1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
88 #define do_swap_account 0
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event {
132 * memcg which the event belongs to.
134 struct mem_cgroup *memcg;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx *eventfd;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
210 /* for encoding cft->private value on file */
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311 struct workqueue_struct *memcg_kmem_cache_wq;
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
325 struct memcg_shrinker_map *new, *old;
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
358 if (mem_cgroup_is_root(memcg))
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
375 if (mem_cgroup_is_root(memcg))
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
383 memcg_free_shrinker_maps(memcg);
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
389 mutex_unlock(&memcg_shrinker_map_mutex);
394 int memcg_expand_shrinker_maps(int new_id)
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
413 mem_cgroup_iter_break(NULL, memcg);
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
451 struct mem_cgroup *memcg;
453 memcg = page->mem_cgroup;
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
474 ino_t page_cgroup_ino(struct page *page)
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
487 ino = cgroup_ino(memcg->css.cgroup);
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
495 int nid = page_to_nid(page);
497 return memcg->nodeinfo[nid];
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
503 return soft_limit_tree.rb_tree_per_node[nid];
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
509 int nid = page_to_nid(page);
511 return soft_limit_tree.rb_tree_per_node[nid];
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 mctz->rb_rightmost = &mz->tree_node;
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
563 rb_erase(&mz->tree_node, &mctz->rb_root);
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
595 mctz = soft_limit_tree_from_page(page);
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
609 if (excess || mz->on_tree) {
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
615 __mem_cgroup_remove_exceeded(mz, mctz);
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
636 mem_cgroup_remove_exceeded(mz, mctz);
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
643 struct mem_cgroup_per_node *mz;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget_online(&mz->memcg->css))
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
668 struct mem_cgroup_per_node *mz;
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
686 if (mem_cgroup_disabled())
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 struct mem_cgroup *parent;
710 parent = parent_mem_cgroup(pn->memcg);
713 return mem_cgroup_nodeinfo(parent, nid);
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
735 __mod_node_page_state(pgdat, idx, val);
737 if (mem_cgroup_disabled())
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
744 __mod_memcg_state(memcg, idx, val);
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
767 memcg = mem_cgroup_from_obj(p);
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
779 void mod_memcg_obj_state(void *p, int idx, int val)
781 struct mem_cgroup *memcg;
784 memcg = mem_cgroup_from_obj(p);
786 mod_memcg_state(memcg, idx, val);
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
801 if (mem_cgroup_disabled())
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 return atomic_long_read(&memcg->vmevents[event]);
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 bool compound, int nr_pages)
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847 if (PageSwapBacked(page))
848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
856 /* pagein of a big page is an event. So, ignore page size */
858 __count_memcg_events(memcg, PGPGIN, 1);
860 __count_memcg_events(memcg, PGPGOUT, 1);
861 nr_pages = -nr_pages; /* for event */
864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
870 unsigned long val, next;
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874 /* from time_after() in jiffies.h */
875 if ((long)(next - val) < 0) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
893 * Check events in order.
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
898 /* threshold event is triggered in finer grain than soft limit */
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
905 mem_cgroup_threshold(memcg);
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
923 EXPORT_SYMBOL(mem_cgroup_from_task);
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
935 struct mem_cgroup *memcg;
937 if (mem_cgroup_disabled())
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
948 memcg = root_mem_cgroup;
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
954 } while (!css_tryget(&memcg->css));
958 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
969 struct mem_cgroup *memcg = page->mem_cgroup;
971 if (mem_cgroup_disabled())
975 if (!memcg || !css_tryget_online(&memcg->css))
976 memcg = root_mem_cgroup;
980 EXPORT_SYMBOL(get_mem_cgroup_from_page);
983 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 if (unlikely(current->active_memcg)) {
988 struct mem_cgroup *memcg = root_mem_cgroup;
991 if (css_tryget_online(¤t->active_memcg->css))
992 memcg = current->active_memcg;
996 return get_mem_cgroup_from_mm(current->mm);
1000 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1001 * @root: hierarchy root
1002 * @prev: previously returned memcg, NULL on first invocation
1003 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1005 * Returns references to children of the hierarchy below @root, or
1006 * @root itself, or %NULL after a full round-trip.
1008 * Caller must pass the return value in @prev on subsequent
1009 * invocations for reference counting, or use mem_cgroup_iter_break()
1010 * to cancel a hierarchy walk before the round-trip is complete.
1012 * Reclaimers can specify a node and a priority level in @reclaim to
1013 * divide up the memcgs in the hierarchy among all concurrent
1014 * reclaimers operating on the same node and priority.
1016 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1017 struct mem_cgroup *prev,
1018 struct mem_cgroup_reclaim_cookie *reclaim)
1020 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1021 struct cgroup_subsys_state *css = NULL;
1022 struct mem_cgroup *memcg = NULL;
1023 struct mem_cgroup *pos = NULL;
1025 if (mem_cgroup_disabled())
1029 root = root_mem_cgroup;
1031 if (prev && !reclaim)
1034 if (!root->use_hierarchy && root != root_mem_cgroup) {
1043 struct mem_cgroup_per_node *mz;
1045 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1048 if (prev && reclaim->generation != iter->generation)
1052 pos = READ_ONCE(iter->position);
1053 if (!pos || css_tryget(&pos->css))
1056 * css reference reached zero, so iter->position will
1057 * be cleared by ->css_released. However, we should not
1058 * rely on this happening soon, because ->css_released
1059 * is called from a work queue, and by busy-waiting we
1060 * might block it. So we clear iter->position right
1063 (void)cmpxchg(&iter->position, pos, NULL);
1071 css = css_next_descendant_pre(css, &root->css);
1074 * Reclaimers share the hierarchy walk, and a
1075 * new one might jump in right at the end of
1076 * the hierarchy - make sure they see at least
1077 * one group and restart from the beginning.
1085 * Verify the css and acquire a reference. The root
1086 * is provided by the caller, so we know it's alive
1087 * and kicking, and don't take an extra reference.
1089 memcg = mem_cgroup_from_css(css);
1091 if (css == &root->css)
1094 if (css_tryget(css))
1102 * The position could have already been updated by a competing
1103 * thread, so check that the value hasn't changed since we read
1104 * it to avoid reclaiming from the same cgroup twice.
1106 (void)cmpxchg(&iter->position, pos, memcg);
1114 reclaim->generation = iter->generation;
1120 if (prev && prev != root)
1121 css_put(&prev->css);
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1140 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1141 struct mem_cgroup *dead_memcg)
1143 struct mem_cgroup_reclaim_iter *iter;
1144 struct mem_cgroup_per_node *mz;
1147 for_each_node(nid) {
1148 mz = mem_cgroup_nodeinfo(from, nid);
1150 cmpxchg(&iter->position, dead_memcg, NULL);
1154 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1156 struct mem_cgroup *memcg = dead_memcg;
1157 struct mem_cgroup *last;
1160 __invalidate_reclaim_iterators(memcg, dead_memcg);
1162 } while ((memcg = parent_mem_cgroup(memcg)));
1165 * When cgruop1 non-hierarchy mode is used,
1166 * parent_mem_cgroup() does not walk all the way up to the
1167 * cgroup root (root_mem_cgroup). So we have to handle
1168 * dead_memcg from cgroup root separately.
1170 if (last != root_mem_cgroup)
1171 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1177 * @memcg: hierarchy root
1178 * @fn: function to call for each task
1179 * @arg: argument passed to @fn
1181 * This function iterates over tasks attached to @memcg or to any of its
1182 * descendants and calls @fn for each task. If @fn returns a non-zero
1183 * value, the function breaks the iteration loop and returns the value.
1184 * Otherwise, it will iterate over all tasks and return 0.
1186 * This function must not be called for the root memory cgroup.
1188 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1189 int (*fn)(struct task_struct *, void *), void *arg)
1191 struct mem_cgroup *iter;
1194 BUG_ON(memcg == root_mem_cgroup);
1196 for_each_mem_cgroup_tree(iter, memcg) {
1197 struct css_task_iter it;
1198 struct task_struct *task;
1200 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1201 while (!ret && (task = css_task_iter_next(&it)))
1202 ret = fn(task, arg);
1203 css_task_iter_end(&it);
1205 mem_cgroup_iter_break(memcg, iter);
1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1215 * @pgdat: pgdat of the page
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
1221 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1223 struct mem_cgroup_per_node *mz;
1224 struct mem_cgroup *memcg;
1225 struct lruvec *lruvec;
1227 if (mem_cgroup_disabled()) {
1228 lruvec = &pgdat->__lruvec;
1232 memcg = page->mem_cgroup;
1234 * Swapcache readahead pages are added to the LRU - and
1235 * possibly migrated - before they are charged.
1238 memcg = root_mem_cgroup;
1240 mz = mem_cgroup_page_nodeinfo(memcg, page);
1241 lruvec = &mz->lruvec;
1244 * Since a node can be onlined after the mem_cgroup was created,
1245 * we have to be prepared to initialize lruvec->zone here;
1246 * and if offlined then reonlined, we need to reinitialize it.
1248 if (unlikely(lruvec->pgdat != pgdat))
1249 lruvec->pgdat = pgdat;
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @zid: zone id of the accounted pages
1258 * @nr_pages: positive when adding or negative when removing
1260 * This function must be called under lru_lock, just before a page is added
1261 * to or just after a page is removed from an lru list (that ordering being
1262 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1264 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1265 int zid, int nr_pages)
1267 struct mem_cgroup_per_node *mz;
1268 unsigned long *lru_size;
1271 if (mem_cgroup_disabled())
1274 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1275 lru_size = &mz->lru_zone_size[zid][lru];
1278 *lru_size += nr_pages;
1281 if (WARN_ONCE(size < 0,
1282 "%s(%p, %d, %d): lru_size %ld\n",
1283 __func__, lruvec, lru, nr_pages, size)) {
1289 *lru_size += nr_pages;
1293 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1294 * @memcg: the memory cgroup
1296 * Returns the maximum amount of memory @mem can be charged with, in
1299 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1301 unsigned long margin = 0;
1302 unsigned long count;
1303 unsigned long limit;
1305 count = page_counter_read(&memcg->memory);
1306 limit = READ_ONCE(memcg->memory.max);
1308 margin = limit - count;
1310 if (do_memsw_account()) {
1311 count = page_counter_read(&memcg->memsw);
1312 limit = READ_ONCE(memcg->memsw.max);
1314 margin = min(margin, limit - count);
1323 * A routine for checking "mem" is under move_account() or not.
1325 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1326 * moving cgroups. This is for waiting at high-memory pressure
1329 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1331 struct mem_cgroup *from;
1332 struct mem_cgroup *to;
1335 * Unlike task_move routines, we access mc.to, mc.from not under
1336 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1338 spin_lock(&mc.lock);
1344 ret = mem_cgroup_is_descendant(from, memcg) ||
1345 mem_cgroup_is_descendant(to, memcg);
1347 spin_unlock(&mc.lock);
1351 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1353 if (mc.moving_task && current != mc.moving_task) {
1354 if (mem_cgroup_under_move(memcg)) {
1356 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1357 /* moving charge context might have finished. */
1360 finish_wait(&mc.waitq, &wait);
1367 static char *memory_stat_format(struct mem_cgroup *memcg)
1372 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 * Provide statistics on the state of the memory subsystem as
1378 * well as cumulative event counters that show past behavior.
1380 * This list is ordered following a combination of these gradients:
1381 * 1) generic big picture -> specifics and details
1382 * 2) reflecting userspace activity -> reflecting kernel heuristics
1384 * Current memory state:
1387 seq_buf_printf(&s, "anon %llu\n",
1388 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1390 seq_buf_printf(&s, "file %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1393 seq_buf_printf(&s, "kernel_stack %llu\n",
1394 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1396 seq_buf_printf(&s, "slab %llu\n",
1397 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1398 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1400 seq_buf_printf(&s, "sock %llu\n",
1401 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1404 seq_buf_printf(&s, "shmem %llu\n",
1405 (u64)memcg_page_state(memcg, NR_SHMEM) *
1407 seq_buf_printf(&s, "file_mapped %llu\n",
1408 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1410 seq_buf_printf(&s, "file_dirty %llu\n",
1411 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1413 seq_buf_printf(&s, "file_writeback %llu\n",
1414 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1418 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1419 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1420 * arse because it requires migrating the work out of rmap to a place
1421 * where the page->mem_cgroup is set up and stable.
1423 seq_buf_printf(&s, "anon_thp %llu\n",
1424 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1427 for (i = 0; i < NR_LRU_LISTS; i++)
1428 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1429 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1432 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1433 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1435 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1436 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1439 /* Accumulated memory events */
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1442 memcg_events(memcg, PGFAULT));
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1444 memcg_events(memcg, PGMAJFAULT));
1446 seq_buf_printf(&s, "workingset_refault %lu\n",
1447 memcg_page_state(memcg, WORKINGSET_REFAULT));
1448 seq_buf_printf(&s, "workingset_activate %lu\n",
1449 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1450 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1454 memcg_events(memcg, PGREFILL));
1455 seq_buf_printf(&s, "pgscan %lu\n",
1456 memcg_events(memcg, PGSCAN_KSWAPD) +
1457 memcg_events(memcg, PGSCAN_DIRECT));
1458 seq_buf_printf(&s, "pgsteal %lu\n",
1459 memcg_events(memcg, PGSTEAL_KSWAPD) +
1460 memcg_events(memcg, PGSTEAL_DIRECT));
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1462 memcg_events(memcg, PGACTIVATE));
1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1464 memcg_events(memcg, PGDEACTIVATE));
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1466 memcg_events(memcg, PGLAZYFREE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1468 memcg_events(memcg, PGLAZYFREED));
1470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1472 memcg_events(memcg, THP_FAULT_ALLOC));
1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1474 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477 /* The above should easily fit into one page */
1478 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483 #define K(x) ((x) << (PAGE_SHIFT-10))
1485 * mem_cgroup_print_oom_context: Print OOM information relevant to
1486 * memory controller.
1487 * @memcg: The memory cgroup that went over limit
1488 * @p: Task that is going to be killed
1490 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1493 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1498 pr_cont(",oom_memcg=");
1499 pr_cont_cgroup_path(memcg->css.cgroup);
1501 pr_cont(",global_oom");
1503 pr_cont(",task_memcg=");
1504 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1510 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1511 * memory controller.
1512 * @memcg: The memory cgroup that went over limit
1514 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1518 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1519 K((u64)page_counter_read(&memcg->memory)),
1520 K((u64)memcg->memory.max), memcg->memory.failcnt);
1521 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1522 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->swap)),
1524 K((u64)memcg->swap.max), memcg->swap.failcnt);
1526 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->memsw)),
1528 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1529 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1530 K((u64)page_counter_read(&memcg->kmem)),
1531 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1534 pr_info("Memory cgroup stats for ");
1535 pr_cont_cgroup_path(memcg->css.cgroup);
1537 buf = memory_stat_format(memcg);
1545 * Return the memory (and swap, if configured) limit for a memcg.
1547 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1551 max = memcg->memory.max;
1552 if (mem_cgroup_swappiness(memcg)) {
1553 unsigned long memsw_max;
1554 unsigned long swap_max;
1556 memsw_max = memcg->memsw.max;
1557 swap_max = memcg->swap.max;
1558 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1559 max = min(max + swap_max, memsw_max);
1564 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1566 return page_counter_read(&memcg->memory);
1569 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1572 struct oom_control oc = {
1576 .gfp_mask = gfp_mask,
1581 if (mutex_lock_killable(&oom_lock))
1584 * A few threads which were not waiting at mutex_lock_killable() can
1585 * fail to bail out. Therefore, check again after holding oom_lock.
1587 ret = should_force_charge() || out_of_memory(&oc);
1588 mutex_unlock(&oom_lock);
1592 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1595 unsigned long *total_scanned)
1597 struct mem_cgroup *victim = NULL;
1600 unsigned long excess;
1601 unsigned long nr_scanned;
1602 struct mem_cgroup_reclaim_cookie reclaim = {
1606 excess = soft_limit_excess(root_memcg);
1609 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 * If we have not been able to reclaim
1615 * anything, it might because there are
1616 * no reclaimable pages under this hierarchy
1621 * We want to do more targeted reclaim.
1622 * excess >> 2 is not to excessive so as to
1623 * reclaim too much, nor too less that we keep
1624 * coming back to reclaim from this cgroup
1626 if (total >= (excess >> 2) ||
1627 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1633 pgdat, &nr_scanned);
1634 *total_scanned += nr_scanned;
1635 if (!soft_limit_excess(root_memcg))
1638 mem_cgroup_iter_break(root_memcg, victim);
1642 #ifdef CONFIG_LOCKDEP
1643 static struct lockdep_map memcg_oom_lock_dep_map = {
1644 .name = "memcg_oom_lock",
1648 static DEFINE_SPINLOCK(memcg_oom_lock);
1651 * Check OOM-Killer is already running under our hierarchy.
1652 * If someone is running, return false.
1654 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1656 struct mem_cgroup *iter, *failed = NULL;
1658 spin_lock(&memcg_oom_lock);
1660 for_each_mem_cgroup_tree(iter, memcg) {
1661 if (iter->oom_lock) {
1663 * this subtree of our hierarchy is already locked
1664 * so we cannot give a lock.
