1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
55 #include <net/tcp_memcontrol.h>
57 #include <asm/uaccess.h>
59 #include <trace/events/vmscan.h>
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 EXPORT_SYMBOL(mem_cgroup_subsys);
64 #define MEM_CGROUP_RECLAIM_RETRIES 5
65 static struct mem_cgroup *root_mem_cgroup __read_mostly;
67 #ifdef CONFIG_MEMCG_SWAP
68 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69 int do_swap_account __read_mostly;
71 /* for remember boot option*/
72 #ifdef CONFIG_MEMCG_SWAP_ENABLED
73 static int really_do_swap_account __initdata = 1;
75 static int really_do_swap_account __initdata = 0;
79 #define do_swap_account 0
84 * Statistics for memory cgroup.
86 enum mem_cgroup_stat_index {
88 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
90 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
91 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
92 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
93 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 MEM_CGROUP_STAT_NSTATS,
97 static const char * const mem_cgroup_stat_names[] = {
104 enum mem_cgroup_events_index {
105 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
106 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
107 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
108 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
109 MEM_CGROUP_EVENTS_NSTATS,
112 static const char * const mem_cgroup_events_names[] = {
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
125 enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
128 MEM_CGROUP_TARGET_NUMAINFO,
131 #define THRESHOLDS_EVENTS_TARGET 128
132 #define SOFTLIMIT_EVENTS_TARGET 1024
133 #define NUMAINFO_EVENTS_TARGET 1024
135 struct mem_cgroup_stat_cpu {
136 long count[MEM_CGROUP_STAT_NSTATS];
137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138 unsigned long nr_page_events;
139 unsigned long targets[MEM_CGROUP_NTARGETS];
142 struct mem_cgroup_reclaim_iter {
143 /* css_id of the last scanned hierarchy member */
145 /* scan generation, increased every round-trip */
146 unsigned int generation;
150 * per-zone information in memory controller.
152 struct mem_cgroup_per_zone {
153 struct lruvec lruvec;
154 unsigned long lru_size[NR_LRU_LISTS];
156 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
158 struct rb_node tree_node; /* RB tree node */
159 unsigned long long usage_in_excess;/* Set to the value by which */
160 /* the soft limit is exceeded*/
162 struct mem_cgroup *memcg; /* Back pointer, we cannot */
163 /* use container_of */
166 struct mem_cgroup_per_node {
167 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
170 struct mem_cgroup_lru_info {
171 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
175 * Cgroups above their limits are maintained in a RB-Tree, independent of
176 * their hierarchy representation
179 struct mem_cgroup_tree_per_zone {
180 struct rb_root rb_root;
184 struct mem_cgroup_tree_per_node {
185 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
188 struct mem_cgroup_tree {
189 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
192 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
194 struct mem_cgroup_threshold {
195 struct eventfd_ctx *eventfd;
200 struct mem_cgroup_threshold_ary {
201 /* An array index points to threshold just below or equal to usage. */
202 int current_threshold;
203 /* Size of entries[] */
205 /* Array of thresholds */
206 struct mem_cgroup_threshold entries[0];
209 struct mem_cgroup_thresholds {
210 /* Primary thresholds array */
211 struct mem_cgroup_threshold_ary *primary;
213 * Spare threshold array.
214 * This is needed to make mem_cgroup_unregister_event() "never fail".
215 * It must be able to store at least primary->size - 1 entries.
217 struct mem_cgroup_threshold_ary *spare;
221 struct mem_cgroup_eventfd_list {
222 struct list_head list;
223 struct eventfd_ctx *eventfd;
226 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
227 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230 * The memory controller data structure. The memory controller controls both
231 * page cache and RSS per cgroup. We would eventually like to provide
232 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
233 * to help the administrator determine what knobs to tune.
235 * TODO: Add a water mark for the memory controller. Reclaim will begin when
236 * we hit the water mark. May be even add a low water mark, such that
237 * no reclaim occurs from a cgroup at it's low water mark, this is
238 * a feature that will be implemented much later in the future.
241 struct cgroup_subsys_state css;
243 * the counter to account for memory usage
245 struct res_counter res;
249 * the counter to account for mem+swap usage.
251 struct res_counter memsw;
254 * rcu_freeing is used only when freeing struct mem_cgroup,
255 * so put it into a union to avoid wasting more memory.
256 * It must be disjoint from the css field. It could be
257 * in a union with the res field, but res plays a much
258 * larger part in mem_cgroup life than memsw, and might
259 * be of interest, even at time of free, when debugging.
260 * So share rcu_head with the less interesting memsw.
262 struct rcu_head rcu_freeing;
264 * We also need some space for a worker in deferred freeing.
265 * By the time we call it, rcu_freeing is no longer in use.
267 struct work_struct work_freeing;
271 * Per cgroup active and inactive list, similar to the
272 * per zone LRU lists.
274 struct mem_cgroup_lru_info info;
275 int last_scanned_node;
277 nodemask_t scan_nodes;
278 atomic_t numainfo_events;
279 atomic_t numainfo_updating;
282 * Should the accounting and control be hierarchical, per subtree?
292 /* OOM-Killer disable */
293 int oom_kill_disable;
295 /* set when res.limit == memsw.limit */
296 bool memsw_is_minimum;
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds;
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds;
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
314 unsigned long move_charge_at_immigrate;
316 * set > 0 if pages under this cgroup are moving to other cgroup.
318 atomic_t moving_account;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
324 struct mem_cgroup_stat_cpu __percpu *stat;
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
332 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333 struct tcp_memcontrol tcp_mem;
337 /* Stuffs for move charges at task migration. */
339 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
340 * left-shifted bitmap of these types.
343 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
344 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
348 /* "mc" and its members are protected by cgroup_mutex */
349 static struct move_charge_struct {
350 spinlock_t lock; /* for from, to */
351 struct mem_cgroup *from;
352 struct mem_cgroup *to;
353 unsigned long precharge;
354 unsigned long moved_charge;
355 unsigned long moved_swap;
356 struct task_struct *moving_task; /* a task moving charges */
357 wait_queue_head_t waitq; /* a waitq for other context */
359 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
360 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
363 static bool move_anon(void)
365 return test_bit(MOVE_CHARGE_TYPE_ANON,
366 &mc.to->move_charge_at_immigrate);
369 static bool move_file(void)
371 return test_bit(MOVE_CHARGE_TYPE_FILE,
372 &mc.to->move_charge_at_immigrate);
376 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
377 * limit reclaim to prevent infinite loops, if they ever occur.
379 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
380 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
383 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
384 MEM_CGROUP_CHARGE_TYPE_ANON,
385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
390 /* for encoding cft->private value on file */
393 #define _OOM_TYPE (2)
394 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
395 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
396 #define MEMFILE_ATTR(val) ((val) & 0xffff)
397 /* Used for OOM nofiier */
398 #define OOM_CONTROL (0)
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
403 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 static void mem_cgroup_get(struct mem_cgroup *memcg);
409 static void mem_cgroup_put(struct mem_cgroup *memcg);
412 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
414 return container_of(s, struct mem_cgroup, css);
417 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
419 return (memcg == root_mem_cgroup);
422 /* Writing them here to avoid exposing memcg's inner layout */
423 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
425 void sock_update_memcg(struct sock *sk)
427 if (mem_cgroup_sockets_enabled) {
428 struct mem_cgroup *memcg;
429 struct cg_proto *cg_proto;
431 BUG_ON(!sk->sk_prot->proto_cgroup);
433 /* Socket cloning can throw us here with sk_cgrp already
434 * filled. It won't however, necessarily happen from
435 * process context. So the test for root memcg given
436 * the current task's memcg won't help us in this case.
438 * Respecting the original socket's memcg is a better
439 * decision in this case.
442 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
443 mem_cgroup_get(sk->sk_cgrp->memcg);
448 memcg = mem_cgroup_from_task(current);
449 cg_proto = sk->sk_prot->proto_cgroup(memcg);
450 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
451 mem_cgroup_get(memcg);
452 sk->sk_cgrp = cg_proto;
457 EXPORT_SYMBOL(sock_update_memcg);
459 void sock_release_memcg(struct sock *sk)
461 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
462 struct mem_cgroup *memcg;
463 WARN_ON(!sk->sk_cgrp->memcg);
464 memcg = sk->sk_cgrp->memcg;
465 mem_cgroup_put(memcg);
469 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
471 if (!memcg || mem_cgroup_is_root(memcg))
474 return &memcg->tcp_mem.cg_proto;
476 EXPORT_SYMBOL(tcp_proto_cgroup);
478 static void disarm_sock_keys(struct mem_cgroup *memcg)
480 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
482 static_key_slow_dec(&memcg_socket_limit_enabled);
485 static void disarm_sock_keys(struct mem_cgroup *memcg)
490 static void drain_all_stock_async(struct mem_cgroup *memcg);
492 static struct mem_cgroup_per_zone *
493 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
495 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
498 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
503 static struct mem_cgroup_per_zone *
504 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
506 int nid = page_to_nid(page);
507 int zid = page_zonenum(page);
509 return mem_cgroup_zoneinfo(memcg, nid, zid);
512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_node_zone(int nid, int zid)
515 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
518 static struct mem_cgroup_tree_per_zone *
519 soft_limit_tree_from_page(struct page *page)
521 int nid = page_to_nid(page);
522 int zid = page_zonenum(page);
524 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
528 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz,
531 unsigned long long new_usage_in_excess)
533 struct rb_node **p = &mctz->rb_root.rb_node;
534 struct rb_node *parent = NULL;
535 struct mem_cgroup_per_zone *mz_node;
540 mz->usage_in_excess = new_usage_in_excess;
541 if (!mz->usage_in_excess)
545 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
547 if (mz->usage_in_excess < mz_node->usage_in_excess)
550 * We can't avoid mem cgroups that are over their soft
551 * limit by the same amount
553 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
562 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
563 struct mem_cgroup_per_zone *mz,
564 struct mem_cgroup_tree_per_zone *mctz)
568 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
574 struct mem_cgroup_per_zone *mz,
575 struct mem_cgroup_tree_per_zone *mctz)
577 spin_lock(&mctz->lock);
578 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
579 spin_unlock(&mctz->lock);
583 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
585 unsigned long long excess;
586 struct mem_cgroup_per_zone *mz;
587 struct mem_cgroup_tree_per_zone *mctz;
588 int nid = page_to_nid(page);
589 int zid = page_zonenum(page);
590 mctz = soft_limit_tree_from_page(page);
593 * Necessary to update all ancestors when hierarchy is used.
594 * because their event counter is not touched.
596 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
597 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598 excess = res_counter_soft_limit_excess(&memcg->res);
600 * We have to update the tree if mz is on RB-tree or
601 * mem is over its softlimit.
603 if (excess || mz->on_tree) {
604 spin_lock(&mctz->lock);
605 /* if on-tree, remove it */
607 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
609 * Insert again. mz->usage_in_excess will be updated.
610 * If excess is 0, no tree ops.
612 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
613 spin_unlock(&mctz->lock);
618 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
621 struct mem_cgroup_per_zone *mz;
622 struct mem_cgroup_tree_per_zone *mctz;
624 for_each_node(node) {
625 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
626 mz = mem_cgroup_zoneinfo(memcg, node, zone);
627 mctz = soft_limit_tree_node_zone(node, zone);
628 mem_cgroup_remove_exceeded(memcg, mz, mctz);
633 static struct mem_cgroup_per_zone *
634 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
636 struct rb_node *rightmost = NULL;
637 struct mem_cgroup_per_zone *mz;
641 rightmost = rb_last(&mctz->rb_root);
643 goto done; /* Nothing to reclaim from */
645 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
647 * Remove the node now but someone else can add it back,
648 * we will to add it back at the end of reclaim to its correct
649 * position in the tree.
651 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
652 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
653 !css_tryget(&mz->memcg->css))
659 static struct mem_cgroup_per_zone *
660 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
662 struct mem_cgroup_per_zone *mz;
664 spin_lock(&mctz->lock);
665 mz = __mem_cgroup_largest_soft_limit_node(mctz);
666 spin_unlock(&mctz->lock);
671 * Implementation Note: reading percpu statistics for memcg.
673 * Both of vmstat[] and percpu_counter has threshold and do periodic
674 * synchronization to implement "quick" read. There are trade-off between
675 * reading cost and precision of value. Then, we may have a chance to implement
676 * a periodic synchronizion of counter in memcg's counter.
678 * But this _read() function is used for user interface now. The user accounts
679 * memory usage by memory cgroup and he _always_ requires exact value because
680 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
681 * have to visit all online cpus and make sum. So, for now, unnecessary
682 * synchronization is not implemented. (just implemented for cpu hotplug)
684 * If there are kernel internal actions which can make use of some not-exact
685 * value, and reading all cpu value can be performance bottleneck in some
686 * common workload, threashold and synchonization as vmstat[] should be
689 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
690 enum mem_cgroup_stat_index idx)
696 for_each_online_cpu(cpu)
697 val += per_cpu(memcg->stat->count[idx], cpu);
698 #ifdef CONFIG_HOTPLUG_CPU
699 spin_lock(&memcg->pcp_counter_lock);
700 val += memcg->nocpu_base.count[idx];
701 spin_unlock(&memcg->pcp_counter_lock);
707 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
710 int val = (charge) ? 1 : -1;
711 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
714 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_index idx)
717 unsigned long val = 0;
720 for_each_online_cpu(cpu)
721 val += per_cpu(memcg->stat->events[idx], cpu);
722 #ifdef CONFIG_HOTPLUG_CPU
723 spin_lock(&memcg->pcp_counter_lock);
724 val += memcg->nocpu_base.events[idx];
725 spin_unlock(&memcg->pcp_counter_lock);
730 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
731 bool anon, int nr_pages)
736 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
737 * counted as CACHE even if it's on ANON LRU.
740 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
743 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
746 /* pagein of a big page is an event. So, ignore page size */
748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
750 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
751 nr_pages = -nr_pages; /* for event */
754 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
760 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
762 struct mem_cgroup_per_zone *mz;
764 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
765 return mz->lru_size[lru];
769 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
770 unsigned int lru_mask)
772 struct mem_cgroup_per_zone *mz;
774 unsigned long ret = 0;
776 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
779 if (BIT(lru) & lru_mask)
780 ret += mz->lru_size[lru];
786 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
787 int nid, unsigned int lru_mask)
792 for (zid = 0; zid < MAX_NR_ZONES; zid++)
793 total += mem_cgroup_zone_nr_lru_pages(memcg,
799 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
800 unsigned int lru_mask)
805 for_each_node_state(nid, N_MEMORY)
806 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
810 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_target target)
813 unsigned long val, next;
815 val = __this_cpu_read(memcg->stat->nr_page_events);
816 next = __this_cpu_read(memcg->stat->targets[target]);
817 /* from time_after() in jiffies.h */
818 if ((long)next - (long)val < 0) {
820 case MEM_CGROUP_TARGET_THRESH:
821 next = val + THRESHOLDS_EVENTS_TARGET;
823 case MEM_CGROUP_TARGET_SOFTLIMIT:
824 next = val + SOFTLIMIT_EVENTS_TARGET;
826 case MEM_CGROUP_TARGET_NUMAINFO:
827 next = val + NUMAINFO_EVENTS_TARGET;
832 __this_cpu_write(memcg->stat->targets[target], next);
839 * Check events in order.
