1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
72 static int really_do_swap_account __initdata = 0;
76 #define do_swap_account (0)
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
134 * per-zone information in memory controller.
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
204 struct mem_cgroup_threshold_ary *spare;
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
228 struct cgroup_subsys_state css;
230 * the counter to account for memory usage
232 struct res_counter res;
234 * the counter to account for mem+swap usage.
236 struct res_counter memsw;
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
241 struct mem_cgroup_lru_info info;
242 int last_scanned_node;
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
249 * Should the accounting and control be hierarchical, per subtree?
259 /* OOM-Killer disable */
260 int oom_kill_disable;
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
281 unsigned long move_charge_at_immigrate;
285 struct mem_cgroup_stat_cpu *stat;
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
294 struct tcp_memcontrol tcp_mem;
298 /* Stuffs for move charges at task migration. */
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 spinlock_t lock; /* for from, to */
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
315 unsigned long moved_charge;
316 unsigned long moved_swap;
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
324 static bool move_anon(void)
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
330 static bool move_file(void)
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
353 /* for encoding cft->private value on file */
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380 void sock_update_memcg(struct sock *sk)
382 if (mem_cgroup_sockets_enabled) {
383 struct mem_cgroup *memcg;
385 BUG_ON(!sk->sk_prot->proto_cgroup);
387 /* Socket cloning can throw us here with sk_cgrp already
388 * filled. It won't however, necessarily happen from
389 * process context. So the test for root memcg given
390 * the current task's memcg won't help us in this case.
392 * Respecting the original socket's memcg is a better
393 * decision in this case.
396 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 mem_cgroup_get(sk->sk_cgrp->memcg);
402 memcg = mem_cgroup_from_task(current);
403 if (!mem_cgroup_is_root(memcg)) {
404 mem_cgroup_get(memcg);
405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
410 EXPORT_SYMBOL(sock_update_memcg);
412 void sock_release_memcg(struct sock *sk)
414 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
415 struct mem_cgroup *memcg;
416 WARN_ON(!sk->sk_cgrp->memcg);
417 memcg = sk->sk_cgrp->memcg;
418 mem_cgroup_put(memcg);
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
425 if (!memcg || mem_cgroup_is_root(memcg))
428 return &memcg->tcp_mem.cg_proto;
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
453 return mem_cgroup_zoneinfo(memcg, nid, zid);
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
512 rb_erase(&mz->tree_node, &mctz->rb_root);
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
521 spin_lock(&mctz->lock);
522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 spin_unlock(&mctz->lock);
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529 unsigned long long excess;
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
534 mctz = soft_limit_tree_from_page(page);
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
547 if (excess || mz->on_tree) {
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 spin_unlock(&mctz->lock);
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
568 for_each_node(node) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 mctz = soft_limit_tree_node_zone(node, zone);
572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
580 struct rb_node *rightmost = NULL;
581 struct mem_cgroup_per_zone *mz;
585 rightmost = rb_last(&mctz->rb_root);
587 goto done; /* Nothing to reclaim from */
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
606 struct mem_cgroup_per_zone *mz;
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
615 * Implementation Note: reading percpu statistics for memcg.
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 enum mem_cgroup_stat_index idx)
640 for_each_online_cpu(cpu)
641 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
654 int val = (charge) ? 1 : -1;
655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 enum mem_cgroup_events_index idx)
661 unsigned long val = 0;
664 for_each_online_cpu(cpu)
665 val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 bool file, int nr_pages)
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
686 /* pagein of a big page is an event. So, ignore page size */
688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 nr_pages = -nr_pages; /* for event */
694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 unsigned int lru_mask)
703 struct mem_cgroup_per_zone *mz;
705 unsigned long ret = 0;
707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid, unsigned int lru_mask)
723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 unsigned int lru_mask)
736 for_each_node_state(nid, N_HIGH_MEMORY)
737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
744 unsigned long val, next;
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
748 /* from time_after() in jiffies.h */
749 if ((long)next - (long)val < 0) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
763 __this_cpu_write(memcg->stat->targets[target], next);
770 * Check events in order.
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
776 /* threshold event is triggered in finer grain than soft limit */
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
780 bool do_numainfo __maybe_unused;
782 do_softlimit = mem_cgroup_event_ratelimit(memcg,
783 MEM_CGROUP_TARGET_SOFTLIMIT);
785 do_numainfo = mem_cgroup_event_ratelimit(memcg,
786 MEM_CGROUP_TARGET_NUMAINFO);
790 mem_cgroup_threshold(memcg);
791 if (unlikely(do_softlimit))
792 mem_cgroup_update_tree(memcg, page);
794 if (unlikely(do_numainfo))
795 atomic_inc(&memcg->numainfo_events);
801 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
803 return container_of(cgroup_subsys_state(cont,
804 mem_cgroup_subsys_id), struct mem_cgroup,
808 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
811 * mm_update_next_owner() may clear mm->owner to NULL
812 * if it races with swapoff, page migration, etc.
813 * So this can be called with p == NULL.
818 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
819 struct mem_cgroup, css);
822 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
824 struct mem_cgroup *memcg = NULL;
829 * Because we have no locks, mm->owner's may be being moved to other
830 * cgroup. We use css_tryget() here even if this looks
831 * pessimistic (rather than adding locks here).
835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 if (unlikely(!memcg))
838 } while (!css_tryget(&memcg->css));
844 * mem_cgroup_iter - iterate over memory cgroup hierarchy
845 * @root: hierarchy root
846 * @prev: previously returned memcg, NULL on first invocation
847 * @reclaim: cookie for shared reclaim walks, NULL for full walks
849 * Returns references to children of the hierarchy below @root, or
850 * @root itself, or %NULL after a full round-trip.
852 * Caller must pass the return value in @prev on subsequent
853 * invocations for reference counting, or use mem_cgroup_iter_break()
854 * to cancel a hierarchy walk before the round-trip is complete.
856 * Reclaimers can specify a zone and a priority level in @reclaim to
857 * divide up the memcgs in the hierarchy among all concurrent
858 * reclaimers operating on the same zone and priority.
860 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
861 struct mem_cgroup *prev,
862 struct mem_cgroup_reclaim_cookie *reclaim)
864 struct mem_cgroup *memcg = NULL;
867 if (mem_cgroup_disabled())
871 root = root_mem_cgroup;
873 if (prev && !reclaim)
874 id = css_id(&prev->css);
876 if (prev && prev != root)
879 if (!root->use_hierarchy && root != root_mem_cgroup) {
886 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887 struct cgroup_subsys_state *css;
890 int nid = zone_to_nid(reclaim->zone);
891 int zid = zone_idx(reclaim->zone);
892 struct mem_cgroup_per_zone *mz;
894 mz = mem_cgroup_zoneinfo(root, nid, zid);
895 iter = &mz->reclaim_iter[reclaim->priority];
896 if (prev && reclaim->generation != iter->generation)
902 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
904 if (css == &root->css || css_tryget(css))
905 memcg = container_of(css,
906 struct mem_cgroup, css);
915 else if (!prev && memcg)
916 reclaim->generation = iter->generation;
926 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
927 * @root: hierarchy root
928 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
930 void mem_cgroup_iter_break(struct mem_cgroup *root,
931 struct mem_cgroup *prev)
934 root = root_mem_cgroup;
935 if (prev && prev != root)
940 * Iteration constructs for visiting all cgroups (under a tree). If
941 * loops are exited prematurely (break), mem_cgroup_iter_break() must
942 * be used for reference counting.
944 #define for_each_mem_cgroup_tree(iter, root) \
945 for (iter = mem_cgroup_iter(root, NULL, NULL); \
947 iter = mem_cgroup_iter(root, iter, NULL))
949 #define for_each_mem_cgroup(iter) \
950 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
952 iter = mem_cgroup_iter(NULL, iter, NULL))
954 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
956 return (memcg == root_mem_cgroup);
959 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
961 struct mem_cgroup *memcg;
967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 if (unlikely(!memcg))
973 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
976 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
984 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
987 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
988 * @zone: zone of the wanted lruvec
989 * @mem: memcg of the wanted lruvec
991 * Returns the lru list vector holding pages for the given @zone and
992 * @mem. This can be the global zone lruvec, if the memory controller
995 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
996 struct mem_cgroup *memcg)
998 struct mem_cgroup_per_zone *mz;
1000 if (mem_cgroup_disabled())
1001 return &zone->lruvec;
1003 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1008 * Following LRU functions are allowed to be used without PCG_LOCK.
1009 * Operations are called by routine of global LRU independently from memcg.
1010 * What we have to take care of here is validness of pc->mem_cgroup.
1012 * Changes to pc->mem_cgroup happens when
1015 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1016 * It is added to LRU before charge.
1017 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1018 * When moving account, the page is not on LRU. It's isolated.
1022 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1023 * @zone: zone of the page
1027 * This function accounts for @page being added to @lru, and returns
1028 * the lruvec for the given @zone and the memcg @page is charged to.
1030 * The callsite is then responsible for physically linking the page to
1031 * the returned lruvec->lists[@lru].
1033 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1036 struct mem_cgroup_per_zone *mz;
1037 struct mem_cgroup *memcg;
1038 struct page_cgroup *pc;
1040 if (mem_cgroup_disabled())
1041 return &zone->lruvec;
1043 pc = lookup_page_cgroup(page);
1044 memcg = pc->mem_cgroup;
1047 * Surreptitiously switch any uncharged page to root:
1048 * an uncharged page off lru does nothing to secure
1049 * its former mem_cgroup from sudden removal.
1051 * Our caller holds lru_lock, and PageCgroupUsed is updated
1052 * under page_cgroup lock: between them, they make all uses
1053 * of pc->mem_cgroup safe.
1055 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1056 pc->mem_cgroup = memcg = root_mem_cgroup;
1058 mz = page_cgroup_zoneinfo(memcg, page);
1059 /* compound_order() is stabilized through lru_lock */
1060 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1065 * mem_cgroup_lru_del_list - account for removing an lru page
1069 * This function accounts for @page being removed from @lru.
1071 * The callsite is then responsible for physically unlinking
1074 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1076 struct mem_cgroup_per_zone *mz;
1077 struct mem_cgroup *memcg;
1078 struct page_cgroup *pc;
1080 if (mem_cgroup_disabled())
1083 pc = lookup_page_cgroup(page);
1084 memcg = pc->mem_cgroup;
1086 mz = page_cgroup_zoneinfo(memcg, page);
1087 /* huge page split is done under lru_lock. so, we have no races. */
1088 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1089 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1092 void mem_cgroup_lru_del(struct page *page)
1094 mem_cgroup_lru_del_list(page, page_lru(page));
1098 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1099 * @zone: zone of the page
1101 * @from: current lru
1104 * This function accounts for @page being moved between the lrus @from
1105 * and @to, and returns the lruvec for the given @zone and the memcg
1106 * @page is charged to.
1108 * The callsite is then responsible for physically relinking
1109 * @page->lru to the returned lruvec->lists[@to].
1111 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1116 /* XXX: Optimize this, especially for @from == @to */
1117 mem_cgroup_lru_del_list(page, from);
1118 return mem_cgroup_lru_add_list(zone, page, to);
1122 * Checks whether given mem is same or in the root_mem_cgroup's
1125 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1126 struct mem_cgroup *memcg)
1128 if (root_memcg != memcg) {
1129 return (root_memcg->use_hierarchy &&
1130 css_is_ancestor(&memcg->css, &root_memcg->css));
1136 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1139 struct mem_cgroup *curr = NULL;
1140 struct task_struct *p;
1142 p = find_lock_task_mm(task);
1144 curr = try_get_mem_cgroup_from_mm(p->mm);
1148 * All threads may have already detached their mm's, but the oom
1149 * killer still needs to detect if they have already been oom
1150 * killed to prevent needlessly killing additional tasks.
1153 curr = mem_cgroup_from_task(task);
1155 css_get(&curr->css);
1161 * We should check use_hierarchy of "memcg" not "curr". Because checking
1162 * use_hierarchy of "curr" here make this function true if hierarchy is
1163 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1164 * hierarchy(even if use_hierarchy is disabled in "memcg").