1667 mem_cgroup_iter_break(memcg, iter);
1670 iter->oom_lock = true;
1675 * OK, we failed to lock the whole subtree so we have
1676 * to clean up what we set up to the failing subtree
1678 for_each_mem_cgroup_tree(iter, memcg) {
1679 if (iter == failed) {
1680 mem_cgroup_iter_break(memcg, iter);
1683 iter->oom_lock = false;
1686 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1688 spin_unlock(&memcg_oom_lock);
1693 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1695 struct mem_cgroup *iter;
1697 spin_lock(&memcg_oom_lock);
1698 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1699 for_each_mem_cgroup_tree(iter, memcg)
1700 iter->oom_lock = false;
1701 spin_unlock(&memcg_oom_lock);
1704 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1706 struct mem_cgroup *iter;
1708 spin_lock(&memcg_oom_lock);
1709 for_each_mem_cgroup_tree(iter, memcg)
1711 spin_unlock(&memcg_oom_lock);
1714 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1716 struct mem_cgroup *iter;
1719 * When a new child is created while the hierarchy is under oom,
1720 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1722 spin_lock(&memcg_oom_lock);
1723 for_each_mem_cgroup_tree(iter, memcg)
1724 if (iter->under_oom > 0)
1726 spin_unlock(&memcg_oom_lock);
1729 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1731 struct oom_wait_info {
1732 struct mem_cgroup *memcg;
1733 wait_queue_entry_t wait;
1736 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1737 unsigned mode, int sync, void *arg)
1739 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1740 struct mem_cgroup *oom_wait_memcg;
1741 struct oom_wait_info *oom_wait_info;
1743 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1744 oom_wait_memcg = oom_wait_info->memcg;
1746 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1747 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1749 return autoremove_wake_function(wait, mode, sync, arg);
1752 static void memcg_oom_recover(struct mem_cgroup *memcg)
1755 * For the following lockless ->under_oom test, the only required
1756 * guarantee is that it must see the state asserted by an OOM when
1757 * this function is called as a result of userland actions
1758 * triggered by the notification of the OOM. This is trivially
1759 * achieved by invoking mem_cgroup_mark_under_oom() before
1760 * triggering notification.
1762 if (memcg && memcg->under_oom)
1763 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1773 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1775 enum oom_status ret;
1778 if (order > PAGE_ALLOC_COSTLY_ORDER)
1781 memcg_memory_event(memcg, MEMCG_OOM);
1784 * We are in the middle of the charge context here, so we
1785 * don't want to block when potentially sitting on a callstack
1786 * that holds all kinds of filesystem and mm locks.
1788 * cgroup1 allows disabling the OOM killer and waiting for outside
1789 * handling until the charge can succeed; remember the context and put
1790 * the task to sleep at the end of the page fault when all locks are
1793 * On the other hand, in-kernel OOM killer allows for an async victim
1794 * memory reclaim (oom_reaper) and that means that we are not solely
1795 * relying on the oom victim to make a forward progress and we can
1796 * invoke the oom killer here.
1798 * Please note that mem_cgroup_out_of_memory might fail to find a
1799 * victim and then we have to bail out from the charge path.
1801 if (memcg->oom_kill_disable) {
1802 if (!current->in_user_fault)
1804 css_get(&memcg->css);
1805 current->memcg_in_oom = memcg;
1806 current->memcg_oom_gfp_mask = mask;
1807 current->memcg_oom_order = order;
1812 mem_cgroup_mark_under_oom(memcg);
1814 locked = mem_cgroup_oom_trylock(memcg);
1817 mem_cgroup_oom_notify(memcg);
1819 mem_cgroup_unmark_under_oom(memcg);
1820 if (mem_cgroup_out_of_memory(memcg, mask, order))
1826 mem_cgroup_oom_unlock(memcg);
1832 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1833 * @handle: actually kill/wait or just clean up the OOM state
1835 * This has to be called at the end of a page fault if the memcg OOM
1836 * handler was enabled.
1838 * Memcg supports userspace OOM handling where failed allocations must
1839 * sleep on a waitqueue until the userspace task resolves the
1840 * situation. Sleeping directly in the charge context with all kinds
1841 * of locks held is not a good idea, instead we remember an OOM state
1842 * in the task and mem_cgroup_oom_synchronize() has to be called at
1843 * the end of the page fault to complete the OOM handling.
1845 * Returns %true if an ongoing memcg OOM situation was detected and
1846 * completed, %false otherwise.
1848 bool mem_cgroup_oom_synchronize(bool handle)
1850 struct mem_cgroup *memcg = current->memcg_in_oom;
1851 struct oom_wait_info owait;
1854 /* OOM is global, do not handle */
1861 owait.memcg = memcg;
1862 owait.wait.flags = 0;
1863 owait.wait.func = memcg_oom_wake_function;
1864 owait.wait.private = current;
1865 INIT_LIST_HEAD(&owait.wait.entry);
1867 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1868 mem_cgroup_mark_under_oom(memcg);
1870 locked = mem_cgroup_oom_trylock(memcg);
1873 mem_cgroup_oom_notify(memcg);
1875 if (locked && !memcg->oom_kill_disable) {
1876 mem_cgroup_unmark_under_oom(memcg);
1877 finish_wait(&memcg_oom_waitq, &owait.wait);
1878 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1879 current->memcg_oom_order);
1882 mem_cgroup_unmark_under_oom(memcg);
1883 finish_wait(&memcg_oom_waitq, &owait.wait);
1887 mem_cgroup_oom_unlock(memcg);
1889 * There is no guarantee that an OOM-lock contender
1890 * sees the wakeups triggered by the OOM kill
1891 * uncharges. Wake any sleepers explicitely.
1893 memcg_oom_recover(memcg);
1896 current->memcg_in_oom = NULL;
1897 css_put(&memcg->css);
1902 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1903 * @victim: task to be killed by the OOM killer
1904 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1906 * Returns a pointer to a memory cgroup, which has to be cleaned up
1907 * by killing all belonging OOM-killable tasks.
1909 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1911 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1912 struct mem_cgroup *oom_domain)
1914 struct mem_cgroup *oom_group = NULL;
1915 struct mem_cgroup *memcg;
1917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1921 oom_domain = root_mem_cgroup;
1925 memcg = mem_cgroup_from_task(victim);
1926 if (memcg == root_mem_cgroup)
1930 * Traverse the memory cgroup hierarchy from the victim task's
1931 * cgroup up to the OOMing cgroup (or root) to find the
1932 * highest-level memory cgroup with oom.group set.
1934 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1935 if (memcg->oom_group)
1938 if (memcg == oom_domain)
1943 css_get(&oom_group->css);
1950 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1952 pr_info("Tasks in ");
1953 pr_cont_cgroup_path(memcg->css.cgroup);
1954 pr_cont(" are going to be killed due to memory.oom.group set\n");
1958 * lock_page_memcg - lock a page->mem_cgroup binding
1961 * This function protects unlocked LRU pages from being moved to
1964 * It ensures lifetime of the returned memcg. Caller is responsible
1965 * for the lifetime of the page; __unlock_page_memcg() is available
1966 * when @page might get freed inside the locked section.
1968 struct mem_cgroup *lock_page_memcg(struct page *page)
1970 struct mem_cgroup *memcg;
1971 unsigned long flags;
1974 * The RCU lock is held throughout the transaction. The fast
1975 * path can get away without acquiring the memcg->move_lock
1976 * because page moving starts with an RCU grace period.
1978 * The RCU lock also protects the memcg from being freed when
1979 * the page state that is going to change is the only thing
1980 * preventing the page itself from being freed. E.g. writeback
1981 * doesn't hold a page reference and relies on PG_writeback to
1982 * keep off truncation, migration and so forth.
1986 if (mem_cgroup_disabled())
1989 memcg = page->mem_cgroup;
1990 if (unlikely(!memcg))
1993 if (atomic_read(&memcg->moving_account) <= 0)
1996 spin_lock_irqsave(&memcg->move_lock, flags);
1997 if (memcg != page->mem_cgroup) {
1998 spin_unlock_irqrestore(&memcg->move_lock, flags);
2003 * When charge migration first begins, we can have locked and
2004 * unlocked page stat updates happening concurrently. Track
2005 * the task who has the lock for unlock_page_memcg().
2007 memcg->move_lock_task = current;
2008 memcg->move_lock_flags = flags;
2012 EXPORT_SYMBOL(lock_page_memcg);
2015 * __unlock_page_memcg - unlock and unpin a memcg
2018 * Unlock and unpin a memcg returned by lock_page_memcg().
2020 void __unlock_page_memcg(struct mem_cgroup *memcg)
2022 if (memcg && memcg->move_lock_task == current) {
2023 unsigned long flags = memcg->move_lock_flags;
2025 memcg->move_lock_task = NULL;
2026 memcg->move_lock_flags = 0;
2028 spin_unlock_irqrestore(&memcg->move_lock, flags);
2035 * unlock_page_memcg - unlock a page->mem_cgroup binding
2038 void unlock_page_memcg(struct page *page)
2040 __unlock_page_memcg(page->mem_cgroup);
2042 EXPORT_SYMBOL(unlock_page_memcg);
2044 struct memcg_stock_pcp {
2045 struct mem_cgroup *cached; /* this never be root cgroup */
2046 unsigned int nr_pages;
2047 struct work_struct work;
2048 unsigned long flags;
2049 #define FLUSHING_CACHED_CHARGE 0
2051 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2052 static DEFINE_MUTEX(percpu_charge_mutex);
2055 * consume_stock: Try to consume stocked charge on this cpu.
2056 * @memcg: memcg to consume from.
2057 * @nr_pages: how many pages to charge.
2059 * The charges will only happen if @memcg matches the current cpu's memcg
2060 * stock, and at least @nr_pages are available in that stock. Failure to
2061 * service an allocation will refill the stock.
2063 * returns true if successful, false otherwise.
2065 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2067 struct memcg_stock_pcp *stock;
2068 unsigned long flags;
2071 if (nr_pages > MEMCG_CHARGE_BATCH)
2074 local_irq_save(flags);
2076 stock = this_cpu_ptr(&memcg_stock);
2077 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2078 stock->nr_pages -= nr_pages;
2082 local_irq_restore(flags);
2088 * Returns stocks cached in percpu and reset cached information.
2090 static void drain_stock(struct memcg_stock_pcp *stock)
2092 struct mem_cgroup *old = stock->cached;
2094 if (stock->nr_pages) {
2095 page_counter_uncharge(&old->memory, stock->nr_pages);
2096 if (do_memsw_account())
2097 page_counter_uncharge(&old->memsw, stock->nr_pages);
2098 css_put_many(&old->css, stock->nr_pages);
2099 stock->nr_pages = 0;
2101 stock->cached = NULL;
2104 static void drain_local_stock(struct work_struct *dummy)
2106 struct memcg_stock_pcp *stock;
2107 unsigned long flags;
2110 * The only protection from memory hotplug vs. drain_stock races is
2111 * that we always operate on local CPU stock here with IRQ disabled
2113 local_irq_save(flags);
2115 stock = this_cpu_ptr(&memcg_stock);
2117 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119 local_irq_restore(flags);
2123 * Cache charges(val) to local per_cpu area.
2124 * This will be consumed by consume_stock() function, later.
2126 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2128 struct memcg_stock_pcp *stock;
2129 unsigned long flags;
2131 local_irq_save(flags);
2133 stock = this_cpu_ptr(&memcg_stock);
2134 if (stock->cached != memcg) { /* reset if necessary */
2136 stock->cached = memcg;
2138 stock->nr_pages += nr_pages;
2140 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2143 local_irq_restore(flags);
2147 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2148 * of the hierarchy under it.
2150 static void drain_all_stock(struct mem_cgroup *root_memcg)
2154 /* If someone's already draining, avoid adding running more workers. */
2155 if (!mutex_trylock(&percpu_charge_mutex))
2158 * Notify other cpus that system-wide "drain" is running
2159 * We do not care about races with the cpu hotplug because cpu down
2160 * as well as workers from this path always operate on the local
2161 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2164 for_each_online_cpu(cpu) {
2165 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2166 struct mem_cgroup *memcg;
2170 memcg = stock->cached;
2171 if (memcg && stock->nr_pages &&
2172 mem_cgroup_is_descendant(memcg, root_memcg))
2177 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2179 drain_local_stock(&stock->work);
2181 schedule_work_on(cpu, &stock->work);
2185 mutex_unlock(&percpu_charge_mutex);
2188 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2190 struct memcg_stock_pcp *stock;
2191 struct mem_cgroup *memcg, *mi;
2193 stock = &per_cpu(memcg_stock, cpu);
2196 for_each_mem_cgroup(memcg) {
2199 for (i = 0; i < MEMCG_NR_STAT; i++) {
2203 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2205 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2206 atomic_long_add(x, &memcg->vmstats[i]);
2208 if (i >= NR_VM_NODE_STAT_ITEMS)
2211 for_each_node(nid) {
2212 struct mem_cgroup_per_node *pn;
2214 pn = mem_cgroup_nodeinfo(memcg, nid);
2215 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2218 atomic_long_add(x, &pn->lruvec_stat[i]);
2219 } while ((pn = parent_nodeinfo(pn, nid)));
2223 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2226 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2228 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2229 atomic_long_add(x, &memcg->vmevents[i]);
2236 static void reclaim_high(struct mem_cgroup *memcg,
2237 unsigned int nr_pages,
2241 if (page_counter_read(&memcg->memory) <= memcg->high)
2243 memcg_memory_event(memcg, MEMCG_HIGH);
2244 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2245 } while ((memcg = parent_mem_cgroup(memcg)));
2248 static void high_work_func(struct work_struct *work)
2250 struct mem_cgroup *memcg;
2252 memcg = container_of(work, struct mem_cgroup, high_work);
2253 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2257 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2258 * enough to still cause a significant slowdown in most cases, while still
2259 * allowing diagnostics and tracing to proceed without becoming stuck.
2261 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2264 * When calculating the delay, we use these either side of the exponentiation to
2265 * maintain precision and scale to a reasonable number of jiffies (see the table
2268 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2269 * overage ratio to a delay.
2270 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2271 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2272 * to produce a reasonable delay curve.
2274 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2275 * reasonable delay curve compared to precision-adjusted overage, not
2276 * penalising heavily at first, but still making sure that growth beyond the
2277 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2278 * example, with a high of 100 megabytes:
2280 * +-------+------------------------+
2281 * | usage | time to allocate in ms |
2282 * +-------+------------------------+
2304 * +-------+------------------------+
2306 #define MEMCG_DELAY_PRECISION_SHIFT 20
2307 #define MEMCG_DELAY_SCALING_SHIFT 14
2310 * Get the number of jiffies that we should penalise a mischievous cgroup which
2311 * is exceeding its memory.high by checking both it and its ancestors.
2313 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2314 unsigned int nr_pages)
2316 unsigned long penalty_jiffies;
2317 u64 max_overage = 0;
2320 unsigned long usage, high;
2323 usage = page_counter_read(&memcg->memory);
2324 high = READ_ONCE(memcg->high);
2327 * Prevent division by 0 in overage calculation by acting as if
2328 * it was a threshold of 1 page
2330 high = max(high, 1UL);
2332 overage = usage - high;
2333 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2334 overage = div64_u64(overage, high);
2336 if (overage > max_overage)
2337 max_overage = overage;
2338 } while ((memcg = parent_mem_cgroup(memcg)) &&
2339 !mem_cgroup_is_root(memcg));
2345 * We use overage compared to memory.high to calculate the number of
2346 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2347 * fairly lenient on small overages, and increasingly harsh when the
2348 * memcg in question makes it clear that it has no intention of stopping
2349 * its crazy behaviour, so we exponentially increase the delay based on
2352 penalty_jiffies = max_overage * max_overage * HZ;
2353 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2354 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2357 * Factor in the task's own contribution to the overage, such that four
2358 * N-sized allocations are throttled approximately the same as one
2359 * 4N-sized allocation.
2361 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2362 * larger the current charge patch is than that.
2364 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2367 * Clamp the max delay per usermode return so as to still keep the
2368 * application moving forwards and also permit diagnostics, albeit
2371 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2375 * Scheduled by try_charge() to be executed from the userland return path
2376 * and reclaims memory over the high limit.
2378 void mem_cgroup_handle_over_high(void)
2380 unsigned long penalty_jiffies;
2381 unsigned long pflags;
2382 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2383 struct mem_cgroup *memcg;
2385 if (likely(!nr_pages))
2388 memcg = get_mem_cgroup_from_mm(current->mm);
2389 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2390 current->memcg_nr_pages_over_high = 0;
2393 * memory.high is breached and reclaim is unable to keep up. Throttle
2394 * allocators proactively to slow down excessive growth.
2396 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2399 * Don't sleep if the amount of jiffies this memcg owes us is so low
2400 * that it's not even worth doing, in an attempt to be nice to those who
2401 * go only a small amount over their memory.high value and maybe haven't
2402 * been aggressively reclaimed enough yet.
2404 if (penalty_jiffies <= HZ / 100)
2408 * If we exit early, we're guaranteed to die (since
2409 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2410 * need to account for any ill-begotten jiffies to pay them off later.