842 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
845 /* threshold event is triggered in finer grain than soft limit */
846 if (unlikely(mem_cgroup_event_ratelimit(memcg,
847 MEM_CGROUP_TARGET_THRESH))) {
849 bool do_numainfo __maybe_unused;
851 do_softlimit = mem_cgroup_event_ratelimit(memcg,
852 MEM_CGROUP_TARGET_SOFTLIMIT);
854 do_numainfo = mem_cgroup_event_ratelimit(memcg,
855 MEM_CGROUP_TARGET_NUMAINFO);
859 mem_cgroup_threshold(memcg);
860 if (unlikely(do_softlimit))
861 mem_cgroup_update_tree(memcg, page);
863 if (unlikely(do_numainfo))
864 atomic_inc(&memcg->numainfo_events);
870 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
872 return mem_cgroup_from_css(
873 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
876 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
879 * mm_update_next_owner() may clear mm->owner to NULL
880 * if it races with swapoff, page migration, etc.
881 * So this can be called with p == NULL.
886 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
889 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
891 struct mem_cgroup *memcg = NULL;
896 * Because we have no locks, mm->owner's may be being moved to other
897 * cgroup. We use css_tryget() here even if this looks
898 * pessimistic (rather than adding locks here).
902 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
903 if (unlikely(!memcg))
905 } while (!css_tryget(&memcg->css));
911 * mem_cgroup_iter - iterate over memory cgroup hierarchy
912 * @root: hierarchy root
913 * @prev: previously returned memcg, NULL on first invocation
914 * @reclaim: cookie for shared reclaim walks, NULL for full walks
916 * Returns references to children of the hierarchy below @root, or
917 * @root itself, or %NULL after a full round-trip.
919 * Caller must pass the return value in @prev on subsequent
920 * invocations for reference counting, or use mem_cgroup_iter_break()
921 * to cancel a hierarchy walk before the round-trip is complete.
923 * Reclaimers can specify a zone and a priority level in @reclaim to
924 * divide up the memcgs in the hierarchy among all concurrent
925 * reclaimers operating on the same zone and priority.
927 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
928 struct mem_cgroup *prev,
929 struct mem_cgroup_reclaim_cookie *reclaim)
931 struct mem_cgroup *memcg = NULL;
934 if (mem_cgroup_disabled())
938 root = root_mem_cgroup;
940 if (prev && !reclaim)
941 id = css_id(&prev->css);
943 if (prev && prev != root)
946 if (!root->use_hierarchy && root != root_mem_cgroup) {
953 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
954 struct cgroup_subsys_state *css;
957 int nid = zone_to_nid(reclaim->zone);
958 int zid = zone_idx(reclaim->zone);
959 struct mem_cgroup_per_zone *mz;
961 mz = mem_cgroup_zoneinfo(root, nid, zid);
962 iter = &mz->reclaim_iter[reclaim->priority];
963 if (prev && reclaim->generation != iter->generation)
969 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
971 if (css == &root->css || css_tryget(css))
972 memcg = mem_cgroup_from_css(css);
981 else if (!prev && memcg)
982 reclaim->generation = iter->generation;
992 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993 * @root: hierarchy root
994 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
996 void mem_cgroup_iter_break(struct mem_cgroup *root,
997 struct mem_cgroup *prev)
1000 root = root_mem_cgroup;
1001 if (prev && prev != root)
1002 css_put(&prev->css);
1006 * Iteration constructs for visiting all cgroups (under a tree). If
1007 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1008 * be used for reference counting.
1010 #define for_each_mem_cgroup_tree(iter, root) \
1011 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1013 iter = mem_cgroup_iter(root, iter, NULL))
1015 #define for_each_mem_cgroup(iter) \
1016 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1018 iter = mem_cgroup_iter(NULL, iter, NULL))
1020 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1022 struct mem_cgroup *memcg;
1025 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1026 if (unlikely(!memcg))
1031 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1034 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1042 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1045 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1046 * @zone: zone of the wanted lruvec
1047 * @memcg: memcg of the wanted lruvec
1049 * Returns the lru list vector holding pages for the given @zone and
1050 * @mem. This can be the global zone lruvec, if the memory controller
1053 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1054 struct mem_cgroup *memcg)
1056 struct mem_cgroup_per_zone *mz;
1057 struct lruvec *lruvec;
1059 if (mem_cgroup_disabled()) {
1060 lruvec = &zone->lruvec;
1064 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1065 lruvec = &mz->lruvec;
1068 * Since a node can be onlined after the mem_cgroup was created,
1069 * we have to be prepared to initialize lruvec->zone here;
1070 * and if offlined then reonlined, we need to reinitialize it.
1072 if (unlikely(lruvec->zone != zone))
1073 lruvec->zone = zone;
1078 * Following LRU functions are allowed to be used without PCG_LOCK.
1079 * Operations are called by routine of global LRU independently from memcg.
1080 * What we have to take care of here is validness of pc->mem_cgroup.
1082 * Changes to pc->mem_cgroup happens when
1085 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1086 * It is added to LRU before charge.
1087 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1088 * When moving account, the page is not on LRU. It's isolated.
1092 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1094 * @zone: zone of the page
1096 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1098 struct mem_cgroup_per_zone *mz;
1099 struct mem_cgroup *memcg;
1100 struct page_cgroup *pc;
1101 struct lruvec *lruvec;
1103 if (mem_cgroup_disabled()) {
1104 lruvec = &zone->lruvec;
1108 pc = lookup_page_cgroup(page);
1109 memcg = pc->mem_cgroup;
1112 * Surreptitiously switch any uncharged offlist page to root:
1113 * an uncharged page off lru does nothing to secure
1114 * its former mem_cgroup from sudden removal.
1116 * Our caller holds lru_lock, and PageCgroupUsed is updated
1117 * under page_cgroup lock: between them, they make all uses
1118 * of pc->mem_cgroup safe.
1120 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1121 pc->mem_cgroup = memcg = root_mem_cgroup;
1123 mz = page_cgroup_zoneinfo(memcg, page);
1124 lruvec = &mz->lruvec;
1127 * Since a node can be onlined after the mem_cgroup was created,
1128 * we have to be prepared to initialize lruvec->zone here;
1129 * and if offlined then reonlined, we need to reinitialize it.
1131 if (unlikely(lruvec->zone != zone))
1132 lruvec->zone = zone;
1137 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1138 * @lruvec: mem_cgroup per zone lru vector
1139 * @lru: index of lru list the page is sitting on
1140 * @nr_pages: positive when adding or negative when removing
1142 * This function must be called when a page is added to or removed from an
1145 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1148 struct mem_cgroup_per_zone *mz;
1149 unsigned long *lru_size;
1151 if (mem_cgroup_disabled())
1154 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1155 lru_size = mz->lru_size + lru;
1156 *lru_size += nr_pages;
1157 VM_BUG_ON((long)(*lru_size) < 0);
1161 * Checks whether given mem is same or in the root_mem_cgroup's
1164 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1165 struct mem_cgroup *memcg)
1167 if (root_memcg == memcg)
1169 if (!root_memcg->use_hierarchy || !memcg)
1171 return css_is_ancestor(&memcg->css, &root_memcg->css);
1174 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1175 struct mem_cgroup *memcg)
1180 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1185 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1188 struct mem_cgroup *curr = NULL;
1189 struct task_struct *p;
1191 p = find_lock_task_mm(task);
1193 curr = try_get_mem_cgroup_from_mm(p->mm);
1197 * All threads may have already detached their mm's, but the oom
1198 * killer still needs to detect if they have already been oom
1199 * killed to prevent needlessly killing additional tasks.
1202 curr = mem_cgroup_from_task(task);
1204 css_get(&curr->css);
1210 * We should check use_hierarchy of "memcg" not "curr". Because checking
1211 * use_hierarchy of "curr" here make this function true if hierarchy is
1212 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1213 * hierarchy(even if use_hierarchy is disabled in "memcg").
1215 ret = mem_cgroup_same_or_subtree(memcg, curr);
1216 css_put(&curr->css);
1220 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1222 unsigned long inactive_ratio;
1223 unsigned long inactive;
1224 unsigned long active;
1227 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1228 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1230 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1232 inactive_ratio = int_sqrt(10 * gb);
1236 return inactive * inactive_ratio < active;
1239 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1241 unsigned long active;
1242 unsigned long inactive;
1244 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1245 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1247 return (active > inactive);
1250 #define mem_cgroup_from_res_counter(counter, member) \
1251 container_of(counter, struct mem_cgroup, member)
1254 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1255 * @memcg: the memory cgroup
1257 * Returns the maximum amount of memory @mem can be charged with, in
1260 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1262 unsigned long long margin;
1264 margin = res_counter_margin(&memcg->res);
1265 if (do_swap_account)
1266 margin = min(margin, res_counter_margin(&memcg->memsw));
1267 return margin >> PAGE_SHIFT;
1270 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1272 struct cgroup *cgrp = memcg->css.cgroup;
1275 if (cgrp->parent == NULL)
1276 return vm_swappiness;
1278 return memcg->swappiness;
1282 * memcg->moving_account is used for checking possibility that some thread is
1283 * calling move_account(). When a thread on CPU-A starts moving pages under
1284 * a memcg, other threads should check memcg->moving_account under
1285 * rcu_read_lock(), like this:
1289 * memcg->moving_account+1 if (memcg->mocing_account)
1291 * synchronize_rcu() update something.
1296 /* for quick checking without looking up memcg */
1297 atomic_t memcg_moving __read_mostly;
1299 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1301 atomic_inc(&memcg_moving);
1302 atomic_inc(&memcg->moving_account);
1306 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1309 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1310 * We check NULL in callee rather than caller.
1313 atomic_dec(&memcg_moving);
1314 atomic_dec(&memcg->moving_account);
1319 * 2 routines for checking "mem" is under move_account() or not.
1321 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1322 * is used for avoiding races in accounting. If true,
1323 * pc->mem_cgroup may be overwritten.
1325 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1326 * under hierarchy of moving cgroups. This is for
1327 * waiting at hith-memory prressure caused by "move".
1330 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1332 VM_BUG_ON(!rcu_read_lock_held());
1333 return atomic_read(&memcg->moving_account) > 0;
1336 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1338 struct mem_cgroup *from;
1339 struct mem_cgroup *to;
1342 * Unlike task_move routines, we access mc.to, mc.from not under
1343 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1345 spin_lock(&mc.lock);
1351 ret = mem_cgroup_same_or_subtree(memcg, from)
1352 || mem_cgroup_same_or_subtree(memcg, to);
1354 spin_unlock(&mc.lock);
1358 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1360 if (mc.moving_task && current != mc.moving_task) {
1361 if (mem_cgroup_under_move(memcg)) {
1363 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1364 /* moving charge context might have finished. */
1367 finish_wait(&mc.waitq, &wait);
1375 * Take this lock when
1376 * - a code tries to modify page's memcg while it's USED.
1377 * - a code tries to modify page state accounting in a memcg.
1378 * see mem_cgroup_stolen(), too.
1380 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1381 unsigned long *flags)
1383 spin_lock_irqsave(&memcg->move_lock, *flags);
1386 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1387 unsigned long *flags)
1389 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1393 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1394 * @memcg: The memory cgroup that went over limit
1395 * @p: Task that is going to be killed
1397 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1400 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1402 struct cgroup *task_cgrp;
1403 struct cgroup *mem_cgrp;
1405 * Need a buffer in BSS, can't rely on allocations. The code relies
1406 * on the assumption that OOM is serialized for memory controller.
1407 * If this assumption is broken, revisit this code.
1409 static char memcg_name[PATH_MAX];
1417 mem_cgrp = memcg->css.cgroup;
1418 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1420 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1423 * Unfortunately, we are unable to convert to a useful name
1424 * But we'll still print out the usage information
1431 printk(KERN_INFO "Task in %s killed", memcg_name);
1434 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1442 * Continues from above, so we don't need an KERN_ level
1444 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1447 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1448 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1449 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1450 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1451 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1453 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1454 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1455 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1459 * This function returns the number of memcg under hierarchy tree. Returns
1460 * 1(self count) if no children.
1462 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1465 struct mem_cgroup *iter;
1467 for_each_mem_cgroup_tree(iter, memcg)
1473 * Return the memory (and swap, if configured) limit for a memcg.
1475 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1479 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1482 * Do not consider swap space if we cannot swap due to swappiness
1484 if (mem_cgroup_swappiness(memcg)) {
1487 limit += total_swap_pages << PAGE_SHIFT;
1488 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1491 * If memsw is finite and limits the amount of swap space
1492 * available to this memcg, return that limit.
1494 limit = min(limit, memsw);
1500 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1503 struct mem_cgroup *iter;
1504 unsigned long chosen_points = 0;
1505 unsigned long totalpages;
1506 unsigned int points = 0;
1507 struct task_struct *chosen = NULL;
1510 * If current has a pending SIGKILL, then automatically select it. The
1511 * goal is to allow it to allocate so that it may quickly exit and free
1514 if (fatal_signal_pending(current)) {
1515 set_thread_flag(TIF_MEMDIE);
1519 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1520 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1521 for_each_mem_cgroup_tree(iter, memcg) {
1522 struct cgroup *cgroup = iter->css.cgroup;
1523 struct cgroup_iter it;
1524 struct task_struct *task;
1526 cgroup_iter_start(cgroup, &it);
1527 while ((task = cgroup_iter_next(cgroup, &it))) {
1528 switch (oom_scan_process_thread(task, totalpages, NULL,
1530 case OOM_SCAN_SELECT:
1532 put_task_struct(chosen);
1534 chosen_points = ULONG_MAX;
1535 get_task_struct(chosen);
1537 case OOM_SCAN_CONTINUE:
1539 case OOM_SCAN_ABORT:
1540 cgroup_iter_end(cgroup, &it);
1541 mem_cgroup_iter_break(memcg, iter);
1543 put_task_struct(chosen);
1548 points = oom_badness(task, memcg, NULL, totalpages);
1549 if (points > chosen_points) {
1551 put_task_struct(chosen);
1553 chosen_points = points;
1554 get_task_struct(chosen);
1557 cgroup_iter_end(cgroup, &it);
1562 points = chosen_points * 1000 / totalpages;
1563 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1564 NULL, "Memory cgroup out of memory");
1567 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1569 unsigned long flags)
1571 unsigned long total = 0;
1572 bool noswap = false;
1575 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1577 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1580 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1582 drain_all_stock_async(memcg);
1583 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1585 * Allow limit shrinkers, which are triggered directly
1586 * by userspace, to catch signals and stop reclaim
1587 * after minimal progress, regardless of the margin.