1166 ret = mem_cgroup_same_or_subtree(memcg, curr);
1167 css_put(&curr->css);
1171 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1173 unsigned long inactive_ratio;
1174 int nid = zone_to_nid(zone);
1175 int zid = zone_idx(zone);
1176 unsigned long inactive;
1177 unsigned long active;
1180 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1181 BIT(LRU_INACTIVE_ANON));
1182 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1183 BIT(LRU_ACTIVE_ANON));
1185 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1187 inactive_ratio = int_sqrt(10 * gb);
1191 return inactive * inactive_ratio < active;
1194 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1196 unsigned long active;
1197 unsigned long inactive;
1198 int zid = zone_idx(zone);
1199 int nid = zone_to_nid(zone);
1201 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1202 BIT(LRU_INACTIVE_FILE));
1203 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1204 BIT(LRU_ACTIVE_FILE));
1206 return (active > inactive);
1209 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1212 int nid = zone_to_nid(zone);
1213 int zid = zone_idx(zone);
1214 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1216 return &mz->reclaim_stat;
1219 struct zone_reclaim_stat *
1220 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1222 struct page_cgroup *pc;
1223 struct mem_cgroup_per_zone *mz;
1225 if (mem_cgroup_disabled())
1228 pc = lookup_page_cgroup(page);
1229 if (!PageCgroupUsed(pc))
1231 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1233 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1234 return &mz->reclaim_stat;
1237 #define mem_cgroup_from_res_counter(counter, member) \
1238 container_of(counter, struct mem_cgroup, member)
1241 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1242 * @mem: the memory cgroup
1244 * Returns the maximum amount of memory @mem can be charged with, in
1247 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1249 unsigned long long margin;
1251 margin = res_counter_margin(&memcg->res);
1252 if (do_swap_account)
1253 margin = min(margin, res_counter_margin(&memcg->memsw));
1254 return margin >> PAGE_SHIFT;
1257 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1259 struct cgroup *cgrp = memcg->css.cgroup;
1262 if (cgrp->parent == NULL)
1263 return vm_swappiness;
1265 return memcg->swappiness;
1268 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1273 spin_lock(&memcg->pcp_counter_lock);
1274 for_each_online_cpu(cpu)
1275 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1276 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1277 spin_unlock(&memcg->pcp_counter_lock);
1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1290 spin_lock(&memcg->pcp_counter_lock);
1291 for_each_online_cpu(cpu)
1292 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1293 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1294 spin_unlock(&memcg->pcp_counter_lock);
1298 * 2 routines for checking "mem" is under move_account() or not.
1300 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1301 * for avoiding race in accounting. If true,
1302 * pc->mem_cgroup may be overwritten.
1304 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1305 * under hierarchy of moving cgroups. This is for
1306 * waiting at hith-memory prressure caused by "move".
1309 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1311 VM_BUG_ON(!rcu_read_lock_held());
1312 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1317 struct mem_cgroup *from;
1318 struct mem_cgroup *to;
1321 * Unlike task_move routines, we access mc.to, mc.from not under
1322 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1324 spin_lock(&mc.lock);
1330 ret = mem_cgroup_same_or_subtree(memcg, from)
1331 || mem_cgroup_same_or_subtree(memcg, to);
1333 spin_unlock(&mc.lock);
1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1339 if (mc.moving_task && current != mc.moving_task) {
1340 if (mem_cgroup_under_move(memcg)) {
1342 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 /* moving charge context might have finished. */
1346 finish_wait(&mc.waitq, &wait);
1354 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1355 * @memcg: The memory cgroup that went over limit
1356 * @p: Task that is going to be killed
1358 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1361 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1363 struct cgroup *task_cgrp;
1364 struct cgroup *mem_cgrp;
1366 * Need a buffer in BSS, can't rely on allocations. The code relies
1367 * on the assumption that OOM is serialized for memory controller.
1368 * If this assumption is broken, revisit this code.
1370 static char memcg_name[PATH_MAX];
1379 mem_cgrp = memcg->css.cgroup;
1380 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1382 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1385 * Unfortunately, we are unable to convert to a useful name
1386 * But we'll still print out the usage information
1393 printk(KERN_INFO "Task in %s killed", memcg_name);
1396 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1404 * Continues from above, so we don't need an KERN_ level
1406 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1409 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1410 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1411 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1412 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1413 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1415 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1416 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1417 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1421 * This function returns the number of memcg under hierarchy tree. Returns
1422 * 1(self count) if no children.
1424 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1427 struct mem_cgroup *iter;
1429 for_each_mem_cgroup_tree(iter, memcg)
1435 * Return the memory (and swap, if configured) limit for a memcg.
1437 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1442 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1443 limit += total_swap_pages << PAGE_SHIFT;
1445 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1447 * If memsw is finite and limits the amount of swap space available
1448 * to this memcg, return that limit.
1450 return min(limit, memsw);
1453 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1455 unsigned long flags)
1457 unsigned long total = 0;
1458 bool noswap = false;
1461 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1463 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1466 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1468 drain_all_stock_async(memcg);
1469 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1471 * Allow limit shrinkers, which are triggered directly
1472 * by userspace, to catch signals and stop reclaim
1473 * after minimal progress, regardless of the margin.
1475 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1477 if (mem_cgroup_margin(memcg))
1480 * If nothing was reclaimed after two attempts, there
1481 * may be no reclaimable pages in this hierarchy.
1490 * test_mem_cgroup_node_reclaimable
1491 * @mem: the target memcg
1492 * @nid: the node ID to be checked.
1493 * @noswap : specify true here if the user wants flle only information.
1495 * This function returns whether the specified memcg contains any
1496 * reclaimable pages on a node. Returns true if there are any reclaimable
1497 * pages in the node.
1499 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1500 int nid, bool noswap)
1502 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1504 if (noswap || !total_swap_pages)
1506 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1511 #if MAX_NUMNODES > 1
1514 * Always updating the nodemask is not very good - even if we have an empty
1515 * list or the wrong list here, we can start from some node and traverse all
1516 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1523 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524 * pagein/pageout changes since the last update.
1526 if (!atomic_read(&memcg->numainfo_events))
1528 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1531 /* make a nodemask where this memcg uses memory from */
1532 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1534 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1536 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1537 node_clear(nid, memcg->scan_nodes);
1540 atomic_set(&memcg->numainfo_events, 0);
1541 atomic_set(&memcg->numainfo_updating, 0);
1545 * Selecting a node where we start reclaim from. Because what we need is just
1546 * reducing usage counter, start from anywhere is O,K. Considering
1547 * memory reclaim from current node, there are pros. and cons.
1549 * Freeing memory from current node means freeing memory from a node which
1550 * we'll use or we've used. So, it may make LRU bad. And if several threads
1551 * hit limits, it will see a contention on a node. But freeing from remote
1552 * node means more costs for memory reclaim because of memory latency.
1554 * Now, we use round-robin. Better algorithm is welcomed.
1556 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1560 mem_cgroup_may_update_nodemask(memcg);
1561 node = memcg->last_scanned_node;
1563 node = next_node(node, memcg->scan_nodes);
1564 if (node == MAX_NUMNODES)
1565 node = first_node(memcg->scan_nodes);
1567 * We call this when we hit limit, not when pages are added to LRU.
1568 * No LRU may hold pages because all pages are UNEVICTABLE or
1569 * memcg is too small and all pages are not on LRU. In that case,
1570 * we use curret node.
1572 if (unlikely(node == MAX_NUMNODES))
1573 node = numa_node_id();
1575 memcg->last_scanned_node = node;
1580 * Check all nodes whether it contains reclaimable pages or not.
1581 * For quick scan, we make use of scan_nodes. This will allow us to skip
1582 * unused nodes. But scan_nodes is lazily updated and may not cotain
1583 * enough new information. We need to do double check.
1585 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1590 * quick check...making use of scan_node.
1591 * We can skip unused nodes.
1593 if (!nodes_empty(memcg->scan_nodes)) {
1594 for (nid = first_node(memcg->scan_nodes);
1596 nid = next_node(nid, memcg->scan_nodes)) {
1598 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1603 * Check rest of nodes.
1605 for_each_node_state(nid, N_HIGH_MEMORY) {
1606 if (node_isset(nid, memcg->scan_nodes))
1608 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1615 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1620 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1622 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1626 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1629 unsigned long *total_scanned)
1631 struct mem_cgroup *victim = NULL;
1634 unsigned long excess;
1635 unsigned long nr_scanned;
1636 struct mem_cgroup_reclaim_cookie reclaim = {
1641 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1644 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1649 * If we have not been able to reclaim
1650 * anything, it might because there are
1651 * no reclaimable pages under this hierarchy
1656 * We want to do more targeted reclaim.
1657 * excess >> 2 is not to excessive so as to
1658 * reclaim too much, nor too less that we keep
1659 * coming back to reclaim from this cgroup
1661 if (total >= (excess >> 2) ||
1662 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1667 if (!mem_cgroup_reclaimable(victim, false))
1669 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1671 *total_scanned += nr_scanned;
1672 if (!res_counter_soft_limit_excess(&root_memcg->res))
1675 mem_cgroup_iter_break(root_memcg, victim);
1680 * Check OOM-Killer is already running under our hierarchy.
1681 * If someone is running, return false.
1682 * Has to be called with memcg_oom_lock
1684 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1686 struct mem_cgroup *iter, *failed = NULL;
1688 for_each_mem_cgroup_tree(iter, memcg) {
1689 if (iter->oom_lock) {
1691 * this subtree of our hierarchy is already locked
1692 * so we cannot give a lock.
1695 mem_cgroup_iter_break(memcg, iter);
1698 iter->oom_lock = true;
1705 * OK, we failed to lock the whole subtree so we have to clean up
1706 * what we set up to the failing subtree
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 if (iter == failed) {
1710 mem_cgroup_iter_break(memcg, iter);
1713 iter->oom_lock = false;
1719 * Has to be called with memcg_oom_lock
1721 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1723 struct mem_cgroup *iter;
1725 for_each_mem_cgroup_tree(iter, memcg)
1726 iter->oom_lock = false;
1730 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1732 struct mem_cgroup *iter;
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 atomic_inc(&iter->under_oom);
1738 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740 struct mem_cgroup *iter;
1743 * When a new child is created while the hierarchy is under oom,
1744 * mem_cgroup_oom_lock() may not be called. We have to use
1745 * atomic_add_unless() here.
1747 for_each_mem_cgroup_tree(iter, memcg)
1748 atomic_add_unless(&iter->under_oom, -1, 0);
1751 static DEFINE_SPINLOCK(memcg_oom_lock);
1752 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1754 struct oom_wait_info {
1755 struct mem_cgroup *mem;
1759 static int memcg_oom_wake_function(wait_queue_t *wait,
1760 unsigned mode, int sync, void *arg)
1762 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1764 struct oom_wait_info *oom_wait_info;
1766 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1767 oom_wait_memcg = oom_wait_info->mem;
1770 * Both of oom_wait_info->mem and wake_mem are stable under us.
1771 * Then we can use css_is_ancestor without taking care of RCU.
1773 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1774 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1776 return autoremove_wake_function(wait, mode, sync, arg);
1779 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1781 /* for filtering, pass "memcg" as argument. */
1782 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1785 static void memcg_oom_recover(struct mem_cgroup *memcg)
1787 if (memcg && atomic_read(&memcg->under_oom))
1788 memcg_wakeup_oom(memcg);
1792 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1794 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1796 struct oom_wait_info owait;
1797 bool locked, need_to_kill;
1800 owait.wait.flags = 0;
1801 owait.wait.func = memcg_oom_wake_function;
1802 owait.wait.private = current;
1803 INIT_LIST_HEAD(&owait.wait.task_list);
1804 need_to_kill = true;
1805 mem_cgroup_mark_under_oom(memcg);
1807 /* At first, try to OOM lock hierarchy under memcg.*/
1808 spin_lock(&memcg_oom_lock);
1809 locked = mem_cgroup_oom_lock(memcg);
1811 * Even if signal_pending(), we can't quit charge() loop without
1812 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1813 * under OOM is always welcomed, use TASK_KILLABLE here.
1815 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1816 if (!locked || memcg->oom_kill_disable)
1817 need_to_kill = false;
1819 mem_cgroup_oom_notify(memcg);
1820 spin_unlock(&memcg_oom_lock);
1823 finish_wait(&memcg_oom_waitq, &owait.wait);
1824 mem_cgroup_out_of_memory(memcg, mask);
1827 finish_wait(&memcg_oom_waitq, &owait.wait);
1829 spin_lock(&memcg_oom_lock);
1831 mem_cgroup_oom_unlock(memcg);
1832 memcg_wakeup_oom(memcg);
1833 spin_unlock(&memcg_oom_lock);
1835 mem_cgroup_unmark_under_oom(memcg);
1837 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1839 /* Give chance to dying process */
1840 schedule_timeout_uninterruptible(1);
1845 * Currently used to update mapped file statistics, but the routine can be
1846 * generalized to update other statistics as well.
1848 * Notes: Race condition
1850 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1851 * it tends to be costly. But considering some conditions, we doesn't need
1852 * to do so _always_.
1854 * Considering "charge", lock_page_cgroup() is not required because all
1855 * file-stat operations happen after a page is attached to radix-tree. There
1856 * are no race with "charge".
1858 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1859 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1860 * if there are race with "uncharge". Statistics itself is properly handled
1863 * Considering "move", this is an only case we see a race. To make the race
1864 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1865 * possibility of race condition. If there is, we take a lock.
1868 void mem_cgroup_update_page_stat(struct page *page,
1869 enum mem_cgroup_page_stat_item idx, int val)
1871 struct mem_cgroup *memcg;
1872 struct page_cgroup *pc = lookup_page_cgroup(page);
1873 bool need_unlock = false;
1874 unsigned long uninitialized_var(flags);
1876 if (mem_cgroup_disabled())
1880 memcg = pc->mem_cgroup;
1881 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1883 /* pc->mem_cgroup is unstable ? */
1884 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1885 /* take a lock against to access pc->mem_cgroup */
1886 move_lock_page_cgroup(pc, &flags);
1888 memcg = pc->mem_cgroup;
1889 if (!memcg || !PageCgroupUsed(pc))
1894 case MEMCG_NR_FILE_MAPPED:
1896 SetPageCgroupFileMapped(pc);
1897 else if (!page_mapped(page))
1898 ClearPageCgroupFileMapped(pc);
1899 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1905 this_cpu_add(memcg->stat->count[idx], val);
1908 if (unlikely(need_unlock))
1909 move_unlock_page_cgroup(pc, &flags);
1913 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1916 * size of first charge trial. "32" comes from vmscan.c's magic value.
