPED,
4065         NR_FILE_DIRTY,
4066         NR_WRITEBACK,
4067         WORKINGSET_REFAULT_ANON,
4068         WORKINGSET_REFAULT_FILE,
4069         MEMCG_SWAP,
4070 };
4071
4072 static const char *const memcg1_stat_names[] = {
4073         "cache",
4074         "rss",
4075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4076         "rss_huge",
4077 #endif
4078         "shmem",
4079         "mapped_file",
4080         "dirty",
4081         "writeback",
4082         "workingset_refault_anon",
4083         "workingset_refault_file",
4084         "swap",
4085 };
4086
4087 /* Universal VM events cgroup1 shows, original sort order */
4088 static const unsigned int memcg1_events[] = {
4089         PGPGIN,
4090         PGPGOUT,
4091         PGFAULT,
4092         PGMAJFAULT,
4093 };
4094
4095 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4096 {
4097         unsigned long memory, memsw;
4098         struct mem_cgroup *mi;
4099         unsigned int i;
4100
4101         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4102
4103         mem_cgroup_flush_stats();
4104
4105         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4106                 unsigned long nr;
4107
4108                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4109                         continue;
4110                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4111                 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4112                            nr * memcg_page_state_unit(memcg1_stats[i]));
4113         }
4114
4115         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4116                 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4117                                memcg_events_local(memcg, memcg1_events[i]));
4118
4119         for (i = 0; i < NR_LRU_LISTS; i++)
4120                 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4121                                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4122                                PAGE_SIZE);
4123
4124         /* Hierarchical information */
4125         memory = memsw = PAGE_COUNTER_MAX;
4126         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4127                 memory = min(memory, READ_ONCE(mi->memory.max));
4128                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4129         }
4130         seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4131                        (u64)memory * PAGE_SIZE);
4132         if (do_memsw_account())
4133                 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4134                                (u64)memsw * PAGE_SIZE);
4135
4136         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4137                 unsigned long nr;
4138
4139                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4140                         continue;
4141                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4142                 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4143                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4144         }
4145
4146         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4147                 seq_buf_printf(s, "total_%s %llu\n",
4148                                vm_event_name(memcg1_events[i]),
4149                                (u64)memcg_events(memcg, memcg1_events[i]));
4150
4151         for (i = 0; i < NR_LRU_LISTS; i++)
4152                 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4153                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4154                                PAGE_SIZE);
4155
4156 #ifdef CONFIG_DEBUG_VM
4157         {
4158                 pg_data_t *pgdat;
4159                 struct mem_cgroup_per_node *mz;
4160                 unsigned long anon_cost = 0;
4161                 unsigned long file_cost = 0;
4162
4163                 for_each_online_pgdat(pgdat) {
4164                         mz = memcg->nodeinfo[pgdat->node_id];
4165
4166                         anon_cost += mz->lruvec.anon_cost;
4167                         file_cost += mz->lruvec.file_cost;
4168                 }
4169                 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4170                 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4171         }
4172 #endif
4173 }
4174
4175 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4176                                       struct cftype *cft)
4177 {
4178         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4179
4180         return mem_cgroup_swappiness(memcg);
4181 }
4182
4183 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4184                                        struct cftype *cft, u64 val)
4185 {
4186         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4187
4188         if (val > 200)
4189                 return -EINVAL;
4190
4191         if (!mem_cgroup_is_root(memcg))
4192                 WRITE_ONCE(memcg->swappiness, val);
4193         else
4194                 WRITE_ONCE(vm_swappiness, val);
4195
4196         return 0;
4197 }
4198
4199 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4200 {
4201         struct mem_cgroup_threshold_ary *t;
4202         unsigned long usage;
4203         int i;
4204
4205         rcu_read_lock();
4206         if (!swap)
4207                 t = rcu_dereference(memcg->thresholds.primary);
4208         else
4209                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4210
4211         if (!t)
4212                 goto unlock;
4213
4214         usage = mem_cgroup_usage(memcg, swap);
4215
4216         /*
4217          * current_threshold points to threshold just below or equal to usage.
4218          * If it's not true, a threshold was crossed after last
4219          * call of __mem_cgroup_threshold().
4220          */
4221         i = t->current_threshold;
4222
4223         /*
4224          * Iterate backward over array of thresholds starting from
4225          * current_threshold and check if a threshold is crossed.
4226          * If none of thresholds below usage is crossed, we read
4227          * only one element of the array here.
4228          */
4229         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4230                 eventfd_signal(t->entries[i].eventfd, 1);
4231
4232         /* i = current_threshold + 1 */
4233         i++;
4234
4235         /*
4236          * Iterate forward over array of thresholds starting from
4237          * current_threshold+1 and check if a threshold is crossed.
4238          * If none of thresholds above usage is crossed, we read
4239          * only one element of the array here.
4240          */
4241         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4242                 eventfd_signal(t->entries[i].eventfd, 1);
4243
4244         /* Update current_threshold */
4245         t->current_threshold = i - 1;
4246 unlock:
4247         rcu_read_unlock();
4248 }
4249
4250 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4251 {
4252         while (memcg) {
4253                 __mem_cgroup_threshold(memcg, false);
4254                 if (do_memsw_account())
4255                         __mem_cgroup_threshold(memcg, true);
4256
4257                 memcg = parent_mem_cgroup(memcg);
4258         }
4259 }
4260
4261 static int compare_thresholds(const void *a, const void *b)
4262 {
4263         const struct mem_cgroup_threshold *_a = a;
4264         const struct mem_cgroup_threshold *_b = b;
4265
4266         if (_a->threshold > _b->threshold)
4267                 return 1;
4268
4269         if (_a->threshold < _b->threshold)
4270                 return -1;
4271
4272         return 0;
4273 }
4274
4275 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4276 {
4277         struct mem_cgroup_eventfd_list *ev;
4278
4279         spin_lock(&memcg_oom_lock);
4280
4281         list_for_each_entry(ev, &memcg->oom_notify, list)
4282                 eventfd_signal(ev->eventfd, 1);
4283
4284         spin_unlock(&memcg_oom_lock);
4285         return 0;
4286 }
4287
4288 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4289 {
4290         struct mem_cgroup *iter;
4291
4292         for_each_mem_cgroup_tree(iter, memcg)
4293                 mem_cgroup_oom_notify_cb(iter);
4294 }
4295
4296 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4297         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4298 {
4299         struct mem_cgroup_thresholds *thresholds;
4300         struct mem_cgroup_threshold_ary *new;
4301         unsigned long threshold;
4302         unsigned long usage;
4303         int i, size, ret;
4304
4305         ret = page_counter_memparse(args, "-1", &threshold);
4306         if (ret)
4307                 return ret;
4308
4309         mutex_lock(&memcg->thresholds_lock);
4310
4311         if (type == _MEM) {
4312                 thresholds = &memcg->thresholds;
4313                 usage = mem_cgroup_usage(memcg, false);
4314         } else if (type == _MEMSWAP) {
4315                 thresholds = &memcg->memsw_thresholds;
4316                 usage = mem_cgroup_usage(memcg, true);
4317         } else
4318                 BUG();
4319
4320         /* Check if a threshold crossed before adding a new one */
4321         if (thresholds->primary)
4322                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4323
4324         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4325
4326         /* Allocate memory for new array of thresholds */
4327         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4328         if (!new) {
4329                 ret = -ENOMEM;
4330                 goto unlock;
4331         }
4332         new->size = size;
4333
4334         /* Copy thresholds (if any) to new array */
4335         if (thresholds->primary)
4336                 memcpy(new->entries, thresholds->primary->entries,
4337                        flex_array_size(new, entries, size - 1));
4338
4339         /* Add new threshold */
4340         new->entries[size - 1].eventfd = eventfd;
4341         new->entries[size - 1].threshold = threshold;
4342
4343         /* Sort thresholds. Registering of new threshold isn't time-critical */
4344         sort(new->entries, size, sizeof(*new->entries),
4345                         compare_thresholds, NULL);
4346
4347         /* Find current threshold */
4348         new->current_threshold = -1;
4349         for (i = 0; i < size; i++) {
4350                 if (new->entries[i].threshold <= usage) {
4351                         /*
4352                          * new->current_threshold will not be used until
4353                          * rcu_assign_pointer(), so it's safe to increment
4354                          * it here.
4355                          */
4356                         ++new->current_threshold;
4357                 } else
4358                         break;
4359         }
4360
4361         /* Free old spare buffer and save old primary buffer as spare */
4362         kfree(thresholds->spare);
4363         thresholds->spare = thresholds->primary;
4364
4365         rcu_assign_pointer(thresholds->primary, new);
4366
4367         /* To be sure that nobody uses thresholds */
4368         synchronize_rcu();
4369
4370 unlock:
4371         mutex_unlock(&memcg->thresholds_lock);
4372
4373         return ret;
4374 }
4375
4376 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4377         struct eventfd_ctx *eventfd, const char *args)
4378 {
4379         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4380 }
4381
4382 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4383         struct eventfd_ctx *eventfd, const char *args)
4384 {
4385         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4386 }
4387
4388 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4389         struct eventfd_ctx *eventfd, enum res_type type)
4390 {
4391         struct mem_cgroup_thresholds *thresholds;
4392         struct mem_cgroup_threshold_ary *new;
4393         unsigned long usage;
4394         int i, j, size, entries;
4395
4396         mutex_lock(&memcg->thresholds_lock);
4397
4398         if (type == _MEM) {
4399                 thresholds = &memcg->thresholds;
4400                 usage = mem_cgroup_usage(memcg, false);
4401         } else if (type == _MEMSWAP) {
4402                 thresholds = &memcg->memsw_thresholds;
4403                 usage = mem_cgroup_usage(memcg, true);
4404         } else
4405                 BUG();
4406
4407         if (!thresholds->primary)
4408                 goto unlock;
4409
4410         /* Check if a threshold crossed before removing */
4411         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4412
4413         /* Calculate new number of threshold */
4414         size = entries = 0;
4415         for (i = 0; i < thresholds->primary->size; i++) {
4416                 if (thresholds->primary->entries[i].eventfd != eventfd)
4417                         size++;
4418                 else
4419                         entries++;
4420         }
4421
4422         new = thresholds->spare;
4423
4424         /* If no items related to eventfd have been cleared, nothing to do */
4425         if (!entries)
4426                 goto unlock;
4427
4428         /* Set thresholds array to NULL if we don't have thresholds */
4429         if (!size) {
4430                 kfree(new);
4431                 new = NULL;
4432                 goto swap_buffers;
4433         }
4434
4435         new->size = size;
4436
4437         /* Copy thresholds and find current threshold */
4438         new->current_threshold = -1;
4439         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4440                 if (thresholds->primary->entries[i].eventfd == eventfd)
4441                         continue;
4442
4443                 new->entries[j] = thresholds->primary->entries[i];
4444                 if (new->entries[j].threshold <= usage) {
4445                         /*
4446                          * new->current_threshold will not be used
4447                          * until rcu_assign_pointer(), so it's safe to increment
4448                          * it here.
4449                          */
4450                         ++new->current_threshold;
4451                 }
4452                 j++;
4453         }
4454
4455 swap_buffers:
4456         /* Swap primary and spare array */
4457         thresholds->spare = thresholds->primary;
4458
4459         rcu_assign_pointer(thresholds->primary, new);
4460
4461         /* To be sure that nobody uses thresholds */
4462         synchronize_rcu();
4463
4464         /* If all events are unregistered, free the spare array */
4465         if (!new) {
4466                 kfree(thresholds->spare);
4467                 thresholds->spare = NULL;
4468         }
4469 unlock:
4470         mutex_unlock(&memcg->thresholds_lock);
4471 }
4472
4473 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4474         struct eventfd_ctx *eventfd)
4475 {
4476         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4477 }
4478
4479 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4480         struct eventfd_ctx *eventfd)
4481 {
4482         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4483 }
4484
4485 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4486         struct eventfd_ctx *eventfd, const char *args)
4487 {
4488         struct mem_cgroup_eventfd_list *event;
4489
4490         event = kmalloc(sizeof(*event), GFP_KERNEL);
4491         if (!event)
4492                 return -ENOMEM;
4493
4494         spin_lock(&memcg_oom_lock);
4495
4496         event->eventfd = eventfd;
4497         list_add(&event->list, &memcg->oom_notify);
4498
4499         /* already in OOM ? */
4500         if (memcg->under_oom)
4501                 eventfd_signal(eventfd, 1);
4502         spin_unlock(&memcg_oom_lock);
4503
4504         return 0;
4505 }
4506
4507 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4508         struct eventfd_ctx *eventfd)
4509 {
4510         struct mem_cgroup_eventfd_list *ev, *tmp;
4511
4512         spin_lock(&memcg_oom_lock);
4513
4514         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4515                 if (ev->eventfd == eventfd) {
4516                         list_del(&ev->list);
4517                         kfree(ev);
4518                 }
4519         }
4520
4521         spin_unlock(&memcg_oom_lock);
4522 }
4523
4524 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4525 {
4526         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4527
4528         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4529         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4530         seq_printf(sf, "oom_kill %lu\n",
4531                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4532         return 0;
4533 }
4534
4535 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4536         struct cftype *cft, u64 val)
4537 {
4538         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4539
4540         /* cannot set to root cgroup and only 0 and 1 are allowed */
4541         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4542                 return -EINVAL;
4543
4544         WRITE_ONCE(memcg->oom_kill_disable, val);
4545         if (!val)
4546                 memcg_oom_recover(memcg);
4547
4548         return 0;
4549 }
4550
4551 #ifdef CONFIG_CGROUP_WRITEBACK
4552
4553 #include <trace/events/writeback.h>
4554
4555 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4556 {
4557         return wb_domain_init(&memcg->cgwb_domain, gfp);
4558 }
4559
4560 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4561 {
4562         wb_domain_exit(&memcg->cgwb_domain);
4563 }
4564
4565 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4566 {
4567         wb_domain_size_changed(&memcg->cgwb_domain);
4568 }
4569
4570 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4571 {
4572         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4573
4574         if (!memcg->css.parent)
4575                 return NULL;
4576
4577         return &memcg->cgwb_domain;
4578 }
4579
4580 /**
4581  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4582  * @wb: bdi_writeback in question
4583  * @pfilepages: out parameter for number of file pages
4584  * @pheadroom: out parameter for number of allocatable pages according to memcg
4585  * @pdirty: out parameter for number of dirty pages
4586  * @pwriteback: out parameter for number of pages under writeback
4587  *
4588  * Determine the numbers of file, headroom, dirty, and writeback pages in
4589  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4590  * is a bit more involved.