1589 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1591 if (mem_cgroup_margin(memcg))
1594 * If nothing was reclaimed after two attempts, there
1595 * may be no reclaimable pages in this hierarchy.
1604 * test_mem_cgroup_node_reclaimable
1605 * @memcg: the target memcg
1606 * @nid: the node ID to be checked.
1607 * @noswap : specify true here if the user wants flle only information.
1609 * This function returns whether the specified memcg contains any
1610 * reclaimable pages on a node. Returns true if there are any reclaimable
1611 * pages in the node.
1613 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1614 int nid, bool noswap)
1616 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1618 if (noswap || !total_swap_pages)
1620 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1625 #if MAX_NUMNODES > 1
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1633 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 * pagein/pageout changes since the last update.
1640 if (!atomic_read(&memcg->numainfo_events))
1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1645 /* make a nodemask where this memcg uses memory from */
1646 memcg->scan_nodes = node_states[N_MEMORY];
1648 for_each_node_mask(nid, node_states[N_MEMORY]) {
1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 node_clear(nid, memcg->scan_nodes);
1654 atomic_set(&memcg->numainfo_events, 0);
1655 atomic_set(&memcg->numainfo_updating, 0);
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1668 * Now, we use round-robin. Better algorithm is welcomed.
1670 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1674 mem_cgroup_may_update_nodemask(memcg);
1675 node = memcg->last_scanned_node;
1677 node = next_node(node, memcg->scan_nodes);
1678 if (node == MAX_NUMNODES)
1679 node = first_node(memcg->scan_nodes);
1681 * We call this when we hit limit, not when pages are added to LRU.
1682 * No LRU may hold pages because all pages are UNEVICTABLE or
1683 * memcg is too small and all pages are not on LRU. In that case,
1684 * we use curret node.
1686 if (unlikely(node == MAX_NUMNODES))
1687 node = numa_node_id();
1689 memcg->last_scanned_node = node;
1694 * Check all nodes whether it contains reclaimable pages or not.
1695 * For quick scan, we make use of scan_nodes. This will allow us to skip
1696 * unused nodes. But scan_nodes is lazily updated and may not cotain
1697 * enough new information. We need to do double check.
1699 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1704 * quick check...making use of scan_node.
1705 * We can skip unused nodes.
1707 if (!nodes_empty(memcg->scan_nodes)) {
1708 for (nid = first_node(memcg->scan_nodes);
1710 nid = next_node(nid, memcg->scan_nodes)) {
1712 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1717 * Check rest of nodes.
1719 for_each_node_state(nid, N_MEMORY) {
1720 if (node_isset(nid, memcg->scan_nodes))
1722 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1729 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1734 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1736 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1740 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1743 unsigned long *total_scanned)
1745 struct mem_cgroup *victim = NULL;
1748 unsigned long excess;
1749 unsigned long nr_scanned;
1750 struct mem_cgroup_reclaim_cookie reclaim = {
1755 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1763 * If we have not been able to reclaim
1764 * anything, it might because there are
1765 * no reclaimable pages under this hierarchy
1770 * We want to do more targeted reclaim.
1771 * excess >> 2 is not to excessive so as to
1772 * reclaim too much, nor too less that we keep
1773 * coming back to reclaim from this cgroup
1775 if (total >= (excess >> 2) ||
1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1781 if (!mem_cgroup_reclaimable(victim, false))
1783 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1785 *total_scanned += nr_scanned;
1786 if (!res_counter_soft_limit_excess(&root_memcg->res))
1789 mem_cgroup_iter_break(root_memcg, victim);
1794 * Check OOM-Killer is already running under our hierarchy.
1795 * If someone is running, return false.
1796 * Has to be called with memcg_oom_lock
1798 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1800 struct mem_cgroup *iter, *failed = NULL;
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter->oom_lock) {
1805 * this subtree of our hierarchy is already locked
1806 * so we cannot give a lock.
1809 mem_cgroup_iter_break(memcg, iter);
1812 iter->oom_lock = true;
1819 * OK, we failed to lock the whole subtree so we have to clean up
1820 * what we set up to the failing subtree
1822 for_each_mem_cgroup_tree(iter, memcg) {
1823 if (iter == failed) {
1824 mem_cgroup_iter_break(memcg, iter);
1827 iter->oom_lock = false;
1833 * Has to be called with memcg_oom_lock
1835 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1837 struct mem_cgroup *iter;
1839 for_each_mem_cgroup_tree(iter, memcg)
1840 iter->oom_lock = false;
1844 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1846 struct mem_cgroup *iter;
1848 for_each_mem_cgroup_tree(iter, memcg)
1849 atomic_inc(&iter->under_oom);
1852 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1854 struct mem_cgroup *iter;
1857 * When a new child is created while the hierarchy is under oom,
1858 * mem_cgroup_oom_lock() may not be called. We have to use
1859 * atomic_add_unless() here.
1861 for_each_mem_cgroup_tree(iter, memcg)
1862 atomic_add_unless(&iter->under_oom, -1, 0);
1865 static DEFINE_SPINLOCK(memcg_oom_lock);
1866 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868 struct oom_wait_info {
1869 struct mem_cgroup *memcg;
1873 static int memcg_oom_wake_function(wait_queue_t *wait,
1874 unsigned mode, int sync, void *arg)
1876 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1877 struct mem_cgroup *oom_wait_memcg;
1878 struct oom_wait_info *oom_wait_info;
1880 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1881 oom_wait_memcg = oom_wait_info->memcg;
1884 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1885 * Then we can use css_is_ancestor without taking care of RCU.
1887 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1888 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1890 return autoremove_wake_function(wait, mode, sync, arg);
1893 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1895 /* for filtering, pass "memcg" as argument. */
1896 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1899 static void memcg_oom_recover(struct mem_cgroup *memcg)
1901 if (memcg && atomic_read(&memcg->under_oom))
1902 memcg_wakeup_oom(memcg);
1906 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1911 struct oom_wait_info owait;
1912 bool locked, need_to_kill;
1914 owait.memcg = memcg;
1915 owait.wait.flags = 0;
1916 owait.wait.func = memcg_oom_wake_function;
1917 owait.wait.private = current;
1918 INIT_LIST_HEAD(&owait.wait.task_list);
1919 need_to_kill = true;
1920 mem_cgroup_mark_under_oom(memcg);
1922 /* At first, try to OOM lock hierarchy under memcg.*/
1923 spin_lock(&memcg_oom_lock);
1924 locked = mem_cgroup_oom_lock(memcg);
1926 * Even if signal_pending(), we can't quit charge() loop without
1927 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1928 * under OOM is always welcomed, use TASK_KILLABLE here.
1930 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1931 if (!locked || memcg->oom_kill_disable)
1932 need_to_kill = false;
1934 mem_cgroup_oom_notify(memcg);
1935 spin_unlock(&memcg_oom_lock);
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
1939 mem_cgroup_out_of_memory(memcg, mask, order);
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
1944 spin_lock(&memcg_oom_lock);
1946 mem_cgroup_oom_unlock(memcg);
1947 memcg_wakeup_oom(memcg);
1948 spin_unlock(&memcg_oom_lock);
1950 mem_cgroup_unmark_under_oom(memcg);
1952 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1954 /* Give chance to dying process */
1955 schedule_timeout_uninterruptible(1);
1960 * Currently used to update mapped file statistics, but the routine can be
1961 * generalized to update other statistics as well.
1963 * Notes: Race condition
1965 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1966 * it tends to be costly. But considering some conditions, we doesn't need
1967 * to do so _always_.
1969 * Considering "charge", lock_page_cgroup() is not required because all
1970 * file-stat operations happen after a page is attached to radix-tree. There
1971 * are no race with "charge".
1973 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1974 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1975 * if there are race with "uncharge". Statistics itself is properly handled
1978 * Considering "move", this is an only case we see a race. To make the race
1979 * small, we check mm->moving_account and detect there are possibility of race
1980 * If there is, we take a lock.
1983 void __mem_cgroup_begin_update_page_stat(struct page *page,
1984 bool *locked, unsigned long *flags)
1986 struct mem_cgroup *memcg;
1987 struct page_cgroup *pc;
1989 pc = lookup_page_cgroup(page);
1991 memcg = pc->mem_cgroup;
1992 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1995 * If this memory cgroup is not under account moving, we don't
1996 * need to take move_lock_mem_cgroup(). Because we already hold
1997 * rcu_read_lock(), any calls to move_account will be delayed until
1998 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2000 if (!mem_cgroup_stolen(memcg))
2003 move_lock_mem_cgroup(memcg, flags);
2004 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2005 move_unlock_mem_cgroup(memcg, flags);
2011 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2013 struct page_cgroup *pc = lookup_page_cgroup(page);
2016 * It's guaranteed that pc->mem_cgroup never changes while
2017 * lock is held because a routine modifies pc->mem_cgroup
2018 * should take move_lock_mem_cgroup().
2020 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2023 void mem_cgroup_update_page_stat(struct page *page,
2024 enum mem_cgroup_page_stat_item idx, int val)
2026 struct mem_cgroup *memcg;
2027 struct page_cgroup *pc = lookup_page_cgroup(page);
2028 unsigned long uninitialized_var(flags);
2030 if (mem_cgroup_disabled())
2033 memcg = pc->mem_cgroup;
2034 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2038 case MEMCG_NR_FILE_MAPPED:
2039 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2045 this_cpu_add(memcg->stat->count[idx], val);
2049 * size of first charge trial. "32" comes from vmscan.c's magic value.
2050 * TODO: maybe necessary to use big numbers in big irons.
2052 #define CHARGE_BATCH 32U
2053 struct memcg_stock_pcp {
2054 struct mem_cgroup *cached; /* this never be root cgroup */
2055 unsigned int nr_pages;
2056 struct work_struct work;
2057 unsigned long flags;
2058 #define FLUSHING_CACHED_CHARGE 0
2060 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2061 static DEFINE_MUTEX(percpu_charge_mutex);
2064 * consume_stock: Try to consume stocked charge on this cpu.
2065 * @memcg: memcg to consume from.
2066 * @nr_pages: how many pages to charge.
2068 * The charges will only happen if @memcg matches the current cpu's memcg
2069 * stock, and at least @nr_pages are available in that stock. Failure to
2070 * service an allocation will refill the stock.
2072 * returns true if successful, false otherwise.
2074 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2076 struct memcg_stock_pcp *stock;
2079 if (nr_pages > CHARGE_BATCH)
2082 stock = &get_cpu_var(memcg_stock);
2083 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2084 stock->nr_pages -= nr_pages;
2085 else /* need to call res_counter_charge */
2087 put_cpu_var(memcg_stock);
2092 * Returns stocks cached in percpu to res_counter and reset cached information.
2094 static void drain_stock(struct memcg_stock_pcp *stock)
2096 struct mem_cgroup *old = stock->cached;
2098 if (stock->nr_pages) {
2099 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2101 res_counter_uncharge(&old->res, bytes);
2102 if (do_swap_account)
2103 res_counter_uncharge(&old->memsw, bytes);
2104 stock->nr_pages = 0;
2106 stock->cached = NULL;
2110 * This must be called under preempt disabled or must be called by
2111 * a thread which is pinned to local cpu.
2113 static void drain_local_stock(struct work_struct *dummy)
2115 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2117 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2121 * Cache charges(val) which is from res_counter, to local per_cpu area.
2122 * This will be consumed by consume_stock() function, later.
2124 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2128 if (stock->cached != memcg) { /* reset if necessary */
2130 stock->cached = memcg;
2132 stock->nr_pages += nr_pages;
2133 put_cpu_var(memcg_stock);
2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138 * of the hierarchy under it. sync flag says whether we should block
2139 * until the work is done.
2141 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2145 /* Notify other cpus that system-wide "drain" is running */
2148 for_each_online_cpu(cpu) {
2149 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2150 struct mem_cgroup *memcg;
2152 memcg = stock->cached;
2153 if (!memcg || !stock->nr_pages)
2155 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2157 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2159 drain_local_stock(&stock->work);
2161 schedule_work_on(cpu, &stock->work);
2169 for_each_online_cpu(cpu) {
2170 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2171 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2172 flush_work(&stock->work);
2179 * Tries to drain stocked charges in other cpus. This function is asynchronous
2180 * and just put a work per cpu for draining localy on each cpu. Caller can
2181 * expects some charges will be back to res_counter later but cannot wait for
2184 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2187 * If someone calls draining, avoid adding more kworker runs.
2189 if (!mutex_trylock(&percpu_charge_mutex))
2191 drain_all_stock(root_memcg, false);
2192 mutex_unlock(&percpu_charge_mutex);
2195 /* This is a synchronous drain interface. */
2196 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2198 /* called when force_empty is called */
2199 mutex_lock(&percpu_charge_mutex);
2200 drain_all_stock(root_memcg, true);
2201 mutex_unlock(&percpu_charge_mutex);
2205 * This function drains percpu counter value from DEAD cpu and
2206 * move it to local cpu. Note that this function can be preempted.
2208 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2212 spin_lock(&memcg->pcp_counter_lock);
2213 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2214 long x = per_cpu(memcg->stat->count[i], cpu);
2216 per_cpu(memcg->stat->count[i], cpu) = 0;
2217 memcg->nocpu_base.count[i] += x;
2219 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2220 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2222 per_cpu(memcg->stat->events[i], cpu) = 0;
2223 memcg->nocpu_base.events[i] += x;
2225 spin_unlock(&memcg->pcp_counter_lock);
2228 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2229 unsigned long action,
2232 int cpu = (unsigned long)hcpu;
2233 struct memcg_stock_pcp *stock;
2234 struct mem_cgroup *iter;
2236 if (action == CPU_ONLINE)
2239 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2242 for_each_mem_cgroup(iter)
2243 mem_cgroup_drain_pcp_counter(iter, cpu);
2245 stock = &per_cpu(memcg_stock, cpu);
2251 /* See __mem_cgroup_try_charge() for details */
2253 CHARGE_OK, /* success */
2254 CHARGE_RETRY, /* need to retry but retry is not bad */
2255 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2256 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2257 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2260 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2261 unsigned int nr_pages, unsigned int min_pages,
2264 unsigned long csize = nr_pages * PAGE_SIZE;
2265 struct mem_cgroup *mem_over_limit;
2266 struct res_counter *fail_res;
2267 unsigned long flags = 0;
2270 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2273 if (!do_swap_account)
2275 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2279 res_counter_uncharge(&memcg->res, csize);
2280 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2281 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2283 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2285 * Never reclaim on behalf of optional batching, retry with a
2286 * single page instead.
