Merge tag 'trace-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[platform/kernel/linux-starfive.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 /* BPF memory accounting disabled? */
92 static bool cgroup_memory_nobpf __ro_after_init;
93
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97
98 /* Whether legacy memory+swap accounting is active */
99 static bool do_memsw_account(void)
100 {
101         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
102 }
103
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106
107 /*
108  * Cgroups above their limits are maintained in a RB-Tree, independent of
109  * their hierarchy representation
110  */
111
112 struct mem_cgroup_tree_per_node {
113         struct rb_root rb_root;
114         struct rb_node *rb_rightmost;
115         spinlock_t lock;
116 };
117
118 struct mem_cgroup_tree {
119         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126         struct list_head list;
127         struct eventfd_ctx *eventfd;
128 };
129
130 /*
131  * cgroup_event represents events which userspace want to receive.
132  */
133 struct mem_cgroup_event {
134         /*
135          * memcg which the event belongs to.
136          */
137         struct mem_cgroup *memcg;
138         /*
139          * eventfd to signal userspace about the event.
140          */
141         struct eventfd_ctx *eventfd;
142         /*
143          * Each of these stored in a list by the cgroup.
144          */
145         struct list_head list;
146         /*
147          * register_event() callback will be used to add new userspace
148          * waiter for changes related to this event.  Use eventfd_signal()
149          * on eventfd to send notification to userspace.
150          */
151         int (*register_event)(struct mem_cgroup *memcg,
152                               struct eventfd_ctx *eventfd, const char *args);
153         /*
154          * unregister_event() callback will be called when userspace closes
155          * the eventfd or on cgroup removing.  This callback must be set,
156          * if you want provide notification functionality.
157          */
158         void (*unregister_event)(struct mem_cgroup *memcg,
159                                  struct eventfd_ctx *eventfd);
160         /*
161          * All fields below needed to unregister event when
162          * userspace closes eventfd.
163          */
164         poll_table pt;
165         wait_queue_head_t *wqh;
166         wait_queue_entry_t wait;
167         struct work_struct remove;
168 };
169
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172
173 /* Stuffs for move charges at task migration. */
174 /*
175  * Types of charges to be moved.
176  */
177 #define MOVE_ANON       0x1U
178 #define MOVE_FILE       0x2U
179 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
180
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183         spinlock_t        lock; /* for from, to */
184         struct mm_struct  *mm;
185         struct mem_cgroup *from;
186         struct mem_cgroup *to;
187         unsigned long flags;
188         unsigned long precharge;
189         unsigned long moved_charge;
190         unsigned long moved_swap;
191         struct task_struct *moving_task;        /* a task moving charges */
192         wait_queue_head_t waitq;                /* a waitq for other context */
193 } mc = {
194         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197
198 /*
199  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200  * limit reclaim to prevent infinite loops, if they ever occur.
201  */
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
204
205 /* for encoding cft->private value on file */
206 enum res_type {
207         _MEM,
208         _MEMSWAP,
209         _KMEM,
210         _TCP,
211 };
212
213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
214 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
216
217 /*
218  * Iteration constructs for visiting all cgroups (under a tree).  If
219  * loops are exited prematurely (break), mem_cgroup_iter_break() must
220  * be used for reference counting.
221  */
222 #define for_each_mem_cgroup_tree(iter, root)            \
223         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
224              iter != NULL;                              \
225              iter = mem_cgroup_iter(root, iter, NULL))
226
227 #define for_each_mem_cgroup(iter)                       \
228         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
229              iter != NULL;                              \
230              iter = mem_cgroup_iter(NULL, iter, NULL))
231
232 static inline bool task_is_dying(void)
233 {
234         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
235                 (current->flags & PF_EXITING);
236 }
237
238 /* Some nice accessors for the vmpressure. */
239 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
240 {
241         if (!memcg)
242                 memcg = root_mem_cgroup;
243         return &memcg->vmpressure;
244 }
245
246 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
247 {
248         return container_of(vmpr, struct mem_cgroup, vmpressure);
249 }
250
251 #ifdef CONFIG_MEMCG_KMEM
252 static DEFINE_SPINLOCK(objcg_lock);
253
254 bool mem_cgroup_kmem_disabled(void)
255 {
256         return cgroup_memory_nokmem;
257 }
258
259 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
260                                       unsigned int nr_pages);
261
262 static void obj_cgroup_release(struct percpu_ref *ref)
263 {
264         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
265         unsigned int nr_bytes;
266         unsigned int nr_pages;
267         unsigned long flags;
268
269         /*
270          * At this point all allocated objects are freed, and
271          * objcg->nr_charged_bytes can't have an arbitrary byte value.
272          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273          *
274          * The following sequence can lead to it:
275          * 1) CPU0: objcg == stock->cached_objcg
276          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277          *          PAGE_SIZE bytes are charged
278          * 3) CPU1: a process from another memcg is allocating something,
279          *          the stock if flushed,
280          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
281          * 5) CPU0: we do release this object,
282          *          92 bytes are added to stock->nr_bytes
283          * 6) CPU0: stock is flushed,
284          *          92 bytes are added to objcg->nr_charged_bytes
285          *
286          * In the result, nr_charged_bytes == PAGE_SIZE.
287          * This page will be uncharged in obj_cgroup_release().
288          */
289         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291         nr_pages = nr_bytes >> PAGE_SHIFT;
292
293         if (nr_pages)
294                 obj_cgroup_uncharge_pages(objcg, nr_pages);
295
296         spin_lock_irqsave(&objcg_lock, flags);
297         list_del(&objcg->list);
298         spin_unlock_irqrestore(&objcg_lock, flags);
299
300         percpu_ref_exit(ref);
301         kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306         struct obj_cgroup *objcg;
307         int ret;
308
309         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310         if (!objcg)
311                 return NULL;
312
313         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314                               GFP_KERNEL);
315         if (ret) {
316                 kfree(objcg);
317                 return NULL;
318         }
319         INIT_LIST_HEAD(&objcg->list);
320         return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324                                   struct mem_cgroup *parent)
325 {
326         struct obj_cgroup *objcg, *iter;
327
328         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330         spin_lock_irq(&objcg_lock);
331
332         /* 1) Ready to reparent active objcg. */
333         list_add(&objcg->list, &memcg->objcg_list);
334         /* 2) Reparent active objcg and already reparented objcgs to parent. */
335         list_for_each_entry(iter, &memcg->objcg_list, list)
336                 WRITE_ONCE(iter->memcg, parent);
337         /* 3) Move already reparented objcgs to the parent's list */
338         list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340         spin_unlock_irq(&objcg_lock);
341
342         percpu_ref_kill(&objcg->refcnt);
343 }
344
345 /*
346  * A lot of the calls to the cache allocation functions are expected to be
347  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
348  * conditional to this static branch, we'll have to allow modules that does
349  * kmem_cache_alloc and the such to see this symbol as well
350  */
351 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
352 EXPORT_SYMBOL(memcg_kmem_online_key);
353
354 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
355 EXPORT_SYMBOL(memcg_bpf_enabled_key);
356 #endif
357
358 /**
359  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
360  * @folio: folio of interest
361  *
362  * If memcg is bound to the default hierarchy, css of the memcg associated
363  * with @folio is returned.  The returned css remains associated with @folio
364  * until it is released.
365  *
366  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
367  * is returned.
368  */
369 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
370 {
371         struct mem_cgroup *memcg = folio_memcg(folio);
372
373         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
374                 memcg = root_mem_cgroup;
375
376         return &memcg->css;
377 }
378
379 /**
380  * page_cgroup_ino - return inode number of the memcg a page is charged to
381  * @page: the page
382  *
383  * Look up the closest online ancestor of the memory cgroup @page is charged to
384  * and return its inode number or 0 if @page is not charged to any cgroup. It
385  * is safe to call this function without holding a reference to @page.
386  *
387  * Note, this function is inherently racy, because there is nothing to prevent
388  * the cgroup inode from getting torn down and potentially reallocated a moment
389  * after page_cgroup_ino() returns, so it only should be used by callers that
390  * do not care (such as procfs interfaces).
391  */
392 ino_t page_cgroup_ino(struct page *page)
393 {
394         struct mem_cgroup *memcg;
395         unsigned long ino = 0;
396
397         rcu_read_lock();
398         memcg = page_memcg_check(page);
399
400         while (memcg && !(memcg->css.flags & CSS_ONLINE))
401                 memcg = parent_mem_cgroup(memcg);
402         if (memcg)
403                 ino = cgroup_ino(memcg->css.cgroup);
404         rcu_read_unlock();
405         return ino;
406 }
407
408 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
409                                          struct mem_cgroup_tree_per_node *mctz,
410                                          unsigned long new_usage_in_excess)
411 {
412         struct rb_node **p = &mctz->rb_root.rb_node;
413         struct rb_node *parent = NULL;
414         struct mem_cgroup_per_node *mz_node;
415         bool rightmost = true;
416
417         if (mz->on_tree)
418                 return;
419
420         mz->usage_in_excess = new_usage_in_excess;
421         if (!mz->usage_in_excess)
422                 return;
423         while (*p) {
424                 parent = *p;
425                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
426                                         tree_node);
427                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
428                         p = &(*p)->rb_left;
429                         rightmost = false;
430                 } else {
431                         p = &(*p)->rb_right;
432                 }
433         }
434
435         if (rightmost)
436                 mctz->rb_rightmost = &mz->tree_node;
437
438         rb_link_node(&mz->tree_node, parent, p);
439         rb_insert_color(&mz->tree_node, &mctz->rb_root);
440         mz->on_tree = true;
441 }
442
443 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
444                                          struct mem_cgroup_tree_per_node *mctz)
445 {
446         if (!mz->on_tree)
447                 return;
448
449         if (&mz->tree_node == mctz->rb_rightmost)
450                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
451
452         rb_erase(&mz->tree_node, &mctz->rb_root);
453         mz->on_tree = false;
454 }
455
456 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
457                                        struct mem_cgroup_tree_per_node *mctz)
458 {
459         unsigned long flags;
460
461         spin_lock_irqsave(&mctz->lock, flags);
462         __mem_cgroup_remove_exceeded(mz, mctz);
463         spin_unlock_irqrestore(&mctz->lock, flags);
464 }
465
466 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
467 {
468         unsigned long nr_pages = page_counter_read(&memcg->memory);
469         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
470         unsigned long excess = 0;
471
472         if (nr_pages > soft_limit)
473                 excess = nr_pages - soft_limit;
474
475         return excess;
476 }
477
478 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
479 {
480         unsigned long excess;
481         struct mem_cgroup_per_node *mz;
482         struct mem_cgroup_tree_per_node *mctz;
483
484         if (lru_gen_enabled()) {
485                 if (soft_limit_excess(memcg))
486                         lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
487                 return;
488         }
489
490         mctz = soft_limit_tree.rb_tree_per_node[nid];
491         if (!mctz)
492                 return;
493         /*
494          * Necessary to update all ancestors when hierarchy is used.
495          * because their event counter is not touched.
496          */
497         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
498                 mz = memcg->nodeinfo[nid];
499                 excess = soft_limit_excess(memcg);
500                 /*
501                  * We have to update the tree if mz is on RB-tree or
502                  * mem is over its softlimit.
503                  */
504                 if (excess || mz->on_tree) {
505                         unsigned long flags;
506
507                         spin_lock_irqsave(&mctz->lock, flags);
508                         /* if on-tree, remove it */
509                         if (mz->on_tree)
510                                 __mem_cgroup_remove_exceeded(mz, mctz);
511                         /*
512                          * Insert again. mz->usage_in_excess will be updated.
513                          * If excess is 0, no tree ops.
514                          */
515                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
516                         spin_unlock_irqrestore(&mctz->lock, flags);
517                 }
518         }
519 }
520
521 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
522 {
523         struct mem_cgroup_tree_per_node *mctz;
524         struct mem_cgroup_per_node *mz;
525         int nid;
526
527         for_each_node(nid) {
528                 mz = memcg->nodeinfo[nid];
529                 mctz = soft_limit_tree.rb_tree_per_node[nid];
530                 if (mctz)
531                         mem_cgroup_remove_exceeded(mz, mctz);
532         }
533 }
534
535 static struct mem_cgroup_per_node *
536 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 {
538         struct mem_cgroup_per_node *mz;
539
540 retry:
541         mz = NULL;
542         if (!mctz->rb_rightmost)
543                 goto done;              /* Nothing to reclaim from */
544
545         mz = rb_entry(mctz->rb_rightmost,
546                       struct mem_cgroup_per_node, tree_node);
547         /*
548          * Remove the node now but someone else can add it back,
549          * we will to add it back at the end of reclaim to its correct
550          * position in the tree.
551          */
552         __mem_cgroup_remove_exceeded(mz, mctz);
553         if (!soft_limit_excess(mz->memcg) ||
554             !css_tryget(&mz->memcg->css))
555                 goto retry;
556 done:
557         return mz;
558 }
559
560 static struct mem_cgroup_per_node *
561 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
562 {
563         struct mem_cgroup_per_node *mz;
564
565         spin_lock_irq(&mctz->lock);
566         mz = __mem_cgroup_largest_soft_limit_node(mctz);
567         spin_unlock_irq(&mctz->lock);
568         return mz;
569 }
570
571 /*
572  * memcg and lruvec stats flushing
573  *
574  * Many codepaths leading to stats update or read are performance sensitive and
575  * adding stats flushing in such codepaths is not desirable. So, to optimize the
576  * flushing the kernel does:
577  *
578  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
579  *    rstat update tree grow unbounded.
580  *
581  * 2) Flush the stats synchronously on reader side only when there are more than
582  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
583  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
584  *    only for 2 seconds due to (1).
585  */
586 static void flush_memcg_stats_dwork(struct work_struct *w);
587 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
588 static DEFINE_SPINLOCK(stats_flush_lock);
589 static DEFINE_PER_CPU(unsigned int, stats_updates);
590 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
591 static u64 flush_next_time;
592
593 #define FLUSH_TIME (2UL*HZ)
594
595 /*
596  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
597  * not rely on this as part of an acquired spinlock_t lock. These functions are
598  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
599  * is sufficient.
600  */
601 static void memcg_stats_lock(void)
602 {
603         preempt_disable_nested();
604         VM_WARN_ON_IRQS_ENABLED();
605 }
606
607 static void __memcg_stats_lock(void)
608 {
609         preempt_disable_nested();
610 }
611
612 static void memcg_stats_unlock(void)
613 {
614         preempt_enable_nested();
615 }
616
617 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
618 {
619         unsigned int x;
620
621         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
622
623         x = __this_cpu_add_return(stats_updates, abs(val));
624         if (x > MEMCG_CHARGE_BATCH) {
625                 /*
626                  * If stats_flush_threshold exceeds the threshold
627                  * (>num_online_cpus()), cgroup stats update will be triggered
628                  * in __mem_cgroup_flush_stats(). Increasing this var further
629                  * is redundant and simply adds overhead in atomic update.
630                  */
631                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
632                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
633                 __this_cpu_write(stats_updates, 0);
634         }
635 }
636
637 static void __mem_cgroup_flush_stats(void)
638 {
639         unsigned long flag;
640
641         if (!spin_trylock_irqsave(&stats_flush_lock, flag))
642                 return;
643
644         flush_next_time = jiffies_64 + 2*FLUSH_TIME;
645         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
646         atomic_set(&stats_flush_threshold, 0);
647         spin_unlock_irqrestore(&stats_flush_lock, flag);
648 }
649
650 void mem_cgroup_flush_stats(void)
651 {
652         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
653                 __mem_cgroup_flush_stats();
654 }
655
656 void mem_cgroup_flush_stats_delayed(void)
657 {
658         if (time_after64(jiffies_64, flush_next_time))
659                 mem_cgroup_flush_stats();
660 }
661
662 static void flush_memcg_stats_dwork(struct work_struct *w)
663 {
664         __mem_cgroup_flush_stats();
665         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
666 }
667
668 /* Subset of vm_event_item to report for memcg event stats */
669 static const unsigned int memcg_vm_event_stat[] = {
670         PGPGIN,
671         PGPGOUT,
672         PGSCAN_KSWAPD,
673         PGSCAN_DIRECT,
674         PGSCAN_KHUGEPAGED,
675         PGSTEAL_KSWAPD,
676         PGSTEAL_DIRECT,
677         PGSTEAL_KHUGEPAGED,
678         PGFAULT,
679         PGMAJFAULT,
680         PGREFILL,
681         PGACTIVATE,
682         PGDEACTIVATE,
683         PGLAZYFREE,
684         PGLAZYFREED,
685 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
686         ZSWPIN,
687         ZSWPOUT,
688 #endif
689 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
690         THP_FAULT_ALLOC,
691         THP_COLLAPSE_ALLOC,
692 #endif
693 };
694
695 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
696 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
697
698 static void init_memcg_events(void)
699 {
700         int i;
701
702         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
703                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
704 }
705
706 static inline int memcg_events_index(enum vm_event_item idx)
707 {
708         return mem_cgroup_events_index[idx] - 1;
709 }
710
711 struct memcg_vmstats_percpu {
712         /* Local (CPU and cgroup) page state & events */
713         long                    state[MEMCG_NR_STAT];
714         unsigned long           events[NR_MEMCG_EVENTS];
715
716         /* Delta calculation for lockless upward propagation */
717         long                    state_prev[MEMCG_NR_STAT];
718         unsigned long           events_prev[NR_MEMCG_EVENTS];
719
720         /* Cgroup1: threshold notifications & softlimit tree updates */
721         unsigned long           nr_page_events;
722         unsigned long           targets[MEM_CGROUP_NTARGETS];
723 };
724
725 struct memcg_vmstats {
726         /* Aggregated (CPU and subtree) page state & events */
727         long                    state[MEMCG_NR_STAT];
728         unsigned long           events[NR_MEMCG_EVENTS];
729
730         /* Pending child counts during tree propagation */
731         long                    state_pending[MEMCG_NR_STAT];
732         unsigned long           events_pending[NR_MEMCG_EVENTS];
733 };
734
735 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
736 {
737         long x = READ_ONCE(memcg->vmstats->state[idx]);
738 #ifdef CONFIG_SMP
739         if (x < 0)
740                 x = 0;
741 #endif
742         return x;
743 }
744
745 /**
746  * __mod_memcg_state - update cgroup memory statistics
747  * @memcg: the memory cgroup
748  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
749  * @val: delta to add to the counter, can be negative
750  */
751 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
752 {
753         if (mem_cgroup_disabled())
754                 return;
755
756         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
757         memcg_rstat_updated(memcg, val);
758 }
759
760 /* idx can be of type enum memcg_stat_item or node_stat_item. */
761 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
762 {
763         long x = 0;
764         int cpu;
765
766         for_each_possible_cpu(cpu)
767                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
768 #ifdef CONFIG_SMP
769         if (x < 0)
770                 x = 0;
771 #endif
772         return x;
773 }
774
775 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
776                               int val)
777 {
778         struct mem_cgroup_per_node *pn;
779         struct mem_cgroup *memcg;
780
781         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
782         memcg = pn->memcg;
783
784         /*
785          * The caller from rmap relay on disabled preemption becase they never
786          * update their counter from in-interrupt context. For these two
787          * counters we check that the update is never performed from an
788          * interrupt context while other caller need to have disabled interrupt.
789          */
790         __memcg_stats_lock();
791         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
792                 switch (idx) {
793                 case NR_ANON_MAPPED:
794                 case NR_FILE_MAPPED:
795                 case NR_ANON_THPS:
796                 case NR_SHMEM_PMDMAPPED:
797                 case NR_FILE_PMDMAPPED:
798                         WARN_ON_ONCE(!in_task());
799                         break;
800                 default:
801                         VM_WARN_ON_IRQS_ENABLED();
802                 }
803         }
804
805         /* Update memcg */
806         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
807
808         /* Update lruvec */
809         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
810
811         memcg_rstat_updated(memcg, val);
812         memcg_stats_unlock();
813 }
814
815 /**
816  * __mod_lruvec_state - update lruvec memory statistics
817  * @lruvec: the lruvec
818  * @idx: the stat item
819  * @val: delta to add to the counter, can be negative
820  *
821  * The lruvec is the intersection of the NUMA node and a cgroup. This
822  * function updates the all three counters that are affected by a
823  * change of state at this level: per-node, per-cgroup, per-lruvec.
824  */
825 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
826                         int val)
827 {
828         /* Update node */
829         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
830
831         /* Update memcg and lruvec */
832         if (!mem_cgroup_disabled())
833                 __mod_memcg_lruvec_state(lruvec, idx, val);
834 }
835
836 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
837                              int val)
838 {
839         struct page *head = compound_head(page); /* rmap on tail pages */
840         struct mem_cgroup *memcg;
841         pg_data_t *pgdat = page_pgdat(page);
842         struct lruvec *lruvec;
843
844         rcu_read_lock();
845         memcg = page_memcg(head);
846         /* Untracked pages have no memcg, no lruvec. Update only the node */
847         if (!memcg) {
848                 rcu_read_unlock();
849                 __mod_node_page_state(pgdat, idx, val);
850                 return;
851         }
852
853         lruvec = mem_cgroup_lruvec(memcg, pgdat);
854         __mod_lruvec_state(lruvec, idx, val);
855         rcu_read_unlock();
856 }
857 EXPORT_SYMBOL(__mod_lruvec_page_state);
858
859 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
860 {
861         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
862         struct mem_cgroup *memcg;
863         struct lruvec *lruvec;
864
865         rcu_read_lock();
866         memcg = mem_cgroup_from_slab_obj(p);
867
868         /*
869          * Untracked pages have no memcg, no lruvec. Update only the
870          * node. If we reparent the slab objects to the root memcg,
871          * when we free the slab object, we need to update the per-memcg
872          * vmstats to keep it correct for the root memcg.
873          */
874         if (!memcg) {
875                 __mod_node_page_state(pgdat, idx, val);
876         } else {
877                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
878                 __mod_lruvec_state(lruvec, idx, val);
879         }
880         rcu_read_unlock();
881 }
882
883 /**
884  * __count_memcg_events - account VM events in a cgroup
885  * @memcg: the memory cgroup
886  * @idx: the event item
887  * @count: the number of events that occurred
888  */
889 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
890                           unsigned long count)
891 {
892         int index = memcg_events_index(idx);
893
894         if (mem_cgroup_disabled() || index < 0)
895                 return;
896
897         memcg_stats_lock();
898         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
899         memcg_rstat_updated(memcg, count);
900         memcg_stats_unlock();
901 }
902
903 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
904 {
905         int index = memcg_events_index(event);
906
907         if (index < 0)
908                 return 0;
909         return READ_ONCE(memcg->vmstats->events[index]);
910 }
911
912 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
913 {
914         long x = 0;
915         int cpu;
916         int index = memcg_events_index(event);
917
918         if (index < 0)
919                 return 0;
920
921         for_each_possible_cpu(cpu)
922                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
923         return x;
924 }
925
926 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
927                                          int nr_pages)
928 {
929         /* pagein of a big page is an event. So, ignore page size */
930         if (nr_pages > 0)
931                 __count_memcg_events(memcg, PGPGIN, 1);
932         else {
933                 __count_memcg_events(memcg, PGPGOUT, 1);
934                 nr_pages = -nr_pages; /* for event */
935         }
936
937         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
938 }
939
940 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941                                        enum mem_cgroup_events_target target)
942 {
943         unsigned long val, next;
944
945         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
946         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
947         /* from time_after() in jiffies.h */
948         if ((long)(next - val) < 0) {
949                 switch (target) {
950                 case MEM_CGROUP_TARGET_THRESH:
951                         next = val + THRESHOLDS_EVENTS_TARGET;
952                         break;
953                 case MEM_CGROUP_TARGET_SOFTLIMIT:
954                         next = val + SOFTLIMIT_EVENTS_TARGET;
955                         break;
956                 default:
957                         break;
958                 }
959                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
960                 return true;
961         }
962         return false;
963 }
964
965 /*
966  * Check events in order.
967  *
968  */
969 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
970 {
971         if (IS_ENABLED(CONFIG_PREEMPT_RT))
972                 return;
973
974         /* threshold event is triggered in finer grain than soft limit */
975         if (unlikely(mem_cgroup_event_ratelimit(memcg,
976                                                 MEM_CGROUP_TARGET_THRESH))) {
977                 bool do_softlimit;
978
979                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
980                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
981                 mem_cgroup_threshold(memcg);
982                 if (unlikely(do_softlimit))
983                         mem_cgroup_update_tree(memcg, nid);
984         }
985 }
986
987 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
988 {
989         /*
990          * mm_update_next_owner() may clear mm->owner to NULL
991          * if it races with swapoff, page migration, etc.
992          * So this can be called with p == NULL.
993          */
994         if (unlikely(!p))
995                 return NULL;
996
997         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
998 }
999 EXPORT_SYMBOL(mem_cgroup_from_task);
1000
1001 static __always_inline struct mem_cgroup *active_memcg(void)
1002 {
1003         if (!in_task())
1004                 return this_cpu_read(int_active_memcg);
1005         else
1006                 return current->active_memcg;
1007 }
1008
1009 /**
1010  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1011  * @mm: mm from which memcg should be extracted. It can be NULL.
1012  *
1013  * Obtain a reference on mm->memcg and returns it if successful. If mm
1014  * is NULL, then the memcg is chosen as follows:
1015  * 1) The active memcg, if set.
1016  * 2) current->mm->memcg, if available
1017  * 3) root memcg
1018  * If mem_cgroup is disabled, NULL is returned.
1019  */
1020 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1021 {
1022         struct mem_cgroup *memcg;
1023
1024         if (mem_cgroup_disabled())
1025                 return NULL;
1026
1027         /*
1028          * Page cache insertions can happen without an
1029          * actual mm context, e.g. during disk probing
1030          * on boot, loopback IO, acct() writes etc.
1031          *
1032          * No need to css_get on root memcg as the reference
1033          * counting is disabled on the root level in the
1034          * cgroup core. See CSS_NO_REF.
1035          */
1036         if (unlikely(!mm)) {
1037                 memcg = active_memcg();
1038                 if (unlikely(memcg)) {
1039                         /* remote memcg must hold a ref */
1040                         css_get(&memcg->css);
1041                         return memcg;
1042                 }
1043                 mm = current->mm;
1044                 if (unlikely(!mm))
1045                         return root_mem_cgroup;
1046         }
1047
1048         rcu_read_lock();
1049         do {
1050                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1051                 if (unlikely(!memcg))
1052                         memcg = root_mem_cgroup;
1053         } while (!css_tryget(&memcg->css));
1054         rcu_read_unlock();
1055         return memcg;
1056 }
1057 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1058
1059 static __always_inline bool memcg_kmem_bypass(void)
1060 {
1061         /* Allow remote memcg charging from any context. */
1062         if (unlikely(active_memcg()))
1063                 return false;
1064
1065         /* Memcg to charge can't be determined. */
1066         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1067                 return true;
1068
1069         return false;
1070 }
1071
1072 /**
1073  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1074  * @root: hierarchy root
1075  * @prev: previously returned memcg, NULL on first invocation
1076  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1077  *
1078  * Returns references to children of the hierarchy below @root, or
1079  * @root itself, or %NULL after a full round-trip.
1080  *
1081  * Caller must pass the return value in @prev on subsequent
1082  * invocations for reference counting, or use mem_cgroup_iter_break()
1083  * to cancel a hierarchy walk before the round-trip is complete.
1084  *
1085  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1086  * in the hierarchy among all concurrent reclaimers operating on the
1087  * same node.
1088  */
1089 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1090                                    struct mem_cgroup *prev,
1091                                    struct mem_cgroup_reclaim_cookie *reclaim)
1092 {
1093         struct mem_cgroup_reclaim_iter *iter;
1094         struct cgroup_subsys_state *css = NULL;
1095         struct mem_cgroup *memcg = NULL;
1096         struct mem_cgroup *pos = NULL;
1097
1098         if (mem_cgroup_disabled())
1099                 return NULL;
1100
1101         if (!root)
1102                 root = root_mem_cgroup;
1103
1104         rcu_read_lock();
1105
1106         if (reclaim) {
1107                 struct mem_cgroup_per_node *mz;
1108
1109                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1110                 iter = &mz->iter;
1111
1112                 /*
1113                  * On start, join the current reclaim iteration cycle.
1114                  * Exit when a concurrent walker completes it.