4591  *
4592  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4593  * headroom is calculated as the lowest headroom of itself and the
4594  * ancestors.  Note that this doesn't consider the actual amount of
4595  * available memory in the system.  The caller should further cap
4596  * *@pheadroom accordingly.
4597  */
4598 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4599                          unsigned long *pheadroom, unsigned long *pdirty,
4600                          unsigned long *pwriteback)
4601 {
4602         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4603         struct mem_cgroup *parent;
4604
4605         mem_cgroup_flush_stats();
4606
4607         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4608         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4609         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4610                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4611
4612         *pheadroom = PAGE_COUNTER_MAX;
4613         while ((parent = parent_mem_cgroup(memcg))) {
4614                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4615                                             READ_ONCE(memcg->memory.high));
4616                 unsigned long used = page_counter_read(&memcg->memory);
4617
4618                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4619                 memcg = parent;
4620         }
4621 }
4622
4623 /*
4624  * Foreign dirty flushing
4625  *
4626  * There's an inherent mismatch between memcg and writeback.  The former
4627  * tracks ownership per-page while the latter per-inode.  This was a
4628  * deliberate design decision because honoring per-page ownership in the
4629  * writeback path is complicated, may lead to higher CPU and IO overheads
4630  * and deemed unnecessary given that write-sharing an inode across
4631  * different cgroups isn't a common use-case.
4632  *
4633  * Combined with inode majority-writer ownership switching, this works well
4634  * enough in most cases but there are some pathological cases.  For
4635  * example, let's say there are two cgroups A and B which keep writing to
4636  * different but confined parts of the same inode.  B owns the inode and
4637  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4638  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4639  * triggering background writeback.  A will be slowed down without a way to
4640  * make writeback of the dirty pages happen.
4641  *
4642  * Conditions like the above can lead to a cgroup getting repeatedly and
4643  * severely throttled after making some progress after each
4644  * dirty_expire_interval while the underlying IO device is almost
4645  * completely idle.
4646  *
4647  * Solving this problem completely requires matching the ownership tracking
4648  * granularities between memcg and writeback in either direction.  However,
4649  * the more egregious behaviors can be avoided by simply remembering the
4650  * most recent foreign dirtying events and initiating remote flushes on
4651  * them when local writeback isn't enough to keep the memory clean enough.
4652  *
4653  * The following two functions implement such mechanism.  When a foreign
4654  * page - a page whose memcg and writeback ownerships don't match - is
4655  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4656  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4657  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4658  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4659  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4660  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4661  * limited to MEMCG_CGWB_FRN_CNT.
4662  *
4663  * The mechanism only remembers IDs and doesn't hold any object references.
4664  * As being wrong occasionally doesn't matter, updates and accesses to the
4665  * records are lockless and racy.
4666  */
4667 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4668                                              struct bdi_writeback *wb)
4669 {
4670         struct mem_cgroup *memcg = folio_memcg(folio);
4671         struct memcg_cgwb_frn *frn;
4672         u64 now = get_jiffies_64();
4673         u64 oldest_at = now;
4674         int oldest = -1;
4675         int i;
4676
4677         trace_track_foreign_dirty(folio, wb);
4678
4679         /*
4680          * Pick the slot to use.  If there is already a slot for @wb, keep
4681          * using it.  If not replace the oldest one which isn't being
4682          * written out.
4683          */
4684         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4685                 frn = &memcg->cgwb_frn[i];
4686                 if (frn->bdi_id == wb->bdi->id &&
4687                     frn->memcg_id == wb->memcg_css->id)
4688                         break;
4689                 if (time_before64(frn->at, oldest_at) &&
4690                     atomic_read(&frn->done.cnt) == 1) {
4691                         oldest = i;
4692                         oldest_at = frn->at;
4693                 }
4694         }
4695
4696         if (i < MEMCG_CGWB_FRN_CNT) {
4697                 /*
4698                  * Re-using an existing one.  Update timestamp lazily to
4699                  * avoid making the cacheline hot.  We want them to be
4700                  * reasonably up-to-date and significantly shorter than
4701                  * dirty_expire_interval as that's what expires the record.
4702                  * Use the shorter of 1s and dirty_expire_interval / 8.
4703                  */
4704                 unsigned long update_intv =
4705                         min_t(unsigned long, HZ,
4706                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4707
4708                 if (time_before64(frn->at, now - update_intv))
4709                         frn->at = now;
4710         } else if (oldest >= 0) {
4711                 /* replace the oldest free one */
4712                 frn = &memcg->cgwb_frn[oldest];
4713                 frn->bdi_id = wb->bdi->id;
4714                 frn->memcg_id = wb->memcg_css->id;
4715                 frn->at = now;
4716         }
4717 }
4718
4719 /* issue foreign writeback flushes for recorded foreign dirtying events */
4720 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4721 {
4722         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4723         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4724         u64 now = jiffies_64;
4725         int i;
4726
4727         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4728                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4729
4730                 /*
4731                  * If the record is older than dirty_expire_interval,
4732                  * writeback on it has already started.  No need to kick it
4733                  * off again.  Also, don't start a new one if there's
4734                  * already one in flight.
4735                  */
4736                 if (time_after64(frn->at, now - intv) &&
4737                     atomic_read(&frn->done.cnt) == 1) {
4738                         frn->at = 0;
4739                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4740                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4741                                                WB_REASON_FOREIGN_FLUSH,
4742                                                &frn->done);
4743                 }
4744         }
4745 }
4746
4747 #else   /* CONFIG_CGROUP_WRITEBACK */
4748
4749 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4750 {
4751         return 0;
4752 }
4753
4754 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4755 {
4756 }
4757
4758 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4759 {
4760 }
4761
4762 #endif  /* CONFIG_CGROUP_WRITEBACK */
4763
4764 /*
4765  * DO NOT USE IN NEW FILES.
4766  *
4767  * "cgroup.event_control" implementation.
4768  *
4769  * This is way over-engineered.  It tries to support fully configurable
4770  * events for each user.  Such level of flexibility is completely
4771  * unnecessary especially in the light of the planned unified hierarchy.
4772  *
4773  * Please deprecate this and replace with something simpler if at all
4774  * possible.
4775  */
4776
4777 /*
4778  * Unregister event and free resources.
4779  *
4780  * Gets called from workqueue.
4781  */
4782 static void memcg_event_remove(struct work_struct *work)
4783 {
4784         struct mem_cgroup_event *event =
4785                 container_of(work, struct mem_cgroup_event, remove);
4786         struct mem_cgroup *memcg = event->memcg;
4787
4788         remove_wait_queue(event->wqh, &event->wait);
4789
4790         event->unregister_event(memcg, event->eventfd);
4791
4792         /* Notify userspace the event is going away. */
4793         eventfd_signal(event->eventfd, 1);
4794
4795         eventfd_ctx_put(event->eventfd);
4796         kfree(event);
4797         css_put(&memcg->css);
4798 }
4799
4800 /*
4801  * Gets called on EPOLLHUP on eventfd when user closes it.
4802  *
4803  * Called with wqh->lock held and interrupts disabled.
4804  */
4805 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4806                             int sync, void *key)
4807 {
4808         struct mem_cgroup_event *event =
4809                 container_of(wait, struct mem_cgroup_event, wait);
4810         struct mem_cgroup *memcg = event->memcg;
4811         __poll_t flags = key_to_poll(key);
4812
4813         if (flags & EPOLLHUP) {
4814                 /*
4815                  * If the event has been detached at cgroup removal, we
4816                  * can simply return knowing the other side will cleanup
4817                  * for us.
4818                  *
4819                  * We can't race against event freeing since the other
4820                  * side will require wqh->lock via remove_wait_queue(),
4821                  * which we hold.
4822                  */
4823                 spin_lock(&memcg->event_list_lock);
4824                 if (!list_empty(&event->list)) {
4825                         list_del_init(&event->list);
4826                         /*
4827                          * We are in atomic context, but cgroup_event_remove()
4828                          * may sleep, so we have to call it in workqueue.
4829                          */
4830                         schedule_work(&event->remove);
4831                 }
4832                 spin_unlock(&memcg->event_list_lock);
4833         }
4834
4835         return 0;
4836 }
4837
4838 static void memcg_event_ptable_queue_proc(struct file *file,
4839                 wait_queue_head_t *wqh, poll_table *pt)
4840 {
4841         struct mem_cgroup_event *event =
4842                 container_of(pt, struct mem_cgroup_event, pt);
4843
4844         event->wqh = wqh;
4845         add_wait_queue(wqh, &event->wait);
4846 }
4847
4848 /*
4849  * DO NOT USE IN NEW FILES.
4850  *
4851  * Parse input and register new cgroup event handler.
4852  *
4853  * Input must be in format '<event_fd> <control_fd> <args>'.
4854  * Interpretation of args is defined by control file implementation.
4855  */
4856 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4857                                          char *buf, size_t nbytes, loff_t off)
4858 {
4859         struct cgroup_subsys_state *css = of_css(of);
4860         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4861         struct mem_cgroup_event *event;
4862         struct cgroup_subsys_state *cfile_css;
4863         unsigned int efd, cfd;
4864         struct fd efile;
4865         struct fd cfile;
4866         struct dentry *cdentry;
4867         const char *name;
4868         char *endp;
4869         int ret;
4870
4871         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4872                 return -EOPNOTSUPP;
4873
4874         buf = strstrip(buf);
4875
4876         efd = simple_strtoul(buf, &endp, 10);
4877         if (*endp != ' ')
4878                 return -EINVAL;
4879         buf = endp + 1;
4880
4881         cfd = simple_strtoul(buf, &endp, 10);
4882         if ((*endp != ' ') && (*endp != '\0'))
4883                 return -EINVAL;
4884         buf = endp + 1;
4885
4886         event = kzalloc(sizeof(*event), GFP_KERNEL);
4887         if (!event)
4888                 return -ENOMEM;
4889
4890         event->memcg = memcg;
4891         INIT_LIST_HEAD(&event->list);
4892         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4893         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4894         INIT_WORK(&event->remove, memcg_event_remove);
4895
4896         efile = fdget(efd);
4897         if (!efile.file) {
4898                 ret = -EBADF;
4899                 goto out_kfree;
4900         }
4901
4902         event->eventfd = eventfd_ctx_fileget(efile.file);
4903         if (IS_ERR(event->eventfd)) {
4904                 ret = PTR_ERR(event->eventfd);
4905                 goto out_put_efile;
4906         }
4907
4908         cfile = fdget(cfd);
4909         if (!cfile.file) {
4910                 ret = -EBADF;
4911                 goto out_put_eventfd;
4912         }
4913
4914         /* the process need read permission on control file */
4915         /* AV: shouldn't we check that it's been opened for read instead? */
4916         ret = file_permission(cfile.file, MAY_READ);
4917         if (ret < 0)
4918                 goto out_put_cfile;
4919
4920         /*
4921          * The control file must be a regular cgroup1 file. As a regular cgroup
4922          * file can't be renamed, it's safe to access its name afterwards.
4923          */
4924         cdentry = cfile.file->f_path.dentry;
4925         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4926                 ret = -EINVAL;
4927                 goto out_put_cfile;
4928         }
4929
4930         /*
4931          * Determine the event callbacks and set them in @event.  This used
4932          * to be done via struct cftype but cgroup core no longer knows
4933          * about these events.  The following is crude but the whole thing
4934          * is for compatibility anyway.
4935          *
4936          * DO NOT ADD NEW FILES.
4937          */
4938         name = cdentry->d_name.name;
4939
4940         if (!strcmp(name, "memory.usage_in_bytes")) {
4941                 event->register_event = mem_cgroup_usage_register_event;
4942                 event->unregister_event = mem_cgroup_usage_unregister_event;
4943         } else if (!strcmp(name, "memory.oom_control")) {
4944                 event->register_event = mem_cgroup_oom_register_event;
4945                 event->unregister_event = mem_cgroup_oom_unregister_event;
4946         } else if (!strcmp(name, "memory.pressure_level")) {
4947                 event->register_event = vmpressure_register_event;
4948                 event->unregister_event = vmpressure_unregister_event;
4949         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4950                 event->register_event = memsw_cgroup_usage_register_event;
4951                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4952         } else {
4953                 ret = -EINVAL;
4954                 goto out_put_cfile;
4955         }
4956
4957         /*
4958          * Verify @cfile should belong to @css.  Also, remaining events are
4959          * automatically removed on cgroup destruction but the removal is
4960          * asynchronous, so take an extra ref on @css.
4961          */
4962         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4963                                                &memory_cgrp_subsys);
4964         ret = -EINVAL;
4965         if (IS_ERR(cfile_css))
4966                 goto out_put_cfile;
4967         if (cfile_css != css) {
4968                 css_put(cfile_css);
4969                 goto out_put_cfile;
4970         }
4971
4972         ret = event->register_event(memcg, event->eventfd, buf);
4973         if (ret)
4974                 goto out_put_css;
4975
4976         vfs_poll(efile.file, &event->pt);
4977
4978         spin_lock_irq(&memcg->event_list_lock);
4979         list_add(&event->list, &memcg->event_list);
4980         spin_unlock_irq(&memcg->event_list_lock);
4981
4982         fdput(cfile);
4983         fdput(efile);
4984
4985         return nbytes;
4986
4987 out_put_css:
4988         css_put(css);
4989 out_put_cfile:
4990         fdput(cfile);
4991 out_put_eventfd:
4992         eventfd_ctx_put(event->eventfd);
4993 out_put_efile:
4994         fdput(efile);
4995 out_kfree:
4996         kfree(event);
4997
4998         return ret;
4999 }
5000
5001 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5002 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5003 {
5004         /*
5005          * Deprecated.