1917 * TODO: maybe necessary to use big numbers in big irons.
1919 #define CHARGE_BATCH 32U
1920 struct memcg_stock_pcp {
1921 struct mem_cgroup *cached; /* this never be root cgroup */
1922 unsigned int nr_pages;
1923 struct work_struct work;
1924 unsigned long flags;
1925 #define FLUSHING_CACHED_CHARGE (0)
1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928 static DEFINE_MUTEX(percpu_charge_mutex);
1931 * Try to consume stocked charge on this cpu. If success, one page is consumed
1932 * from local stock and true is returned. If the stock is 0 or charges from a
1933 * cgroup which is not current target, returns false. This stock will be
1936 static bool consume_stock(struct mem_cgroup *memcg)
1938 struct memcg_stock_pcp *stock;
1941 stock = &get_cpu_var(memcg_stock);
1942 if (memcg == stock->cached && stock->nr_pages)
1944 else /* need to call res_counter_charge */
1946 put_cpu_var(memcg_stock);
1951 * Returns stocks cached in percpu to res_counter and reset cached information.
1953 static void drain_stock(struct memcg_stock_pcp *stock)
1955 struct mem_cgroup *old = stock->cached;
1957 if (stock->nr_pages) {
1958 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1960 res_counter_uncharge(&old->res, bytes);
1961 if (do_swap_account)
1962 res_counter_uncharge(&old->memsw, bytes);
1963 stock->nr_pages = 0;
1965 stock->cached = NULL;
1969 * This must be called under preempt disabled or must be called by
1970 * a thread which is pinned to local cpu.
1972 static void drain_local_stock(struct work_struct *dummy)
1974 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1976 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1980 * Cache charges(val) which is from res_counter, to local per_cpu area.
1981 * This will be consumed by consume_stock() function, later.
1983 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1985 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1987 if (stock->cached != memcg) { /* reset if necessary */
1989 stock->cached = memcg;
1991 stock->nr_pages += nr_pages;
1992 put_cpu_var(memcg_stock);
1996 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1997 * of the hierarchy under it. sync flag says whether we should block
1998 * until the work is done.
2000 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2004 /* Notify other cpus that system-wide "drain" is running */
2007 for_each_online_cpu(cpu) {
2008 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2009 struct mem_cgroup *memcg;
2011 memcg = stock->cached;
2012 if (!memcg || !stock->nr_pages)
2014 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2016 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2018 drain_local_stock(&stock->work);
2020 schedule_work_on(cpu, &stock->work);
2028 for_each_online_cpu(cpu) {
2029 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2030 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2031 flush_work(&stock->work);
2038 * Tries to drain stocked charges in other cpus. This function is asynchronous
2039 * and just put a work per cpu for draining localy on each cpu. Caller can
2040 * expects some charges will be back to res_counter later but cannot wait for
2043 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2046 * If someone calls draining, avoid adding more kworker runs.
2048 if (!mutex_trylock(&percpu_charge_mutex))
2050 drain_all_stock(root_memcg, false);
2051 mutex_unlock(&percpu_charge_mutex);
2054 /* This is a synchronous drain interface. */
2055 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2057 /* called when force_empty is called */
2058 mutex_lock(&percpu_charge_mutex);
2059 drain_all_stock(root_memcg, true);
2060 mutex_unlock(&percpu_charge_mutex);
2064 * This function drains percpu counter value from DEAD cpu and
2065 * move it to local cpu. Note that this function can be preempted.
2067 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2071 spin_lock(&memcg->pcp_counter_lock);
2072 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2073 long x = per_cpu(memcg->stat->count[i], cpu);
2075 per_cpu(memcg->stat->count[i], cpu) = 0;
2076 memcg->nocpu_base.count[i] += x;
2078 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2079 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2081 per_cpu(memcg->stat->events[i], cpu) = 0;
2082 memcg->nocpu_base.events[i] += x;
2084 /* need to clear ON_MOVE value, works as a kind of lock. */
2085 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2086 spin_unlock(&memcg->pcp_counter_lock);
2089 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2091 int idx = MEM_CGROUP_ON_MOVE;
2093 spin_lock(&memcg->pcp_counter_lock);
2094 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2095 spin_unlock(&memcg->pcp_counter_lock);
2098 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2099 unsigned long action,
2102 int cpu = (unsigned long)hcpu;
2103 struct memcg_stock_pcp *stock;
2104 struct mem_cgroup *iter;
2106 if ((action == CPU_ONLINE)) {
2107 for_each_mem_cgroup(iter)
2108 synchronize_mem_cgroup_on_move(iter, cpu);
2112 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2115 for_each_mem_cgroup(iter)
2116 mem_cgroup_drain_pcp_counter(iter, cpu);
2118 stock = &per_cpu(memcg_stock, cpu);
2124 /* See __mem_cgroup_try_charge() for details */
2126 CHARGE_OK, /* success */
2127 CHARGE_RETRY, /* need to retry but retry is not bad */
2128 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2129 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2130 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2133 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2134 unsigned int nr_pages, bool oom_check)
2136 unsigned long csize = nr_pages * PAGE_SIZE;
2137 struct mem_cgroup *mem_over_limit;
2138 struct res_counter *fail_res;
2139 unsigned long flags = 0;
2142 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2145 if (!do_swap_account)
2147 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2151 res_counter_uncharge(&memcg->res, csize);
2152 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2153 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2155 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2157 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2158 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2160 * Never reclaim on behalf of optional batching, retry with a
2161 * single page instead.
2163 if (nr_pages == CHARGE_BATCH)
2164 return CHARGE_RETRY;
2166 if (!(gfp_mask & __GFP_WAIT))
2167 return CHARGE_WOULDBLOCK;
2169 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2170 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2171 return CHARGE_RETRY;
2173 * Even though the limit is exceeded at this point, reclaim
2174 * may have been able to free some pages. Retry the charge
2175 * before killing the task.
2177 * Only for regular pages, though: huge pages are rather
2178 * unlikely to succeed so close to the limit, and we fall back
2179 * to regular pages anyway in case of failure.
2181 if (nr_pages == 1 && ret)
2182 return CHARGE_RETRY;
2185 * At task move, charge accounts can be doubly counted. So, it's
2186 * better to wait until the end of task_move if something is going on.
2188 if (mem_cgroup_wait_acct_move(mem_over_limit))
2189 return CHARGE_RETRY;
2191 /* If we don't need to call oom-killer at el, return immediately */
2193 return CHARGE_NOMEM;
2195 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2196 return CHARGE_OOM_DIE;
2198 return CHARGE_RETRY;
2202 * __mem_cgroup_try_charge() does
2203 * 1. detect memcg to be charged against from passed *mm and *ptr,
2204 * 2. update res_counter
2205 * 3. call memory reclaim if necessary.
2207 * In some special case, if the task is fatal, fatal_signal_pending() or
2208 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2209 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2210 * as possible without any hazards. 2: all pages should have a valid
2211 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2212 * pointer, that is treated as a charge to root_mem_cgroup.
2214 * So __mem_cgroup_try_charge() will return
2215 * 0 ... on success, filling *ptr with a valid memcg pointer.
2216 * -ENOMEM ... charge failure because of resource limits.
2217 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2219 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2220 * the oom-killer can be invoked.
2222 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2224 unsigned int nr_pages,
2225 struct mem_cgroup **ptr,
2228 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2229 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2230 struct mem_cgroup *memcg = NULL;
2234 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2235 * in system level. So, allow to go ahead dying process in addition to
2238 if (unlikely(test_thread_flag(TIF_MEMDIE)
2239 || fatal_signal_pending(current)))
2243 * We always charge the cgroup the mm_struct belongs to.
2244 * The mm_struct's mem_cgroup changes on task migration if the
2245 * thread group leader migrates. It's possible that mm is not
2246 * set, if so charge the init_mm (happens for pagecache usage).
2249 *ptr = root_mem_cgroup;
2251 if (*ptr) { /* css should be a valid one */
2253 VM_BUG_ON(css_is_removed(&memcg->css));
2254 if (mem_cgroup_is_root(memcg))
2256 if (nr_pages == 1 && consume_stock(memcg))
2258 css_get(&memcg->css);
2260 struct task_struct *p;
2263 p = rcu_dereference(mm->owner);
2265 * Because we don't have task_lock(), "p" can exit.
2266 * In that case, "memcg" can point to root or p can be NULL with
2267 * race with swapoff. Then, we have small risk of mis-accouning.
2268 * But such kind of mis-account by race always happens because
2269 * we don't have cgroup_mutex(). It's overkill and we allo that
2271 * (*) swapoff at el will charge against mm-struct not against
2272 * task-struct. So, mm->owner can be NULL.
2274 memcg = mem_cgroup_from_task(p);
2276 memcg = root_mem_cgroup;
2277 if (mem_cgroup_is_root(memcg)) {
2281 if (nr_pages == 1 && consume_stock(memcg)) {
2283 * It seems dagerous to access memcg without css_get().
2284 * But considering how consume_stok works, it's not
2285 * necessary. If consume_stock success, some charges
2286 * from this memcg are cached on this cpu. So, we
2287 * don't need to call css_get()/css_tryget() before
2288 * calling consume_stock().
2293 /* after here, we may be blocked. we need to get refcnt */
2294 if (!css_tryget(&memcg->css)) {
2304 /* If killed, bypass charge */
2305 if (fatal_signal_pending(current)) {
2306 css_put(&memcg->css);
2311 if (oom && !nr_oom_retries) {
2313 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2316 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2320 case CHARGE_RETRY: /* not in OOM situation but retry */
2322 css_put(&memcg->css);
2325 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2326 css_put(&memcg->css);
2328 case CHARGE_NOMEM: /* OOM routine works */
2330 css_put(&memcg->css);
2333 /* If oom, we never return -ENOMEM */
2336 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2337 css_put(&memcg->css);
2340 } while (ret != CHARGE_OK);
2342 if (batch > nr_pages)
2343 refill_stock(memcg, batch - nr_pages);
2344 css_put(&memcg->css);
2352 *ptr = root_mem_cgroup;
2357 * Somemtimes we have to undo a charge we got by try_charge().
2358 * This function is for that and do uncharge, put css's refcnt.
2359 * gotten by try_charge().
2361 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2362 unsigned int nr_pages)
2364 if (!mem_cgroup_is_root(memcg)) {
2365 unsigned long bytes = nr_pages * PAGE_SIZE;
2367 res_counter_uncharge(&memcg->res, bytes);
2368 if (do_swap_account)
2369 res_counter_uncharge(&memcg->memsw, bytes);
2374 * A helper function to get mem_cgroup from ID. must be called under
2375 * rcu_read_lock(). The caller must check css_is_removed() or some if
2376 * it's concern. (dropping refcnt from swap can be called against removed
2379 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2381 struct cgroup_subsys_state *css;
2383 /* ID 0 is unused ID */
2386 css = css_lookup(&mem_cgroup_subsys, id);
2389 return container_of(css, struct mem_cgroup, css);
2392 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2394 struct mem_cgroup *memcg = NULL;
2395 struct page_cgroup *pc;
2399 VM_BUG_ON(!PageLocked(page));
2401 pc = lookup_page_cgroup(page);
2402 lock_page_cgroup(pc);
2403 if (PageCgroupUsed(pc)) {
2404 memcg = pc->mem_cgroup;
2405 if (memcg && !css_tryget(&memcg->css))
2407 } else if (PageSwapCache(page)) {
2408 ent.val = page_private(page);
2409 id = lookup_swap_cgroup_id(ent);
2411 memcg = mem_cgroup_lookup(id);
2412 if (memcg && !css_tryget(&memcg->css))
2416 unlock_page_cgroup(pc);
2420 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2422 unsigned int nr_pages,
2423 struct page_cgroup *pc,
2424 enum charge_type ctype,
2427 struct zone *uninitialized_var(zone);
2428 bool was_on_lru = false;
2430 lock_page_cgroup(pc);
2431 if (unlikely(PageCgroupUsed(pc))) {
2432 unlock_page_cgroup(pc);
2433 __mem_cgroup_cancel_charge(memcg, nr_pages);
2437 * we don't need page_cgroup_lock about tail pages, becase they are not
2438 * accessed by any other context at this point.
2442 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2443 * may already be on some other mem_cgroup's LRU. Take care of it.
2446 zone = page_zone(page);
2447 spin_lock_irq(&zone->lru_lock);
2448 if (PageLRU(page)) {
2450 del_page_from_lru_list(zone, page, page_lru(page));
2455 pc->mem_cgroup = memcg;
2457 * We access a page_cgroup asynchronously without lock_page_cgroup().
2458 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2459 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2460 * before USED bit, we need memory barrier here.