1115                  */
1116                 if (!prev)
1117                         reclaim->generation = iter->generation;
1118                 else if (reclaim->generation != iter->generation)
1119                         goto out_unlock;
1120
1121                 while (1) {
1122                         pos = READ_ONCE(iter->position);
1123                         if (!pos || css_tryget(&pos->css))
1124                                 break;
1125                         /*
1126                          * css reference reached zero, so iter->position will
1127                          * be cleared by ->css_released. However, we should not
1128                          * rely on this happening soon, because ->css_released
1129                          * is called from a work queue, and by busy-waiting we
1130                          * might block it. So we clear iter->position right
1131                          * away.
1132                          */
1133                         (void)cmpxchg(&iter->position, pos, NULL);
1134                 }
1135         } else if (prev) {
1136                 pos = prev;
1137         }
1138
1139         if (pos)
1140                 css = &pos->css;
1141
1142         for (;;) {
1143                 css = css_next_descendant_pre(css, &root->css);
1144                 if (!css) {
1145                         /*
1146                          * Reclaimers share the hierarchy walk, and a
1147                          * new one might jump in right at the end of
1148                          * the hierarchy - make sure they see at least
1149                          * one group and restart from the beginning.
1150                          */
1151                         if (!prev)
1152                                 continue;
1153                         break;
1154                 }
1155
1156                 /*
1157                  * Verify the css and acquire a reference.  The root
1158                  * is provided by the caller, so we know it's alive
1159                  * and kicking, and don't take an extra reference.
1160                  */
1161                 if (css == &root->css || css_tryget(css)) {
1162                         memcg = mem_cgroup_from_css(css);
1163                         break;
1164                 }
1165         }
1166
1167         if (reclaim) {
1168                 /*
1169                  * The position could have already been updated by a competing
1170                  * thread, so check that the value hasn't changed since we read
1171                  * it to avoid reclaiming from the same cgroup twice.
1172                  */
1173                 (void)cmpxchg(&iter->position, pos, memcg);
1174
1175                 if (pos)
1176                         css_put(&pos->css);
1177
1178                 if (!memcg)
1179                         iter->generation++;
1180         }
1181
1182 out_unlock:
1183         rcu_read_unlock();
1184         if (prev && prev != root)
1185                 css_put(&prev->css);
1186
1187         return memcg;
1188 }
1189
1190 /**
1191  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1192  * @root: hierarchy root
1193  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1194  */
1195 void mem_cgroup_iter_break(struct mem_cgroup *root,
1196                            struct mem_cgroup *prev)
1197 {
1198         if (!root)
1199                 root = root_mem_cgroup;
1200         if (prev && prev != root)
1201                 css_put(&prev->css);
1202 }
1203
1204 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1205                                         struct mem_cgroup *dead_memcg)
1206 {
1207         struct mem_cgroup_reclaim_iter *iter;
1208         struct mem_cgroup_per_node *mz;
1209         int nid;
1210
1211         for_each_node(nid) {
1212                 mz = from->nodeinfo[nid];
1213                 iter = &mz->iter;
1214                 cmpxchg(&iter->position, dead_memcg, NULL);
1215         }
1216 }
1217
1218 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1219 {
1220         struct mem_cgroup *memcg = dead_memcg;
1221         struct mem_cgroup *last;
1222
1223         do {
1224                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1225                 last = memcg;
1226         } while ((memcg = parent_mem_cgroup(memcg)));
1227
1228         /*
1229          * When cgroup1 non-hierarchy mode is used,
1230          * parent_mem_cgroup() does not walk all the way up to the
1231          * cgroup root (root_mem_cgroup). So we have to handle
1232          * dead_memcg from cgroup root separately.
1233          */
1234         if (!mem_cgroup_is_root(last))
1235                 __invalidate_reclaim_iterators(root_mem_cgroup,
1236                                                 dead_memcg);
1237 }
1238
1239 /**
1240  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1241  * @memcg: hierarchy root
1242  * @fn: function to call for each task
1243  * @arg: argument passed to @fn
1244  *
1245  * This function iterates over tasks attached to @memcg or to any of its
1246  * descendants and calls @fn for each task. If @fn returns a non-zero
1247  * value, the function breaks the iteration loop and returns the value.
1248  * Otherwise, it will iterate over all tasks and return 0.
1249  *
1250  * This function must not be called for the root memory cgroup.
1251  */
1252 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1253                           int (*fn)(struct task_struct *, void *), void *arg)
1254 {
1255         struct mem_cgroup *iter;
1256         int ret = 0;
1257
1258         BUG_ON(mem_cgroup_is_root(memcg));
1259
1260         for_each_mem_cgroup_tree(iter, memcg) {
1261                 struct css_task_iter it;
1262                 struct task_struct *task;
1263
1264                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1265                 while (!ret && (task = css_task_iter_next(&it)))
1266                         ret = fn(task, arg);
1267                 css_task_iter_end(&it);
1268                 if (ret) {
1269                         mem_cgroup_iter_break(memcg, iter);
1270                         break;
1271                 }
1272         }
1273         return ret;
1274 }
1275
1276 #ifdef CONFIG_DEBUG_VM
1277 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1278 {
1279         struct mem_cgroup *memcg;
1280
1281         if (mem_cgroup_disabled())
1282                 return;
1283
1284         memcg = folio_memcg(folio);
1285
1286         if (!memcg)
1287                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1288         else
1289                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1290 }
1291 #endif
1292
1293 /**
1294  * folio_lruvec_lock - Lock the lruvec for a folio.
1295  * @folio: Pointer to the folio.
1296  *
1297  * These functions are safe to use under any of the following conditions:
1298  * - folio locked
1299  * - folio_test_lru false
1300  * - folio_memcg_lock()
1301  * - folio frozen (refcount of 0)
1302  *
1303  * Return: The lruvec this folio is on with its lock held.
1304  */
1305 struct lruvec *folio_lruvec_lock(struct folio *folio)
1306 {
1307         struct lruvec *lruvec = folio_lruvec(folio);
1308
1309         spin_lock(&lruvec->lru_lock);
1310         lruvec_memcg_debug(lruvec, folio);
1311
1312         return lruvec;
1313 }
1314
1315 /**
1316  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1317  * @folio: Pointer to the folio.
1318  *
1319  * These functions are safe to use under any of the following conditions:
1320  * - folio locked
1321  * - folio_test_lru false
1322  * - folio_memcg_lock()
1323  * - folio frozen (refcount of 0)
1324  *
1325  * Return: The lruvec this folio is on with its lock held and interrupts
1326  * disabled.
1327  */
1328 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1329 {
1330         struct lruvec *lruvec = folio_lruvec(folio);
1331
1332         spin_lock_irq(&lruvec->lru_lock);
1333         lruvec_memcg_debug(lruvec, folio);
1334
1335         return lruvec;
1336 }
1337
1338 /**
1339  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1340  * @folio: Pointer to the folio.
1341  * @flags: Pointer to irqsave flags.
1342  *
1343  * These functions are safe to use under any of the following conditions:
1344  * - folio locked
1345  * - folio_test_lru false
1346  * - folio_memcg_lock()
1347  * - folio frozen (refcount of 0)
1348  *
1349  * Return: The lruvec this folio is on with its lock held and interrupts
1350  * disabled.
1351  */
1352 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1353                 unsigned long *flags)
1354 {
1355         struct lruvec *lruvec = folio_lruvec(folio);
1356
1357         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1358         lruvec_memcg_debug(lruvec, folio);
1359
1360         return lruvec;
1361 }
1362
1363 /**
1364  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1365  * @lruvec: mem_cgroup per zone lru vector
1366  * @lru: index of lru list the page is sitting on
1367  * @zid: zone id of the accounted pages
1368  * @nr_pages: positive when adding or negative when removing
1369  *
1370  * This function must be called under lru_lock, just before a page is added
1371  * to or just after a page is removed from an lru list.
1372  */
1373 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1374                                 int zid, int nr_pages)
1375 {
1376         struct mem_cgroup_per_node *mz;
1377         unsigned long *lru_size;
1378         long size;
1379
1380         if (mem_cgroup_disabled())
1381                 return;
1382
1383         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1384         lru_size = &mz->lru_zone_size[zid][lru];
1385
1386         if (nr_pages < 0)
1387                 *lru_size += nr_pages;
1388
1389         size = *lru_size;
1390         if (WARN_ONCE(size < 0,
1391                 "%s(%p, %d, %d): lru_size %ld\n",
1392                 __func__, lruvec, lru, nr_pages, size)) {
1393                 VM_BUG_ON(1);
1394                 *lru_size = 0;
1395         }
1396
1397         if (nr_pages > 0)
1398                 *lru_size += nr_pages;
1399 }
1400
1401 /**
1402  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1403  * @memcg: the memory cgroup
1404  *
1405  * Returns the maximum amount of memory @mem can be charged with, in
1406  * pages.
1407  */
1408 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1409 {
1410         unsigned long margin = 0;
1411         unsigned long count;
1412         unsigned long limit;
1413
1414         count = page_counter_read(&memcg->memory);
1415         limit = READ_ONCE(memcg->memory.max);
1416         if (count < limit)
1417                 margin = limit - count;
1418
1419         if (do_memsw_account()) {
1420                 count = page_counter_read(&memcg->memsw);
1421                 limit = READ_ONCE(memcg->memsw.max);
1422                 if (count < limit)
1423                         margin = min(margin, limit - count);
1424                 else
1425                         margin = 0;
1426         }
1427
1428         return margin;
1429 }
1430
1431 /*
1432  * A routine for checking "mem" is under move_account() or not.
1433  *
1434  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1435  * moving cgroups. This is for waiting at high-memory pressure
1436  * caused by "move".
1437  */
1438 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1439 {
1440         struct mem_cgroup *from;
1441         struct mem_cgroup *to;
1442         bool ret = false;
1443         /*
1444          * Unlike task_move routines, we access mc.to, mc.from not under
1445          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1446          */
1447         spin_lock(&mc.lock);
1448         from = mc.from;
1449         to = mc.to;
1450         if (!from)
1451                 goto unlock;
1452
1453         ret = mem_cgroup_is_descendant(from, memcg) ||
1454                 mem_cgroup_is_descendant(to, memcg);
1455 unlock:
1456         spin_unlock(&mc.lock);
1457         return ret;
1458 }
1459
1460 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1461 {
1462         if (mc.moving_task && current != mc.moving_task) {
1463                 if (mem_cgroup_under_move(memcg)) {
1464                         DEFINE_WAIT(wait);
1465                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1466                         /* moving charge context might have finished. */
1467                         if (mc.moving_task)
1468                                 schedule();
1469                         finish_wait(&mc.waitq, &wait);
1470                         return true;
1471                 }
1472         }
1473         return false;
1474 }
1475
1476 struct memory_stat {
1477         const char *name;
1478         unsigned int idx;
1479 };
1480
1481 static const struct memory_stat memory_stats[] = {
1482         { "anon",                       NR_ANON_MAPPED                  },
1483         { "file",                       NR_FILE_PAGES                   },
1484         { "kernel",                     MEMCG_KMEM                      },
1485         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1486         { "pagetables",                 NR_PAGETABLE                    },
1487         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1488         { "percpu",                     MEMCG_PERCPU_B                  },
1489         { "sock",                       MEMCG_SOCK                      },
1490         { "vmalloc",                    MEMCG_VMALLOC                   },
1491         { "shmem",                      NR_SHMEM                        },
1492 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1493         { "zswap",                      MEMCG_ZSWAP_B                   },
1494         { "zswapped",                   MEMCG_ZSWAPPED                  },
1495 #endif
1496         { "file_mapped",                NR_FILE_MAPPED                  },
1497         { "file_dirty",                 NR_FILE_DIRTY                   },
1498         { "file_writeback",             NR_WRITEBACK                    },
1499 #ifdef CONFIG_SWAP
1500         { "swapcached",                 NR_SWAPCACHE                    },
1501 #endif
1502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1503         { "anon_thp",                   NR_ANON_THPS                    },
1504         { "file_thp",                   NR_FILE_THPS                    },
1505         { "shmem_thp",                  NR_SHMEM_THPS                   },
1506 #endif
1507         { "inactive_anon",              NR_INACTIVE_ANON                },
1508         { "active_anon",                NR_ACTIVE_ANON                  },
1509         { "inactive_file",              NR_INACTIVE_FILE                },
1510         { "active_file",                NR_ACTIVE_FILE                  },
1511         { "unevictable",                NR_UNEVICTABLE                  },
1512         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1513         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1514
1515         /* The memory events */
1516         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1517         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1518         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1519         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1520         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1521         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1522         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1523 };
1524
1525 /* Translate stat items to the correct unit for memory.stat output */
1526 static int memcg_page_state_unit(int item)
1527 {
1528         switch (item) {
1529         case MEMCG_PERCPU_B:
1530         case MEMCG_ZSWAP_B:
1531         case NR_SLAB_RECLAIMABLE_B:
1532         case NR_SLAB_UNRECLAIMABLE_B:
1533         case WORKINGSET_REFAULT_ANON:
1534         case WORKINGSET_REFAULT_FILE:
1535         case WORKINGSET_ACTIVATE_ANON:
1536         case WORKINGSET_ACTIVATE_FILE:
1537         case WORKINGSET_RESTORE_ANON:
1538         case WORKINGSET_RESTORE_FILE:
1539         case WORKINGSET_NODERECLAIM:
1540                 return 1;
1541         case NR_KERNEL_STACK_KB:
1542                 return SZ_1K;
1543         default:
1544                 return PAGE_SIZE;
1545         }
1546 }
1547
1548 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1549                                                     int item)
1550 {
1551         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1552 }
1553
1554 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1555 {
1556         struct seq_buf s;
1557         int i;
1558
1559         seq_buf_init(&s, buf, bufsize);
1560
1561         /*
1562          * Provide statistics on the state of the memory subsystem as
1563          * well as cumulative event counters that show past behavior.
1564          *
1565          * This list is ordered following a combination of these gradients:
1566          * 1) generic big picture -> specifics and details
1567          * 2) reflecting userspace activity -> reflecting kernel heuristics
1568          *
1569          * Current memory state:
1570          */
1571         mem_cgroup_flush_stats();
1572
1573         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1574                 u64 size;
1575
1576                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1577                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1578
1579                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1580                         size += memcg_page_state_output(memcg,
1581                                                         NR_SLAB_RECLAIMABLE_B);
1582                         seq_buf_printf(&s, "slab %llu\n", size);
1583                 }
1584         }
1585
1586         /* Accumulated memory events */
1587         seq_buf_printf(&s, "pgscan %lu\n",
1588                        memcg_events(memcg, PGSCAN_KSWAPD) +
1589                        memcg_events(memcg, PGSCAN_DIRECT) +
1590                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1591         seq_buf_printf(&s, "pgsteal %lu\n",
1592                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1593                        memcg_events(memcg, PGSTEAL_DIRECT) +
1594                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1595
1596         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1597                 if (memcg_vm_event_stat[i] == PGPGIN ||
1598                     memcg_vm_event_stat[i] == PGPGOUT)
1599                         continue;
1600
1601                 seq_buf_printf(&s, "%s %lu\n",
1602                                vm_event_name(memcg_vm_event_stat[i]),
1603                                memcg_events(memcg, memcg_vm_event_stat[i]));
1604         }
1605
1606         /* The above should easily fit into one page */
1607         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1608 }
1609
1610 #define K(x) ((x) << (PAGE_SHIFT-10))
1611 /**
1612  * mem_cgroup_print_oom_context: Print OOM information relevant to
1613  * memory controller.
1614  * @memcg: The memory cgroup that went over limit
1615  * @p: Task that is going to be killed
1616  *
1617  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1618  * enabled
1619  */
1620 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1621 {
1622         rcu_read_lock();
1623
1624         if (memcg) {
1625                 pr_cont(",oom_memcg=");
1626                 pr_cont_cgroup_path(memcg->css.cgroup);
1627         } else
1628                 pr_cont(",global_oom");
1629         if (p) {
1630                 pr_cont(",task_memcg=");
1631                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1632         }
1633         rcu_read_unlock();
1634 }
1635
1636 /**
1637  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1638  * memory controller.
1639  * @memcg: The memory cgroup that went over limit
1640  */
1641 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1642 {
1643         /* Use static buffer, for the caller is holding oom_lock. */
1644         static char buf[PAGE_SIZE];
1645
1646         lockdep_assert_held(&oom_lock);
1647
1648         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1649                 K((u64)page_counter_read(&memcg->memory)),
1650                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1651         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1652                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1653                         K((u64)page_counter_read(&memcg->swap)),
1654                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1655         else {
1656                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1657                         K((u64)page_counter_read(&memcg->memsw)),
1658                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1659                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1660                         K((u64)page_counter_read(&memcg->kmem)),
1661                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1662         }
1663
1664         pr_info("Memory cgroup stats for ");
1665         pr_cont_cgroup_path(memcg->css.cgroup);
1666         pr_cont(":");
1667         memory_stat_format(memcg, buf, sizeof(buf));
1668         pr_info("%s", buf);
1669 }
1670
1671 /*
1672  * Return the memory (and swap, if configured) limit for a memcg.
1673  */
1674 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1675 {
1676         unsigned long max = READ_ONCE(memcg->memory.max);
1677
1678         if (do_memsw_account()) {
1679                 if (mem_cgroup_swappiness(memcg)) {
1680                         /* Calculate swap excess capacity from memsw limit */
1681                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1682
1683                         max += min(swap, (unsigned long)total_swap_pages);
1684                 }
1685         } else {
1686                 if (mem_cgroup_swappiness(memcg))
1687                         max += min(READ_ONCE(memcg->swap.max),
1688                                    (unsigned long)total_swap_pages);
1689         }
1690         return max;
1691 }
1692
1693 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1694 {
1695         return page_counter_read(&memcg->memory);
1696 }
1697
1698 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1699                                      int order)
1700 {
1701         struct oom_control oc = {
1702                 .zonelist = NULL,
1703                 .nodemask = NULL,
1704                 .memcg = memcg,
1705                 .gfp_mask = gfp_mask,
1706                 .order = order,
1707         };
1708         bool ret = true;
1709
1710         if (mutex_lock_killable(&oom_lock))
1711                 return true;
1712
1713         if (mem_cgroup_margin(memcg) >= (1 << order))
1714                 goto unlock;
1715
1716         /*
1717          * A few threads which were not waiting at mutex_lock_killable() can
1718          * fail to bail out. Therefore, check again after holding oom_lock.
1719          */
1720         ret = task_is_dying() || out_of_memory(&oc);
1721
1722 unlock:
1723         mutex_unlock(&oom_lock);
1724         return ret;
1725 }
1726
1727 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728                                    pg_data_t *pgdat,
1729                                    gfp_t gfp_mask,
1730                                    unsigned long *total_scanned)
1731 {
1732         struct mem_cgroup *victim = NULL;
1733         int total = 0;
1734         int loop = 0;
1735         unsigned long excess;
1736         unsigned long nr_scanned;
1737         struct mem_cgroup_reclaim_cookie reclaim = {
1738                 .pgdat = pgdat,
1739         };
1740
1741         excess = soft_limit_excess(root_memcg);
1742
1743         while (1) {
1744                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1745                 if (!victim) {
1746                         loop++;
1747                         if (loop >= 2) {
1748                                 /*
1749                                  * If we have not been able to reclaim
1750                                  * anything, it might because there are
1751                                  * no reclaimable pages under this hierarchy
1752                                  */
1753                                 if (!total)
1754                                         break;
1755                                 /*
1756                                  * We want to do more targeted reclaim.
1757                                  * excess >> 2 is not to excessive so as to
1758                                  * reclaim too much, nor too less that we keep
1759                                  * coming back to reclaim from this cgroup
1760                                  */
1761                                 if (total >= (excess >> 2) ||
1762                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1763                                         break;
1764                         }
1765                         continue;
1766                 }
1767                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1768                                         pgdat, &nr_scanned);
1769                 *total_scanned += nr_scanned;
1770                 if (!soft_limit_excess(root_memcg))
1771                         break;
1772         }
1773         mem_cgroup_iter_break(root_memcg, victim);
1774         return total;
1775 }
1776
1777 #ifdef CONFIG_LOCKDEP
1778 static struct lockdep_map memcg_oom_lock_dep_map = {
1779         .name = "memcg_oom_lock",
1780 };
1781 #endif
1782
1783 static DEFINE_SPINLOCK(memcg_oom_lock);
1784
1785 /*
1786  * Check OOM-Killer is already running under our hierarchy.
1787  * If someone is running, return false.
1788  */
1789 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1790 {
1791         struct mem_cgroup *iter, *failed = NULL;
1792
1793         spin_lock(&memcg_oom_lock);
1794
1795         for_each_mem_cgroup_tree(iter, memcg) {
1796                 if (iter->oom_lock) {
1797                         /*
1798                          * this subtree of our hierarchy is already locked
1799                          * so we cannot give a lock.
1800                          */
1801                         failed = iter;
1802                         mem_cgroup_iter_break(memcg, iter);
1803                         break;
1804                 } else
1805                         iter->oom_lock = true;
1806         }
1807
1808         if (failed) {
1809                 /*
1810                  * OK, we failed to lock the whole subtree so we have
1811                  * to clean up what we set up to the failing subtree
1812                  */
1813                 for_each_mem_cgroup_tree(iter, memcg) {
1814                         if (iter == failed) {
1815                                 mem_cgroup_iter_break(memcg, iter);
1816                                 break;
1817                         }
1818                         iter->oom_lock = false;
1819                 }
1820         } else
1821                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1822
1823         spin_unlock(&memcg_oom_lock);
1824
1825         return !failed;
1826 }
1827
1828 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1829 {
1830         struct mem_cgroup *iter;
1831
1832         spin_lock(&memcg_oom_lock);
1833         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1834         for_each_mem_cgroup_tree(iter, memcg)
1835                 iter->oom_lock = false;
1836         spin_unlock(&memcg_oom_lock);
1837 }
1838
1839 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1840 {
1841         struct mem_cgroup *iter;
1842
1843         spin_lock(&memcg_oom_lock);
1844         for_each_mem_cgroup_tree(iter, memcg)
1845                 iter->under_oom++;
1846         spin_unlock(&memcg_oom_lock);
1847 }
1848
1849 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1850 {
1851         struct mem_cgroup *iter;
1852
1853         /*
1854          * Be careful about under_oom underflows because a child memcg
1855          * could have been added after mem_cgroup_mark_under_oom.
1856          */
1857         spin_lock(&memcg_oom_lock);
1858         for_each_mem_cgroup_tree(iter, memcg)
1859                 if (iter->under_oom > 0)
1860                         iter->under_oom--;
1861         spin_unlock(&memcg_oom_lock);
1862 }
1863
1864 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1865
1866 struct oom_wait_info {
1867         struct mem_cgroup *memcg;
1868         wait_queue_entry_t      wait;
1869 };
1870
1871 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1872         unsigned mode, int sync, void *arg)
1873 {
1874         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1875         struct mem_cgroup *oom_wait_memcg;
1876         struct oom_wait_info *oom_wait_info;
1877
1878         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1879         oom_wait_memcg = oom_wait_info->memcg;
1880
1881         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1882             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1883                 return 0;
1884         return autoremove_wake_function(wait, mode, sync, arg);
1885 }
1886
1887 static void memcg_oom_recover(struct mem_cgroup *memcg)
1888 {
1889         /*
1890          * For the following lockless ->under_oom test, the only required
1891          * guarantee is that it must see the state asserted by an OOM when
1892          * this function is called as a result of userland actions
1893          * triggered by the notification of the OOM.  This is trivially
1894          * achieved by invoking mem_cgroup_mark_under_oom() before
1895          * triggering notification.
1896          */
1897         if (memcg && memcg->under_oom)
1898                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1899 }
1900
1901 /*
1902  * Returns true if successfully killed one or more processes. Though in some
1903  * corner cases it can return true even without killing any process.
1904  */
1905 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1906 {
1907         bool locked, ret;
1908
1909         if (order > PAGE_ALLOC_COSTLY_ORDER)
1910                 return false;
1911
1912         memcg_memory_event(memcg, MEMCG_OOM);
1913
1914         /*
1915          * We are in the middle of the charge context here, so we
1916          * don't want to block when potentially sitting on a callstack
1917          * that holds all kinds of filesystem and mm locks.
1918          *
1919          * cgroup1 allows disabling the OOM killer and waiting for outside
1920          * handling until the charge can succeed; remember the context and put
1921          * the task to sleep at the end of the page fault when all locks are
1922          * released.
1923          *
1924          * On the other hand, in-kernel OOM killer allows for an async victim
1925          * memory reclaim (oom_reaper) and that means that we are not solely
1926          * relying on the oom victim to make a forward progress and we can
1927          * invoke the oom killer here.
1928          *
1929          * Please note that mem_cgroup_out_of_memory might fail to find a
1930          * victim and then we have to bail out from the charge path.
1931          */
1932         if (memcg->oom_kill_disable) {
1933                 if (current->in_user_fault) {
1934                         css_get(&memcg->css);
1935                         current->memcg_in_oom = memcg;
1936                         current->memcg_oom_gfp_mask = mask;
1937                         current->memcg_oom_order = order;
1938                 }
1939                 return false;
1940         }
1941
1942         mem_cgroup_mark_under_oom(memcg);
1943
1944         locked = mem_cgroup_oom_trylock(memcg);
1945
1946         if (locked)
1947                 mem_cgroup_oom_notify(memcg);
1948
1949         mem_cgroup_unmark_under_oom(memcg);
1950         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1951
1952         if (locked)
1953                 mem_cgroup_oom_unlock(memcg);
1954
1955         return ret;
1956 }
1957
1958 /**
1959  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1960  * @handle: actually kill/wait or just clean up the OOM state
1961  *
1962  * This has to be called at the end of a page fault if the memcg OOM
1963  * handler was enabled.
1964  *
1965  * Memcg supports userspace OOM handling where failed allocations must
1966  * sleep on a waitqueue until the userspace task resolves the
1967  * situation.  Sleeping directly in the charge context with all kinds
1968  * of locks held is not a good idea, instead we remember an OOM state
1969  * in the task and mem_cgroup_oom_synchronize() has to be called at
1970  * the end of the page fault to complete the OOM handling.
1971  *
1972  * Returns %true if an ongoing memcg OOM situation was detected and
1973  * completed, %false otherwise.
1974  */
1975 bool mem_cgroup_oom_synchronize(bool handle)
1976 {
1977         struct mem_cgroup *memcg = current->memcg_in_oom;
1978         struct oom_wait_info owait;
1979         bool locked;
1980
1981         /* OOM is global, do not handle */
1982         if (!memcg)
1983                 return false;
1984
1985         if (!handle)
1986                 goto cleanup;
1987
1988         owait.memcg = memcg;
1989         owait.wait.flags = 0;
1990         owait.wait.func = memcg_oom_wake_function;
1991         owait.wait.private = current;
1992         INIT_LIST_HEAD(&owait.wait.entry);
1993
1994         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1995         mem_cgroup_mark_under_oom(memcg);
1996
1997         locked = mem_cgroup_oom_trylock(memcg);
1998
1999         if (locked)
2000                 mem_cgroup_oom_notify(memcg);
2001
2002         if (locked && !memcg->oom_kill_disable) {
2003                 mem_cgroup_unmark_under_oom(memcg);
2004                 finish_wait(&memcg_oom_waitq, &owait.wait);
2005                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2006                                          current->memcg_oom_order);
2007         } else {
2008                 schedule();
2009                 mem_cgroup_unmark_under_oom(memcg);
2010                 finish_wait(&memcg_oom_waitq, &owait.wait);
2011         }
2012
2013         if (locked) {
2014                 mem_cgroup_oom_unlock(memcg);
2015                 /*
2016                  * There is no guarantee that an OOM-lock contender
2017                  * sees the wakeups triggered by the OOM kill
2018                  * uncharges.  Wake any sleepers explicitly.
2019                  */
2020                 memcg_oom_recover(memcg);
2021         }
2022 cleanup:
2023         current->memcg_in_oom = NULL;
2024         css_put(&memcg->css);
2025         return true;
2026 }
2027
2028 /**
2029  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2030  * @victim: task to be killed by the OOM killer
2031  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2032  *
2033  * Returns a pointer to a memory cgroup, which has to be cleaned up
2034  * by killing all belonging OOM-killable tasks.