5006          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5007          */
5008         return 0;
5009 }
5010 #endif
5011
5012 static int memory_stat_show(struct seq_file *m, void *v);
5013
5014 static struct cftype mem_cgroup_legacy_files[] = {
5015         {
5016                 .name = "usage_in_bytes",
5017                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5018                 .read_u64 = mem_cgroup_read_u64,
5019         },
5020         {
5021                 .name = "max_usage_in_bytes",
5022                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5023                 .write = mem_cgroup_reset,
5024                 .read_u64 = mem_cgroup_read_u64,
5025         },
5026         {
5027                 .name = "limit_in_bytes",
5028                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5029                 .write = mem_cgroup_write,
5030                 .read_u64 = mem_cgroup_read_u64,
5031         },
5032         {
5033                 .name = "soft_limit_in_bytes",
5034                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5035                 .write = mem_cgroup_write,
5036                 .read_u64 = mem_cgroup_read_u64,
5037         },
5038         {
5039                 .name = "failcnt",
5040                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5041                 .write = mem_cgroup_reset,
5042                 .read_u64 = mem_cgroup_read_u64,
5043         },
5044         {
5045                 .name = "stat",
5046                 .seq_show = memory_stat_show,
5047         },
5048         {
5049                 .name = "force_empty",
5050                 .write = mem_cgroup_force_empty_write,
5051         },
5052         {
5053                 .name = "use_hierarchy",
5054                 .write_u64 = mem_cgroup_hierarchy_write,
5055                 .read_u64 = mem_cgroup_hierarchy_read,
5056         },
5057         {
5058                 .name = "cgroup.event_control",         /* XXX: for compat */
5059                 .write = memcg_write_event_control,
5060                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5061         },
5062         {
5063                 .name = "swappiness",
5064                 .read_u64 = mem_cgroup_swappiness_read,
5065                 .write_u64 = mem_cgroup_swappiness_write,
5066         },
5067         {
5068                 .name = "move_charge_at_immigrate",
5069                 .read_u64 = mem_cgroup_move_charge_read,
5070                 .write_u64 = mem_cgroup_move_charge_write,
5071         },
5072         {
5073                 .name = "oom_control",
5074                 .seq_show = mem_cgroup_oom_control_read,
5075                 .write_u64 = mem_cgroup_oom_control_write,
5076         },
5077         {
5078                 .name = "pressure_level",
5079                 .seq_show = mem_cgroup_dummy_seq_show,
5080         },
5081 #ifdef CONFIG_NUMA
5082         {
5083                 .name = "numa_stat",
5084                 .seq_show = memcg_numa_stat_show,
5085         },
5086 #endif
5087         {
5088                 .name = "kmem.limit_in_bytes",
5089                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5090                 .write = mem_cgroup_write,
5091                 .read_u64 = mem_cgroup_read_u64,
5092         },
5093         {
5094                 .name = "kmem.usage_in_bytes",
5095                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5096                 .read_u64 = mem_cgroup_read_u64,
5097         },
5098         {
5099                 .name = "kmem.failcnt",
5100                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5101                 .write = mem_cgroup_reset,
5102                 .read_u64 = mem_cgroup_read_u64,
5103         },
5104         {
5105                 .name = "kmem.max_usage_in_bytes",
5106                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5107                 .write = mem_cgroup_reset,
5108                 .read_u64 = mem_cgroup_read_u64,
5109         },
5110 #if defined(CONFIG_MEMCG_KMEM) && \
5111         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5112         {
5113                 .name = "kmem.slabinfo",
5114                 .seq_show = mem_cgroup_slab_show,
5115         },
5116 #endif
5117         {
5118                 .name = "kmem.tcp.limit_in_bytes",
5119                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5120                 .write = mem_cgroup_write,
5121                 .read_u64 = mem_cgroup_read_u64,
5122         },
5123         {
5124                 .name = "kmem.tcp.usage_in_bytes",
5125                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5126                 .read_u64 = mem_cgroup_read_u64,
5127         },
5128         {
5129                 .name = "kmem.tcp.failcnt",
5130                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5131                 .write = mem_cgroup_reset,
5132                 .read_u64 = mem_cgroup_read_u64,
5133         },
5134         {
5135                 .name = "kmem.tcp.max_usage_in_bytes",
5136                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5137                 .write = mem_cgroup_reset,
5138                 .read_u64 = mem_cgroup_read_u64,
5139         },
5140         { },    /* terminate */
5141 };
5142
5143 /*
5144  * Private memory cgroup IDR
5145  *
5146  * Swap-out records and page cache shadow entries need to store memcg
5147  * references in constrained space, so we maintain an ID space that is
5148  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5149  * memory-controlled cgroups to 64k.
5150  *
5151  * However, there usually are many references to the offline CSS after
5152  * the cgroup has been destroyed, such as page cache or reclaimable
5153  * slab objects, that don't need to hang on to the ID. We want to keep
5154  * those dead CSS from occupying IDs, or we might quickly exhaust the
5155  * relatively small ID space and prevent the creation of new cgroups
5156  * even when there are much fewer than 64k cgroups - possibly none.
5157  *
5158  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5159  * be freed and recycled when it's no longer needed, which is usually
5160  * when the CSS is offlined.
5161  *
5162  * The only exception to that are records of swapped out tmpfs/shmem
5163  * pages that need to be attributed to live ancestors on swapin. But
5164  * those references are manageable from userspace.
5165  */
5166
5167 #define MEM_CGROUP_ID_MAX       ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5168 static DEFINE_IDR(mem_cgroup_idr);
5169
5170 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5171 {
5172         if (memcg->id.id > 0) {
5173                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5174                 memcg->id.id = 0;
5175         }
5176 }
5177
5178 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5179                                                   unsigned int n)
5180 {
5181         refcount_add(n, &memcg->id.ref);
5182 }
5183
5184 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5185 {
5186         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5187                 mem_cgroup_id_remove(memcg);
5188
5189                 /* Memcg ID pins CSS */
5190                 css_put(&memcg->css);
5191         }
5192 }
5193
5194 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5195 {
5196         mem_cgroup_id_put_many(memcg, 1);
5197 }
5198
5199 /**
5200  * mem_cgroup_from_id - look up a memcg from a memcg id
5201  * @id: the memcg id to look up
5202  *
5203  * Caller must hold rcu_read_lock().
5204  */
5205 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5206 {
5207         WARN_ON_ONCE(!rcu_read_lock_held());
5208         return idr_find(&mem_cgroup_idr, id);
5209 }
5210
5211 #ifdef CONFIG_SHRINKER_DEBUG
5212 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5213 {
5214         struct cgroup *cgrp;
5215         struct cgroup_subsys_state *css;
5216         struct mem_cgroup *memcg;
5217
5218         cgrp = cgroup_get_from_id(ino);
5219         if (IS_ERR(cgrp))
5220                 return ERR_CAST(cgrp);
5221
5222         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5223         if (css)
5224                 memcg = container_of(css, struct mem_cgroup, css);
5225         else
5226                 memcg = ERR_PTR(-ENOENT);
5227
5228         cgroup_put(cgrp);
5229
5230         return memcg;
5231 }
5232 #endif
5233
5234 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5235 {
5236         struct mem_cgroup_per_node *pn;
5237
5238         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5239         if (!pn)
5240                 return 1;
5241
5242         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5243                                                    GFP_KERNEL_ACCOUNT);
5244         if (!pn->lruvec_stats_percpu) {
5245                 kfree(pn);
5246                 return 1;
5247         }
5248
5249         lruvec_init(&pn->lruvec);
5250         pn->memcg = memcg;
5251
5252         memcg->nodeinfo[node] = pn;
5253         return 0;
5254 }
5255
5256 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5257 {
5258         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5259
5260         if (!pn)
5261                 return;
5262
5263         free_percpu(pn->lruvec_stats_percpu);
5264         kfree(pn);
5265 }
5266
5267 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5268 {
5269         int node;
5270
5271         for_each_node(node)
5272                 free_mem_cgroup_per_node_info(memcg, node);
5273         kfree(memcg->vmstats);
5274         free_percpu(memcg->vmstats_percpu);
5275         kfree(memcg);
5276 }
5277
5278 static void mem_cgroup_free(struct mem_cgroup *memcg)
5279 {
5280         lru_gen_exit_memcg(memcg);
5281         memcg_wb_domain_exit(memcg);
5282         __mem_cgroup_free(memcg);
5283 }
5284
5285 static struct mem_cgroup *mem_cgroup_alloc(void)
5286 {
5287         struct mem_cgroup *memcg;
5288         int node;
5289         int __maybe_unused i;
5290         long error = -ENOMEM;
5291
5292         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5293         if (!memcg)
5294                 return ERR_PTR(error);
5295
5296         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5297                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5298         if (memcg->id.id < 0) {
5299                 error = memcg->id.id;
5300                 goto fail;
5301         }
5302
5303         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5304         if (!memcg->vmstats)
5305                 goto fail;
5306
5307         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5308                                                  GFP_KERNEL_ACCOUNT);
5309         if (!memcg->vmstats_percpu)
5310                 goto fail;
5311
5312         for_each_node(node)
5313                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5314                         goto fail;
5315
5316         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5317                 goto fail;
5318
5319         INIT_WORK(&memcg->high_work, high_work_func);
5320         INIT_LIST_HEAD(&memcg->oom_notify);
5321         mutex_init(&memcg->thresholds_lock);
5322         spin_lock_init(&memcg->move_lock);
5323         vmpressure_init(&memcg->vmpressure);
5324         INIT_LIST_HEAD(&memcg->event_list);
5325         spin_lock_init(&memcg->event_list_lock);
5326         memcg->socket_pressure = jiffies;
5327 #ifdef CONFIG_MEMCG_KMEM
5328         memcg->kmemcg_id = -1;
5329         INIT_LIST_HEAD(&memcg->objcg_list);
5330 #endif
5331 #ifdef CONFIG_CGROUP_WRITEBACK
5332         INIT_LIST_HEAD(&memcg->cgwb_list);
5333         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5334                 memcg->cgwb_frn[i].done =
5335                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5336 #endif
5337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5338         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5339         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5340         memcg->deferred_split_queue.split_queue_len = 0;
5341 #endif
5342         lru_gen_init_memcg(memcg);
5343         return memcg;
5344 fail:
5345         mem_cgroup_id_remove(memcg);
5346         __mem_cgroup_free(memcg);
5347         return ERR_PTR(error);
5348 }
5349
5350 static struct cgroup_subsys_state * __ref
5351 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5352 {
5353         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5354         struct mem_cgroup *memcg, *old_memcg;
5355
5356         old_memcg = set_active_memcg(parent);
5357         memcg = mem_cgroup_alloc();
5358         set_active_memcg(old_memcg);
5359         if (IS_ERR(memcg))
5360                 return ERR_CAST(memcg);
5361
5362         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5363         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5364 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5365         memcg->zswap_max = PAGE_COUNTER_MAX;
5366 #endif
5367         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5368         if (parent) {
5369                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5370                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5371
5372                 page_counter_init(&memcg->memory, &parent->memory);
5373                 page_counter_init(&memcg->swap, &parent->swap);
5374                 page_counter_init(&memcg->kmem, &parent->kmem);
5375                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5376         } else {
5377                 init_memcg_events();
5378                 page_counter_init(&memcg->memory, NULL);
5379                 page_counter_init(&memcg->swap, NULL);
5380                 page_counter_init(&memcg->kmem, NULL);
5381                 page_counter_init(&memcg->tcpmem, NULL);
5382
5383                 root_mem_cgroup = memcg;
5384                 return &memcg->css;
5385         }
5386
5387         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5388                 static_branch_inc(&memcg_sockets_enabled_key);
5389
5390 #if defined(CONFIG_MEMCG_KMEM)
5391         if (!cgroup_memory_nobpf)
5392                 static_branch_inc(&memcg_bpf_enabled_key);
5393 #endif
5394
5395         return &memcg->css;
5396 }
5397
5398 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5399 {
5400         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401
5402         if (memcg_online_kmem(memcg))
5403                 goto remove_id;
5404
5405         /*
5406          * A memcg must be visible for expand_shrinker_info()
5407          * by the time the maps are allocated. So, we allocate maps
5408          * here, when for_each_mem_cgroup() can't skip it.
5409          */
5410         if (alloc_shrinker_info(memcg))
5411                 goto offline_kmem;
5412
5413         if (unlikely(mem_cgroup_is_root(memcg)))
5414                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5415                                    FLUSH_TIME);
5416         lru_gen_online_memcg(memcg);
5417
5418         /* Online state pins memcg ID, memcg ID pins CSS */
5419         refcount_set(&memcg->id.ref, 1);
5420         css_get(css);
5421
5422         /*
5423          * Ensure mem_cgroup_from_id() works once we're fully online.
5424          *
5425          * We could do this earlier and require callers to filter with
5426          * css_tryget_online(). But right now there are no users that
5427          * need earlier access, and the workingset code relies on the
5428          * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5429          * publish it here at the end of onlining. This matches the
5430          * regular ID destruction during offlining.
5431          */
5432         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5433
5434         return 0;
5435 offline_kmem:
5436         memcg_offline_kmem(memcg);
5437 remove_id:
5438         mem_cgroup_id_remove(memcg);
5439         return -ENOMEM;
5440 }
5441
5442 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5443 {
5444         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5445         struct mem_cgroup_event *event, *tmp;
5446
5447         /*
5448          * Unregister events and notify userspace.
5449          * Notify userspace about cgroup removing only after rmdir of cgroup
5450          * directory to avoid race between userspace and kernelspace.
5451          */
5452         spin_lock_irq(&memcg->event_list_lock);
5453         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5454                 list_del_init(&event->list);
5455                 schedule_work(&event->remove);
5456         }
5457         spin_unlock_irq(&memcg->event_list_lock);
5458
5459         page_counter_set_min(&memcg->memory, 0);
5460         page_counter_set_low(&memcg->memory, 0);
5461
5462         memcg_offline_kmem(memcg);
5463         reparent_shrinker_deferred(memcg);
5464         wb_memcg_offline(memcg);
5465         lru_gen_offline_memcg(memcg);
5466
5467         drain_all_stock(memcg);
5468
5469         mem_cgroup_id_put(memcg);
5470 }
5471
5472 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5473 {
5474         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5475
5476         invalidate_reclaim_iterators(memcg);
5477         lru_gen_release_memcg(memcg);
5478 }
5479
5480 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5481 {
5482         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483         int __maybe_unused i;
5484
5485 #ifdef CONFIG_CGROUP_WRITEBACK
5486         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5487                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5488 #endif
5489         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5490                 static_branch_dec(&memcg_sockets_enabled_key);
5491
5492         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5493                 static_branch_dec(&memcg_sockets_enabled_key);
5494
5495 #if defined(CONFIG_MEMCG_KMEM)
5496         if (!cgroup_memory_nobpf)
5497                 static_branch_dec(&memcg_bpf_enabled_key);
5498 #endif
5499
5500         vmpressure_cleanup(&memcg->vmpressure);
5501         cancel_work_sync(&memcg->high_work);
5502         mem_cgroup_remove_from_trees(memcg);
5503         free_shrinker_info(memcg);
5504         mem_cgroup_free(memcg);
5505 }
5506
5507 /**
5508  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5509  * @css: the target css
5510  *
5511  * Reset the states of the mem_cgroup associated with @css.  This is
5512  * invoked when the userland requests disabling on the default hierarchy
5513  * but the memcg is pinned through dependency.  The memcg should stop
5514  * applying policies and should revert to the vanilla state as it may be
5515  * made visible again.