2288 if (nr_pages > min_pages)
2289 return CHARGE_RETRY;
2291 if (!(gfp_mask & __GFP_WAIT))
2292 return CHARGE_WOULDBLOCK;
2294 if (gfp_mask & __GFP_NORETRY)
2295 return CHARGE_NOMEM;
2297 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2298 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2299 return CHARGE_RETRY;
2301 * Even though the limit is exceeded at this point, reclaim
2302 * may have been able to free some pages. Retry the charge
2303 * before killing the task.
2305 * Only for regular pages, though: huge pages are rather
2306 * unlikely to succeed so close to the limit, and we fall back
2307 * to regular pages anyway in case of failure.
2309 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2310 return CHARGE_RETRY;
2313 * At task move, charge accounts can be doubly counted. So, it's
2314 * better to wait until the end of task_move if something is going on.
2316 if (mem_cgroup_wait_acct_move(mem_over_limit))
2317 return CHARGE_RETRY;
2319 /* If we don't need to call oom-killer at el, return immediately */
2321 return CHARGE_NOMEM;
2323 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2324 return CHARGE_OOM_DIE;
2326 return CHARGE_RETRY;
2330 * __mem_cgroup_try_charge() does
2331 * 1. detect memcg to be charged against from passed *mm and *ptr,
2332 * 2. update res_counter
2333 * 3. call memory reclaim if necessary.
2335 * In some special case, if the task is fatal, fatal_signal_pending() or
2336 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2337 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2338 * as possible without any hazards. 2: all pages should have a valid
2339 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2340 * pointer, that is treated as a charge to root_mem_cgroup.
2342 * So __mem_cgroup_try_charge() will return
2343 * 0 ... on success, filling *ptr with a valid memcg pointer.
2344 * -ENOMEM ... charge failure because of resource limits.
2345 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2347 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2348 * the oom-killer can be invoked.
2350 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2352 unsigned int nr_pages,
2353 struct mem_cgroup **ptr,
2356 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2357 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2358 struct mem_cgroup *memcg = NULL;
2362 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2363 * in system level. So, allow to go ahead dying process in addition to
2366 if (unlikely(test_thread_flag(TIF_MEMDIE)
2367 || fatal_signal_pending(current)))
2371 * We always charge the cgroup the mm_struct belongs to.
2372 * The mm_struct's mem_cgroup changes on task migration if the
2373 * thread group leader migrates. It's possible that mm is not
2374 * set, if so charge the root memcg (happens for pagecache usage).
2377 *ptr = root_mem_cgroup;
2379 if (*ptr) { /* css should be a valid one */
2381 if (mem_cgroup_is_root(memcg))
2383 if (consume_stock(memcg, nr_pages))
2385 css_get(&memcg->css);
2387 struct task_struct *p;
2390 p = rcu_dereference(mm->owner);
2392 * Because we don't have task_lock(), "p" can exit.
2393 * In that case, "memcg" can point to root or p can be NULL with
2394 * race with swapoff. Then, we have small risk of mis-accouning.
2395 * But such kind of mis-account by race always happens because
2396 * we don't have cgroup_mutex(). It's overkill and we allo that
2398 * (*) swapoff at el will charge against mm-struct not against
2399 * task-struct. So, mm->owner can be NULL.
2401 memcg = mem_cgroup_from_task(p);
2403 memcg = root_mem_cgroup;
2404 if (mem_cgroup_is_root(memcg)) {
2408 if (consume_stock(memcg, nr_pages)) {
2410 * It seems dagerous to access memcg without css_get().
2411 * But considering how consume_stok works, it's not
2412 * necessary. If consume_stock success, some charges
2413 * from this memcg are cached on this cpu. So, we
2414 * don't need to call css_get()/css_tryget() before
2415 * calling consume_stock().
2420 /* after here, we may be blocked. we need to get refcnt */
2421 if (!css_tryget(&memcg->css)) {
2431 /* If killed, bypass charge */
2432 if (fatal_signal_pending(current)) {
2433 css_put(&memcg->css);
2438 if (oom && !nr_oom_retries) {
2440 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2443 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2448 case CHARGE_RETRY: /* not in OOM situation but retry */
2450 css_put(&memcg->css);
2453 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2454 css_put(&memcg->css);
2456 case CHARGE_NOMEM: /* OOM routine works */
2458 css_put(&memcg->css);
2461 /* If oom, we never return -ENOMEM */
2464 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2465 css_put(&memcg->css);
2468 } while (ret != CHARGE_OK);
2470 if (batch > nr_pages)
2471 refill_stock(memcg, batch - nr_pages);
2472 css_put(&memcg->css);
2480 *ptr = root_mem_cgroup;
2485 * Somemtimes we have to undo a charge we got by try_charge().
2486 * This function is for that and do uncharge, put css's refcnt.
2487 * gotten by try_charge().
2489 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2490 unsigned int nr_pages)
2492 if (!mem_cgroup_is_root(memcg)) {
2493 unsigned long bytes = nr_pages * PAGE_SIZE;
2495 res_counter_uncharge(&memcg->res, bytes);
2496 if (do_swap_account)
2497 res_counter_uncharge(&memcg->memsw, bytes);
2502 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2503 * This is useful when moving usage to parent cgroup.
2505 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2506 unsigned int nr_pages)
2508 unsigned long bytes = nr_pages * PAGE_SIZE;
2510 if (mem_cgroup_is_root(memcg))
2513 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2514 if (do_swap_account)
2515 res_counter_uncharge_until(&memcg->memsw,
2516 memcg->memsw.parent, bytes);
2520 * A helper function to get mem_cgroup from ID. must be called under
2521 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2522 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2523 * called against removed memcg.)
2525 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2527 struct cgroup_subsys_state *css;
2529 /* ID 0 is unused ID */
2532 css = css_lookup(&mem_cgroup_subsys, id);
2535 return mem_cgroup_from_css(css);
2538 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2540 struct mem_cgroup *memcg = NULL;
2541 struct page_cgroup *pc;
2545 VM_BUG_ON(!PageLocked(page));
2547 pc = lookup_page_cgroup(page);
2548 lock_page_cgroup(pc);
2549 if (PageCgroupUsed(pc)) {
2550 memcg = pc->mem_cgroup;
2551 if (memcg && !css_tryget(&memcg->css))
2553 } else if (PageSwapCache(page)) {
2554 ent.val = page_private(page);
2555 id = lookup_swap_cgroup_id(ent);
2557 memcg = mem_cgroup_lookup(id);
2558 if (memcg && !css_tryget(&memcg->css))
2562 unlock_page_cgroup(pc);
2566 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2568 unsigned int nr_pages,
2569 enum charge_type ctype,
2572 struct page_cgroup *pc = lookup_page_cgroup(page);
2573 struct zone *uninitialized_var(zone);
2574 struct lruvec *lruvec;
2575 bool was_on_lru = false;
2578 lock_page_cgroup(pc);
2579 VM_BUG_ON(PageCgroupUsed(pc));
2581 * we don't need page_cgroup_lock about tail pages, becase they are not
2582 * accessed by any other context at this point.
2586 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2587 * may already be on some other mem_cgroup's LRU. Take care of it.
2590 zone = page_zone(page);
2591 spin_lock_irq(&zone->lru_lock);
2592 if (PageLRU(page)) {
2593 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2595 del_page_from_lru_list(page, lruvec, page_lru(page));
2600 pc->mem_cgroup = memcg;
2602 * We access a page_cgroup asynchronously without lock_page_cgroup().
2603 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2604 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2605 * before USED bit, we need memory barrier here.
2606 * See mem_cgroup_add_lru_list(), etc.
2609 SetPageCgroupUsed(pc);
2613 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2614 VM_BUG_ON(PageLRU(page));
2616 add_page_to_lru_list(page, lruvec, page_lru(page));
2618 spin_unlock_irq(&zone->lru_lock);
2621 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2626 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2627 unlock_page_cgroup(pc);
2630 * "charge_statistics" updated event counter. Then, check it.
2631 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2632 * if they exceeds softlimit.
2634 memcg_check_events(memcg, page);
2637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2639 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2641 * Because tail pages are not marked as "used", set it. We're under
2642 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2643 * charge/uncharge will be never happen and move_account() is done under
2644 * compound_lock(), so we don't have to take care of races.
2646 void mem_cgroup_split_huge_fixup(struct page *head)
2648 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2649 struct page_cgroup *pc;
2652 if (mem_cgroup_disabled())
2654 for (i = 1; i < HPAGE_PMD_NR; i++) {
2656 pc->mem_cgroup = head_pc->mem_cgroup;
2657 smp_wmb();/* see __commit_charge() */
2658 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2661 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2664 * mem_cgroup_move_account - move account of the page
2666 * @nr_pages: number of regular pages (>1 for huge pages)
2667 * @pc: page_cgroup of the page.
2668 * @from: mem_cgroup which the page is moved from.
2669 * @to: mem_cgroup which the page is moved to. @from != @to.
2671 * The caller must confirm following.
2672 * - page is not on LRU (isolate_page() is useful.)
2673 * - compound_lock is held when nr_pages > 1
2675 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2678 static int mem_cgroup_move_account(struct page *page,
2679 unsigned int nr_pages,
2680 struct page_cgroup *pc,
2681 struct mem_cgroup *from,
2682 struct mem_cgroup *to)
2684 unsigned long flags;
2686 bool anon = PageAnon(page);
2688 VM_BUG_ON(from == to);
2689 VM_BUG_ON(PageLRU(page));
2691 * The page is isolated from LRU. So, collapse function
2692 * will not handle this page. But page splitting can happen.
2693 * Do this check under compound_page_lock(). The caller should
2697 if (nr_pages > 1 && !PageTransHuge(page))
2700 lock_page_cgroup(pc);
2703 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2706 move_lock_mem_cgroup(from, &flags);
2708 if (!anon && page_mapped(page)) {
2709 /* Update mapped_file data for mem_cgroup */
2711 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2712 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2715 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2717 /* caller should have done css_get */
2718 pc->mem_cgroup = to;
2719 mem_cgroup_charge_statistics(to, anon, nr_pages);
2720 move_unlock_mem_cgroup(from, &flags);
2723 unlock_page_cgroup(pc);
2727 memcg_check_events(to, page);
2728 memcg_check_events(from, page);
2734 * mem_cgroup_move_parent - moves page to the parent group
2735 * @page: the page to move
2736 * @pc: page_cgroup of the page
2737 * @child: page's cgroup
2739 * move charges to its parent or the root cgroup if the group has no
2740 * parent (aka use_hierarchy==0).
2741 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2742 * mem_cgroup_move_account fails) the failure is always temporary and
2743 * it signals a race with a page removal/uncharge or migration. In the
2744 * first case the page is on the way out and it will vanish from the LRU
2745 * on the next attempt and the call should be retried later.
2746 * Isolation from the LRU fails only if page has been isolated from
2747 * the LRU since we looked at it and that usually means either global
2748 * reclaim or migration going on. The page will either get back to the
2750 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2751 * (!PageCgroupUsed) or moved to a different group. The page will
2752 * disappear in the next attempt.
2754 static int mem_cgroup_move_parent(struct page *page,
2755 struct page_cgroup *pc,
2756 struct mem_cgroup *child)
2758 struct mem_cgroup *parent;
2759 unsigned int nr_pages;
2760 unsigned long uninitialized_var(flags);
2763 VM_BUG_ON(mem_cgroup_is_root(child));
2766 if (!get_page_unless_zero(page))
2768 if (isolate_lru_page(page))
2771 nr_pages = hpage_nr_pages(page);
2773 parent = parent_mem_cgroup(child);
2775 * If no parent, move charges to root cgroup.
2778 parent = root_mem_cgroup;
2781 VM_BUG_ON(!PageTransHuge(page));
2782 flags = compound_lock_irqsave(page);
2785 ret = mem_cgroup_move_account(page, nr_pages,
2788 __mem_cgroup_cancel_local_charge(child, nr_pages);
2791 compound_unlock_irqrestore(page, flags);
2792 putback_lru_page(page);
2800 * Charge the memory controller for page usage.
2802 * 0 if the charge was successful
2803 * < 0 if the cgroup is over its limit
2805 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2806 gfp_t gfp_mask, enum charge_type ctype)
2808 struct mem_cgroup *memcg = NULL;
2809 unsigned int nr_pages = 1;
2813 if (PageTransHuge(page)) {
2814 nr_pages <<= compound_order(page);
2815 VM_BUG_ON(!PageTransHuge(page));
2817 * Never OOM-kill a process for a huge page. The
2818 * fault handler will fall back to regular pages.
2823 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2826 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2830 int mem_cgroup_newpage_charge(struct page *page,
2831 struct mm_struct *mm, gfp_t gfp_mask)
2833 if (mem_cgroup_disabled())
2835 VM_BUG_ON(page_mapped(page));
2836 VM_BUG_ON(page->mapping && !PageAnon(page));
2838 return mem_cgroup_charge_common(page, mm, gfp_mask,
2839 MEM_CGROUP_CHARGE_TYPE_ANON);
2843 * While swap-in, try_charge -> commit or cancel, the page is locked.
2844 * And when try_charge() successfully returns, one refcnt to memcg without
2845 * struct page_cgroup is acquired. This refcnt will be consumed by
2846 * "commit()" or removed by "cancel()"
2848 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2851 struct mem_cgroup **memcgp)
2853 struct mem_cgroup *memcg;
2854 struct page_cgroup *pc;
2857 pc = lookup_page_cgroup(page);
2859 * Every swap fault against a single page tries to charge the
2860 * page, bail as early as possible. shmem_unuse() encounters
2861 * already charged pages, too. The USED bit is protected by
2862 * the page lock, which serializes swap cache removal, which
2863 * in turn serializes uncharging.
2865 if (PageCgroupUsed(pc))
2867 if (!do_swap_account)
2869 memcg = try_get_mem_cgroup_from_page(page);
2873 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2874 css_put(&memcg->css);
2879 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2885 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2886 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2889 if (mem_cgroup_disabled())
2892 * A racing thread's fault, or swapoff, may have already
2893 * updated the pte, and even removed page from swap cache: in
2894 * those cases unuse_pte()'s pte_same() test will fail; but
2895 * there's also a KSM case which does need to charge the page.
2897 if (!PageSwapCache(page)) {
2900 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2905 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2908 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2910 if (mem_cgroup_disabled())
2914 __mem_cgroup_cancel_charge(memcg, 1);
2918 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2919 enum charge_type ctype)
2921 if (mem_cgroup_disabled())
2926 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2928 * Now swap is on-memory. This means this page may be
2929 * counted both as mem and swap....double count.
2930 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2931 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2932 * may call delete_from_swap_cache() before reach here.