2035  *
2036  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2037  */
2038 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2039                                             struct mem_cgroup *oom_domain)
2040 {
2041         struct mem_cgroup *oom_group = NULL;
2042         struct mem_cgroup *memcg;
2043
2044         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2045                 return NULL;
2046
2047         if (!oom_domain)
2048                 oom_domain = root_mem_cgroup;
2049
2050         rcu_read_lock();
2051
2052         memcg = mem_cgroup_from_task(victim);
2053         if (mem_cgroup_is_root(memcg))
2054                 goto out;
2055
2056         /*
2057          * If the victim task has been asynchronously moved to a different
2058          * memory cgroup, we might end up killing tasks outside oom_domain.
2059          * In this case it's better to ignore memory.group.oom.
2060          */
2061         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2062                 goto out;
2063
2064         /*
2065          * Traverse the memory cgroup hierarchy from the victim task's
2066          * cgroup up to the OOMing cgroup (or root) to find the
2067          * highest-level memory cgroup with oom.group set.
2068          */
2069         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2070                 if (memcg->oom_group)
2071                         oom_group = memcg;
2072
2073                 if (memcg == oom_domain)
2074                         break;
2075         }
2076
2077         if (oom_group)
2078                 css_get(&oom_group->css);
2079 out:
2080         rcu_read_unlock();
2081
2082         return oom_group;
2083 }
2084
2085 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2086 {
2087         pr_info("Tasks in ");
2088         pr_cont_cgroup_path(memcg->css.cgroup);
2089         pr_cont(" are going to be killed due to memory.oom.group set\n");
2090 }
2091
2092 /**
2093  * folio_memcg_lock - Bind a folio to its memcg.
2094  * @folio: The folio.
2095  *
2096  * This function prevents unlocked LRU folios from being moved to
2097  * another cgroup.
2098  *
2099  * It ensures lifetime of the bound memcg.  The caller is responsible
2100  * for the lifetime of the folio.
2101  */
2102 void folio_memcg_lock(struct folio *folio)
2103 {
2104         struct mem_cgroup *memcg;
2105         unsigned long flags;
2106
2107         /*
2108          * The RCU lock is held throughout the transaction.  The fast
2109          * path can get away without acquiring the memcg->move_lock
2110          * because page moving starts with an RCU grace period.
2111          */
2112         rcu_read_lock();
2113
2114         if (mem_cgroup_disabled())
2115                 return;
2116 again:
2117         memcg = folio_memcg(folio);
2118         if (unlikely(!memcg))
2119                 return;
2120
2121 #ifdef CONFIG_PROVE_LOCKING
2122         local_irq_save(flags);
2123         might_lock(&memcg->move_lock);
2124         local_irq_restore(flags);
2125 #endif
2126
2127         if (atomic_read(&memcg->moving_account) <= 0)
2128                 return;
2129
2130         spin_lock_irqsave(&memcg->move_lock, flags);
2131         if (memcg != folio_memcg(folio)) {
2132                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2133                 goto again;
2134         }
2135
2136         /*
2137          * When charge migration first begins, we can have multiple
2138          * critical sections holding the fast-path RCU lock and one
2139          * holding the slowpath move_lock. Track the task who has the
2140          * move_lock for unlock_page_memcg().
2141          */
2142         memcg->move_lock_task = current;
2143         memcg->move_lock_flags = flags;
2144 }
2145
2146 void lock_page_memcg(struct page *page)
2147 {
2148         folio_memcg_lock(page_folio(page));
2149 }
2150
2151 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2152 {
2153         if (memcg && memcg->move_lock_task == current) {
2154                 unsigned long flags = memcg->move_lock_flags;
2155
2156                 memcg->move_lock_task = NULL;
2157                 memcg->move_lock_flags = 0;
2158
2159                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2160         }
2161
2162         rcu_read_unlock();
2163 }
2164
2165 /**
2166  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2167  * @folio: The folio.
2168  *
2169  * This releases the binding created by folio_memcg_lock().  This does
2170  * not change the accounting of this folio to its memcg, but it does
2171  * permit others to change it.
2172  */
2173 void folio_memcg_unlock(struct folio *folio)
2174 {
2175         __folio_memcg_unlock(folio_memcg(folio));
2176 }
2177
2178 void unlock_page_memcg(struct page *page)
2179 {
2180         folio_memcg_unlock(page_folio(page));
2181 }
2182
2183 struct memcg_stock_pcp {
2184         local_lock_t stock_lock;
2185         struct mem_cgroup *cached; /* this never be root cgroup */
2186         unsigned int nr_pages;
2187
2188 #ifdef CONFIG_MEMCG_KMEM
2189         struct obj_cgroup *cached_objcg;
2190         struct pglist_data *cached_pgdat;
2191         unsigned int nr_bytes;
2192         int nr_slab_reclaimable_b;
2193         int nr_slab_unreclaimable_b;
2194 #endif
2195
2196         struct work_struct work;
2197         unsigned long flags;
2198 #define FLUSHING_CACHED_CHARGE  0
2199 };
2200 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2201         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2202 };
2203 static DEFINE_MUTEX(percpu_charge_mutex);
2204
2205 #ifdef CONFIG_MEMCG_KMEM
2206 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2208                                      struct mem_cgroup *root_memcg);
2209 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2210
2211 #else
2212 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2213 {
2214         return NULL;
2215 }
2216 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2217                                      struct mem_cgroup *root_memcg)
2218 {
2219         return false;
2220 }
2221 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2222 {
2223 }
2224 #endif
2225
2226 /**
2227  * consume_stock: Try to consume stocked charge on this cpu.
2228  * @memcg: memcg to consume from.
2229  * @nr_pages: how many pages to charge.
2230  *
2231  * The charges will only happen if @memcg matches the current cpu's memcg
2232  * stock, and at least @nr_pages are available in that stock.  Failure to
2233  * service an allocation will refill the stock.
2234  *
2235  * returns true if successful, false otherwise.
2236  */
2237 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 {
2239         struct memcg_stock_pcp *stock;
2240         unsigned long flags;
2241         bool ret = false;
2242
2243         if (nr_pages > MEMCG_CHARGE_BATCH)
2244                 return ret;
2245
2246         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2247
2248         stock = this_cpu_ptr(&memcg_stock);
2249         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2250                 stock->nr_pages -= nr_pages;
2251                 ret = true;
2252         }
2253
2254         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2255
2256         return ret;
2257 }
2258
2259 /*
2260  * Returns stocks cached in percpu and reset cached information.
2261  */
2262 static void drain_stock(struct memcg_stock_pcp *stock)
2263 {
2264         struct mem_cgroup *old = stock->cached;
2265
2266         if (!old)
2267                 return;
2268
2269         if (stock->nr_pages) {
2270                 page_counter_uncharge(&old->memory, stock->nr_pages);
2271                 if (do_memsw_account())
2272                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2273                 stock->nr_pages = 0;
2274         }
2275
2276         css_put(&old->css);
2277         stock->cached = NULL;
2278 }
2279
2280 static void drain_local_stock(struct work_struct *dummy)
2281 {
2282         struct memcg_stock_pcp *stock;
2283         struct obj_cgroup *old = NULL;
2284         unsigned long flags;
2285
2286         /*
2287          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2288          * drain_stock races is that we always operate on local CPU stock
2289          * here with IRQ disabled
2290          */
2291         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2292
2293         stock = this_cpu_ptr(&memcg_stock);
2294         old = drain_obj_stock(stock);
2295         drain_stock(stock);
2296         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2297
2298         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2299         if (old)
2300                 obj_cgroup_put(old);
2301 }
2302
2303 /*
2304  * Cache charges(val) to local per_cpu area.
2305  * This will be consumed by consume_stock() function, later.
2306  */
2307 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309         struct memcg_stock_pcp *stock;
2310
2311         stock = this_cpu_ptr(&memcg_stock);
2312         if (stock->cached != memcg) { /* reset if necessary */
2313                 drain_stock(stock);
2314                 css_get(&memcg->css);
2315                 stock->cached = memcg;
2316         }
2317         stock->nr_pages += nr_pages;
2318
2319         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2320                 drain_stock(stock);
2321 }
2322
2323 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2324 {
2325         unsigned long flags;
2326
2327         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2328         __refill_stock(memcg, nr_pages);
2329         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2330 }
2331
2332 /*
2333  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2334  * of the hierarchy under it.
2335  */
2336 static void drain_all_stock(struct mem_cgroup *root_memcg)
2337 {
2338         int cpu, curcpu;
2339
2340         /* If someone's already draining, avoid adding running more workers. */
2341         if (!mutex_trylock(&percpu_charge_mutex))
2342                 return;
2343         /*
2344          * Notify other cpus that system-wide "drain" is running
2345          * We do not care about races with the cpu hotplug because cpu down
2346          * as well as workers from this path always operate on the local
2347          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2348          */
2349         migrate_disable();
2350         curcpu = smp_processor_id();
2351         for_each_online_cpu(cpu) {
2352                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2353                 struct mem_cgroup *memcg;
2354                 bool flush = false;
2355
2356                 rcu_read_lock();
2357                 memcg = stock->cached;
2358                 if (memcg && stock->nr_pages &&
2359                     mem_cgroup_is_descendant(memcg, root_memcg))
2360                         flush = true;
2361                 else if (obj_stock_flush_required(stock, root_memcg))
2362                         flush = true;
2363                 rcu_read_unlock();
2364
2365                 if (flush &&
2366                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2367                         if (cpu == curcpu)
2368                                 drain_local_stock(&stock->work);
2369                         else
2370                                 schedule_work_on(cpu, &stock->work);
2371                 }
2372         }
2373         migrate_enable();
2374         mutex_unlock(&percpu_charge_mutex);
2375 }
2376
2377 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2378 {
2379         struct memcg_stock_pcp *stock;
2380
2381         stock = &per_cpu(memcg_stock, cpu);
2382         drain_stock(stock);
2383
2384         return 0;
2385 }
2386
2387 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2388                                   unsigned int nr_pages,
2389                                   gfp_t gfp_mask)
2390 {
2391         unsigned long nr_reclaimed = 0;
2392
2393         do {
2394                 unsigned long pflags;
2395
2396                 if (page_counter_read(&memcg->memory) <=
2397                     READ_ONCE(memcg->memory.high))
2398                         continue;
2399
2400                 memcg_memory_event(memcg, MEMCG_HIGH);
2401
2402                 psi_memstall_enter(&pflags);
2403                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2404                                                         gfp_mask,
2405                                                         MEMCG_RECLAIM_MAY_SWAP);
2406                 psi_memstall_leave(&pflags);
2407         } while ((memcg = parent_mem_cgroup(memcg)) &&
2408                  !mem_cgroup_is_root(memcg));
2409
2410         return nr_reclaimed;
2411 }
2412
2413 static void high_work_func(struct work_struct *work)
2414 {
2415         struct mem_cgroup *memcg;
2416
2417         memcg = container_of(work, struct mem_cgroup, high_work);
2418         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2419 }
2420
2421 /*
2422  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2423  * enough to still cause a significant slowdown in most cases, while still
2424  * allowing diagnostics and tracing to proceed without becoming stuck.
2425  */
2426 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2427
2428 /*
2429  * When calculating the delay, we use these either side of the exponentiation to
2430  * maintain precision and scale to a reasonable number of jiffies (see the table
2431  * below.
2432  *
2433  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2434  *   overage ratio to a delay.
2435  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2436  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2437  *   to produce a reasonable delay curve.
2438  *
2439  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2440  * reasonable delay curve compared to precision-adjusted overage, not
2441  * penalising heavily at first, but still making sure that growth beyond the
2442  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2443  * example, with a high of 100 megabytes:
2444  *
2445  *  +-------+------------------------+
2446  *  | usage | time to allocate in ms |
2447  *  +-------+------------------------+
2448  *  | 100M  |                      0 |
2449  *  | 101M  |                      6 |
2450  *  | 102M  |                     25 |
2451  *  | 103M  |                     57 |
2452  *  | 104M  |                    102 |
2453  *  | 105M  |                    159 |
2454  *  | 106M  |                    230 |
2455  *  | 107M  |                    313 |
2456  *  | 108M  |                    409 |
2457  *  | 109M  |                    518 |
2458  *  | 110M  |                    639 |
2459  *  | 111M  |                    774 |
2460  *  | 112M  |                    921 |
2461  *  | 113M  |                   1081 |
2462  *  | 114M  |                   1254 |
2463  *  | 115M  |                   1439 |
2464  *  | 116M  |                   1638 |
2465  *  | 117M  |                   1849 |
2466  *  | 118M  |                   2000 |
2467  *  | 119M  |                   2000 |
2468  *  | 120M  |                   2000 |
2469  *  +-------+------------------------+
2470  */
2471  #define MEMCG_DELAY_PRECISION_SHIFT 20
2472  #define MEMCG_DELAY_SCALING_SHIFT 14
2473
2474 static u64 calculate_overage(unsigned long usage, unsigned long high)
2475 {
2476         u64 overage;
2477
2478         if (usage <= high)
2479                 return 0;
2480
2481         /*
2482          * Prevent division by 0 in overage calculation by acting as if
2483          * it was a threshold of 1 page
2484          */
2485         high = max(high, 1UL);
2486
2487         overage = usage - high;
2488         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2489         return div64_u64(overage, high);
2490 }
2491
2492 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494         u64 overage, max_overage = 0;
2495
2496         do {
2497                 overage = calculate_overage(page_counter_read(&memcg->memory),
2498                                             READ_ONCE(memcg->memory.high));
2499                 max_overage = max(overage, max_overage);
2500         } while ((memcg = parent_mem_cgroup(memcg)) &&
2501                  !mem_cgroup_is_root(memcg));
2502
2503         return max_overage;
2504 }
2505
2506 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2507 {
2508         u64 overage, max_overage = 0;
2509
2510         do {
2511                 overage = calculate_overage(page_counter_read(&memcg->swap),
2512                                             READ_ONCE(memcg->swap.high));
2513                 if (overage)
2514                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2515                 max_overage = max(overage, max_overage);
2516         } while ((memcg = parent_mem_cgroup(memcg)) &&
2517                  !mem_cgroup_is_root(memcg));
2518
2519         return max_overage;
2520 }
2521
2522 /*
2523  * Get the number of jiffies that we should penalise a mischievous cgroup which
2524  * is exceeding its memory.high by checking both it and its ancestors.
2525  */
2526 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2527                                           unsigned int nr_pages,
2528                                           u64 max_overage)
2529 {
2530         unsigned long penalty_jiffies;
2531
2532         if (!max_overage)
2533                 return 0;
2534
2535         /*
2536          * We use overage compared to memory.high to calculate the number of
2537          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2538          * fairly lenient on small overages, and increasingly harsh when the
2539          * memcg in question makes it clear that it has no intention of stopping
2540          * its crazy behaviour, so we exponentially increase the delay based on
2541          * overage amount.
2542          */
2543         penalty_jiffies = max_overage * max_overage * HZ;
2544         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2545         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2546
2547         /*
2548          * Factor in the task's own contribution to the overage, such that four
2549          * N-sized allocations are throttled approximately the same as one
2550          * 4N-sized allocation.
2551          *
2552          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2553          * larger the current charge patch is than that.
2554          */
2555         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2556 }
2557
2558 /*
2559  * Scheduled by try_charge() to be executed from the userland return path
2560  * and reclaims memory over the high limit.
2561  */
2562 void mem_cgroup_handle_over_high(void)
2563 {
2564         unsigned long penalty_jiffies;
2565         unsigned long pflags;
2566         unsigned long nr_reclaimed;
2567         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2568         int nr_retries = MAX_RECLAIM_RETRIES;
2569         struct mem_cgroup *memcg;
2570         bool in_retry = false;
2571
2572         if (likely(!nr_pages))
2573                 return;
2574
2575         memcg = get_mem_cgroup_from_mm(current->mm);
2576         current->memcg_nr_pages_over_high = 0;
2577
2578 retry_reclaim:
2579         /*
2580          * The allocating task should reclaim at least the batch size, but for
2581          * subsequent retries we only want to do what's necessary to prevent oom
2582          * or breaching resource isolation.
2583          *
2584          * This is distinct from memory.max or page allocator behaviour because
2585          * memory.high is currently batched, whereas memory.max and the page
2586          * allocator run every time an allocation is made.
2587          */
2588         nr_reclaimed = reclaim_high(memcg,
2589                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2590                                     GFP_KERNEL);
2591
2592         /*
2593          * memory.high is breached and reclaim is unable to keep up. Throttle
2594          * allocators proactively to slow down excessive growth.
2595          */
2596         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2597                                                mem_find_max_overage(memcg));
2598
2599         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2600                                                 swap_find_max_overage(memcg));
2601
2602         /*
2603          * Clamp the max delay per usermode return so as to still keep the
2604          * application moving forwards and also permit diagnostics, albeit
2605          * extremely slowly.
2606          */
2607         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2608
2609         /*
2610          * Don't sleep if the amount of jiffies this memcg owes us is so low
2611          * that it's not even worth doing, in an attempt to be nice to those who
2612          * go only a small amount over their memory.high value and maybe haven't
2613          * been aggressively reclaimed enough yet.
2614          */
2615         if (penalty_jiffies <= HZ / 100)
2616                 goto out;
2617
2618         /*
2619          * If reclaim is making forward progress but we're still over
2620          * memory.high, we want to encourage that rather than doing allocator
2621          * throttling.
2622          */
2623         if (nr_reclaimed || nr_retries--) {
2624                 in_retry = true;
2625                 goto retry_reclaim;
2626         }
2627
2628         /*
2629          * If we exit early, we're guaranteed to die (since
2630          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2631          * need to account for any ill-begotten jiffies to pay them off later.
2632          */
2633         psi_memstall_enter(&pflags);
2634         schedule_timeout_killable(penalty_jiffies);
2635         psi_memstall_leave(&pflags);
2636
2637 out:
2638         css_put(&memcg->css);
2639 }
2640
2641 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2642                         unsigned int nr_pages)
2643 {
2644         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2645         int nr_retries = MAX_RECLAIM_RETRIES;
2646         struct mem_cgroup *mem_over_limit;
2647         struct page_counter *counter;
2648         unsigned long nr_reclaimed;
2649         bool passed_oom = false;
2650         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2651         bool drained = false;
2652         bool raised_max_event = false;
2653         unsigned long pflags;
2654
2655 retry:
2656         if (consume_stock(memcg, nr_pages))
2657                 return 0;
2658
2659         if (!do_memsw_account() ||
2660             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2661                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2662                         goto done_restock;
2663                 if (do_memsw_account())
2664                         page_counter_uncharge(&memcg->memsw, batch);
2665                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2666         } else {
2667                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2668                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2669         }
2670
2671         if (batch > nr_pages) {
2672                 batch = nr_pages;
2673                 goto retry;
2674         }
2675
2676         /*
2677          * Prevent unbounded recursion when reclaim operations need to
2678          * allocate memory. This might exceed the limits temporarily,
2679          * but we prefer facilitating memory reclaim and getting back
2680          * under the limit over triggering OOM kills in these cases.
2681          */
2682         if (unlikely(current->flags & PF_MEMALLOC))
2683                 goto force;
2684
2685         if (unlikely(task_in_memcg_oom(current)))
2686                 goto nomem;
2687
2688         if (!gfpflags_allow_blocking(gfp_mask))
2689                 goto nomem;
2690
2691         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2692         raised_max_event = true;
2693
2694         psi_memstall_enter(&pflags);
2695         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696                                                     gfp_mask, reclaim_options);
2697         psi_memstall_leave(&pflags);
2698
2699         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700                 goto retry;
2701
2702         if (!drained) {
2703                 drain_all_stock(mem_over_limit);
2704                 drained = true;
2705                 goto retry;
2706         }
2707
2708         if (gfp_mask & __GFP_NORETRY)
2709                 goto nomem;
2710         /*
2711          * Even though the limit is exceeded at this point, reclaim
2712          * may have been able to free some pages.  Retry the charge
2713          * before killing the task.
2714          *
2715          * Only for regular pages, though: huge pages are rather
2716          * unlikely to succeed so close to the limit, and we fall back
2717          * to regular pages anyway in case of failure.
2718          */
2719         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720                 goto retry;
2721         /*
2722          * At task move, charge accounts can be doubly counted. So, it's
2723          * better to wait until the end of task_move if something is going on.
2724          */
2725         if (mem_cgroup_wait_acct_move(mem_over_limit))
2726                 goto retry;
2727
2728         if (nr_retries--)
2729                 goto retry;
2730
2731         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732                 goto nomem;
2733
2734         /* Avoid endless loop for tasks bypassed by the oom killer */
2735         if (passed_oom && task_is_dying())
2736                 goto nomem;
2737
2738         /*
2739          * keep retrying as long as the memcg oom killer is able to make
2740          * a forward progress or bypass the charge if the oom killer
2741          * couldn't make any progress.
2742          */
2743         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2744                            get_order(nr_pages * PAGE_SIZE))) {
2745                 passed_oom = true;
2746                 nr_retries = MAX_RECLAIM_RETRIES;
2747                 goto retry;
2748         }
2749 nomem:
2750         /*
2751          * Memcg doesn't have a dedicated reserve for atomic
2752          * allocations. But like the global atomic pool, we need to
2753          * put the burden of reclaim on regular allocation requests
2754          * and let these go through as privileged allocations.
2755          */
2756         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2757                 return -ENOMEM;
2758 force:
2759         /*
2760          * If the allocation has to be enforced, don't forget to raise
2761          * a MEMCG_MAX event.
2762          */
2763         if (!raised_max_event)
2764                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2765
2766         /*
2767          * The allocation either can't fail or will lead to more memory
2768          * being freed very soon.  Allow memory usage go over the limit
2769          * temporarily by force charging it.
2770          */
2771         page_counter_charge(&memcg->memory, nr_pages);
2772         if (do_memsw_account())
2773                 page_counter_charge(&memcg->memsw, nr_pages);
2774
2775         return 0;
2776
2777 done_restock:
2778         if (batch > nr_pages)
2779                 refill_stock(memcg, batch - nr_pages);
2780
2781         /*
2782          * If the hierarchy is above the normal consumption range, schedule
2783          * reclaim on returning to userland.  We can perform reclaim here
2784          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2785          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2786          * not recorded as it most likely matches current's and won't
2787          * change in the meantime.  As high limit is checked again before
2788          * reclaim, the cost of mismatch is negligible.
2789          */
2790         do {
2791                 bool mem_high, swap_high;
2792
2793                 mem_high = page_counter_read(&memcg->memory) >
2794                         READ_ONCE(memcg->memory.high);
2795                 swap_high = page_counter_read(&memcg->swap) >
2796                         READ_ONCE(memcg->swap.high);
2797
2798                 /* Don't bother a random interrupted task */
2799                 if (!in_task()) {
2800                         if (mem_high) {
2801                                 schedule_work(&memcg->high_work);
2802                                 break;
2803                         }
2804                         continue;
2805                 }
2806
2807                 if (mem_high || swap_high) {
2808                         /*
2809                          * The allocating tasks in this cgroup will need to do
2810                          * reclaim or be throttled to prevent further growth
2811                          * of the memory or swap footprints.
2812                          *
2813                          * Target some best-effort fairness between the tasks,
2814                          * and distribute reclaim work and delay penalties
2815                          * based on how much each task is actually allocating.
2816                          */
2817                         current->memcg_nr_pages_over_high += batch;
2818                         set_notify_resume(current);
2819                         break;
2820                 }
2821         } while ((memcg = parent_mem_cgroup(memcg)));
2822
2823         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2824             !(current->flags & PF_MEMALLOC) &&
2825             gfpflags_allow_blocking(gfp_mask)) {
2826                 mem_cgroup_handle_over_high();
2827         }
2828         return 0;
2829 }
2830
2831 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2832                              unsigned int nr_pages)
2833 {
2834         if (mem_cgroup_is_root(memcg))
2835                 return 0;
2836
2837         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2838 }
2839
2840 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2841 {
2842         if (mem_cgroup_is_root(memcg))
2843                 return;
2844
2845         page_counter_uncharge(&memcg->memory, nr_pages);
2846         if (do_memsw_account())
2847                 page_counter_uncharge(&memcg->memsw, nr_pages);
2848 }
2849
2850 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2851 {
2852         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2853         /*
2854          * Any of the following ensures page's memcg stability:
2855          *
2856          * - the page lock
2857          * - LRU isolation
2858          * - lock_page_memcg()
2859          * - exclusive reference
2860          * - mem_cgroup_trylock_pages()
2861          */
2862         folio->memcg_data = (unsigned long)memcg;
2863 }
2864
2865 #ifdef CONFIG_MEMCG_KMEM
2866 /*
2867  * The allocated objcg pointers array is not accounted directly.
2868  * Moreover, it should not come from DMA buffer and is not readily
2869  * reclaimable. So those GFP bits should be masked off.
2870  */
2871 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2872
2873 /*
2874  * mod_objcg_mlstate() may be called with irq enabled, so
2875  * mod_memcg_lruvec_state() should be used.
2876  */
2877 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2878                                      struct pglist_data *pgdat,
2879                                      enum node_stat_item idx, int nr)
2880 {
2881         struct mem_cgroup *memcg;
2882         struct lruvec *lruvec;
2883
2884         rcu_read_lock();
2885         memcg = obj_cgroup_memcg(objcg);
2886         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2887         mod_memcg_lruvec_state(lruvec, idx, nr);
2888         rcu_read_unlock();
2889 }
2890
2891 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2892                                  gfp_t gfp, bool new_slab)
2893 {
2894         unsigned int objects = objs_per_slab(s, slab);
2895         unsigned long memcg_data;
2896         void *vec;
2897
2898         gfp &= ~OBJCGS_CLEAR_MASK;
2899         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900                            slab_nid(slab));
2901         if (!vec)
2902                 return -ENOMEM;
2903
2904         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905         if (new_slab) {
2906                 /*
2907                  * If the slab is brand new and nobody can yet access its
2908                  * memcg_data, no synchronization is required and memcg_data can
2909                  * be simply assigned.
2910                  */
2911                 slab->memcg_data = memcg_data;
2912         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2913                 /*
2914                  * If the slab is already in use, somebody can allocate and
2915                  * assign obj_cgroups in parallel. In this case the existing
2916                  * objcg vector should be reused.
2917                  */
2918                 kfree(vec);
2919                 return 0;
2920         }
2921
2922         kmemleak_not_leak(vec);
2923         return 0;
2924 }
2925
2926 static __always_inline
2927 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2928 {
2929         /*
2930          * Slab objects are accounted individually, not per-page.
2931          * Memcg membership data for each individual object is saved in
2932          * slab->memcg_data.
2933          */
2934         if (folio_test_slab(folio)) {
2935                 struct obj_cgroup **objcgs;
2936                 struct slab *slab;
2937                 unsigned int off;
2938
2939                 slab = folio_slab(folio);
2940                 objcgs = slab_objcgs(slab);
2941                 if (!objcgs)
2942                         return NULL;
2943
2944                 off = obj_to_index(slab->slab_cache, slab, p);
2945                 if (objcgs[off])
2946                         return obj_cgroup_memcg(objcgs[off]);
2947
2948                 return NULL;
2949         }
2950
2951         /*
2952          * folio_memcg_check() is used here, because in theory we can encounter
2953          * a folio where the slab flag has been cleared already, but
2954          * slab->memcg_data has not been freed yet
2955          * folio_memcg_check() will guarantee that a proper memory
2956          * cgroup pointer or NULL will be returned.
2957          */
2958         return folio_memcg_check(folio);
2959 }
2960
2961 /*
2962  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2963  *
2964  * A passed kernel object can be a slab object, vmalloc object or a generic
2965  * kernel page, so different mechanisms for getting the memory cgroup pointer
2966  * should be used.
2967  *
2968  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2969  * can not know for sure how the kernel object is implemented.
2970  * mem_cgroup_from_obj() can be safely used in such cases.
2971  *
2972  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2973  * cgroup_mutex, etc.
2974  */
2975 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2976 {
2977         struct folio *folio;
2978
2979         if (mem_cgroup_disabled())
2980                 return NULL;
2981
2982         if (unlikely(is_vmalloc_addr(p)))
2983                 folio = page_folio(vmalloc_to_page(p));
2984         else
2985                 folio = virt_to_folio(p);
2986
2987         return mem_cgroup_from_obj_folio(folio, p);
2988 }
2989
2990 /*
2991  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2993  * allocated using vmalloc().
2994  *
2995  * A passed kernel object must be a slab object or a generic kernel page.
2996  *
2997  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998  * cgroup_mutex, etc.