2412 psi_memstall_enter(&pflags);
2413 schedule_timeout_killable(penalty_jiffies);
2414 psi_memstall_leave(&pflags);
2417 css_put(&memcg->css);
2420 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2421 unsigned int nr_pages)
2423 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2424 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2425 struct mem_cgroup *mem_over_limit;
2426 struct page_counter *counter;
2427 unsigned long nr_reclaimed;
2428 bool may_swap = true;
2429 bool drained = false;
2430 enum oom_status oom_status;
2432 if (mem_cgroup_is_root(memcg))
2435 if (consume_stock(memcg, nr_pages))
2438 if (!do_memsw_account() ||
2439 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2440 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2442 if (do_memsw_account())
2443 page_counter_uncharge(&memcg->memsw, batch);
2444 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2446 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2450 if (batch > nr_pages) {
2456 * Memcg doesn't have a dedicated reserve for atomic
2457 * allocations. But like the global atomic pool, we need to
2458 * put the burden of reclaim on regular allocation requests
2459 * and let these go through as privileged allocations.
2461 if (gfp_mask & __GFP_ATOMIC)
2465 * Unlike in global OOM situations, memcg is not in a physical
2466 * memory shortage. Allow dying and OOM-killed tasks to
2467 * bypass the last charges so that they can exit quickly and
2468 * free their memory.
2470 if (unlikely(should_force_charge()))
2474 * Prevent unbounded recursion when reclaim operations need to
2475 * allocate memory. This might exceed the limits temporarily,
2476 * but we prefer facilitating memory reclaim and getting back
2477 * under the limit over triggering OOM kills in these cases.
2479 if (unlikely(current->flags & PF_MEMALLOC))
2482 if (unlikely(task_in_memcg_oom(current)))
2485 if (!gfpflags_allow_blocking(gfp_mask))
2488 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2490 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2491 gfp_mask, may_swap);
2493 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2497 drain_all_stock(mem_over_limit);
2502 if (gfp_mask & __GFP_NORETRY)
2505 * Even though the limit is exceeded at this point, reclaim
2506 * may have been able to free some pages. Retry the charge
2507 * before killing the task.
2509 * Only for regular pages, though: huge pages are rather
2510 * unlikely to succeed so close to the limit, and we fall back
2511 * to regular pages anyway in case of failure.
2513 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2516 * At task move, charge accounts can be doubly counted. So, it's
2517 * better to wait until the end of task_move if something is going on.
2519 if (mem_cgroup_wait_acct_move(mem_over_limit))
2525 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2528 if (gfp_mask & __GFP_NOFAIL)
2531 if (fatal_signal_pending(current))
2535 * keep retrying as long as the memcg oom killer is able to make
2536 * a forward progress or bypass the charge if the oom killer
2537 * couldn't make any progress.
2539 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2540 get_order(nr_pages * PAGE_SIZE));
2541 switch (oom_status) {
2543 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2551 if (!(gfp_mask & __GFP_NOFAIL))
2555 * The allocation either can't fail or will lead to more memory
2556 * being freed very soon. Allow memory usage go over the limit
2557 * temporarily by force charging it.
2559 page_counter_charge(&memcg->memory, nr_pages);
2560 if (do_memsw_account())
2561 page_counter_charge(&memcg->memsw, nr_pages);
2562 css_get_many(&memcg->css, nr_pages);
2567 css_get_many(&memcg->css, batch);
2568 if (batch > nr_pages)
2569 refill_stock(memcg, batch - nr_pages);
2572 * If the hierarchy is above the normal consumption range, schedule
2573 * reclaim on returning to userland. We can perform reclaim here
2574 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2575 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2576 * not recorded as it most likely matches current's and won't
2577 * change in the meantime. As high limit is checked again before
2578 * reclaim, the cost of mismatch is negligible.
2581 if (page_counter_read(&memcg->memory) > memcg->high) {
2582 /* Don't bother a random interrupted task */
2583 if (in_interrupt()) {
2584 schedule_work(&memcg->high_work);
2587 current->memcg_nr_pages_over_high += batch;
2588 set_notify_resume(current);
2591 } while ((memcg = parent_mem_cgroup(memcg)));
2596 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2598 if (mem_cgroup_is_root(memcg))
2601 page_counter_uncharge(&memcg->memory, nr_pages);
2602 if (do_memsw_account())
2603 page_counter_uncharge(&memcg->memsw, nr_pages);
2605 css_put_many(&memcg->css, nr_pages);
2608 static void lock_page_lru(struct page *page, int *isolated)
2610 pg_data_t *pgdat = page_pgdat(page);
2612 spin_lock_irq(&pgdat->lru_lock);
2613 if (PageLRU(page)) {
2614 struct lruvec *lruvec;
2616 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2618 del_page_from_lru_list(page, lruvec, page_lru(page));
2624 static void unlock_page_lru(struct page *page, int isolated)
2626 pg_data_t *pgdat = page_pgdat(page);
2629 struct lruvec *lruvec;
2631 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2632 VM_BUG_ON_PAGE(PageLRU(page), page);
2634 add_page_to_lru_list(page, lruvec, page_lru(page));
2636 spin_unlock_irq(&pgdat->lru_lock);
2639 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2644 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2647 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2648 * may already be on some other mem_cgroup's LRU. Take care of it.
2651 lock_page_lru(page, &isolated);
2654 * Nobody should be changing or seriously looking at
2655 * page->mem_cgroup at this point:
2657 * - the page is uncharged
2659 * - the page is off-LRU
2661 * - an anonymous fault has exclusive page access, except for
2662 * a locked page table
2664 * - a page cache insertion, a swapin fault, or a migration
2665 * have the page locked
2667 page->mem_cgroup = memcg;
2670 unlock_page_lru(page, isolated);
2673 #ifdef CONFIG_MEMCG_KMEM
2675 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2677 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2678 * cgroup_mutex, etc.
2680 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2684 if (mem_cgroup_disabled())
2687 page = virt_to_head_page(p);
2690 * Slab pages don't have page->mem_cgroup set because corresponding
2691 * kmem caches can be reparented during the lifetime. That's why
2692 * memcg_from_slab_page() should be used instead.
2695 return memcg_from_slab_page(page);
2697 /* All other pages use page->mem_cgroup */
2698 return page->mem_cgroup;
2701 static int memcg_alloc_cache_id(void)
2706 id = ida_simple_get(&memcg_cache_ida,
2707 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2711 if (id < memcg_nr_cache_ids)
2715 * There's no space for the new id in memcg_caches arrays,
2716 * so we have to grow them.
2718 down_write(&memcg_cache_ids_sem);
2720 size = 2 * (id + 1);
2721 if (size < MEMCG_CACHES_MIN_SIZE)
2722 size = MEMCG_CACHES_MIN_SIZE;
2723 else if (size > MEMCG_CACHES_MAX_SIZE)
2724 size = MEMCG_CACHES_MAX_SIZE;
2726 err = memcg_update_all_caches(size);
2728 err = memcg_update_all_list_lrus(size);
2730 memcg_nr_cache_ids = size;
2732 up_write(&memcg_cache_ids_sem);
2735 ida_simple_remove(&memcg_cache_ida, id);
2741 static void memcg_free_cache_id(int id)
2743 ida_simple_remove(&memcg_cache_ida, id);
2746 struct memcg_kmem_cache_create_work {
2747 struct mem_cgroup *memcg;
2748 struct kmem_cache *cachep;
2749 struct work_struct work;
2752 static void memcg_kmem_cache_create_func(struct work_struct *w)
2754 struct memcg_kmem_cache_create_work *cw =
2755 container_of(w, struct memcg_kmem_cache_create_work, work);
2756 struct mem_cgroup *memcg = cw->memcg;
2757 struct kmem_cache *cachep = cw->cachep;
2759 memcg_create_kmem_cache(memcg, cachep);
2761 css_put(&memcg->css);
2766 * Enqueue the creation of a per-memcg kmem_cache.
2768 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2769 struct kmem_cache *cachep)
2771 struct memcg_kmem_cache_create_work *cw;
2773 if (!css_tryget_online(&memcg->css))
2776 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2781 cw->cachep = cachep;
2782 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2784 queue_work(memcg_kmem_cache_wq, &cw->work);
2787 static inline bool memcg_kmem_bypass(void)
2789 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2795 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2796 * @cachep: the original global kmem cache
2798 * Return the kmem_cache we're supposed to use for a slab allocation.
2799 * We try to use the current memcg's version of the cache.
2801 * If the cache does not exist yet, if we are the first user of it, we
2802 * create it asynchronously in a workqueue and let the current allocation
2803 * go through with the original cache.
2805 * This function takes a reference to the cache it returns to assure it
2806 * won't get destroyed while we are working with it. Once the caller is
2807 * done with it, memcg_kmem_put_cache() must be called to release the
2810 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2812 struct mem_cgroup *memcg;
2813 struct kmem_cache *memcg_cachep;
2814 struct memcg_cache_array *arr;
2817 VM_BUG_ON(!is_root_cache(cachep));
2819 if (memcg_kmem_bypass())
2824 if (unlikely(current->active_memcg))
2825 memcg = current->active_memcg;
2827 memcg = mem_cgroup_from_task(current);
2829 if (!memcg || memcg == root_mem_cgroup)
2832 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2836 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2839 * Make sure we will access the up-to-date value. The code updating
2840 * memcg_caches issues a write barrier to match the data dependency
2841 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2843 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2846 * If we are in a safe context (can wait, and not in interrupt
2847 * context), we could be be predictable and return right away.
2848 * This would guarantee that the allocation being performed
2849 * already belongs in the new cache.
2851 * However, there are some clashes that can arrive from locking.
2852 * For instance, because we acquire the slab_mutex while doing
2853 * memcg_create_kmem_cache, this means no further allocation
2854 * could happen with the slab_mutex held. So it's better to
2857 * If the memcg is dying or memcg_cache is about to be released,
2858 * don't bother creating new kmem_caches. Because memcg_cachep
2859 * is ZEROed as the fist step of kmem offlining, we don't need
2860 * percpu_ref_tryget_live() here. css_tryget_online() check in
2861 * memcg_schedule_kmem_cache_create() will prevent us from
2862 * creation of a new kmem_cache.
2864 if (unlikely(!memcg_cachep))
2865 memcg_schedule_kmem_cache_create(memcg, cachep);
2866 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2867 cachep = memcg_cachep;
2874 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2875 * @cachep: the cache returned by memcg_kmem_get_cache
2877 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2879 if (!is_root_cache(cachep))
2880 percpu_ref_put(&cachep->memcg_params.refcnt);
2884 * __memcg_kmem_charge_memcg: charge a kmem page
2885 * @page: page to charge
2886 * @gfp: reclaim mode
2887 * @order: allocation order
2888 * @memcg: memory cgroup to charge
2890 * Returns 0 on success, an error code on failure.
2892 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2893 struct mem_cgroup *memcg)
2895 unsigned int nr_pages = 1 << order;
2896 struct page_counter *counter;
2899 ret = try_charge(memcg, gfp, nr_pages);
2903 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2904 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2907 * Enforce __GFP_NOFAIL allocation because callers are not
2908 * prepared to see failures and likely do not have any failure
2911 if (gfp & __GFP_NOFAIL) {
2912 page_counter_charge(&memcg->kmem, nr_pages);
2915 cancel_charge(memcg, nr_pages);
2922 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2923 * @page: page to charge
2924 * @gfp: reclaim mode
2925 * @order: allocation order
2927 * Returns 0 on success, an error code on failure.
2929 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2931 struct mem_cgroup *memcg;
2934 if (memcg_kmem_bypass())
2937 memcg = get_mem_cgroup_from_current();
2938 if (!mem_cgroup_is_root(memcg)) {
2939 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2941 page->mem_cgroup = memcg;
2942 __SetPageKmemcg(page);
2945 css_put(&memcg->css);
2950 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2951 * @memcg: memcg to uncharge
2952 * @nr_pages: number of pages to uncharge
2954 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2955 unsigned int nr_pages)
2957 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2958 page_counter_uncharge(&memcg->kmem, nr_pages);
2960 page_counter_uncharge(&memcg->memory, nr_pages);
2961 if (do_memsw_account())
2962 page_counter_uncharge(&memcg->memsw, nr_pages);
2965 * __memcg_kmem_uncharge: uncharge a kmem page
2966 * @page: page to uncharge
2967 * @order: allocation order
2969 void __memcg_kmem_uncharge(struct page *page, int order)
2971 struct mem_cgroup *memcg = page->mem_cgroup;
2972 unsigned int nr_pages = 1 << order;
2977 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2978 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2979 page->mem_cgroup = NULL;
2981 /* slab pages do not have PageKmemcg flag set */
2982 if (PageKmemcg(page))
2983 __ClearPageKmemcg(page);
2985 css_put_many(&memcg->css, nr_pages);
2987 #endif /* CONFIG_MEMCG_KMEM */
2989 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2992 * Because tail pages are not marked as "used", set it. We're under
2993 * pgdat->lru_lock and migration entries setup in all page mappings.
2995 void mem_cgroup_split_huge_fixup(struct page *head)
2999 if (mem_cgroup_disabled())
3002 for (i = 1; i < HPAGE_PMD_NR; i++)
3003 head[i].mem_cgroup = head->mem_cgroup;
3005 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3007 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009 #ifdef CONFIG_MEMCG_SWAP
3011 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3012 * @entry: swap entry to be moved
3013 * @from: mem_cgroup which the entry is moved from
3014 * @to: mem_cgroup which the entry is moved to
3016 * It succeeds only when the swap_cgroup's record for this entry is the same
3017 * as the mem_cgroup's id of @from.
3019 * Returns 0 on success, -EINVAL on failure.
3021 * The caller must have charged to @to, IOW, called page_counter_charge() about
3022 * both res and memsw, and called css_get().
3024 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3025 struct mem_cgroup *from, struct mem_cgroup *to)
3027 unsigned short old_id, new_id;
3029 old_id = mem_cgroup_id(from);
3030 new_id = mem_cgroup_id(to);
3032 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3033 mod_memcg_state(from, MEMCG_SWAP, -1);
3034 mod_memcg_state(to, MEMCG_SWAP, 1);
3040 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3041 struct mem_cgroup *from, struct mem_cgroup *to)
3047 static DEFINE_MUTEX(memcg_max_mutex);
3049 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3050 unsigned long max, bool memsw)
3052 bool enlarge = false;
3053 bool drained = false;
3055 bool limits_invariant;
3056 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3059 if (signal_pending(current)) {
3064 mutex_lock(&memcg_max_mutex);
3066 * Make sure that the new limit (memsw or memory limit) doesn't
3067 * break our basic invariant rule memory.max <= memsw.max.
3069 limits_invariant = memsw ? max >= memcg->memory.max :
3070 max <= memcg->memsw.max;
3071 if (!limits_invariant) {
3072 mutex_unlock(&memcg_max_mutex);
3076 if (max > counter->max)
3078 ret = page_counter_set_max(counter, max);
3079 mutex_unlock(&memcg_max_mutex);
3085 drain_all_stock(memcg);
3090 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3091 GFP_KERNEL, !memsw)) {
3097 if (!ret && enlarge)
3098 memcg_oom_recover(memcg);
3103 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3105 unsigned long *total_scanned)
3107 unsigned long nr_reclaimed = 0;
3108 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3109 unsigned long reclaimed;
3111 struct mem_cgroup_tree_per_node *mctz;
3112 unsigned long excess;
3113 unsigned long nr_scanned;
3118 mctz = soft_limit_tree_node(pgdat->node_id);
3121 * Do not even bother to check the largest node if the root
3122 * is empty. Do it lockless to prevent lock bouncing. Races
3123 * are acceptable as soft limit is best effort anyway.
3125 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3129 * This loop can run a while, specially if mem_cgroup's continuously
3130 * keep exceeding their soft limit and putting the system under
3137 mz = mem_cgroup_largest_soft_limit_node(mctz);
3142 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3143 gfp_mask, &nr_scanned);
3144 nr_reclaimed += reclaimed;
3145 *total_scanned += nr_scanned;
3146 spin_lock_irq(&mctz->lock);
3147 __mem_cgroup_remove_exceeded(mz, mctz);
3150 * If we failed to reclaim anything from this memory cgroup
3151 * it is time to move on to the next cgroup
3155 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3157 excess = soft_limit_excess(mz->memcg);
3159 * One school of thought says that we should not add
3160 * back the node to the tree if reclaim returns 0.
3161 * But our reclaim could return 0, simply because due
3162 * to priority we are exposing a smaller subset of
3163 * memory to reclaim from. Consider this as a longer
3166 /* If excess == 0, no tree ops */
3167 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3168 spin_unlock_irq(&mctz->lock);
3169 css_put(&mz->memcg->css);
3172 * Could not reclaim anything and there are no more
3173 * mem cgroups to try or we seem to be looping without
3174 * reclaiming anything.
3176 if (!nr_reclaimed &&
3178 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3180 } while (!nr_reclaimed);
3182 css_put(&next_mz->memcg->css);
3183 return nr_reclaimed;
3187 * Test whether @memcg has children, dead or alive. Note that this
3188 * function doesn't care whether @memcg has use_hierarchy enabled and
3189 * returns %true if there are child csses according to the cgroup
3190 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3192 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3197 ret = css_next_child(NULL, &memcg->css);
3203 * Reclaims as many pages from the given memcg as possible.
3205 * Caller is responsible for holding css reference for memcg.