5516  *
5517  * The current implementation only resets the essential configurations.
5518  * This needs to be expanded to cover all the visible parts.
5519  */
5520 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5521 {
5522         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5523
5524         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5525         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5526         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5527         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5528         page_counter_set_min(&memcg->memory, 0);
5529         page_counter_set_low(&memcg->memory, 0);
5530         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5531         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5532         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5533         memcg_wb_domain_size_changed(memcg);
5534 }
5535
5536 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5537 {
5538         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5539         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5540         struct memcg_vmstats_percpu *statc;
5541         long delta, delta_cpu, v;
5542         int i, nid;
5543
5544         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5545
5546         for (i = 0; i < MEMCG_NR_STAT; i++) {
5547                 /*
5548                  * Collect the aggregated propagation counts of groups
5549                  * below us. We're in a per-cpu loop here and this is
5550                  * a global counter, so the first cycle will get them.
5551                  */
5552                 delta = memcg->vmstats->state_pending[i];
5553                 if (delta)
5554                         memcg->vmstats->state_pending[i] = 0;
5555
5556                 /* Add CPU changes on this level since the last flush */
5557                 delta_cpu = 0;
5558                 v = READ_ONCE(statc->state[i]);
5559                 if (v != statc->state_prev[i]) {
5560                         delta_cpu = v - statc->state_prev[i];
5561                         delta += delta_cpu;
5562                         statc->state_prev[i] = v;
5563                 }
5564
5565                 /* Aggregate counts on this level and propagate upwards */
5566                 if (delta_cpu)
5567                         memcg->vmstats->state_local[i] += delta_cpu;
5568
5569                 if (delta) {
5570                         memcg->vmstats->state[i] += delta;
5571                         if (parent)
5572                                 parent->vmstats->state_pending[i] += delta;
5573                 }
5574         }
5575
5576         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5577                 delta = memcg->vmstats->events_pending[i];
5578                 if (delta)
5579                         memcg->vmstats->events_pending[i] = 0;
5580
5581                 delta_cpu = 0;
5582                 v = READ_ONCE(statc->events[i]);
5583                 if (v != statc->events_prev[i]) {
5584                         delta_cpu = v - statc->events_prev[i];
5585                         delta += delta_cpu;
5586                         statc->events_prev[i] = v;
5587                 }
5588
5589                 if (delta_cpu)
5590                         memcg->vmstats->events_local[i] += delta_cpu;
5591
5592                 if (delta) {
5593                         memcg->vmstats->events[i] += delta;
5594                         if (parent)
5595                                 parent->vmstats->events_pending[i] += delta;
5596                 }
5597         }
5598
5599         for_each_node_state(nid, N_MEMORY) {
5600                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5601                 struct mem_cgroup_per_node *ppn = NULL;
5602                 struct lruvec_stats_percpu *lstatc;
5603
5604                 if (parent)
5605                         ppn = parent->nodeinfo[nid];
5606
5607                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5608
5609                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5610                         delta = pn->lruvec_stats.state_pending[i];
5611                         if (delta)
5612                                 pn->lruvec_stats.state_pending[i] = 0;
5613
5614                         delta_cpu = 0;
5615                         v = READ_ONCE(lstatc->state[i]);
5616                         if (v != lstatc->state_prev[i]) {
5617                                 delta_cpu = v - lstatc->state_prev[i];
5618                                 delta += delta_cpu;
5619                                 lstatc->state_prev[i] = v;
5620                         }
5621
5622                         if (delta_cpu)
5623                                 pn->lruvec_stats.state_local[i] += delta_cpu;
5624
5625                         if (delta) {
5626                                 pn->lruvec_stats.state[i] += delta;
5627                                 if (ppn)
5628                                         ppn->lruvec_stats.state_pending[i] += delta;
5629                         }
5630                 }
5631         }
5632 }
5633
5634 #ifdef CONFIG_MMU
5635 /* Handlers for move charge at task migration. */
5636 static int mem_cgroup_do_precharge(unsigned long count)
5637 {
5638         int ret;
5639
5640         /* Try a single bulk charge without reclaim first, kswapd may wake */
5641         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5642         if (!ret) {
5643                 mc.precharge += count;
5644                 return ret;
5645         }
5646
5647         /* Try charges one by one with reclaim, but do not retry */
5648         while (count--) {
5649                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5650                 if (ret)
5651                         return ret;
5652                 mc.precharge++;
5653                 cond_resched();
5654         }
5655         return 0;
5656 }
5657
5658 union mc_target {
5659         struct page     *page;
5660         swp_entry_t     ent;
5661 };
5662
5663 enum mc_target_type {
5664         MC_TARGET_NONE = 0,
5665         MC_TARGET_PAGE,
5666         MC_TARGET_SWAP,
5667         MC_TARGET_DEVICE,
5668 };
5669
5670 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5671                                                 unsigned long addr, pte_t ptent)
5672 {
5673         struct page *page = vm_normal_page(vma, addr, ptent);
5674
5675         if (!page)
5676                 return NULL;
5677         if (PageAnon(page)) {
5678                 if (!(mc.flags & MOVE_ANON))
5679                         return NULL;
5680         } else {
5681                 if (!(mc.flags & MOVE_FILE))
5682                         return NULL;
5683         }
5684         get_page(page);
5685
5686         return page;
5687 }
5688
5689 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5690 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5691                         pte_t ptent, swp_entry_t *entry)
5692 {
5693         struct page *page = NULL;
5694         swp_entry_t ent = pte_to_swp_entry(ptent);
5695
5696         if (!(mc.flags & MOVE_ANON))
5697                 return NULL;
5698
5699         /*
5700          * Handle device private pages that are not accessible by the CPU, but
5701          * stored as special swap entries in the page table.
5702          */
5703         if (is_device_private_entry(ent)) {
5704                 page = pfn_swap_entry_to_page(ent);
5705                 if (!get_page_unless_zero(page))
5706                         return NULL;
5707                 return page;
5708         }
5709
5710         if (non_swap_entry(ent))
5711                 return NULL;
5712
5713         /*
5714          * Because swap_cache_get_folio() updates some statistics counter,
5715          * we call find_get_page() with swapper_space directly.
5716          */
5717         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5718         entry->val = ent.val;
5719
5720         return page;
5721 }
5722 #else
5723 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5724                         pte_t ptent, swp_entry_t *entry)
5725 {
5726         return NULL;
5727 }
5728 #endif
5729
5730 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5731                         unsigned long addr, pte_t ptent)
5732 {
5733         unsigned long index;
5734         struct folio *folio;
5735
5736         if (!vma->vm_file) /* anonymous vma */
5737                 return NULL;
5738         if (!(mc.flags & MOVE_FILE))
5739                 return NULL;
5740
5741         /* folio is moved even if it's not RSS of this task(page-faulted). */
5742         /* shmem/tmpfs may report page out on swap: account for that too. */
5743         index = linear_page_index(vma, addr);
5744         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5745         if (IS_ERR(folio))
5746                 return NULL;
5747         return folio_file_page(folio, index);
5748 }
5749
5750 /**
5751  * mem_cgroup_move_account - move account of the page
5752  * @page: the page
5753  * @compound: charge the page as compound or small page
5754  * @from: mem_cgroup which the page is moved from.
5755  * @to: mem_cgroup which the page is moved to. @from != @to.
5756  *
5757  * The page must be locked and not on the LRU.
5758  *
5759  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5760  * from old cgroup.
5761  */
5762 static int mem_cgroup_move_account(struct page *page,
5763                                    bool compound,
5764                                    struct mem_cgroup *from,
5765                                    struct mem_cgroup *to)
5766 {
5767         struct folio *folio = page_folio(page);
5768         struct lruvec *from_vec, *to_vec;
5769         struct pglist_data *pgdat;
5770         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5771         int nid, ret;
5772
5773         VM_BUG_ON(from == to);
5774         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5775         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5776         VM_BUG_ON(compound && !folio_test_large(folio));
5777
5778         ret = -EINVAL;
5779         if (folio_memcg(folio) != from)
5780                 goto out;
5781
5782         pgdat = folio_pgdat(folio);
5783         from_vec = mem_cgroup_lruvec(from, pgdat);
5784         to_vec = mem_cgroup_lruvec(to, pgdat);
5785
5786         folio_memcg_lock(folio);
5787
5788         if (folio_test_anon(folio)) {
5789                 if (folio_mapped(folio)) {
5790                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5791                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5792                         if (folio_test_pmd_mappable(folio)) {
5793                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5794                                                    -nr_pages);
5795                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5796                                                    nr_pages);
5797                         }
5798                 }
5799         } else {
5800                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5801                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5802
5803                 if (folio_test_swapbacked(folio)) {
5804                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5805                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5806                 }
5807
5808                 if (folio_mapped(folio)) {
5809                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5810                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5811                 }
5812
5813                 if (folio_test_dirty(folio)) {
5814                         struct address_space *mapping = folio_mapping(folio);
5815
5816                         if (mapping_can_writeback(mapping)) {
5817                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5818                                                    -nr_pages);
5819                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5820                                                    nr_pages);
5821                         }
5822                 }
5823         }
5824
5825 #ifdef CONFIG_SWAP
5826         if (folio_test_swapcache(folio)) {
5827                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5828                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5829         }
5830 #endif
5831         if (folio_test_writeback(folio)) {
5832                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5833                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5834         }
5835
5836         /*
5837          * All state has been migrated, let's switch to the new memcg.
5838          *
5839          * It is safe to change page's memcg here because the page
5840          * is referenced, charged, isolated, and locked: we can't race
5841          * with (un)charging, migration, LRU putback, or anything else
5842          * that would rely on a stable page's memory cgroup.
5843          *
5844          * Note that folio_memcg_lock is a memcg lock, not a page lock,
5845          * to save space. As soon as we switch page's memory cgroup to a
5846          * new memcg that isn't locked, the above state can change
5847          * concurrently again. Make sure we're truly done with it.
5848          */
5849         smp_mb();
5850
5851         css_get(&to->css);
5852         css_put(&from->css);
5853
5854         folio->memcg_data = (unsigned long)to;
5855
5856         __folio_memcg_unlock(from);
5857
5858         ret = 0;
5859         nid = folio_nid(folio);
5860
5861         local_irq_disable();
5862         mem_cgroup_charge_statistics(to, nr_pages);
5863         memcg_check_events(to, nid);
5864         mem_cgroup_charge_statistics(from, -nr_pages);
5865         memcg_check_events(from, nid);
5866         local_irq_enable();
5867 out:
5868         return ret;
5869 }
5870
5871 /**
5872  * get_mctgt_type - get target type of moving charge
5873  * @vma: the vma the pte to be checked belongs
5874  * @addr: the address corresponding to the pte to be checked
5875  * @ptent: the pte to be checked
5876  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5877  *
5878  * Context: Called with pte lock held.
5879  * Return:
5880  * * MC_TARGET_NONE - If the pte is not a target for move charge.
5881  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5882  *   move charge. If @target is not NULL, the page is stored in target->page
5883  *   with extra refcnt taken (Caller should release it).
5884  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5885  *   target for charge migration.  If @target is not NULL, the entry is
5886  *   stored in target->ent.
5887  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5888  *   thus not on the lru.  For now such page is charged like a regular page
5889  *   would be as it is just special memory taking the place of a regular page.
5890  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
5891  */
5892 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5893                 unsigned long addr, pte_t ptent, union mc_target *target)
5894 {
5895         struct page *page = NULL;
5896         enum mc_target_type ret = MC_TARGET_NONE;
5897         swp_entry_t ent = { .val = 0 };
5898
5899         if (pte_present(ptent))
5900                 page = mc_handle_present_pte(vma, addr, ptent);
5901         else if (pte_none_mostly(ptent))
5902                 /*
5903                  * PTE markers should be treated as a none pte here, separated
5904                  * from other swap handling below.
5905                  */
5906                 page = mc_handle_file_pte(vma, addr, ptent);
5907         else if (is_swap_pte(ptent))
5908                 page = mc_handle_swap_pte(vma, ptent, &ent);
5909
5910         if (target && page) {
5911                 if (!trylock_page(page)) {
5912                         put_page(page);
5913                         return ret;
5914                 }
5915                 /*
5916                  * page_mapped() must be stable during the move. This
5917                  * pte is locked, so if it's present, the page cannot
5918                  * become unmapped. If it isn't, we have only partial
5919                  * control over the mapped state: the page lock will
5920                  * prevent new faults against pagecache and swapcache,
5921                  * so an unmapped page cannot become mapped. However,
5922                  * if the page is already mapped elsewhere, it can
5923                  * unmap, and there is nothing we can do about it.
5924                  * Alas, skip moving the page in this case.
5925                  */
5926                 if (!pte_present(ptent) && page_mapped(page)) {
5927                         unlock_page(page);
5928                         put_page(page);
5929                         return ret;
5930                 }
5931         }
5932
5933         if (!page && !ent.val)
5934                 return ret;
5935         if (page) {
5936                 /*
5937                  * Do only loose check w/o serialization.
5938                  * mem_cgroup_move_account() checks the page is valid or
5939                  * not under LRU exclusion.
5940                  */
5941                 if (page_memcg(page) == mc.from) {
5942                         ret = MC_TARGET_PAGE;
5943                         if (is_device_private_page(page) ||
5944                             is_device_coherent_page(page))
5945                                 ret = MC_TARGET_DEVICE;
5946                         if (target)
5947                                 target->page = page;
5948                 }
5949                 if (!ret || !target) {
5950                         if (target)
5951                                 unlock_page(page);
5952                         put_page(page);
5953                 }
5954         }
5955         /*
5956          * There is a swap entry and a page doesn't exist or isn't charged.