2999  */
3000 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3001 {
3002         if (mem_cgroup_disabled())
3003                 return NULL;
3004
3005         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3006 }
3007
3008 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3009 {
3010         struct obj_cgroup *objcg = NULL;
3011
3012         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3013                 objcg = rcu_dereference(memcg->objcg);
3014                 if (objcg && obj_cgroup_tryget(objcg))
3015                         break;
3016                 objcg = NULL;
3017         }
3018         return objcg;
3019 }
3020
3021 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3022 {
3023         struct obj_cgroup *objcg = NULL;
3024         struct mem_cgroup *memcg;
3025
3026         if (memcg_kmem_bypass())
3027                 return NULL;
3028
3029         rcu_read_lock();
3030         if (unlikely(active_memcg()))
3031                 memcg = active_memcg();
3032         else
3033                 memcg = mem_cgroup_from_task(current);
3034         objcg = __get_obj_cgroup_from_memcg(memcg);
3035         rcu_read_unlock();
3036         return objcg;
3037 }
3038
3039 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3040 {
3041         struct obj_cgroup *objcg;
3042
3043         if (!memcg_kmem_online())
3044                 return NULL;
3045
3046         if (PageMemcgKmem(page)) {
3047                 objcg = __folio_objcg(page_folio(page));
3048                 obj_cgroup_get(objcg);
3049         } else {
3050                 struct mem_cgroup *memcg;
3051
3052                 rcu_read_lock();
3053                 memcg = __folio_memcg(page_folio(page));
3054                 if (memcg)
3055                         objcg = __get_obj_cgroup_from_memcg(memcg);
3056                 else
3057                         objcg = NULL;
3058                 rcu_read_unlock();
3059         }
3060         return objcg;
3061 }
3062
3063 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3064 {
3065         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3066         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3067                 if (nr_pages > 0)
3068                         page_counter_charge(&memcg->kmem, nr_pages);
3069                 else
3070                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3071         }
3072 }
3073
3074
3075 /*
3076  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3077  * @objcg: object cgroup to uncharge
3078  * @nr_pages: number of pages to uncharge
3079  */
3080 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3081                                       unsigned int nr_pages)
3082 {
3083         struct mem_cgroup *memcg;
3084
3085         memcg = get_mem_cgroup_from_objcg(objcg);
3086
3087         memcg_account_kmem(memcg, -nr_pages);
3088         refill_stock(memcg, nr_pages);
3089
3090         css_put(&memcg->css);
3091 }
3092
3093 /*
3094  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3095  * @objcg: object cgroup to charge
3096  * @gfp: reclaim mode
3097  * @nr_pages: number of pages to charge
3098  *
3099  * Returns 0 on success, an error code on failure.
3100  */
3101 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3102                                    unsigned int nr_pages)
3103 {
3104         struct mem_cgroup *memcg;
3105         int ret;
3106
3107         memcg = get_mem_cgroup_from_objcg(objcg);
3108
3109         ret = try_charge_memcg(memcg, gfp, nr_pages);
3110         if (ret)
3111                 goto out;
3112
3113         memcg_account_kmem(memcg, nr_pages);
3114 out:
3115         css_put(&memcg->css);
3116
3117         return ret;
3118 }
3119
3120 /**
3121  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3122  * @page: page to charge
3123  * @gfp: reclaim mode
3124  * @order: allocation order
3125  *
3126  * Returns 0 on success, an error code on failure.
3127  */
3128 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3129 {
3130         struct obj_cgroup *objcg;
3131         int ret = 0;
3132
3133         objcg = get_obj_cgroup_from_current();
3134         if (objcg) {
3135                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3136                 if (!ret) {
3137                         page->memcg_data = (unsigned long)objcg |
3138                                 MEMCG_DATA_KMEM;
3139                         return 0;
3140                 }
3141                 obj_cgroup_put(objcg);
3142         }
3143         return ret;
3144 }
3145
3146 /**
3147  * __memcg_kmem_uncharge_page: uncharge a kmem page
3148  * @page: page to uncharge
3149  * @order: allocation order
3150  */
3151 void __memcg_kmem_uncharge_page(struct page *page, int order)
3152 {
3153         struct folio *folio = page_folio(page);
3154         struct obj_cgroup *objcg;
3155         unsigned int nr_pages = 1 << order;
3156
3157         if (!folio_memcg_kmem(folio))
3158                 return;
3159
3160         objcg = __folio_objcg(folio);
3161         obj_cgroup_uncharge_pages(objcg, nr_pages);
3162         folio->memcg_data = 0;
3163         obj_cgroup_put(objcg);
3164 }
3165
3166 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3167                      enum node_stat_item idx, int nr)
3168 {
3169         struct memcg_stock_pcp *stock;
3170         struct obj_cgroup *old = NULL;
3171         unsigned long flags;
3172         int *bytes;
3173
3174         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3175         stock = this_cpu_ptr(&memcg_stock);
3176
3177         /*
3178          * Save vmstat data in stock and skip vmstat array update unless
3179          * accumulating over a page of vmstat data or when pgdat or idx
3180          * changes.
3181          */
3182         if (stock->cached_objcg != objcg) {
3183                 old = drain_obj_stock(stock);
3184                 obj_cgroup_get(objcg);
3185                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187                 stock->cached_objcg = objcg;
3188                 stock->cached_pgdat = pgdat;
3189         } else if (stock->cached_pgdat != pgdat) {
3190                 /* Flush the existing cached vmstat data */
3191                 struct pglist_data *oldpg = stock->cached_pgdat;
3192
3193                 if (stock->nr_slab_reclaimable_b) {
3194                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3195                                           stock->nr_slab_reclaimable_b);
3196                         stock->nr_slab_reclaimable_b = 0;
3197                 }
3198                 if (stock->nr_slab_unreclaimable_b) {
3199                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3200                                           stock->nr_slab_unreclaimable_b);
3201                         stock->nr_slab_unreclaimable_b = 0;
3202                 }
3203                 stock->cached_pgdat = pgdat;
3204         }
3205
3206         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3207                                                : &stock->nr_slab_unreclaimable_b;
3208         /*
3209          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3210          * cached locally at least once before pushing it out.
3211          */
3212         if (!*bytes) {
3213                 *bytes = nr;
3214                 nr = 0;
3215         } else {
3216                 *bytes += nr;
3217                 if (abs(*bytes) > PAGE_SIZE) {
3218                         nr = *bytes;
3219                         *bytes = 0;
3220                 } else {
3221                         nr = 0;
3222                 }
3223         }
3224         if (nr)
3225                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3226
3227         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3228         if (old)
3229                 obj_cgroup_put(old);
3230 }
3231
3232 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3233 {
3234         struct memcg_stock_pcp *stock;
3235         unsigned long flags;
3236         bool ret = false;
3237
3238         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3239
3240         stock = this_cpu_ptr(&memcg_stock);
3241         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3242                 stock->nr_bytes -= nr_bytes;
3243                 ret = true;
3244         }
3245
3246         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3247
3248         return ret;
3249 }
3250
3251 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3252 {
3253         struct obj_cgroup *old = stock->cached_objcg;
3254
3255         if (!old)
3256                 return NULL;
3257
3258         if (stock->nr_bytes) {
3259                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3260                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3261
3262                 if (nr_pages) {
3263                         struct mem_cgroup *memcg;
3264
3265                         memcg = get_mem_cgroup_from_objcg(old);
3266
3267                         memcg_account_kmem(memcg, -nr_pages);
3268                         __refill_stock(memcg, nr_pages);
3269
3270                         css_put(&memcg->css);
3271                 }
3272
3273                 /*
3274                  * The leftover is flushed to the centralized per-memcg value.
3275                  * On the next attempt to refill obj stock it will be moved
3276                  * to a per-cpu stock (probably, on an other CPU), see
3277                  * refill_obj_stock().
3278                  *
3279                  * How often it's flushed is a trade-off between the memory
3280                  * limit enforcement accuracy and potential CPU contention,
3281                  * so it might be changed in the future.
3282                  */
3283                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3284                 stock->nr_bytes = 0;
3285         }
3286
3287         /*
3288          * Flush the vmstat data in current stock
3289          */
3290         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3291                 if (stock->nr_slab_reclaimable_b) {
3292                         mod_objcg_mlstate(old, stock->cached_pgdat,
3293                                           NR_SLAB_RECLAIMABLE_B,
3294                                           stock->nr_slab_reclaimable_b);
3295                         stock->nr_slab_reclaimable_b = 0;
3296                 }
3297                 if (stock->nr_slab_unreclaimable_b) {
3298                         mod_objcg_mlstate(old, stock->cached_pgdat,
3299                                           NR_SLAB_UNRECLAIMABLE_B,
3300                                           stock->nr_slab_unreclaimable_b);
3301                         stock->nr_slab_unreclaimable_b = 0;
3302                 }
3303                 stock->cached_pgdat = NULL;
3304         }
3305
3306         stock->cached_objcg = NULL;
3307         /*
3308          * The `old' objects needs to be released by the caller via
3309          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3310          */
3311         return old;
3312 }
3313
3314 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3315                                      struct mem_cgroup *root_memcg)
3316 {
3317         struct mem_cgroup *memcg;
3318
3319         if (stock->cached_objcg) {
3320                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3321                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3322                         return true;
3323         }
3324
3325         return false;
3326 }
3327
3328 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3329                              bool allow_uncharge)
3330 {
3331         struct memcg_stock_pcp *stock;
3332         struct obj_cgroup *old = NULL;
3333         unsigned long flags;
3334         unsigned int nr_pages = 0;
3335
3336         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3337
3338         stock = this_cpu_ptr(&memcg_stock);
3339         if (stock->cached_objcg != objcg) { /* reset if necessary */
3340                 old = drain_obj_stock(stock);
3341                 obj_cgroup_get(objcg);
3342                 stock->cached_objcg = objcg;
3343                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3344                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3345                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3346         }
3347         stock->nr_bytes += nr_bytes;
3348
3349         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3350                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3351                 stock->nr_bytes &= (PAGE_SIZE - 1);
3352         }
3353
3354         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3355         if (old)
3356                 obj_cgroup_put(old);
3357
3358         if (nr_pages)
3359                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3360 }
3361
3362 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3363 {
3364         unsigned int nr_pages, nr_bytes;
3365         int ret;
3366
3367         if (consume_obj_stock(objcg, size))
3368                 return 0;
3369
3370         /*
3371          * In theory, objcg->nr_charged_bytes can have enough
3372          * pre-charged bytes to satisfy the allocation. However,
3373          * flushing objcg->nr_charged_bytes requires two atomic
3374          * operations, and objcg->nr_charged_bytes can't be big.
3375          * The shared objcg->nr_charged_bytes can also become a
3376          * performance bottleneck if all tasks of the same memcg are
3377          * trying to update it. So it's better to ignore it and try
3378          * grab some new pages. The stock's nr_bytes will be flushed to
3379          * objcg->nr_charged_bytes later on when objcg changes.
3380          *
3381          * The stock's nr_bytes may contain enough pre-charged bytes
3382          * to allow one less page from being charged, but we can't rely
3383          * on the pre-charged bytes not being changed outside of
3384          * consume_obj_stock() or refill_obj_stock(). So ignore those
3385          * pre-charged bytes as well when charging pages. To avoid a
3386          * page uncharge right after a page charge, we set the
3387          * allow_uncharge flag to false when calling refill_obj_stock()
3388          * to temporarily allow the pre-charged bytes to exceed the page
3389          * size limit. The maximum reachable value of the pre-charged
3390          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3391          * race.
3392          */
3393         nr_pages = size >> PAGE_SHIFT;
3394         nr_bytes = size & (PAGE_SIZE - 1);
3395
3396         if (nr_bytes)
3397                 nr_pages += 1;
3398
3399         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3400         if (!ret && nr_bytes)
3401                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3402
3403         return ret;
3404 }
3405
3406 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3407 {
3408         refill_obj_stock(objcg, size, true);
3409 }
3410
3411 #endif /* CONFIG_MEMCG_KMEM */
3412
3413 /*
3414  * Because page_memcg(head) is not set on tails, set it now.
3415  */
3416 void split_page_memcg(struct page *head, unsigned int nr)
3417 {
3418         struct folio *folio = page_folio(head);
3419         struct mem_cgroup *memcg = folio_memcg(folio);
3420         int i;
3421
3422         if (mem_cgroup_disabled() || !memcg)
3423                 return;
3424
3425         for (i = 1; i < nr; i++)
3426                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3427
3428         if (folio_memcg_kmem(folio))
3429                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3430         else
3431                 css_get_many(&memcg->css, nr - 1);
3432 }
3433
3434 #ifdef CONFIG_SWAP
3435 /**
3436  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3437  * @entry: swap entry to be moved
3438  * @from:  mem_cgroup which the entry is moved from
3439  * @to:  mem_cgroup which the entry is moved to
3440  *
3441  * It succeeds only when the swap_cgroup's record for this entry is the same
3442  * as the mem_cgroup's id of @from.
3443  *
3444  * Returns 0 on success, -EINVAL on failure.
3445  *
3446  * The caller must have charged to @to, IOW, called page_counter_charge() about
3447  * both res and memsw, and called css_get().
3448  */
3449 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3450                                 struct mem_cgroup *from, struct mem_cgroup *to)
3451 {
3452         unsigned short old_id, new_id;
3453
3454         old_id = mem_cgroup_id(from);
3455         new_id = mem_cgroup_id(to);
3456
3457         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3458                 mod_memcg_state(from, MEMCG_SWAP, -1);
3459                 mod_memcg_state(to, MEMCG_SWAP, 1);
3460                 return 0;
3461         }
3462         return -EINVAL;
3463 }
3464 #else
3465 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3466                                 struct mem_cgroup *from, struct mem_cgroup *to)
3467 {
3468         return -EINVAL;
3469 }
3470 #endif
3471
3472 static DEFINE_MUTEX(memcg_max_mutex);
3473
3474 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3475                                  unsigned long max, bool memsw)
3476 {
3477         bool enlarge = false;
3478         bool drained = false;
3479         int ret;
3480         bool limits_invariant;
3481         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3482
3483         do {
3484                 if (signal_pending(current)) {
3485                         ret = -EINTR;
3486                         break;
3487                 }
3488
3489                 mutex_lock(&memcg_max_mutex);
3490                 /*
3491                  * Make sure that the new limit (memsw or memory limit) doesn't
3492                  * break our basic invariant rule memory.max <= memsw.max.
3493                  */
3494                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3495                                            max <= memcg->memsw.max;
3496                 if (!limits_invariant) {
3497                         mutex_unlock(&memcg_max_mutex);
3498                         ret = -EINVAL;
3499                         break;
3500                 }
3501                 if (max > counter->max)
3502                         enlarge = true;
3503                 ret = page_counter_set_max(counter, max);
3504                 mutex_unlock(&memcg_max_mutex);
3505
3506                 if (!ret)
3507                         break;
3508
3509                 if (!drained) {
3510                         drain_all_stock(memcg);
3511                         drained = true;
3512                         continue;
3513                 }
3514
3515                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3516                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3517                         ret = -EBUSY;
3518                         break;
3519                 }
3520         } while (true);
3521
3522         if (!ret && enlarge)
3523                 memcg_oom_recover(memcg);
3524
3525         return ret;
3526 }
3527
3528 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3529                                             gfp_t gfp_mask,
3530                                             unsigned long *total_scanned)
3531 {
3532         unsigned long nr_reclaimed = 0;
3533         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3534         unsigned long reclaimed;
3535         int loop = 0;
3536         struct mem_cgroup_tree_per_node *mctz;
3537         unsigned long excess;
3538
3539         if (lru_gen_enabled())
3540                 return 0;
3541
3542         if (order > 0)
3543                 return 0;
3544
3545         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3546
3547         /*
3548          * Do not even bother to check the largest node if the root
3549          * is empty. Do it lockless to prevent lock bouncing. Races
3550          * are acceptable as soft limit is best effort anyway.
3551          */
3552         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3553                 return 0;
3554
3555         /*
3556          * This loop can run a while, specially if mem_cgroup's continuously
3557          * keep exceeding their soft limit and putting the system under
3558          * pressure
3559          */
3560         do {
3561                 if (next_mz)
3562                         mz = next_mz;
3563                 else
3564                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3565                 if (!mz)
3566                         break;
3567
3568                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3569                                                     gfp_mask, total_scanned);
3570                 nr_reclaimed += reclaimed;
3571                 spin_lock_irq(&mctz->lock);
3572
3573                 /*
3574                  * If we failed to reclaim anything from this memory cgroup
3575                  * it is time to move on to the next cgroup
3576                  */
3577                 next_mz = NULL;
3578                 if (!reclaimed)
3579                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3580
3581                 excess = soft_limit_excess(mz->memcg);
3582                 /*
3583                  * One school of thought says that we should not add
3584                  * back the node to the tree if reclaim returns 0.
3585                  * But our reclaim could return 0, simply because due
3586                  * to priority we are exposing a smaller subset of
3587                  * memory to reclaim from. Consider this as a longer
3588                  * term TODO.
3589                  */
3590                 /* If excess == 0, no tree ops */
3591                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3592                 spin_unlock_irq(&mctz->lock);
3593                 css_put(&mz->memcg->css);
3594                 loop++;
3595                 /*
3596                  * Could not reclaim anything and there are no more
3597                  * mem cgroups to try or we seem to be looping without
3598                  * reclaiming anything.
3599                  */
3600                 if (!nr_reclaimed &&
3601                         (next_mz == NULL ||
3602                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3603                         break;
3604         } while (!nr_reclaimed);
3605         if (next_mz)
3606                 css_put(&next_mz->memcg->css);
3607         return nr_reclaimed;
3608 }
3609
3610 /*
3611  * Reclaims as many pages from the given memcg as possible.
3612  *
3613  * Caller is responsible for holding css reference for memcg.
3614  */
3615 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3616 {
3617         int nr_retries = MAX_RECLAIM_RETRIES;
3618
3619         /* we call try-to-free pages for make this cgroup empty */
3620         lru_add_drain_all();
3621
3622         drain_all_stock(memcg);
3623
3624         /* try to free all pages in this cgroup */
3625         while (nr_retries && page_counter_read(&memcg->memory)) {
3626                 if (signal_pending(current))
3627                         return -EINTR;
3628
3629                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3630                                                   MEMCG_RECLAIM_MAY_SWAP))
3631                         nr_retries--;
3632         }
3633
3634         return 0;
3635 }
3636
3637 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3638                                             char *buf, size_t nbytes,
3639                                             loff_t off)
3640 {
3641         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3642
3643         if (mem_cgroup_is_root(memcg))
3644                 return -EINVAL;
3645         return mem_cgroup_force_empty(memcg) ?: nbytes;
3646 }
3647
3648 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3649                                      struct cftype *cft)
3650 {
3651         return 1;
3652 }
3653
3654 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3655                                       struct cftype *cft, u64 val)
3656 {
3657         if (val == 1)
3658                 return 0;
3659
3660         pr_warn_once("Non-hierarchical mode is deprecated. "
3661                      "Please report your usecase to linux-mm@kvack.org if you "
3662                      "depend on this functionality.\n");
3663
3664         return -EINVAL;
3665 }
3666
3667 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3668 {
3669         unsigned long val;
3670
3671         if (mem_cgroup_is_root(memcg)) {
3672                 mem_cgroup_flush_stats();
3673                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3674                         memcg_page_state(memcg, NR_ANON_MAPPED);
3675                 if (swap)
3676                         val += memcg_page_state(memcg, MEMCG_SWAP);
3677         } else {
3678                 if (!swap)
3679                         val = page_counter_read(&memcg->memory);
3680                 else
3681                         val = page_counter_read(&memcg->memsw);
3682         }
3683         return val;
3684 }
3685
3686 enum {
3687         RES_USAGE,
3688         RES_LIMIT,
3689         RES_MAX_USAGE,
3690         RES_FAILCNT,
3691         RES_SOFT_LIMIT,
3692 };
3693
3694 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3695                                struct cftype *cft)
3696 {
3697         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698         struct page_counter *counter;
3699
3700         switch (MEMFILE_TYPE(cft->private)) {
3701         case _MEM:
3702                 counter = &memcg->memory;
3703                 break;
3704         case _MEMSWAP:
3705                 counter = &memcg->memsw;
3706                 break;
3707         case _KMEM:
3708                 counter = &memcg->kmem;
3709                 break;
3710         case _TCP:
3711                 counter = &memcg->tcpmem;
3712                 break;
3713         default:
3714                 BUG();
3715         }
3716
3717         switch (MEMFILE_ATTR(cft->private)) {
3718         case RES_USAGE:
3719                 if (counter == &memcg->memory)
3720                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3721                 if (counter == &memcg->memsw)
3722                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3723                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3724         case RES_LIMIT:
3725                 return (u64)counter->max * PAGE_SIZE;
3726         case RES_MAX_USAGE:
3727                 return (u64)counter->watermark * PAGE_SIZE;
3728         case RES_FAILCNT:
3729                 return counter->failcnt;
3730         case RES_SOFT_LIMIT:
3731                 return (u64)memcg->soft_limit * PAGE_SIZE;
3732         default:
3733                 BUG();
3734         }
3735 }
3736
3737 #ifdef CONFIG_MEMCG_KMEM
3738 static int memcg_online_kmem(struct mem_cgroup *memcg)
3739 {
3740         struct obj_cgroup *objcg;
3741
3742         if (mem_cgroup_kmem_disabled())
3743                 return 0;
3744
3745         if (unlikely(mem_cgroup_is_root(memcg)))
3746                 return 0;
3747
3748         objcg = obj_cgroup_alloc();
3749         if (!objcg)
3750                 return -ENOMEM;
3751
3752         objcg->memcg = memcg;
3753         rcu_assign_pointer(memcg->objcg, objcg);
3754
3755         static_branch_enable(&memcg_kmem_online_key);
3756
3757         memcg->kmemcg_id = memcg->id.id;
3758
3759         return 0;
3760 }
3761
3762 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3763 {
3764         struct mem_cgroup *parent;
3765
3766         if (mem_cgroup_kmem_disabled())
3767                 return;
3768
3769         if (unlikely(mem_cgroup_is_root(memcg)))
3770                 return;
3771
3772         parent = parent_mem_cgroup(memcg);
3773         if (!parent)
3774                 parent = root_mem_cgroup;
3775
3776         memcg_reparent_objcgs(memcg, parent);
3777
3778         /*
3779          * After we have finished memcg_reparent_objcgs(), all list_lrus
3780          * corresponding to this cgroup are guaranteed to remain empty.
3781          * The ordering is imposed by list_lru_node->lock taken by
3782          * memcg_reparent_list_lrus().
3783          */
3784         memcg_reparent_list_lrus(memcg, parent);
3785 }
3786 #else
3787 static int memcg_online_kmem(struct mem_cgroup *memcg)
3788 {
3789         return 0;
3790 }
3791 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3792 {
3793 }
3794 #endif /* CONFIG_MEMCG_KMEM */
3795
3796 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3797 {
3798         int ret;
3799
3800         mutex_lock(&memcg_max_mutex);
3801
3802         ret = page_counter_set_max(&memcg->tcpmem, max);
3803         if (ret)
3804                 goto out;
3805
3806         if (!memcg->tcpmem_active) {
3807                 /*
3808                  * The active flag needs to be written after the static_key
3809                  * update. This is what guarantees that the socket activation
3810                  * function is the last one to run. See mem_cgroup_sk_alloc()
3811                  * for details, and note that we don't mark any socket as
3812                  * belonging to this memcg until that flag is up.
3813                  *
3814                  * We need to do this, because static_keys will span multiple
3815                  * sites, but we can't control their order. If we mark a socket
3816                  * as accounted, but the accounting functions are not patched in
3817                  * yet, we'll lose accounting.
3818                  *
3819                  * We never race with the readers in mem_cgroup_sk_alloc(),
3820                  * because when this value change, the code to process it is not
3821                  * patched in yet.
3822                  */
3823                 static_branch_inc(&memcg_sockets_enabled_key);
3824                 memcg->tcpmem_active = true;
3825         }
3826 out:
3827         mutex_unlock(&memcg_max_mutex);
3828         return ret;
3829 }
3830
3831 /*
3832  * The user of this function is...
3833  * RES_LIMIT.
3834  */
3835 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3836                                 char *buf, size_t nbytes, loff_t off)
3837 {
3838         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3839         unsigned long nr_pages;
3840         int ret;
3841
3842         buf = strstrip(buf);
3843         ret = page_counter_memparse(buf, "-1", &nr_pages);
3844         if (ret)
3845                 return ret;
3846
3847         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3848         case RES_LIMIT:
3849                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3850                         ret = -EINVAL;
3851                         break;
3852                 }
3853                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3854                 case _MEM:
3855                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3856                         break;
3857                 case _MEMSWAP:
3858                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3859                         break;
3860                 case _KMEM:
3861                         /* kmem.limit_in_bytes is deprecated. */
3862                         ret = -EOPNOTSUPP;
3863                         break;
3864                 case _TCP:
3865                         ret = memcg_update_tcp_max(memcg, nr_pages);
3866                         break;
3867                 }
3868                 break;
3869         case RES_SOFT_LIMIT:
3870                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3871                         ret = -EOPNOTSUPP;
3872                 } else {
3873                         memcg->soft_limit = nr_pages;
3874                         ret = 0;
3875                 }
3876                 break;
3877         }
3878         return ret ?: nbytes;
3879 }
3880
3881 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3882                                 size_t nbytes, loff_t off)
3883 {
3884         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3885         struct page_counter *counter;
3886
3887         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3888         case _MEM:
3889                 counter = &memcg->memory;
3890                 break;
3891         case _MEMSWAP:
3892                 counter = &memcg->memsw;
3893                 break;
3894         case _KMEM:
3895                 counter = &memcg->kmem;
3896                 break;
3897         case _TCP:
3898                 counter = &memcg->tcpmem;
3899                 break;
3900         default:
3901                 BUG();
3902         }
3903
3904         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3905         case RES_MAX_USAGE:
3906                 page_counter_reset_watermark(counter);
3907                 break;
3908         case RES_FAILCNT:
3909                 counter->failcnt = 0;
3910                 break;
3911         default:
3912                 BUG();
3913         }
3914
3915         return nbytes;
3916 }
3917
3918 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3919                                         struct cftype *cft)
3920 {
3921         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3922 }
3923
3924 #ifdef CONFIG_MMU
3925 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3926                                         struct cftype *cft, u64 val)
3927 {
3928         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3929
3930         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3931                      "Please report your usecase to linux-mm@kvack.org if you "
3932                      "depend on this functionality.\n");
3933
3934         if (val & ~MOVE_MASK)
3935                 return -EINVAL;
3936
3937         /*
3938          * No kind of locking is needed in here, because ->can_attach() will
3939          * check this value once in the beginning of the process, and then carry
3940          * on with stale data. This means that changes to this value will only
3941          * affect task migrations starting after the change.