3207 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3209 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3211 /* we call try-to-free pages for make this cgroup empty */
3212 lru_add_drain_all();
3214 drain_all_stock(memcg);
3216 /* try to free all pages in this cgroup */
3217 while (nr_retries && page_counter_read(&memcg->memory)) {
3220 if (signal_pending(current))
3223 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3227 /* maybe some writeback is necessary */
3228 congestion_wait(BLK_RW_ASYNC, HZ/10);
3236 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3237 char *buf, size_t nbytes,
3240 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242 if (mem_cgroup_is_root(memcg))
3244 return mem_cgroup_force_empty(memcg) ?: nbytes;
3247 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3250 return mem_cgroup_from_css(css)->use_hierarchy;
3253 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3254 struct cftype *cft, u64 val)
3257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3258 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3260 if (memcg->use_hierarchy == val)
3264 * If parent's use_hierarchy is set, we can't make any modifications
3265 * in the child subtrees. If it is unset, then the change can
3266 * occur, provided the current cgroup has no children.
3268 * For the root cgroup, parent_mem is NULL, we allow value to be
3269 * set if there are no children.
3271 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3272 (val == 1 || val == 0)) {
3273 if (!memcg_has_children(memcg))
3274 memcg->use_hierarchy = val;
3283 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3287 if (mem_cgroup_is_root(memcg)) {
3288 val = memcg_page_state(memcg, MEMCG_CACHE) +
3289 memcg_page_state(memcg, MEMCG_RSS);
3291 val += memcg_page_state(memcg, MEMCG_SWAP);
3294 val = page_counter_read(&memcg->memory);
3296 val = page_counter_read(&memcg->memsw);
3309 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3313 struct page_counter *counter;
3315 switch (MEMFILE_TYPE(cft->private)) {
3317 counter = &memcg->memory;
3320 counter = &memcg->memsw;
3323 counter = &memcg->kmem;
3326 counter = &memcg->tcpmem;
3332 switch (MEMFILE_ATTR(cft->private)) {
3334 if (counter == &memcg->memory)
3335 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3336 if (counter == &memcg->memsw)
3337 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3338 return (u64)page_counter_read(counter) * PAGE_SIZE;
3340 return (u64)counter->max * PAGE_SIZE;
3342 return (u64)counter->watermark * PAGE_SIZE;
3344 return counter->failcnt;
3345 case RES_SOFT_LIMIT:
3346 return (u64)memcg->soft_limit * PAGE_SIZE;
3352 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3354 unsigned long stat[MEMCG_NR_STAT] = {0};
3355 struct mem_cgroup *mi;
3358 for_each_online_cpu(cpu)
3359 for (i = 0; i < MEMCG_NR_STAT; i++)
3360 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3362 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3363 for (i = 0; i < MEMCG_NR_STAT; i++)
3364 atomic_long_add(stat[i], &mi->vmstats[i]);
3366 for_each_node(node) {
3367 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3368 struct mem_cgroup_per_node *pi;
3370 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3373 for_each_online_cpu(cpu)
3374 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3376 pn->lruvec_stat_cpu->count[i], cpu);
3378 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3379 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3380 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3384 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3386 unsigned long events[NR_VM_EVENT_ITEMS];
3387 struct mem_cgroup *mi;
3390 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3393 for_each_online_cpu(cpu)
3394 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3395 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3398 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3399 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3400 atomic_long_add(events[i], &mi->vmevents[i]);
3403 #ifdef CONFIG_MEMCG_KMEM
3404 static int memcg_online_kmem(struct mem_cgroup *memcg)
3408 if (cgroup_memory_nokmem)
3411 BUG_ON(memcg->kmemcg_id >= 0);
3412 BUG_ON(memcg->kmem_state);
3414 memcg_id = memcg_alloc_cache_id();
3418 static_branch_inc(&memcg_kmem_enabled_key);
3420 * A memory cgroup is considered kmem-online as soon as it gets
3421 * kmemcg_id. Setting the id after enabling static branching will
3422 * guarantee no one starts accounting before all call sites are
3425 memcg->kmemcg_id = memcg_id;
3426 memcg->kmem_state = KMEM_ONLINE;
3427 INIT_LIST_HEAD(&memcg->kmem_caches);
3432 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3434 struct cgroup_subsys_state *css;
3435 struct mem_cgroup *parent, *child;
3438 if (memcg->kmem_state != KMEM_ONLINE)
3441 * Clear the online state before clearing memcg_caches array
3442 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3443 * guarantees that no cache will be created for this cgroup
3444 * after we are done (see memcg_create_kmem_cache()).
3446 memcg->kmem_state = KMEM_ALLOCATED;
3448 parent = parent_mem_cgroup(memcg);
3450 parent = root_mem_cgroup;
3453 * Deactivate and reparent kmem_caches.
3455 memcg_deactivate_kmem_caches(memcg, parent);
3457 kmemcg_id = memcg->kmemcg_id;
3458 BUG_ON(kmemcg_id < 0);
3461 * Change kmemcg_id of this cgroup and all its descendants to the
3462 * parent's id, and then move all entries from this cgroup's list_lrus
3463 * to ones of the parent. After we have finished, all list_lrus
3464 * corresponding to this cgroup are guaranteed to remain empty. The
3465 * ordering is imposed by list_lru_node->lock taken by
3466 * memcg_drain_all_list_lrus().
3468 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3469 css_for_each_descendant_pre(css, &memcg->css) {
3470 child = mem_cgroup_from_css(css);
3471 BUG_ON(child->kmemcg_id != kmemcg_id);
3472 child->kmemcg_id = parent->kmemcg_id;
3473 if (!memcg->use_hierarchy)
3478 memcg_drain_all_list_lrus(kmemcg_id, parent);
3480 memcg_free_cache_id(kmemcg_id);
3483 static void memcg_free_kmem(struct mem_cgroup *memcg)
3485 /* css_alloc() failed, offlining didn't happen */
3486 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3487 memcg_offline_kmem(memcg);
3489 if (memcg->kmem_state == KMEM_ALLOCATED) {
3490 WARN_ON(!list_empty(&memcg->kmem_caches));
3491 static_branch_dec(&memcg_kmem_enabled_key);
3495 static int memcg_online_kmem(struct mem_cgroup *memcg)
3499 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3502 static void memcg_free_kmem(struct mem_cgroup *memcg)
3505 #endif /* CONFIG_MEMCG_KMEM */
3507 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3512 mutex_lock(&memcg_max_mutex);
3513 ret = page_counter_set_max(&memcg->kmem, max);
3514 mutex_unlock(&memcg_max_mutex);
3518 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3522 mutex_lock(&memcg_max_mutex);
3524 ret = page_counter_set_max(&memcg->tcpmem, max);
3528 if (!memcg->tcpmem_active) {
3530 * The active flag needs to be written after the static_key
3531 * update. This is what guarantees that the socket activation
3532 * function is the last one to run. See mem_cgroup_sk_alloc()
3533 * for details, and note that we don't mark any socket as
3534 * belonging to this memcg until that flag is up.
3536 * We need to do this, because static_keys will span multiple
3537 * sites, but we can't control their order. If we mark a socket
3538 * as accounted, but the accounting functions are not patched in
3539 * yet, we'll lose accounting.
3541 * We never race with the readers in mem_cgroup_sk_alloc(),
3542 * because when this value change, the code to process it is not
3545 static_branch_inc(&memcg_sockets_enabled_key);
3546 memcg->tcpmem_active = true;
3549 mutex_unlock(&memcg_max_mutex);
3554 * The user of this function is...
3557 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3558 char *buf, size_t nbytes, loff_t off)
3560 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3561 unsigned long nr_pages;
3564 buf = strstrip(buf);
3565 ret = page_counter_memparse(buf, "-1", &nr_pages);
3569 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3571 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3575 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3577 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3580 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3583 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3584 "Please report your usecase to linux-mm@kvack.org if you "
3585 "depend on this functionality.\n");
3586 ret = memcg_update_kmem_max(memcg, nr_pages);
3589 ret = memcg_update_tcp_max(memcg, nr_pages);
3593 case RES_SOFT_LIMIT:
3594 memcg->soft_limit = nr_pages;
3598 return ret ?: nbytes;
3601 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3602 size_t nbytes, loff_t off)
3604 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3605 struct page_counter *counter;
3607 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3609 counter = &memcg->memory;
3612 counter = &memcg->memsw;
3615 counter = &memcg->kmem;
3618 counter = &memcg->tcpmem;
3624 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3626 page_counter_reset_watermark(counter);
3629 counter->failcnt = 0;
3638 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3641 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3645 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3646 struct cftype *cft, u64 val)
3648 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650 if (val & ~MOVE_MASK)
3654 * No kind of locking is needed in here, because ->can_attach() will
3655 * check this value once in the beginning of the process, and then carry
3656 * on with stale data. This means that changes to this value will only
3657 * affect task migrations starting after the change.
3659 memcg->move_charge_at_immigrate = val;
3663 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3664 struct cftype *cft, u64 val)
3672 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3673 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3674 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3676 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3677 int nid, unsigned int lru_mask)
3679 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3680 unsigned long nr = 0;
3683 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3686 if (!(BIT(lru) & lru_mask))
3688 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3693 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3694 unsigned int lru_mask)
3696 unsigned long nr = 0;
3700 if (!(BIT(lru) & lru_mask))
3702 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3707 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3711 unsigned int lru_mask;
3714 static const struct numa_stat stats[] = {
3715 { "total", LRU_ALL },
3716 { "file", LRU_ALL_FILE },
3717 { "anon", LRU_ALL_ANON },
3718 { "unevictable", BIT(LRU_UNEVICTABLE) },
3720 const struct numa_stat *stat;
3723 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3725 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3726 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3727 seq_printf(m, "%s=%lu", stat->name, nr);
3728 for_each_node_state(nid, N_MEMORY) {
3729 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3731 seq_printf(m, " N%d=%lu", nid, nr);
3736 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3737 struct mem_cgroup *iter;
3740 for_each_mem_cgroup_tree(iter, memcg)
3741 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3742 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3743 for_each_node_state(nid, N_MEMORY) {
3745 for_each_mem_cgroup_tree(iter, memcg)
3746 nr += mem_cgroup_node_nr_lru_pages(
3747 iter, nid, stat->lru_mask);
3748 seq_printf(m, " N%d=%lu", nid, nr);
3755 #endif /* CONFIG_NUMA */
3757 static const unsigned int memcg1_stats[] = {
3768 static const char *const memcg1_stat_names[] = {
3779 /* Universal VM events cgroup1 shows, original sort order */
3780 static const unsigned int memcg1_events[] = {
3787 static int memcg_stat_show(struct seq_file *m, void *v)
3789 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3790 unsigned long memory, memsw;
3791 struct mem_cgroup *mi;
3794 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3796 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3797 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3799 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3800 memcg_page_state_local(memcg, memcg1_stats[i]) *
3804 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3805 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3806 memcg_events_local(memcg, memcg1_events[i]));
3808 for (i = 0; i < NR_LRU_LISTS; i++)
3809 seq_printf(m, "%s %lu\n", lru_list_name(i),
3810 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3813 /* Hierarchical information */
3814 memory = memsw = PAGE_COUNTER_MAX;
3815 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3816 memory = min(memory, mi->memory.max);
3817 memsw = min(memsw, mi->memsw.max);
3819 seq_printf(m, "hierarchical_memory_limit %llu\n",
3820 (u64)memory * PAGE_SIZE);
3821 if (do_memsw_account())
3822 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3823 (u64)memsw * PAGE_SIZE);
3825 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3826 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3828 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3829 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3833 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3834 seq_printf(m, "total_%s %llu\n",
3835 vm_event_name(memcg1_events[i]),
3836 (u64)memcg_events(memcg, memcg1_events[i]));
3838 for (i = 0; i < NR_LRU_LISTS; i++)
3839 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3840 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3843 #ifdef CONFIG_DEBUG_VM
3846 struct mem_cgroup_per_node *mz;
3847 struct zone_reclaim_stat *rstat;
3848 unsigned long recent_rotated[2] = {0, 0};
3849 unsigned long recent_scanned[2] = {0, 0};
3851 for_each_online_pgdat(pgdat) {
3852 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3853 rstat = &mz->lruvec.reclaim_stat;
3855 recent_rotated[0] += rstat->recent_rotated[0];
3856 recent_rotated[1] += rstat->recent_rotated[1];
3857 recent_scanned[0] += rstat->recent_scanned[0];
3858 recent_scanned[1] += rstat->recent_scanned[1];
3860 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3861 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3862 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3863 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3870 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3875 return mem_cgroup_swappiness(memcg);
3878 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3879 struct cftype *cft, u64 val)
3881 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3887 memcg->swappiness = val;
3889 vm_swappiness = val;
3894 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3896 struct mem_cgroup_threshold_ary *t;
3897 unsigned long usage;
3902 t = rcu_dereference(memcg->thresholds.primary);
3904 t = rcu_dereference(memcg->memsw_thresholds.primary);
3909 usage = mem_cgroup_usage(memcg, swap);
3912 * current_threshold points to threshold just below or equal to usage.
3913 * If it's not true, a threshold was crossed after last
3914 * call of __mem_cgroup_threshold().
3916 i = t->current_threshold;
3919 * Iterate backward over array of thresholds starting from
3920 * current_threshold and check if a threshold is crossed.
3921 * If none of thresholds below usage is crossed, we read
3922 * only one element of the array here.
3924 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3925 eventfd_signal(t->entries[i].eventfd, 1);
3927 /* i = current_threshold + 1 */
3931 * Iterate forward over array of thresholds starting from
3932 * current_threshold+1 and check if a threshold is crossed.
3933 * If none of thresholds above usage is crossed, we read
3934 * only one element of the array here.
3936 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3937 eventfd_signal(t->entries[i].eventfd, 1);
3939 /* Update current_threshold */
3940 t->current_threshold = i - 1;
3945 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3948 __mem_cgroup_threshold(memcg, false);
3949 if (do_memsw_account())
3950 __mem_cgroup_threshold(memcg, true);
3952 memcg = parent_mem_cgroup(memcg);
3956 static int compare_thresholds(const void *a, const void *b)
3958 const struct mem_cgroup_threshold *_a = a;
3959 const struct mem_cgroup_threshold *_b = b;
3961 if (_a->threshold > _b->threshold)
3964 if (_a->threshold < _b->threshold)
3970 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3972 struct mem_cgroup_eventfd_list *ev;
3974 spin_lock(&memcg_oom_lock);
3976 list_for_each_entry(ev, &memcg->oom_notify, list)
3977 eventfd_signal(ev->eventfd, 1);
3979 spin_unlock(&memcg_oom_lock);
3983 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3985 struct mem_cgroup *iter;
3987 for_each_mem_cgroup_tree(iter, memcg)
3988 mem_cgroup_oom_notify_cb(iter);
3991 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3992 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3994 struct mem_cgroup_thresholds *thresholds;
3995 struct mem_cgroup_threshold_ary *new;
3996 unsigned long threshold;
3997 unsigned long usage;
4000 ret = page_counter_memparse(args, "-1", &threshold);
4004 mutex_lock(&memcg->thresholds_lock);
4007 thresholds = &memcg->thresholds;
4008 usage = mem_cgroup_usage(memcg, false);
4009 } else if (type == _MEMSWAP) {
4010 thresholds = &memcg->memsw_thresholds;
4011 usage = mem_cgroup_usage(memcg, true);
4015 /* Check if a threshold crossed before adding a new one */
4016 if (thresholds->primary)
4017 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4019 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4021 /* Allocate memory for new array of thresholds */
4022 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4029 /* Copy thresholds (if any) to new array */
4030 if (thresholds->primary) {
4031 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4032 sizeof(struct mem_cgroup_threshold));
4035 /* Add new threshold */
4036 new->entries[size - 1].eventfd = eventfd;
4037 new->entries[size - 1].threshold = threshold;
4039 /* Sort thresholds. Registering of new threshold isn't time-critical */
4040 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4041 compare_thresholds, NULL);
4043 /* Find current threshold */
4044 new->current_threshold = -1;
4045 for (i = 0; i < size; i++) {
4046 if (new->entries[i].threshold <= usage) {
4048 * new->current_threshold will not be used until
4049 * rcu_assign_pointer(), so it's safe to increment
4052 ++new->current_threshold;
4057 /* Free old spare buffer and save old primary buffer as spare */
4058 kfree(thresholds->spare);
4059 thresholds->spare = thresholds->primary;
4061 rcu_assign_pointer(thresholds->primary, new);
4063 /* To be sure that nobody uses thresholds */
4067 mutex_unlock(&memcg->thresholds_lock);
4072 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4073 struct eventfd_ctx *eventfd, const char *args)
4075 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4078 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4079 struct eventfd_ctx *eventfd, const char *args)
4081 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4084 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4085 struct eventfd_ctx *eventfd, enum res_type type)
4087 struct mem_cgroup_thresholds *thresholds;
4088 struct mem_cgroup_threshold_ary *new;
4089 unsigned long usage;
4090 int i, j, size, entries;
4092 mutex_lock(&memcg->thresholds_lock);
4095 thresholds = &memcg->thresholds;
4096 usage = mem_cgroup_usage(memcg, false);
4097 } else if (type == _MEMSWAP) {
4098 thresholds = &memcg->memsw_thresholds;
4099 usage = mem_cgroup_usage(memcg, true);
4103 if (!thresholds->primary)
4106 /* Check if a threshold crossed before removing */
4107 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4109 /* Calculate new number of threshold */
4111 for (i = 0; i < thresholds->primary->size; i++) {
4112 if (thresholds->primary->entries[i].eventfd != eventfd)
4118 new = thresholds->spare;
4120 /* If no items related to eventfd have been cleared, nothing to do */
4124 /* Set thresholds array to NULL if we don't have thresholds */
4133 /* Copy thresholds and find current threshold */
4134 new->current_threshold = -1;
4135 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4136 if (thresholds->primary->entries[i].eventfd == eventfd)
4139 new->entries[j] = thresholds->primary->entries[i];
4140 if (new->entries[j].threshold <= usage) {
4142 * new->current_threshold will not be used
4143 * until rcu_assign_pointer(), so it's safe to increment
4146 ++new->current_threshold;
4152 /* Swap primary and spare array */
4153 thresholds->spare = thresholds->primary;
4155 rcu_assign_pointer(thresholds->primary, new);
4157 /* To be sure that nobody uses thresholds */
4160 /* If all events are unregistered, free the spare array */
4162 kfree(thresholds->spare);
4163 thresholds->spare = NULL;
4166 mutex_unlock(&memcg->thresholds_lock);
4169 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4170 struct eventfd_ctx *eventfd)
4172 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4175 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4176 struct eventfd_ctx *eventfd)
4178 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4181 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4182 struct eventfd_ctx *eventfd, const char *args)
4184 struct mem_cgroup_eventfd_list *event;
4186 event = kmalloc(sizeof(*event), GFP_KERNEL);
4190 spin_lock(&memcg_oom_lock);
4192 event->eventfd = eventfd;
4193 list_add(&event->list, &memcg->oom_notify);
4195 /* already in OOM ? */
4196 if (memcg->under_oom)
4197 eventfd_signal(eventfd, 1);
4198 spin_unlock(&memcg_oom_lock);
4203 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4204 struct eventfd_ctx *eventfd)
4206 struct mem_cgroup_eventfd_list *ev, *tmp;
4208 spin_lock(&memcg_oom_lock);
4210 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4211 if (ev->eventfd == eventfd) {
4212 list_del(&ev->list);
4217 spin_unlock(&memcg_oom_lock);
4220 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4222 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4224 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4225 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4226 seq_printf(sf, "oom_kill %lu\n",
4227 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4231 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4232 struct cftype *cft, u64 val)
4234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4236 /* cannot set to root cgroup and only 0 and 1 are allowed */
4237 if (!css->parent || !((val == 0) || (val == 1)))
4240 memcg->oom_kill_disable = val;
4242 memcg_oom_recover(memcg);
4247 #ifdef CONFIG_CGROUP_WRITEBACK
4249 #include <trace/events/writeback.h>
4251 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4253 return wb_domain_init(&memcg->cgwb_domain, gfp);
4256 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4258 wb_domain_exit(&memcg->cgwb_domain);
4261 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4263 wb_domain_size_changed(&memcg->cgwb_domain);
4266 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4268 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4270 if (!memcg->css.parent)
4273 return &memcg->cgwb_domain;
4277 * idx can be of type enum memcg_stat_item or node_stat_item.