2461 * See mem_cgroup_add_lru_list(), etc.
2465 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2466 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2467 SetPageCgroupCache(pc);
2468 SetPageCgroupUsed(pc);
2470 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2471 ClearPageCgroupCache(pc);
2472 SetPageCgroupUsed(pc);
2480 VM_BUG_ON(PageLRU(page));
2482 add_page_to_lru_list(zone, page, page_lru(page));
2484 spin_unlock_irq(&zone->lru_lock);
2487 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2488 unlock_page_cgroup(pc);
2491 * "charge_statistics" updated event counter. Then, check it.
2492 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2493 * if they exceeds softlimit.
2495 memcg_check_events(memcg, page);
2498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2500 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2501 (1 << PCG_MIGRATION))
2503 * Because tail pages are not marked as "used", set it. We're under
2504 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2505 * charge/uncharge will be never happen and move_account() is done under
2506 * compound_lock(), so we don't have to take care of races.
2508 void mem_cgroup_split_huge_fixup(struct page *head)
2510 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2511 struct page_cgroup *pc;
2514 if (mem_cgroup_disabled())
2516 for (i = 1; i < HPAGE_PMD_NR; i++) {
2518 pc->mem_cgroup = head_pc->mem_cgroup;
2519 smp_wmb();/* see __commit_charge() */
2520 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2526 * mem_cgroup_move_account - move account of the page
2528 * @nr_pages: number of regular pages (>1 for huge pages)
2529 * @pc: page_cgroup of the page.
2530 * @from: mem_cgroup which the page is moved from.
2531 * @to: mem_cgroup which the page is moved to. @from != @to.
2532 * @uncharge: whether we should call uncharge and css_put against @from.
2534 * The caller must confirm following.
2535 * - page is not on LRU (isolate_page() is useful.)
2536 * - compound_lock is held when nr_pages > 1
2538 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2539 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2540 * true, this function does "uncharge" from old cgroup, but it doesn't if
2541 * @uncharge is false, so a caller should do "uncharge".
2543 static int mem_cgroup_move_account(struct page *page,
2544 unsigned int nr_pages,
2545 struct page_cgroup *pc,
2546 struct mem_cgroup *from,
2547 struct mem_cgroup *to,
2550 unsigned long flags;
2553 VM_BUG_ON(from == to);
2554 VM_BUG_ON(PageLRU(page));
2556 * The page is isolated from LRU. So, collapse function
2557 * will not handle this page. But page splitting can happen.
2558 * Do this check under compound_page_lock(). The caller should
2562 if (nr_pages > 1 && !PageTransHuge(page))
2565 lock_page_cgroup(pc);
2568 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2571 move_lock_page_cgroup(pc, &flags);
2573 if (PageCgroupFileMapped(pc)) {
2574 /* Update mapped_file data for mem_cgroup */
2576 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2577 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2580 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2582 /* This is not "cancel", but cancel_charge does all we need. */
2583 __mem_cgroup_cancel_charge(from, nr_pages);
2585 /* caller should have done css_get */
2586 pc->mem_cgroup = to;
2587 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2589 * We charges against "to" which may not have any tasks. Then, "to"
2590 * can be under rmdir(). But in current implementation, caller of
2591 * this function is just force_empty() and move charge, so it's
2592 * guaranteed that "to" is never removed. So, we don't check rmdir
2595 move_unlock_page_cgroup(pc, &flags);
2598 unlock_page_cgroup(pc);
2602 memcg_check_events(to, page);
2603 memcg_check_events(from, page);
2609 * move charges to its parent.
2612 static int mem_cgroup_move_parent(struct page *page,
2613 struct page_cgroup *pc,
2614 struct mem_cgroup *child,
2617 struct cgroup *cg = child->css.cgroup;
2618 struct cgroup *pcg = cg->parent;
2619 struct mem_cgroup *parent;
2620 unsigned int nr_pages;
2621 unsigned long uninitialized_var(flags);
2629 if (!get_page_unless_zero(page))
2631 if (isolate_lru_page(page))
2634 nr_pages = hpage_nr_pages(page);
2636 parent = mem_cgroup_from_cont(pcg);
2637 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2642 flags = compound_lock_irqsave(page);
2644 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2646 __mem_cgroup_cancel_charge(parent, nr_pages);
2649 compound_unlock_irqrestore(page, flags);
2651 putback_lru_page(page);
2659 * Charge the memory controller for page usage.
2661 * 0 if the charge was successful
2662 * < 0 if the cgroup is over its limit
2664 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2665 gfp_t gfp_mask, enum charge_type ctype)
2667 struct mem_cgroup *memcg = NULL;
2668 unsigned int nr_pages = 1;
2669 struct page_cgroup *pc;
2673 if (PageTransHuge(page)) {
2674 nr_pages <<= compound_order(page);
2675 VM_BUG_ON(!PageTransHuge(page));
2677 * Never OOM-kill a process for a huge page. The
2678 * fault handler will fall back to regular pages.
2683 pc = lookup_page_cgroup(page);
2684 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2687 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2691 int mem_cgroup_newpage_charge(struct page *page,
2692 struct mm_struct *mm, gfp_t gfp_mask)
2694 if (mem_cgroup_disabled())
2696 VM_BUG_ON(page_mapped(page));
2697 VM_BUG_ON(page->mapping && !PageAnon(page));
2699 return mem_cgroup_charge_common(page, mm, gfp_mask,
2700 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2704 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2705 enum charge_type ctype);
2707 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2710 struct mem_cgroup *memcg = NULL;
2711 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2714 if (mem_cgroup_disabled())
2716 if (PageCompound(page))
2721 if (!page_is_file_cache(page))
2722 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2724 if (!PageSwapCache(page))
2725 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2726 else { /* page is swapcache/shmem */
2727 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2729 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2735 * While swap-in, try_charge -> commit or cancel, the page is locked.
2736 * And when try_charge() successfully returns, one refcnt to memcg without
2737 * struct page_cgroup is acquired. This refcnt will be consumed by
2738 * "commit()" or removed by "cancel()"
2740 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2742 gfp_t mask, struct mem_cgroup **memcgp)
2744 struct mem_cgroup *memcg;
2749 if (mem_cgroup_disabled())
2752 if (!do_swap_account)
2755 * A racing thread's fault, or swapoff, may have already updated
2756 * the pte, and even removed page from swap cache: in those cases
2757 * do_swap_page()'s pte_same() test will fail; but there's also a
2758 * KSM case which does need to charge the page.
2760 if (!PageSwapCache(page))
2762 memcg = try_get_mem_cgroup_from_page(page);
2766 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2767 css_put(&memcg->css);
2774 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2781 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2782 enum charge_type ctype)
2784 struct page_cgroup *pc;
2786 if (mem_cgroup_disabled())
2790 cgroup_exclude_rmdir(&memcg->css);
2792 pc = lookup_page_cgroup(page);
2793 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2795 * Now swap is on-memory. This means this page may be
2796 * counted both as mem and swap....double count.
2797 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2798 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2799 * may call delete_from_swap_cache() before reach here.
2801 if (do_swap_account && PageSwapCache(page)) {
2802 swp_entry_t ent = {.val = page_private(page)};
2803 struct mem_cgroup *swap_memcg;
2806 id = swap_cgroup_record(ent, 0);
2808 swap_memcg = mem_cgroup_lookup(id);
2811 * This recorded memcg can be obsolete one. So, avoid
2812 * calling css_tryget
2814 if (!mem_cgroup_is_root(swap_memcg))
2815 res_counter_uncharge(&swap_memcg->memsw,
2817 mem_cgroup_swap_statistics(swap_memcg, false);
2818 mem_cgroup_put(swap_memcg);
2823 * At swapin, we may charge account against cgroup which has no tasks.
2824 * So, rmdir()->pre_destroy() can be called while we do this charge.
2825 * In that case, we need to call pre_destroy() again. check it here.
2827 cgroup_release_and_wakeup_rmdir(&memcg->css);
2830 void mem_cgroup_commit_charge_swapin(struct page *page,
2831 struct mem_cgroup *memcg)
2833 __mem_cgroup_commit_charge_swapin(page, memcg,
2834 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2837 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2839 if (mem_cgroup_disabled())
2843 __mem_cgroup_cancel_charge(memcg, 1);
2846 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2847 unsigned int nr_pages,
2848 const enum charge_type ctype)
2850 struct memcg_batch_info *batch = NULL;
2851 bool uncharge_memsw = true;
2853 /* If swapout, usage of swap doesn't decrease */
2854 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2855 uncharge_memsw = false;
2857 batch = ¤t->memcg_batch;
2859 * In usual, we do css_get() when we remember memcg pointer.
2860 * But in this case, we keep res->usage until end of a series of
2861 * uncharges. Then, it's ok to ignore memcg's refcnt.
2864 batch->memcg = memcg;
2866 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2867 * In those cases, all pages freed continuously can be expected to be in
2868 * the same cgroup and we have chance to coalesce uncharges.
2869 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2870 * because we want to do uncharge as soon as possible.
2873 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2874 goto direct_uncharge;
2877 goto direct_uncharge;
2880 * In typical case, batch->memcg == mem. This means we can
2881 * merge a series of uncharges to an uncharge of res_counter.
2882 * If not, we uncharge res_counter ony by one.
2884 if (batch->memcg != memcg)
2885 goto direct_uncharge;
2886 /* remember freed charge and uncharge it later */
2889 batch->memsw_nr_pages++;
2892 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2894 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2895 if (unlikely(batch->memcg != memcg))
2896 memcg_oom_recover(memcg);
2901 * uncharge if !page_mapped(page)
2903 static struct mem_cgroup *
2904 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2906 struct mem_cgroup *memcg = NULL;
2907 unsigned int nr_pages = 1;
2908 struct page_cgroup *pc;
2910 if (mem_cgroup_disabled())
2913 if (PageSwapCache(page))
2916 if (PageTransHuge(page)) {
2917 nr_pages <<= compound_order(page);
2918 VM_BUG_ON(!PageTransHuge(page));
2921 * Check if our page_cgroup is valid
2923 pc = lookup_page_cgroup(page);
2924 if (unlikely(!PageCgroupUsed(pc)))
2927 lock_page_cgroup(pc);
2929 memcg = pc->mem_cgroup;
2931 if (!PageCgroupUsed(pc))
2935 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2936 case MEM_CGROUP_CHARGE_TYPE_DROP:
2937 /* See mem_cgroup_prepare_migration() */
2938 if (page_mapped(page) || PageCgroupMigration(pc))
2941 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2942 if (!PageAnon(page)) { /* Shared memory */
2943 if (page->mapping && !page_is_file_cache(page))
2945 } else if (page_mapped(page)) /* Anon */
2952 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2954 ClearPageCgroupUsed(pc);
2956 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2957 * freed from LRU. This is safe because uncharged page is expected not
2958 * to be reused (freed soon). Exception is SwapCache, it's handled by
2959 * special functions.
2962 unlock_page_cgroup(pc);
2964 * even after unlock, we have memcg->res.usage here and this memcg
2965 * will never be freed.
2967 memcg_check_events(memcg, page);
2968 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2969 mem_cgroup_swap_statistics(memcg, true);
2970 mem_cgroup_get(memcg);
2972 if (!mem_cgroup_is_root(memcg))
2973 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2978 unlock_page_cgroup(pc);
2982 void mem_cgroup_uncharge_page(struct page *page)
2985 if (page_mapped(page))
2987 VM_BUG_ON(page->mapping && !PageAnon(page));
2988 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2991 void mem_cgroup_uncharge_cache_page(struct page *page)
2993 VM_BUG_ON(page_mapped(page));
2994 VM_BUG_ON(page->mapping);
2995 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2999 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3000 * In that cases, pages are freed continuously and we can expect pages
3001 * are in the same memcg. All these calls itself limits the number of
3002 * pages freed at once, then uncharge_start/end() is called properly.
3003 * This may be called prural(2) times in a context,
3006 void mem_cgroup_uncharge_start(void)
3008 current->memcg_batch.do_batch++;
3009 /* We can do nest. */
3010 if (current->memcg_batch.do_batch == 1) {
3011 current->memcg_batch.memcg = NULL;
3012 current->memcg_batch.nr_pages = 0;
3013 current->memcg_batch.memsw_nr_pages = 0;
3017 void mem_cgroup_uncharge_end(void)
3019 struct memcg_batch_info *batch = ¤t->memcg_batch;
3021 if (!batch->do_batch)
3025 if (batch->do_batch) /* If stacked, do nothing. */
3031 * This "batch->memcg" is valid without any css_get/put etc...
3032 * bacause we hide charges behind us.
3034 if (batch->nr_pages)
3035 res_counter_uncharge(&batch->memcg->res,
3036 batch->nr_pages * PAGE_SIZE);
3037 if (batch->memsw_nr_pages)
3038 res_counter_uncharge(&batch->memcg->memsw,
3039 batch->memsw_nr_pages * PAGE_SIZE);
3040 memcg_oom_recover(batch->memcg);
3041 /* forget this pointer (for sanity check) */
3042 batch->memcg = NULL;
3047 * called after __delete_from_swap_cache() and drop "page" account.