3942          */
3943         memcg->move_charge_at_immigrate = val;
3944         return 0;
3945 }
3946 #else
3947 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3948                                         struct cftype *cft, u64 val)
3949 {
3950         return -ENOSYS;
3951 }
3952 #endif
3953
3954 #ifdef CONFIG_NUMA
3955
3956 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3957 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3958 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3959
3960 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3961                                 int nid, unsigned int lru_mask, bool tree)
3962 {
3963         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3964         unsigned long nr = 0;
3965         enum lru_list lru;
3966
3967         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3968
3969         for_each_lru(lru) {
3970                 if (!(BIT(lru) & lru_mask))
3971                         continue;
3972                 if (tree)
3973                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3974                 else
3975                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3976         }
3977         return nr;
3978 }
3979
3980 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3981                                              unsigned int lru_mask,
3982                                              bool tree)
3983 {
3984         unsigned long nr = 0;
3985         enum lru_list lru;
3986
3987         for_each_lru(lru) {
3988                 if (!(BIT(lru) & lru_mask))
3989                         continue;
3990                 if (tree)
3991                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3992                 else
3993                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3994         }
3995         return nr;
3996 }
3997
3998 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3999 {
4000         struct numa_stat {
4001                 const char *name;
4002                 unsigned int lru_mask;
4003         };
4004
4005         static const struct numa_stat stats[] = {
4006                 { "total", LRU_ALL },
4007                 { "file", LRU_ALL_FILE },
4008                 { "anon", LRU_ALL_ANON },
4009                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4010         };
4011         const struct numa_stat *stat;
4012         int nid;
4013         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4014
4015         mem_cgroup_flush_stats();
4016
4017         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4018                 seq_printf(m, "%s=%lu", stat->name,
4019                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4020                                                    false));
4021                 for_each_node_state(nid, N_MEMORY)
4022                         seq_printf(m, " N%d=%lu", nid,
4023                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4024                                                         stat->lru_mask, false));
4025                 seq_putc(m, '\n');
4026         }
4027
4028         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4029
4030                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4031                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4032                                                    true));
4033                 for_each_node_state(nid, N_MEMORY)
4034                         seq_printf(m, " N%d=%lu", nid,
4035                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4036                                                         stat->lru_mask, true));
4037                 seq_putc(m, '\n');
4038         }
4039
4040         return 0;
4041 }
4042 #endif /* CONFIG_NUMA */
4043
4044 static const unsigned int memcg1_stats[] = {
4045         NR_FILE_PAGES,
4046         NR_ANON_MAPPED,
4047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4048         NR_ANON_THPS,
4049 #endif
4050         NR_SHMEM,
4051         NR_FILE_MAPPED,
4052         NR_FILE_DIRTY,
4053         NR_WRITEBACK,
4054         WORKINGSET_REFAULT_ANON,
4055         WORKINGSET_REFAULT_FILE,
4056         MEMCG_SWAP,
4057 };
4058
4059 static const char *const memcg1_stat_names[] = {
4060         "cache",
4061         "rss",
4062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4063         "rss_huge",
4064 #endif
4065         "shmem",
4066         "mapped_file",
4067         "dirty",
4068         "writeback",
4069         "workingset_refault_anon",
4070         "workingset_refault_file",
4071         "swap",
4072 };
4073
4074 /* Universal VM events cgroup1 shows, original sort order */
4075 static const unsigned int memcg1_events[] = {
4076         PGPGIN,
4077         PGPGOUT,
4078         PGFAULT,
4079         PGMAJFAULT,
4080 };
4081
4082 static int memcg_stat_show(struct seq_file *m, void *v)
4083 {
4084         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4085         unsigned long memory, memsw;
4086         struct mem_cgroup *mi;
4087         unsigned int i;
4088
4089         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4090
4091         mem_cgroup_flush_stats();
4092
4093         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4094                 unsigned long nr;
4095
4096                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4097                         continue;
4098                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4099                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4100                            nr * memcg_page_state_unit(memcg1_stats[i]));
4101         }
4102
4103         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4104                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4105                            memcg_events_local(memcg, memcg1_events[i]));
4106
4107         for (i = 0; i < NR_LRU_LISTS; i++)
4108                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4109                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4110                            PAGE_SIZE);
4111
4112         /* Hierarchical information */
4113         memory = memsw = PAGE_COUNTER_MAX;
4114         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4115                 memory = min(memory, READ_ONCE(mi->memory.max));
4116                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4117         }
4118         seq_printf(m, "hierarchical_memory_limit %llu\n",
4119                    (u64)memory * PAGE_SIZE);
4120         if (do_memsw_account())
4121                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4122                            (u64)memsw * PAGE_SIZE);
4123
4124         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4125                 unsigned long nr;
4126
4127                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4128                         continue;
4129                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4130                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4131                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4132         }
4133
4134         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4135                 seq_printf(m, "total_%s %llu\n",
4136                            vm_event_name(memcg1_events[i]),
4137                            (u64)memcg_events(memcg, memcg1_events[i]));
4138
4139         for (i = 0; i < NR_LRU_LISTS; i++)
4140                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4141                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4142                            PAGE_SIZE);
4143
4144 #ifdef CONFIG_DEBUG_VM
4145         {
4146                 pg_data_t *pgdat;
4147                 struct mem_cgroup_per_node *mz;
4148                 unsigned long anon_cost = 0;
4149                 unsigned long file_cost = 0;
4150
4151                 for_each_online_pgdat(pgdat) {
4152                         mz = memcg->nodeinfo[pgdat->node_id];
4153
4154                         anon_cost += mz->lruvec.anon_cost;
4155                         file_cost += mz->lruvec.file_cost;
4156                 }
4157                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4158                 seq_printf(m, "file_cost %lu\n", file_cost);
4159         }
4160 #endif
4161
4162         return 0;
4163 }
4164
4165 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4166                                       struct cftype *cft)
4167 {
4168         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169
4170         return mem_cgroup_swappiness(memcg);
4171 }
4172
4173 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4174                                        struct cftype *cft, u64 val)
4175 {
4176         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4177
4178         if (val > 200)
4179                 return -EINVAL;
4180
4181         if (!mem_cgroup_is_root(memcg))
4182                 memcg->swappiness = val;
4183         else
4184                 vm_swappiness = val;
4185
4186         return 0;
4187 }
4188
4189 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4190 {
4191         struct mem_cgroup_threshold_ary *t;
4192         unsigned long usage;
4193         int i;
4194
4195         rcu_read_lock();
4196         if (!swap)
4197                 t = rcu_dereference(memcg->thresholds.primary);
4198         else
4199                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4200
4201         if (!t)
4202                 goto unlock;
4203
4204         usage = mem_cgroup_usage(memcg, swap);
4205
4206         /*
4207          * current_threshold points to threshold just below or equal to usage.
4208          * If it's not true, a threshold was crossed after last
4209          * call of __mem_cgroup_threshold().
4210          */
4211         i = t->current_threshold;
4212
4213         /*
4214          * Iterate backward over array of thresholds starting from
4215          * current_threshold and check if a threshold is crossed.
4216          * If none of thresholds below usage is crossed, we read
4217          * only one element of the array here.
4218          */
4219         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4220                 eventfd_signal(t->entries[i].eventfd, 1);
4221
4222         /* i = current_threshold + 1 */
4223         i++;
4224
4225         /*
4226          * Iterate forward over array of thresholds starting from
4227          * current_threshold+1 and check if a threshold is crossed.
4228          * If none of thresholds above usage is crossed, we read
4229          * only one element of the array here.
4230          */
4231         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4232                 eventfd_signal(t->entries[i].eventfd, 1);
4233
4234         /* Update current_threshold */
4235         t->current_threshold = i - 1;
4236 unlock:
4237         rcu_read_unlock();
4238 }
4239
4240 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4241 {
4242         while (memcg) {
4243                 __mem_cgroup_threshold(memcg, false);
4244                 if (do_memsw_account())
4245                         __mem_cgroup_threshold(memcg, true);
4246
4247                 memcg = parent_mem_cgroup(memcg);
4248         }
4249 }
4250
4251 static int compare_thresholds(const void *a, const void *b)
4252 {
4253         const struct mem_cgroup_threshold *_a = a;
4254         const struct mem_cgroup_threshold *_b = b;
4255
4256         if (_a->threshold > _b->threshold)
4257                 return 1;
4258
4259         if (_a->threshold < _b->threshold)
4260                 return -1;
4261
4262         return 0;
4263 }
4264
4265 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4266 {
4267         struct mem_cgroup_eventfd_list *ev;
4268
4269         spin_lock(&memcg_oom_lock);
4270
4271         list_for_each_entry(ev, &memcg->oom_notify, list)
4272                 eventfd_signal(ev->eventfd, 1);
4273
4274         spin_unlock(&memcg_oom_lock);
4275         return 0;
4276 }
4277
4278 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4279 {
4280         struct mem_cgroup *iter;
4281
4282         for_each_mem_cgroup_tree(iter, memcg)
4283                 mem_cgroup_oom_notify_cb(iter);
4284 }
4285
4286 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4287         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4288 {
4289         struct mem_cgroup_thresholds *thresholds;
4290         struct mem_cgroup_threshold_ary *new;
4291         unsigned long threshold;
4292         unsigned long usage;
4293         int i, size, ret;
4294
4295         ret = page_counter_memparse(args, "-1", &threshold);
4296         if (ret)
4297                 return ret;
4298
4299         mutex_lock(&memcg->thresholds_lock);
4300
4301         if (type == _MEM) {
4302                 thresholds = &memcg->thresholds;
4303                 usage = mem_cgroup_usage(memcg, false);
4304         } else if (type == _MEMSWAP) {
4305                 thresholds = &memcg->memsw_thresholds;
4306                 usage = mem_cgroup_usage(memcg, true);
4307         } else
4308                 BUG();
4309
4310         /* Check if a threshold crossed before adding a new one */
4311         if (thresholds->primary)
4312                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4313
4314         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4315
4316         /* Allocate memory for new array of thresholds */
4317         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4318         if (!new) {
4319                 ret = -ENOMEM;
4320                 goto unlock;
4321         }
4322         new->size = size;
4323
4324         /* Copy thresholds (if any) to new array */
4325         if (thresholds->primary)
4326                 memcpy(new->entries, thresholds->primary->entries,
4327                        flex_array_size(new, entries, size - 1));
4328
4329         /* Add new threshold */
4330         new->entries[size - 1].eventfd = eventfd;
4331         new->entries[size - 1].threshold = threshold;
4332
4333         /* Sort thresholds. Registering of new threshold isn't time-critical */
4334         sort(new->entries, size, sizeof(*new->entries),
4335                         compare_thresholds, NULL);
4336
4337         /* Find current threshold */
4338         new->current_threshold = -1;
4339         for (i = 0; i < size; i++) {
4340                 if (new->entries[i].threshold <= usage) {
4341                         /*
4342                          * new->current_threshold will not be used until
4343                          * rcu_assign_pointer(), so it's safe to increment
4344                          * it here.
4345                          */
4346                         ++new->current_threshold;
4347                 } else
4348                         break;
4349         }
4350
4351         /* Free old spare buffer and save old primary buffer as spare */
4352         kfree(thresholds->spare);
4353         thresholds->spare = thresholds->primary;
4354
4355         rcu_assign_pointer(thresholds->primary, new);
4356
4357         /* To be sure that nobody uses thresholds */
4358         synchronize_rcu();
4359
4360 unlock:
4361         mutex_unlock(&memcg->thresholds_lock);
4362
4363         return ret;
4364 }
4365
4366 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4367         struct eventfd_ctx *eventfd, const char *args)
4368 {
4369         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4370 }
4371
4372 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4373         struct eventfd_ctx *eventfd, const char *args)
4374 {
4375         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4376 }
4377
4378 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4379         struct eventfd_ctx *eventfd, enum res_type type)
4380 {
4381         struct mem_cgroup_thresholds *thresholds;
4382         struct mem_cgroup_threshold_ary *new;
4383         unsigned long usage;
4384         int i, j, size, entries;
4385
4386         mutex_lock(&memcg->thresholds_lock);
4387
4388         if (type == _MEM) {
4389                 thresholds = &memcg->thresholds;
4390                 usage = mem_cgroup_usage(memcg, false);
4391         } else if (type == _MEMSWAP) {
4392                 thresholds = &memcg->memsw_thresholds;
4393                 usage = mem_cgroup_usage(memcg, true);
4394         } else
4395                 BUG();
4396
4397         if (!thresholds->primary)
4398                 goto unlock;
4399
4400         /* Check if a threshold crossed before removing */
4401         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4402
4403         /* Calculate new number of threshold */
4404         size = entries = 0;
4405         for (i = 0; i < thresholds->primary->size; i++) {
4406                 if (thresholds->primary->entries[i].eventfd != eventfd)
4407                         size++;
4408                 else
4409                         entries++;
4410         }
4411
4412         new = thresholds->spare;
4413
4414         /* If no items related to eventfd have been cleared, nothing to do */
4415         if (!entries)
4416                 goto unlock;
4417
4418         /* Set thresholds array to NULL if we don't have thresholds */
4419         if (!size) {
4420                 kfree(new);
4421                 new = NULL;
4422                 goto swap_buffers;
4423         }
4424
4425         new->size = size;
4426
4427         /* Copy thresholds and find current threshold */
4428         new->current_threshold = -1;
4429         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4430                 if (thresholds->primary->entries[i].eventfd == eventfd)
4431                         continue;
4432
4433                 new->entries[j] = thresholds->primary->entries[i];
4434                 if (new->entries[j].threshold <= usage) {
4435                         /*
4436                          * new->current_threshold will not be used
4437                          * until rcu_assign_pointer(), so it's safe to increment
4438                          * it here.
4439                          */
4440                         ++new->current_threshold;
4441                 }
4442                 j++;
4443         }
4444
4445 swap_buffers:
4446         /* Swap primary and spare array */
4447         thresholds->spare = thresholds->primary;
4448
4449         rcu_assign_pointer(thresholds->primary, new);
4450
4451         /* To be sure that nobody uses thresholds */
4452         synchronize_rcu();
4453
4454         /* If all events are unregistered, free the spare array */
4455         if (!new) {
4456                 kfree(thresholds->spare);
4457                 thresholds->spare = NULL;
4458         }
4459 unlock:
4460         mutex_unlock(&memcg->thresholds_lock);
4461 }
4462
4463 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4464         struct eventfd_ctx *eventfd)
4465 {
4466         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4467 }
4468
4469 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4470         struct eventfd_ctx *eventfd)
4471 {
4472         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4473 }
4474
4475 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4476         struct eventfd_ctx *eventfd, const char *args)
4477 {
4478         struct mem_cgroup_eventfd_list *event;
4479
4480         event = kmalloc(sizeof(*event), GFP_KERNEL);
4481         if (!event)
4482                 return -ENOMEM;
4483
4484         spin_lock(&memcg_oom_lock);
4485
4486         event->eventfd = eventfd;
4487         list_add(&event->list, &memcg->oom_notify);
4488
4489         /* already in OOM ? */
4490         if (memcg->under_oom)
4491                 eventfd_signal(eventfd, 1);
4492         spin_unlock(&memcg_oom_lock);
4493
4494         return 0;
4495 }
4496
4497 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4498         struct eventfd_ctx *eventfd)
4499 {
4500         struct mem_cgroup_eventfd_list *ev, *tmp;
4501
4502         spin_lock(&memcg_oom_lock);
4503
4504         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4505                 if (ev->eventfd == eventfd) {
4506                         list_del(&ev->list);
4507                         kfree(ev);
4508                 }
4509         }
4510
4511         spin_unlock(&memcg_oom_lock);
4512 }
4513
4514 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4515 {
4516         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4517
4518         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4519         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4520         seq_printf(sf, "oom_kill %lu\n",
4521                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4522         return 0;
4523 }
4524
4525 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4526         struct cftype *cft, u64 val)
4527 {
4528         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4529
4530         /* cannot set to root cgroup and only 0 and 1 are allowed */
4531         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4532                 return -EINVAL;
4533
4534         memcg->oom_kill_disable = val;
4535         if (!val)
4536                 memcg_oom_recover(memcg);
4537
4538         return 0;
4539 }
4540
4541 #ifdef CONFIG_CGROUP_WRITEBACK
4542
4543 #include <trace/events/writeback.h>
4544
4545 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4546 {
4547         return wb_domain_init(&memcg->cgwb_domain, gfp);
4548 }
4549
4550 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4551 {
4552         wb_domain_exit(&memcg->cgwb_domain);
4553 }
4554
4555 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4556 {
4557         wb_domain_size_changed(&memcg->cgwb_domain);
4558 }
4559
4560 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4561 {
4562         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4563
4564         if (!memcg->css.parent)
4565                 return NULL;
4566
4567         return &memcg->cgwb_domain;
4568 }
4569
4570 /**
4571  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4572  * @wb: bdi_writeback in question
4573  * @pfilepages: out parameter for number of file pages
4574  * @pheadroom: out parameter for number of allocatable pages according to memcg
4575  * @pdirty: out parameter for number of dirty pages
4576  * @pwriteback: out parameter for number of pages under writeback
4577  *
4578  * Determine the numbers of file, headroom, dirty, and writeback pages in
4579  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4580  * is a bit more involved.
4581  *
4582  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4583  * headroom is calculated as the lowest headroom of itself and the
4584  * ancestors.  Note that this doesn't consider the actual amount of
4585  * available memory in the system.  The caller should further cap
4586  * *@pheadroom accordingly.
4587  */
4588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4589                          unsigned long *pheadroom, unsigned long *pdirty,
4590                          unsigned long *pwriteback)
4591 {
4592         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4593         struct mem_cgroup *parent;
4594
4595         mem_cgroup_flush_stats();
4596
4597         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4598         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4599         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4600                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4601
4602         *pheadroom = PAGE_COUNTER_MAX;
4603         while ((parent = parent_mem_cgroup(memcg))) {
4604                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4605                                             READ_ONCE(memcg->memory.high));
4606                 unsigned long used = page_counter_read(&memcg->memory);
4607
4608                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4609                 memcg = parent;
4610         }
4611 }
4612
4613 /*
4614  * Foreign dirty flushing
4615  *
4616  * There's an inherent mismatch between memcg and writeback.  The former
4617  * tracks ownership per-page while the latter per-inode.  This was a
4618  * deliberate design decision because honoring per-page ownership in the
4619  * writeback path is complicated, may lead to higher CPU and IO overheads
4620  * and deemed unnecessary given that write-sharing an inode across
4621  * different cgroups isn't a common use-case.
4622  *
4623  * Combined with inode majority-writer ownership switching, this works well
4624  * enough in most cases but there are some pathological cases.  For
4625  * example, let's say there are two cgroups A and B which keep writing to
4626  * different but confined parts of the same inode.  B owns the inode and
4627  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4628  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4629  * triggering background writeback.  A will be slowed down without a way to
4630  * make writeback of the dirty pages happen.
4631  *
4632  * Conditions like the above can lead to a cgroup getting repeatedly and
4633  * severely throttled after making some progress after each
4634  * dirty_expire_interval while the underlying IO device is almost
4635  * completely idle.
4636  *
4637  * Solving this problem completely requires matching the ownership tracking
4638  * granularities between memcg and writeback in either direction.  However,
4639  * the more egregious behaviors can be avoided by simply remembering the
4640  * most recent foreign dirtying events and initiating remote flushes on
4641  * them when local writeback isn't enough to keep the memory clean enough.
4642  *
4643  * The following two functions implement such mechanism.  When a foreign
4644  * page - a page whose memcg and writeback ownerships don't match - is
4645  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4646  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4647  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4648  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4649  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4650  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4651  * limited to MEMCG_CGWB_FRN_CNT.
4652  *
4653  * The mechanism only remembers IDs and doesn't hold any object references.
4654  * As being wrong occasionally doesn't matter, updates and accesses to the
4655  * records are lockless and racy.
4656  */
4657 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4658                                              struct bdi_writeback *wb)
4659 {
4660         struct mem_cgroup *memcg = folio_memcg(folio);
4661         struct memcg_cgwb_frn *frn;
4662         u64 now = get_jiffies_64();
4663         u64 oldest_at = now;
4664         int oldest = -1;
4665         int i;
4666
4667         trace_track_foreign_dirty(folio, wb);
4668
4669         /*
4670          * Pick the slot to use.  If there is already a slot for @wb, keep
4671          * using it.  If not replace the oldest one which isn't being
4672          * written out.
4673          */
4674         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4675                 frn = &memcg->cgwb_frn[i];
4676                 if (frn->bdi_id == wb->bdi->id &&
4677                     frn->memcg_id == wb->memcg_css->id)
4678                         break;
4679                 if (time_before64(frn->at, oldest_at) &&
4680                     atomic_read(&frn->done.cnt) == 1) {
4681                         oldest = i;
4682                         oldest_at = frn->at;
4683                 }
4684         }
4685
4686         if (i < MEMCG_CGWB_FRN_CNT) {
4687                 /*
4688                  * Re-using an existing one.  Update timestamp lazily to
4689                  * avoid making the cacheline hot.  We want them to be
4690                  * reasonably up-to-date and significantly shorter than
4691                  * dirty_expire_interval as that's what expires the record.
4692                  * Use the shorter of 1s and dirty_expire_interval / 8.
4693                  */
4694                 unsigned long update_intv =
4695                         min_t(unsigned long, HZ,
4696                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4697
4698                 if (time_before64(frn->at, now - update_intv))
4699                         frn->at = now;
4700         } else if (oldest >= 0) {
4701                 /* replace the oldest free one */
4702                 frn = &memcg->cgwb_frn[oldest];
4703                 frn->bdi_id = wb->bdi->id;
4704                 frn->memcg_id = wb->memcg_css->id;
4705                 frn->at = now;
4706         }
4707 }
4708
4709 /* issue foreign writeback flushes for recorded foreign dirtying events */
4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4711 {
4712         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4713         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4714         u64 now = jiffies_64;
4715         int i;
4716
4717         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4718                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4719
4720                 /*
4721                  * If the record is older than dirty_expire_interval,
4722                  * writeback on it has already started.  No need to kick it
4723                  * off again.  Also, don't start a new one if there's
4724                  * already one in flight.
4725                  */
4726                 if (time_after64(frn->at, now - intv) &&
4727                     atomic_read(&frn->done.cnt) == 1) {
4728                         frn->at = 0;
4729                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4730                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4731                                                WB_REASON_FOREIGN_FLUSH,
4732                                                &frn->done);
4733                 }
4734         }
4735 }
4736
4737 #else   /* CONFIG_CGROUP_WRITEBACK */
4738
4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4740 {
4741         return 0;
4742 }
4743
4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4745 {
4746 }
4747
4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4749 {
4750 }
4751
4752 #endif  /* CONFIG_CGROUP_WRITEBACK */
4753
4754 /*
4755  * DO NOT USE IN NEW FILES.
4756  *
4757  * "cgroup.event_control" implementation.
4758  *
4759  * This is way over-engineered.  It tries to support fully configurable
4760  * events for each user.  Such level of flexibility is completely
4761  * unnecessary especially in the light of the planned unified hierarchy.
4762  *
4763  * Please deprecate this and replace with something simpler if at all
4764  * possible.
4765  */
4766
4767 /*
4768  * Unregister event and free resources.
4769  *
4770  * Gets called from workqueue.
4771  */
4772 static void memcg_event_remove(struct work_struct *work)
4773 {
4774         struct mem_cgroup_event *event =
4775                 container_of(work, struct mem_cgroup_event, remove);
4776         struct mem_cgroup *memcg = event->memcg;
4777
4778         remove_wait_queue(event->wqh, &event->wait);
4779
4780         event->unregister_event(memcg, event->eventfd);
4781
4782         /* Notify userspace the event is going away. */
4783         eventfd_signal(event->eventfd, 1);
4784
4785         eventfd_ctx_put(event->eventfd);
4786         kfree(event);
4787         css_put(&memcg->css);
4788 }
4789
4790 /*
4791  * Gets called on EPOLLHUP on eventfd when user closes it.
4792  *
4793  * Called with wqh->lock held and interrupts disabled.
4794  */
4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4796                             int sync, void *key)
4797 {
4798         struct mem_cgroup_event *event =
4799                 container_of(wait, struct mem_cgroup_event, wait);
4800         struct mem_cgroup *memcg = event->memcg;
4801         __poll_t flags = key_to_poll(key);
4802
4803         if (flags & EPOLLHUP) {
4804                 /*
4805                  * If the event has been detached at cgroup removal, we
4806                  * can simply return knowing the other side will cleanup
4807                  * for us.
4808                  *
4809                  * We can't race against event freeing since the other
4810                  * side will require wqh->lock via remove_wait_queue(),
4811                  * which we hold.
4812                  */
4813                 spin_lock(&memcg->event_list_lock);
4814                 if (!list_empty(&event->list)) {
4815                         list_del_init(&event->list);
4816                         /*
4817                          * We are in atomic context, but cgroup_event_remove()
4818                          * may sleep, so we have to call it in workqueue.
4819                          */
4820                         schedule_work(&event->remove);
4821                 }
4822                 spin_unlock(&memcg->event_list_lock);
4823         }
4824
4825         return 0;
4826 }
4827
4828 static void memcg_event_ptable_queue_proc(struct file *file,
4829                 wait_queue_head_t *wqh, poll_table *pt)
4830 {
4831         struct mem_cgroup_event *event =
4832                 container_of(pt, struct mem_cgroup_event, pt);
4833
4834         event->wqh = wqh;
4835         add_wait_queue(wqh, &event->wait);
4836 }
4837
4838 /*
4839  * DO NOT USE IN NEW FILES.
4840  *
4841  * Parse input and register new cgroup event handler.
4842  *
4843  * Input must be in format '<event_fd> <control_fd> <args>'.
4844  * Interpretation of args is defined by control file implementation.
4845  */
4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4847                                          char *buf, size_t nbytes, loff_t off)
4848 {
4849         struct cgroup_subsys_state *css = of_css(of);
4850         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4851         struct mem_cgroup_event *event;
4852         struct cgroup_subsys_state *cfile_css;
4853         unsigned int efd, cfd;
4854         struct fd efile;
4855         struct fd cfile;
4856         struct dentry *cdentry;
4857         const char *name;
4858         char *endp;
4859         int ret;
4860
4861         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4862                 return -EOPNOTSUPP;
4863
4864         buf = strstrip(buf);
4865
4866         efd = simple_strtoul(buf, &endp, 10);
4867         if (*endp != ' ')
4868                 return -EINVAL;
4869         buf = endp + 1;
4870
4871         cfd = simple_strtoul(buf, &endp, 10);
4872         if ((*endp != ' ') && (*endp != '\0'))
4873                 return -EINVAL;
4874         buf = endp + 1;
4875
4876         event = kzalloc(sizeof(*event), GFP_KERNEL);
4877         if (!event)
4878                 return -ENOMEM;
4879
4880         event->memcg = memcg;
4881         INIT_LIST_HEAD(&event->list);
4882         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4883         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4884         INIT_WORK(&event->remove, memcg_event_remove);
4885
4886         efile = fdget(efd);
4887         if (!efile.file) {
4888                 ret = -EBADF;
4889                 goto out_kfree;
4890         }
4891
4892         event->eventfd = eventfd_ctx_fileget(efile.file);
4893         if (IS_ERR(event->eventfd)) {
4894                 ret = PTR_ERR(event->eventfd);
4895                 goto out_put_efile;
4896         }
4897
4898         cfile = fdget(cfd);
4899         if (!cfile.file) {
4900                 ret = -EBADF;
4901                 goto out_put_eventfd;
4902         }
4903
4904         /* the process need read permission on control file */
4905         /* AV: shouldn't we check that it's been opened for read instead? */
4906         ret = file_permission(cfile.file, MAY_READ);
4907         if (ret < 0)
4908                 goto out_put_cfile;
4909
4910         /*
4911          * The control file must be a regular cgroup1 file. As a regular cgroup
4912          * file can't be renamed, it's safe to access its name afterwards.
4913          */
4914         cdentry = cfile.file->f_path.dentry;
4915         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4916                 ret = -EINVAL;
4917                 goto out_put_cfile;
4918         }
4919
4920         /*
4921          * Determine the event callbacks and set them in @event.  This used
4922          * to be done via struct cftype but cgroup core no longer knows
4923          * about these events.  The following is crude but the whole thing
4924          * is for compatibility anyway.
4925          *
4926          * DO NOT ADD NEW FILES.
4927          */
4928         name = cdentry->d_name.name;
4929
4930         if (!strcmp(name, "memory.usage_in_bytes")) {
4931                 event->register_event = mem_cgroup_usage_register_event;
4932                 event->unregister_event = mem_cgroup_usage_unregister_event;
4933         } else if (!strcmp(name, "memory.oom_control")) {
4934                 event->register_event = mem_cgroup_oom_register_event;
4935                 event->unregister_event = mem_cgroup_oom_unregister_event;
4936         } else if (!strcmp(name, "memory.pressure_level")) {
4937                 event->register_event = vmpressure_register_event;
4938                 event->unregister_event = vmpressure_unregister_event;
4939         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4940                 event->register_event = memsw_cgroup_usage_register_event;
4941                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4942         } else {
4943                 ret = -EINVAL;
4944                 goto out_put_cfile;
4945         }
4946
4947         /*
4948          * Verify @cfile should belong to @css.  Also, remaining events are
4949          * automatically removed on cgroup destruction but the removal is
4950          * asynchronous, so take an extra ref on @css.