5957          * But we cannot move a tail-page in a THP.
5958          */
5959         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5960             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5961                 ret = MC_TARGET_SWAP;
5962                 if (target)
5963                         target->ent = ent;
5964         }
5965         return ret;
5966 }
5967
5968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5969 /*
5970  * We don't consider PMD mapped swapping or file mapped pages because THP does
5971  * not support them for now.
5972  * Caller should make sure that pmd_trans_huge(pmd) is true.
5973  */
5974 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5975                 unsigned long addr, pmd_t pmd, union mc_target *target)
5976 {
5977         struct page *page = NULL;
5978         enum mc_target_type ret = MC_TARGET_NONE;
5979
5980         if (unlikely(is_swap_pmd(pmd))) {
5981                 VM_BUG_ON(thp_migration_supported() &&
5982                                   !is_pmd_migration_entry(pmd));
5983                 return ret;
5984         }
5985         page = pmd_page(pmd);
5986         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5987         if (!(mc.flags & MOVE_ANON))
5988                 return ret;
5989         if (page_memcg(page) == mc.from) {
5990                 ret = MC_TARGET_PAGE;
5991                 if (target) {
5992                         get_page(page);
5993                         if (!trylock_page(page)) {
5994                                 put_page(page);
5995                                 return MC_TARGET_NONE;
5996                         }
5997                         target->page = page;
5998                 }
5999         }
6000         return ret;
6001 }
6002 #else
6003 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6004                 unsigned long addr, pmd_t pmd, union mc_target *target)
6005 {
6006         return MC_TARGET_NONE;
6007 }
6008 #endif
6009
6010 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6011                                         unsigned long addr, unsigned long end,
6012                                         struct mm_walk *walk)
6013 {
6014         struct vm_area_struct *vma = walk->vma;
6015         pte_t *pte;
6016         spinlock_t *ptl;
6017
6018         ptl = pmd_trans_huge_lock(pmd, vma);
6019         if (ptl) {
6020                 /*
6021                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6022                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6023                  * this might change.
6024                  */
6025                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6026                         mc.precharge += HPAGE_PMD_NR;
6027                 spin_unlock(ptl);
6028                 return 0;
6029         }
6030
6031         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6032         if (!pte)
6033                 return 0;
6034         for (; addr != end; pte++, addr += PAGE_SIZE)
6035                 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6036                         mc.precharge++; /* increment precharge temporarily */
6037         pte_unmap_unlock(pte - 1, ptl);
6038         cond_resched();
6039
6040         return 0;
6041 }
6042
6043 static const struct mm_walk_ops precharge_walk_ops = {
6044         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6045         .walk_lock      = PGWALK_RDLOCK,
6046 };
6047
6048 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6049 {
6050         unsigned long precharge;
6051
6052         mmap_read_lock(mm);
6053         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6054         mmap_read_unlock(mm);
6055
6056         precharge = mc.precharge;
6057         mc.precharge = 0;
6058
6059         return precharge;
6060 }
6061
6062 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6063 {
6064         unsigned long precharge = mem_cgroup_count_precharge(mm);
6065
6066         VM_BUG_ON(mc.moving_task);
6067         mc.moving_task = current;
6068         return mem_cgroup_do_precharge(precharge);
6069 }
6070
6071 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6072 static void __mem_cgroup_clear_mc(void)
6073 {
6074         struct mem_cgroup *from = mc.from;
6075         struct mem_cgroup *to = mc.to;
6076
6077         /* we must uncharge all the leftover precharges from mc.to */
6078         if (mc.precharge) {
6079                 cancel_charge(mc.to, mc.precharge);
6080                 mc.precharge = 0;
6081         }
6082         /*
6083          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6084          * we must uncharge here.
6085          */
6086         if (mc.moved_charge) {
6087                 cancel_charge(mc.from, mc.moved_charge);
6088                 mc.moved_charge = 0;
6089         }
6090         /* we must fixup refcnts and charges */
6091         if (mc.moved_swap) {
6092                 /* uncharge swap account from the old cgroup */
6093                 if (!mem_cgroup_is_root(mc.from))
6094                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6095
6096                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6097
6098                 /*
6099                  * we charged both to->memory and to->memsw, so we
6100                  * should uncharge to->memory.
6101                  */
6102                 if (!mem_cgroup_is_root(mc.to))
6103                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6104
6105                 mc.moved_swap = 0;
6106         }
6107         memcg_oom_recover(from);
6108         memcg_oom_recover(to);
6109         wake_up_all(&mc.waitq);
6110 }
6111
6112 static void mem_cgroup_clear_mc(void)
6113 {
6114         struct mm_struct *mm = mc.mm;
6115
6116         /*
6117          * we must clear moving_task before waking up waiters at the end of
6118          * task migration.
6119          */
6120         mc.moving_task = NULL;
6121         __mem_cgroup_clear_mc();
6122         spin_lock(&mc.lock);
6123         mc.from = NULL;
6124         mc.to = NULL;
6125         mc.mm = NULL;
6126         spin_unlock(&mc.lock);
6127
6128         mmput(mm);
6129 }
6130
6131 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6132 {
6133         struct cgroup_subsys_state *css;
6134         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6135         struct mem_cgroup *from;
6136         struct task_struct *leader, *p;
6137         struct mm_struct *mm;
6138         unsigned long move_flags;
6139         int ret = 0;
6140
6141         /* charge immigration isn't supported on the default hierarchy */
6142         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6143                 return 0;
6144
6145         /*
6146          * Multi-process migrations only happen on the default hierarchy
6147          * where charge immigration is not used.  Perform charge
6148          * immigration if @tset contains a leader and whine if there are
6149          * multiple.
6150          */
6151         p = NULL;
6152         cgroup_taskset_for_each_leader(leader, css, tset) {
6153                 WARN_ON_ONCE(p);
6154                 p = leader;
6155                 memcg = mem_cgroup_from_css(css);
6156         }
6157         if (!p)
6158                 return 0;
6159
6160         /*
6161          * We are now committed to this value whatever it is. Changes in this
6162          * tunable will only affect upcoming migrations, not the current one.
6163          * So we need to save it, and keep it going.
6164          */
6165         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6166         if (!move_flags)
6167                 return 0;
6168
6169         from = mem_cgroup_from_task(p);
6170
6171         VM_BUG_ON(from == memcg);
6172
6173         mm = get_task_mm(p);
6174         if (!mm)
6175                 return 0;
6176         /* We move charges only when we move a owner of the mm */
6177         if (mm->owner == p) {
6178                 VM_BUG_ON(mc.from);
6179                 VM_BUG_ON(mc.to);
6180                 VM_BUG_ON(mc.precharge);
6181                 VM_BUG_ON(mc.moved_charge);
6182                 VM_BUG_ON(mc.moved_swap);
6183
6184                 spin_lock(&mc.lock);
6185                 mc.mm = mm;
6186                 mc.from = from;
6187                 mc.to = memcg;
6188                 mc.flags = move_flags;
6189                 spin_unlock(&mc.lock);
6190                 /* We set mc.moving_task later */
6191
6192                 ret = mem_cgroup_precharge_mc(mm);
6193                 if (ret)
6194                         mem_cgroup_clear_mc();
6195         } else {
6196                 mmput(mm);
6197         }
6198         return ret;
6199 }
6200
6201 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6202 {
6203         if (mc.to)
6204                 mem_cgroup_clear_mc();
6205 }
6206
6207 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6208                                 unsigned long addr, unsigned long end,
6209                                 struct mm_walk *walk)
6210 {
6211         int ret = 0;
6212         struct vm_area_struct *vma = walk->vma;
6213         pte_t *pte;
6214         spinlock_t *ptl;
6215         enum mc_target_type target_type;
6216         union mc_target target;
6217         struct page *page;
6218
6219         ptl = pmd_trans_huge_lock(pmd, vma);
6220         if (ptl) {
6221                 if (mc.precharge < HPAGE_PMD_NR) {
6222                         spin_unlock(ptl);
6223                         return 0;
6224                 }
6225                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6226                 if (target_type == MC_TARGET_PAGE) {
6227                         page = target.page;
6228                         if (isolate_lru_page(page)) {
6229                                 if (!mem_cgroup_move_account(page, true,
6230                                                              mc.from, mc.to)) {
6231                                         mc.precharge -= HPAGE_PMD_NR;
6232                                         mc.moved_charge += HPAGE_PMD_NR;
6233                                 }
6234                                 putback_lru_page(page);
6235                         }
6236                         unlock_page(page);
6237                         put_page(page);
6238                 } else if (target_type == MC_TARGET_DEVICE) {
6239                         page = target.page;
6240                         if (!mem_cgroup_move_account(page, true,
6241                                                      mc.from, mc.to)) {
6242                                 mc.precharge -= HPAGE_PMD_NR;
6243                                 mc.moved_charge += HPAGE_PMD_NR;
6244                         }
6245                         unlock_page(page);
6246                         put_page(page);
6247                 }
6248                 spin_unlock(ptl);
6249                 return 0;
6250         }
6251
6252 retry:
6253         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6254         if (!pte)
6255                 return 0;
6256         for (; addr != end; addr += PAGE_SIZE) {
6257                 pte_t ptent = ptep_get(pte++);
6258                 bool device = false;
6259                 swp_entry_t ent;
6260
6261                 if (!mc.precharge)
6262                         break;
6263
6264                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6265                 case MC_TARGET_DEVICE:
6266                         device = true;
6267                         fallthrough;
6268                 case MC_TARGET_PAGE:
6269                         page = target.page;
6270                         /*
6271                          * We can have a part of the split pmd here. Moving it
6272                          * can be done but it would be too convoluted so simply
6273                          * ignore such a partial THP and keep it in original
6274                          * memcg. There should be somebody mapping the head.
6275                          */
6276                         if (PageTransCompound(page))
6277                                 goto put;
6278                         if (!device && !isolate_lru_page(page))
6279                                 goto put;
6280                         if (!mem_cgroup_move_account(page, false,
6281                                                 mc.from, mc.to)) {
6282                                 mc.precharge--;
6283                                 /* we uncharge from mc.from later. */
6284                                 mc.moved_charge++;
6285                         }
6286                         if (!device)
6287                                 putback_lru_page(page);
6288 put:                    /* get_mctgt_type() gets & locks the page */
6289                         unlock_page(page);
6290                         put_page(page);
6291                         break;
6292                 case MC_TARGET_SWAP:
6293                         ent = target.ent;
6294                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6295                                 mc.precharge--;
6296                                 mem_cgroup_id_get_many(mc.to, 1);
6297                                 /* we fixup other refcnts and charges later. */
6298                                 mc.moved_swap++;
6299                         }
6300                         break;
6301                 default:
6302                         break;
6303                 }
6304         }
6305         pte_unmap_unlock(pte - 1, ptl);
6306         cond_resched();
6307
6308         if (addr != end) {
6309                 /*
6310                  * We have consumed all precharges we got in can_attach().
6311                  * We try charge one by one, but don't do any additional
6312                  * charges to mc.to if we have failed in charge once in attach()
6313                  * phase.
6314                  */
6315                 ret = mem_cgroup_do_precharge(1);
6316                 if (!ret)
6317                         goto retry;
6318         }
6319
6320         return ret;
6321 }
6322
6323 static const struct mm_walk_ops charge_walk_ops = {
6324         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6325         .walk_lock      = PGWALK_RDLOCK,
6326 };
6327
6328 static void mem_cgroup_move_charge(void)
6329 {
6330         lru_add_drain_all();
6331         /*
6332          * Signal folio_memcg_lock() to take the memcg's move_lock
6333          * while we're moving its pages to another memcg. Then wait
6334          * for already started RCU-only updates to finish.
6335          */
6336         atomic_inc(&mc.from->moving_account);
6337         synchronize_rcu();
6338 retry:
6339         if (unlikely(!mmap_read_trylock(mc.mm))) {
6340                 /*
6341                  * Someone who are holding the mmap_lock might be waiting in
6342                  * waitq. So we cancel all extra charges, wake up all waiters,
6343                  * and retry. Because we cancel precharges, we might not be able
6344                  * to move enough charges, but moving charge is a best-effort
6345                  * feature anyway, so it wouldn't be a big problem.
6346                  */
6347                 __mem_cgroup_clear_mc();
6348                 cond_resched();
6349                 goto retry;
6350         }
6351         /*
6352          * When we have consumed all precharges and failed in doing
6353          * additional charge, the page walk just aborts.