3048 * memcg information is recorded to swap_cgroup of "ent"
3051 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3053 struct mem_cgroup *memcg;
3054 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3056 if (!swapout) /* this was a swap cache but the swap is unused ! */
3057 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3059 memcg = __mem_cgroup_uncharge_common(page, ctype);
3062 * record memcg information, if swapout && memcg != NULL,
3063 * mem_cgroup_get() was called in uncharge().
3065 if (do_swap_account && swapout && memcg)
3066 swap_cgroup_record(ent, css_id(&memcg->css));
3070 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3072 * called from swap_entry_free(). remove record in swap_cgroup and
3073 * uncharge "memsw" account.
3075 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3077 struct mem_cgroup *memcg;
3080 if (!do_swap_account)
3083 id = swap_cgroup_record(ent, 0);
3085 memcg = mem_cgroup_lookup(id);
3088 * We uncharge this because swap is freed.
3089 * This memcg can be obsolete one. We avoid calling css_tryget
3091 if (!mem_cgroup_is_root(memcg))
3092 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3093 mem_cgroup_swap_statistics(memcg, false);
3094 mem_cgroup_put(memcg);
3100 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3101 * @entry: swap entry to be moved
3102 * @from: mem_cgroup which the entry is moved from
3103 * @to: mem_cgroup which the entry is moved to
3104 * @need_fixup: whether we should fixup res_counters and refcounts.
3106 * It succeeds only when the swap_cgroup's record for this entry is the same
3107 * as the mem_cgroup's id of @from.
3109 * Returns 0 on success, -EINVAL on failure.
3111 * The caller must have charged to @to, IOW, called res_counter_charge() about
3112 * both res and memsw, and called css_get().
3114 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3115 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3117 unsigned short old_id, new_id;
3119 old_id = css_id(&from->css);
3120 new_id = css_id(&to->css);
3122 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3123 mem_cgroup_swap_statistics(from, false);
3124 mem_cgroup_swap_statistics(to, true);
3126 * This function is only called from task migration context now.
3127 * It postpones res_counter and refcount handling till the end
3128 * of task migration(mem_cgroup_clear_mc()) for performance
3129 * improvement. But we cannot postpone mem_cgroup_get(to)
3130 * because if the process that has been moved to @to does
3131 * swap-in, the refcount of @to might be decreased to 0.
3135 if (!mem_cgroup_is_root(from))
3136 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3137 mem_cgroup_put(from);
3139 * we charged both to->res and to->memsw, so we should
3142 if (!mem_cgroup_is_root(to))
3143 res_counter_uncharge(&to->res, PAGE_SIZE);
3150 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3151 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3158 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3161 int mem_cgroup_prepare_migration(struct page *page,
3162 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3164 struct mem_cgroup *memcg = NULL;
3165 struct page_cgroup *pc;
3166 enum charge_type ctype;
3171 VM_BUG_ON(PageTransHuge(page));
3172 if (mem_cgroup_disabled())
3175 pc = lookup_page_cgroup(page);
3176 lock_page_cgroup(pc);
3177 if (PageCgroupUsed(pc)) {
3178 memcg = pc->mem_cgroup;
3179 css_get(&memcg->css);
3181 * At migrating an anonymous page, its mapcount goes down
3182 * to 0 and uncharge() will be called. But, even if it's fully
3183 * unmapped, migration may fail and this page has to be
3184 * charged again. We set MIGRATION flag here and delay uncharge
3185 * until end_migration() is called
3187 * Corner Case Thinking
3189 * When the old page was mapped as Anon and it's unmap-and-freed
3190 * while migration was ongoing.
3191 * If unmap finds the old page, uncharge() of it will be delayed
3192 * until end_migration(). If unmap finds a new page, it's
3193 * uncharged when it make mapcount to be 1->0. If unmap code
3194 * finds swap_migration_entry, the new page will not be mapped
3195 * and end_migration() will find it(mapcount==0).
3198 * When the old page was mapped but migraion fails, the kernel
3199 * remaps it. A charge for it is kept by MIGRATION flag even
3200 * if mapcount goes down to 0. We can do remap successfully
3201 * without charging it again.
3204 * The "old" page is under lock_page() until the end of
3205 * migration, so, the old page itself will not be swapped-out.
3206 * If the new page is swapped out before end_migraton, our
3207 * hook to usual swap-out path will catch the event.
3210 SetPageCgroupMigration(pc);
3212 unlock_page_cgroup(pc);
3214 * If the page is not charged at this point,
3221 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3222 css_put(&memcg->css);/* drop extra refcnt */
3224 if (PageAnon(page)) {
3225 lock_page_cgroup(pc);
3226 ClearPageCgroupMigration(pc);
3227 unlock_page_cgroup(pc);
3229 * The old page may be fully unmapped while we kept it.
3231 mem_cgroup_uncharge_page(page);
3233 /* we'll need to revisit this error code (we have -EINTR) */
3237 * We charge new page before it's used/mapped. So, even if unlock_page()
3238 * is called before end_migration, we can catch all events on this new
3239 * page. In the case new page is migrated but not remapped, new page's
3240 * mapcount will be finally 0 and we call uncharge in end_migration().
3242 pc = lookup_page_cgroup(newpage);
3244 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3245 else if (page_is_file_cache(page))
3246 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3248 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3249 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3253 /* remove redundant charge if migration failed*/
3254 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3255 struct page *oldpage, struct page *newpage, bool migration_ok)
3257 struct page *used, *unused;
3258 struct page_cgroup *pc;
3262 /* blocks rmdir() */
3263 cgroup_exclude_rmdir(&memcg->css);
3264 if (!migration_ok) {
3272 * We disallowed uncharge of pages under migration because mapcount
3273 * of the page goes down to zero, temporarly.
3274 * Clear the flag and check the page should be charged.
3276 pc = lookup_page_cgroup(oldpage);
3277 lock_page_cgroup(pc);
3278 ClearPageCgroupMigration(pc);
3279 unlock_page_cgroup(pc);
3281 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3284 * If a page is a file cache, radix-tree replacement is very atomic
3285 * and we can skip this check. When it was an Anon page, its mapcount
3286 * goes down to 0. But because we added MIGRATION flage, it's not
3287 * uncharged yet. There are several case but page->mapcount check
3288 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3289 * check. (see prepare_charge() also)
3292 mem_cgroup_uncharge_page(used);
3294 * At migration, we may charge account against cgroup which has no
3296 * So, rmdir()->pre_destroy() can be called while we do this charge.
3297 * In that case, we need to call pre_destroy() again. check it here.
3299 cgroup_release_and_wakeup_rmdir(&memcg->css);
3303 * At replace page cache, newpage is not under any memcg but it's on
3304 * LRU. So, this function doesn't touch res_counter but handles LRU
3305 * in correct way. Both pages are locked so we cannot race with uncharge.
3307 void mem_cgroup_replace_page_cache(struct page *oldpage,
3308 struct page *newpage)
3310 struct mem_cgroup *memcg;
3311 struct page_cgroup *pc;
3312 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3314 if (mem_cgroup_disabled())
3317 pc = lookup_page_cgroup(oldpage);
3318 /* fix accounting on old pages */
3319 lock_page_cgroup(pc);
3320 memcg = pc->mem_cgroup;
3321 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3322 ClearPageCgroupUsed(pc);
3323 unlock_page_cgroup(pc);
3325 if (PageSwapBacked(oldpage))
3326 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3329 * Even if newpage->mapping was NULL before starting replacement,
3330 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3331 * LRU while we overwrite pc->mem_cgroup.
3333 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3336 #ifdef CONFIG_DEBUG_VM
3337 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3339 struct page_cgroup *pc;
3341 pc = lookup_page_cgroup(page);
3343 * Can be NULL while feeding pages into the page allocator for
3344 * the first time, i.e. during boot or memory hotplug;
3345 * or when mem_cgroup_disabled().
3347 if (likely(pc) && PageCgroupUsed(pc))
3352 bool mem_cgroup_bad_page_check(struct page *page)
3354 if (mem_cgroup_disabled())
3357 return lookup_page_cgroup_used(page) != NULL;
3360 void mem_cgroup_print_bad_page(struct page *page)
3362 struct page_cgroup *pc;
3364 pc = lookup_page_cgroup_used(page);
3366 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3367 pc, pc->flags, pc->mem_cgroup);
3372 static DEFINE_MUTEX(set_limit_mutex);
3374 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3375 unsigned long long val)
3378 u64 memswlimit, memlimit;
3380 int children = mem_cgroup_count_children(memcg);
3381 u64 curusage, oldusage;
3385 * For keeping hierarchical_reclaim simple, how long we should retry
3386 * is depends on callers. We set our retry-count to be function
3387 * of # of children which we should visit in this loop.
3389 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3391 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3394 while (retry_count) {
3395 if (signal_pending(current)) {
3400 * Rather than hide all in some function, I do this in
3401 * open coded manner. You see what this really does.
3402 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3404 mutex_lock(&set_limit_mutex);
3405 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3406 if (memswlimit < val) {
3408 mutex_unlock(&set_limit_mutex);
3412 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3416 ret = res_counter_set_limit(&memcg->res, val);
3418 if (memswlimit == val)
3419 memcg->memsw_is_minimum = true;
3421 memcg->memsw_is_minimum = false;
3423 mutex_unlock(&set_limit_mutex);
3428 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3429 MEM_CGROUP_RECLAIM_SHRINK);
3430 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3431 /* Usage is reduced ? */
3432 if (curusage >= oldusage)
3435 oldusage = curusage;
3437 if (!ret && enlarge)
3438 memcg_oom_recover(memcg);
3443 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3444 unsigned long long val)
3447 u64 memlimit, memswlimit, oldusage, curusage;
3448 int children = mem_cgroup_count_children(memcg);
3452 /* see mem_cgroup_resize_res_limit */
3453 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3454 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3455 while (retry_count) {
3456 if (signal_pending(current)) {
3461 * Rather than hide all in some function, I do this in
3462 * open coded manner. You see what this really does.
3463 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3465 mutex_lock(&set_limit_mutex);
3466 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3467 if (memlimit > val) {
3469 mutex_unlock(&set_limit_mutex);
3472 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3473 if (memswlimit < val)
3475 ret = res_counter_set_limit(&memcg->memsw, val);
3477 if (memlimit == val)
3478 memcg->memsw_is_minimum = true;
3480 memcg->memsw_is_minimum = false;
3482 mutex_unlock(&set_limit_mutex);
3487 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3488 MEM_CGROUP_RECLAIM_NOSWAP |
3489 MEM_CGROUP_RECLAIM_SHRINK);
3490 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3491 /* Usage is reduced ? */
3492 if (curusage >= oldusage)
3495 oldusage = curusage;
3497 if (!ret && enlarge)
3498 memcg_oom_recover(memcg);
3502 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3504 unsigned long *total_scanned)
3506 unsigned long nr_reclaimed = 0;
3507 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3508 unsigned long reclaimed;
3510 struct mem_cgroup_tree_per_zone *mctz;
3511 unsigned long long excess;
3512 unsigned long nr_scanned;
3517 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3519 * This loop can run a while, specially if mem_cgroup's continuously
3520 * keep exceeding their soft limit and putting the system under
3527 mz = mem_cgroup_largest_soft_limit_node(mctz);
3532 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3533 gfp_mask, &nr_scanned);
3534 nr_reclaimed += reclaimed;
3535 *total_scanned += nr_scanned;
3536 spin_lock(&mctz->lock);
3539 * If we failed to reclaim anything from this memory cgroup
3540 * it is time to move on to the next cgroup
3546 * Loop until we find yet another one.
3548 * By the time we get the soft_limit lock
3549 * again, someone might have aded the
3550 * group back on the RB tree. Iterate to
3551 * make sure we get a different mem.
3552 * mem_cgroup_largest_soft_limit_node returns
3553 * NULL if no other cgroup is present on
3557 __mem_cgroup_largest_soft_limit_node(mctz);
3559 css_put(&next_mz->mem->css);
3560 else /* next_mz == NULL or other memcg */
3564 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3565 excess = res_counter_soft_limit_excess(&mz->mem->res);
3567 * One school of thought says that we should not add
3568 * back the node to the tree if reclaim returns 0.
3569 * But our reclaim could return 0, simply because due
3570 * to priority we are exposing a smaller subset of
3571 * memory to reclaim from. Consider this as a longer
3574 /* If excess == 0, no tree ops */
3575 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3576 spin_unlock(&mctz->lock);
3577 css_put(&mz->mem->css);
3580 * Could not reclaim anything and there are no more
3581 * mem cgroups to try or we seem to be looping without
3582 * reclaiming anything.
3584 if (!nr_reclaimed &&
3586 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3588 } while (!nr_reclaimed);
3590 css_put(&next_mz->mem->css);
3591 return nr_reclaimed;
3595 * This routine traverse page_cgroup in given list and drop them all.