4278 * Keep in sync with memcg_exact_page().
4280 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4282 long x = atomic_long_read(&memcg->vmstats[idx]);
4285 for_each_online_cpu(cpu)
4286 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4293 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4294 * @wb: bdi_writeback in question
4295 * @pfilepages: out parameter for number of file pages
4296 * @pheadroom: out parameter for number of allocatable pages according to memcg
4297 * @pdirty: out parameter for number of dirty pages
4298 * @pwriteback: out parameter for number of pages under writeback
4300 * Determine the numbers of file, headroom, dirty, and writeback pages in
4301 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4302 * is a bit more involved.
4304 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4305 * headroom is calculated as the lowest headroom of itself and the
4306 * ancestors. Note that this doesn't consider the actual amount of
4307 * available memory in the system. The caller should further cap
4308 * *@pheadroom accordingly.
4310 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4311 unsigned long *pheadroom, unsigned long *pdirty,
4312 unsigned long *pwriteback)
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4315 struct mem_cgroup *parent;
4317 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4319 /* this should eventually include NR_UNSTABLE_NFS */
4320 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4321 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4322 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4323 *pheadroom = PAGE_COUNTER_MAX;
4325 while ((parent = parent_mem_cgroup(memcg))) {
4326 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4327 unsigned long used = page_counter_read(&memcg->memory);
4329 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4335 * Foreign dirty flushing
4337 * There's an inherent mismatch between memcg and writeback. The former
4338 * trackes ownership per-page while the latter per-inode. This was a
4339 * deliberate design decision because honoring per-page ownership in the
4340 * writeback path is complicated, may lead to higher CPU and IO overheads
4341 * and deemed unnecessary given that write-sharing an inode across
4342 * different cgroups isn't a common use-case.
4344 * Combined with inode majority-writer ownership switching, this works well
4345 * enough in most cases but there are some pathological cases. For
4346 * example, let's say there are two cgroups A and B which keep writing to
4347 * different but confined parts of the same inode. B owns the inode and
4348 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4349 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4350 * triggering background writeback. A will be slowed down without a way to
4351 * make writeback of the dirty pages happen.
4353 * Conditions like the above can lead to a cgroup getting repatedly and
4354 * severely throttled after making some progress after each
4355 * dirty_expire_interval while the underyling IO device is almost
4358 * Solving this problem completely requires matching the ownership tracking
4359 * granularities between memcg and writeback in either direction. However,
4360 * the more egregious behaviors can be avoided by simply remembering the
4361 * most recent foreign dirtying events and initiating remote flushes on
4362 * them when local writeback isn't enough to keep the memory clean enough.
4364 * The following two functions implement such mechanism. When a foreign
4365 * page - a page whose memcg and writeback ownerships don't match - is
4366 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4367 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4368 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4369 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4370 * foreign bdi_writebacks which haven't expired. Both the numbers of
4371 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4372 * limited to MEMCG_CGWB_FRN_CNT.
4374 * The mechanism only remembers IDs and doesn't hold any object references.
4375 * As being wrong occasionally doesn't matter, updates and accesses to the
4376 * records are lockless and racy.
4378 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4379 struct bdi_writeback *wb)
4381 struct mem_cgroup *memcg = page->mem_cgroup;
4382 struct memcg_cgwb_frn *frn;
4383 u64 now = get_jiffies_64();
4384 u64 oldest_at = now;
4388 trace_track_foreign_dirty(page, wb);
4391 * Pick the slot to use. If there is already a slot for @wb, keep
4392 * using it. If not replace the oldest one which isn't being
4395 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4396 frn = &memcg->cgwb_frn[i];
4397 if (frn->bdi_id == wb->bdi->id &&
4398 frn->memcg_id == wb->memcg_css->id)
4400 if (time_before64(frn->at, oldest_at) &&
4401 atomic_read(&frn->done.cnt) == 1) {
4403 oldest_at = frn->at;
4407 if (i < MEMCG_CGWB_FRN_CNT) {
4409 * Re-using an existing one. Update timestamp lazily to
4410 * avoid making the cacheline hot. We want them to be
4411 * reasonably up-to-date and significantly shorter than
4412 * dirty_expire_interval as that's what expires the record.
4413 * Use the shorter of 1s and dirty_expire_interval / 8.
4415 unsigned long update_intv =
4416 min_t(unsigned long, HZ,
4417 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4419 if (time_before64(frn->at, now - update_intv))
4421 } else if (oldest >= 0) {
4422 /* replace the oldest free one */
4423 frn = &memcg->cgwb_frn[oldest];
4424 frn->bdi_id = wb->bdi->id;
4425 frn->memcg_id = wb->memcg_css->id;
4430 /* issue foreign writeback flushes for recorded foreign dirtying events */
4431 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4433 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4434 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4435 u64 now = jiffies_64;
4438 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4439 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4442 * If the record is older than dirty_expire_interval,
4443 * writeback on it has already started. No need to kick it
4444 * off again. Also, don't start a new one if there's
4445 * already one in flight.
4447 if (time_after64(frn->at, now - intv) &&
4448 atomic_read(&frn->done.cnt) == 1) {
4450 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4451 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4452 WB_REASON_FOREIGN_FLUSH,
4458 #else /* CONFIG_CGROUP_WRITEBACK */
4460 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4465 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4469 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473 #endif /* CONFIG_CGROUP_WRITEBACK */
4476 * DO NOT USE IN NEW FILES.
4478 * "cgroup.event_control" implementation.
4480 * This is way over-engineered. It tries to support fully configurable
4481 * events for each user. Such level of flexibility is completely
4482 * unnecessary especially in the light of the planned unified hierarchy.
4484 * Please deprecate this and replace with something simpler if at all
4489 * Unregister event and free resources.
4491 * Gets called from workqueue.
4493 static void memcg_event_remove(struct work_struct *work)
4495 struct mem_cgroup_event *event =
4496 container_of(work, struct mem_cgroup_event, remove);
4497 struct mem_cgroup *memcg = event->memcg;
4499 remove_wait_queue(event->wqh, &event->wait);
4501 event->unregister_event(memcg, event->eventfd);
4503 /* Notify userspace the event is going away. */
4504 eventfd_signal(event->eventfd, 1);
4506 eventfd_ctx_put(event->eventfd);
4508 css_put(&memcg->css);
4512 * Gets called on EPOLLHUP on eventfd when user closes it.
4514 * Called with wqh->lock held and interrupts disabled.
4516 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4517 int sync, void *key)
4519 struct mem_cgroup_event *event =
4520 container_of(wait, struct mem_cgroup_event, wait);
4521 struct mem_cgroup *memcg = event->memcg;
4522 __poll_t flags = key_to_poll(key);
4524 if (flags & EPOLLHUP) {
4526 * If the event has been detached at cgroup removal, we
4527 * can simply return knowing the other side will cleanup
4530 * We can't race against event freeing since the other
4531 * side will require wqh->lock via remove_wait_queue(),
4534 spin_lock(&memcg->event_list_lock);
4535 if (!list_empty(&event->list)) {
4536 list_del_init(&event->list);
4538 * We are in atomic context, but cgroup_event_remove()
4539 * may sleep, so we have to call it in workqueue.
4541 schedule_work(&event->remove);
4543 spin_unlock(&memcg->event_list_lock);
4549 static void memcg_event_ptable_queue_proc(struct file *file,
4550 wait_queue_head_t *wqh, poll_table *pt)
4552 struct mem_cgroup_event *event =
4553 container_of(pt, struct mem_cgroup_event, pt);
4556 add_wait_queue(wqh, &event->wait);
4560 * DO NOT USE IN NEW FILES.
4562 * Parse input and register new cgroup event handler.
4564 * Input must be in format '<event_fd> <control_fd> <args>'.
4565 * Interpretation of args is defined by control file implementation.
4567 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4568 char *buf, size_t nbytes, loff_t off)
4570 struct cgroup_subsys_state *css = of_css(of);
4571 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4572 struct mem_cgroup_event *event;
4573 struct cgroup_subsys_state *cfile_css;
4574 unsigned int efd, cfd;
4581 buf = strstrip(buf);
4583 efd = simple_strtoul(buf, &endp, 10);
4588 cfd = simple_strtoul(buf, &endp, 10);
4589 if ((*endp != ' ') && (*endp != '\0'))
4593 event = kzalloc(sizeof(*event), GFP_KERNEL);
4597 event->memcg = memcg;
4598 INIT_LIST_HEAD(&event->list);
4599 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4600 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4601 INIT_WORK(&event->remove, memcg_event_remove);
4609 event->eventfd = eventfd_ctx_fileget(efile.file);
4610 if (IS_ERR(event->eventfd)) {
4611 ret = PTR_ERR(event->eventfd);
4618 goto out_put_eventfd;
4621 /* the process need read permission on control file */
4622 /* AV: shouldn't we check that it's been opened for read instead? */
4623 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4628 * Determine the event callbacks and set them in @event. This used
4629 * to be done via struct cftype but cgroup core no longer knows
4630 * about these events. The following is crude but the whole thing
4631 * is for compatibility anyway.
4633 * DO NOT ADD NEW FILES.
4635 name = cfile.file->f_path.dentry->d_name.name;
4637 if (!strcmp(name, "memory.usage_in_bytes")) {
4638 event->register_event = mem_cgroup_usage_register_event;
4639 event->unregister_event = mem_cgroup_usage_unregister_event;
4640 } else if (!strcmp(name, "memory.oom_control")) {
4641 event->register_event = mem_cgroup_oom_register_event;
4642 event->unregister_event = mem_cgroup_oom_unregister_event;
4643 } else if (!strcmp(name, "memory.pressure_level")) {
4644 event->register_event = vmpressure_register_event;
4645 event->unregister_event = vmpressure_unregister_event;
4646 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4647 event->register_event = memsw_cgroup_usage_register_event;
4648 event->unregister_event = memsw_cgroup_usage_unregister_event;
4655 * Verify @cfile should belong to @css. Also, remaining events are
4656 * automatically removed on cgroup destruction but the removal is
4657 * asynchronous, so take an extra ref on @css.
4659 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4660 &memory_cgrp_subsys);
4662 if (IS_ERR(cfile_css))
4664 if (cfile_css != css) {
4669 ret = event->register_event(memcg, event->eventfd, buf);
4673 vfs_poll(efile.file, &event->pt);
4675 spin_lock(&memcg->event_list_lock);
4676 list_add(&event->list, &memcg->event_list);
4677 spin_unlock(&memcg->event_list_lock);
4689 eventfd_ctx_put(event->eventfd);
4698 static struct cftype mem_cgroup_legacy_files[] = {
4700 .name = "usage_in_bytes",
4701 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4702 .read_u64 = mem_cgroup_read_u64,
4705 .name = "max_usage_in_bytes",
4706 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4707 .write = mem_cgroup_reset,
4708 .read_u64 = mem_cgroup_read_u64,
4711 .name = "limit_in_bytes",
4712 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4713 .write = mem_cgroup_write,
4714 .read_u64 = mem_cgroup_read_u64,
4717 .name = "soft_limit_in_bytes",
4718 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4719 .write = mem_cgroup_write,
4720 .read_u64 = mem_cgroup_read_u64,
4724 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4725 .write = mem_cgroup_reset,
4726 .read_u64 = mem_cgroup_read_u64,
4730 .seq_show = memcg_stat_show,
4733 .name = "force_empty",
4734 .write = mem_cgroup_force_empty_write,
4737 .name = "use_hierarchy",
4738 .write_u64 = mem_cgroup_hierarchy_write,
4739 .read_u64 = mem_cgroup_hierarchy_read,
4742 .name = "cgroup.event_control", /* XXX: for compat */
4743 .write = memcg_write_event_control,
4744 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4747 .name = "swappiness",
4748 .read_u64 = mem_cgroup_swappiness_read,
4749 .write_u64 = mem_cgroup_swappiness_write,
4752 .name = "move_charge_at_immigrate",
4753 .read_u64 = mem_cgroup_move_charge_read,
4754 .write_u64 = mem_cgroup_move_charge_write,
4757 .name = "oom_control",
4758 .seq_show = mem_cgroup_oom_control_read,
4759 .write_u64 = mem_cgroup_oom_control_write,
4760 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4763 .name = "pressure_level",
4767 .name = "numa_stat",
4768 .seq_show = memcg_numa_stat_show,
4772 .name = "kmem.limit_in_bytes",
4773 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4774 .write = mem_cgroup_write,
4775 .read_u64 = mem_cgroup_read_u64,
4778 .name = "kmem.usage_in_bytes",
4779 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4780 .read_u64 = mem_cgroup_read_u64,
4783 .name = "kmem.failcnt",
4784 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4785 .write = mem_cgroup_reset,
4786 .read_u64 = mem_cgroup_read_u64,
4789 .name = "kmem.max_usage_in_bytes",
4790 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4791 .write = mem_cgroup_reset,
4792 .read_u64 = mem_cgroup_read_u64,
4794 #if defined(CONFIG_MEMCG_KMEM) && \
4795 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4797 .name = "kmem.slabinfo",
4798 .seq_start = memcg_slab_start,
4799 .seq_next = memcg_slab_next,
4800 .seq_stop = memcg_slab_stop,
4801 .seq_show = memcg_slab_show,
4805 .name = "kmem.tcp.limit_in_bytes",
4806 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4807 .write = mem_cgroup_write,
4808 .read_u64 = mem_cgroup_read_u64,
4811 .name = "kmem.tcp.usage_in_bytes",
4812 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4813 .read_u64 = mem_cgroup_read_u64,
4816 .name = "kmem.tcp.failcnt",
4817 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4818 .write = mem_cgroup_reset,
4819 .read_u64 = mem_cgroup_read_u64,
4822 .name = "kmem.tcp.max_usage_in_bytes",
4823 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4824 .write = mem_cgroup_reset,
4825 .read_u64 = mem_cgroup_read_u64,
4827 { }, /* terminate */
4831 * Private memory cgroup IDR
4833 * Swap-out records and page cache shadow entries need to store memcg
4834 * references in constrained space, so we maintain an ID space that is
4835 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4836 * memory-controlled cgroups to 64k.