6354          */
6355         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6356         mmap_read_unlock(mc.mm);
6357         atomic_dec(&mc.from->moving_account);
6358 }
6359
6360 static void mem_cgroup_move_task(void)
6361 {
6362         if (mc.to) {
6363                 mem_cgroup_move_charge();
6364                 mem_cgroup_clear_mc();
6365         }
6366 }
6367 #else   /* !CONFIG_MMU */
6368 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6369 {
6370         return 0;
6371 }
6372 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6373 {
6374 }
6375 static void mem_cgroup_move_task(void)
6376 {
6377 }
6378 #endif
6379
6380 #ifdef CONFIG_LRU_GEN
6381 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6382 {
6383         struct task_struct *task;
6384         struct cgroup_subsys_state *css;
6385
6386         /* find the first leader if there is any */
6387         cgroup_taskset_for_each_leader(task, css, tset)
6388                 break;
6389
6390         if (!task)
6391                 return;
6392
6393         task_lock(task);
6394         if (task->mm && READ_ONCE(task->mm->owner) == task)
6395                 lru_gen_migrate_mm(task->mm);
6396         task_unlock(task);
6397 }
6398 #else
6399 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6400 {
6401 }
6402 #endif /* CONFIG_LRU_GEN */
6403
6404 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6405 {
6406         if (value == PAGE_COUNTER_MAX)
6407                 seq_puts(m, "max\n");
6408         else
6409                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6410
6411         return 0;
6412 }
6413
6414 static u64 memory_current_read(struct cgroup_subsys_state *css,
6415                                struct cftype *cft)
6416 {
6417         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6418
6419         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6420 }
6421
6422 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6423                             struct cftype *cft)
6424 {
6425         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6426
6427         return (u64)memcg->memory.watermark * PAGE_SIZE;
6428 }
6429
6430 static int memory_min_show(struct seq_file *m, void *v)
6431 {
6432         return seq_puts_memcg_tunable(m,
6433                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6434 }
6435
6436 static ssize_t memory_min_write(struct kernfs_open_file *of,
6437                                 char *buf, size_t nbytes, loff_t off)
6438 {
6439         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6440         unsigned long min;
6441         int err;
6442
6443         buf = strstrip(buf);
6444         err = page_counter_memparse(buf, "max", &min);
6445         if (err)
6446                 return err;
6447
6448         page_counter_set_min(&memcg->memory, min);
6449
6450         return nbytes;
6451 }
6452
6453 static int memory_low_show(struct seq_file *m, void *v)
6454 {
6455         return seq_puts_memcg_tunable(m,
6456                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6457 }
6458
6459 static ssize_t memory_low_write(struct kernfs_open_file *of,
6460                                 char *buf, size_t nbytes, loff_t off)
6461 {
6462         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6463         unsigned long low;
6464         int err;
6465
6466         buf = strstrip(buf);
6467         err = page_counter_memparse(buf, "max", &low);
6468         if (err)
6469                 return err;
6470
6471         page_counter_set_low(&memcg->memory, low);
6472
6473         return nbytes;
6474 }
6475
6476 static int memory_high_show(struct seq_file *m, void *v)
6477 {
6478         return seq_puts_memcg_tunable(m,
6479                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6480 }
6481
6482 static ssize_t memory_high_write(struct kernfs_open_file *of,
6483                                  char *buf, size_t nbytes, loff_t off)
6484 {
6485         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6487         bool drained = false;
6488         unsigned long high;
6489         int err;
6490
6491         buf = strstrip(buf);
6492         err = page_counter_memparse(buf, "max", &high);
6493         if (err)
6494                 return err;
6495
6496         page_counter_set_high(&memcg->memory, high);
6497
6498         for (;;) {
6499                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6500                 unsigned long reclaimed;
6501
6502                 if (nr_pages <= high)
6503                         break;
6504
6505                 if (signal_pending(current))
6506                         break;
6507
6508                 if (!drained) {
6509                         drain_all_stock(memcg);
6510                         drained = true;
6511                         continue;
6512                 }
6513
6514                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6515                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6516
6517                 if (!reclaimed && !nr_retries--)
6518                         break;
6519         }
6520
6521         memcg_wb_domain_size_changed(memcg);
6522         return nbytes;
6523 }
6524
6525 static int memory_max_show(struct seq_file *m, void *v)
6526 {
6527         return seq_puts_memcg_tunable(m,
6528                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6529 }
6530
6531 static ssize_t memory_max_write(struct kernfs_open_file *of,
6532                                 char *buf, size_t nbytes, loff_t off)
6533 {
6534         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6535         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6536         bool drained = false;
6537         unsigned long max;
6538         int err;
6539
6540         buf = strstrip(buf);
6541         err = page_counter_memparse(buf, "max", &max);
6542         if (err)
6543                 return err;
6544
6545         xchg(&memcg->memory.max, max);
6546
6547         for (;;) {
6548                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6549
6550                 if (nr_pages <= max)
6551                         break;
6552
6553                 if (signal_pending(current))
6554                         break;
6555
6556                 if (!drained) {
6557                         drain_all_stock(memcg);
6558                         drained = true;
6559                         continue;
6560                 }
6561
6562                 if (nr_reclaims) {
6563                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6564                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6565                                 nr_reclaims--;
6566                         continue;
6567                 }
6568
6569                 memcg_memory_event(memcg, MEMCG_OOM);
6570                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6571                         break;
6572         }
6573
6574         memcg_wb_domain_size_changed(memcg);
6575         return nbytes;
6576 }
6577
6578 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6579 {
6580         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6581         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6582         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6583         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6584         seq_printf(m, "oom_kill %lu\n",
6585                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6586         seq_printf(m, "oom_group_kill %lu\n",
6587                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6588 }
6589
6590 static int memory_events_show(struct seq_file *m, void *v)
6591 {
6592         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6593
6594         __memory_events_show(m, memcg->memory_events);
6595         return 0;
6596 }
6597
6598 static int memory_events_local_show(struct seq_file *m, void *v)
6599 {
6600         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6601
6602         __memory_events_show(m, memcg->memory_events_local);
6603         return 0;
6604 }
6605
6606 static int memory_stat_show(struct seq_file *m, void *v)
6607 {
6608         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6609         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6610         struct seq_buf s;
6611
6612         if (!buf)
6613                 return -ENOMEM;
6614         seq_buf_init(&s, buf, PAGE_SIZE);
6615         memory_stat_format(memcg, &s);
6616         seq_puts(m, buf);
6617         kfree(buf);
6618         return 0;
6619 }
6620
6621 #ifdef CONFIG_NUMA
6622 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6623                                                      int item)
6624 {
6625         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6626 }
6627
6628 static int memory_numa_stat_show(struct seq_file *m, void *v)
6629 {
6630         int i;
6631         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6632
6633         mem_cgroup_flush_stats();
6634
6635         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6636                 int nid;
6637
6638                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6639                         continue;
6640
6641                 seq_printf(m, "%s", memory_stats[i].name);
6642                 for_each_node_state(nid, N_MEMORY) {
6643                         u64 size;
6644                         struct lruvec *lruvec;
6645
6646                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6647                         size = lruvec_page_state_output(lruvec,
6648                                                         memory_stats[i].idx);
6649                         seq_printf(m, " N%d=%llu", nid, size);
6650                 }
6651                 seq_putc(m, '\n');
6652         }
6653
6654         return 0;
6655 }
6656 #endif
6657
6658 static int memory_oom_group_show(struct seq_file *m, void *v)
6659 {
6660         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6661
6662         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6663
6664         return 0;
6665 }
6666
6667 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6668                                       char *buf, size_t nbytes, loff_t off)
6669 {
6670         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6671         int ret, oom_group;
6672
6673         buf = strstrip(buf);
6674         if (!buf)
6675                 return -EINVAL;
6676
6677         ret = kstrtoint(buf, 0, &oom_group);
6678         if (ret)
6679                 return ret;
6680
6681         if (oom_group != 0 && oom_group != 1)
6682                 return -EINVAL;
6683
6684         WRITE_ONCE(memcg->oom_group, oom_group);
6685
6686         return nbytes;
6687 }
6688
6689 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6690                               size_t nbytes, loff_t off)
6691 {
6692         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6693         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6694         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6695         unsigned int reclaim_options;
6696         int err;
6697
6698         buf = strstrip(buf);
6699         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6700         if (err)
6701                 return err;
6702
6703         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6704         while (nr_reclaimed < nr_to_reclaim) {
6705                 unsigned long reclaimed;
6706
6707                 if (signal_pending(current))
6708                         return -EINTR;
6709
6710                 /*
6711                  * This is the final attempt, drain percpu lru caches in the
6712                  * hope of introducing more evictable pages for
6713                  * try_to_free_mem_cgroup_pages().
6714                  */
6715                 if (!nr_retries)
6716                         lru_add_drain_all();
6717
6718                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6719                                         min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6720                                         GFP_KERNEL, reclaim_options);
6721
6722                 if (!reclaimed && !nr_retries--)
6723                         return -EAGAIN;
6724
6725                 nr_reclaimed += reclaimed;
6726         }
6727
6728         return nbytes;
6729 }
6730
6731 static struct cftype memory_files[] = {
6732         {
6733                 .name = "current",
6734                 .flags = CFTYPE_NOT_ON_ROOT,
6735                 .read_u64 = memory_current_read,
6736         },
6737         {
6738                 .name = "peak",
6739                 .flags = CFTYPE_NOT_ON_ROOT,
6740                 .read_u64 = memory_peak_read,
6741         },
6742         {
6743                 .name = "min",
6744                 .flags = CFTYPE_NOT_ON_ROOT,
6745                 .seq_show = memory_min_show,
6746                 .write = memory_min_write,
6747         },
6748         {
6749                 .name = "low",
6750                 .flags = CFTYPE_NOT_ON_ROOT,
6751                 .seq_show = memory_low_show,
6752                 .write = memory_low_write,
6753         },
6754         {
6755                 .name = "high",
6756                 .flags = CFTYPE_NOT_ON_ROOT,
6757                 .seq_show = memory_high_show,
6758                 .write = memory_high_write,
6759         },
6760         {
6761                 .name = "max",
6762                 .flags = CFTYPE_NOT_ON_ROOT,
6763                 .seq_show = memory_max_show,
6764                 .write = memory_max_write,
6765         },
6766         {
6767                 .name = "events",
6768                 .flags = CFTYPE_NOT_ON_ROOT,
6769                 .file_offset = offsetof(struct mem_cgroup, events_file),
6770                 .seq_show = memory_events_show,
6771         },
6772         {
6773                 .name = "events.local",
6774                 .flags = CFTYPE_NOT_ON_ROOT,
6775                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6776                 .seq_show = memory_events_local_show,
6777         },
6778         {
6779                 .name = "stat",
6780                 .seq_show = memory_stat_show,
6781         },
6782 #ifdef CONFIG_NUMA
6783         {
6784                 .name = "numa_stat",
6785                 .seq_show = memory_numa_stat_show,
6786         },
6787 #endif
6788         {
6789                 .name = "oom.group",
6790                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6791                 .seq_show = memory_oom_group_show,
6792                 .write = memory_oom_group_write,
6793         },
6794         {
6795                 .name = "reclaim",
6796                 .flags = CFTYPE_NS_DELEGATABLE,
6797                 .write = memory_reclaim,
6798         },
6799         { }     /* terminate */
6800 };
6801
6802 struct cgroup_subsys memory_cgrp_subsys = {
6803         .css_alloc = mem_cgroup_css_alloc,
6804         .css_online = mem_cgroup_css_online,
6805         .css_offline = mem_cgroup_css_offline,
6806         .css_released = mem_cgroup_css_released,
6807         .css_free = mem_cgroup_css_free,
6808         .css_reset = mem_cgroup_css_reset,
6809         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6810         .can_attach = mem_cgroup_can_attach,
6811         .attach = mem_cgroup_attach,
6812         .cancel_attach = mem_cgroup_cancel_attach,
6813         .post_attach = mem_cgroup_move_task,
6814         .dfl_cftypes = memory_files,
6815         .legacy_cftypes = mem_cgroup_legacy_files,
6816         .early_init = 0,
6817 };
6818
6819 /*
6820  * This function calculates an individual cgroup's effective
6821  * protection which is derived from its own memory.min/low, its
6822  * parent's and siblings' settings, as well as the actual memory
6823  * distribution in the tree.
6824  *
6825  * The following rules apply to the effective protection values:
6826  *
6827  * 1. At the first level of reclaim, effective protection is equal to
6828  *    the declared protection in memory.min and memory.low.
6829  *
6830  * 2. To enable safe delegation of the protection configuration, at
6831  *    subsequent levels the effective protection is capped to the
6832  *    parent's effective protection.
6833  *
6834  * 3. To make complex and dynamic subtrees easier to configure, the
6835  *    user is allowed to overcommit the declared protection at a given
6836  *    level. If that is the case, the parent's effective protection is
6837  *    distributed to the children in proportion to how much protection
6838  *    they have declared and how much of it they are utilizing.
6839  *
6840  *    This makes distribution proportional, but also work-conserving:
6841  *    if one cgroup claims much more protection than it uses memory,
6842  *    the unused remainder is available to its siblings.
6843  *
6844  * 4. Conversely, when the declared protection is undercommitted at a
6845  *    given level, the distribution of the larger parental protection
6846  *    budget is NOT proportional. A cgroup's protection from a sibling
6847  *    is capped to its own memory.min/low setting.
6848  *
6849  * 5. However, to allow protecting recursive subtrees from each other
6850  *    without having to declare each individual cgroup's fixed share
6851  *    of the ancestor's claim to protection, any unutilized -
6852  *    "floating" - protection from up the tree is distributed in
6853  *    proportion to each cgroup's *usage*. This makes the protection
6854  *    neutral wrt sibling cgroups and lets them compete freely over
6855  *    the shared parental protection budget, but it protects the
6856  *    subtree as a whole from neighboring subtrees.
6857  *
6858  * Note that 4. and 5. are not in conflict: 4. is about protecting
6859  * against immediate siblings whereas 5. is about protecting against
6860  * neighboring subtrees.
6861  */
6862 static unsigned long effective_protection(unsigned long usage,
6863                                           unsigned long parent_usage,
6864                                           unsigned long setting,
6865                                           unsigned long parent_effective,
6866                                           unsigned long siblings_protected)
6867 {
6868         unsigned long protected;
6869         unsigned long ep;
6870
6871         protected = min(usage, setting);
6872         /*
6873          * If all cgroups at this level combined claim and use more
6874          * protection than what the parent affords them, distribute
6875          * shares in proportion to utilization.
6876          *
6877          * We are using actual utilization rather than the statically
6878          * claimed protection in order to be work-conserving: claimed
6879          * but unused protection is available to siblings that would
6880          * otherwise get a smaller chunk than what they claimed.
6881          */
6882         if (siblings_protected > parent_effective)
6883                 return protected * parent_effective / siblings_protected;
6884
6885         /*
6886          * Ok, utilized protection of all children is within what the
6887          * parent affords them, so we know whatever this child claims
6888          * and utilizes is effectively protected.
6889          *
6890          * If there is unprotected usage beyond this value, reclaim
6891          * will apply pressure in proportion to that amount.
6892          *
6893          * If there is unutilized protection, the cgroup will be fully
6894          * shielded from reclaim, but we do return a smaller value for
6895          * protection than what the group could enjoy in theory. This
6896          * is okay. With the overcommit distribution above, effective
6897          * protection is always dependent on how memory is actually
6898          * consumed among the siblings anyway.
6899          */
6900         ep = protected;
6901
6902         /*
6903          * If the children aren't claiming (all of) the protection
6904          * afforded to them by the parent, distribute the remainder in
6905          * proportion to the (unprotected) memory of each cgroup. That
6906          * way, cgroups that aren't explicitly prioritized wrt each
6907          * other compete freely over the allowance, but they are
6908          * collectively protected from neighboring trees.
6909          *
6910          * We're using unprotected memory for the weight so that if
6911          * some cgroups DO claim explicit protection, we don't protect
6912          * the same bytes twice.