3596 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3598 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3599 int node, int zid, enum lru_list lru)
3601 struct mem_cgroup_per_zone *mz;
3602 unsigned long flags, loop;
3603 struct list_head *list;
3608 zone = &NODE_DATA(node)->node_zones[zid];
3609 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3610 list = &mz->lruvec.lists[lru];
3612 loop = MEM_CGROUP_ZSTAT(mz, lru);
3613 /* give some margin against EBUSY etc...*/
3617 struct page_cgroup *pc;
3621 spin_lock_irqsave(&zone->lru_lock, flags);
3622 if (list_empty(list)) {
3623 spin_unlock_irqrestore(&zone->lru_lock, flags);
3626 page = list_entry(list->prev, struct page, lru);
3628 list_move(&page->lru, list);
3630 spin_unlock_irqrestore(&zone->lru_lock, flags);
3633 spin_unlock_irqrestore(&zone->lru_lock, flags);
3635 pc = lookup_page_cgroup(page);
3637 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3638 if (ret == -ENOMEM || ret == -EINTR)
3641 if (ret == -EBUSY || ret == -EINVAL) {
3642 /* found lock contention or "pc" is obsolete. */
3649 if (!ret && !list_empty(list))
3655 * make mem_cgroup's charge to be 0 if there is no task.
3656 * This enables deleting this mem_cgroup.
3658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3661 int node, zid, shrink;
3662 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3663 struct cgroup *cgrp = memcg->css.cgroup;
3665 css_get(&memcg->css);
3668 /* should free all ? */
3674 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3677 if (signal_pending(current))
3679 /* This is for making all *used* pages to be on LRU. */
3680 lru_add_drain_all();
3681 drain_all_stock_sync(memcg);
3683 mem_cgroup_start_move(memcg);
3684 for_each_node_state(node, N_HIGH_MEMORY) {
3685 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3688 ret = mem_cgroup_force_empty_list(memcg,
3697 mem_cgroup_end_move(memcg);
3698 memcg_oom_recover(memcg);
3699 /* it seems parent cgroup doesn't have enough mem */
3703 /* "ret" should also be checked to ensure all lists are empty. */
3704 } while (memcg->res.usage > 0 || ret);
3706 css_put(&memcg->css);
3710 /* returns EBUSY if there is a task or if we come here twice. */
3711 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3715 /* we call try-to-free pages for make this cgroup empty */
3716 lru_add_drain_all();
3717 /* try to free all pages in this cgroup */
3719 while (nr_retries && memcg->res.usage > 0) {
3722 if (signal_pending(current)) {
3726 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3730 /* maybe some writeback is necessary */
3731 congestion_wait(BLK_RW_ASYNC, HZ/10);
3736 /* try move_account...there may be some *locked* pages. */
3740 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3742 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3746 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3748 return mem_cgroup_from_cont(cont)->use_hierarchy;
3751 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3755 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3756 struct cgroup *parent = cont->parent;
3757 struct mem_cgroup *parent_memcg = NULL;
3760 parent_memcg = mem_cgroup_from_cont(parent);
3764 * If parent's use_hierarchy is set, we can't make any modifications
3765 * in the child subtrees. If it is unset, then the change can
3766 * occur, provided the current cgroup has no children.
3768 * For the root cgroup, parent_mem is NULL, we allow value to be
3769 * set if there are no children.
3771 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3772 (val == 1 || val == 0)) {
3773 if (list_empty(&cont->children))
3774 memcg->use_hierarchy = val;
3785 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3786 enum mem_cgroup_stat_index idx)
3788 struct mem_cgroup *iter;
3791 /* Per-cpu values can be negative, use a signed accumulator */
3792 for_each_mem_cgroup_tree(iter, memcg)
3793 val += mem_cgroup_read_stat(iter, idx);
3795 if (val < 0) /* race ? */
3800 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3804 if (!mem_cgroup_is_root(memcg)) {
3806 return res_counter_read_u64(&memcg->res, RES_USAGE);
3808 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3811 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3812 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3815 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3817 return val << PAGE_SHIFT;
3820 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3822 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3826 type = MEMFILE_TYPE(cft->private);
3827 name = MEMFILE_ATTR(cft->private);
3830 if (name == RES_USAGE)
3831 val = mem_cgroup_usage(memcg, false);
3833 val = res_counter_read_u64(&memcg->res, name);
3836 if (name == RES_USAGE)
3837 val = mem_cgroup_usage(memcg, true);
3839 val = res_counter_read_u64(&memcg->memsw, name);
3848 * The user of this function is...
3851 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3856 unsigned long long val;
3859 type = MEMFILE_TYPE(cft->private);
3860 name = MEMFILE_ATTR(cft->private);
3863 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3867 /* This function does all necessary parse...reuse it */
3868 ret = res_counter_memparse_write_strategy(buffer, &val);
3872 ret = mem_cgroup_resize_limit(memcg, val);
3874 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3876 case RES_SOFT_LIMIT:
3877 ret = res_counter_memparse_write_strategy(buffer, &val);
3881 * For memsw, soft limits are hard to implement in terms
3882 * of semantics, for now, we support soft limits for
3883 * control without swap
3886 ret = res_counter_set_soft_limit(&memcg->res, val);
3891 ret = -EINVAL; /* should be BUG() ? */
3897 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3898 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3900 struct cgroup *cgroup;
3901 unsigned long long min_limit, min_memsw_limit, tmp;
3903 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3904 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3905 cgroup = memcg->css.cgroup;
3906 if (!memcg->use_hierarchy)
3909 while (cgroup->parent) {
3910 cgroup = cgroup->parent;
3911 memcg = mem_cgroup_from_cont(cgroup);
3912 if (!memcg->use_hierarchy)
3914 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3915 min_limit = min(min_limit, tmp);
3916 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3917 min_memsw_limit = min(min_memsw_limit, tmp);
3920 *mem_limit = min_limit;
3921 *memsw_limit = min_memsw_limit;
3925 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3927 struct mem_cgroup *memcg;
3930 memcg = mem_cgroup_from_cont(cont);
3931 type = MEMFILE_TYPE(event);
3932 name = MEMFILE_ATTR(event);
3936 res_counter_reset_max(&memcg->res);
3938 res_counter_reset_max(&memcg->memsw);
3942 res_counter_reset_failcnt(&memcg->res);
3944 res_counter_reset_failcnt(&memcg->memsw);
3951 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3954 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3958 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3959 struct cftype *cft, u64 val)
3961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3963 if (val >= (1 << NR_MOVE_TYPE))
3966 * We check this value several times in both in can_attach() and
3967 * attach(), so we need cgroup lock to prevent this value from being
3971 memcg->move_charge_at_immigrate = val;
3977 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3978 struct cftype *cft, u64 val)
3985 /* For read statistics */
4003 struct mcs_total_stat {
4004 s64 stat[NR_MCS_STAT];
4010 } memcg_stat_strings[NR_MCS_STAT] = {
4011 {"cache", "total_cache"},
4012 {"rss", "total_rss"},
4013 {"mapped_file", "total_mapped_file"},
4014 {"pgpgin", "total_pgpgin"},
4015 {"pgpgout", "total_pgpgout"},
4016 {"swap", "total_swap"},
4017 {"pgfault", "total_pgfault"},
4018 {"pgmajfault", "total_pgmajfault"},
4019 {"inactive_anon", "total_inactive_anon"},
4020 {"active_anon", "total_active_anon"},
4021 {"inactive_file", "total_inactive_file"},
4022 {"active_file", "total_active_file"},
4023 {"unevictable", "total_unevictable"}
4028 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4033 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4034 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4035 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4036 s->stat[MCS_RSS] += val * PAGE_SIZE;
4037 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4038 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4039 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4040 s->stat[MCS_PGPGIN] += val;
4041 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4042 s->stat[MCS_PGPGOUT] += val;
4043 if (do_swap_account) {
4044 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4045 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4047 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4048 s->stat[MCS_PGFAULT] += val;
4049 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4050 s->stat[MCS_PGMAJFAULT] += val;
4053 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4054 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4055 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4056 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4057 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4058 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4059 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4060 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4061 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4062 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4066 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4068 struct mem_cgroup *iter;
4070 for_each_mem_cgroup_tree(iter, memcg)
4071 mem_cgroup_get_local_stat(iter, s);
4075 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4078 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4079 unsigned long node_nr;
4080 struct cgroup *cont = m->private;
4081 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4083 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4084 seq_printf(m, "total=%lu", total_nr);
4085 for_each_node_state(nid, N_HIGH_MEMORY) {
4086 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4087 seq_printf(m, " N%d=%lu", nid, node_nr);
4091 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4092 seq_printf(m, "file=%lu", file_nr);
4093 for_each_node_state(nid, N_HIGH_MEMORY) {
4094 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4096 seq_printf(m, " N%d=%lu", nid, node_nr);
4100 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4101 seq_printf(m, "anon=%lu", anon_nr);
4102 for_each_node_state(nid, N_HIGH_MEMORY) {
4103 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4105 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4110 seq_printf(m, "unevictable=%lu", unevictable_nr);
4111 for_each_node_state(nid, N_HIGH_MEMORY) {
4112 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4113 BIT(LRU_UNEVICTABLE));
4114 seq_printf(m, " N%d=%lu", nid, node_nr);
4119 #endif /* CONFIG_NUMA */
4121 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4122 struct cgroup_map_cb *cb)
4124 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4125 struct mcs_total_stat mystat;
4128 memset(&mystat, 0, sizeof(mystat));
4129 mem_cgroup_get_local_stat(mem_cont, &mystat);
4132 for (i = 0; i < NR_MCS_STAT; i++) {
4133 if (i == MCS_SWAP && !do_swap_account)
4135 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4138 /* Hierarchical information */
4140 unsigned long long limit, memsw_limit;
4141 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4142 cb->fill(cb, "hierarchical_memory_limit", limit);
4143 if (do_swap_account)
4144 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4147 memset(&mystat, 0, sizeof(mystat));
4148 mem_cgroup_get_total_stat(mem_cont, &mystat);
4149 for (i = 0; i < NR_MCS_STAT; i++) {
4150 if (i == MCS_SWAP && !do_swap_account)
4152 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4155 #ifdef CONFIG_DEBUG_VM
4158 struct mem_cgroup_per_zone *mz;
4159 unsigned long recent_rotated[2] = {0, 0};
4160 unsigned long recent_scanned[2] = {0, 0};
4162 for_each_online_node(nid)
4163 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4164 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4166 recent_rotated[0] +=
4167 mz->reclaim_stat.recent_rotated[0];
4168 recent_rotated[1] +=
4169 mz->reclaim_stat.recent_rotated[1];
4170 recent_scanned[0] +=
4171 mz->reclaim_stat.recent_scanned[0];
4172 recent_scanned[1] +=
4173 mz->reclaim_stat.recent_scanned[1];
4175 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4176 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4177 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4178 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4185 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4187 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4189 return mem_cgroup_swappiness(memcg);
4192 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4195 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4196 struct mem_cgroup *parent;
4201 if (cgrp->parent == NULL)
4204 parent = mem_cgroup_from_cont(cgrp->parent);
4208 /* If under hierarchy, only empty-root can set this value */
4209 if ((parent->use_hierarchy) ||
4210 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4215 memcg->swappiness = val;
4222 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4224 struct mem_cgroup_threshold_ary *t;
4230 t = rcu_dereference(memcg->thresholds.primary);
4232 t = rcu_dereference(memcg->memsw_thresholds.primary);
4237 usage = mem_cgroup_usage(memcg, swap);
4240 * current_threshold points to threshold just below usage.
4241 * If it's not true, a threshold was crossed after last
4242 * call of __mem_cgroup_threshold().
4244 i = t->current_threshold;
4247 * Iterate backward over array of thresholds starting from
4248 * current_threshold and check if a threshold is crossed.
4249 * If none of thresholds below usage is crossed, we read
4250 * only one element of the array here.
4252 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4253 eventfd_signal(t->entries[i].eventfd, 1);
4255 /* i = current_threshold + 1 */
4259 * Iterate forward over array of thresholds starting from
4260 * current_threshold+1 and check if a threshold is crossed.
4261 * If none of thresholds above usage is crossed, we read
4262 * only one element of the array here.