4838 * However, there usually are many references to the oflline CSS after
4839 * the cgroup has been destroyed, such as page cache or reclaimable
4840 * slab objects, that don't need to hang on to the ID. We want to keep
4841 * those dead CSS from occupying IDs, or we might quickly exhaust the
4842 * relatively small ID space and prevent the creation of new cgroups
4843 * even when there are much fewer than 64k cgroups - possibly none.
4845 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4846 * be freed and recycled when it's no longer needed, which is usually
4847 * when the CSS is offlined.
4849 * The only exception to that are records of swapped out tmpfs/shmem
4850 * pages that need to be attributed to live ancestors on swapin. But
4851 * those references are manageable from userspace.
4854 static DEFINE_IDR(mem_cgroup_idr);
4856 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4858 if (memcg->id.id > 0) {
4859 idr_remove(&mem_cgroup_idr, memcg->id.id);
4864 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4866 refcount_add(n, &memcg->id.ref);
4869 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4871 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4872 mem_cgroup_id_remove(memcg);
4874 /* Memcg ID pins CSS */
4875 css_put(&memcg->css);
4879 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4881 mem_cgroup_id_put_many(memcg, 1);
4885 * mem_cgroup_from_id - look up a memcg from a memcg id
4886 * @id: the memcg id to look up
4888 * Caller must hold rcu_read_lock().
4890 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4892 WARN_ON_ONCE(!rcu_read_lock_held());
4893 return idr_find(&mem_cgroup_idr, id);
4896 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4898 struct mem_cgroup_per_node *pn;
4901 * This routine is called against possible nodes.
4902 * But it's BUG to call kmalloc() against offline node.
4904 * TODO: this routine can waste much memory for nodes which will
4905 * never be onlined. It's better to use memory hotplug callback
4908 if (!node_state(node, N_NORMAL_MEMORY))
4910 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4914 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4915 if (!pn->lruvec_stat_local) {
4920 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4921 if (!pn->lruvec_stat_cpu) {
4922 free_percpu(pn->lruvec_stat_local);
4927 lruvec_init(&pn->lruvec);
4928 pn->usage_in_excess = 0;
4929 pn->on_tree = false;
4932 memcg->nodeinfo[node] = pn;
4936 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4938 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4943 free_percpu(pn->lruvec_stat_cpu);
4944 free_percpu(pn->lruvec_stat_local);
4948 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4953 free_mem_cgroup_per_node_info(memcg, node);
4954 free_percpu(memcg->vmstats_percpu);
4955 free_percpu(memcg->vmstats_local);
4959 static void mem_cgroup_free(struct mem_cgroup *memcg)
4961 memcg_wb_domain_exit(memcg);
4963 * Flush percpu vmstats and vmevents to guarantee the value correctness
4964 * on parent's and all ancestor levels.
4966 memcg_flush_percpu_vmstats(memcg);
4967 memcg_flush_percpu_vmevents(memcg);
4968 __mem_cgroup_free(memcg);
4971 static struct mem_cgroup *mem_cgroup_alloc(void)
4973 struct mem_cgroup *memcg;
4976 int __maybe_unused i;
4978 size = sizeof(struct mem_cgroup);
4979 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4981 memcg = kzalloc(size, GFP_KERNEL);
4985 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4986 1, MEM_CGROUP_ID_MAX,
4988 if (memcg->id.id < 0)
4991 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4992 if (!memcg->vmstats_local)
4995 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4996 if (!memcg->vmstats_percpu)
5000 if (alloc_mem_cgroup_per_node_info(memcg, node))
5003 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5006 INIT_WORK(&memcg->high_work, high_work_func);
5007 INIT_LIST_HEAD(&memcg->oom_notify);
5008 mutex_init(&memcg->thresholds_lock);
5009 spin_lock_init(&memcg->move_lock);
5010 vmpressure_init(&memcg->vmpressure);
5011 INIT_LIST_HEAD(&memcg->event_list);
5012 spin_lock_init(&memcg->event_list_lock);
5013 memcg->socket_pressure = jiffies;
5014 #ifdef CONFIG_MEMCG_KMEM
5015 memcg->kmemcg_id = -1;
5017 #ifdef CONFIG_CGROUP_WRITEBACK
5018 INIT_LIST_HEAD(&memcg->cgwb_list);
5019 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5020 memcg->cgwb_frn[i].done =
5021 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5024 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5025 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5026 memcg->deferred_split_queue.split_queue_len = 0;
5028 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5031 mem_cgroup_id_remove(memcg);
5032 __mem_cgroup_free(memcg);
5036 static struct cgroup_subsys_state * __ref
5037 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5039 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5040 struct mem_cgroup *memcg;
5041 long error = -ENOMEM;
5043 memcg = mem_cgroup_alloc();
5045 return ERR_PTR(error);
5047 memcg->high = PAGE_COUNTER_MAX;
5048 memcg->soft_limit = PAGE_COUNTER_MAX;
5050 memcg->swappiness = mem_cgroup_swappiness(parent);
5051 memcg->oom_kill_disable = parent->oom_kill_disable;
5053 if (parent && parent->use_hierarchy) {
5054 memcg->use_hierarchy = true;
5055 page_counter_init(&memcg->memory, &parent->memory);
5056 page_counter_init(&memcg->swap, &parent->swap);
5057 page_counter_init(&memcg->memsw, &parent->memsw);
5058 page_counter_init(&memcg->kmem, &parent->kmem);
5059 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5061 page_counter_init(&memcg->memory, NULL);
5062 page_counter_init(&memcg->swap, NULL);
5063 page_counter_init(&memcg->memsw, NULL);
5064 page_counter_init(&memcg->kmem, NULL);
5065 page_counter_init(&memcg->tcpmem, NULL);
5067 * Deeper hierachy with use_hierarchy == false doesn't make
5068 * much sense so let cgroup subsystem know about this
5069 * unfortunate state in our controller.
5071 if (parent != root_mem_cgroup)
5072 memory_cgrp_subsys.broken_hierarchy = true;
5075 /* The following stuff does not apply to the root */
5077 #ifdef CONFIG_MEMCG_KMEM
5078 INIT_LIST_HEAD(&memcg->kmem_caches);
5080 root_mem_cgroup = memcg;
5084 error = memcg_online_kmem(memcg);
5088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5089 static_branch_inc(&memcg_sockets_enabled_key);
5093 mem_cgroup_id_remove(memcg);
5094 mem_cgroup_free(memcg);
5095 return ERR_PTR(-ENOMEM);
5098 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103 * A memcg must be visible for memcg_expand_shrinker_maps()
5104 * by the time the maps are allocated. So, we allocate maps
5105 * here, when for_each_mem_cgroup() can't skip it.
5107 if (memcg_alloc_shrinker_maps(memcg)) {
5108 mem_cgroup_id_remove(memcg);
5112 /* Online state pins memcg ID, memcg ID pins CSS */
5113 refcount_set(&memcg->id.ref, 1);
5118 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5120 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5121 struct mem_cgroup_event *event, *tmp;
5124 * Unregister events and notify userspace.
5125 * Notify userspace about cgroup removing only after rmdir of cgroup
5126 * directory to avoid race between userspace and kernelspace.
5128 spin_lock(&memcg->event_list_lock);
5129 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5130 list_del_init(&event->list);
5131 schedule_work(&event->remove);
5133 spin_unlock(&memcg->event_list_lock);
5135 page_counter_set_min(&memcg->memory, 0);
5136 page_counter_set_low(&memcg->memory, 0);
5138 memcg_offline_kmem(memcg);
5139 wb_memcg_offline(memcg);
5141 drain_all_stock(memcg);
5143 mem_cgroup_id_put(memcg);
5146 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5148 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5150 invalidate_reclaim_iterators(memcg);
5153 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5156 int __maybe_unused i;
5158 #ifdef CONFIG_CGROUP_WRITEBACK
5159 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5160 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5162 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5163 static_branch_dec(&memcg_sockets_enabled_key);
5165 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5166 static_branch_dec(&memcg_sockets_enabled_key);
5168 vmpressure_cleanup(&memcg->vmpressure);
5169 cancel_work_sync(&memcg->high_work);
5170 mem_cgroup_remove_from_trees(memcg);
5171 memcg_free_shrinker_maps(memcg);
5172 memcg_free_kmem(memcg);
5173 mem_cgroup_free(memcg);
5177 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5178 * @css: the target css
5180 * Reset the states of the mem_cgroup associated with @css. This is
5181 * invoked when the userland requests disabling on the default hierarchy
5182 * but the memcg is pinned through dependency. The memcg should stop
5183 * applying policies and should revert to the vanilla state as it may be
5184 * made visible again.
5186 * The current implementation only resets the essential configurations.
5187 * This needs to be expanded to cover all the visible parts.
5189 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5191 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5193 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5194 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5195 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5196 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5197 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5198 page_counter_set_min(&memcg->memory, 0);
5199 page_counter_set_low(&memcg->memory, 0);
5200 memcg->high = PAGE_COUNTER_MAX;
5201 memcg->soft_limit = PAGE_COUNTER_MAX;
5202 memcg_wb_domain_size_changed(memcg);
5206 /* Handlers for move charge at task migration. */
5207 static int mem_cgroup_do_precharge(unsigned long count)
5211 /* Try a single bulk charge without reclaim first, kswapd may wake */
5212 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5214 mc.precharge += count;
5218 /* Try charges one by one with reclaim, but do not retry */
5220 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5234 enum mc_target_type {
5241 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5242 unsigned long addr, pte_t ptent)
5244 struct page *page = vm_normal_page(vma, addr, ptent);
5246 if (!page || !page_mapped(page))
5248 if (PageAnon(page)) {
5249 if (!(mc.flags & MOVE_ANON))
5252 if (!(mc.flags & MOVE_FILE))
5255 if (!get_page_unless_zero(page))
5261 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5262 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5263 pte_t ptent, swp_entry_t *entry)
5265 struct page *page = NULL;
5266 swp_entry_t ent = pte_to_swp_entry(ptent);
5268 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5272 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5273 * a device and because they are not accessible by CPU they are store
5274 * as special swap entry in the CPU page table.
5276 if (is_device_private_entry(ent)) {
5277 page = device_private_entry_to_page(ent);
5279 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5280 * a refcount of 1 when free (unlike normal page)
5282 if (!page_ref_add_unless(page, 1, 1))
5288 * Because lookup_swap_cache() updates some statistics counter,
5289 * we call find_get_page() with swapper_space directly.
5291 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5292 if (do_memsw_account())
5293 entry->val = ent.val;
5298 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5299 pte_t ptent, swp_entry_t *entry)
5305 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5306 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5308 struct page *page = NULL;
5309 struct address_space *mapping;
5312 if (!vma->vm_file) /* anonymous vma */
5314 if (!(mc.flags & MOVE_FILE))
5317 mapping = vma->vm_file->f_mapping;
5318 pgoff = linear_page_index(vma, addr);
5320 /* page is moved even if it's not RSS of this task(page-faulted). */
5322 /* shmem/tmpfs may report page out on swap: account for that too. */
5323 if (shmem_mapping(mapping)) {
5324 page = find_get_entry(mapping, pgoff);
5325 if (xa_is_value(page)) {
5326 swp_entry_t swp = radix_to_swp_entry(page);
5327 if (do_memsw_account())
5329 page = find_get_page(swap_address_space(swp),
5333 page = find_get_page(mapping, pgoff);
5335 page = find_get_page(mapping, pgoff);
5341 * mem_cgroup_move_account - move account of the page
5343 * @compound: charge the page as compound or small page
5344 * @from: mem_cgroup which the page is moved from.
5345 * @to: mem_cgroup which the page is moved to. @from != @to.
5347 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5349 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5352 static int mem_cgroup_move_account(struct page *page,
5354 struct mem_cgroup *from,
5355 struct mem_cgroup *to)
5357 struct lruvec *from_vec, *to_vec;
5358 struct pglist_data *pgdat;
5359 unsigned long flags;
5360 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5364 VM_BUG_ON(from == to);
5365 VM_BUG_ON_PAGE(PageLRU(page), page);
5366 VM_BUG_ON(compound && !PageTransHuge(page));
5369 * Prevent mem_cgroup_migrate() from looking at
5370 * page->mem_cgroup of its source page while we change it.
5373 if (!trylock_page(page))
5377 if (page->mem_cgroup != from)
5380 anon = PageAnon(page);
5382 pgdat = page_pgdat(page);
5383 from_vec = mem_cgroup_lruvec(from, pgdat);
5384 to_vec = mem_cgroup_lruvec(to, pgdat);
5386 spin_lock_irqsave(&from->move_lock, flags);
5388 if (!anon && page_mapped(page)) {
5389 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5390 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5394 * move_lock grabbed above and caller set from->moving_account, so
5395 * mod_memcg_page_state will serialize updates to PageDirty.
5396 * So mapping should be stable for dirty pages.
5398 if (!anon && PageDirty(page)) {
5399 struct address_space *mapping = page_mapping(page);
5401 if (mapping_cap_account_dirty(mapping)) {
5402 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5403 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5407 if (PageWriteback(page)) {
5408 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5409 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5413 * It is safe to change page->mem_cgroup here because the page
5414 * is referenced, charged, and isolated - we can't race with
5415 * uncharging, charging, migration, or LRU putback.
5418 /* caller should have done css_get */
5419 page->mem_cgroup = to;
5421 spin_unlock_irqrestore(&from->move_lock, flags);
5425 local_irq_disable();
5426 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5427 memcg_check_events(to, page);
5428 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5429 memcg_check_events(from, page);
5438 * get_mctgt_type - get target type of moving charge
5439 * @vma: the vma the pte to be checked belongs
5440 * @addr: the address corresponding to the pte to be checked
5441 * @ptent: the pte to be checked
5442 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5445 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5446 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5447 * move charge. if @target is not NULL, the page is stored in target->page
5448 * with extra refcnt got(Callers should handle it).
5449 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5450 * target for charge migration. if @target is not NULL, the entry is stored
5452 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5453 * (so ZONE_DEVICE page and thus not on the lru).
5454 * For now we such page is charge like a regular page would be as for all
5455 * intent and purposes it is just special memory taking the place of a
5458 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5460 * Called with pte lock held.
5463 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5464 unsigned long addr, pte_t ptent, union mc_target *target)
5466 struct page *page = NULL;
5467 enum mc_target_type ret = MC_TARGET_NONE;
5468 swp_entry_t ent = { .val = 0 };
5470 if (pte_present(ptent))
5471 page = mc_handle_present_pte(vma, addr, ptent);
5472 else if (is_swap_pte(ptent))
5473 page = mc_handle_swap_pte(vma, ptent, &ent);
5474 else if (pte_none(ptent))
5475 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5477 if (!page && !ent.val)
5481 * Do only loose check w/o serialization.
5482 * mem_cgroup_move_account() checks the page is valid or
5483 * not under LRU exclusion.
5485 if (page->mem_cgroup == mc.from) {
5486 ret = MC_TARGET_PAGE;
5487 if (is_device_private_page(page))
5488 ret = MC_TARGET_DEVICE;
5490 target->page = page;
5492 if (!ret || !target)
5496 * There is a swap entry and a page doesn't exist or isn't charged.
5497 * But we cannot move a tail-page in a THP.
5499 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5500 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5501 ret = MC_TARGET_SWAP;
5508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5510 * We don't consider PMD mapped swapping or file mapped pages because THP does
5511 * not support them for now.
5512 * Caller should make sure that pmd_trans_huge(pmd) is true.
5514 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5515 unsigned long addr, pmd_t pmd, union mc_target *target)
5517 struct page *page = NULL;
5518 enum mc_target_type ret = MC_TARGET_NONE;
5520 if (unlikely(is_swap_pmd(pmd))) {
5521 VM_BUG_ON(thp_migration_supported() &&
5522 !is_pmd_migration_entry(pmd));
5525 page = pmd_page(pmd);
5526 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5527 if (!(mc.flags & MOVE_ANON))
5529 if (page->mem_cgroup == mc.from) {
5530 ret = MC_TARGET_PAGE;
5533 target->page = page;
5539 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5540 unsigned long addr, pmd_t pmd, union mc_target *target)
5542 return MC_TARGET_NONE;
5546 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5547 unsigned long addr, unsigned long end,
5548 struct mm_walk *walk)
5550 struct vm_area_struct *vma = walk->vma;
5554 ptl = pmd_trans_huge_lock(pmd, vma);
5557 * Note their can not be MC_TARGET_DEVICE for now as we do not
5558 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5559 * this might change.
5561 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5562 mc.precharge += HPAGE_PMD_NR;
5567 if (pmd_trans_unstable(pmd))
5569 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5570 for (; addr != end; pte++, addr += PAGE_SIZE)
5571 if (get_mctgt_type(vma, addr, *pte, NULL))
5572 mc.precharge++; /* increment precharge temporarily */
5573 pte_unmap_unlock(pte - 1, ptl);
5579 static const struct mm_walk_ops precharge_walk_ops = {
5580 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5583 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5585 unsigned long precharge;
5587 down_read(&mm->mmap_sem);
5588 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5589 up_read(&mm->mmap_sem);
5591 precharge = mc.precharge;
5597 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5599 unsigned long precharge = mem_cgroup_count_precharge(mm);
5601 VM_BUG_ON(mc.moving_task);
5602 mc.moving_task = current;
5603 return mem_cgroup_do_precharge(precharge);
5606 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5607 static void __mem_cgroup_clear_mc(void)
5609 struct mem_cgroup *from = mc.from;
5610 struct mem_cgroup *to = mc.to;
5612 /* we must uncharge all the leftover precharges from mc.to */
5614 cancel_charge(mc.to, mc.precharge);
5618 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5619 * we must uncharge here.