2934 if (do_swap_account && PageSwapCache(page)) {
2935 swp_entry_t ent = {.val = page_private(page)};
2936 mem_cgroup_uncharge_swap(ent);
2940 void mem_cgroup_commit_charge_swapin(struct page *page,
2941 struct mem_cgroup *memcg)
2943 __mem_cgroup_commit_charge_swapin(page, memcg,
2944 MEM_CGROUP_CHARGE_TYPE_ANON);
2947 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2950 struct mem_cgroup *memcg = NULL;
2951 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2954 if (mem_cgroup_disabled())
2956 if (PageCompound(page))
2959 if (!PageSwapCache(page))
2960 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2961 else { /* page is swapcache/shmem */
2962 ret = __mem_cgroup_try_charge_swapin(mm, page,
2965 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2970 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2971 unsigned int nr_pages,
2972 const enum charge_type ctype)
2974 struct memcg_batch_info *batch = NULL;
2975 bool uncharge_memsw = true;
2977 /* If swapout, usage of swap doesn't decrease */
2978 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2979 uncharge_memsw = false;
2981 batch = ¤t->memcg_batch;
2983 * In usual, we do css_get() when we remember memcg pointer.
2984 * But in this case, we keep res->usage until end of a series of
2985 * uncharges. Then, it's ok to ignore memcg's refcnt.
2988 batch->memcg = memcg;
2990 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2991 * In those cases, all pages freed continuously can be expected to be in
2992 * the same cgroup and we have chance to coalesce uncharges.
2993 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2994 * because we want to do uncharge as soon as possible.
2997 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2998 goto direct_uncharge;
3001 goto direct_uncharge;
3004 * In typical case, batch->memcg == mem. This means we can
3005 * merge a series of uncharges to an uncharge of res_counter.
3006 * If not, we uncharge res_counter ony by one.
3008 if (batch->memcg != memcg)
3009 goto direct_uncharge;
3010 /* remember freed charge and uncharge it later */
3013 batch->memsw_nr_pages++;
3016 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3018 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3019 if (unlikely(batch->memcg != memcg))
3020 memcg_oom_recover(memcg);
3024 * uncharge if !page_mapped(page)
3026 static struct mem_cgroup *
3027 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3030 struct mem_cgroup *memcg = NULL;
3031 unsigned int nr_pages = 1;
3032 struct page_cgroup *pc;
3035 if (mem_cgroup_disabled())
3038 VM_BUG_ON(PageSwapCache(page));
3040 if (PageTransHuge(page)) {
3041 nr_pages <<= compound_order(page);
3042 VM_BUG_ON(!PageTransHuge(page));
3045 * Check if our page_cgroup is valid
3047 pc = lookup_page_cgroup(page);
3048 if (unlikely(!PageCgroupUsed(pc)))
3051 lock_page_cgroup(pc);
3053 memcg = pc->mem_cgroup;
3055 if (!PageCgroupUsed(pc))
3058 anon = PageAnon(page);
3061 case MEM_CGROUP_CHARGE_TYPE_ANON:
3063 * Generally PageAnon tells if it's the anon statistics to be
3064 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3065 * used before page reached the stage of being marked PageAnon.
3069 case MEM_CGROUP_CHARGE_TYPE_DROP:
3070 /* See mem_cgroup_prepare_migration() */
3071 if (page_mapped(page))
3074 * Pages under migration may not be uncharged. But
3075 * end_migration() /must/ be the one uncharging the
3076 * unused post-migration page and so it has to call
3077 * here with the migration bit still set. See the
3078 * res_counter handling below.
3080 if (!end_migration && PageCgroupMigration(pc))
3083 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3084 if (!PageAnon(page)) { /* Shared memory */
3085 if (page->mapping && !page_is_file_cache(page))
3087 } else if (page_mapped(page)) /* Anon */
3094 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3096 ClearPageCgroupUsed(pc);
3098 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3099 * freed from LRU. This is safe because uncharged page is expected not
3100 * to be reused (freed soon). Exception is SwapCache, it's handled by
3101 * special functions.
3104 unlock_page_cgroup(pc);
3106 * even after unlock, we have memcg->res.usage here and this memcg
3107 * will never be freed.
3109 memcg_check_events(memcg, page);
3110 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3111 mem_cgroup_swap_statistics(memcg, true);
3112 mem_cgroup_get(memcg);
3115 * Migration does not charge the res_counter for the
3116 * replacement page, so leave it alone when phasing out the
3117 * page that is unused after the migration.
3119 if (!end_migration && !mem_cgroup_is_root(memcg))
3120 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3125 unlock_page_cgroup(pc);
3129 void mem_cgroup_uncharge_page(struct page *page)
3132 if (page_mapped(page))
3134 VM_BUG_ON(page->mapping && !PageAnon(page));
3135 if (PageSwapCache(page))
3137 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3140 void mem_cgroup_uncharge_cache_page(struct page *page)
3142 VM_BUG_ON(page_mapped(page));
3143 VM_BUG_ON(page->mapping);
3144 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3148 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3149 * In that cases, pages are freed continuously and we can expect pages
3150 * are in the same memcg. All these calls itself limits the number of
3151 * pages freed at once, then uncharge_start/end() is called properly.
3152 * This may be called prural(2) times in a context,
3155 void mem_cgroup_uncharge_start(void)
3157 current->memcg_batch.do_batch++;
3158 /* We can do nest. */
3159 if (current->memcg_batch.do_batch == 1) {
3160 current->memcg_batch.memcg = NULL;
3161 current->memcg_batch.nr_pages = 0;
3162 current->memcg_batch.memsw_nr_pages = 0;
3166 void mem_cgroup_uncharge_end(void)
3168 struct memcg_batch_info *batch = ¤t->memcg_batch;
3170 if (!batch->do_batch)
3174 if (batch->do_batch) /* If stacked, do nothing. */
3180 * This "batch->memcg" is valid without any css_get/put etc...
3181 * bacause we hide charges behind us.
3183 if (batch->nr_pages)
3184 res_counter_uncharge(&batch->memcg->res,
3185 batch->nr_pages * PAGE_SIZE);
3186 if (batch->memsw_nr_pages)
3187 res_counter_uncharge(&batch->memcg->memsw,
3188 batch->memsw_nr_pages * PAGE_SIZE);
3189 memcg_oom_recover(batch->memcg);
3190 /* forget this pointer (for sanity check) */
3191 batch->memcg = NULL;
3196 * called after __delete_from_swap_cache() and drop "page" account.
3197 * memcg information is recorded to swap_cgroup of "ent"
3200 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3202 struct mem_cgroup *memcg;
3203 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3205 if (!swapout) /* this was a swap cache but the swap is unused ! */
3206 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3208 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3211 * record memcg information, if swapout && memcg != NULL,
3212 * mem_cgroup_get() was called in uncharge().
3214 if (do_swap_account && swapout && memcg)
3215 swap_cgroup_record(ent, css_id(&memcg->css));
3219 #ifdef CONFIG_MEMCG_SWAP
3221 * called from swap_entry_free(). remove record in swap_cgroup and
3222 * uncharge "memsw" account.
3224 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3226 struct mem_cgroup *memcg;
3229 if (!do_swap_account)
3232 id = swap_cgroup_record(ent, 0);
3234 memcg = mem_cgroup_lookup(id);
3237 * We uncharge this because swap is freed.
3238 * This memcg can be obsolete one. We avoid calling css_tryget
3240 if (!mem_cgroup_is_root(memcg))
3241 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3242 mem_cgroup_swap_statistics(memcg, false);
3243 mem_cgroup_put(memcg);
3249 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3250 * @entry: swap entry to be moved
3251 * @from: mem_cgroup which the entry is moved from
3252 * @to: mem_cgroup which the entry is moved to
3254 * It succeeds only when the swap_cgroup's record for this entry is the same
3255 * as the mem_cgroup's id of @from.
3257 * Returns 0 on success, -EINVAL on failure.
3259 * The caller must have charged to @to, IOW, called res_counter_charge() about
3260 * both res and memsw, and called css_get().
3262 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3263 struct mem_cgroup *from, struct mem_cgroup *to)
3265 unsigned short old_id, new_id;
3267 old_id = css_id(&from->css);
3268 new_id = css_id(&to->css);
3270 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3271 mem_cgroup_swap_statistics(from, false);
3272 mem_cgroup_swap_statistics(to, true);
3274 * This function is only called from task migration context now.
3275 * It postpones res_counter and refcount handling till the end
3276 * of task migration(mem_cgroup_clear_mc()) for performance
3277 * improvement. But we cannot postpone mem_cgroup_get(to)
3278 * because if the process that has been moved to @to does
3279 * swap-in, the refcount of @to might be decreased to 0.
3287 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3288 struct mem_cgroup *from, struct mem_cgroup *to)
3295 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3298 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3299 struct mem_cgroup **memcgp)
3301 struct mem_cgroup *memcg = NULL;
3302 unsigned int nr_pages = 1;
3303 struct page_cgroup *pc;
3304 enum charge_type ctype;
3308 if (mem_cgroup_disabled())
3311 if (PageTransHuge(page))
3312 nr_pages <<= compound_order(page);
3314 pc = lookup_page_cgroup(page);
3315 lock_page_cgroup(pc);
3316 if (PageCgroupUsed(pc)) {
3317 memcg = pc->mem_cgroup;
3318 css_get(&memcg->css);
3320 * At migrating an anonymous page, its mapcount goes down
3321 * to 0 and uncharge() will be called. But, even if it's fully
3322 * unmapped, migration may fail and this page has to be
3323 * charged again. We set MIGRATION flag here and delay uncharge
3324 * until end_migration() is called
3326 * Corner Case Thinking
3328 * When the old page was mapped as Anon and it's unmap-and-freed
3329 * while migration was ongoing.
3330 * If unmap finds the old page, uncharge() of it will be delayed
3331 * until end_migration(). If unmap finds a new page, it's
3332 * uncharged when it make mapcount to be 1->0. If unmap code
3333 * finds swap_migration_entry, the new page will not be mapped
3334 * and end_migration() will find it(mapcount==0).
3337 * When the old page was mapped but migraion fails, the kernel
3338 * remaps it. A charge for it is kept by MIGRATION flag even
3339 * if mapcount goes down to 0. We can do remap successfully
3340 * without charging it again.
3343 * The "old" page is under lock_page() until the end of
3344 * migration, so, the old page itself will not be swapped-out.
3345 * If the new page is swapped out before end_migraton, our
3346 * hook to usual swap-out path will catch the event.
3349 SetPageCgroupMigration(pc);
3351 unlock_page_cgroup(pc);
3353 * If the page is not charged at this point,
3361 * We charge new page before it's used/mapped. So, even if unlock_page()
3362 * is called before end_migration, we can catch all events on this new
3363 * page. In the case new page is migrated but not remapped, new page's
3364 * mapcount will be finally 0 and we call uncharge in end_migration().
3367 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3369 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3371 * The page is committed to the memcg, but it's not actually
3372 * charged to the res_counter since we plan on replacing the
3373 * old one and only one page is going to be left afterwards.
3375 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3378 /* remove redundant charge if migration failed*/
3379 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3380 struct page *oldpage, struct page *newpage, bool migration_ok)
3382 struct page *used, *unused;
3383 struct page_cgroup *pc;
3389 if (!migration_ok) {
3396 anon = PageAnon(used);
3397 __mem_cgroup_uncharge_common(unused,
3398 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3399 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3401 css_put(&memcg->css);
3403 * We disallowed uncharge of pages under migration because mapcount
3404 * of the page goes down to zero, temporarly.
3405 * Clear the flag and check the page should be charged.
3407 pc = lookup_page_cgroup(oldpage);
3408 lock_page_cgroup(pc);
3409 ClearPageCgroupMigration(pc);
3410 unlock_page_cgroup(pc);
3413 * If a page is a file cache, radix-tree replacement is very atomic
3414 * and we can skip this check. When it was an Anon page, its mapcount
3415 * goes down to 0. But because we added MIGRATION flage, it's not
3416 * uncharged yet. There are several case but page->mapcount check
3417 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3418 * check. (see prepare_charge() also)
3421 mem_cgroup_uncharge_page(used);
3425 * At replace page cache, newpage is not under any memcg but it's on
3426 * LRU. So, this function doesn't touch res_counter but handles LRU
3427 * in correct way. Both pages are locked so we cannot race with uncharge.
3429 void mem_cgroup_replace_page_cache(struct page *oldpage,
3430 struct page *newpage)
3432 struct mem_cgroup *memcg = NULL;
3433 struct page_cgroup *pc;
3434 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3436 if (mem_cgroup_disabled())
3439 pc = lookup_page_cgroup(oldpage);
3440 /* fix accounting on old pages */
3441 lock_page_cgroup(pc);
3442 if (PageCgroupUsed(pc)) {
3443 memcg = pc->mem_cgroup;
3444 mem_cgroup_charge_statistics(memcg, false, -1);
3445 ClearPageCgroupUsed(pc);
3447 unlock_page_cgroup(pc);
3450 * When called from shmem_replace_page(), in some cases the
3451 * oldpage has already been charged, and in some cases not.
3456 * Even if newpage->mapping was NULL before starting replacement,
3457 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3458 * LRU while we overwrite pc->mem_cgroup.
3460 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3463 #ifdef CONFIG_DEBUG_VM
3464 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3466 struct page_cgroup *pc;
3468 pc = lookup_page_cgroup(page);
3470 * Can be NULL while feeding pages into the page allocator for
3471 * the first time, i.e. during boot or memory hotplug;
3472 * or when mem_cgroup_disabled().
3474 if (likely(pc) && PageCgroupUsed(pc))
3479 bool mem_cgroup_bad_page_check(struct page *page)
3481 if (mem_cgroup_disabled())
3484 return lookup_page_cgroup_used(page) != NULL;
3487 void mem_cgroup_print_bad_page(struct page *page)
3489 struct page_cgroup *pc;
3491 pc = lookup_page_cgroup_used(page);
3493 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3494 pc, pc->flags, pc->mem_cgroup);
3499 static DEFINE_MUTEX(set_limit_mutex);
3501 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3502 unsigned long long val)
3505 u64 memswlimit, memlimit;
3507 int children = mem_cgroup_count_children(memcg);
3508 u64 curusage, oldusage;
3512 * For keeping hierarchical_reclaim simple, how long we should retry
3513 * is depends on callers. We set our retry-count to be function
3514 * of # of children which we should visit in this loop.
3516 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3518 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3521 while (retry_count) {
3522 if (signal_pending(current)) {
3527 * Rather than hide all in some function, I do this in
3528 * open coded manner. You see what this really does.
3529 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3531 mutex_lock(&set_limit_mutex);
3532 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3533 if (memswlimit < val) {
3535 mutex_unlock(&set_limit_mutex);
3539 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3543 ret = res_counter_set_limit(&memcg->res, val);
3545 if (memswlimit == val)
3546 memcg->memsw_is_minimum = true;
3548 memcg->memsw_is_minimum = false;
3550 mutex_unlock(&set_limit_mutex);
3555 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3556 MEM_CGROUP_RECLAIM_SHRINK);
3557 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3558 /* Usage is reduced ? */
3559 if (curusage >= oldusage)
3562 oldusage = curusage;
3564 if (!ret && enlarge)
3565 memcg_oom_recover(memcg);
3570 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3571 unsigned long long val)
3574 u64 memlimit, memswlimit, oldusage, curusage;
3575 int children = mem_cgroup_count_children(memcg);
3579 /* see mem_cgroup_resize_res_limit */
3580 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3581 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3582 while (retry_count) {
3583 if (signal_pending(current)) {
3588 * Rather than hide all in some function, I do this in
3589 * open coded manner. You see what this really does.