6913          *
6914          * Check both usage and parent_usage against the respective
6915          * protected values. One should imply the other, but they
6916          * aren't read atomically - make sure the division is sane.
6917          */
6918         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6919                 return ep;
6920         if (parent_effective > siblings_protected &&
6921             parent_usage > siblings_protected &&
6922             usage > protected) {
6923                 unsigned long unclaimed;
6924
6925                 unclaimed = parent_effective - siblings_protected;
6926                 unclaimed *= usage - protected;
6927                 unclaimed /= parent_usage - siblings_protected;
6928
6929                 ep += unclaimed;
6930         }
6931
6932         return ep;
6933 }
6934
6935 /**
6936  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6937  * @root: the top ancestor of the sub-tree being checked
6938  * @memcg: the memory cgroup to check
6939  *
6940  * WARNING: This function is not stateless! It can only be used as part
6941  *          of a top-down tree iteration, not for isolated queries.
6942  */
6943 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6944                                      struct mem_cgroup *memcg)
6945 {
6946         unsigned long usage, parent_usage;
6947         struct mem_cgroup *parent;
6948
6949         if (mem_cgroup_disabled())
6950                 return;
6951
6952         if (!root)
6953                 root = root_mem_cgroup;
6954
6955         /*
6956          * Effective values of the reclaim targets are ignored so they
6957          * can be stale. Have a look at mem_cgroup_protection for more
6958          * details.
6959          * TODO: calculation should be more robust so that we do not need
6960          * that special casing.
6961          */
6962         if (memcg == root)
6963                 return;
6964
6965         usage = page_counter_read(&memcg->memory);
6966         if (!usage)
6967                 return;
6968
6969         parent = parent_mem_cgroup(memcg);
6970
6971         if (parent == root) {
6972                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6973                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6974                 return;
6975         }
6976
6977         parent_usage = page_counter_read(&parent->memory);
6978
6979         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6980                         READ_ONCE(memcg->memory.min),
6981                         READ_ONCE(parent->memory.emin),
6982                         atomic_long_read(&parent->memory.children_min_usage)));
6983
6984         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6985                         READ_ONCE(memcg->memory.low),
6986                         READ_ONCE(parent->memory.elow),
6987                         atomic_long_read(&parent->memory.children_low_usage)));
6988 }
6989
6990 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6991                         gfp_t gfp)
6992 {
6993         long nr_pages = folio_nr_pages(folio);
6994         int ret;
6995
6996         ret = try_charge(memcg, gfp, nr_pages);
6997         if (ret)
6998                 goto out;
6999
7000         css_get(&memcg->css);
7001         commit_charge(folio, memcg);
7002
7003         local_irq_disable();
7004         mem_cgroup_charge_statistics(memcg, nr_pages);
7005         memcg_check_events(memcg, folio_nid(folio));
7006         local_irq_enable();
7007 out:
7008         return ret;
7009 }
7010
7011 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7012 {
7013         struct mem_cgroup *memcg;
7014         int ret;
7015
7016         memcg = get_mem_cgroup_from_mm(mm);
7017         ret = charge_memcg(folio, memcg, gfp);
7018         css_put(&memcg->css);
7019
7020         return ret;
7021 }
7022
7023 /**
7024  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7025  * @folio: folio to charge.
7026  * @mm: mm context of the victim
7027  * @gfp: reclaim mode
7028  * @entry: swap entry for which the folio is allocated
7029  *
7030  * This function charges a folio allocated for swapin. Please call this before
7031  * adding the folio to the swapcache.
7032  *
7033  * Returns 0 on success. Otherwise, an error code is returned.
7034  */
7035 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7036                                   gfp_t gfp, swp_entry_t entry)
7037 {
7038         struct mem_cgroup *memcg;
7039         unsigned short id;
7040         int ret;
7041
7042         if (mem_cgroup_disabled())
7043                 return 0;
7044
7045         id = lookup_swap_cgroup_id(entry);
7046         rcu_read_lock();
7047         memcg = mem_cgroup_from_id(id);
7048         if (!memcg || !css_tryget_online(&memcg->css))
7049                 memcg = get_mem_cgroup_from_mm(mm);
7050         rcu_read_unlock();
7051
7052         ret = charge_memcg(folio, memcg, gfp);
7053
7054         css_put(&memcg->css);
7055         return ret;
7056 }
7057
7058 /*
7059  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7060  * @entry: swap entry for which the page is charged
7061  *
7062  * Call this function after successfully adding the charged page to swapcache.
7063  *
7064  * Note: This function assumes the page for which swap slot is being uncharged
7065  * is order 0 page.
7066  */
7067 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7068 {
7069         /*
7070          * Cgroup1's unified memory+swap counter has been charged with the
7071          * new swapcache page, finish the transfer by uncharging the swap
7072          * slot. The swap slot would also get uncharged when it dies, but
7073          * it can stick around indefinitely and we'd count the page twice
7074          * the entire time.
7075          *
7076          * Cgroup2 has separate resource counters for memory and swap,
7077          * so this is a non-issue here. Memory and swap charge lifetimes
7078          * correspond 1:1 to page and swap slot lifetimes: we charge the
7079          * page to memory here, and uncharge swap when the slot is freed.
7080          */
7081         if (!mem_cgroup_disabled() && do_memsw_account()) {
7082                 /*
7083                  * The swap entry might not get freed for a long time,
7084                  * let's not wait for it.  The page already received a
7085                  * memory+swap charge, drop the swap entry duplicate.
7086                  */
7087                 mem_cgroup_uncharge_swap(entry, 1);
7088         }
7089 }
7090
7091 struct uncharge_gather {
7092         struct mem_cgroup *memcg;
7093         unsigned long nr_memory;
7094         unsigned long pgpgout;
7095         unsigned long nr_kmem;
7096         int nid;
7097 };
7098
7099 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7100 {
7101         memset(ug, 0, sizeof(*ug));
7102 }
7103
7104 static void uncharge_batch(const struct uncharge_gather *ug)
7105 {
7106         unsigned long flags;
7107
7108         if (ug->nr_memory) {
7109                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7110                 if (do_memsw_account())
7111                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7112                 if (ug->nr_kmem)
7113                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7114                 memcg_oom_recover(ug->memcg);
7115         }
7116
7117         local_irq_save(flags);
7118         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7119         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7120         memcg_check_events(ug->memcg, ug->nid);
7121         local_irq_restore(flags);
7122
7123         /* drop reference from uncharge_folio */
7124         css_put(&ug->memcg->css);
7125 }
7126
7127 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7128 {
7129         long nr_pages;
7130         struct mem_cgroup *memcg;
7131         struct obj_cgroup *objcg;
7132
7133         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7134
7135         /*
7136          * Nobody should be changing or seriously looking at
7137          * folio memcg or objcg at this point, we have fully
7138          * exclusive access to the folio.
7139          */
7140         if (folio_memcg_kmem(folio)) {
7141                 objcg = __folio_objcg(folio);
7142                 /*
7143                  * This get matches the put at the end of the function and
7144                  * kmem pages do not hold memcg references anymore.
7145                  */
7146                 memcg = get_mem_cgroup_from_objcg(objcg);
7147         } else {
7148                 memcg = __folio_memcg(folio);
7149         }
7150
7151         if (!memcg)
7152                 return;
7153
7154         if (ug->memcg != memcg) {
7155                 if (ug->memcg) {
7156                         uncharge_batch(ug);
7157                         uncharge_gather_clear(ug);
7158                 }
7159                 ug->memcg = memcg;
7160                 ug->nid = folio_nid(folio);
7161
7162                 /* pairs with css_put in uncharge_batch */
7163                 css_get(&memcg->css);
7164         }
7165
7166         nr_pages = folio_nr_pages(folio);
7167
7168         if (folio_memcg_kmem(folio)) {
7169                 ug->nr_memory += nr_pages;
7170                 ug->nr_kmem += nr_pages;
7171
7172                 folio->memcg_data = 0;
7173                 obj_cgroup_put(objcg);
7174         } else {
7175                 /* LRU pages aren't accounted at the root level */
7176                 if (!mem_cgroup_is_root(memcg))
7177                         ug->nr_memory += nr_pages;
7178                 ug->pgpgout++;
7179
7180                 folio->memcg_data = 0;
7181         }
7182
7183         css_put(&memcg->css);
7184 }
7185
7186 void __mem_cgroup_uncharge(struct folio *folio)
7187 {
7188         struct uncharge_gather ug;
7189
7190         /* Don't touch folio->lru of any random page, pre-check: */
7191         if (!folio_memcg(folio))
7192                 return;
7193
7194         uncharge_gather_clear(&ug);
7195         uncharge_folio(folio, &ug);
7196         uncharge_batch(&ug);
7197 }
7198
7199 /**
7200  * __mem_cgroup_uncharge_list - uncharge a list of page
7201  * @page_list: list of pages to uncharge
7202  *
7203  * Uncharge a list of pages previously charged with
7204  * __mem_cgroup_charge().
7205  */
7206 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7207 {
7208         struct uncharge_gather ug;
7209         struct folio *folio;
7210
7211         uncharge_gather_clear(&ug);
7212         list_for_each_entry(folio, page_list, lru)
7213                 uncharge_folio(folio, &ug);
7214         if (ug.memcg)
7215                 uncharge_batch(&ug);
7216 }
7217
7218 /**
7219  * mem_cgroup_migrate - Charge a folio's replacement.
7220  * @old: Currently circulating folio.
7221  * @new: Replacement folio.
7222  *
7223  * Charge @new as a replacement folio for @old. @old will
7224  * be uncharged upon free.
7225  *
7226  * Both folios must be locked, @new->mapping must be set up.
7227  */
7228 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7229 {
7230         struct mem_cgroup *memcg;
7231         long nr_pages = folio_nr_pages(new);
7232         unsigned long flags;
7233
7234         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7235         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7236         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7237         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7238
7239         if (mem_cgroup_disabled())
7240                 return;
7241
7242         /* Page cache replacement: new folio already charged? */
7243         if (folio_memcg(new))
7244                 return;
7245
7246         memcg = folio_memcg(old);
7247         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7248         if (!memcg)
7249                 return;
7250
7251         /* Force-charge the new page. The old one will be freed soon */
7252         if (!mem_cgroup_is_root(memcg)) {
7253                 page_counter_charge(&memcg->memory, nr_pages);
7254                 if (do_memsw_account())
7255                         page_counter_charge(&memcg->memsw, nr_pages);
7256         }
7257
7258         css_get(&memcg->css);
7259         commit_charge(new, memcg);
7260
7261         local_irq_save(flags);
7262         mem_cgroup_charge_statistics(memcg, nr_pages);
7263         memcg_check_events(memcg, folio_nid(new));
7264         local_irq_restore(flags);
7265 }
7266
7267 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7268 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7269
7270 void mem_cgroup_sk_alloc(struct sock *sk)
7271 {
7272         struct mem_cgroup *memcg;
7273
7274         if (!mem_cgroup_sockets_enabled)
7275                 return;
7276
7277         /* Do not associate the sock with unrelated interrupted task's memcg. */
7278         if (!in_task())
7279                 return;
7280
7281         rcu_read_lock();
7282         memcg = mem_cgroup_from_task(current);
7283         if (mem_cgroup_is_root(memcg))
7284                 goto out;
7285         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7286                 goto out;
7287         if (css_tryget(&memcg->css))
7288                 sk->sk_memcg = memcg;
7289 out:
7290         rcu_read_unlock();
7291 }
7292
7293 void mem_cgroup_sk_free(struct sock *sk)
7294 {
7295         if (sk->sk_memcg)
7296                 css_put(&sk->sk_memcg->css);
7297 }
7298
7299 /**
7300  * mem_cgroup_charge_skmem - charge socket memory
7301  * @memcg: memcg to charge
7302  * @nr_pages: number of pages to charge
7303  * @gfp_mask: reclaim mode
7304  *
7305  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7306  * @memcg's configured limit, %false if it doesn't.
7307  */
7308 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7309                              gfp_t gfp_mask)
7310 {
7311         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7312                 struct page_counter *fail;
7313
7314                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7315                         memcg->tcpmem_pressure = 0;
7316                         return true;
7317                 }
7318                 memcg->tcpmem_pressure = 1;
7319                 if (gfp_mask & __GFP_NOFAIL) {
7320                         page_counter_charge(&memcg->tcpmem, nr_pages);
7321                         return true;
7322                 }
7323                 return false;
7324         }
7325
7326         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7327                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7328                 return true;
7329         }
7330
7331         return false;
7332 }
7333
7334 /**
7335  * mem_cgroup_uncharge_skmem - uncharge socket memory
7336  * @memcg: memcg to uncharge
7337  * @nr_pages: number of pages to uncharge
7338  */
7339 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7340 {
7341         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7342                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7343                 return;
7344         }
7345
7346         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7347
7348         refill_stock(memcg, nr_pages);
7349 }
7350
7351 static int __init cgroup_memory(char *s)
7352 {
7353         char *token;
7354
7355         while ((token = strsep(&s, ",")) != NULL) {
7356                 if (!*token)
7357                         continue;
7358                 if (!strcmp(token, "nosocket"))
7359                         cgroup_memory_nosocket = true;
7360                 if (!strcmp(token, "nokmem"))
7361                         cgroup_memory_nokmem = true;
7362                 if (!strcmp(token, "nobpf"))
7363                         cgroup_memory_nobpf = true;
7364         }
7365         return 1;
7366 }
7367 __setup("cgroup.memory=", cgroup_memory);
7368
7369 /*
7370  * subsys_initcall() for memory controller.
7371  *
7372  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7373  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7374  * basically everything that doesn't depend on a specific mem_cgroup structure
7375  * should be initialized from here.
7376  */
7377 static int __init mem_cgroup_init(void)
7378 {
7379         int cpu, node;
7380
7381         /*
7382          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7383          * used for per-memcg-per-cpu caching of per-node statistics. In order
7384          * to work fine, we should make sure that the overfill threshold can't
7385          * exceed S32_MAX / PAGE_SIZE.