4951          */
4952         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4953                                                &memory_cgrp_subsys);
4954         ret = -EINVAL;
4955         if (IS_ERR(cfile_css))
4956                 goto out_put_cfile;
4957         if (cfile_css != css) {
4958                 css_put(cfile_css);
4959                 goto out_put_cfile;
4960         }
4961
4962         ret = event->register_event(memcg, event->eventfd, buf);
4963         if (ret)
4964                 goto out_put_css;
4965
4966         vfs_poll(efile.file, &event->pt);
4967
4968         spin_lock_irq(&memcg->event_list_lock);
4969         list_add(&event->list, &memcg->event_list);
4970         spin_unlock_irq(&memcg->event_list_lock);
4971
4972         fdput(cfile);
4973         fdput(efile);
4974
4975         return nbytes;
4976
4977 out_put_css:
4978         css_put(css);
4979 out_put_cfile:
4980         fdput(cfile);
4981 out_put_eventfd:
4982         eventfd_ctx_put(event->eventfd);
4983 out_put_efile:
4984         fdput(efile);
4985 out_kfree:
4986         kfree(event);
4987
4988         return ret;
4989 }
4990
4991 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4992 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4993 {
4994         /*
4995          * Deprecated.
4996          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4997          */
4998         return 0;
4999 }
5000 #endif
5001
5002 static struct cftype mem_cgroup_legacy_files[] = {
5003         {
5004                 .name = "usage_in_bytes",
5005                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5006                 .read_u64 = mem_cgroup_read_u64,
5007         },
5008         {
5009                 .name = "max_usage_in_bytes",
5010                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5011                 .write = mem_cgroup_reset,
5012                 .read_u64 = mem_cgroup_read_u64,
5013         },
5014         {
5015                 .name = "limit_in_bytes",
5016                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5017                 .write = mem_cgroup_write,
5018                 .read_u64 = mem_cgroup_read_u64,
5019         },
5020         {
5021                 .name = "soft_limit_in_bytes",
5022                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5023                 .write = mem_cgroup_write,
5024                 .read_u64 = mem_cgroup_read_u64,
5025         },
5026         {
5027                 .name = "failcnt",
5028                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5029                 .write = mem_cgroup_reset,
5030                 .read_u64 = mem_cgroup_read_u64,
5031         },
5032         {
5033                 .name = "stat",
5034                 .seq_show = memcg_stat_show,
5035         },
5036         {
5037                 .name = "force_empty",
5038                 .write = mem_cgroup_force_empty_write,
5039         },
5040         {
5041                 .name = "use_hierarchy",
5042                 .write_u64 = mem_cgroup_hierarchy_write,
5043                 .read_u64 = mem_cgroup_hierarchy_read,
5044         },
5045         {
5046                 .name = "cgroup.event_control",         /* XXX: for compat */
5047                 .write = memcg_write_event_control,
5048                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5049         },
5050         {
5051                 .name = "swappiness",
5052                 .read_u64 = mem_cgroup_swappiness_read,
5053                 .write_u64 = mem_cgroup_swappiness_write,
5054         },
5055         {
5056                 .name = "move_charge_at_immigrate",
5057                 .read_u64 = mem_cgroup_move_charge_read,
5058                 .write_u64 = mem_cgroup_move_charge_write,
5059         },
5060         {
5061                 .name = "oom_control",
5062                 .seq_show = mem_cgroup_oom_control_read,
5063                 .write_u64 = mem_cgroup_oom_control_write,
5064         },
5065         {
5066                 .name = "pressure_level",
5067         },
5068 #ifdef CONFIG_NUMA
5069         {
5070                 .name = "numa_stat",
5071                 .seq_show = memcg_numa_stat_show,
5072         },
5073 #endif
5074         {
5075                 .name = "kmem.limit_in_bytes",
5076                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5077                 .write = mem_cgroup_write,
5078                 .read_u64 = mem_cgroup_read_u64,
5079         },
5080         {
5081                 .name = "kmem.usage_in_bytes",
5082                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5083                 .read_u64 = mem_cgroup_read_u64,
5084         },
5085         {
5086                 .name = "kmem.failcnt",
5087                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5088                 .write = mem_cgroup_reset,
5089                 .read_u64 = mem_cgroup_read_u64,
5090         },
5091         {
5092                 .name = "kmem.max_usage_in_bytes",
5093                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5094                 .write = mem_cgroup_reset,
5095                 .read_u64 = mem_cgroup_read_u64,
5096         },
5097 #if defined(CONFIG_MEMCG_KMEM) && \
5098         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5099         {
5100                 .name = "kmem.slabinfo",
5101                 .seq_show = mem_cgroup_slab_show,
5102         },
5103 #endif
5104         {
5105                 .name = "kmem.tcp.limit_in_bytes",
5106                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5107                 .write = mem_cgroup_write,
5108                 .read_u64 = mem_cgroup_read_u64,
5109         },
5110         {
5111                 .name = "kmem.tcp.usage_in_bytes",
5112                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5113                 .read_u64 = mem_cgroup_read_u64,
5114         },
5115         {
5116                 .name = "kmem.tcp.failcnt",
5117                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5118                 .write = mem_cgroup_reset,
5119                 .read_u64 = mem_cgroup_read_u64,
5120         },
5121         {
5122                 .name = "kmem.tcp.max_usage_in_bytes",
5123                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5124                 .write = mem_cgroup_reset,
5125                 .read_u64 = mem_cgroup_read_u64,
5126         },
5127         { },    /* terminate */
5128 };
5129
5130 /*
5131  * Private memory cgroup IDR
5132  *
5133  * Swap-out records and page cache shadow entries need to store memcg
5134  * references in constrained space, so we maintain an ID space that is
5135  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5136  * memory-controlled cgroups to 64k.
5137  *
5138  * However, there usually are many references to the offline CSS after
5139  * the cgroup has been destroyed, such as page cache or reclaimable
5140  * slab objects, that don't need to hang on to the ID. We want to keep
5141  * those dead CSS from occupying IDs, or we might quickly exhaust the
5142  * relatively small ID space and prevent the creation of new cgroups
5143  * even when there are much fewer than 64k cgroups - possibly none.
5144  *
5145  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5146  * be freed and recycled when it's no longer needed, which is usually
5147  * when the CSS is offlined.
5148  *
5149  * The only exception to that are records of swapped out tmpfs/shmem
5150  * pages that need to be attributed to live ancestors on swapin. But
5151  * those references are manageable from userspace.
5152  */
5153
5154 static DEFINE_IDR(mem_cgroup_idr);
5155
5156 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5157 {
5158         if (memcg->id.id > 0) {
5159                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5160                 memcg->id.id = 0;
5161         }
5162 }
5163
5164 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5165                                                   unsigned int n)
5166 {
5167         refcount_add(n, &memcg->id.ref);
5168 }
5169
5170 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5171 {
5172         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5173                 mem_cgroup_id_remove(memcg);
5174
5175                 /* Memcg ID pins CSS */
5176                 css_put(&memcg->css);
5177         }
5178 }
5179
5180 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5181 {
5182         mem_cgroup_id_put_many(memcg, 1);
5183 }
5184
5185 /**
5186  * mem_cgroup_from_id - look up a memcg from a memcg id
5187  * @id: the memcg id to look up
5188  *
5189  * Caller must hold rcu_read_lock().
5190  */
5191 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5192 {
5193         WARN_ON_ONCE(!rcu_read_lock_held());
5194         return idr_find(&mem_cgroup_idr, id);
5195 }
5196
5197 #ifdef CONFIG_SHRINKER_DEBUG
5198 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5199 {
5200         struct cgroup *cgrp;
5201         struct cgroup_subsys_state *css;
5202         struct mem_cgroup *memcg;
5203
5204         cgrp = cgroup_get_from_id(ino);
5205         if (IS_ERR(cgrp))
5206                 return ERR_CAST(cgrp);
5207
5208         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5209         if (css)
5210                 memcg = container_of(css, struct mem_cgroup, css);
5211         else
5212                 memcg = ERR_PTR(-ENOENT);
5213
5214         cgroup_put(cgrp);
5215
5216         return memcg;
5217 }
5218 #endif
5219
5220 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5221 {
5222         struct mem_cgroup_per_node *pn;
5223
5224         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5225         if (!pn)
5226                 return 1;
5227
5228         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5229                                                    GFP_KERNEL_ACCOUNT);
5230         if (!pn->lruvec_stats_percpu) {
5231                 kfree(pn);
5232                 return 1;
5233         }
5234
5235         lruvec_init(&pn->lruvec);
5236         pn->memcg = memcg;
5237
5238         memcg->nodeinfo[node] = pn;
5239         return 0;
5240 }
5241
5242 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5243 {
5244         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5245
5246         if (!pn)
5247                 return;
5248
5249         free_percpu(pn->lruvec_stats_percpu);
5250         kfree(pn);
5251 }
5252
5253 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5254 {
5255         int node;
5256
5257         for_each_node(node)
5258                 free_mem_cgroup_per_node_info(memcg, node);
5259         kfree(memcg->vmstats);
5260         free_percpu(memcg->vmstats_percpu);
5261         kfree(memcg);
5262 }
5263
5264 static void mem_cgroup_free(struct mem_cgroup *memcg)
5265 {
5266         lru_gen_exit_memcg(memcg);
5267         memcg_wb_domain_exit(memcg);
5268         __mem_cgroup_free(memcg);
5269 }
5270
5271 static struct mem_cgroup *mem_cgroup_alloc(void)
5272 {
5273         struct mem_cgroup *memcg;
5274         int node;
5275         int __maybe_unused i;
5276         long error = -ENOMEM;
5277
5278         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5279         if (!memcg)
5280                 return ERR_PTR(error);
5281
5282         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5283                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5284         if (memcg->id.id < 0) {
5285                 error = memcg->id.id;
5286                 goto fail;
5287         }
5288
5289         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5290         if (!memcg->vmstats)
5291                 goto fail;
5292
5293         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5294                                                  GFP_KERNEL_ACCOUNT);
5295         if (!memcg->vmstats_percpu)
5296                 goto fail;
5297
5298         for_each_node(node)
5299                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5300                         goto fail;
5301
5302         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5303                 goto fail;
5304
5305         INIT_WORK(&memcg->high_work, high_work_func);
5306         INIT_LIST_HEAD(&memcg->oom_notify);
5307         mutex_init(&memcg->thresholds_lock);
5308         spin_lock_init(&memcg->move_lock);
5309         vmpressure_init(&memcg->vmpressure);
5310         INIT_LIST_HEAD(&memcg->event_list);
5311         spin_lock_init(&memcg->event_list_lock);
5312         memcg->socket_pressure = jiffies;
5313 #ifdef CONFIG_MEMCG_KMEM
5314         memcg->kmemcg_id = -1;
5315         INIT_LIST_HEAD(&memcg->objcg_list);
5316 #endif
5317 #ifdef CONFIG_CGROUP_WRITEBACK
5318         INIT_LIST_HEAD(&memcg->cgwb_list);
5319         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5320                 memcg->cgwb_frn[i].done =
5321                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5322 #endif
5323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5324         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5325         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5326         memcg->deferred_split_queue.split_queue_len = 0;
5327 #endif
5328         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5329         lru_gen_init_memcg(memcg);
5330         return memcg;
5331 fail:
5332         mem_cgroup_id_remove(memcg);
5333         __mem_cgroup_free(memcg);
5334         return ERR_PTR(error);
5335 }
5336
5337 static struct cgroup_subsys_state * __ref
5338 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5339 {
5340         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5341         struct mem_cgroup *memcg, *old_memcg;
5342
5343         old_memcg = set_active_memcg(parent);
5344         memcg = mem_cgroup_alloc();
5345         set_active_memcg(old_memcg);
5346         if (IS_ERR(memcg))
5347                 return ERR_CAST(memcg);
5348
5349         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350         memcg->soft_limit = PAGE_COUNTER_MAX;
5351 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5352         memcg->zswap_max = PAGE_COUNTER_MAX;
5353 #endif
5354         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5355         if (parent) {
5356                 memcg->swappiness = mem_cgroup_swappiness(parent);
5357                 memcg->oom_kill_disable = parent->oom_kill_disable;
5358
5359                 page_counter_init(&memcg->memory, &parent->memory);
5360                 page_counter_init(&memcg->swap, &parent->swap);
5361                 page_counter_init(&memcg->kmem, &parent->kmem);
5362                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5363         } else {
5364                 init_memcg_events();
5365                 page_counter_init(&memcg->memory, NULL);
5366                 page_counter_init(&memcg->swap, NULL);
5367                 page_counter_init(&memcg->kmem, NULL);
5368                 page_counter_init(&memcg->tcpmem, NULL);
5369
5370                 root_mem_cgroup = memcg;
5371                 return &memcg->css;
5372         }
5373
5374         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5375                 static_branch_inc(&memcg_sockets_enabled_key);
5376
5377 #if defined(CONFIG_MEMCG_KMEM)
5378         if (!cgroup_memory_nobpf)
5379                 static_branch_inc(&memcg_bpf_enabled_key);
5380 #endif
5381
5382         return &memcg->css;
5383 }
5384
5385 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5386 {
5387         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388
5389         if (memcg_online_kmem(memcg))
5390                 goto remove_id;
5391
5392         /*
5393          * A memcg must be visible for expand_shrinker_info()
5394          * by the time the maps are allocated. So, we allocate maps
5395          * here, when for_each_mem_cgroup() can't skip it.
5396          */
5397         if (alloc_shrinker_info(memcg))
5398                 goto offline_kmem;
5399
5400         /* Online state pins memcg ID, memcg ID pins CSS */
5401         refcount_set(&memcg->id.ref, 1);
5402         css_get(css);
5403
5404         if (unlikely(mem_cgroup_is_root(memcg)))
5405                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5406                                    2UL*HZ);
5407         lru_gen_online_memcg(memcg);
5408         return 0;
5409 offline_kmem:
5410         memcg_offline_kmem(memcg);
5411 remove_id:
5412         mem_cgroup_id_remove(memcg);
5413         return -ENOMEM;
5414 }
5415
5416 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5417 {
5418         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5419         struct mem_cgroup_event *event, *tmp;
5420
5421         /*
5422          * Unregister events and notify userspace.
5423          * Notify userspace about cgroup removing only after rmdir of cgroup
5424          * directory to avoid race between userspace and kernelspace.
5425          */
5426         spin_lock_irq(&memcg->event_list_lock);
5427         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5428                 list_del_init(&event->list);
5429                 schedule_work(&event->remove);
5430         }
5431         spin_unlock_irq(&memcg->event_list_lock);
5432
5433         page_counter_set_min(&memcg->memory, 0);
5434         page_counter_set_low(&memcg->memory, 0);
5435
5436         memcg_offline_kmem(memcg);
5437         reparent_shrinker_deferred(memcg);
5438         wb_memcg_offline(memcg);
5439         lru_gen_offline_memcg(memcg);
5440
5441         drain_all_stock(memcg);
5442
5443         mem_cgroup_id_put(memcg);
5444 }
5445
5446 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5447 {
5448         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449
5450         invalidate_reclaim_iterators(memcg);
5451         lru_gen_release_memcg(memcg);
5452 }
5453
5454 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5455 {
5456         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5457         int __maybe_unused i;
5458
5459 #ifdef CONFIG_CGROUP_WRITEBACK
5460         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5461                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5462 #endif
5463         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5464                 static_branch_dec(&memcg_sockets_enabled_key);
5465
5466         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5467                 static_branch_dec(&memcg_sockets_enabled_key);
5468
5469 #if defined(CONFIG_MEMCG_KMEM)
5470         if (!cgroup_memory_nobpf)
5471                 static_branch_dec(&memcg_bpf_enabled_key);
5472 #endif
5473
5474         vmpressure_cleanup(&memcg->vmpressure);
5475         cancel_work_sync(&memcg->high_work);
5476         mem_cgroup_remove_from_trees(memcg);
5477         free_shrinker_info(memcg);
5478         mem_cgroup_free(memcg);
5479 }
5480
5481 /**
5482  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5483  * @css: the target css
5484  *
5485  * Reset the states of the mem_cgroup associated with @css.  This is
5486  * invoked when the userland requests disabling on the default hierarchy
5487  * but the memcg is pinned through dependency.  The memcg should stop
5488  * applying policies and should revert to the vanilla state as it may be
5489  * made visible again.
5490  *
5491  * The current implementation only resets the essential configurations.
5492  * This needs to be expanded to cover all the visible parts.
5493  */
5494 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5495 {
5496         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5497
5498         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5499         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5500         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5501         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5502         page_counter_set_min(&memcg->memory, 0);
5503         page_counter_set_low(&memcg->memory, 0);
5504         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5505         memcg->soft_limit = PAGE_COUNTER_MAX;
5506         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5507         memcg_wb_domain_size_changed(memcg);
5508 }
5509
5510 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5511 {
5512         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5513         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5514         struct memcg_vmstats_percpu *statc;
5515         long delta, v;
5516         int i, nid;
5517
5518         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5519
5520         for (i = 0; i < MEMCG_NR_STAT; i++) {
5521                 /*
5522                  * Collect the aggregated propagation counts of groups
5523                  * below us. We're in a per-cpu loop here and this is
5524                  * a global counter, so the first cycle will get them.
5525                  */
5526                 delta = memcg->vmstats->state_pending[i];
5527                 if (delta)
5528                         memcg->vmstats->state_pending[i] = 0;
5529
5530                 /* Add CPU changes on this level since the last flush */
5531                 v = READ_ONCE(statc->state[i]);
5532                 if (v != statc->state_prev[i]) {
5533                         delta += v - statc->state_prev[i];
5534                         statc->state_prev[i] = v;
5535                 }
5536
5537                 if (!delta)
5538                         continue;
5539
5540                 /* Aggregate counts on this level and propagate upwards */
5541                 memcg->vmstats->state[i] += delta;
5542                 if (parent)
5543                         parent->vmstats->state_pending[i] += delta;
5544         }
5545
5546         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5547                 delta = memcg->vmstats->events_pending[i];
5548                 if (delta)
5549                         memcg->vmstats->events_pending[i] = 0;
5550
5551                 v = READ_ONCE(statc->events[i]);
5552                 if (v != statc->events_prev[i]) {
5553                         delta += v - statc->events_prev[i];
5554                         statc->events_prev[i] = v;
5555                 }
5556
5557                 if (!delta)
5558                         continue;
5559
5560                 memcg->vmstats->events[i] += delta;
5561                 if (parent)
5562                         parent->vmstats->events_pending[i] += delta;
5563         }
5564
5565         for_each_node_state(nid, N_MEMORY) {
5566                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5567                 struct mem_cgroup_per_node *ppn = NULL;
5568                 struct lruvec_stats_percpu *lstatc;
5569
5570                 if (parent)
5571                         ppn = parent->nodeinfo[nid];
5572
5573                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5574
5575                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5576                         delta = pn->lruvec_stats.state_pending[i];
5577                         if (delta)
5578                                 pn->lruvec_stats.state_pending[i] = 0;
5579
5580                         v = READ_ONCE(lstatc->state[i]);
5581                         if (v != lstatc->state_prev[i]) {
5582                                 delta += v - lstatc->state_prev[i];
5583                                 lstatc->state_prev[i] = v;
5584                         }
5585
5586                         if (!delta)
5587                                 continue;
5588
5589                         pn->lruvec_stats.state[i] += delta;
5590                         if (ppn)
5591                                 ppn->lruvec_stats.state_pending[i] += delta;
5592                 }
5593         }
5594 }
5595
5596 #ifdef CONFIG_MMU
5597 /* Handlers for move charge at task migration. */
5598 static int mem_cgroup_do_precharge(unsigned long count)
5599 {
5600         int ret;
5601
5602         /* Try a single bulk charge without reclaim first, kswapd may wake */
5603         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5604         if (!ret) {
5605                 mc.precharge += count;
5606                 return ret;
5607         }
5608
5609         /* Try charges one by one with reclaim, but do not retry */
5610         while (count--) {
5611                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5612                 if (ret)
5613                         return ret;
5614                 mc.precharge++;
5615                 cond_resched();
5616         }
5617         return 0;
5618 }
5619
5620 union mc_target {
5621         struct page     *page;
5622         swp_entry_t     ent;
5623 };
5624
5625 enum mc_target_type {
5626         MC_TARGET_NONE = 0,
5627         MC_TARGET_PAGE,
5628         MC_TARGET_SWAP,
5629         MC_TARGET_DEVICE,
5630 };
5631
5632 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5633                                                 unsigned long addr, pte_t ptent)
5634 {
5635         struct page *page = vm_normal_page(vma, addr, ptent);
5636
5637         if (!page || !page_mapped(page))
5638                 return NULL;
5639         if (PageAnon(page)) {
5640                 if (!(mc.flags & MOVE_ANON))
5641                         return NULL;
5642         } else {
5643                 if (!(mc.flags & MOVE_FILE))
5644                         return NULL;
5645         }
5646         if (!get_page_unless_zero(page))
5647                 return NULL;
5648
5649         return page;
5650 }
5651
5652 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5653 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5654                         pte_t ptent, swp_entry_t *entry)
5655 {
5656         struct page *page = NULL;
5657         swp_entry_t ent = pte_to_swp_entry(ptent);
5658
5659         if (!(mc.flags & MOVE_ANON))
5660                 return NULL;
5661
5662         /*
5663          * Handle device private pages that are not accessible by the CPU, but
5664          * stored as special swap entries in the page table.
5665          */
5666         if (is_device_private_entry(ent)) {
5667                 page = pfn_swap_entry_to_page(ent);
5668                 if (!get_page_unless_zero(page))
5669                         return NULL;
5670                 return page;
5671         }
5672
5673         if (non_swap_entry(ent))
5674                 return NULL;
5675
5676         /*
5677          * Because swap_cache_get_folio() updates some statistics counter,
5678          * we call find_get_page() with swapper_space directly.
5679          */
5680         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5681         entry->val = ent.val;
5682
5683         return page;
5684 }
5685 #else
5686 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5687                         pte_t ptent, swp_entry_t *entry)
5688 {
5689         return NULL;
5690 }
5691 #endif
5692
5693 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5694                         unsigned long addr, pte_t ptent)
5695 {
5696         unsigned long index;
5697         struct folio *folio;
5698
5699         if (!vma->vm_file) /* anonymous vma */
5700                 return NULL;
5701         if (!(mc.flags & MOVE_FILE))
5702                 return NULL;
5703
5704         /* folio is moved even if it's not RSS of this task(page-faulted). */
5705         /* shmem/tmpfs may report page out on swap: account for that too. */
5706         index = linear_page_index(vma, addr);
5707         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5708         if (!folio)
5709                 return NULL;
5710         return folio_file_page(folio, index);
5711 }
5712
5713 /**
5714  * mem_cgroup_move_account - move account of the page
5715  * @page: the page
5716  * @compound: charge the page as compound or small page
5717  * @from: mem_cgroup which the page is moved from.
5718  * @to: mem_cgroup which the page is moved to. @from != @to.
5719  *
5720  * The page must be locked and not on the LRU.
5721  *
5722  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5723  * from old cgroup.
5724  */
5725 static int mem_cgroup_move_account(struct page *page,
5726                                    bool compound,
5727                                    struct mem_cgroup *from,
5728                                    struct mem_cgroup *to)
5729 {
5730         struct folio *folio = page_folio(page);
5731         struct lruvec *from_vec, *to_vec;
5732         struct pglist_data *pgdat;
5733         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5734         int nid, ret;
5735
5736         VM_BUG_ON(from == to);
5737         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5738         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5739         VM_BUG_ON(compound && !folio_test_large(folio));
5740
5741         ret = -EINVAL;
5742         if (folio_memcg(folio) != from)
5743                 goto out;
5744
5745         pgdat = folio_pgdat(folio);
5746         from_vec = mem_cgroup_lruvec(from, pgdat);
5747         to_vec = mem_cgroup_lruvec(to, pgdat);
5748
5749         folio_memcg_lock(folio);
5750
5751         if (folio_test_anon(folio)) {
5752                 if (folio_mapped(folio)) {
5753                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5754                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5755                         if (folio_test_transhuge(folio)) {
5756                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5757                                                    -nr_pages);
5758                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5759                                                    nr_pages);
5760                         }
5761                 }
5762         } else {
5763                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5764                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5765
5766                 if (folio_test_swapbacked(folio)) {
5767                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5768                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5769                 }
5770
5771                 if (folio_mapped(folio)) {
5772                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5773                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5774                 }
5775
5776                 if (folio_test_dirty(folio)) {
5777                         struct address_space *mapping = folio_mapping(folio);
5778
5779                         if (mapping_can_writeback(mapping)) {
5780                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5781                                                    -nr_pages);
5782                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5783                                                    nr_pages);
5784                         }
5785                 }
5786         }
5787
5788 #ifdef CONFIG_SWAP
5789         if (folio_test_swapcache(folio)) {
5790                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5791                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5792         }
5793 #endif
5794         if (folio_test_writeback(folio)) {
5795                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5796                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5797         }
5798
5799         /*
5800          * All state has been migrated, let's switch to the new memcg.
5801          *
5802          * It is safe to change page's memcg here because the page
5803          * is referenced, charged, isolated, and locked: we can't race
5804          * with (un)charging, migration, LRU putback, or anything else
5805          * that would rely on a stable page's memory cgroup.
5806          *
5807          * Note that lock_page_memcg is a memcg lock, not a page lock,
5808          * to save space. As soon as we switch page's memory cgroup to a
5809          * new memcg that isn't locked, the above state can change
5810          * concurrently again. Make sure we're truly done with it.
5811          */
5812         smp_mb();
5813
5814         css_get(&to->css);
5815         css_put(&from->css);
5816
5817         folio->memcg_data = (unsigned long)to;
5818
5819         __folio_memcg_unlock(from);
5820
5821         ret = 0;
5822         nid = folio_nid(folio);
5823
5824         local_irq_disable();
5825         mem_cgroup_charge_statistics(to, nr_pages);
5826         memcg_check_events(to, nid);
5827         mem_cgroup_charge_statistics(from, -nr_pages);
5828         memcg_check_events(from, nid);
5829         local_irq_enable();
5830 out:
5831         return ret;
5832 }
5833
5834 /**
5835  * get_mctgt_type - get target type of moving charge
5836  * @vma: the vma the pte to be checked belongs
5837  * @addr: the address corresponding to the pte to be checked
5838  * @ptent: the pte to be checked
5839  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5840  *
5841  * Returns
5842  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5843  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5844  *     move charge. if @target is not NULL, the page is stored in target->page
5845  *     with extra refcnt got(Callers should handle it).
5846  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5847  *     target for charge migration. if @target is not NULL, the entry is stored
5848  *     in target->ent.
5849  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5850  *   thus not on the lru.
5851  *     For now we such page is charge like a regular page would be as for all
5852  *     intent and purposes it is just special memory taking the place of a
5853  *     regular page.
5854  *
5855  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5856  *
5857  * Called with pte lock held.
5858  */
5859
5860 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5861                 unsigned long addr, pte_t ptent, union mc_target *target)
5862 {
5863         struct page *page = NULL;
5864         enum mc_target_type ret = MC_TARGET_NONE;
5865         swp_entry_t ent = { .val = 0 };
5866
5867         if (pte_present(ptent))
5868                 page = mc_handle_present_pte(vma, addr, ptent);
5869         else if (pte_none_mostly(ptent))
5870                 /*
5871                  * PTE markers should be treated as a none pte here, separated
5872                  * from other swap handling below.
5873                  */
5874                 page = mc_handle_file_pte(vma, addr, ptent);
5875         else if (is_swap_pte(ptent))
5876                 page = mc_handle_swap_pte(vma, ptent, &ent);
5877
5878         if (target && page) {
5879                 if (!trylock_page(page)) {
5880                         put_page(page);
5881                         return ret;
5882                 }
5883                 /*
5884                  * page_mapped() must be stable during the move. This
5885                  * pte is locked, so if it's present, the page cannot
5886                  * become unmapped. If it isn't, we have only partial
5887                  * control over the mapped state: the page lock will
5888                  * prevent new faults against pagecache and swapcache,
5889                  * so an unmapped page cannot become mapped. However,
5890                  * if the page is already mapped elsewhere, it can
5891                  * unmap, and there is nothing we can do about it.
5892                  * Alas, skip moving the page in this case.
5893                  */
5894                 if (!pte_present(ptent) && page_mapped(page)) {
5895                         unlock_page(page);
5896                         put_page(page);
5897                         return ret;
5898                 }
5899         }
5900
5901         if (!page && !ent.val)
5902                 return ret;
5903         if (page) {
5904                 /*
5905                  * Do only loose check w/o serialization.
5906                  * mem_cgroup_move_account() checks the page is valid or
5907                  * not under LRU exclusion.