3590 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3592 mutex_lock(&set_limit_mutex);
3593 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3594 if (memlimit > val) {
3596 mutex_unlock(&set_limit_mutex);
3599 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3600 if (memswlimit < val)
3602 ret = res_counter_set_limit(&memcg->memsw, val);
3604 if (memlimit == val)
3605 memcg->memsw_is_minimum = true;
3607 memcg->memsw_is_minimum = false;
3609 mutex_unlock(&set_limit_mutex);
3614 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3615 MEM_CGROUP_RECLAIM_NOSWAP |
3616 MEM_CGROUP_RECLAIM_SHRINK);
3617 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3618 /* Usage is reduced ? */
3619 if (curusage >= oldusage)
3622 oldusage = curusage;
3624 if (!ret && enlarge)
3625 memcg_oom_recover(memcg);
3629 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3631 unsigned long *total_scanned)
3633 unsigned long nr_reclaimed = 0;
3634 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3635 unsigned long reclaimed;
3637 struct mem_cgroup_tree_per_zone *mctz;
3638 unsigned long long excess;
3639 unsigned long nr_scanned;
3644 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3646 * This loop can run a while, specially if mem_cgroup's continuously
3647 * keep exceeding their soft limit and putting the system under
3654 mz = mem_cgroup_largest_soft_limit_node(mctz);
3659 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3660 gfp_mask, &nr_scanned);
3661 nr_reclaimed += reclaimed;
3662 *total_scanned += nr_scanned;
3663 spin_lock(&mctz->lock);
3666 * If we failed to reclaim anything from this memory cgroup
3667 * it is time to move on to the next cgroup
3673 * Loop until we find yet another one.
3675 * By the time we get the soft_limit lock
3676 * again, someone might have aded the
3677 * group back on the RB tree. Iterate to
3678 * make sure we get a different mem.
3679 * mem_cgroup_largest_soft_limit_node returns
3680 * NULL if no other cgroup is present on
3684 __mem_cgroup_largest_soft_limit_node(mctz);
3686 css_put(&next_mz->memcg->css);
3687 else /* next_mz == NULL or other memcg */
3691 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3692 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3694 * One school of thought says that we should not add
3695 * back the node to the tree if reclaim returns 0.
3696 * But our reclaim could return 0, simply because due
3697 * to priority we are exposing a smaller subset of
3698 * memory to reclaim from. Consider this as a longer
3701 /* If excess == 0, no tree ops */
3702 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3703 spin_unlock(&mctz->lock);
3704 css_put(&mz->memcg->css);
3707 * Could not reclaim anything and there are no more
3708 * mem cgroups to try or we seem to be looping without
3709 * reclaiming anything.
3711 if (!nr_reclaimed &&
3713 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3715 } while (!nr_reclaimed);
3717 css_put(&next_mz->memcg->css);
3718 return nr_reclaimed;
3722 * mem_cgroup_force_empty_list - clears LRU of a group
3723 * @memcg: group to clear
3726 * @lru: lru to to clear
3728 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3729 * reclaim the pages page themselves - pages are moved to the parent (or root)
3732 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3733 int node, int zid, enum lru_list lru)
3735 struct lruvec *lruvec;
3736 unsigned long flags;
3737 struct list_head *list;
3741 zone = &NODE_DATA(node)->node_zones[zid];
3742 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3743 list = &lruvec->lists[lru];
3747 struct page_cgroup *pc;
3750 spin_lock_irqsave(&zone->lru_lock, flags);
3751 if (list_empty(list)) {
3752 spin_unlock_irqrestore(&zone->lru_lock, flags);
3755 page = list_entry(list->prev, struct page, lru);
3757 list_move(&page->lru, list);
3759 spin_unlock_irqrestore(&zone->lru_lock, flags);
3762 spin_unlock_irqrestore(&zone->lru_lock, flags);
3764 pc = lookup_page_cgroup(page);
3766 if (mem_cgroup_move_parent(page, pc, memcg)) {
3767 /* found lock contention or "pc" is obsolete. */
3772 } while (!list_empty(list));
3776 * make mem_cgroup's charge to be 0 if there is no task by moving
3777 * all the charges and pages to the parent.
3778 * This enables deleting this mem_cgroup.
3780 * Caller is responsible for holding css reference on the memcg.
3782 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3787 /* This is for making all *used* pages to be on LRU. */
3788 lru_add_drain_all();
3789 drain_all_stock_sync(memcg);
3790 mem_cgroup_start_move(memcg);
3791 for_each_node_state(node, N_MEMORY) {
3792 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3795 mem_cgroup_force_empty_list(memcg,
3800 mem_cgroup_end_move(memcg);
3801 memcg_oom_recover(memcg);
3805 * This is a safety check because mem_cgroup_force_empty_list
3806 * could have raced with mem_cgroup_replace_page_cache callers
3807 * so the lru seemed empty but the page could have been added
3808 * right after the check. RES_USAGE should be safe as we always
3809 * charge before adding to the LRU.
3811 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3815 * Reclaims as many pages from the given memcg as possible and moves
3816 * the rest to the parent.
3818 * Caller is responsible for holding css reference for memcg.
3820 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3822 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3823 struct cgroup *cgrp = memcg->css.cgroup;
3825 /* returns EBUSY if there is a task or if we come here twice. */
3826 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3829 /* we call try-to-free pages for make this cgroup empty */
3830 lru_add_drain_all();
3831 /* try to free all pages in this cgroup */
3832 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3835 if (signal_pending(current))
3838 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3842 /* maybe some writeback is necessary */
3843 congestion_wait(BLK_RW_ASYNC, HZ/10);
3848 mem_cgroup_reparent_charges(memcg);
3853 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3858 if (mem_cgroup_is_root(memcg))
3860 css_get(&memcg->css);
3861 ret = mem_cgroup_force_empty(memcg);
3862 css_put(&memcg->css);
3868 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3870 return mem_cgroup_from_cont(cont)->use_hierarchy;
3873 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3877 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3878 struct cgroup *parent = cont->parent;
3879 struct mem_cgroup *parent_memcg = NULL;
3882 parent_memcg = mem_cgroup_from_cont(parent);
3886 if (memcg->use_hierarchy == val)
3890 * If parent's use_hierarchy is set, we can't make any modifications
3891 * in the child subtrees. If it is unset, then the change can
3892 * occur, provided the current cgroup has no children.
3894 * For the root cgroup, parent_mem is NULL, we allow value to be
3895 * set if there are no children.
3897 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3898 (val == 1 || val == 0)) {
3899 if (list_empty(&cont->children))
3900 memcg->use_hierarchy = val;
3913 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3914 enum mem_cgroup_stat_index idx)
3916 struct mem_cgroup *iter;
3919 /* Per-cpu values can be negative, use a signed accumulator */
3920 for_each_mem_cgroup_tree(iter, memcg)
3921 val += mem_cgroup_read_stat(iter, idx);
3923 if (val < 0) /* race ? */
3928 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3932 if (!mem_cgroup_is_root(memcg)) {
3934 return res_counter_read_u64(&memcg->res, RES_USAGE);
3936 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3939 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3940 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3943 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3945 return val << PAGE_SHIFT;
3948 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3949 struct file *file, char __user *buf,
3950 size_t nbytes, loff_t *ppos)
3952 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3955 int type, name, len;
3957 type = MEMFILE_TYPE(cft->private);
3958 name = MEMFILE_ATTR(cft->private);
3960 if (!do_swap_account && type == _MEMSWAP)
3965 if (name == RES_USAGE)
3966 val = mem_cgroup_usage(memcg, false);
3968 val = res_counter_read_u64(&memcg->res, name);
3971 if (name == RES_USAGE)
3972 val = mem_cgroup_usage(memcg, true);
3974 val = res_counter_read_u64(&memcg->memsw, name);
3980 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3981 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3984 * The user of this function is...
3987 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3990 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3992 unsigned long long val;
3995 type = MEMFILE_TYPE(cft->private);
3996 name = MEMFILE_ATTR(cft->private);
3998 if (!do_swap_account && type == _MEMSWAP)
4003 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4007 /* This function does all necessary parse...reuse it */
4008 ret = res_counter_memparse_write_strategy(buffer, &val);
4012 ret = mem_cgroup_resize_limit(memcg, val);
4014 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4016 case RES_SOFT_LIMIT:
4017 ret = res_counter_memparse_write_strategy(buffer, &val);
4021 * For memsw, soft limits are hard to implement in terms
4022 * of semantics, for now, we support soft limits for
4023 * control without swap
4026 ret = res_counter_set_soft_limit(&memcg->res, val);
4031 ret = -EINVAL; /* should be BUG() ? */
4037 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4038 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4040 struct cgroup *cgroup;
4041 unsigned long long min_limit, min_memsw_limit, tmp;
4043 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4044 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4045 cgroup = memcg->css.cgroup;
4046 if (!memcg->use_hierarchy)
4049 while (cgroup->parent) {
4050 cgroup = cgroup->parent;
4051 memcg = mem_cgroup_from_cont(cgroup);
4052 if (!memcg->use_hierarchy)
4054 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4055 min_limit = min(min_limit, tmp);
4056 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4057 min_memsw_limit = min(min_memsw_limit, tmp);
4060 *mem_limit = min_limit;
4061 *memsw_limit = min_memsw_limit;
4064 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4066 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4069 type = MEMFILE_TYPE(event);
4070 name = MEMFILE_ATTR(event);
4072 if (!do_swap_account && type == _MEMSWAP)
4078 res_counter_reset_max(&memcg->res);
4080 res_counter_reset_max(&memcg->memsw);
4084 res_counter_reset_failcnt(&memcg->res);
4086 res_counter_reset_failcnt(&memcg->memsw);
4093 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4096 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4100 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4101 struct cftype *cft, u64 val)
4103 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4105 if (val >= (1 << NR_MOVE_TYPE))
4108 * We check this value several times in both in can_attach() and
4109 * attach(), so we need cgroup lock to prevent this value from being
4113 memcg->move_charge_at_immigrate = val;
4119 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4120 struct cftype *cft, u64 val)
4127 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4131 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4132 unsigned long node_nr;
4133 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4135 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4136 seq_printf(m, "total=%lu", total_nr);
4137 for_each_node_state(nid, N_MEMORY) {
4138 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4139 seq_printf(m, " N%d=%lu", nid, node_nr);
4143 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4144 seq_printf(m, "file=%lu", file_nr);
4145 for_each_node_state(nid, N_MEMORY) {
4146 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4148 seq_printf(m, " N%d=%lu", nid, node_nr);
4152 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4153 seq_printf(m, "anon=%lu", anon_nr);
4154 for_each_node_state(nid, N_MEMORY) {
4155 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4157 seq_printf(m, " N%d=%lu", nid, node_nr);
4161 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4162 seq_printf(m, "unevictable=%lu", unevictable_nr);
4163 for_each_node_state(nid, N_MEMORY) {
4164 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4165 BIT(LRU_UNEVICTABLE));
4166 seq_printf(m, " N%d=%lu", nid, node_nr);
4171 #endif /* CONFIG_NUMA */
4173 static const char * const mem_cgroup_lru_names[] = {
4181 static inline void mem_cgroup_lru_names_not_uptodate(void)
4183 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4186 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4190 struct mem_cgroup *mi;
4193 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4194 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4196 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4197 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4200 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4201 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4202 mem_cgroup_read_events(memcg, i));
4204 for (i = 0; i < NR_LRU_LISTS; i++)
4205 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4206 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4208 /* Hierarchical information */
4210 unsigned long long limit, memsw_limit;
4211 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4212 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4213 if (do_swap_account)
4214 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4218 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4221 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4223 for_each_mem_cgroup_tree(mi, memcg)
4224 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4225 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4228 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4229 unsigned long long val = 0;
4231 for_each_mem_cgroup_tree(mi, memcg)
4232 val += mem_cgroup_read_events(mi, i);
4233 seq_printf(m, "total_%s %llu\n",
4234 mem_cgroup_events_names[i], val);
4237 for (i = 0; i < NR_LRU_LISTS; i++) {
4238 unsigned long long val = 0;
4240 for_each_mem_cgroup_tree(mi, memcg)
4241 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4242 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4245 #ifdef CONFIG_DEBUG_VM
4248 struct mem_cgroup_per_zone *mz;
4249 struct zone_reclaim_stat *rstat;
4250 unsigned long recent_rotated[2] = {0, 0};
4251 unsigned long recent_scanned[2] = {0, 0};
4253 for_each_online_node(nid)
4254 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4255 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4256 rstat = &mz->lruvec.reclaim_stat;
4258 recent_rotated[0] += rstat->recent_rotated[0];
4259 recent_rotated[1] += rstat->recent_rotated[1];
4260 recent_scanned[0] += rstat->recent_scanned[0];
4261 recent_scanned[1] += rstat->recent_scanned[1];
4263 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4264 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4265 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4266 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4273 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4275 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4277 return mem_cgroup_swappiness(memcg);
4280 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4283 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4284 struct mem_cgroup *parent;
4289 if (cgrp->parent == NULL)
4292 parent = mem_cgroup_from_cont(cgrp->parent);
4296 /* If under hierarchy, only empty-root can set this value */
4297 if ((parent->use_hierarchy) ||
4298 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4303 memcg->swappiness = val;
4310 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4312 struct mem_cgroup_threshold_ary *t;
4318 t = rcu_dereference(memcg->thresholds.primary);
4320 t = rcu_dereference(memcg->memsw_thresholds.primary);
4325 usage = mem_cgroup_usage(memcg, swap);
4328 * current_threshold points to threshold just below or equal to usage.
4329 * If it's not true, a threshold was crossed after last
4330 * call of __mem_cgroup_threshold().
4332 i = t->current_threshold;
4335 * Iterate backward over array of thresholds starting from
4336 * current_threshold and check if a threshold is crossed.
4337 * If none of thresholds below usage is crossed, we read
4338 * only one element of the array here.
4340 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4341 eventfd_signal(t->entries[i].eventfd, 1);
4343 /* i = current_threshold + 1 */
4347 * Iterate forward over array of thresholds starting from
4348 * current_threshold+1 and check if a threshold is crossed.
4349 * If none of thresholds above usage is crossed, we read
4350 * only one element of the array here.