4264 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4265 eventfd_signal(t->entries[i].eventfd, 1);
4267 /* Update current_threshold */
4268 t->current_threshold = i - 1;
4273 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4276 __mem_cgroup_threshold(memcg, false);
4277 if (do_swap_account)
4278 __mem_cgroup_threshold(memcg, true);
4280 memcg = parent_mem_cgroup(memcg);
4284 static int compare_thresholds(const void *a, const void *b)
4286 const struct mem_cgroup_threshold *_a = a;
4287 const struct mem_cgroup_threshold *_b = b;
4289 return _a->threshold - _b->threshold;
4292 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4294 struct mem_cgroup_eventfd_list *ev;
4296 list_for_each_entry(ev, &memcg->oom_notify, list)
4297 eventfd_signal(ev->eventfd, 1);
4301 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4303 struct mem_cgroup *iter;
4305 for_each_mem_cgroup_tree(iter, memcg)
4306 mem_cgroup_oom_notify_cb(iter);
4309 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4310 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4312 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4313 struct mem_cgroup_thresholds *thresholds;
4314 struct mem_cgroup_threshold_ary *new;
4315 int type = MEMFILE_TYPE(cft->private);
4316 u64 threshold, usage;
4319 ret = res_counter_memparse_write_strategy(args, &threshold);
4323 mutex_lock(&memcg->thresholds_lock);
4326 thresholds = &memcg->thresholds;
4327 else if (type == _MEMSWAP)
4328 thresholds = &memcg->memsw_thresholds;
4332 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4334 /* Check if a threshold crossed before adding a new one */
4335 if (thresholds->primary)
4336 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4338 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4340 /* Allocate memory for new array of thresholds */
4341 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4349 /* Copy thresholds (if any) to new array */
4350 if (thresholds->primary) {
4351 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4352 sizeof(struct mem_cgroup_threshold));
4355 /* Add new threshold */
4356 new->entries[size - 1].eventfd = eventfd;
4357 new->entries[size - 1].threshold = threshold;
4359 /* Sort thresholds. Registering of new threshold isn't time-critical */
4360 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4361 compare_thresholds, NULL);
4363 /* Find current threshold */
4364 new->current_threshold = -1;
4365 for (i = 0; i < size; i++) {
4366 if (new->entries[i].threshold < usage) {
4368 * new->current_threshold will not be used until
4369 * rcu_assign_pointer(), so it's safe to increment
4372 ++new->current_threshold;
4376 /* Free old spare buffer and save old primary buffer as spare */
4377 kfree(thresholds->spare);
4378 thresholds->spare = thresholds->primary;
4380 rcu_assign_pointer(thresholds->primary, new);
4382 /* To be sure that nobody uses thresholds */
4386 mutex_unlock(&memcg->thresholds_lock);
4391 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4392 struct cftype *cft, struct eventfd_ctx *eventfd)
4394 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4395 struct mem_cgroup_thresholds *thresholds;
4396 struct mem_cgroup_threshold_ary *new;
4397 int type = MEMFILE_TYPE(cft->private);
4401 mutex_lock(&memcg->thresholds_lock);
4403 thresholds = &memcg->thresholds;
4404 else if (type == _MEMSWAP)
4405 thresholds = &memcg->memsw_thresholds;
4410 * Something went wrong if we trying to unregister a threshold
4411 * if we don't have thresholds
4413 BUG_ON(!thresholds);
4415 if (!thresholds->primary)
4418 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4420 /* Check if a threshold crossed before removing */
4421 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4423 /* Calculate new number of threshold */
4425 for (i = 0; i < thresholds->primary->size; i++) {
4426 if (thresholds->primary->entries[i].eventfd != eventfd)
4430 new = thresholds->spare;
4432 /* Set thresholds array to NULL if we don't have thresholds */
4441 /* Copy thresholds and find current threshold */
4442 new->current_threshold = -1;
4443 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4444 if (thresholds->primary->entries[i].eventfd == eventfd)
4447 new->entries[j] = thresholds->primary->entries[i];
4448 if (new->entries[j].threshold < usage) {
4450 * new->current_threshold will not be used
4451 * until rcu_assign_pointer(), so it's safe to increment
4454 ++new->current_threshold;
4460 /* Swap primary and spare array */
4461 thresholds->spare = thresholds->primary;
4462 rcu_assign_pointer(thresholds->primary, new);
4464 /* To be sure that nobody uses thresholds */
4467 mutex_unlock(&memcg->thresholds_lock);
4470 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4471 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4473 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4474 struct mem_cgroup_eventfd_list *event;
4475 int type = MEMFILE_TYPE(cft->private);
4477 BUG_ON(type != _OOM_TYPE);
4478 event = kmalloc(sizeof(*event), GFP_KERNEL);
4482 spin_lock(&memcg_oom_lock);
4484 event->eventfd = eventfd;
4485 list_add(&event->list, &memcg->oom_notify);
4487 /* already in OOM ? */
4488 if (atomic_read(&memcg->under_oom))
4489 eventfd_signal(eventfd, 1);
4490 spin_unlock(&memcg_oom_lock);
4495 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4496 struct cftype *cft, struct eventfd_ctx *eventfd)
4498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4499 struct mem_cgroup_eventfd_list *ev, *tmp;
4500 int type = MEMFILE_TYPE(cft->private);
4502 BUG_ON(type != _OOM_TYPE);
4504 spin_lock(&memcg_oom_lock);
4506 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4507 if (ev->eventfd == eventfd) {
4508 list_del(&ev->list);
4513 spin_unlock(&memcg_oom_lock);
4516 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4517 struct cftype *cft, struct cgroup_map_cb *cb)
4519 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4521 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4523 if (atomic_read(&memcg->under_oom))
4524 cb->fill(cb, "under_oom", 1);
4526 cb->fill(cb, "under_oom", 0);
4530 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4531 struct cftype *cft, u64 val)
4533 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4534 struct mem_cgroup *parent;
4536 /* cannot set to root cgroup and only 0 and 1 are allowed */
4537 if (!cgrp->parent || !((val == 0) || (val == 1)))
4540 parent = mem_cgroup_from_cont(cgrp->parent);
4543 /* oom-kill-disable is a flag for subhierarchy. */
4544 if ((parent->use_hierarchy) ||
4545 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4549 memcg->oom_kill_disable = val;
4551 memcg_oom_recover(memcg);
4557 static const struct file_operations mem_control_numa_stat_file_operations = {
4559 .llseek = seq_lseek,
4560 .release = single_release,
4563 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4565 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4567 file->f_op = &mem_control_numa_stat_file_operations;
4568 return single_open(file, mem_control_numa_stat_show, cont);
4570 #endif /* CONFIG_NUMA */
4572 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4573 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4576 * Part of this would be better living in a separate allocation
4577 * function, leaving us with just the cgroup tree population work.
4578 * We, however, depend on state such as network's proto_list that
4579 * is only initialized after cgroup creation. I found the less
4580 * cumbersome way to deal with it to defer it all to populate time
4582 return mem_cgroup_sockets_init(cont, ss);
4585 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4586 struct cgroup *cont)
4588 mem_cgroup_sockets_destroy(cont, ss);
4591 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4596 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4597 struct cgroup *cont)
4602 static struct cftype mem_cgroup_files[] = {
4604 .name = "usage_in_bytes",
4605 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4606 .read_u64 = mem_cgroup_read,
4607 .register_event = mem_cgroup_usage_register_event,
4608 .unregister_event = mem_cgroup_usage_unregister_event,
4611 .name = "max_usage_in_bytes",
4612 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4613 .trigger = mem_cgroup_reset,
4614 .read_u64 = mem_cgroup_read,
4617 .name = "limit_in_bytes",
4618 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4619 .write_string = mem_cgroup_write,
4620 .read_u64 = mem_cgroup_read,
4623 .name = "soft_limit_in_bytes",
4624 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4625 .write_string = mem_cgroup_write,
4626 .read_u64 = mem_cgroup_read,
4630 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4631 .trigger = mem_cgroup_reset,
4632 .read_u64 = mem_cgroup_read,
4636 .read_map = mem_control_stat_show,
4639 .name = "force_empty",
4640 .trigger = mem_cgroup_force_empty_write,
4643 .name = "use_hierarchy",
4644 .write_u64 = mem_cgroup_hierarchy_write,
4645 .read_u64 = mem_cgroup_hierarchy_read,
4648 .name = "swappiness",
4649 .read_u64 = mem_cgroup_swappiness_read,
4650 .write_u64 = mem_cgroup_swappiness_write,
4653 .name = "move_charge_at_immigrate",
4654 .read_u64 = mem_cgroup_move_charge_read,
4655 .write_u64 = mem_cgroup_move_charge_write,
4658 .name = "oom_control",
4659 .read_map = mem_cgroup_oom_control_read,
4660 .write_u64 = mem_cgroup_oom_control_write,
4661 .register_event = mem_cgroup_oom_register_event,
4662 .unregister_event = mem_cgroup_oom_unregister_event,
4663 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4667 .name = "numa_stat",
4668 .open = mem_control_numa_stat_open,
4674 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4675 static struct cftype memsw_cgroup_files[] = {
4677 .name = "memsw.usage_in_bytes",
4678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4679 .read_u64 = mem_cgroup_read,
4680 .register_event = mem_cgroup_usage_register_event,
4681 .unregister_event = mem_cgroup_usage_unregister_event,
4684 .name = "memsw.max_usage_in_bytes",
4685 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4686 .trigger = mem_cgroup_reset,
4687 .read_u64 = mem_cgroup_read,
4690 .name = "memsw.limit_in_bytes",
4691 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4692 .write_string = mem_cgroup_write,
4693 .read_u64 = mem_cgroup_read,
4696 .name = "memsw.failcnt",
4697 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4698 .trigger = mem_cgroup_reset,
4699 .read_u64 = mem_cgroup_read,
4703 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4705 if (!do_swap_account)
4707 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4708 ARRAY_SIZE(memsw_cgroup_files));
4711 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4717 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4719 struct mem_cgroup_per_node *pn;
4720 struct mem_cgroup_per_zone *mz;
4722 int zone, tmp = node;
4724 * This routine is called against possible nodes.
4725 * But it's BUG to call kmalloc() against offline node.
4727 * TODO: this routine can waste much memory for nodes which will
4728 * never be onlined. It's better to use memory hotplug callback
4731 if (!node_state(node, N_NORMAL_MEMORY))
4733 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4737 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4738 mz = &pn->zoneinfo[zone];
4740 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4741 mz->usage_in_excess = 0;
4742 mz->on_tree = false;
4745 memcg->info.nodeinfo[node] = pn;
4749 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4751 kfree(memcg->info.nodeinfo[node]);
4754 static struct mem_cgroup *mem_cgroup_alloc(void)
4756 struct mem_cgroup *mem;
4757 int size = sizeof(struct mem_cgroup);
4759 /* Can be very big if MAX_NUMNODES is very big */
4760 if (size < PAGE_SIZE)
4761 mem = kzalloc(size, GFP_KERNEL);
4763 mem = vzalloc(size);
4768 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4771 spin_lock_init(&mem->pcp_counter_lock);
4775 if (size < PAGE_SIZE)
4783 * At destroying mem_cgroup, references from swap_cgroup can remain.
4784 * (scanning all at force_empty is too costly...)
4786 * Instead of clearing all references at force_empty, we remember
4787 * the number of reference from swap_cgroup and free mem_cgroup when
4788 * it goes down to 0.
4790 * Removal of cgroup itself succeeds regardless of refs from swap.
4793 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4797 mem_cgroup_remove_from_trees(memcg);
4798 free_css_id(&mem_cgroup_subsys, &memcg->css);
4801 free_mem_cgroup_per_zone_info(memcg, node);
4803 free_percpu(memcg->stat);
4804 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4810 static void mem_cgroup_get(struct mem_cgroup *memcg)
4812 atomic_inc(&memcg->refcnt);
4815 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4817 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4818 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4819 __mem_cgroup_free(memcg);
4821 mem_cgroup_put(parent);
4825 static void mem_cgroup_put(struct mem_cgroup *memcg)
4827 __mem_cgroup_put(memcg, 1);
4831 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4833 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4835 if (!memcg->res.parent)
4837 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4839 EXPORT_SYMBOL(parent_mem_cgroup);
4841 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4842 static void __init enable_swap_cgroup(void)
4844 if (!mem_cgroup_disabled() && really_do_swap_account)
4845 do_swap_account = 1;
4848 static void __init enable_swap_cgroup(void)
4853 static int mem_cgroup_soft_limit_tree_init(void)
4855 struct mem_cgroup_tree_per_node *rtpn;
4856 struct mem_cgroup_tree_per_zone *rtpz;
4857 int tmp, node, zone;
4859 for_each_node(node) {
4861 if (!node_state(node, N_NORMAL_MEMORY))
4863 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4869 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4870 rtpz = &rtpn->rb_tree_per_zone[zone];
4871 rtpz->rb_root = RB_ROOT;
4872 spin_lock_init(&rtpz->lock);
4878 for_each_node(node) {
4879 if (!soft_limit_tree.rb_tree_per_node[node])
4881 kfree(soft_limit_tree.rb_tree_per_node[node]);
4882 soft_limit_tree.rb_tree_per_node[node] = NULL;
4888 static struct cgroup_subsys_state * __ref
4889 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4891 struct mem_cgroup *memcg, *parent;
4892 long error = -ENOMEM;
4895 memcg = mem_cgroup_alloc();
4897 return ERR_PTR(error);
4900 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4904 if (cont->parent == NULL) {
4906 enable_swap_cgroup();
4908 if (mem_cgroup_soft_limit_tree_init())
4910 root_mem_cgroup = memcg;
4911 for_each_possible_cpu(cpu) {
4912 struct memcg_stock_pcp *stock =
4913 &per_cpu(memcg_stock, cpu);
4914 INIT_WORK(&stock->work, drain_local_stock);
4916 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4918 parent = mem_cgroup_from_cont(cont->parent);
4919 memcg->use_hierarchy = parent->use_hierarchy;
4920 memcg->oom_kill_disable = parent->oom_kill_disable;
4923 if (parent && parent->use_hierarchy) {
4924 res_counter_init(&memcg->res, &parent->res);
4925 res_counter_init(&memcg->memsw, &parent->memsw);
4927 * We increment refcnt of the parent to ensure that we can
4928 * safely access it on res_counter_charge/uncharge.