5621 if (mc.moved_charge) {
5622 cancel_charge(mc.from, mc.moved_charge);
5623 mc.moved_charge = 0;
5625 /* we must fixup refcnts and charges */
5626 if (mc.moved_swap) {
5627 /* uncharge swap account from the old cgroup */
5628 if (!mem_cgroup_is_root(mc.from))
5629 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5631 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5634 * we charged both to->memory and to->memsw, so we
5635 * should uncharge to->memory.
5637 if (!mem_cgroup_is_root(mc.to))
5638 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5640 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5641 css_put_many(&mc.to->css, mc.moved_swap);
5645 memcg_oom_recover(from);
5646 memcg_oom_recover(to);
5647 wake_up_all(&mc.waitq);
5650 static void mem_cgroup_clear_mc(void)
5652 struct mm_struct *mm = mc.mm;
5655 * we must clear moving_task before waking up waiters at the end of
5658 mc.moving_task = NULL;
5659 __mem_cgroup_clear_mc();
5660 spin_lock(&mc.lock);
5664 spin_unlock(&mc.lock);
5669 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5671 struct cgroup_subsys_state *css;
5672 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5673 struct mem_cgroup *from;
5674 struct task_struct *leader, *p;
5675 struct mm_struct *mm;
5676 unsigned long move_flags;
5679 /* charge immigration isn't supported on the default hierarchy */
5680 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5684 * Multi-process migrations only happen on the default hierarchy
5685 * where charge immigration is not used. Perform charge
5686 * immigration if @tset contains a leader and whine if there are
5690 cgroup_taskset_for_each_leader(leader, css, tset) {
5693 memcg = mem_cgroup_from_css(css);
5699 * We are now commited to this value whatever it is. Changes in this
5700 * tunable will only affect upcoming migrations, not the current one.
5701 * So we need to save it, and keep it going.
5703 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5707 from = mem_cgroup_from_task(p);
5709 VM_BUG_ON(from == memcg);
5711 mm = get_task_mm(p);
5714 /* We move charges only when we move a owner of the mm */
5715 if (mm->owner == p) {
5718 VM_BUG_ON(mc.precharge);
5719 VM_BUG_ON(mc.moved_charge);
5720 VM_BUG_ON(mc.moved_swap);
5722 spin_lock(&mc.lock);
5726 mc.flags = move_flags;
5727 spin_unlock(&mc.lock);
5728 /* We set mc.moving_task later */
5730 ret = mem_cgroup_precharge_mc(mm);
5732 mem_cgroup_clear_mc();
5739 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5742 mem_cgroup_clear_mc();
5745 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5746 unsigned long addr, unsigned long end,
5747 struct mm_walk *walk)
5750 struct vm_area_struct *vma = walk->vma;
5753 enum mc_target_type target_type;
5754 union mc_target target;
5757 ptl = pmd_trans_huge_lock(pmd, vma);
5759 if (mc.precharge < HPAGE_PMD_NR) {
5763 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5764 if (target_type == MC_TARGET_PAGE) {
5766 if (!isolate_lru_page(page)) {
5767 if (!mem_cgroup_move_account(page, true,
5769 mc.precharge -= HPAGE_PMD_NR;
5770 mc.moved_charge += HPAGE_PMD_NR;
5772 putback_lru_page(page);
5775 } else if (target_type == MC_TARGET_DEVICE) {
5777 if (!mem_cgroup_move_account(page, true,
5779 mc.precharge -= HPAGE_PMD_NR;
5780 mc.moved_charge += HPAGE_PMD_NR;
5788 if (pmd_trans_unstable(pmd))
5791 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5792 for (; addr != end; addr += PAGE_SIZE) {
5793 pte_t ptent = *(pte++);
5794 bool device = false;
5800 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5801 case MC_TARGET_DEVICE:
5804 case MC_TARGET_PAGE:
5807 * We can have a part of the split pmd here. Moving it
5808 * can be done but it would be too convoluted so simply
5809 * ignore such a partial THP and keep it in original
5810 * memcg. There should be somebody mapping the head.
5812 if (PageTransCompound(page))
5814 if (!device && isolate_lru_page(page))
5816 if (!mem_cgroup_move_account(page, false,
5819 /* we uncharge from mc.from later. */
5823 putback_lru_page(page);
5824 put: /* get_mctgt_type() gets the page */
5827 case MC_TARGET_SWAP:
5829 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5831 /* we fixup refcnts and charges later. */
5839 pte_unmap_unlock(pte - 1, ptl);
5844 * We have consumed all precharges we got in can_attach().
5845 * We try charge one by one, but don't do any additional
5846 * charges to mc.to if we have failed in charge once in attach()
5849 ret = mem_cgroup_do_precharge(1);
5857 static const struct mm_walk_ops charge_walk_ops = {
5858 .pmd_entry = mem_cgroup_move_charge_pte_range,
5861 static void mem_cgroup_move_charge(void)
5863 lru_add_drain_all();
5865 * Signal lock_page_memcg() to take the memcg's move_lock
5866 * while we're moving its pages to another memcg. Then wait
5867 * for already started RCU-only updates to finish.
5869 atomic_inc(&mc.from->moving_account);
5872 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5874 * Someone who are holding the mmap_sem might be waiting in
5875 * waitq. So we cancel all extra charges, wake up all waiters,
5876 * and retry. Because we cancel precharges, we might not be able
5877 * to move enough charges, but moving charge is a best-effort
5878 * feature anyway, so it wouldn't be a big problem.
5880 __mem_cgroup_clear_mc();
5885 * When we have consumed all precharges and failed in doing
5886 * additional charge, the page walk just aborts.
5888 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5891 up_read(&mc.mm->mmap_sem);
5892 atomic_dec(&mc.from->moving_account);
5895 static void mem_cgroup_move_task(void)
5898 mem_cgroup_move_charge();
5899 mem_cgroup_clear_mc();
5902 #else /* !CONFIG_MMU */
5903 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5907 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5910 static void mem_cgroup_move_task(void)
5916 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5917 * to verify whether we're attached to the default hierarchy on each mount
5920 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5923 * use_hierarchy is forced on the default hierarchy. cgroup core
5924 * guarantees that @root doesn't have any children, so turning it
5925 * on for the root memcg is enough.
5927 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5928 root_mem_cgroup->use_hierarchy = true;
5930 root_mem_cgroup->use_hierarchy = false;
5933 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5935 if (value == PAGE_COUNTER_MAX)
5936 seq_puts(m, "max\n");
5938 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5943 static u64 memory_current_read(struct cgroup_subsys_state *css,
5946 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5948 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5951 static int memory_min_show(struct seq_file *m, void *v)
5953 return seq_puts_memcg_tunable(m,
5954 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5957 static ssize_t memory_min_write(struct kernfs_open_file *of,
5958 char *buf, size_t nbytes, loff_t off)
5960 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5964 buf = strstrip(buf);
5965 err = page_counter_memparse(buf, "max", &min);
5969 page_counter_set_min(&memcg->memory, min);
5974 static int memory_low_show(struct seq_file *m, void *v)
5976 return seq_puts_memcg_tunable(m,
5977 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5980 static ssize_t memory_low_write(struct kernfs_open_file *of,
5981 char *buf, size_t nbytes, loff_t off)
5983 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5987 buf = strstrip(buf);
5988 err = page_counter_memparse(buf, "max", &low);
5992 page_counter_set_low(&memcg->memory, low);
5997 static int memory_high_show(struct seq_file *m, void *v)
5999 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6002 static ssize_t memory_high_write(struct kernfs_open_file *of,
6003 char *buf, size_t nbytes, loff_t off)
6005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6006 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6007 bool drained = false;
6011 buf = strstrip(buf);
6012 err = page_counter_memparse(buf, "max", &high);
6019 unsigned long nr_pages = page_counter_read(&memcg->memory);
6020 unsigned long reclaimed;
6022 if (nr_pages <= high)
6025 if (signal_pending(current))
6029 drain_all_stock(memcg);
6034 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6037 if (!reclaimed && !nr_retries--)
6044 static int memory_max_show(struct seq_file *m, void *v)
6046 return seq_puts_memcg_tunable(m,
6047 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6050 static ssize_t memory_max_write(struct kernfs_open_file *of,
6051 char *buf, size_t nbytes, loff_t off)
6053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6055 bool drained = false;
6059 buf = strstrip(buf);
6060 err = page_counter_memparse(buf, "max", &max);
6064 xchg(&memcg->memory.max, max);
6067 unsigned long nr_pages = page_counter_read(&memcg->memory);
6069 if (nr_pages <= max)
6072 if (signal_pending(current))
6076 drain_all_stock(memcg);
6082 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6088 memcg_memory_event(memcg, MEMCG_OOM);
6089 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6093 memcg_wb_domain_size_changed(memcg);
6097 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6099 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6100 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6101 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6102 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6103 seq_printf(m, "oom_kill %lu\n",
6104 atomic_long_read(&events[MEMCG_OOM_KILL]));
6107 static int memory_events_show(struct seq_file *m, void *v)
6109 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6111 __memory_events_show(m, memcg->memory_events);
6115 static int memory_events_local_show(struct seq_file *m, void *v)
6117 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6119 __memory_events_show(m, memcg->memory_events_local);
6123 static int memory_stat_show(struct seq_file *m, void *v)
6125 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6128 buf = memory_stat_format(memcg);
6136 static int memory_oom_group_show(struct seq_file *m, void *v)
6138 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6140 seq_printf(m, "%d\n", memcg->oom_group);
6145 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6146 char *buf, size_t nbytes, loff_t off)
6148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6151 buf = strstrip(buf);
6155 ret = kstrtoint(buf, 0, &oom_group);
6159 if (oom_group != 0 && oom_group != 1)
6162 memcg->oom_group = oom_group;
6167 static struct cftype memory_files[] = {
6170 .flags = CFTYPE_NOT_ON_ROOT,
6171 .read_u64 = memory_current_read,
6175 .flags = CFTYPE_NOT_ON_ROOT,
6176 .seq_show = memory_min_show,
6177 .write = memory_min_write,
6181 .flags = CFTYPE_NOT_ON_ROOT,
6182 .seq_show = memory_low_show,
6183 .write = memory_low_write,
6187 .flags = CFTYPE_NOT_ON_ROOT,
6188 .seq_show = memory_high_show,
6189 .write = memory_high_write,
6193 .flags = CFTYPE_NOT_ON_ROOT,
6194 .seq_show = memory_max_show,
6195 .write = memory_max_write,
6199 .flags = CFTYPE_NOT_ON_ROOT,
6200 .file_offset = offsetof(struct mem_cgroup, events_file),
6201 .seq_show = memory_events_show,
6204 .name = "events.local",
6205 .flags = CFTYPE_NOT_ON_ROOT,
6206 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6207 .seq_show = memory_events_local_show,
6211 .flags = CFTYPE_NOT_ON_ROOT,
6212 .seq_show = memory_stat_show,
6215 .name = "oom.group",
6216 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6217 .seq_show = memory_oom_group_show,
6218 .write = memory_oom_group_write,
6223 struct cgroup_subsys memory_cgrp_subsys = {
6224 .css_alloc = mem_cgroup_css_alloc,
6225 .css_online = mem_cgroup_css_online,
6226 .css_offline = mem_cgroup_css_offline,
6227 .css_released = mem_cgroup_css_released,
6228 .css_free = mem_cgroup_css_free,
6229 .css_reset = mem_cgroup_css_reset,
6230 .can_attach = mem_cgroup_can_attach,
6231 .cancel_attach = mem_cgroup_cancel_attach,
6232 .post_attach = mem_cgroup_move_task,
6233 .bind = mem_cgroup_bind,
6234 .dfl_cftypes = memory_files,
6235 .legacy_cftypes = mem_cgroup_legacy_files,
6240 * mem_cgroup_protected - check if memory consumption is in the normal range
6241 * @root: the top ancestor of the sub-tree being checked
6242 * @memcg: the memory cgroup to check
6244 * WARNING: This function is not stateless! It can only be used as part
6245 * of a top-down tree iteration, not for isolated queries.
6247 * Returns one of the following:
6248 * MEMCG_PROT_NONE: cgroup memory is not protected
6249 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6250 * an unprotected supply of reclaimable memory from other cgroups.
6251 * MEMCG_PROT_MIN: cgroup memory is protected
6253 * @root is exclusive; it is never protected when looked at directly
6255 * To provide a proper hierarchical behavior, effective memory.min/low values
6256 * are used. Below is the description of how effective memory.low is calculated.
6257 * Effective memory.min values is calculated in the same way.
6259 * Effective memory.low is always equal or less than the original memory.low.
6260 * If there is no memory.low overcommittment (which is always true for
6261 * top-level memory cgroups), these two values are equal.
6262 * Otherwise, it's a part of parent's effective memory.low,
6263 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6264 * memory.low usages, where memory.low usage is the size of actually
6268 * elow = min( memory.low, parent->elow * ------------------ ),
6269 * siblings_low_usage
6271 * | memory.current, if memory.current < memory.low
6276 * Such definition of the effective memory.low provides the expected
6277 * hierarchical behavior: parent's memory.low value is limiting
6278 * children, unprotected memory is reclaimed first and cgroups,
6279 * which are not using their guarantee do not affect actual memory
6282 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6284 * A A/memory.low = 2G, A/memory.current = 6G
6286 * BC DE B/memory.low = 3G B/memory.current = 2G
6287 * C/memory.low = 1G C/memory.current = 2G
6288 * D/memory.low = 0 D/memory.current = 2G
6289 * E/memory.low = 10G E/memory.current = 0
6291 * and the memory pressure is applied, the following memory distribution
6292 * is expected (approximately):
6294 * A/memory.current = 2G
6296 * B/memory.current = 1.3G
6297 * C/memory.current = 0.6G
6298 * D/memory.current = 0
6299 * E/memory.current = 0
6301 * These calculations require constant tracking of the actual low usages
6302 * (see propagate_protected_usage()), as well as recursive calculation of
6303 * effective memory.low values. But as we do call mem_cgroup_protected()
6304 * path for each memory cgroup top-down from the reclaim,
6305 * it's possible to optimize this part, and save calculated elow
6306 * for next usage. This part is intentionally racy, but it's ok,
6307 * as memory.low is a best-effort mechanism.
6309 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6310 struct mem_cgroup *memcg)
6312 struct mem_cgroup *parent;
6313 unsigned long emin, parent_emin;
6314 unsigned long elow, parent_elow;
6315 unsigned long usage;
6317 if (mem_cgroup_disabled())
6318 return MEMCG_PROT_NONE;
6321 root = root_mem_cgroup;
6323 return MEMCG_PROT_NONE;
6325 usage = page_counter_read(&memcg->memory);
6327 return MEMCG_PROT_NONE;
6329 emin = memcg->memory.min;
6330 elow = memcg->memory.low;
6332 parent = parent_mem_cgroup(memcg);
6333 /* No parent means a non-hierarchical mode on v1 memcg */
6335 return MEMCG_PROT_NONE;
6340 parent_emin = READ_ONCE(parent->memory.emin);
6341 emin = min(emin, parent_emin);
6342 if (emin && parent_emin) {
6343 unsigned long min_usage, siblings_min_usage;
6345 min_usage = min(usage, memcg->memory.min);
6346 siblings_min_usage = atomic_long_read(
6347 &parent->memory.children_min_usage);
6349 if (min_usage && siblings_min_usage)
6350 emin = min(emin, parent_emin * min_usage /
6351 siblings_min_usage);
6354 parent_elow = READ_ONCE(parent->memory.elow);
6355 elow = min(elow, parent_elow);
6356 if (elow && parent_elow) {
6357 unsigned long low_usage, siblings_low_usage;
6359 low_usage = min(usage, memcg->memory.low);
6360 siblings_low_usage = atomic_long_read(
6361 &parent->memory.children_low_usage);
6363 if (low_usage && siblings_low_usage)
6364 elow = min(elow, parent_elow * low_usage /
6365 siblings_low_usage);
6369 memcg->memory.emin = emin;
6370 memcg->memory.elow = elow;
6373 return MEMCG_PROT_MIN;
6374 else if (usage <= elow)
6375 return MEMCG_PROT_LOW;
6377 return MEMCG_PROT_NONE;
6381 * mem_cgroup_try_charge - try charging a page
6382 * @page: page to charge
6383 * @mm: mm context of the victim
6384 * @gfp_mask: reclaim mode
6385 * @memcgp: charged memcg return
6386 * @compound: charge the page as compound or small page
6388 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6389 * pages according to @gfp_mask if necessary.
6391 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6392 * Otherwise, an error code is returned.
6394 * After page->mapping has been set up, the caller must finalize the
6395 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6396 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6398 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6399 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6402 struct mem_cgroup *memcg = NULL;
6403 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6406 if (mem_cgroup_disabled())
6409 if (PageSwapCache(page)) {
6411 * Every swap fault against a single page tries to charge the
6412 * page, bail as early as possible. shmem_unuse() encounters
6413 * already charged pages, too. The USED bit is protected by
6414 * the page lock, which serializes swap cache removal, which
6415 * in turn serializes uncharging.