5908                  */
5909                 if (page_memcg(page) == mc.from) {
5910                         ret = MC_TARGET_PAGE;
5911                         if (is_device_private_page(page) ||
5912                             is_device_coherent_page(page))
5913                                 ret = MC_TARGET_DEVICE;
5914                         if (target)
5915                                 target->page = page;
5916                 }
5917                 if (!ret || !target) {
5918                         if (target)
5919                                 unlock_page(page);
5920                         put_page(page);
5921                 }
5922         }
5923         /*
5924          * There is a swap entry and a page doesn't exist or isn't charged.
5925          * But we cannot move a tail-page in a THP.
5926          */
5927         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5928             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5929                 ret = MC_TARGET_SWAP;
5930                 if (target)
5931                         target->ent = ent;
5932         }
5933         return ret;
5934 }
5935
5936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5937 /*
5938  * We don't consider PMD mapped swapping or file mapped pages because THP does
5939  * not support them for now.
5940  * Caller should make sure that pmd_trans_huge(pmd) is true.
5941  */
5942 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5943                 unsigned long addr, pmd_t pmd, union mc_target *target)
5944 {
5945         struct page *page = NULL;
5946         enum mc_target_type ret = MC_TARGET_NONE;
5947
5948         if (unlikely(is_swap_pmd(pmd))) {
5949                 VM_BUG_ON(thp_migration_supported() &&
5950                                   !is_pmd_migration_entry(pmd));
5951                 return ret;
5952         }
5953         page = pmd_page(pmd);
5954         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5955         if (!(mc.flags & MOVE_ANON))
5956                 return ret;
5957         if (page_memcg(page) == mc.from) {
5958                 ret = MC_TARGET_PAGE;
5959                 if (target) {
5960                         get_page(page);
5961                         if (!trylock_page(page)) {
5962                                 put_page(page);
5963                                 return MC_TARGET_NONE;
5964                         }
5965                         target->page = page;
5966                 }
5967         }
5968         return ret;
5969 }
5970 #else
5971 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5972                 unsigned long addr, pmd_t pmd, union mc_target *target)
5973 {
5974         return MC_TARGET_NONE;
5975 }
5976 #endif
5977
5978 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5979                                         unsigned long addr, unsigned long end,
5980                                         struct mm_walk *walk)
5981 {
5982         struct vm_area_struct *vma = walk->vma;
5983         pte_t *pte;
5984         spinlock_t *ptl;
5985
5986         ptl = pmd_trans_huge_lock(pmd, vma);
5987         if (ptl) {
5988                 /*
5989                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5990                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5991                  * this might change.
5992                  */
5993                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5994                         mc.precharge += HPAGE_PMD_NR;
5995                 spin_unlock(ptl);
5996                 return 0;
5997         }
5998
5999         if (pmd_trans_unstable(pmd))
6000                 return 0;
6001         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6002         for (; addr != end; pte++, addr += PAGE_SIZE)
6003                 if (get_mctgt_type(vma, addr, *pte, NULL))
6004                         mc.precharge++; /* increment precharge temporarily */
6005         pte_unmap_unlock(pte - 1, ptl);
6006         cond_resched();
6007
6008         return 0;
6009 }
6010
6011 static const struct mm_walk_ops precharge_walk_ops = {
6012         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6013 };
6014
6015 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6016 {
6017         unsigned long precharge;
6018
6019         mmap_read_lock(mm);
6020         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6021         mmap_read_unlock(mm);
6022
6023         precharge = mc.precharge;
6024         mc.precharge = 0;
6025
6026         return precharge;
6027 }
6028
6029 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6030 {
6031         unsigned long precharge = mem_cgroup_count_precharge(mm);
6032
6033         VM_BUG_ON(mc.moving_task);
6034         mc.moving_task = current;
6035         return mem_cgroup_do_precharge(precharge);
6036 }
6037
6038 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6039 static void __mem_cgroup_clear_mc(void)
6040 {
6041         struct mem_cgroup *from = mc.from;
6042         struct mem_cgroup *to = mc.to;
6043
6044         /* we must uncharge all the leftover precharges from mc.to */
6045         if (mc.precharge) {
6046                 cancel_charge(mc.to, mc.precharge);
6047                 mc.precharge = 0;
6048         }
6049         /*
6050          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6051          * we must uncharge here.
6052          */
6053         if (mc.moved_charge) {
6054                 cancel_charge(mc.from, mc.moved_charge);
6055                 mc.moved_charge = 0;
6056         }
6057         /* we must fixup refcnts and charges */
6058         if (mc.moved_swap) {
6059                 /* uncharge swap account from the old cgroup */
6060                 if (!mem_cgroup_is_root(mc.from))
6061                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6062
6063                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6064
6065                 /*
6066                  * we charged both to->memory and to->memsw, so we
6067                  * should uncharge to->memory.
6068                  */
6069                 if (!mem_cgroup_is_root(mc.to))
6070                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6071
6072                 mc.moved_swap = 0;
6073         }
6074         memcg_oom_recover(from);
6075         memcg_oom_recover(to);
6076         wake_up_all(&mc.waitq);
6077 }
6078
6079 static void mem_cgroup_clear_mc(void)
6080 {
6081         struct mm_struct *mm = mc.mm;
6082
6083         /*
6084          * we must clear moving_task before waking up waiters at the end of
6085          * task migration.
6086          */
6087         mc.moving_task = NULL;
6088         __mem_cgroup_clear_mc();
6089         spin_lock(&mc.lock);
6090         mc.from = NULL;
6091         mc.to = NULL;
6092         mc.mm = NULL;
6093         spin_unlock(&mc.lock);
6094
6095         mmput(mm);
6096 }
6097
6098 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6099 {
6100         struct cgroup_subsys_state *css;
6101         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6102         struct mem_cgroup *from;
6103         struct task_struct *leader, *p;
6104         struct mm_struct *mm;
6105         unsigned long move_flags;
6106         int ret = 0;
6107
6108         /* charge immigration isn't supported on the default hierarchy */
6109         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6110                 return 0;
6111
6112         /*
6113          * Multi-process migrations only happen on the default hierarchy
6114          * where charge immigration is not used.  Perform charge
6115          * immigration if @tset contains a leader and whine if there are
6116          * multiple.
6117          */
6118         p = NULL;
6119         cgroup_taskset_for_each_leader(leader, css, tset) {
6120                 WARN_ON_ONCE(p);
6121                 p = leader;
6122                 memcg = mem_cgroup_from_css(css);
6123         }
6124         if (!p)
6125                 return 0;
6126
6127         /*
6128          * We are now committed to this value whatever it is. Changes in this
6129          * tunable will only affect upcoming migrations, not the current one.
6130          * So we need to save it, and keep it going.
6131          */
6132         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6133         if (!move_flags)
6134                 return 0;
6135
6136         from = mem_cgroup_from_task(p);
6137
6138         VM_BUG_ON(from == memcg);
6139
6140         mm = get_task_mm(p);
6141         if (!mm)
6142                 return 0;
6143         /* We move charges only when we move a owner of the mm */
6144         if (mm->owner == p) {
6145                 VM_BUG_ON(mc.from);
6146                 VM_BUG_ON(mc.to);
6147                 VM_BUG_ON(mc.precharge);
6148                 VM_BUG_ON(mc.moved_charge);
6149                 VM_BUG_ON(mc.moved_swap);
6150
6151                 spin_lock(&mc.lock);
6152                 mc.mm = mm;
6153                 mc.from = from;
6154                 mc.to = memcg;
6155                 mc.flags = move_flags;
6156                 spin_unlock(&mc.lock);
6157                 /* We set mc.moving_task later */
6158
6159                 ret = mem_cgroup_precharge_mc(mm);
6160                 if (ret)
6161                         mem_cgroup_clear_mc();
6162         } else {
6163                 mmput(mm);
6164         }
6165         return ret;
6166 }
6167
6168 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6169 {
6170         if (mc.to)
6171                 mem_cgroup_clear_mc();
6172 }
6173
6174 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6175                                 unsigned long addr, unsigned long end,
6176                                 struct mm_walk *walk)
6177 {
6178         int ret = 0;
6179         struct vm_area_struct *vma = walk->vma;
6180         pte_t *pte;
6181         spinlock_t *ptl;
6182         enum mc_target_type target_type;
6183         union mc_target target;
6184         struct page *page;
6185
6186         ptl = pmd_trans_huge_lock(pmd, vma);
6187         if (ptl) {
6188                 if (mc.precharge < HPAGE_PMD_NR) {
6189                         spin_unlock(ptl);
6190                         return 0;
6191                 }
6192                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6193                 if (target_type == MC_TARGET_PAGE) {
6194                         page = target.page;
6195                         if (isolate_lru_page(page)) {
6196                                 if (!mem_cgroup_move_account(page, true,
6197                                                              mc.from, mc.to)) {
6198                                         mc.precharge -= HPAGE_PMD_NR;
6199                                         mc.moved_charge += HPAGE_PMD_NR;
6200                                 }
6201                                 putback_lru_page(page);
6202                         }
6203                         unlock_page(page);
6204                         put_page(page);
6205                 } else if (target_type == MC_TARGET_DEVICE) {
6206                         page = target.page;
6207                         if (!mem_cgroup_move_account(page, true,
6208                                                      mc.from, mc.to)) {
6209                                 mc.precharge -= HPAGE_PMD_NR;
6210                                 mc.moved_charge += HPAGE_PMD_NR;
6211                         }
6212                         unlock_page(page);
6213                         put_page(page);
6214                 }
6215                 spin_unlock(ptl);
6216                 return 0;
6217         }
6218
6219         if (pmd_trans_unstable(pmd))
6220                 return 0;
6221 retry:
6222         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6223         for (; addr != end; addr += PAGE_SIZE) {
6224                 pte_t ptent = *(pte++);
6225                 bool device = false;
6226                 swp_entry_t ent;
6227
6228                 if (!mc.precharge)
6229                         break;
6230
6231                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6232                 case MC_TARGET_DEVICE:
6233                         device = true;
6234                         fallthrough;
6235                 case MC_TARGET_PAGE:
6236                         page = target.page;
6237                         /*
6238                          * We can have a part of the split pmd here. Moving it
6239                          * can be done but it would be too convoluted so simply
6240                          * ignore such a partial THP and keep it in original
6241                          * memcg. There should be somebody mapping the head.
6242                          */
6243                         if (PageTransCompound(page))
6244                                 goto put;
6245                         if (!device && !isolate_lru_page(page))
6246                                 goto put;
6247                         if (!mem_cgroup_move_account(page, false,
6248                                                 mc.from, mc.to)) {
6249                                 mc.precharge--;
6250                                 /* we uncharge from mc.from later. */
6251                                 mc.moved_charge++;
6252                         }
6253                         if (!device)
6254                                 putback_lru_page(page);
6255 put:                    /* get_mctgt_type() gets & locks the page */
6256                         unlock_page(page);
6257                         put_page(page);
6258                         break;
6259                 case MC_TARGET_SWAP:
6260                         ent = target.ent;
6261                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6262                                 mc.precharge--;
6263                                 mem_cgroup_id_get_many(mc.to, 1);
6264                                 /* we fixup other refcnts and charges later. */
6265                                 mc.moved_swap++;
6266                         }
6267                         break;
6268                 default:
6269                         break;
6270                 }
6271         }
6272         pte_unmap_unlock(pte - 1, ptl);
6273         cond_resched();
6274
6275         if (addr != end) {
6276                 /*
6277                  * We have consumed all precharges we got in can_attach().
6278                  * We try charge one by one, but don't do any additional
6279                  * charges to mc.to if we have failed in charge once in attach()
6280                  * phase.
6281                  */
6282                 ret = mem_cgroup_do_precharge(1);
6283                 if (!ret)
6284                         goto retry;
6285         }
6286
6287         return ret;
6288 }
6289
6290 static const struct mm_walk_ops charge_walk_ops = {
6291         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6292 };
6293
6294 static void mem_cgroup_move_charge(void)
6295 {
6296         lru_add_drain_all();
6297         /*
6298          * Signal lock_page_memcg() to take the memcg's move_lock
6299          * while we're moving its pages to another memcg. Then wait
6300          * for already started RCU-only updates to finish.
6301          */
6302         atomic_inc(&mc.from->moving_account);
6303         synchronize_rcu();
6304 retry:
6305         if (unlikely(!mmap_read_trylock(mc.mm))) {
6306                 /*
6307                  * Someone who are holding the mmap_lock might be waiting in
6308                  * waitq. So we cancel all extra charges, wake up all waiters,
6309                  * and retry. Because we cancel precharges, we might not be able
6310                  * to move enough charges, but moving charge is a best-effort
6311                  * feature anyway, so it wouldn't be a big problem.
6312                  */
6313                 __mem_cgroup_clear_mc();
6314                 cond_resched();
6315                 goto retry;
6316         }
6317         /*
6318          * When we have consumed all precharges and failed in doing
6319          * additional charge, the page walk just aborts.
6320          */
6321         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6322         mmap_read_unlock(mc.mm);
6323         atomic_dec(&mc.from->moving_account);
6324 }
6325
6326 static void mem_cgroup_move_task(void)
6327 {
6328         if (mc.to) {
6329                 mem_cgroup_move_charge();
6330                 mem_cgroup_clear_mc();
6331         }
6332 }
6333 #else   /* !CONFIG_MMU */
6334 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6335 {
6336         return 0;
6337 }
6338 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6339 {
6340 }
6341 static void mem_cgroup_move_task(void)
6342 {
6343 }
6344 #endif
6345
6346 #ifdef CONFIG_LRU_GEN
6347 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6348 {
6349         struct task_struct *task;
6350         struct cgroup_subsys_state *css;
6351
6352         /* find the first leader if there is any */
6353         cgroup_taskset_for_each_leader(task, css, tset)
6354                 break;
6355
6356         if (!task)
6357                 return;
6358
6359         task_lock(task);
6360         if (task->mm && READ_ONCE(task->mm->owner) == task)
6361                 lru_gen_migrate_mm(task->mm);
6362         task_unlock(task);
6363 }
6364 #else
6365 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6366 {
6367 }
6368 #endif /* CONFIG_LRU_GEN */
6369
6370 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6371 {
6372         if (value == PAGE_COUNTER_MAX)
6373                 seq_puts(m, "max\n");
6374         else
6375                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6376
6377         return 0;
6378 }
6379
6380 static u64 memory_current_read(struct cgroup_subsys_state *css,
6381                                struct cftype *cft)
6382 {
6383         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6384
6385         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6386 }
6387
6388 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6389                             struct cftype *cft)
6390 {
6391         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6392
6393         return (u64)memcg->memory.watermark * PAGE_SIZE;
6394 }
6395
6396 static int memory_min_show(struct seq_file *m, void *v)
6397 {
6398         return seq_puts_memcg_tunable(m,
6399                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6400 }
6401
6402 static ssize_t memory_min_write(struct kernfs_open_file *of,
6403                                 char *buf, size_t nbytes, loff_t off)
6404 {
6405         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6406         unsigned long min;
6407         int err;
6408
6409         buf = strstrip(buf);
6410         err = page_counter_memparse(buf, "max", &min);
6411         if (err)
6412                 return err;
6413
6414         page_counter_set_min(&memcg->memory, min);
6415
6416         return nbytes;
6417 }
6418
6419 static int memory_low_show(struct seq_file *m, void *v)
6420 {
6421         return seq_puts_memcg_tunable(m,
6422                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6423 }
6424
6425 static ssize_t memory_low_write(struct kernfs_open_file *of,
6426                                 char *buf, size_t nbytes, loff_t off)
6427 {
6428         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6429         unsigned long low;
6430         int err;
6431
6432         buf = strstrip(buf);
6433         err = page_counter_memparse(buf, "max", &low);
6434         if (err)
6435                 return err;
6436
6437         page_counter_set_low(&memcg->memory, low);
6438
6439         return nbytes;
6440 }
6441
6442 static int memory_high_show(struct seq_file *m, void *v)
6443 {
6444         return seq_puts_memcg_tunable(m,
6445                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6446 }
6447
6448 static ssize_t memory_high_write(struct kernfs_open_file *of,
6449                                  char *buf, size_t nbytes, loff_t off)
6450 {
6451         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6452         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6453         bool drained = false;
6454         unsigned long high;
6455         int err;
6456
6457         buf = strstrip(buf);
6458         err = page_counter_memparse(buf, "max", &high);
6459         if (err)
6460                 return err;
6461
6462         page_counter_set_high(&memcg->memory, high);
6463
6464         for (;;) {
6465                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6466                 unsigned long reclaimed;
6467
6468                 if (nr_pages <= high)
6469                         break;
6470
6471                 if (signal_pending(current))
6472                         break;
6473
6474                 if (!drained) {
6475                         drain_all_stock(memcg);
6476                         drained = true;
6477                         continue;
6478                 }
6479
6480                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6481                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6482
6483                 if (!reclaimed && !nr_retries--)
6484                         break;
6485         }
6486
6487         memcg_wb_domain_size_changed(memcg);
6488         return nbytes;
6489 }
6490
6491 static int memory_max_show(struct seq_file *m, void *v)
6492 {
6493         return seq_puts_memcg_tunable(m,
6494                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6495 }
6496
6497 static ssize_t memory_max_write(struct kernfs_open_file *of,
6498                                 char *buf, size_t nbytes, loff_t off)
6499 {
6500         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6501         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6502         bool drained = false;
6503         unsigned long max;
6504         int err;
6505
6506         buf = strstrip(buf);
6507         err = page_counter_memparse(buf, "max", &max);
6508         if (err)
6509                 return err;
6510
6511         xchg(&memcg->memory.max, max);
6512
6513         for (;;) {
6514                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6515
6516                 if (nr_pages <= max)
6517                         break;
6518
6519                 if (signal_pending(current))
6520                         break;
6521
6522                 if (!drained) {
6523                         drain_all_stock(memcg);
6524                         drained = true;
6525                         continue;
6526                 }
6527
6528                 if (nr_reclaims) {
6529                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6530                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6531                                 nr_reclaims--;
6532                         continue;
6533                 }
6534
6535                 memcg_memory_event(memcg, MEMCG_OOM);
6536                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6537                         break;
6538         }
6539
6540         memcg_wb_domain_size_changed(memcg);
6541         return nbytes;
6542 }
6543
6544 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6545 {
6546         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6547         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6548         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6549         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6550         seq_printf(m, "oom_kill %lu\n",
6551                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6552         seq_printf(m, "oom_group_kill %lu\n",
6553                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6554 }
6555
6556 static int memory_events_show(struct seq_file *m, void *v)
6557 {
6558         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6559
6560         __memory_events_show(m, memcg->memory_events);
6561         return 0;
6562 }
6563
6564 static int memory_events_local_show(struct seq_file *m, void *v)
6565 {
6566         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6567
6568         __memory_events_show(m, memcg->memory_events_local);
6569         return 0;
6570 }
6571
6572 static int memory_stat_show(struct seq_file *m, void *v)
6573 {
6574         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6575         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6576
6577         if (!buf)
6578                 return -ENOMEM;
6579         memory_stat_format(memcg, buf, PAGE_SIZE);
6580         seq_puts(m, buf);
6581         kfree(buf);
6582         return 0;
6583 }
6584
6585 #ifdef CONFIG_NUMA
6586 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6587                                                      int item)
6588 {
6589         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6590 }
6591
6592 static int memory_numa_stat_show(struct seq_file *m, void *v)
6593 {
6594         int i;
6595         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6596
6597         mem_cgroup_flush_stats();
6598
6599         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6600                 int nid;
6601
6602                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6603                         continue;
6604
6605                 seq_printf(m, "%s", memory_stats[i].name);
6606                 for_each_node_state(nid, N_MEMORY) {
6607                         u64 size;
6608                         struct lruvec *lruvec;
6609
6610                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6611                         size = lruvec_page_state_output(lruvec,
6612                                                         memory_stats[i].idx);
6613                         seq_printf(m, " N%d=%llu", nid, size);
6614                 }
6615                 seq_putc(m, '\n');
6616         }
6617
6618         return 0;
6619 }
6620 #endif
6621
6622 static int memory_oom_group_show(struct seq_file *m, void *v)
6623 {
6624         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6625
6626         seq_printf(m, "%d\n", memcg->oom_group);
6627
6628         return 0;
6629 }
6630
6631 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6632                                       char *buf, size_t nbytes, loff_t off)
6633 {
6634         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6635         int ret, oom_group;
6636
6637         buf = strstrip(buf);
6638         if (!buf)
6639                 return -EINVAL;
6640
6641         ret = kstrtoint(buf, 0, &oom_group);
6642         if (ret)
6643                 return ret;
6644
6645         if (oom_group != 0 && oom_group != 1)
6646                 return -EINVAL;
6647
6648         memcg->oom_group = oom_group;
6649
6650         return nbytes;
6651 }
6652
6653 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6654                               size_t nbytes, loff_t off)
6655 {
6656         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6657         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6658         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6659         unsigned int reclaim_options;
6660         int err;
6661
6662         buf = strstrip(buf);
6663         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6664         if (err)
6665                 return err;
6666
6667         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6668         while (nr_reclaimed < nr_to_reclaim) {
6669                 unsigned long reclaimed;
6670
6671                 if (signal_pending(current))
6672                         return -EINTR;
6673
6674                 /*
6675                  * This is the final attempt, drain percpu lru caches in the
6676                  * hope of introducing more evictable pages for
6677                  * try_to_free_mem_cgroup_pages().
6678                  */
6679                 if (!nr_retries)
6680                         lru_add_drain_all();
6681
6682                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6683                                                 nr_to_reclaim - nr_reclaimed,
6684                                                 GFP_KERNEL, reclaim_options);
6685
6686                 if (!reclaimed && !nr_retries--)
6687                         return -EAGAIN;
6688
6689                 nr_reclaimed += reclaimed;
6690         }
6691
6692         return nbytes;
6693 }
6694
6695 static struct cftype memory_files[] = {
6696         {
6697                 .name = "current",
6698                 .flags = CFTYPE_NOT_ON_ROOT,
6699                 .read_u64 = memory_current_read,
6700         },
6701         {
6702                 .name = "peak",
6703                 .flags = CFTYPE_NOT_ON_ROOT,
6704                 .read_u64 = memory_peak_read,
6705         },
6706         {
6707                 .name = "min",
6708                 .flags = CFTYPE_NOT_ON_ROOT,
6709                 .seq_show = memory_min_show,
6710                 .write = memory_min_write,
6711         },
6712         {
6713                 .name = "low",
6714                 .flags = CFTYPE_NOT_ON_ROOT,
6715                 .seq_show = memory_low_show,
6716                 .write = memory_low_write,
6717         },
6718         {
6719                 .name = "high",
6720                 .flags = CFTYPE_NOT_ON_ROOT,
6721                 .seq_show = memory_high_show,
6722                 .write = memory_high_write,
6723         },
6724         {
6725                 .name = "max",
6726                 .flags = CFTYPE_NOT_ON_ROOT,
6727                 .seq_show = memory_max_show,
6728                 .write = memory_max_write,
6729         },
6730         {
6731                 .name = "events",
6732                 .flags = CFTYPE_NOT_ON_ROOT,
6733                 .file_offset = offsetof(struct mem_cgroup, events_file),
6734                 .seq_show = memory_events_show,
6735         },
6736         {
6737                 .name = "events.local",
6738                 .flags = CFTYPE_NOT_ON_ROOT,
6739                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6740                 .seq_show = memory_events_local_show,
6741         },
6742         {
6743                 .name = "stat",
6744                 .seq_show = memory_stat_show,
6745         },
6746 #ifdef CONFIG_NUMA
6747         {
6748                 .name = "numa_stat",
6749                 .seq_show = memory_numa_stat_show,
6750         },
6751 #endif
6752         {
6753                 .name = "oom.group",
6754                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6755                 .seq_show = memory_oom_group_show,
6756                 .write = memory_oom_group_write,
6757         },
6758         {
6759                 .name = "reclaim",
6760                 .flags = CFTYPE_NS_DELEGATABLE,
6761                 .write = memory_reclaim,
6762         },
6763         { }     /* terminate */
6764 };
6765
6766 struct cgroup_subsys memory_cgrp_subsys = {
6767         .css_alloc = mem_cgroup_css_alloc,
6768         .css_online = mem_cgroup_css_online,
6769         .css_offline = mem_cgroup_css_offline,
6770         .css_released = mem_cgroup_css_released,
6771         .css_free = mem_cgroup_css_free,
6772         .css_reset = mem_cgroup_css_reset,
6773         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6774         .can_attach = mem_cgroup_can_attach,
6775         .attach = mem_cgroup_attach,
6776         .cancel_attach = mem_cgroup_cancel_attach,
6777         .post_attach = mem_cgroup_move_task,
6778         .dfl_cftypes = memory_files,
6779         .legacy_cftypes = mem_cgroup_legacy_files,
6780         .early_init = 0,
6781 };
6782
6783 /*
6784  * This function calculates an individual cgroup's effective
6785  * protection which is derived from its own memory.min/low, its
6786  * parent's and siblings' settings, as well as the actual memory
6787  * distribution in the tree.
6788  *
6789  * The following rules apply to the effective protection values:
6790  *
6791  * 1. At the first level of reclaim, effective protection is equal to
6792  *    the declared protection in memory.min and memory.low.
6793  *
6794  * 2. To enable safe delegation of the protection configuration, at
6795  *    subsequent levels the effective protection is capped to the
6796  *    parent's effective protection.
6797  *
6798  * 3. To make complex and dynamic subtrees easier to configure, the
6799  *    user is allowed to overcommit the declared protection at a given
6800  *    level. If that is the case, the parent's effective protection is
6801  *    distributed to the children in proportion to how much protection
6802  *    they have declared and how much of it they are utilizing.
6803  *
6804  *    This makes distribution proportional, but also work-conserving:
6805  *    if one cgroup claims much more protection than it uses memory,
6806  *    the unused remainder is available to its siblings.
6807  *
6808  * 4. Conversely, when the declared protection is undercommitted at a
6809  *    given level, the distribution of the larger parental protection
6810  *    budget is NOT proportional. A cgroup's protection from a sibling
6811  *    is capped to its own memory.min/low setting.
6812  *
6813  * 5. However, to allow protecting recursive subtrees from each other
6814  *    without having to declare each individual cgroup's fixed share
6815  *    of the ancestor's claim to protection, any unutilized -
6816  *    "floating" - protection from up the tree is distributed in
6817  *    proportion to each cgroup's *usage*. This makes the protection
6818  *    neutral wrt sibling cgroups and lets them compete freely over
6819  *    the shared parental protection budget, but it protects the
6820  *    subtree as a whole from neighboring subtrees.
6821  *
6822  * Note that 4. and 5. are not in conflict: 4. is about protecting
6823  * against immediate siblings whereas 5. is about protecting against
6824  * neighboring subtrees.
6825  */
6826 static unsigned long effective_protection(unsigned long usage,
6827                                           unsigned long parent_usage,
6828                                           unsigned long setting,
6829                                           unsigned long parent_effective,
6830                                           unsigned long siblings_protected)
6831 {
6832         unsigned long protected;
6833         unsigned long ep;
6834
6835         protected = min(usage, setting);
6836         /*
6837          * If all cgroups at this level combined claim and use more
6838          * protection then what the parent affords them, distribute
6839          * shares in proportion to utilization.
6840          *
6841          * We are using actual utilization rather than the statically
6842          * claimed protection in order to be work-conserving: claimed
6843          * but unused protection is available to siblings that would
6844          * otherwise get a smaller chunk than what they claimed.
6845          */
6846         if (siblings_protected > parent_effective)
6847                 return protected * parent_effective / siblings_protected;
6848
6849         /*
6850          * Ok, utilized protection of all children is within what the
6851          * parent affords them, so we know whatever this child claims
6852          * and utilizes is effectively protected.
6853          *
6854          * If there is unprotected usage beyond this value, reclaim
6855          * will apply pressure in proportion to that amount.
6856          *
6857          * If there is unutilized protection, the cgroup will be fully
6858          * shielded from reclaim, but we do return a smaller value for
6859          * protection than what the group could enjoy in theory. This
6860          * is okay. With the overcommit distribution above, effective
6861          * protection is always dependent on how memory is actually
6862          * consumed among the siblings anyway.
6863          */
6864         ep = protected;
6865
6866         /*
6867          * If the children aren't claiming (all of) the protection
6868          * afforded to them by the parent, distribute the remainder in
6869          * proportion to the (unprotected) memory of each cgroup. That
6870          * way, cgroups that aren't explicitly prioritized wrt each
6871          * other compete freely over the allowance, but they are
6872          * collectively protected from neighboring trees.