4929 * This refcnt will be decremented when freeing this
4930 * mem_cgroup(see mem_cgroup_put).
4932 mem_cgroup_get(parent);
4934 res_counter_init(&memcg->res, NULL);
4935 res_counter_init(&memcg->memsw, NULL);
4937 memcg->last_scanned_node = MAX_NUMNODES;
4938 INIT_LIST_HEAD(&memcg->oom_notify);
4941 memcg->swappiness = mem_cgroup_swappiness(parent);
4942 atomic_set(&memcg->refcnt, 1);
4943 memcg->move_charge_at_immigrate = 0;
4944 mutex_init(&memcg->thresholds_lock);
4947 __mem_cgroup_free(memcg);
4948 return ERR_PTR(error);
4951 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4952 struct cgroup *cont)
4954 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4956 return mem_cgroup_force_empty(memcg, false);
4959 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4960 struct cgroup *cont)
4962 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4964 kmem_cgroup_destroy(ss, cont);
4966 mem_cgroup_put(memcg);
4969 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4970 struct cgroup *cont)
4974 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4975 ARRAY_SIZE(mem_cgroup_files));
4978 ret = register_memsw_files(cont, ss);
4981 ret = register_kmem_files(cont, ss);
4987 /* Handlers for move charge at task migration. */
4988 #define PRECHARGE_COUNT_AT_ONCE 256
4989 static int mem_cgroup_do_precharge(unsigned long count)
4992 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4993 struct mem_cgroup *memcg = mc.to;
4995 if (mem_cgroup_is_root(memcg)) {
4996 mc.precharge += count;
4997 /* we don't need css_get for root */
5000 /* try to charge at once */
5002 struct res_counter *dummy;
5004 * "memcg" cannot be under rmdir() because we've already checked
5005 * by cgroup_lock_live_cgroup() that it is not removed and we
5006 * are still under the same cgroup_mutex. So we can postpone
5009 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5011 if (do_swap_account && res_counter_charge(&memcg->memsw,
5012 PAGE_SIZE * count, &dummy)) {
5013 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5016 mc.precharge += count;
5020 /* fall back to one by one charge */
5022 if (signal_pending(current)) {
5026 if (!batch_count--) {
5027 batch_count = PRECHARGE_COUNT_AT_ONCE;
5030 ret = __mem_cgroup_try_charge(NULL,
5031 GFP_KERNEL, 1, &memcg, false);
5033 /* mem_cgroup_clear_mc() will do uncharge later */
5041 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5042 * @vma: the vma the pte to be checked belongs
5043 * @addr: the address corresponding to the pte to be checked
5044 * @ptent: the pte to be checked
5045 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5048 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5049 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5050 * move charge. if @target is not NULL, the page is stored in target->page
5051 * with extra refcnt got(Callers should handle it).
5052 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5053 * target for charge migration. if @target is not NULL, the entry is stored
5056 * Called with pte lock held.
5063 enum mc_target_type {
5064 MC_TARGET_NONE, /* not used */
5069 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5070 unsigned long addr, pte_t ptent)
5072 struct page *page = vm_normal_page(vma, addr, ptent);
5074 if (!page || !page_mapped(page))
5076 if (PageAnon(page)) {
5077 /* we don't move shared anon */
5078 if (!move_anon() || page_mapcount(page) > 2)
5080 } else if (!move_file())
5081 /* we ignore mapcount for file pages */
5083 if (!get_page_unless_zero(page))
5089 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5090 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5093 struct page *page = NULL;
5094 swp_entry_t ent = pte_to_swp_entry(ptent);
5096 if (!move_anon() || non_swap_entry(ent))
5098 usage_count = mem_cgroup_count_swap_user(ent, &page);
5099 if (usage_count > 1) { /* we don't move shared anon */
5104 if (do_swap_account)
5105 entry->val = ent.val;
5110 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5113 struct page *page = NULL;
5114 struct inode *inode;
5115 struct address_space *mapping;
5118 if (!vma->vm_file) /* anonymous vma */
5123 inode = vma->vm_file->f_path.dentry->d_inode;
5124 mapping = vma->vm_file->f_mapping;
5125 if (pte_none(ptent))
5126 pgoff = linear_page_index(vma, addr);
5127 else /* pte_file(ptent) is true */
5128 pgoff = pte_to_pgoff(ptent);
5130 /* page is moved even if it's not RSS of this task(page-faulted). */
5131 page = find_get_page(mapping, pgoff);
5134 /* shmem/tmpfs may report page out on swap: account for that too. */
5135 if (radix_tree_exceptional_entry(page)) {
5136 swp_entry_t swap = radix_to_swp_entry(page);
5137 if (do_swap_account)
5139 page = find_get_page(&swapper_space, swap.val);
5145 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5146 unsigned long addr, pte_t ptent, union mc_target *target)
5148 struct page *page = NULL;
5149 struct page_cgroup *pc;
5151 swp_entry_t ent = { .val = 0 };
5153 if (pte_present(ptent))
5154 page = mc_handle_present_pte(vma, addr, ptent);
5155 else if (is_swap_pte(ptent))
5156 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5157 else if (pte_none(ptent) || pte_file(ptent))
5158 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5160 if (!page && !ent.val)
5163 pc = lookup_page_cgroup(page);
5165 * Do only loose check w/o page_cgroup lock.
5166 * mem_cgroup_move_account() checks the pc is valid or not under
5169 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5170 ret = MC_TARGET_PAGE;
5172 target->page = page;
5174 if (!ret || !target)
5177 /* There is a swap entry and a page doesn't exist or isn't charged */
5178 if (ent.val && !ret &&
5179 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5180 ret = MC_TARGET_SWAP;
5187 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5188 unsigned long addr, unsigned long end,
5189 struct mm_walk *walk)
5191 struct vm_area_struct *vma = walk->private;
5195 split_huge_page_pmd(walk->mm, pmd);
5197 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5198 for (; addr != end; pte++, addr += PAGE_SIZE)
5199 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5200 mc.precharge++; /* increment precharge temporarily */
5201 pte_unmap_unlock(pte - 1, ptl);
5207 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5209 unsigned long precharge;
5210 struct vm_area_struct *vma;
5212 down_read(&mm->mmap_sem);
5213 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5214 struct mm_walk mem_cgroup_count_precharge_walk = {
5215 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5219 if (is_vm_hugetlb_page(vma))
5221 walk_page_range(vma->vm_start, vma->vm_end,
5222 &mem_cgroup_count_precharge_walk);
5224 up_read(&mm->mmap_sem);
5226 precharge = mc.precharge;
5232 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5234 unsigned long precharge = mem_cgroup_count_precharge(mm);
5236 VM_BUG_ON(mc.moving_task);
5237 mc.moving_task = current;
5238 return mem_cgroup_do_precharge(precharge);
5241 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5242 static void __mem_cgroup_clear_mc(void)
5244 struct mem_cgroup *from = mc.from;
5245 struct mem_cgroup *to = mc.to;
5247 /* we must uncharge all the leftover precharges from mc.to */
5249 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5253 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5254 * we must uncharge here.
5256 if (mc.moved_charge) {
5257 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5258 mc.moved_charge = 0;
5260 /* we must fixup refcnts and charges */
5261 if (mc.moved_swap) {
5262 /* uncharge swap account from the old cgroup */
5263 if (!mem_cgroup_is_root(mc.from))
5264 res_counter_uncharge(&mc.from->memsw,
5265 PAGE_SIZE * mc.moved_swap);
5266 __mem_cgroup_put(mc.from, mc.moved_swap);
5268 if (!mem_cgroup_is_root(mc.to)) {
5270 * we charged both to->res and to->memsw, so we should
5273 res_counter_uncharge(&mc.to->res,
5274 PAGE_SIZE * mc.moved_swap);
5276 /* we've already done mem_cgroup_get(mc.to) */
5279 memcg_oom_recover(from);
5280 memcg_oom_recover(to);
5281 wake_up_all(&mc.waitq);
5284 static void mem_cgroup_clear_mc(void)
5286 struct mem_cgroup *from = mc.from;
5289 * we must clear moving_task before waking up waiters at the end of
5292 mc.moving_task = NULL;
5293 __mem_cgroup_clear_mc();
5294 spin_lock(&mc.lock);
5297 spin_unlock(&mc.lock);
5298 mem_cgroup_end_move(from);
5301 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5302 struct cgroup *cgroup,
5303 struct cgroup_taskset *tset)
5305 struct task_struct *p = cgroup_taskset_first(tset);
5307 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5309 if (memcg->move_charge_at_immigrate) {
5310 struct mm_struct *mm;
5311 struct mem_cgroup *from = mem_cgroup_from_task(p);
5313 VM_BUG_ON(from == memcg);
5315 mm = get_task_mm(p);
5318 /* We move charges only when we move a owner of the mm */
5319 if (mm->owner == p) {
5322 VM_BUG_ON(mc.precharge);
5323 VM_BUG_ON(mc.moved_charge);
5324 VM_BUG_ON(mc.moved_swap);
5325 mem_cgroup_start_move(from);
5326 spin_lock(&mc.lock);
5329 spin_unlock(&mc.lock);
5330 /* We set mc.moving_task later */
5332 ret = mem_cgroup_precharge_mc(mm);
5334 mem_cgroup_clear_mc();
5341 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5342 struct cgroup *cgroup,
5343 struct cgroup_taskset *tset)
5345 mem_cgroup_clear_mc();
5348 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5349 unsigned long addr, unsigned long end,
5350 struct mm_walk *walk)
5353 struct vm_area_struct *vma = walk->private;
5357 split_huge_page_pmd(walk->mm, pmd);
5359 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5360 for (; addr != end; addr += PAGE_SIZE) {
5361 pte_t ptent = *(pte++);
5362 union mc_target target;
5365 struct page_cgroup *pc;
5371 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5373 case MC_TARGET_PAGE:
5375 if (isolate_lru_page(page))
5377 pc = lookup_page_cgroup(page);
5378 if (!mem_cgroup_move_account(page, 1, pc,
5379 mc.from, mc.to, false)) {
5381 /* we uncharge from mc.from later. */
5384 putback_lru_page(page);
5385 put: /* is_target_pte_for_mc() gets the page */
5388 case MC_TARGET_SWAP:
5390 if (!mem_cgroup_move_swap_account(ent,
5391 mc.from, mc.to, false)) {
5393 /* we fixup refcnts and charges later. */
5401 pte_unmap_unlock(pte - 1, ptl);
5406 * We have consumed all precharges we got in can_attach().
5407 * We try charge one by one, but don't do any additional
5408 * charges to mc.to if we have failed in charge once in attach()
5411 ret = mem_cgroup_do_precharge(1);
5419 static void mem_cgroup_move_charge(struct mm_struct *mm)
5421 struct vm_area_struct *vma;
5423 lru_add_drain_all();
5425 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5427 * Someone who are holding the mmap_sem might be waiting in
5428 * waitq. So we cancel all extra charges, wake up all waiters,
5429 * and retry. Because we cancel precharges, we might not be able
5430 * to move enough charges, but moving charge is a best-effort
5431 * feature anyway, so it wouldn't be a big problem.
5433 __mem_cgroup_clear_mc();
5437 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5439 struct mm_walk mem_cgroup_move_charge_walk = {
5440 .pmd_entry = mem_cgroup_move_charge_pte_range,
5444 if (is_vm_hugetlb_page(vma))
5446 ret = walk_page_range(vma->vm_start, vma->vm_end,
5447 &mem_cgroup_move_charge_walk);
5450 * means we have consumed all precharges and failed in
5451 * doing additional charge. Just abandon here.
5455 up_read(&mm->mmap_sem);
5458 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5459 struct cgroup *cont,
5460 struct cgroup_taskset *tset)
5462 struct task_struct *p = cgroup_taskset_first(tset);
5463 struct mm_struct *mm = get_task_mm(p);
5467 mem_cgroup_move_charge(mm);
5472 mem_cgroup_clear_mc();
5474 #else /* !CONFIG_MMU */
5475 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5476 struct cgroup *cgroup,
5477 struct cgroup_taskset *tset)
5481 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5482 struct cgroup *cgroup,
5483 struct cgroup_taskset *tset)
5486 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5487 struct cgroup *cont,
5488 struct cgroup_taskset *tset)
5493 struct cgroup_subsys mem_cgroup_subsys = {
5495 .subsys_id = mem_cgroup_subsys_id,
5496 .create = mem_cgroup_create,
5497 .pre_destroy = mem_cgroup_pre_destroy,
5498 .destroy = mem_cgroup_destroy,
5499 .populate = mem_cgroup_populate,
5500 .can_attach = mem_cgroup_can_attach,
5501 .cancel_attach = mem_cgroup_cancel_attach,
5502 .attach = mem_cgroup_move_task,
5507 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5508 static int __init enable_swap_account(char *s)
5510 /* consider enabled if no parameter or 1 is given */
5511 if (!strcmp(s, "1"))
5512 really_do_swap_account = 1;
5513 else if (!strcmp(s, "0"))
5514 really_do_swap_account = 0;
5517 __setup("swapaccount=", enable_swap_account);