4352 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4353 eventfd_signal(t->entries[i].eventfd, 1);
4355 /* Update current_threshold */
4356 t->current_threshold = i - 1;
4361 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4364 __mem_cgroup_threshold(memcg, false);
4365 if (do_swap_account)
4366 __mem_cgroup_threshold(memcg, true);
4368 memcg = parent_mem_cgroup(memcg);
4372 static int compare_thresholds(const void *a, const void *b)
4374 const struct mem_cgroup_threshold *_a = a;
4375 const struct mem_cgroup_threshold *_b = b;
4377 return _a->threshold - _b->threshold;
4380 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4382 struct mem_cgroup_eventfd_list *ev;
4384 list_for_each_entry(ev, &memcg->oom_notify, list)
4385 eventfd_signal(ev->eventfd, 1);
4389 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4391 struct mem_cgroup *iter;
4393 for_each_mem_cgroup_tree(iter, memcg)
4394 mem_cgroup_oom_notify_cb(iter);
4397 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4398 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4400 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4401 struct mem_cgroup_thresholds *thresholds;
4402 struct mem_cgroup_threshold_ary *new;
4403 int type = MEMFILE_TYPE(cft->private);
4404 u64 threshold, usage;
4407 ret = res_counter_memparse_write_strategy(args, &threshold);
4411 mutex_lock(&memcg->thresholds_lock);
4414 thresholds = &memcg->thresholds;
4415 else if (type == _MEMSWAP)
4416 thresholds = &memcg->memsw_thresholds;
4420 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4422 /* Check if a threshold crossed before adding a new one */
4423 if (thresholds->primary)
4424 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4426 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4428 /* Allocate memory for new array of thresholds */
4429 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4437 /* Copy thresholds (if any) to new array */
4438 if (thresholds->primary) {
4439 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4440 sizeof(struct mem_cgroup_threshold));
4443 /* Add new threshold */
4444 new->entries[size - 1].eventfd = eventfd;
4445 new->entries[size - 1].threshold = threshold;
4447 /* Sort thresholds. Registering of new threshold isn't time-critical */
4448 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4449 compare_thresholds, NULL);
4451 /* Find current threshold */
4452 new->current_threshold = -1;
4453 for (i = 0; i < size; i++) {
4454 if (new->entries[i].threshold <= usage) {
4456 * new->current_threshold will not be used until
4457 * rcu_assign_pointer(), so it's safe to increment
4460 ++new->current_threshold;
4465 /* Free old spare buffer and save old primary buffer as spare */
4466 kfree(thresholds->spare);
4467 thresholds->spare = thresholds->primary;
4469 rcu_assign_pointer(thresholds->primary, new);
4471 /* To be sure that nobody uses thresholds */
4475 mutex_unlock(&memcg->thresholds_lock);
4480 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4481 struct cftype *cft, struct eventfd_ctx *eventfd)
4483 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4484 struct mem_cgroup_thresholds *thresholds;
4485 struct mem_cgroup_threshold_ary *new;
4486 int type = MEMFILE_TYPE(cft->private);
4490 mutex_lock(&memcg->thresholds_lock);
4492 thresholds = &memcg->thresholds;
4493 else if (type == _MEMSWAP)
4494 thresholds = &memcg->memsw_thresholds;
4498 if (!thresholds->primary)
4501 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4503 /* Check if a threshold crossed before removing */
4504 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4506 /* Calculate new number of threshold */
4508 for (i = 0; i < thresholds->primary->size; i++) {
4509 if (thresholds->primary->entries[i].eventfd != eventfd)
4513 new = thresholds->spare;
4515 /* Set thresholds array to NULL if we don't have thresholds */
4524 /* Copy thresholds and find current threshold */
4525 new->current_threshold = -1;
4526 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4527 if (thresholds->primary->entries[i].eventfd == eventfd)
4530 new->entries[j] = thresholds->primary->entries[i];
4531 if (new->entries[j].threshold <= usage) {
4533 * new->current_threshold will not be used
4534 * until rcu_assign_pointer(), so it's safe to increment
4537 ++new->current_threshold;
4543 /* Swap primary and spare array */
4544 thresholds->spare = thresholds->primary;
4545 /* If all events are unregistered, free the spare array */
4547 kfree(thresholds->spare);
4548 thresholds->spare = NULL;
4551 rcu_assign_pointer(thresholds->primary, new);
4553 /* To be sure that nobody uses thresholds */
4556 mutex_unlock(&memcg->thresholds_lock);
4559 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4560 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563 struct mem_cgroup_eventfd_list *event;
4564 int type = MEMFILE_TYPE(cft->private);
4566 BUG_ON(type != _OOM_TYPE);
4567 event = kmalloc(sizeof(*event), GFP_KERNEL);
4571 spin_lock(&memcg_oom_lock);
4573 event->eventfd = eventfd;
4574 list_add(&event->list, &memcg->oom_notify);
4576 /* already in OOM ? */
4577 if (atomic_read(&memcg->under_oom))
4578 eventfd_signal(eventfd, 1);
4579 spin_unlock(&memcg_oom_lock);
4584 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4585 struct cftype *cft, struct eventfd_ctx *eventfd)
4587 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4588 struct mem_cgroup_eventfd_list *ev, *tmp;
4589 int type = MEMFILE_TYPE(cft->private);
4591 BUG_ON(type != _OOM_TYPE);
4593 spin_lock(&memcg_oom_lock);
4595 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4596 if (ev->eventfd == eventfd) {
4597 list_del(&ev->list);
4602 spin_unlock(&memcg_oom_lock);
4605 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4606 struct cftype *cft, struct cgroup_map_cb *cb)
4608 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4610 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4612 if (atomic_read(&memcg->under_oom))
4613 cb->fill(cb, "under_oom", 1);
4615 cb->fill(cb, "under_oom", 0);
4619 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4620 struct cftype *cft, u64 val)
4622 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4623 struct mem_cgroup *parent;
4625 /* cannot set to root cgroup and only 0 and 1 are allowed */
4626 if (!cgrp->parent || !((val == 0) || (val == 1)))
4629 parent = mem_cgroup_from_cont(cgrp->parent);
4632 /* oom-kill-disable is a flag for subhierarchy. */
4633 if ((parent->use_hierarchy) ||
4634 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4638 memcg->oom_kill_disable = val;
4640 memcg_oom_recover(memcg);
4645 #ifdef CONFIG_MEMCG_KMEM
4646 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4648 return mem_cgroup_sockets_init(memcg, ss);
4651 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4653 mem_cgroup_sockets_destroy(memcg);
4656 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4661 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4666 static struct cftype mem_cgroup_files[] = {
4668 .name = "usage_in_bytes",
4669 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4670 .read = mem_cgroup_read,
4671 .register_event = mem_cgroup_usage_register_event,
4672 .unregister_event = mem_cgroup_usage_unregister_event,
4675 .name = "max_usage_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4677 .trigger = mem_cgroup_reset,
4678 .read = mem_cgroup_read,
4681 .name = "limit_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4683 .write_string = mem_cgroup_write,
4684 .read = mem_cgroup_read,
4687 .name = "soft_limit_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4689 .write_string = mem_cgroup_write,
4690 .read = mem_cgroup_read,
4694 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4695 .trigger = mem_cgroup_reset,
4696 .read = mem_cgroup_read,
4700 .read_seq_string = memcg_stat_show,
4703 .name = "force_empty",
4704 .trigger = mem_cgroup_force_empty_write,
4707 .name = "use_hierarchy",
4708 .write_u64 = mem_cgroup_hierarchy_write,
4709 .read_u64 = mem_cgroup_hierarchy_read,
4712 .name = "swappiness",
4713 .read_u64 = mem_cgroup_swappiness_read,
4714 .write_u64 = mem_cgroup_swappiness_write,
4717 .name = "move_charge_at_immigrate",
4718 .read_u64 = mem_cgroup_move_charge_read,
4719 .write_u64 = mem_cgroup_move_charge_write,
4722 .name = "oom_control",
4723 .read_map = mem_cgroup_oom_control_read,
4724 .write_u64 = mem_cgroup_oom_control_write,
4725 .register_event = mem_cgroup_oom_register_event,
4726 .unregister_event = mem_cgroup_oom_unregister_event,
4727 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4731 .name = "numa_stat",
4732 .read_seq_string = memcg_numa_stat_show,
4735 #ifdef CONFIG_MEMCG_SWAP
4737 .name = "memsw.usage_in_bytes",
4738 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4739 .read = mem_cgroup_read,
4740 .register_event = mem_cgroup_usage_register_event,
4741 .unregister_event = mem_cgroup_usage_unregister_event,
4744 .name = "memsw.max_usage_in_bytes",
4745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4746 .trigger = mem_cgroup_reset,
4747 .read = mem_cgroup_read,
4750 .name = "memsw.limit_in_bytes",
4751 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4752 .write_string = mem_cgroup_write,
4753 .read = mem_cgroup_read,
4756 .name = "memsw.failcnt",
4757 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4758 .trigger = mem_cgroup_reset,
4759 .read = mem_cgroup_read,
4762 { }, /* terminate */
4765 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4767 struct mem_cgroup_per_node *pn;
4768 struct mem_cgroup_per_zone *mz;
4769 int zone, tmp = node;
4771 * This routine is called against possible nodes.
4772 * But it's BUG to call kmalloc() against offline node.
4774 * TODO: this routine can waste much memory for nodes which will
4775 * never be onlined. It's better to use memory hotplug callback
4778 if (!node_state(node, N_NORMAL_MEMORY))
4780 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4784 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4785 mz = &pn->zoneinfo[zone];
4786 lruvec_init(&mz->lruvec);
4787 mz->usage_in_excess = 0;
4788 mz->on_tree = false;
4791 memcg->info.nodeinfo[node] = pn;
4795 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4797 kfree(memcg->info.nodeinfo[node]);
4800 static struct mem_cgroup *mem_cgroup_alloc(void)
4802 struct mem_cgroup *memcg;
4803 int size = sizeof(struct mem_cgroup);
4805 /* Can be very big if MAX_NUMNODES is very big */
4806 if (size < PAGE_SIZE)
4807 memcg = kzalloc(size, GFP_KERNEL);
4809 memcg = vzalloc(size);
4814 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4817 spin_lock_init(&memcg->pcp_counter_lock);
4821 if (size < PAGE_SIZE)
4829 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4830 * but in process context. The work_freeing structure is overlaid
4831 * on the rcu_freeing structure, which itself is overlaid on memsw.
4833 static void free_work(struct work_struct *work)
4835 struct mem_cgroup *memcg;
4836 int size = sizeof(struct mem_cgroup);
4838 memcg = container_of(work, struct mem_cgroup, work_freeing);
4840 * We need to make sure that (at least for now), the jump label
4841 * destruction code runs outside of the cgroup lock. This is because
4842 * get_online_cpus(), which is called from the static_branch update,
4843 * can't be called inside the cgroup_lock. cpusets are the ones
4844 * enforcing this dependency, so if they ever change, we might as well.
4846 * schedule_work() will guarantee this happens. Be careful if you need
4847 * to move this code around, and make sure it is outside
4850 disarm_sock_keys(memcg);
4851 if (size < PAGE_SIZE)
4857 static void free_rcu(struct rcu_head *rcu_head)
4859 struct mem_cgroup *memcg;
4861 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4862 INIT_WORK(&memcg->work_freeing, free_work);
4863 schedule_work(&memcg->work_freeing);
4867 * At destroying mem_cgroup, references from swap_cgroup can remain.
4868 * (scanning all at force_empty is too costly...)
4870 * Instead of clearing all references at force_empty, we remember
4871 * the number of reference from swap_cgroup and free mem_cgroup when
4872 * it goes down to 0.
4874 * Removal of cgroup itself succeeds regardless of refs from swap.
4877 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4881 mem_cgroup_remove_from_trees(memcg);
4882 free_css_id(&mem_cgroup_subsys, &memcg->css);
4885 free_mem_cgroup_per_zone_info(memcg, node);
4887 free_percpu(memcg->stat);
4888 call_rcu(&memcg->rcu_freeing, free_rcu);
4891 static void mem_cgroup_get(struct mem_cgroup *memcg)
4893 atomic_inc(&memcg->refcnt);
4896 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4898 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4899 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4900 __mem_cgroup_free(memcg);
4902 mem_cgroup_put(parent);
4906 static void mem_cgroup_put(struct mem_cgroup *memcg)
4908 __mem_cgroup_put(memcg, 1);
4912 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4914 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4916 if (!memcg->res.parent)
4918 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4920 EXPORT_SYMBOL(parent_mem_cgroup);
4922 #ifdef CONFIG_MEMCG_SWAP
4923 static void __init enable_swap_cgroup(void)
4925 if (!mem_cgroup_disabled() && really_do_swap_account)
4926 do_swap_account = 1;
4929 static void __init enable_swap_cgroup(void)
4934 static int mem_cgroup_soft_limit_tree_init(void)
4936 struct mem_cgroup_tree_per_node *rtpn;
4937 struct mem_cgroup_tree_per_zone *rtpz;
4938 int tmp, node, zone;
4940 for_each_node(node) {
4942 if (!node_state(node, N_NORMAL_MEMORY))
4944 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4948 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4950 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4951 rtpz = &rtpn->rb_tree_per_zone[zone];
4952 rtpz->rb_root = RB_ROOT;
4953 spin_lock_init(&rtpz->lock);
4959 for_each_node(node) {
4960 if (!soft_limit_tree.rb_tree_per_node[node])
4962 kfree(soft_limit_tree.rb_tree_per_node[node]);
4963 soft_limit_tree.rb_tree_per_node[node] = NULL;
4969 static struct cgroup_subsys_state * __ref
4970 mem_cgroup_css_alloc(struct cgroup *cont)
4972 struct mem_cgroup *memcg, *parent;
4973 long error = -ENOMEM;
4976 memcg = mem_cgroup_alloc();
4978 return ERR_PTR(error);
4981 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4985 if (cont->parent == NULL) {
4987 enable_swap_cgroup();
4989 if (mem_cgroup_soft_limit_tree_init())
4991 root_mem_cgroup = memcg;
4992 for_each_possible_cpu(cpu) {
4993 struct memcg_stock_pcp *stock =
4994 &per_cpu(memcg_stock, cpu);
4995 INIT_WORK(&stock->work, drain_local_stock);
4997 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4999 parent = mem_cgroup_from_cont(cont->parent);
5000 memcg->use_hierarchy = parent->use_hierarchy;
5001 memcg->oom_kill_disable = parent->oom_kill_disable;
5004 if (parent && parent->use_hierarchy) {
5005 res_counter_init(&memcg->res, &parent->res);
5006 res_counter_init(&memcg->memsw, &parent->memsw);
5008 * We increment refcnt of the parent to ensure that we can
5009 * safely access it on res_counter_charge/uncharge.
5010 * This refcnt will be decremented when freeing this
5011 * mem_cgroup(see mem_cgroup_put).
5013 mem_cgroup_get(parent);
5015 res_counter_init(&memcg->res, NULL);
5016 res_counter_init(&memcg->memsw, NULL);
5018 * Deeper hierachy with use_hierarchy == false doesn't make
5019 * much sense so let cgroup subsystem know about this
5020 * unfortunate state in our controller.