7386          */
7387         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7388
7389         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7390                                   memcg_hotplug_cpu_dead);
7391
7392         for_each_possible_cpu(cpu)
7393                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7394                           drain_local_stock);
7395
7396         for_each_node(node) {
7397                 struct mem_cgroup_tree_per_node *rtpn;
7398
7399                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7400
7401                 rtpn->rb_root = RB_ROOT;
7402                 rtpn->rb_rightmost = NULL;
7403                 spin_lock_init(&rtpn->lock);
7404                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7405         }
7406
7407         return 0;
7408 }
7409 subsys_initcall(mem_cgroup_init);
7410
7411 #ifdef CONFIG_SWAP
7412 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7413 {
7414         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7415                 /*
7416                  * The root cgroup cannot be destroyed, so it's refcount must
7417                  * always be >= 1.
7418                  */
7419                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7420                         VM_BUG_ON(1);
7421                         break;
7422                 }
7423                 memcg = parent_mem_cgroup(memcg);
7424                 if (!memcg)
7425                         memcg = root_mem_cgroup;
7426         }
7427         return memcg;
7428 }
7429
7430 /**
7431  * mem_cgroup_swapout - transfer a memsw charge to swap
7432  * @folio: folio whose memsw charge to transfer
7433  * @entry: swap entry to move the charge to
7434  *
7435  * Transfer the memsw charge of @folio to @entry.
7436  */
7437 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7438 {
7439         struct mem_cgroup *memcg, *swap_memcg;
7440         unsigned int nr_entries;
7441         unsigned short oldid;
7442
7443         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7444         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7445
7446         if (mem_cgroup_disabled())
7447                 return;
7448
7449         if (!do_memsw_account())
7450                 return;
7451
7452         memcg = folio_memcg(folio);
7453
7454         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7455         if (!memcg)
7456                 return;
7457
7458         /*
7459          * In case the memcg owning these pages has been offlined and doesn't
7460          * have an ID allocated to it anymore, charge the closest online
7461          * ancestor for the swap instead and transfer the memory+swap charge.
7462          */
7463         swap_memcg = mem_cgroup_id_get_online(memcg);
7464         nr_entries = folio_nr_pages(folio);
7465         /* Get references for the tail pages, too */
7466         if (nr_entries > 1)
7467                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7468         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7469                                    nr_entries);
7470         VM_BUG_ON_FOLIO(oldid, folio);
7471         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7472
7473         folio->memcg_data = 0;
7474
7475         if (!mem_cgroup_is_root(memcg))
7476                 page_counter_uncharge(&memcg->memory, nr_entries);
7477
7478         if (memcg != swap_memcg) {
7479                 if (!mem_cgroup_is_root(swap_memcg))
7480                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7481                 page_counter_uncharge(&memcg->memsw, nr_entries);
7482         }
7483
7484         /*
7485          * Interrupts should be disabled here because the caller holds the
7486          * i_pages lock which is taken with interrupts-off. It is
7487          * important here to have the interrupts disabled because it is the
7488          * only synchronisation we have for updating the per-CPU variables.
7489          */
7490         memcg_stats_lock();
7491         mem_cgroup_charge_statistics(memcg, -nr_entries);
7492         memcg_stats_unlock();
7493         memcg_check_events(memcg, folio_nid(folio));
7494
7495         css_put(&memcg->css);
7496 }
7497
7498 /**
7499  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7500  * @folio: folio being added to swap
7501  * @entry: swap entry to charge
7502  *
7503  * Try to charge @folio's memcg for the swap space at @entry.
7504  *
7505  * Returns 0 on success, -ENOMEM on failure.
7506  */
7507 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7508 {
7509         unsigned int nr_pages = folio_nr_pages(folio);
7510         struct page_counter *counter;
7511         struct mem_cgroup *memcg;
7512         unsigned short oldid;
7513
7514         if (do_memsw_account())
7515                 return 0;
7516
7517         memcg = folio_memcg(folio);
7518
7519         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7520         if (!memcg)
7521                 return 0;
7522
7523         if (!entry.val) {
7524                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7525                 return 0;
7526         }
7527
7528         memcg = mem_cgroup_id_get_online(memcg);
7529
7530         if (!mem_cgroup_is_root(memcg) &&
7531             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7532                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7533                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7534                 mem_cgroup_id_put(memcg);
7535                 return -ENOMEM;
7536         }
7537
7538         /* Get references for the tail pages, too */
7539         if (nr_pages > 1)
7540                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7541         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7542         VM_BUG_ON_FOLIO(oldid, folio);
7543         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7544
7545         return 0;
7546 }
7547
7548 /**
7549  * __mem_cgroup_uncharge_swap - uncharge swap space
7550  * @entry: swap entry to uncharge
7551  * @nr_pages: the amount of swap space to uncharge
7552  */
7553 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7554 {
7555         struct mem_cgroup *memcg;
7556         unsigned short id;
7557
7558         id = swap_cgroup_record(entry, 0, nr_pages);
7559         rcu_read_lock();
7560         memcg = mem_cgroup_from_id(id);
7561         if (memcg) {
7562                 if (!mem_cgroup_is_root(memcg)) {
7563                         if (do_memsw_account())
7564                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7565                         else
7566                                 page_counter_uncharge(&memcg->swap, nr_pages);
7567                 }
7568                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7569                 mem_cgroup_id_put_many(memcg, nr_pages);
7570         }
7571         rcu_read_unlock();
7572 }
7573
7574 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7575 {
7576         long nr_swap_pages = get_nr_swap_pages();
7577
7578         if (mem_cgroup_disabled() || do_memsw_account())
7579                 return nr_swap_pages;
7580         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7581                 nr_swap_pages = min_t(long, nr_swap_pages,
7582                                       READ_ONCE(memcg->swap.max) -
7583                                       page_counter_read(&memcg->swap));
7584         return nr_swap_pages;
7585 }
7586
7587 bool mem_cgroup_swap_full(struct folio *folio)
7588 {
7589         struct mem_cgroup *memcg;
7590
7591         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7592
7593         if (vm_swap_full())
7594                 return true;
7595         if (do_memsw_account())
7596                 return false;
7597
7598         memcg = folio_memcg(folio);
7599         if (!memcg)
7600                 return false;
7601
7602         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7603                 unsigned long usage = page_counter_read(&memcg->swap);
7604
7605                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7606                     usage * 2 >= READ_ONCE(memcg->swap.max))
7607                         return true;
7608         }
7609
7610         return false;
7611 }
7612
7613 static int __init setup_swap_account(char *s)
7614 {
7615         pr_warn_once("The swapaccount= commandline option is deprecated. "
7616                      "Please report your usecase to linux-mm@kvack.org if you "
7617                      "depend on this functionality.\n");
7618         return 1;
7619 }
7620 __setup("swapaccount=", setup_swap_account);
7621
7622 static u64 swap_current_read(struct cgroup_subsys_state *css,
7623                              struct cftype *cft)
7624 {
7625         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7626
7627         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7628 }
7629
7630 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7631                           struct cftype *cft)
7632 {
7633         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7634
7635         return (u64)memcg->swap.watermark * PAGE_SIZE;
7636 }
7637
7638 static int swap_high_show(struct seq_file *m, void *v)
7639 {
7640         return seq_puts_memcg_tunable(m,
7641                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7642 }
7643
7644 static ssize_t swap_high_write(struct kernfs_open_file *of,
7645                                char *buf, size_t nbytes, loff_t off)
7646 {
7647         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7648         unsigned long high;
7649         int err;
7650
7651         buf = strstrip(buf);
7652         err = page_counter_memparse(buf, "max", &high);
7653         if (err)
7654                 return err;
7655
7656         page_counter_set_high(&memcg->swap, high);
7657
7658         return nbytes;
7659 }
7660
7661 static int swap_max_show(struct seq_file *m, void *v)
7662 {
7663         return seq_puts_memcg_tunable(m,
7664                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7665 }
7666
7667 static ssize_t swap_max_write(struct kernfs_open_file *of,
7668                               char *buf, size_t nbytes, loff_t off)
7669 {
7670         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7671         unsigned long max;
7672         int err;
7673
7674         buf = strstrip(buf);
7675         err = page_counter_memparse(buf, "max", &max);
7676         if (err)
7677                 return err;
7678
7679         xchg(&memcg->swap.max, max);
7680
7681         return nbytes;
7682 }
7683
7684 static int swap_events_show(struct seq_file *m, void *v)
7685 {
7686         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7687
7688         seq_printf(m, "high %lu\n",
7689                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7690         seq_printf(m, "max %lu\n",
7691                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7692         seq_printf(m, "fail %lu\n",
7693                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7694
7695         return 0;
7696 }
7697
7698 static struct cftype swap_files[] = {
7699         {
7700                 .name = "swap.current",
7701                 .flags = CFTYPE_NOT_ON_ROOT,
7702                 .read_u64 = swap_current_read,
7703         },
7704         {
7705                 .name = "swap.high",
7706                 .flags = CFTYPE_NOT_ON_ROOT,
7707                 .seq_show = swap_high_show,
7708                 .write = swap_high_write,
7709         },
7710         {
7711                 .name = "swap.max",
7712                 .flags = CFTYPE_NOT_ON_ROOT,
7713                 .seq_show = swap_max_show,
7714                 .write = swap_max_write,
7715         },
7716         {
7717                 .name = "swap.peak",
7718                 .flags = CFTYPE_NOT_ON_ROOT,
7719                 .read_u64 = swap_peak_read,
7720         },
7721         {
7722                 .name = "swap.events",
7723                 .flags = CFTYPE_NOT_ON_ROOT,
7724                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7725                 .seq_show = swap_events_show,
7726         },
7727         { }     /* terminate */
7728 };
7729
7730 static struct cftype memsw_files[] = {
7731         {
7732                 .name = "memsw.usage_in_bytes",
7733                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7734                 .read_u64 = mem_cgroup_read_u64,
7735         },
7736         {
7737                 .name = "memsw.max_usage_in_bytes",
7738                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7739                 .write = mem_cgroup_reset,
7740                 .read_u64 = mem_cgroup_read_u64,
7741         },
7742         {
7743                 .name = "memsw.limit_in_bytes",
7744                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7745                 .write = mem_cgroup_write,
7746                 .read_u64 = mem_cgroup_read_u64,
7747         },
7748         {
7749                 .name = "memsw.failcnt",
7750                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7751                 .write = mem_cgroup_reset,
7752                 .read_u64 = mem_cgroup_read_u64,
7753         },
7754         { },    /* terminate */
7755 };
7756
7757 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7758 /**
7759  * obj_cgroup_may_zswap - check if this cgroup can zswap
7760  * @objcg: the object cgroup
7761  *
7762  * Check if the hierarchical zswap limit has been reached.
7763  *
7764  * This doesn't check for specific headroom, and it is not atomic
7765  * either. But with zswap, the size of the allocation is only known
7766  * once compression has occured, and this optimistic pre-check avoids
7767  * spending cycles on compression when there is already no room left
7768  * or zswap is disabled altogether somewhere in the hierarchy.
7769  */
7770 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7771 {
7772         struct mem_cgroup *memcg, *original_memcg;
7773         bool ret = true;
7774
7775         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7776                 return true;
7777
7778         original_memcg = get_mem_cgroup_from_objcg(objcg);
7779         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7780              memcg = parent_mem_cgroup(memcg)) {
7781                 unsigned long max = READ_ONCE(memcg->zswap_max);
7782                 unsigned long pages;
7783
7784                 if (max == PAGE_COUNTER_MAX)
7785                         continue;
7786                 if (max == 0) {
7787                         ret = false;
7788                         break;
7789                 }
7790
7791                 cgroup_rstat_flush(memcg->css.cgroup);
7792                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7793                 if (pages < max)
7794                         continue;
7795                 ret = false;
7796                 break;
7797         }
7798         mem_cgroup_put(original_memcg);
7799         return ret;
7800 }
7801
7802 /**
7803  * obj_cgroup_charge_zswap - charge compression backend memory
7804  * @objcg: the object cgroup
7805  * @size: size of compressed object
7806  *
7807  * This forces the charge after obj_cgroup_may_zswap() allowed
7808  * compression and storage in zwap for this cgroup to go ahead.
7809  */
7810 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7811 {
7812         struct mem_cgroup *memcg;
7813
7814         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7815                 return;
7816
7817         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7818
7819         /* PF_MEMALLOC context, charging must succeed */
7820         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7821                 VM_WARN_ON_ONCE(1);
7822
7823         rcu_read_lock();
7824         memcg = obj_cgroup_memcg(objcg);
7825         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7826         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7827         rcu_read_unlock();
7828 }
7829
7830 /**
7831  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7832  * @objcg: the object cgroup
7833  * @size: size of compressed object
7834  *
7835  * Uncharges zswap memory on page in.
7836  */
7837 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7838 {
7839         struct mem_cgroup *memcg;
7840
7841         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7842                 return;
7843
7844         obj_cgroup_uncharge(objcg, size);
7845
7846         rcu_read_lock();
7847         memcg = obj_cgroup_memcg(objcg);
7848         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7849         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7850         rcu_read_unlock();
7851 }
7852
7853 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7854                               struct cftype *cft)
7855 {
7856         cgroup_rstat_flush(css->cgroup);
7857         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7858 }
7859
7860 static int zswap_max_show(struct seq_file *m, void *v)
7861 {
7862         return seq_puts_memcg_tunable(m,
7863                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7864 }
7865
7866 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7867                                char *buf, size_t nbytes, loff_t off)
7868 {
7869         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7870         unsigned long max;
7871         int err;
7872
7873         buf = strstrip(buf);
7874         err = page_counter_memparse(buf, "max", &max);
7875         if (err)
7876                 return err;
7877
7878         xchg(&memcg->zswap_max, max);
7879
7880         return nbytes;
7881 }
7882
7883 static struct cftype zswap_files[] = {
7884         {
7885                 .name = "zswap.current",
7886                 .flags = CFTYPE_NOT_ON_ROOT,
7887                 .read_u64 = zswap_current_read,
7888         },
7889         {
7890                 .name = "zswap.max",
7891                 .flags = CFTYPE_NOT_ON_ROOT,
7892                 .seq_show = zswap_max_show,
7893                 .write = zswap_max_write,
7894         },
7895         { }     /* terminate */
7896 };
7897 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7898
7899 static int __init mem_cgroup_swap_init(void)
7900 {
7901         if (mem_cgroup_disabled())
7902                 return 0;
7903
7904         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7905         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7906 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7907         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7908 #endif
7909         return 0;
7910 }
7911 subsys_initcall(mem_cgroup_swap_init);
7912
7913 #endif /* CONFIG_SWAP */