6873          *
6874          * We're using unprotected memory for the weight so that if
6875          * some cgroups DO claim explicit protection, we don't protect
6876          * the same bytes twice.
6877          *
6878          * Check both usage and parent_usage against the respective
6879          * protected values. One should imply the other, but they
6880          * aren't read atomically - make sure the division is sane.
6881          */
6882         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6883                 return ep;
6884         if (parent_effective > siblings_protected &&
6885             parent_usage > siblings_protected &&
6886             usage > protected) {
6887                 unsigned long unclaimed;
6888
6889                 unclaimed = parent_effective - siblings_protected;
6890                 unclaimed *= usage - protected;
6891                 unclaimed /= parent_usage - siblings_protected;
6892
6893                 ep += unclaimed;
6894         }
6895
6896         return ep;
6897 }
6898
6899 /**
6900  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6901  * @root: the top ancestor of the sub-tree being checked
6902  * @memcg: the memory cgroup to check
6903  *
6904  * WARNING: This function is not stateless! It can only be used as part
6905  *          of a top-down tree iteration, not for isolated queries.
6906  */
6907 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6908                                      struct mem_cgroup *memcg)
6909 {
6910         unsigned long usage, parent_usage;
6911         struct mem_cgroup *parent;
6912
6913         if (mem_cgroup_disabled())
6914                 return;
6915
6916         if (!root)
6917                 root = root_mem_cgroup;
6918
6919         /*
6920          * Effective values of the reclaim targets are ignored so they
6921          * can be stale. Have a look at mem_cgroup_protection for more
6922          * details.
6923          * TODO: calculation should be more robust so that we do not need
6924          * that special casing.
6925          */
6926         if (memcg == root)
6927                 return;
6928
6929         usage = page_counter_read(&memcg->memory);
6930         if (!usage)
6931                 return;
6932
6933         parent = parent_mem_cgroup(memcg);
6934
6935         if (parent == root) {
6936                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6937                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6938                 return;
6939         }
6940
6941         parent_usage = page_counter_read(&parent->memory);
6942
6943         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6944                         READ_ONCE(memcg->memory.min),
6945                         READ_ONCE(parent->memory.emin),
6946                         atomic_long_read(&parent->memory.children_min_usage)));
6947
6948         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6949                         READ_ONCE(memcg->memory.low),
6950                         READ_ONCE(parent->memory.elow),
6951                         atomic_long_read(&parent->memory.children_low_usage)));
6952 }
6953
6954 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6955                         gfp_t gfp)
6956 {
6957         long nr_pages = folio_nr_pages(folio);
6958         int ret;
6959
6960         ret = try_charge(memcg, gfp, nr_pages);
6961         if (ret)
6962                 goto out;
6963
6964         css_get(&memcg->css);
6965         commit_charge(folio, memcg);
6966
6967         local_irq_disable();
6968         mem_cgroup_charge_statistics(memcg, nr_pages);
6969         memcg_check_events(memcg, folio_nid(folio));
6970         local_irq_enable();
6971 out:
6972         return ret;
6973 }
6974
6975 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6976 {
6977         struct mem_cgroup *memcg;
6978         int ret;
6979
6980         memcg = get_mem_cgroup_from_mm(mm);
6981         ret = charge_memcg(folio, memcg, gfp);
6982         css_put(&memcg->css);
6983
6984         return ret;
6985 }
6986
6987 /**
6988  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6989  * @folio: folio to charge.
6990  * @mm: mm context of the victim
6991  * @gfp: reclaim mode
6992  * @entry: swap entry for which the folio is allocated
6993  *
6994  * This function charges a folio allocated for swapin. Please call this before
6995  * adding the folio to the swapcache.
6996  *
6997  * Returns 0 on success. Otherwise, an error code is returned.
6998  */
6999 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7000                                   gfp_t gfp, swp_entry_t entry)
7001 {
7002         struct mem_cgroup *memcg;
7003         unsigned short id;
7004         int ret;
7005
7006         if (mem_cgroup_disabled())
7007                 return 0;
7008
7009         id = lookup_swap_cgroup_id(entry);
7010         rcu_read_lock();
7011         memcg = mem_cgroup_from_id(id);
7012         if (!memcg || !css_tryget_online(&memcg->css))
7013                 memcg = get_mem_cgroup_from_mm(mm);
7014         rcu_read_unlock();
7015
7016         ret = charge_memcg(folio, memcg, gfp);
7017
7018         css_put(&memcg->css);
7019         return ret;
7020 }
7021
7022 /*
7023  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7024  * @entry: swap entry for which the page is charged
7025  *
7026  * Call this function after successfully adding the charged page to swapcache.
7027  *
7028  * Note: This function assumes the page for which swap slot is being uncharged
7029  * is order 0 page.
7030  */
7031 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7032 {
7033         /*
7034          * Cgroup1's unified memory+swap counter has been charged with the
7035          * new swapcache page, finish the transfer by uncharging the swap
7036          * slot. The swap slot would also get uncharged when it dies, but
7037          * it can stick around indefinitely and we'd count the page twice
7038          * the entire time.
7039          *
7040          * Cgroup2 has separate resource counters for memory and swap,
7041          * so this is a non-issue here. Memory and swap charge lifetimes
7042          * correspond 1:1 to page and swap slot lifetimes: we charge the
7043          * page to memory here, and uncharge swap when the slot is freed.
7044          */
7045         if (!mem_cgroup_disabled() && do_memsw_account()) {
7046                 /*
7047                  * The swap entry might not get freed for a long time,
7048                  * let's not wait for it.  The page already received a
7049                  * memory+swap charge, drop the swap entry duplicate.
7050                  */
7051                 mem_cgroup_uncharge_swap(entry, 1);
7052         }
7053 }
7054
7055 struct uncharge_gather {
7056         struct mem_cgroup *memcg;
7057         unsigned long nr_memory;
7058         unsigned long pgpgout;
7059         unsigned long nr_kmem;
7060         int nid;
7061 };
7062
7063 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7064 {
7065         memset(ug, 0, sizeof(*ug));
7066 }
7067
7068 static void uncharge_batch(const struct uncharge_gather *ug)
7069 {
7070         unsigned long flags;
7071
7072         if (ug->nr_memory) {
7073                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7074                 if (do_memsw_account())
7075                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7076                 if (ug->nr_kmem)
7077                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7078                 memcg_oom_recover(ug->memcg);
7079         }
7080
7081         local_irq_save(flags);
7082         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7083         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7084         memcg_check_events(ug->memcg, ug->nid);
7085         local_irq_restore(flags);
7086
7087         /* drop reference from uncharge_folio */
7088         css_put(&ug->memcg->css);
7089 }
7090
7091 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7092 {
7093         long nr_pages;
7094         struct mem_cgroup *memcg;
7095         struct obj_cgroup *objcg;
7096
7097         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7098
7099         /*
7100          * Nobody should be changing or seriously looking at
7101          * folio memcg or objcg at this point, we have fully
7102          * exclusive access to the folio.
7103          */
7104         if (folio_memcg_kmem(folio)) {
7105                 objcg = __folio_objcg(folio);
7106                 /*
7107                  * This get matches the put at the end of the function and
7108                  * kmem pages do not hold memcg references anymore.
7109                  */
7110                 memcg = get_mem_cgroup_from_objcg(objcg);
7111         } else {
7112                 memcg = __folio_memcg(folio);
7113         }
7114
7115         if (!memcg)
7116                 return;
7117
7118         if (ug->memcg != memcg) {
7119                 if (ug->memcg) {
7120                         uncharge_batch(ug);
7121                         uncharge_gather_clear(ug);
7122                 }
7123                 ug->memcg = memcg;
7124                 ug->nid = folio_nid(folio);
7125
7126                 /* pairs with css_put in uncharge_batch */
7127                 css_get(&memcg->css);
7128         }
7129
7130         nr_pages = folio_nr_pages(folio);
7131
7132         if (folio_memcg_kmem(folio)) {
7133                 ug->nr_memory += nr_pages;
7134                 ug->nr_kmem += nr_pages;
7135
7136                 folio->memcg_data = 0;
7137                 obj_cgroup_put(objcg);
7138         } else {
7139                 /* LRU pages aren't accounted at the root level */
7140                 if (!mem_cgroup_is_root(memcg))
7141                         ug->nr_memory += nr_pages;
7142                 ug->pgpgout++;
7143
7144                 folio->memcg_data = 0;
7145         }
7146
7147         css_put(&memcg->css);
7148 }
7149
7150 void __mem_cgroup_uncharge(struct folio *folio)
7151 {
7152         struct uncharge_gather ug;
7153
7154         /* Don't touch folio->lru of any random page, pre-check: */
7155         if (!folio_memcg(folio))
7156                 return;
7157
7158         uncharge_gather_clear(&ug);
7159         uncharge_folio(folio, &ug);
7160         uncharge_batch(&ug);
7161 }
7162
7163 /**
7164  * __mem_cgroup_uncharge_list - uncharge a list of page
7165  * @page_list: list of pages to uncharge
7166  *
7167  * Uncharge a list of pages previously charged with
7168  * __mem_cgroup_charge().
7169  */
7170 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7171 {
7172         struct uncharge_gather ug;
7173         struct folio *folio;
7174
7175         uncharge_gather_clear(&ug);
7176         list_for_each_entry(folio, page_list, lru)
7177                 uncharge_folio(folio, &ug);
7178         if (ug.memcg)
7179                 uncharge_batch(&ug);
7180 }
7181
7182 /**
7183  * mem_cgroup_migrate - Charge a folio's replacement.
7184  * @old: Currently circulating folio.
7185  * @new: Replacement folio.
7186  *
7187  * Charge @new as a replacement folio for @old. @old will
7188  * be uncharged upon free.
7189  *
7190  * Both folios must be locked, @new->mapping must be set up.
7191  */
7192 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7193 {
7194         struct mem_cgroup *memcg;
7195         long nr_pages = folio_nr_pages(new);
7196         unsigned long flags;
7197
7198         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7199         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7200         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7201         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7202
7203         if (mem_cgroup_disabled())
7204                 return;
7205
7206         /* Page cache replacement: new folio already charged? */
7207         if (folio_memcg(new))
7208                 return;
7209
7210         memcg = folio_memcg(old);
7211         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7212         if (!memcg)
7213                 return;
7214
7215         /* Force-charge the new page. The old one will be freed soon */
7216         if (!mem_cgroup_is_root(memcg)) {
7217                 page_counter_charge(&memcg->memory, nr_pages);
7218                 if (do_memsw_account())
7219                         page_counter_charge(&memcg->memsw, nr_pages);
7220         }
7221
7222         css_get(&memcg->css);
7223         commit_charge(new, memcg);
7224
7225         local_irq_save(flags);
7226         mem_cgroup_charge_statistics(memcg, nr_pages);
7227         memcg_check_events(memcg, folio_nid(new));
7228         local_irq_restore(flags);
7229 }
7230
7231 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7232 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7233
7234 void mem_cgroup_sk_alloc(struct sock *sk)
7235 {
7236         struct mem_cgroup *memcg;
7237
7238         if (!mem_cgroup_sockets_enabled)
7239                 return;
7240
7241         /* Do not associate the sock with unrelated interrupted task's memcg. */
7242         if (!in_task())
7243                 return;
7244
7245         rcu_read_lock();
7246         memcg = mem_cgroup_from_task(current);
7247         if (mem_cgroup_is_root(memcg))
7248                 goto out;
7249         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7250                 goto out;
7251         if (css_tryget(&memcg->css))
7252                 sk->sk_memcg = memcg;
7253 out:
7254         rcu_read_unlock();
7255 }
7256
7257 void mem_cgroup_sk_free(struct sock *sk)
7258 {
7259         if (sk->sk_memcg)
7260                 css_put(&sk->sk_memcg->css);
7261 }
7262
7263 /**
7264  * mem_cgroup_charge_skmem - charge socket memory
7265  * @memcg: memcg to charge
7266  * @nr_pages: number of pages to charge
7267  * @gfp_mask: reclaim mode
7268  *
7269  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7270  * @memcg's configured limit, %false if it doesn't.
7271  */
7272 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7273                              gfp_t gfp_mask)
7274 {
7275         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7276                 struct page_counter *fail;
7277
7278                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7279                         memcg->tcpmem_pressure = 0;
7280                         return true;
7281                 }
7282                 memcg->tcpmem_pressure = 1;
7283                 if (gfp_mask & __GFP_NOFAIL) {
7284                         page_counter_charge(&memcg->tcpmem, nr_pages);
7285                         return true;
7286                 }
7287                 return false;
7288         }
7289
7290         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7291                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7292                 return true;
7293         }
7294
7295         return false;
7296 }
7297
7298 /**
7299  * mem_cgroup_uncharge_skmem - uncharge socket memory
7300  * @memcg: memcg to uncharge
7301  * @nr_pages: number of pages to uncharge
7302  */
7303 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7304 {
7305         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7306                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7307                 return;
7308         }
7309
7310         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7311
7312         refill_stock(memcg, nr_pages);
7313 }
7314
7315 static int __init cgroup_memory(char *s)
7316 {
7317         char *token;
7318
7319         while ((token = strsep(&s, ",")) != NULL) {
7320                 if (!*token)
7321                         continue;
7322                 if (!strcmp(token, "nosocket"))
7323                         cgroup_memory_nosocket = true;
7324                 if (!strcmp(token, "nokmem"))
7325                         cgroup_memory_nokmem = true;
7326                 if (!strcmp(token, "nobpf"))
7327                         cgroup_memory_nobpf = true;
7328         }
7329         return 1;
7330 }
7331 __setup("cgroup.memory=", cgroup_memory);
7332
7333 /*
7334  * subsys_initcall() for memory controller.
7335  *
7336  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7337  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7338  * basically everything that doesn't depend on a specific mem_cgroup structure
7339  * should be initialized from here.
7340  */
7341 static int __init mem_cgroup_init(void)
7342 {
7343         int cpu, node;
7344
7345         /*
7346          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7347          * used for per-memcg-per-cpu caching of per-node statistics. In order
7348          * to work fine, we should make sure that the overfill threshold can't
7349          * exceed S32_MAX / PAGE_SIZE.
7350          */
7351         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7352
7353         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7354                                   memcg_hotplug_cpu_dead);
7355
7356         for_each_possible_cpu(cpu)
7357                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7358                           drain_local_stock);
7359
7360         for_each_node(node) {
7361                 struct mem_cgroup_tree_per_node *rtpn;
7362
7363                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7364                                     node_online(node) ? node : NUMA_NO_NODE);
7365
7366                 rtpn->rb_root = RB_ROOT;
7367                 rtpn->rb_rightmost = NULL;
7368                 spin_lock_init(&rtpn->lock);
7369                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7370         }
7371
7372         return 0;
7373 }
7374 subsys_initcall(mem_cgroup_init);
7375
7376 #ifdef CONFIG_SWAP
7377 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7378 {
7379         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7380                 /*
7381                  * The root cgroup cannot be destroyed, so it's refcount must
7382                  * always be >= 1.
7383                  */
7384                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7385                         VM_BUG_ON(1);
7386                         break;
7387                 }
7388                 memcg = parent_mem_cgroup(memcg);
7389                 if (!memcg)
7390                         memcg = root_mem_cgroup;
7391         }
7392         return memcg;
7393 }
7394
7395 /**
7396  * mem_cgroup_swapout - transfer a memsw charge to swap
7397  * @folio: folio whose memsw charge to transfer
7398  * @entry: swap entry to move the charge to
7399  *
7400  * Transfer the memsw charge of @folio to @entry.
7401  */
7402 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7403 {
7404         struct mem_cgroup *memcg, *swap_memcg;
7405         unsigned int nr_entries;
7406         unsigned short oldid;
7407
7408         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7409         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7410
7411         if (mem_cgroup_disabled())
7412                 return;
7413
7414         if (!do_memsw_account())
7415                 return;
7416
7417         memcg = folio_memcg(folio);
7418
7419         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7420         if (!memcg)
7421                 return;
7422
7423         /*
7424          * In case the memcg owning these pages has been offlined and doesn't
7425          * have an ID allocated to it anymore, charge the closest online
7426          * ancestor for the swap instead and transfer the memory+swap charge.
7427          */
7428         swap_memcg = mem_cgroup_id_get_online(memcg);
7429         nr_entries = folio_nr_pages(folio);
7430         /* Get references for the tail pages, too */
7431         if (nr_entries > 1)
7432                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7433         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7434                                    nr_entries);
7435         VM_BUG_ON_FOLIO(oldid, folio);
7436         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7437
7438         folio->memcg_data = 0;
7439
7440         if (!mem_cgroup_is_root(memcg))
7441                 page_counter_uncharge(&memcg->memory, nr_entries);
7442
7443         if (memcg != swap_memcg) {
7444                 if (!mem_cgroup_is_root(swap_memcg))
7445                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7446                 page_counter_uncharge(&memcg->memsw, nr_entries);
7447         }
7448
7449         /*
7450          * Interrupts should be disabled here because the caller holds the
7451          * i_pages lock which is taken with interrupts-off. It is
7452          * important here to have the interrupts disabled because it is the
7453          * only synchronisation we have for updating the per-CPU variables.
7454          */
7455         memcg_stats_lock();
7456         mem_cgroup_charge_statistics(memcg, -nr_entries);
7457         memcg_stats_unlock();
7458         memcg_check_events(memcg, folio_nid(folio));
7459
7460         css_put(&memcg->css);
7461 }
7462
7463 /**
7464  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7465  * @folio: folio being added to swap
7466  * @entry: swap entry to charge
7467  *
7468  * Try to charge @folio's memcg for the swap space at @entry.
7469  *
7470  * Returns 0 on success, -ENOMEM on failure.
7471  */
7472 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7473 {
7474         unsigned int nr_pages = folio_nr_pages(folio);
7475         struct page_counter *counter;
7476         struct mem_cgroup *memcg;
7477         unsigned short oldid;
7478
7479         if (do_memsw_account())
7480                 return 0;
7481
7482         memcg = folio_memcg(folio);
7483
7484         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7485         if (!memcg)
7486                 return 0;
7487
7488         if (!entry.val) {
7489                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7490                 return 0;
7491         }
7492
7493         memcg = mem_cgroup_id_get_online(memcg);
7494
7495         if (!mem_cgroup_is_root(memcg) &&
7496             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7497                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7498                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7499                 mem_cgroup_id_put(memcg);
7500                 return -ENOMEM;
7501         }
7502
7503         /* Get references for the tail pages, too */
7504         if (nr_pages > 1)
7505                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7506         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7507         VM_BUG_ON_FOLIO(oldid, folio);
7508         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7509
7510         return 0;
7511 }
7512
7513 /**
7514  * __mem_cgroup_uncharge_swap - uncharge swap space
7515  * @entry: swap entry to uncharge
7516  * @nr_pages: the amount of swap space to uncharge
7517  */
7518 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7519 {
7520         struct mem_cgroup *memcg;
7521         unsigned short id;
7522
7523         if (mem_cgroup_disabled())
7524                 return;
7525
7526         id = swap_cgroup_record(entry, 0, nr_pages);
7527         rcu_read_lock();
7528         memcg = mem_cgroup_from_id(id);
7529         if (memcg) {
7530                 if (!mem_cgroup_is_root(memcg)) {
7531                         if (do_memsw_account())
7532                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7533                         else
7534                                 page_counter_uncharge(&memcg->swap, nr_pages);
7535                 }
7536                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7537                 mem_cgroup_id_put_many(memcg, nr_pages);
7538         }
7539         rcu_read_unlock();
7540 }
7541
7542 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7543 {
7544         long nr_swap_pages = get_nr_swap_pages();
7545
7546         if (mem_cgroup_disabled() || do_memsw_account())
7547                 return nr_swap_pages;
7548         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7549                 nr_swap_pages = min_t(long, nr_swap_pages,
7550                                       READ_ONCE(memcg->swap.max) -
7551                                       page_counter_read(&memcg->swap));
7552         return nr_swap_pages;
7553 }
7554
7555 bool mem_cgroup_swap_full(struct folio *folio)
7556 {
7557         struct mem_cgroup *memcg;
7558
7559         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7560
7561         if (vm_swap_full())
7562                 return true;
7563         if (do_memsw_account())
7564                 return false;
7565
7566         memcg = folio_memcg(folio);
7567         if (!memcg)
7568                 return false;
7569
7570         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7571                 unsigned long usage = page_counter_read(&memcg->swap);
7572
7573                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7574                     usage * 2 >= READ_ONCE(memcg->swap.max))
7575                         return true;
7576         }
7577
7578         return false;
7579 }
7580
7581 static int __init setup_swap_account(char *s)
7582 {
7583         pr_warn_once("The swapaccount= commandline option is deprecated. "
7584                      "Please report your usecase to linux-mm@kvack.org if you "
7585                      "depend on this functionality.\n");
7586         return 1;
7587 }
7588 __setup("swapaccount=", setup_swap_account);
7589
7590 static u64 swap_current_read(struct cgroup_subsys_state *css,
7591                              struct cftype *cft)
7592 {
7593         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7594
7595         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7596 }
7597
7598 static int swap_high_show(struct seq_file *m, void *v)
7599 {
7600         return seq_puts_memcg_tunable(m,
7601                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7602 }
7603
7604 static ssize_t swap_high_write(struct kernfs_open_file *of,
7605                                char *buf, size_t nbytes, loff_t off)
7606 {
7607         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7608         unsigned long high;
7609         int err;
7610
7611         buf = strstrip(buf);
7612         err = page_counter_memparse(buf, "max", &high);
7613         if (err)
7614                 return err;
7615
7616         page_counter_set_high(&memcg->swap, high);
7617
7618         return nbytes;
7619 }
7620
7621 static int swap_max_show(struct seq_file *m, void *v)
7622 {
7623         return seq_puts_memcg_tunable(m,
7624                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7625 }
7626
7627 static ssize_t swap_max_write(struct kernfs_open_file *of,
7628                               char *buf, size_t nbytes, loff_t off)
7629 {
7630         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7631         unsigned long max;
7632         int err;
7633
7634         buf = strstrip(buf);
7635         err = page_counter_memparse(buf, "max", &max);
7636         if (err)
7637                 return err;
7638
7639         xchg(&memcg->swap.max, max);
7640
7641         return nbytes;
7642 }
7643
7644 static int swap_events_show(struct seq_file *m, void *v)
7645 {
7646         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7647
7648         seq_printf(m, "high %lu\n",
7649                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7650         seq_printf(m, "max %lu\n",
7651                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7652         seq_printf(m, "fail %lu\n",
7653                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7654
7655         return 0;
7656 }
7657
7658 static struct cftype swap_files[] = {
7659         {
7660                 .name = "swap.current",
7661                 .flags = CFTYPE_NOT_ON_ROOT,
7662                 .read_u64 = swap_current_read,
7663         },
7664         {
7665                 .name = "swap.high",
7666                 .flags = CFTYPE_NOT_ON_ROOT,
7667                 .seq_show = swap_high_show,
7668                 .write = swap_high_write,
7669         },
7670         {
7671                 .name = "swap.max",
7672                 .flags = CFTYPE_NOT_ON_ROOT,
7673                 .seq_show = swap_max_show,
7674                 .write = swap_max_write,
7675         },
7676         {
7677                 .name = "swap.events",
7678                 .flags = CFTYPE_NOT_ON_ROOT,
7679                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7680                 .seq_show = swap_events_show,
7681         },
7682         { }     /* terminate */
7683 };
7684
7685 static struct cftype memsw_files[] = {
7686         {
7687                 .name = "memsw.usage_in_bytes",
7688                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7689                 .read_u64 = mem_cgroup_read_u64,
7690         },
7691         {
7692                 .name = "memsw.max_usage_in_bytes",
7693                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7694                 .write = mem_cgroup_reset,
7695                 .read_u64 = mem_cgroup_read_u64,
7696         },
7697         {
7698                 .name = "memsw.limit_in_bytes",
7699                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7700                 .write = mem_cgroup_write,
7701                 .read_u64 = mem_cgroup_read_u64,
7702         },
7703         {
7704                 .name = "memsw.failcnt",
7705                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7706                 .write = mem_cgroup_reset,
7707                 .read_u64 = mem_cgroup_read_u64,
7708         },
7709         { },    /* terminate */
7710 };
7711
7712 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7713 /**
7714  * obj_cgroup_may_zswap - check if this cgroup can zswap
7715  * @objcg: the object cgroup
7716  *
7717  * Check if the hierarchical zswap limit has been reached.
7718  *
7719  * This doesn't check for specific headroom, and it is not atomic
7720  * either. But with zswap, the size of the allocation is only known
7721  * once compression has occured, and this optimistic pre-check avoids
7722  * spending cycles on compression when there is already no room left
7723  * or zswap is disabled altogether somewhere in the hierarchy.
7724  */
7725 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7726 {
7727         struct mem_cgroup *memcg, *original_memcg;
7728         bool ret = true;
7729
7730         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7731                 return true;
7732
7733         original_memcg = get_mem_cgroup_from_objcg(objcg);
7734         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7735              memcg = parent_mem_cgroup(memcg)) {
7736                 unsigned long max = READ_ONCE(memcg->zswap_max);
7737                 unsigned long pages;
7738
7739                 if (max == PAGE_COUNTER_MAX)
7740                         continue;
7741                 if (max == 0) {
7742                         ret = false;
7743                         break;
7744                 }
7745
7746                 cgroup_rstat_flush(memcg->css.cgroup);
7747                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7748                 if (pages < max)
7749                         continue;
7750                 ret = false;
7751                 break;
7752         }
7753         mem_cgroup_put(original_memcg);
7754         return ret;
7755 }
7756
7757 /**
7758  * obj_cgroup_charge_zswap - charge compression backend memory
7759  * @objcg: the object cgroup
7760  * @size: size of compressed object
7761  *
7762  * This forces the charge after obj_cgroup_may_swap() allowed
7763  * compression and storage in zwap for this cgroup to go ahead.
7764  */
7765 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7766 {
7767         struct mem_cgroup *memcg;
7768
7769         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7770                 return;
7771
7772         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7773
7774         /* PF_MEMALLOC context, charging must succeed */
7775         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7776                 VM_WARN_ON_ONCE(1);
7777
7778         rcu_read_lock();
7779         memcg = obj_cgroup_memcg(objcg);
7780         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7781         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7782         rcu_read_unlock();
7783 }
7784
7785 /**
7786  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7787  * @objcg: the object cgroup
7788  * @size: size of compressed object
7789  *
7790  * Uncharges zswap memory on page in.
7791  */
7792 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7793 {
7794         struct mem_cgroup *memcg;
7795
7796         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7797                 return;
7798
7799         obj_cgroup_uncharge(objcg, size);
7800
7801         rcu_read_lock();
7802         memcg = obj_cgroup_memcg(objcg);
7803         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7804         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7805         rcu_read_unlock();
7806 }
7807
7808 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7809                               struct cftype *cft)
7810 {
7811         cgroup_rstat_flush(css->cgroup);
7812         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7813 }
7814
7815 static int zswap_max_show(struct seq_file *m, void *v)
7816 {
7817         return seq_puts_memcg_tunable(m,
7818                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7819 }
7820
7821 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7822                                char *buf, size_t nbytes, loff_t off)
7823 {
7824         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7825         unsigned long max;
7826         int err;
7827
7828         buf = strstrip(buf);
7829         err = page_counter_memparse(buf, "max", &max);
7830         if (err)
7831                 return err;
7832
7833         xchg(&memcg->zswap_max, max);
7834
7835         return nbytes;
7836 }
7837
7838 static struct cftype zswap_files[] = {
7839         {
7840                 .name = "zswap.current",
7841                 .flags = CFTYPE_NOT_ON_ROOT,
7842                 .read_u64 = zswap_current_read,
7843         },
7844         {
7845                 .name = "zswap.max",
7846                 .flags = CFTYPE_NOT_ON_ROOT,
7847                 .seq_show = zswap_max_show,
7848                 .write = zswap_max_write,
7849         },
7850         { }     /* terminate */
7851 };
7852 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7853
7854 static int __init mem_cgroup_swap_init(void)
7855 {
7856         if (mem_cgroup_disabled())
7857                 return 0;
7858
7859         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7860         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7861 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7862         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7863 #endif
7864         return 0;
7865 }
7866 subsys_initcall(mem_cgroup_swap_init);
7867
7868 #endif /* CONFIG_SWAP */