5022 if (parent && parent != root_mem_cgroup)
5023 mem_cgroup_subsys.broken_hierarchy = true;
5025 memcg->last_scanned_node = MAX_NUMNODES;
5026 INIT_LIST_HEAD(&memcg->oom_notify);
5029 memcg->swappiness = mem_cgroup_swappiness(parent);
5030 atomic_set(&memcg->refcnt, 1);
5031 memcg->move_charge_at_immigrate = 0;
5032 mutex_init(&memcg->thresholds_lock);
5033 spin_lock_init(&memcg->move_lock);
5035 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5038 * We call put now because our (and parent's) refcnts
5039 * are already in place. mem_cgroup_put() will internally
5040 * call __mem_cgroup_free, so return directly
5042 mem_cgroup_put(memcg);
5043 return ERR_PTR(error);
5047 __mem_cgroup_free(memcg);
5048 return ERR_PTR(error);
5051 static void mem_cgroup_css_offline(struct cgroup *cont)
5053 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5055 mem_cgroup_reparent_charges(memcg);
5058 static void mem_cgroup_css_free(struct cgroup *cont)
5060 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5062 kmem_cgroup_destroy(memcg);
5064 mem_cgroup_put(memcg);
5068 /* Handlers for move charge at task migration. */
5069 #define PRECHARGE_COUNT_AT_ONCE 256
5070 static int mem_cgroup_do_precharge(unsigned long count)
5073 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5074 struct mem_cgroup *memcg = mc.to;
5076 if (mem_cgroup_is_root(memcg)) {
5077 mc.precharge += count;
5078 /* we don't need css_get for root */
5081 /* try to charge at once */
5083 struct res_counter *dummy;
5085 * "memcg" cannot be under rmdir() because we've already checked
5086 * by cgroup_lock_live_cgroup() that it is not removed and we
5087 * are still under the same cgroup_mutex. So we can postpone
5090 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5092 if (do_swap_account && res_counter_charge(&memcg->memsw,
5093 PAGE_SIZE * count, &dummy)) {
5094 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5097 mc.precharge += count;
5101 /* fall back to one by one charge */
5103 if (signal_pending(current)) {
5107 if (!batch_count--) {
5108 batch_count = PRECHARGE_COUNT_AT_ONCE;
5111 ret = __mem_cgroup_try_charge(NULL,
5112 GFP_KERNEL, 1, &memcg, false);
5114 /* mem_cgroup_clear_mc() will do uncharge later */
5122 * get_mctgt_type - get target type of moving charge
5123 * @vma: the vma the pte to be checked belongs
5124 * @addr: the address corresponding to the pte to be checked
5125 * @ptent: the pte to be checked
5126 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5129 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5130 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5131 * move charge. if @target is not NULL, the page is stored in target->page
5132 * with extra refcnt got(Callers should handle it).
5133 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5134 * target for charge migration. if @target is not NULL, the entry is stored
5137 * Called with pte lock held.
5144 enum mc_target_type {
5150 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5151 unsigned long addr, pte_t ptent)
5153 struct page *page = vm_normal_page(vma, addr, ptent);
5155 if (!page || !page_mapped(page))
5157 if (PageAnon(page)) {
5158 /* we don't move shared anon */
5161 } else if (!move_file())
5162 /* we ignore mapcount for file pages */
5164 if (!get_page_unless_zero(page))
5171 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5172 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5174 struct page *page = NULL;
5175 swp_entry_t ent = pte_to_swp_entry(ptent);
5177 if (!move_anon() || non_swap_entry(ent))
5180 * Because lookup_swap_cache() updates some statistics counter,
5181 * we call find_get_page() with swapper_space directly.
5183 page = find_get_page(&swapper_space, ent.val);
5184 if (do_swap_account)
5185 entry->val = ent.val;
5190 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5191 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5197 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5198 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5200 struct page *page = NULL;
5201 struct address_space *mapping;
5204 if (!vma->vm_file) /* anonymous vma */
5209 mapping = vma->vm_file->f_mapping;
5210 if (pte_none(ptent))
5211 pgoff = linear_page_index(vma, addr);
5212 else /* pte_file(ptent) is true */
5213 pgoff = pte_to_pgoff(ptent);
5215 /* page is moved even if it's not RSS of this task(page-faulted). */
5216 page = find_get_page(mapping, pgoff);
5219 /* shmem/tmpfs may report page out on swap: account for that too. */
5220 if (radix_tree_exceptional_entry(page)) {
5221 swp_entry_t swap = radix_to_swp_entry(page);
5222 if (do_swap_account)
5224 page = find_get_page(&swapper_space, swap.val);
5230 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5231 unsigned long addr, pte_t ptent, union mc_target *target)
5233 struct page *page = NULL;
5234 struct page_cgroup *pc;
5235 enum mc_target_type ret = MC_TARGET_NONE;
5236 swp_entry_t ent = { .val = 0 };
5238 if (pte_present(ptent))
5239 page = mc_handle_present_pte(vma, addr, ptent);
5240 else if (is_swap_pte(ptent))
5241 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5242 else if (pte_none(ptent) || pte_file(ptent))
5243 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5245 if (!page && !ent.val)
5248 pc = lookup_page_cgroup(page);
5250 * Do only loose check w/o page_cgroup lock.
5251 * mem_cgroup_move_account() checks the pc is valid or not under
5254 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5255 ret = MC_TARGET_PAGE;
5257 target->page = page;
5259 if (!ret || !target)
5262 /* There is a swap entry and a page doesn't exist or isn't charged */
5263 if (ent.val && !ret &&
5264 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5265 ret = MC_TARGET_SWAP;
5272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5274 * We don't consider swapping or file mapped pages because THP does not
5275 * support them for now.
5276 * Caller should make sure that pmd_trans_huge(pmd) is true.
5278 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5279 unsigned long addr, pmd_t pmd, union mc_target *target)
5281 struct page *page = NULL;
5282 struct page_cgroup *pc;
5283 enum mc_target_type ret = MC_TARGET_NONE;
5285 page = pmd_page(pmd);
5286 VM_BUG_ON(!page || !PageHead(page));
5289 pc = lookup_page_cgroup(page);
5290 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5291 ret = MC_TARGET_PAGE;
5294 target->page = page;
5300 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5301 unsigned long addr, pmd_t pmd, union mc_target *target)
5303 return MC_TARGET_NONE;
5307 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5308 unsigned long addr, unsigned long end,
5309 struct mm_walk *walk)
5311 struct vm_area_struct *vma = walk->private;
5315 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5316 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5317 mc.precharge += HPAGE_PMD_NR;
5318 spin_unlock(&vma->vm_mm->page_table_lock);
5322 if (pmd_trans_unstable(pmd))
5324 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5325 for (; addr != end; pte++, addr += PAGE_SIZE)
5326 if (get_mctgt_type(vma, addr, *pte, NULL))
5327 mc.precharge++; /* increment precharge temporarily */
5328 pte_unmap_unlock(pte - 1, ptl);
5334 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5336 unsigned long precharge;
5337 struct vm_area_struct *vma;
5339 down_read(&mm->mmap_sem);
5340 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5341 struct mm_walk mem_cgroup_count_precharge_walk = {
5342 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5346 if (is_vm_hugetlb_page(vma))
5348 walk_page_range(vma->vm_start, vma->vm_end,
5349 &mem_cgroup_count_precharge_walk);
5351 up_read(&mm->mmap_sem);
5353 precharge = mc.precharge;
5359 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5361 unsigned long precharge = mem_cgroup_count_precharge(mm);
5363 VM_BUG_ON(mc.moving_task);
5364 mc.moving_task = current;
5365 return mem_cgroup_do_precharge(precharge);
5368 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5369 static void __mem_cgroup_clear_mc(void)
5371 struct mem_cgroup *from = mc.from;
5372 struct mem_cgroup *to = mc.to;
5374 /* we must uncharge all the leftover precharges from mc.to */
5376 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5380 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5381 * we must uncharge here.
5383 if (mc.moved_charge) {
5384 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5385 mc.moved_charge = 0;
5387 /* we must fixup refcnts and charges */
5388 if (mc.moved_swap) {
5389 /* uncharge swap account from the old cgroup */
5390 if (!mem_cgroup_is_root(mc.from))
5391 res_counter_uncharge(&mc.from->memsw,
5392 PAGE_SIZE * mc.moved_swap);
5393 __mem_cgroup_put(mc.from, mc.moved_swap);
5395 if (!mem_cgroup_is_root(mc.to)) {
5397 * we charged both to->res and to->memsw, so we should
5400 res_counter_uncharge(&mc.to->res,
5401 PAGE_SIZE * mc.moved_swap);
5403 /* we've already done mem_cgroup_get(mc.to) */
5406 memcg_oom_recover(from);
5407 memcg_oom_recover(to);
5408 wake_up_all(&mc.waitq);
5411 static void mem_cgroup_clear_mc(void)
5413 struct mem_cgroup *from = mc.from;
5416 * we must clear moving_task before waking up waiters at the end of
5419 mc.moving_task = NULL;
5420 __mem_cgroup_clear_mc();
5421 spin_lock(&mc.lock);
5424 spin_unlock(&mc.lock);
5425 mem_cgroup_end_move(from);
5428 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5429 struct cgroup_taskset *tset)
5431 struct task_struct *p = cgroup_taskset_first(tset);
5433 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5435 if (memcg->move_charge_at_immigrate) {
5436 struct mm_struct *mm;
5437 struct mem_cgroup *from = mem_cgroup_from_task(p);
5439 VM_BUG_ON(from == memcg);
5441 mm = get_task_mm(p);
5444 /* We move charges only when we move a owner of the mm */
5445 if (mm->owner == p) {
5448 VM_BUG_ON(mc.precharge);
5449 VM_BUG_ON(mc.moved_charge);
5450 VM_BUG_ON(mc.moved_swap);
5451 mem_cgroup_start_move(from);
5452 spin_lock(&mc.lock);
5455 spin_unlock(&mc.lock);
5456 /* We set mc.moving_task later */
5458 ret = mem_cgroup_precharge_mc(mm);
5460 mem_cgroup_clear_mc();
5467 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5468 struct cgroup_taskset *tset)
5470 mem_cgroup_clear_mc();
5473 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5474 unsigned long addr, unsigned long end,
5475 struct mm_walk *walk)
5478 struct vm_area_struct *vma = walk->private;
5481 enum mc_target_type target_type;
5482 union mc_target target;
5484 struct page_cgroup *pc;
5487 * We don't take compound_lock() here but no race with splitting thp
5489 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5490 * under splitting, which means there's no concurrent thp split,
5491 * - if another thread runs into split_huge_page() just after we
5492 * entered this if-block, the thread must wait for page table lock
5493 * to be unlocked in __split_huge_page_splitting(), where the main
5494 * part of thp split is not executed yet.
5496 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5497 if (mc.precharge < HPAGE_PMD_NR) {
5498 spin_unlock(&vma->vm_mm->page_table_lock);
5501 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5502 if (target_type == MC_TARGET_PAGE) {
5504 if (!isolate_lru_page(page)) {
5505 pc = lookup_page_cgroup(page);
5506 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5507 pc, mc.from, mc.to)) {
5508 mc.precharge -= HPAGE_PMD_NR;
5509 mc.moved_charge += HPAGE_PMD_NR;
5511 putback_lru_page(page);
5515 spin_unlock(&vma->vm_mm->page_table_lock);
5519 if (pmd_trans_unstable(pmd))
5522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5523 for (; addr != end; addr += PAGE_SIZE) {
5524 pte_t ptent = *(pte++);
5530 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5531 case MC_TARGET_PAGE:
5533 if (isolate_lru_page(page))
5535 pc = lookup_page_cgroup(page);
5536 if (!mem_cgroup_move_account(page, 1, pc,
5539 /* we uncharge from mc.from later. */
5542 putback_lru_page(page);
5543 put: /* get_mctgt_type() gets the page */
5546 case MC_TARGET_SWAP:
5548 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5550 /* we fixup refcnts and charges later. */
5558 pte_unmap_unlock(pte - 1, ptl);
5563 * We have consumed all precharges we got in can_attach().
5564 * We try charge one by one, but don't do any additional
5565 * charges to mc.to if we have failed in charge once in attach()
5568 ret = mem_cgroup_do_precharge(1);
5576 static void mem_cgroup_move_charge(struct mm_struct *mm)
5578 struct vm_area_struct *vma;
5580 lru_add_drain_all();
5582 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5584 * Someone who are holding the mmap_sem might be waiting in
5585 * waitq. So we cancel all extra charges, wake up all waiters,
5586 * and retry. Because we cancel precharges, we might not be able
5587 * to move enough charges, but moving charge is a best-effort
5588 * feature anyway, so it wouldn't be a big problem.
5590 __mem_cgroup_clear_mc();
5594 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5596 struct mm_walk mem_cgroup_move_charge_walk = {
5597 .pmd_entry = mem_cgroup_move_charge_pte_range,
5601 if (is_vm_hugetlb_page(vma))
5603 ret = walk_page_range(vma->vm_start, vma->vm_end,
5604 &mem_cgroup_move_charge_walk);
5607 * means we have consumed all precharges and failed in
5608 * doing additional charge. Just abandon here.
5612 up_read(&mm->mmap_sem);
5615 static void mem_cgroup_move_task(struct cgroup *cont,
5616 struct cgroup_taskset *tset)
5618 struct task_struct *p = cgroup_taskset_first(tset);
5619 struct mm_struct *mm = get_task_mm(p);
5623 mem_cgroup_move_charge(mm);
5627 mem_cgroup_clear_mc();
5629 #else /* !CONFIG_MMU */
5630 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5631 struct cgroup_taskset *tset)
5635 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5636 struct cgroup_taskset *tset)
5639 static void mem_cgroup_move_task(struct cgroup *cont,
5640 struct cgroup_taskset *tset)
5645 struct cgroup_subsys mem_cgroup_subsys = {
5647 .subsys_id = mem_cgroup_subsys_id,
5648 .css_alloc = mem_cgroup_css_alloc,
5649 .css_offline = mem_cgroup_css_offline,
5650 .css_free = mem_cgroup_css_free,
5651 .can_attach = mem_cgroup_can_attach,
5652 .cancel_attach = mem_cgroup_cancel_attach,
5653 .attach = mem_cgroup_move_task,
5654 .base_cftypes = mem_cgroup_files,
5659 #ifdef CONFIG_MEMCG_SWAP
5660 static int __init enable_swap_account(char *s)
5662 /* consider enabled if no parameter or 1 is given */
5663 if (!strcmp(s, "1"))
5664 really_do_swap_account = 1;
5665 else if (!strcmp(s, "0"))
5666 really_do_swap_account = 0;
5669 __setup("swapaccount=", enable_swap_account);