6417 VM_BUG_ON_PAGE(!PageLocked(page), page);
6418 if (compound_head(page)->mem_cgroup)
6421 if (do_swap_account) {
6422 swp_entry_t ent = { .val = page_private(page), };
6423 unsigned short id = lookup_swap_cgroup_id(ent);
6426 memcg = mem_cgroup_from_id(id);
6427 if (memcg && !css_tryget_online(&memcg->css))
6434 memcg = get_mem_cgroup_from_mm(mm);
6436 ret = try_charge(memcg, gfp_mask, nr_pages);
6438 css_put(&memcg->css);
6444 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6445 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6448 struct mem_cgroup *memcg;
6451 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6453 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6458 * mem_cgroup_commit_charge - commit a page charge
6459 * @page: page to charge
6460 * @memcg: memcg to charge the page to
6461 * @lrucare: page might be on LRU already
6462 * @compound: charge the page as compound or small page
6464 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6465 * after page->mapping has been set up. This must happen atomically
6466 * as part of the page instantiation, i.e. under the page table lock
6467 * for anonymous pages, under the page lock for page and swap cache.
6469 * In addition, the page must not be on the LRU during the commit, to
6470 * prevent racing with task migration. If it might be, use @lrucare.
6472 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6474 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6475 bool lrucare, bool compound)
6477 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6479 VM_BUG_ON_PAGE(!page->mapping, page);
6480 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6482 if (mem_cgroup_disabled())
6485 * Swap faults will attempt to charge the same page multiple
6486 * times. But reuse_swap_page() might have removed the page
6487 * from swapcache already, so we can't check PageSwapCache().
6492 commit_charge(page, memcg, lrucare);
6494 local_irq_disable();
6495 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6496 memcg_check_events(memcg, page);
6499 if (do_memsw_account() && PageSwapCache(page)) {
6500 swp_entry_t entry = { .val = page_private(page) };
6502 * The swap entry might not get freed for a long time,
6503 * let's not wait for it. The page already received a
6504 * memory+swap charge, drop the swap entry duplicate.
6506 mem_cgroup_uncharge_swap(entry, nr_pages);
6511 * mem_cgroup_cancel_charge - cancel a page charge
6512 * @page: page to charge
6513 * @memcg: memcg to charge the page to
6514 * @compound: charge the page as compound or small page
6516 * Cancel a charge transaction started by mem_cgroup_try_charge().
6518 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6521 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6523 if (mem_cgroup_disabled())
6526 * Swap faults will attempt to charge the same page multiple
6527 * times. But reuse_swap_page() might have removed the page
6528 * from swapcache already, so we can't check PageSwapCache().
6533 cancel_charge(memcg, nr_pages);
6536 struct uncharge_gather {
6537 struct mem_cgroup *memcg;
6538 unsigned long pgpgout;
6539 unsigned long nr_anon;
6540 unsigned long nr_file;
6541 unsigned long nr_kmem;
6542 unsigned long nr_huge;
6543 unsigned long nr_shmem;
6544 struct page *dummy_page;
6547 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6549 memset(ug, 0, sizeof(*ug));
6552 static void uncharge_batch(const struct uncharge_gather *ug)
6554 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6555 unsigned long flags;
6557 if (!mem_cgroup_is_root(ug->memcg)) {
6558 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6559 if (do_memsw_account())
6560 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6561 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6562 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6563 memcg_oom_recover(ug->memcg);
6566 local_irq_save(flags);
6567 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6568 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6569 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6570 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6571 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6572 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6573 memcg_check_events(ug->memcg, ug->dummy_page);
6574 local_irq_restore(flags);
6576 if (!mem_cgroup_is_root(ug->memcg))
6577 css_put_many(&ug->memcg->css, nr_pages);
6580 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6582 VM_BUG_ON_PAGE(PageLRU(page), page);
6583 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6584 !PageHWPoison(page) , page);
6586 if (!page->mem_cgroup)
6590 * Nobody should be changing or seriously looking at
6591 * page->mem_cgroup at this point, we have fully
6592 * exclusive access to the page.
6595 if (ug->memcg != page->mem_cgroup) {
6598 uncharge_gather_clear(ug);
6600 ug->memcg = page->mem_cgroup;
6603 if (!PageKmemcg(page)) {
6604 unsigned int nr_pages = 1;
6606 if (PageTransHuge(page)) {
6607 nr_pages = compound_nr(page);
6608 ug->nr_huge += nr_pages;
6611 ug->nr_anon += nr_pages;
6613 ug->nr_file += nr_pages;
6614 if (PageSwapBacked(page))
6615 ug->nr_shmem += nr_pages;
6619 ug->nr_kmem += compound_nr(page);
6620 __ClearPageKmemcg(page);
6623 ug->dummy_page = page;
6624 page->mem_cgroup = NULL;
6627 static void uncharge_list(struct list_head *page_list)
6629 struct uncharge_gather ug;
6630 struct list_head *next;
6632 uncharge_gather_clear(&ug);
6635 * Note that the list can be a single page->lru; hence the
6636 * do-while loop instead of a simple list_for_each_entry().
6638 next = page_list->next;
6642 page = list_entry(next, struct page, lru);
6643 next = page->lru.next;
6645 uncharge_page(page, &ug);
6646 } while (next != page_list);
6649 uncharge_batch(&ug);
6653 * mem_cgroup_uncharge - uncharge a page
6654 * @page: page to uncharge
6656 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6657 * mem_cgroup_commit_charge().
6659 void mem_cgroup_uncharge(struct page *page)
6661 struct uncharge_gather ug;
6663 if (mem_cgroup_disabled())
6666 /* Don't touch page->lru of any random page, pre-check: */
6667 if (!page->mem_cgroup)
6670 uncharge_gather_clear(&ug);
6671 uncharge_page(page, &ug);
6672 uncharge_batch(&ug);
6676 * mem_cgroup_uncharge_list - uncharge a list of page
6677 * @page_list: list of pages to uncharge
6679 * Uncharge a list of pages previously charged with
6680 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6682 void mem_cgroup_uncharge_list(struct list_head *page_list)
6684 if (mem_cgroup_disabled())
6687 if (!list_empty(page_list))
6688 uncharge_list(page_list);
6692 * mem_cgroup_migrate - charge a page's replacement
6693 * @oldpage: currently circulating page
6694 * @newpage: replacement page
6696 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6697 * be uncharged upon free.
6699 * Both pages must be locked, @newpage->mapping must be set up.
6701 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6703 struct mem_cgroup *memcg;
6704 unsigned int nr_pages;
6705 unsigned long flags;
6707 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6708 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6709 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6710 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6713 if (mem_cgroup_disabled())
6716 /* Page cache replacement: new page already charged? */
6717 if (newpage->mem_cgroup)
6720 /* Swapcache readahead pages can get replaced before being charged */
6721 memcg = oldpage->mem_cgroup;
6725 /* Force-charge the new page. The old one will be freed soon */
6726 nr_pages = hpage_nr_pages(newpage);
6728 page_counter_charge(&memcg->memory, nr_pages);
6729 if (do_memsw_account())
6730 page_counter_charge(&memcg->memsw, nr_pages);
6731 css_get_many(&memcg->css, nr_pages);
6733 commit_charge(newpage, memcg, false);
6735 local_irq_save(flags);
6736 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6738 memcg_check_events(memcg, newpage);
6739 local_irq_restore(flags);
6742 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6743 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6745 void mem_cgroup_sk_alloc(struct sock *sk)
6747 struct mem_cgroup *memcg;
6749 if (!mem_cgroup_sockets_enabled)
6752 /* Do not associate the sock with unrelated interrupted task's memcg. */
6757 memcg = mem_cgroup_from_task(current);
6758 if (memcg == root_mem_cgroup)
6760 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6762 if (css_tryget_online(&memcg->css))
6763 sk->sk_memcg = memcg;
6768 void mem_cgroup_sk_free(struct sock *sk)
6771 css_put(&sk->sk_memcg->css);
6775 * mem_cgroup_charge_skmem - charge socket memory
6776 * @memcg: memcg to charge
6777 * @nr_pages: number of pages to charge
6779 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6780 * @memcg's configured limit, %false if the charge had to be forced.
6782 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6784 gfp_t gfp_mask = GFP_KERNEL;
6786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6787 struct page_counter *fail;
6789 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6790 memcg->tcpmem_pressure = 0;
6793 page_counter_charge(&memcg->tcpmem, nr_pages);
6794 memcg->tcpmem_pressure = 1;
6798 /* Don't block in the packet receive path */
6800 gfp_mask = GFP_NOWAIT;
6802 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6804 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6807 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6812 * mem_cgroup_uncharge_skmem - uncharge socket memory
6813 * @memcg: memcg to uncharge
6814 * @nr_pages: number of pages to uncharge
6816 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6819 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6823 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6825 refill_stock(memcg, nr_pages);
6828 static int __init cgroup_memory(char *s)
6832 while ((token = strsep(&s, ",")) != NULL) {
6835 if (!strcmp(token, "nosocket"))
6836 cgroup_memory_nosocket = true;
6837 if (!strcmp(token, "nokmem"))
6838 cgroup_memory_nokmem = true;
6842 __setup("cgroup.memory=", cgroup_memory);
6845 * subsys_initcall() for memory controller.
6847 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6848 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6849 * basically everything that doesn't depend on a specific mem_cgroup structure
6850 * should be initialized from here.
6852 static int __init mem_cgroup_init(void)
6856 #ifdef CONFIG_MEMCG_KMEM
6858 * Kmem cache creation is mostly done with the slab_mutex held,
6859 * so use a workqueue with limited concurrency to avoid stalling
6860 * all worker threads in case lots of cgroups are created and
6861 * destroyed simultaneously.
6863 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6864 BUG_ON(!memcg_kmem_cache_wq);
6867 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6868 memcg_hotplug_cpu_dead);
6870 for_each_possible_cpu(cpu)
6871 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6874 for_each_node(node) {
6875 struct mem_cgroup_tree_per_node *rtpn;
6877 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6878 node_online(node) ? node : NUMA_NO_NODE);
6880 rtpn->rb_root = RB_ROOT;
6881 rtpn->rb_rightmost = NULL;
6882 spin_lock_init(&rtpn->lock);
6883 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6888 subsys_initcall(mem_cgroup_init);
6890 #ifdef CONFIG_MEMCG_SWAP
6891 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6893 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6895 * The root cgroup cannot be destroyed, so it's refcount must
6898 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6902 memcg = parent_mem_cgroup(memcg);
6904 memcg = root_mem_cgroup;
6910 * mem_cgroup_swapout - transfer a memsw charge to swap
6911 * @page: page whose memsw charge to transfer
6912 * @entry: swap entry to move the charge to
6914 * Transfer the memsw charge of @page to @entry.
6916 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6918 struct mem_cgroup *memcg, *swap_memcg;
6919 unsigned int nr_entries;
6920 unsigned short oldid;
6922 VM_BUG_ON_PAGE(PageLRU(page), page);
6923 VM_BUG_ON_PAGE(page_count(page), page);
6925 if (!do_memsw_account())
6928 memcg = page->mem_cgroup;
6930 /* Readahead page, never charged */
6935 * In case the memcg owning these pages has been offlined and doesn't
6936 * have an ID allocated to it anymore, charge the closest online
6937 * ancestor for the swap instead and transfer the memory+swap charge.
6939 swap_memcg = mem_cgroup_id_get_online(memcg);
6940 nr_entries = hpage_nr_pages(page);
6941 /* Get references for the tail pages, too */
6943 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6944 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6946 VM_BUG_ON_PAGE(oldid, page);
6947 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6949 page->mem_cgroup = NULL;
6951 if (!mem_cgroup_is_root(memcg))
6952 page_counter_uncharge(&memcg->memory, nr_entries);
6954 if (memcg != swap_memcg) {
6955 if (!mem_cgroup_is_root(swap_memcg))
6956 page_counter_charge(&swap_memcg->memsw, nr_entries);
6957 page_counter_uncharge(&memcg->memsw, nr_entries);
6961 * Interrupts should be disabled here because the caller holds the
6962 * i_pages lock which is taken with interrupts-off. It is
6963 * important here to have the interrupts disabled because it is the
6964 * only synchronisation we have for updating the per-CPU variables.
6966 VM_BUG_ON(!irqs_disabled());
6967 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6969 memcg_check_events(memcg, page);
6971 if (!mem_cgroup_is_root(memcg))
6972 css_put_many(&memcg->css, nr_entries);
6976 * mem_cgroup_try_charge_swap - try charging swap space for a page
6977 * @page: page being added to swap
6978 * @entry: swap entry to charge
6980 * Try to charge @page's memcg for the swap space at @entry.
6982 * Returns 0 on success, -ENOMEM on failure.
6984 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6986 unsigned int nr_pages = hpage_nr_pages(page);
6987 struct page_counter *counter;
6988 struct mem_cgroup *memcg;
6989 unsigned short oldid;
6991 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6994 memcg = page->mem_cgroup;
6996 /* Readahead page, never charged */
7001 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7005 memcg = mem_cgroup_id_get_online(memcg);
7007 if (!mem_cgroup_is_root(memcg) &&
7008 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7009 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7010 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7011 mem_cgroup_id_put(memcg);
7015 /* Get references for the tail pages, too */
7017 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7018 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7019 VM_BUG_ON_PAGE(oldid, page);
7020 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7026 * mem_cgroup_uncharge_swap - uncharge swap space
7027 * @entry: swap entry to uncharge
7028 * @nr_pages: the amount of swap space to uncharge
7030 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7032 struct mem_cgroup *memcg;
7035 if (!do_swap_account)
7038 id = swap_cgroup_record(entry, 0, nr_pages);
7040 memcg = mem_cgroup_from_id(id);
7042 if (!mem_cgroup_is_root(memcg)) {
7043 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7044 page_counter_uncharge(&memcg->swap, nr_pages);
7046 page_counter_uncharge(&memcg->memsw, nr_pages);
7048 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7049 mem_cgroup_id_put_many(memcg, nr_pages);
7054 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7056 long nr_swap_pages = get_nr_swap_pages();
7058 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7059 return nr_swap_pages;
7060 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7061 nr_swap_pages = min_t(long, nr_swap_pages,
7062 READ_ONCE(memcg->swap.max) -
7063 page_counter_read(&memcg->swap));
7064 return nr_swap_pages;
7067 bool mem_cgroup_swap_full(struct page *page)
7069 struct mem_cgroup *memcg;
7071 VM_BUG_ON_PAGE(!PageLocked(page), page);
7075 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7078 memcg = page->mem_cgroup;
7082 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7083 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7089 /* for remember boot option*/
7090 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7091 static int really_do_swap_account __initdata = 1;
7093 static int really_do_swap_account __initdata;
7096 static int __init enable_swap_account(char *s)
7098 if (!strcmp(s, "1"))
7099 really_do_swap_account = 1;
7100 else if (!strcmp(s, "0"))
7101 really_do_swap_account = 0;
7104 __setup("swapaccount=", enable_swap_account);
7106 static u64 swap_current_read(struct cgroup_subsys_state *css,
7109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7111 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7114 static int swap_max_show(struct seq_file *m, void *v)
7116 return seq_puts_memcg_tunable(m,
7117 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7120 static ssize_t swap_max_write(struct kernfs_open_file *of,
7121 char *buf, size_t nbytes, loff_t off)
7123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7127 buf = strstrip(buf);
7128 err = page_counter_memparse(buf, "max", &max);
7132 xchg(&memcg->swap.max, max);
7137 static int swap_events_show(struct seq_file *m, void *v)
7139 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7141 seq_printf(m, "max %lu\n",
7142 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7143 seq_printf(m, "fail %lu\n",
7144 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7149 static struct cftype swap_files[] = {
7151 .name = "swap.current",
7152 .flags = CFTYPE_NOT_ON_ROOT,
7153 .read_u64 = swap_current_read,
7157 .flags = CFTYPE_NOT_ON_ROOT,
7158 .seq_show = swap_max_show,
7159 .write = swap_max_write,
7162 .name = "swap.events",
7163 .flags = CFTYPE_NOT_ON_ROOT,
7164 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7165 .seq_show = swap_events_show,
7170 static struct cftype memsw_cgroup_files[] = {
7172 .name = "memsw.usage_in_bytes",
7173 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7174 .read_u64 = mem_cgroup_read_u64,
7177 .name = "memsw.max_usage_in_bytes",
7178 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7179 .write = mem_cgroup_reset,
7180 .read_u64 = mem_cgroup_read_u64,
7183 .name = "memsw.limit_in_bytes",
7184 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7185 .write = mem_cgroup_write,
7186 .read_u64 = mem_cgroup_read_u64,
7189 .name = "memsw.failcnt",
7190 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7191 .write = mem_cgroup_reset,
7192 .read_u64 = mem_cgroup_read_u64,
7194 { }, /* terminate */
7197 static int __init mem_cgroup_swap_init(void)
7199 if (!mem_cgroup_disabled() && really_do_swap_account) {
7200 do_swap_account = 1;
7201 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7203 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7204 memsw_cgroup_files));
7208 subsys_initcall(mem_cgroup_swap_init);
7210 #endif /* CONFIG_MEMCG_SWAP */